1
|
Yin JA, Frick L, Scheidmann MC, Liu T, Trevisan C, Dhingra A, Spinelli A, Wu Y, Yao L, Vena DL, Knapp B, Guo J, De Cecco E, Ging K, Armani A, Oakeley EJ, Nigsch F, Jenzer J, Haegele J, Pikusa M, Täger J, Rodriguez-Nieto S, Bouris V, Ribeiro R, Baroni F, Bedi MS, Berry S, Losa M, Hornemann S, Kampmann M, Pelkmans L, Hoepfner D, Heutink P, Aguzzi A. Arrayed CRISPR libraries for the genome-wide activation, deletion and silencing of human protein-coding genes. Nat Biomed Eng 2025; 9:127-148. [PMID: 39633028 PMCID: PMC11754104 DOI: 10.1038/s41551-024-01278-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 10/04/2024] [Indexed: 12/07/2024]
Abstract
Arrayed CRISPR libraries extend the scope of gene-perturbation screens to non-selectable cell phenotypes. However, library generation requires assembling thousands of vectors expressing single-guide RNAs (sgRNAs). Here, by leveraging massively parallel plasmid-cloning methodology, we show that arrayed libraries can be constructed for the genome-wide ablation (19,936 plasmids) of human protein-coding genes and for their activation and epigenetic silencing (22,442 plasmids), with each plasmid encoding an array of four non-overlapping sgRNAs designed to tolerate most human DNA polymorphisms. The quadruple-sgRNA libraries yielded high perturbation efficacies in deletion (75-99%) and silencing (76-92%) experiments and substantial fold changes in activation experiments. Moreover, an arrayed activation screen of 1,634 human transcription factors uncovered 11 novel regulators of the cellular prion protein PrPC, screening with a pooled version of the ablation library led to the identification of 5 novel modifiers of autophagy that otherwise went undetected, and 'post-pooling' individually produced lentiviruses eliminated template-switching artefacts and enhanced the performance of pooled screens for epigenetic silencing. Quadruple-sgRNA arrayed libraries are a powerful and versatile resource for targeted genome-wide perturbations.
Collapse
Grants
- A.A. is supported by institutional core funding by the University of Zurich and the University Hospital of Zurich, and is the recipient of grants from the Nomis Foundation, the Swiss National Research Foundation (grant ID 179040 and grant ID 207872, Sinergia grant ID 183563), the Swiss Personal-ized Health Network (SPHN, 2017DRI17), an Advanced Grant of the European Research Council (ERC Prion2020 No. 670958), the HMZ ImmunoTarget grant, the Human Frontiers Science Pro-gram (grant ID RGP0001/2022), the Michael J. Fox Foundation (grant ID MJFF-022156), Swissuni-versities (CRISPR4ALL), and a donation from the estate of Dr. Hans Salvisberg.
- J-A.Y. is the recip-ient of the postdoc grant Forschungskredit from University of Zurich and the Career Development Awards grant of the Synapsis Foundation – Alzheimer Research Switzerland ARS (Grant ID 2021-CDA02).
- China Scholarship Council
Collapse
Affiliation(s)
- Jiang-An Yin
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland.
| | - Lukas Frick
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Manuel C Scheidmann
- Novartis Institutes for Biomedical Research, Novartis Campus, Basel, Switzerland
| | - Tingting Liu
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Chiara Trevisan
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Ashutosh Dhingra
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Anna Spinelli
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Yancheng Wu
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Longping Yao
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Dalila Laura Vena
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Britta Knapp
- Novartis Institutes for Biomedical Research, Novartis Campus, Basel, Switzerland
| | - Jingjing Guo
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Elena De Cecco
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Kathi Ging
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Andrea Armani
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
- Department of Biomedical Sciences, University of Padua, Padova, Italy
| | - Edward J Oakeley
- Novartis Institutes for Biomedical Research, Novartis Campus, Basel, Switzerland
| | - Florian Nigsch
- Novartis Institutes for Biomedical Research, Novartis Campus, Basel, Switzerland
| | - Joel Jenzer
- Novartis Institutes for Biomedical Research, Novartis Campus, Basel, Switzerland
| | - Jasmin Haegele
- Novartis Institutes for Biomedical Research, Novartis Campus, Basel, Switzerland
| | - Michal Pikusa
- Novartis Institutes for Biomedical Research, Novartis Campus, Basel, Switzerland
| | - Joachim Täger
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | | | - Vangelis Bouris
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Rafaela Ribeiro
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Federico Baroni
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Manmeet Sakshi Bedi
- Novartis Institutes for Biomedical Research, Novartis Campus, Basel, Switzerland
| | - Scott Berry
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Marco Losa
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Simone Hornemann
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Martin Kampmann
- Institute for Neurodegenerative Diseases, Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Lucas Pelkmans
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Dominic Hoepfner
- Novartis Institutes for Biomedical Research, Novartis Campus, Basel, Switzerland
| | - Peter Heutink
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Adriano Aguzzi
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
2
|
Li Y, Pinones M, Breeland A, Jiang P. Single-round QuikChange PCR for engineering multiple site-directed mutations in plasmid DNA. Anal Biochem 2024; 694:115621. [PMID: 39019205 DOI: 10.1016/j.ab.2024.115621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/08/2024] [Accepted: 07/14/2024] [Indexed: 07/19/2024]
Abstract
Mutational study is a cornerstone methodology in biochemistry and genetics, and many mutagenesis strategies have been invented to promote the efficiency of gene engineering. In this study, we developed a simple and timesaving approach to integrate simultaneous mutagenesis at discrete sites. By using plasmid as a template and compatible oligonucleotide primers per the QuikChange strategy, our method was able to introduce multiple nucleotide insertions, deletions and replacements in one round of polymerase chain reaction. The longest insertion and deletion were achieved with 28 bp and 16 bp mismatch respectively. For minor nucleotide replacements (mismatch no more than 4 bp), mutations were achieved at up to 4 discrete locations. Usually, a successful clone with all desired mutations was found by screening 5 colonies. Clones with a subset of mutations may be stocked into the library of mutants or used as templates in the next rounds of mutagenic PCR to accomplish the entire construction project. This method can be applied to build up a combinatory library of mutants through saturation mutagenesis at multiple sites. It is promising to facilitate the research of protein biochemistry, forward genetics and synthetic biology.
Collapse
Affiliation(s)
- Yunxiang Li
- Division of Chemistry and Biochemistry, Texas Woman's University, Denton, TX, 76204, USA.
| | - Mileina Pinones
- Division of Chemistry and Biochemistry, Texas Woman's University, Denton, TX, 76204, USA
| | - Alexis Breeland
- Division of Biology, Texas Woman's University, Denton, TX, 76204, USA
| | - Peilin Jiang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA
| |
Collapse
|
3
|
Tian S, Zhou N. Gaining New Insights into Fundamental Biological Pathways by Bacterial Toxin-Based Genetic Screens. Bioengineering (Basel) 2023; 10:884. [PMID: 37627769 PMCID: PMC10451959 DOI: 10.3390/bioengineering10080884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/11/2023] [Accepted: 07/22/2023] [Indexed: 08/27/2023] Open
Abstract
Genetic screen technology has been applied to study the mechanism of action of bacterial toxins-a special class of virulence factors that contribute to the pathogenesis caused by bacterial infections. These screens aim to identify host factors that directly or indirectly facilitate toxin intoxication. Additionally, specific properties of certain toxins, such as membrane interaction, retrograde trafficking, and carbohydrate binding, provide robust probes to comprehensively investigate the lipid biosynthesis, membrane vesicle transport, and glycosylation pathways, respectively. This review specifically focuses on recent representative toxin-based genetic screens that have identified new players involved in and provided new insights into fundamental biological pathways, such as glycosphingolipid biosynthesis, protein glycosylation, and membrane vesicle trafficking pathways. Functionally characterizing these newly identified factors not only expands our current understanding of toxin biology but also enables a deeper comprehension of fundamental biological questions. Consequently, it stimulates the development of new therapeutic approaches targeting both bacterial infectious diseases and genetic disorders with defects in these factors and pathways.
Collapse
Affiliation(s)
- Songhai Tian
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
- Department of Urology, Boston Children’s Hospital, Boston, MA 02115, USA;
- Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Nini Zhou
- Department of Urology, Boston Children’s Hospital, Boston, MA 02115, USA;
- Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
4
|
Silic MR, Zhang G. Bioelectricity in Developmental Patterning and Size Control: Evidence and Genetically Encoded Tools in the Zebrafish Model. Cells 2023; 12:cells12081148. [PMID: 37190057 DOI: 10.3390/cells12081148] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/03/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Developmental patterning is essential for regulating cellular events such as axial patterning, segmentation, tissue formation, and organ size determination during embryogenesis. Understanding the patterning mechanisms remains a central challenge and fundamental interest in developmental biology. Ion-channel-regulated bioelectric signals have emerged as a player of the patterning mechanism, which may interact with morphogens. Evidence from multiple model organisms reveals the roles of bioelectricity in embryonic development, regeneration, and cancers. The Zebrafish model is the second most used vertebrate model, next to the mouse model. The zebrafish model has great potential for elucidating the functions of bioelectricity due to many advantages such as external development, transparent early embryogenesis, and tractable genetics. Here, we review genetic evidence from zebrafish mutants with fin-size and pigment changes related to ion channels and bioelectricity. In addition, we review the cell membrane voltage reporting and chemogenetic tools that have already been used or have great potential to be implemented in zebrafish models. Finally, new perspectives and opportunities for bioelectricity research with zebrafish are discussed.
Collapse
Affiliation(s)
- Martin R Silic
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| | - GuangJun Zhang
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
- Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute for Inflammation, Immunology and Infectious Diseases (PI4D), Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, 625 Harrison Street, West Lafayette, IN 47907, USA
| |
Collapse
|
5
|
Wilczewski CM, Obasohan J, Paschall JE, Zhang S, Singh S, Maxwell GL, Similuk M, Wolfsberg TG, Turner C, Biesecker LG, Katz AE. Genotype first: Clinical genomics research through a reverse phenotyping approach. Am J Hum Genet 2023; 110:3-12. [PMID: 36608682 PMCID: PMC9892776 DOI: 10.1016/j.ajhg.2022.12.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Although genomic research has predominantly relied on phenotypic ascertainment of individuals affected with heritable disease, the falling costs of sequencing allow consideration of genomic ascertainment and reverse phenotyping (the ascertainment of individuals with specific genomic variants and subsequent evaluation of physical characteristics). In this research modality, the scientific question is inverted: investigators gather individuals with a genomic variant and test the hypothesis that there is an associated phenotype via targeted phenotypic evaluations. Genomic ascertainment research is thus a model of predictive genomic medicine and genomic screening. Here, we provide our experience implementing this research method. We describe the infrastructure we developed to perform reverse phenotyping studies, including aggregating a super-cohort of sequenced individuals who consented to recontact for genomic ascertainment research. We assessed 13 studies completed at the National Institutes of Health (NIH) that piloted our reverse phenotyping approach. The studies can be broadly categorized as (1) facilitating novel genotype-disease associations, (2) expanding the phenotypic spectra, or (3) demonstrating ex vivo functional mechanisms of disease. We highlight three examples of reverse phenotyping studies in detail and describe how using a targeted reverse phenotyping approach (as opposed to phenotypic ascertainment or clinical informatics approaches) was crucial to the conclusions reached. Finally, we propose a framework and address challenges to building collaborative genomic ascertainment research programs at other institutions. Our goal is for more researchers to take advantage of this approach, which will expand our understanding of the predictive capability of genomic medicine and increase the opportunity to mitigate genomic disease.
