1
|
Li X, Han H, Yang K, Li S, Ma L, Yang Z, Zhao YX. Crosstalk between thyroid CSCs and immune cells: basic principles and clinical implications. Front Immunol 2024; 15:1476427. [PMID: 39776907 PMCID: PMC11703838 DOI: 10.3389/fimmu.2024.1476427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
Thyroid cancer has become the most common endocrine malignancy. Although the majority of differentiated thyroid cancers have a favorable prognosis, advanced thyroid cancers, iodine-refractory thyroid cancers, and highly malignant undifferentiated carcinomas still face a serious challenge of poor prognosis and even death. Cancer stem cells are recognized as one of the central drivers of tumor evolution, recurrence and treatment resistance. A fresh viewpoint on the oncological aspects of thyroid cancer, including proliferation, invasion, recurrence, metastasis, and therapeutic resistance, has been made possible by the recent thorough understanding of the defining and developing features as well as the plasticity of thyroid cancer stem cells (TCSCs). The above characteristics of TCSCs are complicated and regulated by cell-intrinsic mechanisms (including activation of key stem signaling pathways, somatic cell dedifferentiation, etc.) and cell-extrinsic mechanisms. The complex communication between TCSCs and the infiltrating immune cell populations in the tumor microenvironment (TME) is a paradigm for cell-extrinsic regulators. This review introduces the current advances in the studies of TCSCs, including the origin of TCSCs, the intrinsic signaling pathways regulating the stemness of TCSCs, and emerging biomarkers; We further highlight the underlying principles of bidirectional crosstalk between TCSCs and immune cell populations driving thyroid cancer progression, recurrence, or metastasis, including the specific mechanisms by which immune cells maintain the stemness and other properties of TCSCs and how TCSCs reshape the immune microenvironmental landscape to create an immune evasive and pro-tumorigenic ecological niche. Finally, we outline promising strategies and challenges for targeting key programs in the TCSCs-immune cell crosstalk process to treat thyroid cancer.
Collapse
Affiliation(s)
- Xiaoxiao Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Hengtong Han
- The Seventh Department of General Surgery, Department of Thyroid Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Kaili Yang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Shouhua Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Libin Ma
- The Seventh Department of General Surgery, Department of Thyroid Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Ze Yang
- The Seventh Department of General Surgery, Department of Thyroid Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yong-xun Zhao
- The Seventh Department of General Surgery, Department of Thyroid Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
2
|
Bednarczyk A, Kowalski G, Gawrychowska A, Gawrychowski J. Transforming Growth Factor-Beta (TGF-β) Dynamics in Thyroid Pathologies: A Comprehensive Analysis of Pre- and Post-Surgery Levels in Differentiated Thyroid Cancer and Nodular Goiter. POLISH JOURNAL OF SURGERY 2024; 97:1-4. [PMID: 40247786 DOI: 10.5604/01.3001.0054.8492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
<b>Introduction:</b> In various pathological conditions, including cancer, transforming growth factor-beta (TGF-β) emerges as a pivotal cytokine.<b>Aim:</b> This study sought to evaluate TGF-β concentrations in blood serum samples and explore potential associations between pre- and post-surgery TGF-β levels in patients with differentiated thyroid cancer and forms of nodular goiter.<b>Material and methods:</b> A total of 70 patients were included, aged 26 to 79, undergoing thyroidectomy for: differentiated thyroid cancer (11), neutral nodular goiter (46), and hyperactive nodular goiter (13). Serum TGF-β1 values were assessed using the Bio-Plex Pro™ Human Cytokine Assay from Bio-Rad Laboratories, and data were analyzed with Bio-Plex Manager™ software.<b>Conclusions:</b> This investigation aimed to provide insights into the dynamics of TGF-β concentrations in the context of thyroid pathologies, utilizing a comparative approach before and after surgical intervention.
Collapse
Affiliation(s)
- Adam Bednarczyk
- Chair and Clinical Department of General and Endocrine Surgery, Faculty of Health Sciences, Medical University of Silesia in Katowice, Poland
| | - Grzegorz Kowalski
- Chair and Clinical Department of General and Endocrine Surgery, Faculty of Health Sciences, Medical University of Silesia in Katowice, Poland
| | - Agata Gawrychowska
- Chair and Clinical Department of General and Endocrine Surgery, Faculty of Health Sciences, Medical University of Silesia in Katowice, Poland
| | - Jacek Gawrychowski
- Chair and Clinical Department of General and Endocrine Surgery, Faculty of Health Sciences, Medical University of Silesia in Katowice, Poland
| |
Collapse
|
3
|
Blanchett R, Lau KH, Pfeifer GP. Homeobox and Polycomb target gene methylation in human solid tumors. Sci Rep 2024; 14:13912. [PMID: 38886487 PMCID: PMC11183203 DOI: 10.1038/s41598-024-64569-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/11/2024] [Indexed: 06/20/2024] Open
Abstract
DNA methylation is an epigenetic mark that plays an important role in defining cancer phenotypes, with global hypomethylation and focal hypermethylation at CpG islands observed in tumors. These methylation marks can also be used to define tumor types and provide an avenue for biomarker identification. The homeobox gene class is one that has potential for this use, as well as other genes that are Polycomb Repressive Complex 2 targets. To begin to unravel this relationship, we performed a pan-cancer DNA methylation analysis using sixteen Illumina HM450k array datasets from TCGA, delving into cancer-specific qualities and commonalities between tumor types with a focus on homeobox genes. Our comparisons of tumor to normal samples suggest that homeobox genes commonly harbor significant hypermethylated differentially methylated regions. We identified two homeobox genes, HOXA3 and HOXD10, that are hypermethylated in all 16 cancer types. Furthermore, we identified several potential homeobox gene biomarkers from our analysis that are uniquely methylated in only one tumor type and that could be used as screening tools in the future. Overall, our study demonstrates unique patterns of DNA methylation in multiple tumor types and expands on the interplay between the homeobox gene class and oncogenesis.