Collapse
Affiliation(s)
- Caralynn M. Wilczewski
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20814, USA
| | - Justice Obasohan
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20814, USA
| | - Justin E. Paschall
- Bioinformatics and Scientific Programming Core, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20814, USA
| | - Suiyuan Zhang
- Bioinformatics and Scientific Programming Core, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20814, USA
| | - Sumeeta Singh
- Bioinformatics and Scientific Programming Core, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20814, USA
| | - George L. Maxwell
- Women’s Health Integrated Research Center, Inova Health System, Falls Church, VA 22042, USA
| | - Morgan Similuk
- National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, USA
| | - Tyra G. Wolfsberg
- Bioinformatics and Scientific Programming Core, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20814, USA
| | - Clesson Turner
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20814, USA
| | - Leslie G. Biesecker
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20814, USA,Corresponding author
| | - Alexander E. Katz
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20814, USA
| |
Collapse
|
6
|
Cao Y, Zhu X, Zhen P, Tian Y, Ji D, Xue K, Yan W, Chai J, Liu H, Wang W. Cystathionine β‐synthase is required for oocyte quality by ensuring proper meiotic spindle assembly. Cell Prolif 2022; 55:e13322. [DOI: 10.1111/cpr.13322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/15/2022] [Accepted: 07/21/2022] [Indexed: 11/26/2022] Open
Affiliation(s)
- Yan Cao
- Department of Physiology and Pathophysiology School of Basic Medical Sciences, Capital Medical University Beijing China
| | - Xinyu Zhu
- Department of Physiology and Pathophysiology School of Basic Medical Sciences, Capital Medical University Beijing China
| | - Panpan Zhen
- Department of Pathology Beijing Luhe Hospital, Capital Medical University Beijing China
| | - Ying Tian
- Department of Histology and Embryology School of Basic Medical Sciences, Capital Medical University Beijing China
| | - Dengyu Ji
- Department of Physiology and Pathophysiology School of Basic Medical Sciences, Capital Medical University Beijing China
| | - Ke Xue
- Department of Physiology and Pathophysiology School of Basic Medical Sciences, Capital Medical University Beijing China
| | - Wenjing Yan
- Department of Physiology and Pathophysiology School of Basic Medical Sciences, Capital Medical University Beijing China
| | - Jiayin Chai
- Department of Physiology and Pathophysiology School of Basic Medical Sciences, Capital Medical University Beijing China
| | - Huirong Liu
- Department of Physiology and Pathophysiology School of Basic Medical Sciences, Capital Medical University Beijing China
- Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases Capital Medical University Beijing China
| | - Wen Wang
- Department of Physiology and Pathophysiology School of Basic Medical Sciences, Capital Medical University Beijing China
- Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases Capital Medical University Beijing China
| |
Collapse
|
7
|
A missense mutation in Kcnc3 causes hippocampal learning deficits in mice. Proc Natl Acad Sci U S A 2022; 119:e2204901119. [PMID: 35881790 PMCID: PMC9351536 DOI: 10.1073/pnas.2204901119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although a wide variety of genetic tools has been developed to study learning and memory, the molecular basis of memory encoding remains incompletely understood. Here, we undertook an unbiased approach to identify novel genes critical for memory encoding. From a large-scale, in vivo mutagenesis screen using contextual fear conditioning, we isolated in mice a mutant, named Clueless, with spatial learning deficits. A causative missense mutation (G434V) was found in the voltage-gated potassium channel, subfamily C member 3 (Kcnc3) gene in a region that encodes a transmembrane voltage sensor. Generation of a Kcnc3G434V CRISPR mutant mouse confirmed this mutation as the cause of the learning defects. While G434V had no effect on transcription, translation, or trafficking of the channel, electrophysiological analysis of the G434V mutant channel revealed a complete loss of voltage-gated conductance, a broadening of the action potential, and decreased neuronal firing. Together, our findings have revealed a role for Kcnc3 in learning and memory.
Collapse
|
8
|
Weishaupt H, Čančer M, Rosén G, Holmberg KO, Häggqvist S, Bunikis I, Jiang Y, Sreedharan S, Gyllensten U, Becher OJ, Uhrbom L, Ameur A, Swartling FJ. Novel cancer gene discovery using a forward genetic screen in RCAS-PDGFB-driven gliomas. Neuro Oncol 2022; 25:97-107. [PMID: 35738865 PMCID: PMC9825320 DOI: 10.1093/neuonc/noac158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Malignant gliomas, the most common malignant brain tumors in adults, represent a heterogeneous group of diseases with poor prognosis. Retroviruses can cause permanent genetic alterations that modify genes close to the viral integration site. METHODS Here we describe the use of a high-throughput pipeline coupled to the commonly used tissue-specific retroviral RCAS-TVA mouse tumor model system. Utilizing next-generation sequencing, we show that retroviral integration sites can be reproducibly detected in malignant stem cell lines generated from RCAS-PDGFB-driven glioma biopsies. RESULTS A large fraction of common integration sites contained genes that have been dysregulated or misexpressed in glioma. Others overlapped with loci identified in previous glioma-related forward genetic screens, but several novel putative cancer-causing genes were also found. Integrating retroviral tagging and clinical data, Ppfibp1 was highlighted as a frequently tagged novel glioma-causing gene. Retroviral integrations into the locus resulted in Ppfibp1 upregulation, and Ppfibp1-tagged cells generated tumors with shorter latency on orthotopic transplantation. In human gliomas, increased PPFIBP1 expression was significantly linked to poor prognosis and PDGF treatment resistance. CONCLUSIONS Altogether, the current study has demonstrated a novel approach to tagging glioma genes via forward genetics, validating previous results, and identifying PPFIBP1 as a putative oncogene in gliomagenesis.
Collapse
Affiliation(s)
| | | | - Gabriela Rosén
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Karl O Holmberg
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Susana Häggqvist
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Ignas Bunikis
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Yiwen Jiang
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Smitha Sreedharan
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Ulf Gyllensten
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Oren J Becher
- Department of Pediatrics and Biochemistry and Molecular Genetics, Northwestern University, Chicago, Illinois, USA,Department of Pediatrics and Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Lene Uhrbom
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Adam Ameur
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Fredrik J Swartling
- Corresponding Author: Fredrik J. Swartling, PhD, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Dag Hammarskjoldsv. 20, SE-751 85 Uppsala, Sweden ()
| |
Collapse
|
9
|
Watts C. Lysosomes and lysosome‐related organelles in immune responses. FEBS Open Bio 2022; 12:678-693. [PMID: 35220694 PMCID: PMC8972042 DOI: 10.1002/2211-5463.13388] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/25/2022] [Indexed: 11/17/2022] Open
Abstract
The catabolic, degradative capacity of the endo‐lysosome system is put to good use in mammalian immune responses as is their recently established status as signaling platforms. From the ‘creative destruction’ of antigenic and ‘self’ material for antigen presentation to T cells to the re‐purposing of lysosomes as toxic exocytosable lysosome‐related organelles (granules) in leukocytes such as CD8 T cells and eosinophils, endo‐lysosomes are key players in host defense. Signaled responses to some pathogen products initiate in endo‐lysosomes and these organelles are emerging as important in distinct ways in the unique immunobiology of dendritic cells. Potential self‐inflicted toxicity from lysosomal and granule proteases is countered by expression of serpin and cystatin family members.
Collapse
Affiliation(s)
- Colin Watts
- Division of Cell Signalling & Immunology School of Life Sciences University of Dundee Dundee DD1 5EH UK
| |
Collapse
|
10
|
Applications of piggyBac Transposons for Genome Manipulation in Stem Cells. Stem Cells Int 2021; 2021:3829286. [PMID: 34567130 PMCID: PMC8460389 DOI: 10.1155/2021/3829286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/16/2021] [Indexed: 12/20/2022] Open
Abstract
Transposons are mobile genetic elements in the genome. The piggyBac (PB) transposon system is increasingly being used for stem cell research due to its high transposition efficiency and seamless excision capacity. Over the past few decades, forward genetic screens based on PB transposons have been successfully established to identify genes associated with drug resistance and stem cell-related characteristics. Moreover, PB transposon is regarded as a promising gene therapy vector and has been used in some clinically relevant stem cells. Here, we review the recent progress on the basic biology of PB, highlight its applications in current stem cell research, and discuss its advantages and challenges.
Collapse
|
11
|
Rios JJ, Denton K, Russell J, Kozlitina J, Ferreira CR, Lewanda AF, Mayfield JE, Moresco E, Ludwig S, Tang M, Li X, Lyon S, Khanshour A, Paria N, Khalid A, Li Y, Xie X, Feng JQ, Xu Q, Lu Y, Hammer RE, Wise CA, Beutler B. Germline Saturation Mutagenesis Induces Skeletal Phenotypes in Mice. J Bone Miner Res 2021; 36:1548-1565. [PMID: 33905568 PMCID: PMC8862308 DOI: 10.1002/jbmr.4323] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 04/07/2021] [Accepted: 04/21/2021] [Indexed: 12/28/2022]
Abstract
Proper embryonic and postnatal skeletal development require coordination of myriad complex molecular mechanisms. Disruption of these processes, through genetic mutation, contributes to variation in skeletal development. We developed a high-throughput N-ethyl-N-nitrosourea (ENU)-induced saturation mutagenesis skeletal screening approach in mice to identify genes required for proper skeletal development. Here, we report initial results from live-animal X-ray and dual-energy X-ray absorptiometry (DXA) imaging of 27,607 G3 mice from 806 pedigrees, testing the effects of 32,198 coding/splicing mutations in 13,020 genes. A total of 39.7% of all autosomal genes were severely damaged or destroyed by mutations tested twice or more in the homozygous state. Results from our study demonstrate the feasibility of in vivo mutagenesis to identify mouse models of skeletal disease. Furthermore, our study demonstrates how ENU mutagenesis provides opportunities to create and characterize putative hypomorphic mutations in developmentally essential genes. Finally, we present a viable mouse model and case report of recessive skeletal disease caused by mutations in FAM20B. Results from this study, including engineered mouse models, are made publicly available via the online Mutagenetix database. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Jonathan J Rios
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX, USA.,Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, USA.,McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, TX, USA.,Department of Orthopaedic Surgery, UT Southwestern Medical Center, Dallas, TX, USA.,Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Kristin Denton
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX, USA
| | - Jamie Russell
- Center for Genetics of Host Defense, UT Southwestern Medical Center, Dallas, TX, USA
| | - Julia Kozlitina
- McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, TX, USA
| | - Carlos R Ferreira
- Skeletal Genomics Unit, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Amy F Lewanda
- Rare Disease Institute, Children's National Hospital, Washington, DC, USA
| | - Joshua E Mayfield
- Department of Pharmacology, University of California, San Diego, CA, USA
| | - Eva Moresco
- Center for Genetics of Host Defense, UT Southwestern Medical Center, Dallas, TX, USA
| | - Sara Ludwig
- Center for Genetics of Host Defense, UT Southwestern Medical Center, Dallas, TX, USA
| | - Miao Tang
- Center for Genetics of Host Defense, UT Southwestern Medical Center, Dallas, TX, USA
| | - Xiaohong Li
- Center for Genetics of Host Defense, UT Southwestern Medical Center, Dallas, TX, USA
| | - Stephen Lyon
- Center for Genetics of Host Defense, UT Southwestern Medical Center, Dallas, TX, USA
| | - Anas Khanshour
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX, USA
| | - Nandina Paria
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX, USA
| | - Aysha Khalid
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX, USA
| | - Yang Li
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX, USA
| | - Xudong Xie
- Department of Restorative Sciences, School of Dentistry, Texas A&M University, Dallas, TX, USA
| | - Jian Q Feng
- Department of Restorative Sciences, School of Dentistry, Texas A&M University, Dallas, TX, USA
| | - Qian Xu
- Department of Restorative Sciences, School of Dentistry, Texas A&M University, Dallas, TX, USA
| | - Yongbo Lu
- Department of Restorative Sciences, School of Dentistry, Texas A&M University, Dallas, TX, USA
| | - Robert E Hammer
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Carol A Wise
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX, USA.,Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, USA.,McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, TX, USA.,Department of Orthopaedic Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Bruce Beutler
- Center for Genetics of Host Defense, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
12
|
Jakutis G, Stainier DYR. Genotype-Phenotype Relationships in the Context of Transcriptional Adaptation and Genetic Robustness. Annu Rev Genet 2021; 55:71-91. [PMID: 34314597 DOI: 10.1146/annurev-genet-071719-020342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Genetic manipulations with a robust and predictable outcome are critical to investigate gene function, as well as for therapeutic genome engineering. For many years, knockdown approaches and reagents including RNA interference and antisense oligonucleotides dominated functional studies; however, with the advent of precise genome editing technologies, CRISPR-based knockout systems have become the state-of-the-art tools for such studies. These technologies have helped decipher the role of thousands of genes in development and disease. Their use has also revealed how limited our understanding of genotype-phenotype relationships is. The recent discovery that certain mutations can trigger the transcriptional modulation of other genes, a phenomenon called transcriptional adaptation, has provided an additional explanation for the contradicting phenotypes observed in knockdown versus knockout models and increased awareness about the use of each of these approaches. In this review, we first cover the strengths and limitations of different gene perturbation strategies. Then we highlight the diverse ways in which the genotype-phenotype relationship can be discordant between these different strategies. Finally, we review the genetic robustness mechanisms that can lead to such discrepancies, paying special attention to the recently discovered phenomenon of transcriptional adaptation. Expected final online publication date for the Annual Review of Genetics, Volume 55 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Gabrielius Jakutis
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany;
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany; .,German Centre for Cardiovascular Research (DZHK), Partner site Rhine-Main, 60590 Frankfurt am Main, Germany.,Excellence Cluster Cardio-Pulmonary Institute (CPI), 35392 Giessen, Germany
| |
Collapse
|
13
|
High-throughput insertional mutagenesis reveals novel targets for enhancing lipid accumulation in Nannochloropsis oceanica. Metab Eng 2021; 66:239-258. [PMID: 33971293 DOI: 10.1016/j.ymben.2021.04.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/07/2021] [Accepted: 04/18/2021] [Indexed: 12/17/2022]
Abstract
The microalga Nannochloropsis oceanica is considered a promising platform for the sustainable production of high-value lipids and biofuel feedstocks. However, current lipid yields of N. oceanica are too low for economic feasibility. Gaining fundamental insights into the lipid metabolism of N. oceanica could open up various possibilities for the optimization of this species through genetic engineering. Therefore, the aim of this study was to discover novel genes associated with an elevated neutral lipid content. We constructed an insertional mutagenesis library of N. oceanica, selected high lipid mutants by five rounds of fluorescence-activated cell sorting, and identified disrupted genes using a novel implementation of a rapid genotyping procedure. One particularly promising mutant (HLM23) was disrupted in a putative APETALA2-like transcription factor gene. HLM23 showed a 40%-increased neutral lipid content, increased photosynthetic performance, and no growth impairment. Furthermore, transcriptome analysis revealed an upregulation of genes related to plastidial fatty acid biosynthesis, glycolysis and the Calvin-Benson-Bassham cycle in HLM23. Insights gained in this work can be used in future genetic engineering strategies for increased lipid productivity of Nannochloropsis.
Collapse
|
14
|
Jones CE, Tan WS, Grey F, Hughes DJ. Discovering antiviral restriction factors and pathways using genetic screens. J Gen Virol 2021; 102:001603. [PMID: 34020727 PMCID: PMC8295917 DOI: 10.1099/jgv.0.001603] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/29/2021] [Indexed: 12/24/2022] Open
Abstract
Viral infections activate the powerful interferon (IFN) response that induces the expression of several hundred IFN stimulated genes (ISGs). The principal role of this extensive response is to create an unfavourable environment for virus replication and to limit spread; however, untangling the biological consequences of this large response is complicated. In addition to a seemingly high degree of redundancy, several ISGs are usually required in combination to limit infection as individual ISGs often have low to moderate antiviral activity. Furthermore, what ISG or combination of ISGs are antiviral for a given virus is usually not known. For these reasons, and since the function(s) of many ISGs remains unexplored, genome-wide approaches are well placed to investigate what aspects of this response result in an appropriate, virus-specific phenotype. This review discusses the advances screening approaches have provided for the study of host defence mechanisms, including clustered regularly interspaced short palindromic repeats/CRISPR associated protein 9 (CRISPR/Cas9), ISG expression libraries and RNA interference (RNAi) technologies.
Collapse
Affiliation(s)
- Chloe E. Jones
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews, KY16 9ST, UK
| | - Wenfang S. Tan
- Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Finn Grey
- Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - David J. Hughes
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews, KY16 9ST, UK
| |
Collapse
|
15
|
Yahia A, Stevanin G. The History of Gene Hunting in Hereditary Spinocerebellar Degeneration: Lessons From the Past and Future Perspectives. Front Genet 2021; 12:638730. [PMID: 33833777 PMCID: PMC8021710 DOI: 10.3389/fgene.2021.638730] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/02/2021] [Indexed: 01/02/2023] Open
Abstract
Hereditary spinocerebellar degeneration (SCD) encompasses an expanding list of rare diseases with a broad clinical and genetic heterogeneity, complicating their diagnosis and management in daily clinical practice. Correct diagnosis is a pillar for precision medicine, a branch of medicine that promises to flourish with the progressive improvements in studying the human genome. Discovering the genes causing novel Mendelian phenotypes contributes to precision medicine by diagnosing subsets of patients with previously undiagnosed conditions, guiding the management of these patients and their families, and enabling the discovery of more causes of Mendelian diseases. This new knowledge provides insight into the biological processes involved in health and disease, including the more common complex disorders. This review discusses the evolution of the clinical and genetic approaches used to diagnose hereditary SCD and the potential of new tools for future discoveries.
Collapse
Affiliation(s)
- Ashraf Yahia
- Department of Biochemistry, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
- Department of Biochemistry, Faculty of Medicine, National University, Khartoum, Sudan
- Institut du Cerveau, INSERM U1127, CNRS UMR7225, Sorbonne Université, Paris, France
- Ecole Pratique des Hautes Etudes, EPHE, PSL Research University, Paris, France
| | - Giovanni Stevanin
- Institut du Cerveau, INSERM U1127, CNRS UMR7225, Sorbonne Université, Paris, France
- Ecole Pratique des Hautes Etudes, EPHE, PSL Research University, Paris, France
| |
Collapse
|
16
|
Thomy J, Sanchez F, Gut M, Cruz F, Alioto T, Piganeau G, Grimsley N, Yau S. Combining Nanopore and Illumina Sequencing Permits Detailed Analysis of Insertion Mutations and Structural Variations Produced by PEG-Mediated Transformation in Ostreococcus tauri. Cells 2021; 10:cells10030664. [PMID: 33802698 PMCID: PMC8002553 DOI: 10.3390/cells10030664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/09/2021] [Accepted: 03/15/2021] [Indexed: 12/13/2022] Open
Abstract
Ostreococcus tauri is a simple unicellular green alga representing an ecologically important group of phytoplankton in oceans worldwide. Modern molecular techniques must be developed in order to understand the mechanisms that permit adaptation of microalgae to their environment. We present for the first time in O. tauri a detailed characterization of individual genomic integration events of foreign DNA of plasmid origin after PEG-mediated transformation. Vector integration occurred randomly at a single locus in the genome and mainly as a single copy. Thus, we confirmed the utility of this technique for insertional mutagenesis. While the mechanism of double-stranded DNA repair in the O. tauri model remains to be elucidated, we clearly demonstrate by genome resequencing that the integration of the vector leads to frequent structural variations (deletions/insertions and duplications) and some chromosomal rearrangements in the genome at the insertion loci. Furthermore, we often observed variations in the vector sequence itself. From these observations, we speculate that a nonhomologous end-joining-like mechanism is employed during random insertion events, as described in plants and other freshwater algal models. PEG-mediated transformation is therefore a promising molecular biology tool, not only for functional genomic studies, but also for biotechnological research in this ecologically important marine alga.
Collapse
Affiliation(s)
- Julie Thomy
- Sorbonne Université, CNRS, UMR 7232 Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, F-66650 Banyuls-sur-Mer, France; (J.T.); (F.S.); (G.P.)
| | - Frederic Sanchez
- Sorbonne Université, CNRS, UMR 7232 Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, F-66650 Banyuls-sur-Mer, France; (J.T.); (F.S.); (G.P.)
| | - Marta Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain; (M.G.); (F.C.); (T.A.)
- Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Fernando Cruz
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain; (M.G.); (F.C.); (T.A.)
| | - Tyler Alioto
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain; (M.G.); (F.C.); (T.A.)
- Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Gwenael Piganeau
- Sorbonne Université, CNRS, UMR 7232 Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, F-66650 Banyuls-sur-Mer, France; (J.T.); (F.S.); (G.P.)
| | - Nigel Grimsley
- Sorbonne Université, CNRS, UMR 7232 Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, F-66650 Banyuls-sur-Mer, France; (J.T.); (F.S.); (G.P.)
- Correspondence: (N.G.); (S.Y.)
| | - Sheree Yau
- Sorbonne Université, CNRS, UMR 7232 Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, F-66650 Banyuls-sur-Mer, France; (J.T.); (F.S.); (G.P.)