Collapse
Affiliation(s)
- Reid Blanchett
- Department of Epigenetics, Van Andel Institute, 333 Bostwick Ave. NE, Grand Rapids, MI, 49503, USA
| | - Kin H Lau
- Bioinformatics and Biostatistics Core, Van Andel Institute, Grand Rapids, MI, USA
| | - Gerd P Pfeifer
- Department of Epigenetics, Van Andel Institute, 333 Bostwick Ave. NE, Grand Rapids, MI, 49503, USA.
| |
Collapse
|
4
|
Macvanin MT, Gluvic ZM, Zaric BL, Essack M, Gao X, Isenovic ER. New biomarkers: prospect for diagnosis and monitoring of thyroid disease. Front Endocrinol (Lausanne) 2023; 14:1218320. [PMID: 37547301 PMCID: PMC10401601 DOI: 10.3389/fendo.2023.1218320] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023] Open
Abstract
After the metabolic syndrome and its components, thyroid disorders represent the most common endocrine disorders, with increasing prevalence in the last two decades. Thyroid dysfunctions are distinguished by hyperthyroidism, hypothyroidism, or inflammation (thyroiditis) of the thyroid gland, in addition to the presence of thyroid nodules that can be benign or malignant. Thyroid cancer is typically detected via an ultrasound (US)-guided fine-needle aspiration biopsy (FNAB) and cytological examination of the specimen. This approach has significant limitations due to the small sample size and inability to characterize follicular lesions adequately. Due to the rapid advancement of high-throughput molecular biology techniques, it is now possible to identify new biomarkers for thyroid neoplasms that can supplement traditional imaging modalities in postoperative surveillance and aid in the preoperative cytology examination of indeterminate or follicular lesions. Here, we review current knowledge regarding biomarkers that have been reliable in detecting thyroid neoplasms, making them valuable tools for assessing the efficacy of surgical procedures or adjunctive treatment after surgery. We are particularly interested in providing an up-to-date and systematic review of emerging biomarkers, such as mRNA and non-coding RNAs, that can potentially detect thyroid neoplasms in clinical settings. We discuss evidence for miRNA, lncRNA and circRNA dysregulation in several thyroid neoplasms and assess their potential for use as diagnostic and prognostic biomarkers.
Collapse
Affiliation(s)
- Mirjana T. Macvanin
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Zoran M. Gluvic
- Clinic for Internal Medicine, Department of Endocrinology and Diabetes, Zemun Clinical Hospital, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Bozidarka L. Zaric
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Magbubah Essack
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Xin Gao
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Esma R. Isenovic
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
5
|
Meng Z, Chen Y, Wu W, Yan B, Zhang L, Chen H, Meng Y, Liang Y, Yao X, Luo J. PRRX1 Is a Novel Prognostic Biomarker and Facilitates Tumor Progression Through Epithelial–Mesenchymal Transition in Uveal Melanoma. Front Immunol 2022; 13:754645. [PMID: 35281030 PMCID: PMC8914230 DOI: 10.3389/fimmu.2022.754645] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 01/31/2022] [Indexed: 01/10/2023] Open
Abstract
Uveal melanoma (UM) is the most common primary intraocular malignancy in adults. UM develops and is sustained by inflammation and immunosuppression from the tumor microenvironment (TME). This study sought to identify a reliable TME-related biomarker that could provide survival prediction and new insight into therapy for UM patients. Based on clinical characteristics and the RNA-seq transcriptome data of 80 samples from The Cancer Genome Atlas (TCGA) database, PRRX1 as a TME- and prognosis-related gene was identified using the ESTIMATE algorithm and the LASSO–Cox regression model. A prognostic model based on PRRX1 was constructed and validated with a Gene Expression Omnibus (GEO) dataset of 63 samples. High PRRX1 expression was associated with poorer overall survival (OS) and metastasis-free survival (MFS) in UM patients. Comprehensive results of the prognostic analysis showed that PRRX1 was an independent and reliable predictor of UM. Then the results of immunological characteristics demonstrated that higher expression of PRRX1 was accompanied by higher expression of immune checkpoint genes, lower tumor mutation burden (TMB), and greater tumor cell infiltration into the TME. Gene set enrichment analysis (GSEA) showed that high PRRX1 expression correlated with angiogenesis, epithelial–mesenchymal transition (EMT), and inflammation. Furthermore, downregulation of PRRX1 weakened the process of EMT, reduced cell invasion and migration of human UM cell line MuM-2B in vitro. Taken together, these findings indicated that increased PRRX1 expression is independently a prognostic factor of poorer OS and MFS in patients with UM, and that PRRX1 promotes malignant progression of UM by facilitating EMT, suggesting that PRRX1 may be a potential target for UM therapy.