- Correspondence: (N.G.); (S.Y.)
| |
Collapse
|
17
|
Parker CC, Lusk R, Saba LM. Alcohol Sensitivity as an Endophenotype of Alcohol Use Disorder: Exploring Its Translational Utility between Rodents and Humans. Brain Sci 2020; 10:E725. [PMID: 33066036 PMCID: PMC7600833 DOI: 10.3390/brainsci10100725] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/06/2020] [Accepted: 10/09/2020] [Indexed: 12/21/2022] Open
Abstract
Alcohol use disorder (AUD) is a complex, chronic, relapsing disorder with multiple interacting genetic and environmental influences. Numerous studies have verified the influence of genetics on AUD, yet the underlying biological pathways remain unknown. One strategy to interrogate complex diseases is the use of endophenotypes, which deconstruct current diagnostic categories into component traits that may be more amenable to genetic research. In this review, we explore how an endophenotype such as sensitivity to alcohol can be used in conjunction with rodent models to provide mechanistic insights into AUD. We evaluate three alcohol sensitivity endophenotypes (stimulation, intoxication, and aversion) for their translatability across human and rodent research by examining the underlying neurobiology and its relationship to consumption and AUD. We show examples in which results gleaned from rodents are successfully integrated with information from human studies to gain insight in the genetic underpinnings of AUD and AUD-related endophenotypes. Finally, we identify areas for future translational research that could greatly expand our knowledge of the biological and molecular aspects of the transition to AUD with the broad hope of finding better ways to treat this devastating disorder.
Collapse
Affiliation(s)
- Clarissa C. Parker
- Department of Psychology and Program in Neuroscience, Middlebury College, Middlebury, VT 05753, USA
| | - Ryan Lusk
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Laura M. Saba
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| |
Collapse
|
18
|
Muralitharan RR, Jama HA, Xie L, Peh A, Snelson M, Marques FZ. Microbial Peer Pressure: The Role of the Gut Microbiota in Hypertension and Its Complications. HYPERTENSION (DALLAS, TEX. : 1979) 2020; 76:1674-1687. [PMID: 33012206 DOI: 10.1161/hypertensionaha.120.14473] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
There is increasing evidence of the influence of the gut microbiota on hypertension and its complications, such as chronic kidney disease, stroke, heart failure, and myocardial infarction. This is not surprising considering that the most common risk factors for hypertension, such as age, sex, medication, and diet, can also impact the gut microbiota. For example, sodium and fermentable fiber have been studied in relation to both hypertension and the gut microbiota. By combining second- and, now, third-generation sequencing with metabolomics approaches, metabolites, such as short-chain fatty acids and trimethylamine N-oxide, and their producers, have been identified and are now known to affect host physiology and the cardiovascular system. The receptors that bind these metabolites have also been explored with positive findings-examples include known short-chain fatty acid receptors, such as G-protein coupled receptors GPR41, GPR43, GPR109a, and OLF78 in mice. GPR41 and OLF78 have been shown to have inverse roles in blood pressure regulation, whereas GPR43 and GPR109A have to date been demonstrated to impact cardiac function. New treatment options in the form of prebiotics (eg, dietary fiber), probiotics (eg, Lactobacillus spp.), and postbiotics (eg, the short-chain fatty acids acetate, propionate, and butyrate) have all been demonstrated to be beneficial in lowering blood pressure in animal models, but the underlying mechanisms remain poorly understood and translation to hypertensive patients is still lacking. Here, we review the evidence for the role of the gut microbiota in hypertension, its risk factors, and cardiorenal complications and identify future directions for this exciting and fast-evolving field.
Collapse
Affiliation(s)
- Rikeish R Muralitharan
- From the Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science (R.R.M., H.A.J., L.X., A.P., F.Z.M.), Monash University, Melbourne, Australia
- Institute for Medical Research, Ministry of Health Malaysia, Kuala Lumpur, Malaysia (R.R.M.)
| | - Hamdi A Jama
- From the Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science (R.R.M., H.A.J., L.X., A.P., F.Z.M.), Monash University, Melbourne, Australia
- Heart Failure Research Group, Baker Heart and Diabetes Institute, Melbourne, Australia (H.A.J., F.Z.M.)
| | - Liang Xie
- From the Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science (R.R.M., H.A.J., L.X., A.P., F.Z.M.), Monash University, Melbourne, Australia
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Australia (L.X.)
| | - Alex Peh
- From the Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science (R.R.M., H.A.J., L.X., A.P., F.Z.M.), Monash University, Melbourne, Australia
| | - Matthew Snelson
- Department of Diabetes, Central Clinical School (M.S.), Monash University, Melbourne, Australia
| | - Francine Z Marques
- From the Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science (R.R.M., H.A.J., L.X., A.P., F.Z.M.), Monash University, Melbourne, Australia
- Heart Failure Research Group, Baker Heart and Diabetes Institute, Melbourne, Australia (H.A.J., F.Z.M.)
| |
Collapse
|
19
|
Carbone M, Arron ST, Beutler B, Bononi A, Cavenee W, Cleaver JE, Croce CM, D'Andrea A, Foulkes WD, Gaudino G, Groden JL, Henske EP, Hickson ID, Hwang PM, Kolodner RD, Mak TW, Malkin D, Monnat RJ, Novelli F, Pass HI, Petrini JH, Schmidt LS, Yang H. Tumour predisposition and cancer syndromes as models to study gene-environment interactions. Nat Rev Cancer 2020; 20:533-549. [PMID: 32472073 PMCID: PMC8104546 DOI: 10.1038/s41568-020-0265-y] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/23/2020] [Indexed: 12/18/2022]
Abstract
Cell division and organismal development are exquisitely orchestrated and regulated processes. The dysregulation of the molecular mechanisms underlying these processes may cause cancer, a consequence of cell-intrinsic and/or cell-extrinsic events. Cellular DNA can be damaged by spontaneous hydrolysis, reactive oxygen species, aberrant cellular metabolism or other perturbations that cause DNA damage. Moreover, several environmental factors may damage the DNA, alter cellular metabolism or affect the ability of cells to interact with their microenvironment. While some environmental factors are well established as carcinogens, there remains a large knowledge gap of others owing to the difficulty in identifying them because of the typically long interval between carcinogen exposure and cancer diagnosis. DNA damage increases in cells harbouring mutations that impair their ability to correctly repair the DNA. Tumour predisposition syndromes in which cancers arise at an accelerated rate and in different organs - the equivalent of a sensitized background - provide a unique opportunity to examine how gene-environment interactions influence cancer risk when the initiating genetic defect responsible for malignancy is known. Understanding the molecular processes that are altered by specific germline mutations, environmental exposures and related mechanisms that promote cancer will allow the design of novel and effective preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Michele Carbone
- Thoracic Oncology, University of Hawaii Cancer Center, Honolulu, HI, USA.
| | - Sarah T Arron
- STA, JEC, Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA
| | - Bruce Beutler
- Center for Genetic Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Angela Bononi
- Thoracic Oncology, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Webster Cavenee
- Ludwig Institute, University of California, San Diego, San Diego, CA, USA
| | - James E Cleaver
- STA, JEC, Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA
| | - Carlo M Croce
- Department of Cancer Biology and Genetics, Ohio State University, Columbus, OH, USA
| | - Alan D'Andrea
- Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - William D Foulkes
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Giovanni Gaudino
- Thoracic Oncology, University of Hawaii Cancer Center, Honolulu, HI, USA
| | | | - Elizabeth P Henske
- Center for LAM Research, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ian D Hickson
- Center for Chromosome Stability, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Paul M Hwang
- Cardiovascular Branch, National Institutes of Health, Bethesda, MD, USA
| | - Richard D Kolodner
- Ludwig Institute, University of California, San Diego, San Diego, CA, USA
| | - Tak W Mak
- Princess Margaret Cancer Center, University of Toronto, Toronto, ON, Canada
| | - David Malkin
- Division of Haematology/Oncology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Raymond J Monnat
- Department Pathology, Washington University, Seattle, WA, USA
- Department of Genome Science, Washington University, Seattle, WA, USA
| | - Flavia Novelli
- Thoracic Oncology, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Harvey I Pass
- Department of Cardiovascular Surgery, New York University, New York, NY, USA
| | - John H Petrini
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Laura S Schmidt
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Haining Yang
- Thoracic Oncology, University of Hawaii Cancer Center, Honolulu, HI, USA
| |
Collapse
|
20
|
Li X, Lu J, Xu Y, Wang J, Qiu X, Fan L, Li B, Liu W, Mao F, Zhu J, Shen X, Li J. Discovery of nitazoxanide-based derivatives as autophagy activators for the treatment of Alzheimer's disease. Acta Pharm Sin B 2020; 10:646-666. [PMID: 32322468 PMCID: PMC7161708 DOI: 10.1016/j.apsb.2019.07.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 07/03/2019] [Accepted: 07/17/2019] [Indexed: 12/26/2022] Open
Abstract
Drug repurposing is an efficient strategy for new drug discovery. Our latest study found that nitazoxanide (NTZ), an approved anti-parasite drug, was an autophagy activator and could alleviate the symptom of Alzheimer's disease (AD). In order to further improve the efficacy and discover new chemical entities, a series of NTZ-based derivatives were designed, synthesized, and evaluated as autophagy activator against AD. All compounds were screened by the inhibition of phosphorylation of p70S6K, which was the direct substrate of mammalian target of rapamycin (mTOR) and its phosphorylation level could reflect the mTOR-dependent autophagy level. Among these analogs, compound 22 exhibited excellent potency in promoting β-amyloid (Aβ) clearance, inhibiting tau phosphorylation, as well as stimulating autophagy both in vitro and in vivo. What's more, 22 could effectively improve the memory and cognitive impairments in APP/PS1 transgenic AD model mice. These results demonstrated that 22 was a potential candidate for the treatment of AD.
Collapse
Key Words
- AChEIs, acetylcholinesterase inhibitors
- AD, Alzheimer's disease
- APP, amyloid precursor protein
- Alzheimer's disease
- Autophagy
- Aβ, β-amyloid
- BBB, blood–brain barrier
- CNS, central nervous system
- MWM, Morris Water Maze
- NCEs, new chemical entities
- NFTs, neurofibrillary tangles
- NMDA, N-methyl-d-aspartate
- NTZ, nitazoxanide
- Nitazoxanide
- PAMPA, parallel artificial membrane permeation assay
- PBL, porcine brain lipid
- SPs, senile plaques
- Tau protein
- WORT, wortmannin
- mTOR, mammalian target of rapamycin
- β-amyloid
Collapse
|
21
|
Cheresiz SV, Volgin AD, Kokorina Evsyukova A, Bashirzade AAO, Demin KA, de Abreu MS, Amstislavskaya TG, Kalueff AV. Understanding neurobehavioral genetics of zebrafish. J Neurogenet 2020; 34:203-215. [PMID: 31902276 DOI: 10.1080/01677063.2019.1698565] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Due to its fully sequenced genome, high genetic homology to humans, external fertilization, fast development, transparency of embryos, low cost and active reproduction, the zebrafish (Danio rerio) has become a novel promising model organism in biomedicine. Zebrafish are a useful tool in genetic and neuroscience research, including linking various genetic mutations to brain mechanisms using forward and reverse genetics. These approaches have produced novel models of rare genetic CNS disorders and common brain illnesses, such as addiction, aggression, anxiety and depression. Genetically modified zebrafish also foster neuroanatomical studies, manipulating neural circuits and linking them to different behaviors. Here, we discuss recent advances in neurogenetics of zebrafish, and evaluate their unique strengths, inherent limitations and the rapidly growing potential for elucidating the conserved roles of genes in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Sergey V Cheresiz
- Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia.,Institute of Medicine and Psychology, Novosibirsk State University, Novosibirsk, Russia
| | - Andrey D Volgin
- Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia.,Institute of Medicine and Psychology, Novosibirsk State University, Novosibirsk, Russia
| | - Alexandra Kokorina Evsyukova
- Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia.,Institute of Medicine and Psychology, Novosibirsk State University, Novosibirsk, Russia
| | - Alim A O Bashirzade
- Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia.,Institute of Medicine and Psychology, Novosibirsk State University, Novosibirsk, Russia
| | - Konstantin A Demin
- Institute of Experimental Medicine, Almazov National Medical Research Centre, St. Petersburg, Russia.,Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Murilo S de Abreu
- Bioscience Institute, University of Passo Fundo, Passo Fundo, Brazil.,The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA
| | - Tamara G Amstislavskaya
- Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia.,Institute of Medicine and Psychology, Novosibirsk State University, Novosibirsk, Russia.,The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, Chongqing, China.,Ural Federal University, Ekaterinburg, Russia.,Laboratory of Biological Psychiatry, Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia.,Russian Scientific Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
| |
Collapse
|
22
|
García-García MJ. A History of Mouse Genetics: From Fancy Mice to Mutations in Every Gene. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1236:1-38. [PMID: 32304067 DOI: 10.1007/978-981-15-2389-2_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The laboratory mouse has become the model organism of choice in numerous areas of biological and biomedical research, including the study of congenital birth defects. The appeal of mice for these experimental studies stems from the similarities between the physiology, anatomy, and reproduction of these small mammals with our own, but it is also based on a number of practical reasons: mice are easy to maintain in a laboratory environment, are incredibly prolific, and have a relatively short reproductive cycle. Another compelling reason for choosing mice as research subjects is the number of tools and resources that have been developed after more than a century of working with these small rodents in laboratory environments. As will become obvious from the reading of the different chapters in this book, research in mice has already helped uncover many of the genes and processes responsible for congenital birth malformations and human diseases. In this chapter, we will provide an overview of the methods, scientific advances, and serendipitous circumstances that have made these discoveries possible, with a special emphasis on how the use of genetics has propelled scientific progress in mouse research and paved the way for future discoveries.
Collapse
|
23
|
Radaelli E, Santagostino SF, Sellers RS, Brayton CF. Immune Relevant and Immune Deficient Mice: Options and Opportunities in Translational Research. ILAR J 2019; 59:211-246. [PMID: 31197363 PMCID: PMC7114723 DOI: 10.1093/ilar/ily026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/03/2018] [Indexed: 12/29/2022] Open
Abstract
In 1989 ILAR published a list and description of immunodeficient rodents used in research. Since then, advances in understanding of molecular mechanisms; recognition of genetic, epigenetic microbial, and other influences on immunity; and capabilities in manipulating genomes and microbiomes have increased options and opportunities for selecting mice and designing studies to answer important mechanistic and therapeutic questions. Despite numerous scientific breakthroughs that have benefitted from research in mice, there is debate about the relevance and predictive or translational value of research in mice. Reproducibility of results obtained from mice and other research models also is a well-publicized concern. This review summarizes resources to inform the selection and use of immune relevant mouse strains and stocks, aiming to improve the utility, validity, and reproducibility of research in mice. Immune sufficient genetic variations, immune relevant spontaneous mutations, immunodeficient and autoimmune phenotypes, and selected induced conditions are emphasized.
Collapse
Affiliation(s)
- Enrico Radaelli
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sara F Santagostino
- Department of Safety Assessment, Genentech, Inc., South San Francisco, California
| | | | - Cory F Brayton
- Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
24
|
de Groot MHM, Castorena CM, Cox KH, Kumar V, Mohawk JA, Ahmed NI, Takahashi JS. A novel mutation in Slc2a4 as a mouse model of fatigue. GENES BRAIN AND BEHAVIOR 2019; 18:e12578. [PMID: 31059591 DOI: 10.1111/gbb.12578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/01/2019] [Accepted: 05/02/2019] [Indexed: 11/28/2022]
Abstract
Chronic fatigue is a debilitating disorder with widespread consequences, but effective treatment strategies are lacking. Novel genetic mouse models of fatigue may prove invaluable for studying its underlying physiological mechanisms and for testing treatments and interventions. In a screen of voluntary wheel-running behavior in N-ethyl-N-nitrosourea mutagenized C57BL/6J mice, we discovered two lines with low body weights and aberrant wheel-running patterns suggestive of a fatigue phenotype. Affected progeny from these lines had lower daily activity levels and exhibited low amplitude circadian rhythm alterations. Their aberrant behavior was characterized by frequent interruptions and periods of inactivity throughout the dark phase of the light-dark cycle and increased levels of activity during the rest or light phase. Expression of the behavioral phenotypes in offspring of strategic crosses was consistent with a recessive inheritance pattern. Mapping of phenotypic abnormalities showed linkage with a single locus on chromosome 1, and whole exome sequencing identified a single point mutation in the Slc2a4 gene encoding the GLUT4 insulin-responsive glucose transporter. The single nucleotide change (A-T, which we named "twiggy") was in the distal end of exon 10 and resulted in a premature stop (Y440*). Additional metabolic phenotyping confirmed that these mice recapitulate phenotypes found in GLUT4 knockout mice. However, to the best of our knowledge, this is the first time a mutation in this gene has been shown to result in extensive changes in general behavioral patterns. These findings suggest that GLUT4 may be involved in circadian behavioral abnormalities and could provide insights into fatigue in humans.
Collapse
Affiliation(s)
- Marleen H M de Groot
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas.,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Carlos M Castorena
- Department of Internal Medicine, Division of Hypothalamic Research, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Kimberly H Cox
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Vivek Kumar
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jennifer A Mohawk
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas.,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Newaz I Ahmed
- Department of Internal Medicine, Division of Hypothalamic Research, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Joseph S Takahashi
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas.,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
25
|
Yamamoto PK, Souza TA, Antiorio ATFB, Zanatto DA, Garcia‐Gomes MDSA, Alexandre‐Ribeiro SR, Oliveira NDS, Menck CFM, Bernardi MM, Massironi SMG, Mori CMC. Genetic and behavioral characterization of a
Kmt2d
mouse mutant, a new model for Kabuki Syndrome. GENES BRAIN AND BEHAVIOR 2019; 18:e12568. [DOI: 10.1111/gbb.12568] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/18/2019] [Accepted: 03/18/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Pedro K. Yamamoto
- Department of Pathology, School of Veterinary Medicine and Animal ScienceUniversity of São Paulo (USP) Sao Paulo Brazil
| | - Tiago A. Souza
- Department of Microbiology, Institute of Biomedical ScienceUniversity of São Paulo (USP) Sao Paulo Brazil
| | - Ana T. F. B. Antiorio
- Department of Pathology, School of Veterinary Medicine and Animal ScienceUniversity of São Paulo (USP) Sao Paulo Brazil
| | - Dennis A. Zanatto
- Department of Pathology, School of Veterinary Medicine and Animal ScienceUniversity of São Paulo (USP) Sao Paulo Brazil
| | | | | | - Nicassia de Souza Oliveira
- Department of Pathology, School of Veterinary Medicine and Animal ScienceUniversity of São Paulo (USP) Sao Paulo Brazil
| | - Carlos F. M. Menck
- Department of Microbiology, Institute of Biomedical ScienceUniversity of São Paulo (USP) Sao Paulo Brazil
| | - Maria M. Bernardi
- Graduate Program in Environmental and Experimental Pathology, Paulista University São Paulo Brazil
| | - Silvia M. G. Massironi
- Department of Pathology, School of Veterinary Medicine and Animal ScienceUniversity of São Paulo (USP) Sao Paulo Brazil
- Department of Immunology, Institute of Biomedical ScienceUniversity of São Paulo (USP) Sao Paulo Brazil
| | - Claudia M. C. Mori
- Department of Pathology, School of Veterinary Medicine and Animal ScienceUniversity of São Paulo (USP) Sao Paulo Brazil
| |
Collapse
|
26
|
Carbone M, Amelio I, Affar EB, Brugarolas J, Cannon-Albright LA, Cantley LC, Cavenee WK, Chen Z, Croce CM, Andrea AD, Gandara D, Giorgi C, Jia W, Lan Q, Mak TW, Manley JL, Mikoshiba K, Onuchic JN, Pass HI, Pinton P, Prives C, Rothman N, Sebti SM, Turkson J, Wu X, Yang H, Yu H, Melino G. Consensus report of the 8 and 9th Weinman Symposia on Gene x Environment Interaction in carcinogenesis: novel opportunities for precision medicine. Cell Death Differ 2018; 25:1885-1904. [PMID: 30323273 PMCID: PMC6219489 DOI: 10.1038/s41418-018-0213-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 08/06/2018] [Indexed: 12/13/2022] Open
Abstract
The relative contribution of intrinsic genetic factors and extrinsic environmental ones to cancer aetiology and natural history is a lengthy and debated issue. Gene-environment interactions (G x E) arise when the combined presence of both a germline genetic variant and a known environmental factor modulates the risk of disease more than either one alone. A panel of experts discussed our current understanding of cancer aetiology, known examples of G × E interactions in cancer, and the expanded concept of G × E interactions to include somatic cancer mutations and iatrogenic environmental factors such as anti-cancer treatment. Specific genetic polymorphisms and genetic mutations increase susceptibility to certain carcinogens and may be targeted in the near future for prevention and treatment of cancer patients with novel molecularly based therapies. There was general consensus that a better understanding of the complexity and numerosity of G × E interactions, supported by adequate technological, epidemiological, modelling and statistical resources, will further promote our understanding of cancer and lead to novel preventive and therapeutic approaches.
Collapse
Affiliation(s)
| | | | - El Bachir Affar
- Department of Medicine, Maisonneuve-Rosemont Hospital Research Center, University of Montréal, Montréal, Quebec, H1T 2M4, Canada
| | - James Brugarolas
- Department of Internal Medicine, Hematology-Oncology Division, Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Lisa A Cannon-Albright
- Genetic Epidemiology, Department of Internal Medicine, University of Utah School of Medicine, Huntsman Cancer Institute, Salt Lake City, UT, USA
- George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Lewis C Cantley
- Meyer Cancer Center, Weill Cornell Medical College, 413 E. 69(th) Street, New York, NY, 10021, USA
| | - Webster K Cavenee
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA, 92093, USA
| | - Zhijian Chen
- Department of Molecular Biology and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Carlo M Croce
- Department of Molecular Virology, Immunology, and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Alan D' Andrea
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - David Gandara
- Thoracic Oncology, UC Davis, Sacramento, CA, 96817, USA
| | - Carlotta Giorgi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Wei Jia
- Hawaii Cancer Center, Honolulu, HI, USA
| | - Qing Lan
- Occupational & Environmental Epidemiology Branch Division of Cancer Epidemiology & Genetics National Cancer Institute NIH, Bethesda, MD, USA
| | - Tak Wah Mak
- The Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, Toronto, ON, M5G 2M9, Canada
| | - James L Manley
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Katsuhiko Mikoshiba
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, Wako, Saitama, 351-0198, Japan
| | - Jose N Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, TX, 77005, USA
| | - Harvey I Pass
- Division of General Thoracic Surgery, Department of Cardiothoracic Surgery, NYU Langone Medical Center, New York, NY, USA
| | - Paolo Pinton
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Carol Prives
- Department of Biological Sciences, Columbia University, New York, New York, 10027, USA
| | - Nathaniel Rothman
- Occupational & Environmental Epidemiology Branch Division of Cancer Epidemiology & Genetics National Cancer Institute NIH, Bethesda, MD, USA
| | - Said M Sebti
- Drug Discovery Department, Moffitt Cancer Center, and Department of Oncologic Sciences, University of South Florida, Tampa, FL, 33612, USA
| | | | - Xifeng Wu
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | - Gerry Melino
- MRC Toxicology Unit, Leicester, UK.
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
27
|
Wang Y, Cao L, Lee CY, Matsuo T, Wu K, Asher G, Tang L, Saitoh T, Russell J, Klewe-Nebenius D, Wang L, Soya S, Hasegawa E, Chérasse Y, Zhou J, Li Y, Wang T, Zhan X, Miyoshi C, Irukayama Y, Cao J, Meeks JP, Gautron L, Wang Z, Sakurai K, Funato H, Sakurai T, Yanagisawa M, Nagase H, Kobayakawa R, Kobayakawa K, Beutler B, Liu Q. Large-scale forward genetics screening identifies Trpa1 as a chemosensor for predator odor-evoked innate fear behaviors. Nat Commun 2018; 9:2041. [PMID: 29795268 PMCID: PMC5966455 DOI: 10.1038/s41467-018-04324-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 04/18/2018] [Indexed: 12/14/2022] Open
Abstract
Innate behaviors are genetically encoded, but their underlying molecular mechanisms remain largely unknown. Predator odor 2,4,5-trimethyl-3-thiazoline (TMT) and its potent analog 2-methyl-2-thiazoline (2MT) are believed to activate specific odorant receptors to elicit innate fear/defensive behaviors in naive mice. Here, we conduct a large-scale recessive genetics screen of ethylnitrosourea (ENU)-mutagenized mice. We find that loss of Trpa1, a pungency/irritancy receptor, diminishes TMT/2MT and snake skin-evoked innate fear/defensive responses. Accordingly, Trpa1 -/- mice fail to effectively activate known fear/stress brain centers upon 2MT exposure, despite their apparent ability to smell and learn to fear 2MT. Moreover, Trpa1 acts as a chemosensor for 2MT/TMT and Trpa1-expressing trigeminal ganglion neurons contribute critically to 2MT-evoked freezing. Our results indicate that Trpa1-mediated nociception plays a crucial role in predator odor-evoked innate fear/defensive behaviors. The work establishes the first forward genetics screen to uncover the molecular mechanism of innate fear, a basic emotion and evolutionarily conserved survival mechanism.
Collapse
Affiliation(s)
- Yibing Wang
- National Institute of Biological Sciences, 102206, Beijing, China
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Liqin Cao
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Chia-Ying Lee
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Tomohiko Matsuo
- Functional Neuroscience Lab, Kansai Medical University, Hirakata, Osaka, 573-1010, Japan
| | - Kejia Wu
- National Institute of Biological Sciences, 102206, Beijing, China
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Greg Asher
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Lijun Tang
- Functional Neuroscience Lab, Kansai Medical University, Hirakata, Osaka, 573-1010, Japan
| | - Tsuyoshi Saitoh
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Jamie Russell
- Center for Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Daniela Klewe-Nebenius
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Li Wang
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Shingo Soya
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Emi Hasegawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Yoan Chérasse
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Jiamin Zhou
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Yuwenbin Li
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Tao Wang
- Center for Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Xiaowei Zhan
- Center for Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Chika Miyoshi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Yoko Irukayama
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Jie Cao
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Julian P Meeks
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Laurent Gautron
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Zhiqiang Wang
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Katsuyasu Sakurai
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Hiromasa Funato
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
- Department of Anatomy, Faculty of Medicine, Toho University, Ota-Ku, Tokyo, 143-8540, Japan
| | - Takeshi Sakurai
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
- Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Hiroshi Nagase
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Reiko Kobayakawa
- Functional Neuroscience Lab, Kansai Medical University, Hirakata, Osaka, 573-1010, Japan
| | - Ko Kobayakawa
- Functional Neuroscience Lab, Kansai Medical University, Hirakata, Osaka, 573-1010, Japan.
| | - Bruce Beutler
- Center for Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Qinghua Liu
- National Institute of Biological Sciences, 102206, Beijing, China.
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan.
- Center for Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
28
|
Use of a Sibling Subtraction Method for Identifying Causal Mutations in Caenorhabditis elegans by Whole-Genome Sequencing. G3-GENES GENOMES GENETICS 2018; 8:669-678. [PMID: 29237702 PMCID: PMC5919755 DOI: 10.1534/g3.117.300135] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Whole-genome sequencing (WGS) is an indispensable tool for identifying causal mutations obtained from genetic screens. To reduce the number of causal mutation candidates typically uncovered by WGS, Caenorhabditis elegans researchers have developed several strategies. One involves crossing N2-background mutants to the polymorphic Hawaiian (HA) strain, which can be used to simultaneously identify mutant strain variants and obtain high-density mapping information. This approach, however, is not well suited for uncovering mutations in complex genetic backgrounds, and HA polymorphisms can alter phenotypes. Other approaches make use of DNA variants present in the initial background or introduced by mutagenesis. This information is used to implicate genomic regions with high densities of DNA lesions that persist after backcrossing, but these methods can provide lower resolution than HA mapping. To identify suppressor mutations using WGS, we developed an approach termed the sibling subtraction method (SSM). This method works by eliminating variants present in both mutants and their nonmutant siblings, thus greatly reducing the number of candidates. We used this method with two members of the C. elegans NimA-related kinase family, nekl-2 and nekl-3. Combining weak aphenotypic alleles of nekl-2 and nekl-3 leads to penetrant molting defects and larval arrest. We isolated ∼50 suppressors of nekl-2; nekl-3 synthetic lethality using F1 clonal screening methods and a peel-1–based counterselection strategy. When applied to five of the suppressors, SSM led to only one to four suppressor candidates per strain. Thus SSM is a powerful approach for identifying causal mutations in any genetic background and provides an alternative to current methods.
Collapse
|
29
|
Liu G, Wang X, Liu Y, Zhang M, Cai T, Shen Z, Jia Y, Huang Y. Arrayed mutant haploid embryonic stem cell libraries facilitate phenotype-driven genetic screens. Nucleic Acids Res 2018; 45:e180. [PMID: 29036617 PMCID: PMC5727442 DOI: 10.1093/nar/gkx857] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 09/19/2017] [Indexed: 12/26/2022] Open
Abstract
Forward genetic screens using mammalian embryonic stem (ES) cells have identified genes required for numerous cellular processes. However, loss-of-function screens are more difficult to conduct in diploid cells because, in most cases, both alleles of a gene must be mutated to exhibit a phenotype. Recently, mammalian haploid ES cell lines were successfully established and applied to several recessive genetic screens. However, all these screens were performed in mixed pools of mutant cells and were mainly based on positive selection. In general, negative screening is not easy to apply to these mixed pools, although quantitative deep sequencing of mutagen insertions can help to identify some ‘missing’ mutants. Moreover, the interplay between different mutant cells in the mixed pools would interfere with the readout of the screens. Here, we developed a method for rapidly generating arrayed haploid mutant libraries in which the proportion of homozygous mutant clones can reach 85%. After screening thousands of individual mutant clones, we identified a number of novel factors required for the onset of differentiation in ES cells. A negative screen was also conducted to discover mutations conferring cells with increased sensitivity to DNA double-strand breaks induced by the drug doxorubicin. Both of these screens illustrate the value of this system.
Collapse
Affiliation(s)
- Guang Liu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China.,Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Xue Wang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China.,Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Yufang Liu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China.,Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Meili Zhang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China.,Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Tao Cai
- National Institute of Biological Sciences, Beijing 102206, China
| | - Zhirong Shen
- National Institute of Biological Sciences, Beijing 102206, China
| | - Yuyan Jia
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China.,Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Yue Huang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China.,Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| |
Collapse
|
30
|
Gao AW, Uit de Bos J, Sterken MG, Kammenga JE, Smith RL, Houtkooper RH. Forward and reverse genetics approaches to uncover metabolic aging pathways in Caenorhabditis elegans. Biochim Biophys Acta Mol Basis Dis 2017; 1864:2697-2706. [PMID: 28919364 DOI: 10.1016/j.bbadis.2017.09.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 09/05/2017] [Accepted: 09/07/2017] [Indexed: 01/08/2023]
Abstract
The biological mechanisms of aging have been studied in depth and prominent findings in this field promote the development of new therapies for age-associated disorders. Various model organisms are used for research on aging; among these, the nematode Caenorhabditis elegans has been widely used and has provided valuable knowledge in determining the regulatory mechanisms driving the aging process. Many genes involved in lifespan regulation are associated with metabolic pathways and are influenced by genetic and environmental factors. In line with this, C. elegans provides a promising platform to study such gene by environment interactions, in either a reverse or forward genetics approach. In this review, we discuss longevity mechanisms related to metabolic networks that have been discovered in C. elegans. We also highlight the use of wild populations to study the complex genetic basis of natural variation for quantitative traits that mediate longevity.
Collapse
Affiliation(s)
- Arwen W Gao
- Laboratory Genetic Metabolic Diseases, Academic Medical Center of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Jelmi Uit de Bos
- Laboratory Genetic Metabolic Diseases, Academic Medical Center of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Mark G Sterken
- Laboratory of Nematology, Wageningen University and Research, 6708 PB Wageningen, The Netherlands
| | - Jan E Kammenga
- Laboratory of Nematology, Wageningen University and Research, 6708 PB Wageningen, The Netherlands
| | - Reuben L Smith
- Laboratory Genetic Metabolic Diseases, Academic Medical Center of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic Diseases, Academic Medical Center of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| |
Collapse
|
31
|
Westrick RJ, Tomberg K, Siebert AE, Zhu G, Winn ME, Dobies SL, Manning SL, Brake MA, Cleuren AC, Hobbs LM, Mishack LM, Johnston AJ, Kotnik E, Siemieniak DR, Xu J, Li JZ, Saunders TL, Ginsburg D. Sensitized mutagenesis screen in Factor V Leiden mice identifies thrombosis suppressor loci. Proc Natl Acad Sci U S A 2017; 114:9659-9664. [PMID: 28827327 PMCID: PMC5594664 DOI: 10.1073/pnas.1705762114] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Factor V Leiden (F5L ) is a common genetic risk factor for venous thromboembolism in humans. We conducted a sensitized N-ethyl-N-nitrosourea (ENU) mutagenesis screen for dominant thrombosuppressor genes based on perinatal lethal thrombosis in mice homozygous for F5L (F5L/L ) and haploinsufficient for tissue factor pathway inhibitor (Tfpi+/- ). F8 deficiency enhanced the survival of F5L/LTfpi+/- mice, demonstrating that F5L/LTfpi+/- lethality is genetically suppressible. ENU-mutagenized F5L/L males and F5L/+Tfpi+/- females were crossed to generate 6,729 progeny, with 98 F5L/LTfpi+/- offspring surviving until weaning. Sixteen lines, referred to as "modifier of Factor 5 Leiden (MF5L1-16)," exhibited transmission of a putative thrombosuppressor to subsequent generations. Linkage analysis in MF5L6 identified a chromosome 3 locus containing the tissue factor gene (F3). Although no ENU-induced F3 mutation was identified, haploinsufficiency for F3 (F3+/- ) suppressed F5L/LTfpi+/- lethality. Whole-exome sequencing in MF5L12 identified an Actr2 gene point mutation (p.R258G) as the sole candidate. Inheritance of this variant is associated with suppression of F5L/LTfpi+/- lethality (P = 1.7 × 10-6), suggesting that Actr2p.R258G is thrombosuppressive. CRISPR/Cas9 experiments to generate an independent Actr2 knockin/knockout demonstrated that Actr2 haploinsufficiency is lethal, supporting a hypomorphic or gain-of-function mechanism of action for Actr2p.R258G Our findings identify F8 and the Tfpi/F3 axis as key regulators in determining thrombosis balance in the setting of F5L and also suggest a role for Actr2 in this process.
Collapse
Affiliation(s)
- Randal J Westrick
- Department of Biological Sciences, Oakland University, Rochester, MI 48309;
- Center for Data Science and Big Data Analysis, Oakland University, Rochester, MI 48309
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| | - Kärt Tomberg
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109
| | - Amy E Siebert
- Department of Biological Sciences, Oakland University, Rochester, MI 48309
| | - Guojing Zhu
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| | - Mary E Winn
- Bioinformatics and Biostatistics Core, Van Andel Research Institute, Grand Rapids, MI 49503
| | - Sarah L Dobies
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| | - Sara L Manning
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| | - Marisa A Brake
- Department of Biological Sciences, Oakland University, Rochester, MI 48309
| | - Audrey C Cleuren
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| | - Linzi M Hobbs
- Department of Biological Sciences, Oakland University, Rochester, MI 48309
| | - Lena M Mishack
- Department of Biological Sciences, Oakland University, Rochester, MI 48309
| | | | - Emilee Kotnik
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| | - David R Siemieniak
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI 48109
| | - Jishu Xu
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109
| | - Jun Z Li
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109
| | - Thomas L Saunders
- Transgenic Animal Model Core, University of Michigan, Ann Arbor, MI 48109
| | - David Ginsburg
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109;
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI 48109
- Department of Internal Medicine, Ann Arbor, MI 48109
- Department of Pediatrics, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
32
|
Eppig JT. Mouse Genome Informatics (MGI) Resource: Genetic, Genomic, and Biological Knowledgebase for the Laboratory Mouse. ILAR J 2017; 58:17-41. [PMID: 28838066 PMCID: PMC5886341 DOI: 10.1093/ilar/ilx013] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 03/14/2017] [Accepted: 03/28/2017] [Indexed: 12/13/2022] Open
Abstract
The Mouse Genome Informatics (MGI) Resource supports basic, translational, and computational research by providing high-quality, integrated data on the genetics, genomics, and biology of the laboratory mouse. MGI serves a strategic role for the scientific community in facilitating biomedical, experimental, and computational studies investigating the genetics and processes of diseases and enabling the development and testing of new disease models and therapeutic interventions. This review describes the nexus of the body of growing genetic and biological data and the advances in computer technology in the late 1980s, including the World Wide Web, that together launched the beginnings of MGI. MGI develops and maintains a gold-standard resource that reflects the current state of knowledge, provides semantic and contextual data integration that fosters hypothesis testing, continually develops new and improved tools for searching and analysis, and partners with the scientific community to assure research data needs are met. Here we describe one slice of MGI relating to the development of community-wide large-scale mutagenesis and phenotyping projects and introduce ways to access and use these MGI data. References and links to additional MGI aspects are provided.
Collapse
Affiliation(s)
- Janan T. Eppig
- Janan T. Eppig, PhD, is Professor Emeritus at The Jackson Laboratory in Bar Harbor, Maine
| |
Collapse
|
33
|
Doitsidou M, Jarriault S, Poole RJ. Next-Generation Sequencing-Based Approaches for Mutation Mapping and Identification in Caenorhabditis elegans. Genetics 2016; 204:451-474. [PMID: 27729495 PMCID: PMC5068839 DOI: 10.1534/genetics.115.186197] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 08/05/2016] [Indexed: 02/07/2023] Open
Abstract
The use of next-generation sequencing (NGS) has revolutionized the way phenotypic traits are assigned to genes. In this review, we describe NGS-based methods for mapping a mutation and identifying its molecular identity, with an emphasis on applications in Caenorhabditis elegans In addition to an overview of the general principles and concepts, we discuss the main methods, provide practical and conceptual pointers, and guide the reader in the types of bioinformatics analyses that are required. Owing to the speed and the plummeting costs of NGS-based methods, mapping and cloning a mutation of interest has become straightforward, quick, and relatively easy. Removing this bottleneck previously associated with forward genetic screens has significantly advanced the use of genetics to probe fundamental biological processes in an unbiased manner.
Collapse
Affiliation(s)
- Maria Doitsidou
- Centre for Integrative Physiology, University of Edinburgh, EH8 9XD, Scotland
| | - Sophie Jarriault
- L'Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique UMR 7104/Institut National de la Santé et de la Recherche Médicale U964, Université de Strasbourg, 67404, France
| | - Richard J Poole
- Department of Cell and Developmental Biology, University College London, WC1E 6BT, United Kingdom
| |
Collapse
|
34
|
Gurumurthy CB, Grati M, Ohtsuka M, Schilit SLP, Quadros RM, Liu XZ. CRISPR: a versatile tool for both forward and reverse genetics research. Hum Genet 2016; 135:971-6. [PMID: 27384229 PMCID: PMC5002245 DOI: 10.1007/s00439-016-1704-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 06/21/2016] [Indexed: 12/26/2022]
Abstract
Human genetics research employs the two opposing approaches of forward and reverse genetics. While forward genetics identifies and links a mutation to an observed disease etiology, reverse genetics induces mutations in model organisms to study their role in disease. In most cases, causality for mutations identified by forward genetics is confirmed by reverse genetics through the development of genetically engineered animal models and an assessment of whether the model can recapitulate the disease. While many technological advances have helped improve these approaches, some gaps still remain. CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated), which has emerged as a revolutionary genetic engineering tool, holds great promise for closing such gaps. By combining the benefits of forward and reverse genetics, it has dramatically expedited human genetics research. We provide a perspective on the power of CRISPR-based forward and reverse genetics tools in human genetics and discuss its applications using some disease examples.
Collapse
Affiliation(s)
- Channabasavaiah B Gurumurthy
- Developmental Neuroscience, Munroe Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, NE, USA.
- Mouse Genome Engineering Core Facility, Vice Chancellor for Research Office, University of Nebraska Medical Center, Omaha, NE, USA.
| | - M'hamed Grati
- Otolaryngology Department, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Masato Ohtsuka
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, School of Medicine, Tokai University, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
- The Institute of Medical Sciences, Tokai University, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Samantha L P Schilit
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - Rolen M Quadros
- Mouse Genome Engineering Core Facility, Vice Chancellor for Research Office, University of Nebraska Medical Center, Omaha, NE, USA
| | - Xue Zhong Liu
- Otolaryngology Department, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
35
|
Teufel A, Dufour JF. Two-Step Forward Genetic Screen in Mice Identifies the Ral Pathway as a Central Drug Target in Hepatocellular Carcinoma. Gastroenterology 2016; 151:231-3. [PMID: 27371877 DOI: 10.1053/j.gastro.2016.06.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Affiliation(s)
- Andreas Teufel
- Department of Medicine I, University Medical Center, Regensburg, Germany.
| | | |
Collapse
|
36
|
Braguy J, Zurbriggen MD. Synthetic strategies for plant signalling studies: molecular toolbox and orthogonal platforms. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 87:118-38. [PMID: 27227549 DOI: 10.1111/tpj.13218] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 05/11/2016] [Accepted: 05/13/2016] [Indexed: 05/15/2023]
Abstract
Plants deploy a wide array of signalling networks integrating environmental cues with growth, defence and developmental responses. The high level of complexity, redundancy and connection between several pathways hampers a comprehensive understanding of involved functional and regulatory mechanisms. The implementation of synthetic biology approaches is revolutionizing experimental biology in prokaryotes, yeasts and animal systems and can likewise contribute to a new era in plant biology. This review gives an overview on synthetic biology approaches for the development and implementation of synthetic molecular tools and techniques to interrogate, understand and control signalling events in plants, ranging from strategies for the targeted manipulation of plant genomes up to the spatiotemporally resolved control of gene expression using optogenetic approaches. We also describe strategies based on the partial reconstruction of signalling pathways in orthogonal platforms, like yeast, animal and in vitro systems. This allows a targeted analysis of individual signalling hubs devoid of interconnectivity with endogenous interacting components. Implementation of the interdisciplinary synthetic biology tools and strategies is not exempt of challenges and hardships but simultaneously most rewarding in terms of the advances in basic and applied research. As witnessed in other areas, these original theoretical-experimental avenues will lead to a breakthrough in the ability to study and comprehend plant signalling networks.
Collapse
Affiliation(s)
- Justine Braguy
- Institute of Synthetic Biology and CEPLAS, University of Düsseldorf, Universitätstrasse 1, Building 26.12.U1.25, Düsseldorf, 40225, Germany
- King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Matias D Zurbriggen
- Institute of Synthetic Biology and CEPLAS, University of Düsseldorf, Universitätstrasse 1, Building 26.12.U1.25, Düsseldorf, 40225, Germany
| |
Collapse
|
37
|
Tomberg K, Khoriaty R, Westrick RJ, Fairfield HE, Reinholdt LG, Brodsky GL, Davizon-Castillo P, Ginsburg D, Di Paola J. Spontaneous 8bp Deletion in Nbeal2 Recapitulates the Gray Platelet Syndrome in Mice. PLoS One 2016; 11:e0150852. [PMID: 26950939 PMCID: PMC4780761 DOI: 10.1371/journal.pone.0150852] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 02/19/2016] [Indexed: 01/06/2023] Open
Abstract
During the analysis of a whole genome ENU mutagenesis screen for thrombosis modifiers, a spontaneous 8 base pair (bp) deletion causing a frameshift in exon 27 of the Nbeal2 gene was identified. Though initially considered as a plausible thrombosis modifier, this Nbeal2 mutation failed to suppress the synthetic lethal thrombosis on which the original ENU screen was based. Mutations in NBEAL2 cause Gray Platelet Syndrome (GPS), an autosomal recessive bleeding disorder characterized by macrothrombocytopenia and gray-appearing platelets due to lack of platelet alpha granules. Mice homozygous for the Nbeal2 8 bp deletion (Nbeal2gps/gps) exhibit a phenotype similar to human GPS, with significantly reduced platelet counts compared to littermate controls (p = 1.63 x 10−7). Nbeal2gps/gps mice also have markedly reduced numbers of platelet alpha granules and an increased level of emperipolesis, consistent with previously characterized mice carrying targeted Nbeal2 null alleles. These findings confirm previous reports, provide an additional mouse model for GPS, and highlight the potentially confounding effect of background spontaneous mutation events in well-characterized mouse strains.
Collapse
Affiliation(s)
- Kärt Tomberg
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Rami Khoriaty
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Randal J. Westrick
- Department of Biological Sciences, Oakland University, Rochester, Michigan, United States of America
| | | | | | - Gary L. Brodsky
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Pavel Davizon-Castillo
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado, United States of America
| | - David Ginsburg
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| | - Jorge Di Paola
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado, United States of America
- Human Medical Genetics and Genomics Program, University of Colorado Denver, Aurora, Colorado, United States of America
| |
Collapse
|
38
|
Anderson WD, Makadia HK, Vadigepalli R. Molecular variability elicits a tunable switch with discrete neuromodulatory response phenotypes. J Comput Neurosci 2016; 40:65-82. [PMID: 26621106 PMCID: PMC4867553 DOI: 10.1007/s10827-015-0584-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 10/28/2015] [Accepted: 11/02/2015] [Indexed: 01/08/2023]
Abstract
Recent single cell studies show extensive molecular variability underlying cellular responses. We evaluated the impact of molecular variability in the expression of cell signaling components and ion channels on electrophysiological excitability and neuromodulation. We employed a computational approach that integrated neuropeptide receptor-mediated signaling with electrophysiology. We simulated a population of neurons in which expression levels of a neuropeptide receptor and multiple ion channels were simultaneously varied within a physiological range. We analyzed the effects of variation on the electrophysiological response to a neuropeptide stimulus. Our results revealed distinct response patterns associated with low versus high receptor levels. Neurons with low receptor levels showed increased excitability and neurons with high receptor levels showed reduced excitability. These response patterns were separated by a narrow receptor level range forming a separatrix. The position of this separatrix was dependent on the expression levels of multiple ion channels. To assess the relative contributions of receptor and ion channel levels to the response profiles, we categorized the responses into six phenotypes based on response kinetics and magnitude. We applied several multivariate statistical approaches and found that receptor and channel expression levels influence the neuromodulation response phenotype through a complex though systematic mapping. Our analyses extended our understanding of how cellular responses to neuromodulation vary as a function of molecular expression. Our study showed that receptor expression and biophysical state interact with distinct relative contributions to neuronal excitability.
Collapse
Affiliation(s)
- Warren D Anderson
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Thomas Jefferson University, 1020 Locust St, Philadelphia, PA, 19107, USA
- Graduate program in Neuroscience, Thomas Jefferson University, 1020 Locust St, Philadelphia, PA, 19107, USA
- Department of Pathology, Anatomy, and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, 1020 Locust St, Philadelphia, PA, 19107, USA
| | - Hirenkumar K Makadia
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Thomas Jefferson University, 1020 Locust St, Philadelphia, PA, 19107, USA
- Department of Pathology, Anatomy, and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, 1020 Locust St, Philadelphia, PA, 19107, USA
| | - Rajanikanth Vadigepalli
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Thomas Jefferson University, 1020 Locust St, Philadelphia, PA, 19107, USA.
- Graduate program in Neuroscience, Thomas Jefferson University, 1020 Locust St, Philadelphia, PA, 19107, USA.
- Department of Pathology, Anatomy, and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, 1020 Locust St, Philadelphia, PA, 19107, USA.
| |
Collapse
|
39
|
Abstract
Full evaluation of the interactions between a virus and host during infection and clearance requires a living organism. A live animal is also necessary for development of vaccines requiring evaluation of immunogenicity and an immune response that protects from challenge. Study of the natural host for the virus is ideal, but often not possible. Mice have emerged over the last 60 years as the most popular animal model for studying viral pathogenesis due to extensive genetic and immunologic characterization, wide availability of reagents, inbred and transgenic strains, and small size. However, responses in mice are not always predictive of those in the natural host. Other species commonly used include guinea pigs, ferrets, chickens, and nonhuman primates. When choosing an animal model for a study, factors to be considered include host susceptibility to the infection, animal size, cost, availability of housing and reagents, potential confounding coinfections, and ethical restrictions.
Collapse
|
40
|
Weishaupt H, Johansson P, Engström C, Nelander S, Silvestrov S, Swartling FJ. Graph Centrality Based Prediction of Cancer Genes. SPRINGER PROCEEDINGS IN MATHEMATICS & STATISTICS 2016:275-311. [DOI: 10.1007/978-3-319-42105-6_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
41
|
What Lies Ahead? VIRAL PATHOGENESIS 2016. [PMCID: PMC7149599 DOI: 10.1016/b978-0-12-800964-2.00022-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Viral pathogenesis is a field in rapid evolution, reflecting the dynamic development of systems biology and the continuing introduction of new or improved methodologies. Therefore, this final chapter is dedicated to “futurism,” a look at what lies ahead for this field. We have recruited a number of scientists to write short pieces where they are free to speculate on future developments in their respective areas of expertise.
Collapse
|
42
|
Tokunaga M, Kokubu C, Maeda Y, Sese J, Horie K, Sugimoto N, Kinoshita T, Yusa K, Takeda J. Simulation and estimation of gene number in a biological pathway using almost complete saturation mutagenesis screening of haploid mouse cells. BMC Genomics 2014; 15:1016. [PMID: 25418962 PMCID: PMC4301880 DOI: 10.1186/1471-2164-15-1016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Accepted: 11/12/2014] [Indexed: 12/04/2022] Open
Abstract
Background Genome-wide saturation mutagenesis and subsequent phenotype-driven screening has been central to a comprehensive understanding of complex biological processes in classical model organisms such as flies, nematodes, and plants. The degree of “saturation” (i.e., the fraction of possible target genes identified) has been shown to be a critical parameter in determining all relevant genes involved in a biological function, without prior knowledge of their products. In mammalian model systems, however, the relatively large scale and labor intensity of experiments have hampered the achievement of actual saturation mutagenesis, especially for recessive traits that require biallelic mutations to manifest detectable phenotypes. Results By exploiting the recently established haploid mouse embryonic stem cells (ESCs), we present an implementation of almost complete saturation mutagenesis in a mammalian system. The haploid ESCs were mutagenized with the chemical mutagen N-ethyl-N-nitrosourea (ENU) and processed for the screening of mutants defective in various steps of the glycosylphosphatidylinositol-anchor biosynthetic pathway. The resulting 114 independent mutant clones were characterized by a functional complementation assay, and were shown to be defective in any of 20 genes among all 22 known genes essential for this well-characterized pathway. Ten mutants were further validated by whole-exome sequencing. The predominant generation of single-nucleotide substitutions by ENU resulted in a gene mutation rate proportional to the length of the coding sequence, which facilitated the experimental design of saturation mutagenesis screening with the aid of computational simulation. Conclusions Our study enables mammalian saturation mutagenesis to become a realistic proposition. Computational simulation, combined with a pilot mutagenesis experiment, could serve as a tool for the estimation of the number of genes essential for biological processes such as drug target pathways when a positive selection of mutants is available. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1016) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Kosuke Yusa
- Department of Social and Environmental Medicine, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan.
| | | |
Collapse
|
43
|
Mouse ENU Mutagenesis to Understand Immunity to Infection: Methods, Selected Examples, and Perspectives. Genes (Basel) 2014; 5:887-925. [PMID: 25268389 PMCID: PMC4276919 DOI: 10.3390/genes5040887] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 08/19/2014] [Accepted: 08/21/2014] [Indexed: 12/30/2022] Open
Abstract
Infectious diseases are responsible for over 25% of deaths globally, but many more individuals are exposed to deadly pathogens. The outcome of infection results from a set of diverse factors including pathogen virulence factors, the environment, and the genetic make-up of the host. The completion of the human reference genome sequence in 2004 along with technological advances have tremendously accelerated and renovated the tools to study the genetic etiology of infectious diseases in humans and its best characterized mammalian model, the mouse. Advancements in mouse genomic resources have accelerated genome-wide functional approaches, such as gene-driven and phenotype-driven mutagenesis, bringing to the fore the use of mouse models that reproduce accurately many aspects of the pathogenesis of human infectious diseases. Treatment with the mutagen N-ethyl-N-nitrosourea (ENU) has become the most popular phenotype-driven approach. Our team and others have employed mouse ENU mutagenesis to identify host genes that directly impact susceptibility to pathogens of global significance. In this review, we first describe the strategies and tools used in mouse genetics to understand immunity to infection with special emphasis on chemical mutagenesis of the mouse germ-line together with current strategies to efficiently identify functional mutations using next generation sequencing. Then, we highlight illustrative examples of genes, proteins, and cellular signatures that have been revealed by ENU screens and have been shown to be involved in susceptibility or resistance to infectious diseases caused by parasites, bacteria, and viruses.
Collapse
|
44
|
Siggs OM. Dissecting mammalian immunity through mutation. Immunol Cell Biol 2014; 92:392-9. [PMID: 24518983 PMCID: PMC4038135 DOI: 10.1038/icb.2014.8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 01/15/2014] [Accepted: 01/15/2014] [Indexed: 12/27/2022]
Abstract
Although mutation and natural selection have given rise to our immune system, a well-placed mutation can also cripple it, and within an expanding population we are recognizing more and more cases of single-gene mutations that compromise immunity. These mutations are an ideal tool for understanding human immunology, and there are more ways than ever to measure their physiological effects. There are also more ways to create mutations in the laboratory, and to use these resources to systematically define the function of every gene in our genome. This review focuses on the discovery and creation of mutations in the context of mammalian immunity, with an emphasis on the use of genome-wide chemical and CRISPR/Cas9 mutagenesis to reveal gene function.
Collapse
Affiliation(s)
- Owen M Siggs
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| |
Collapse
|