Collapse
Affiliation(s)
- Zhishang Meng
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yanzhu Chen
- Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Wenyi Wu
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
| | - Bin Yan
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Lusi Zhang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Huihui Chen
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yongan Meng
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Youling Liang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoxi Yao
- Shenzhen College of International Education, Shenzhen, China
| | - Jing Luo
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Jing Luo,
| |
Collapse
|
6
|
Brown MS, Muller KE, Pattabiraman DR. Quantifying the Epithelial-to-Mesenchymal Transition (EMT) from Bench to Bedside. Cancers (Basel) 2022; 14:1138. [PMID: 35267444 PMCID: PMC8909103 DOI: 10.3390/cancers14051138] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/04/2022] [Accepted: 02/17/2022] [Indexed: 02/07/2023] Open
Abstract
The epithelial-to-mesenchymal transition (EMT) and its reversal, the mesenchymal-to-epithelial transition (MET) are critical components of the metastatic cascade in breast cancer and many other solid tumor types. Recent work has uncovered the presence of a variety of states encompassed within the EMT spectrum, each of which may play unique roles or work collectively to impact tumor progression. However, defining EMT status is not routinely carried out to determine patient prognosis or dictate therapeutic decision-making in the clinic. Identifying and quantifying the presence of various EMT states within a tumor is a critical first step to scoring patient tumors to aid in determining prognosis. Here, we review the major strides taken towards translating our understanding of EMT biology from bench to bedside. We review previously used approaches including basic immunofluorescence staining, flow cytometry, single-cell sequencing, and multiplexed tumor mapping. Future studies will benefit from the consideration of multiple methods and combinations of markers in designing a diagnostic tool for detecting and measuring EMT in patient tumors.
Collapse
Affiliation(s)
- Meredith S. Brown
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA;
| | - Kristen E. Muller
- Department of Pathology, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA;
| | - Diwakar R. Pattabiraman
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA;
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA
| |
Collapse
|
7
|
Papaioannou M, Chorti AG, Chatzikyriakidou A, Giannoulis K, Bakkar S, Papavramidis TS. MicroRNAs in Papillary Thyroid Cancer: What Is New in Diagnosis and Treatment. Front Oncol 2022; 11:755097. [PMID: 35186709 PMCID: PMC8851242 DOI: 10.3389/fonc.2021.755097] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 12/08/2021] [Indexed: 12/12/2022] Open
Abstract
Introduction Papillary thyroid cancer (PTC) accounts for up to 80% of thyroid malignancies. New diagnostic and therapeutic options are suggested including innovative molecular methods. MicroRNAs (miRNAs) are nonprotein coding single-stranded RNAs that regulate many cell processes. The aim of the present study is to review the deregulated miRNAs associated with PTCs. Methods A bibliographic research was conducted, resulting in 272 articles referred to miRNAs and PTC. Regarding our exclusion criteria, 183 articles were finally included in our review. Results A remarkably large number of miRNAs have been found to be deregulated during PTC manifestation in the literature. The deregulated miRNAs are detected in tissue samples, serum/plasma, and FNA samples of patients with PTC. These miRNAs are related to several molecular pathways, involving genes and proteins responsible for important biological processes. MiRNA deregulation is associated with tumor aggressiveness, including larger tumor size, multifocality, extrathyroidal extension, lymphovascular invasion, lymph node and distant metastasis, and advanced tumor node metastasis stage. Conclusion MiRNAs are proposed as new diagnostic and therapeutic tools regarding PTC. They could be essential biomarkers for PTC diagnosis applied in serum and FNA samples, while their contribution to prognosis is of great importance.
Collapse
Affiliation(s)
- Maria Papaioannou
- Laboratory of Biological Chemistry, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Angeliki G. Chorti
- 1st Propedeutic Department of Surgery, American Hellenic Educational Progressive Association (AHEPA) University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Anthoula Chatzikyriakidou
- Laboratory of Medical Biology, School of Medicine, Faculty of Health Science, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Kleanthis Giannoulis
- 1st Propedeutic Department of Surgery, American Hellenic Educational Progressive Association (AHEPA) University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Sohail Bakkar
- Department of Surgery, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | - Theodosios S. Papavramidis
- 1st Propedeutic Department of Surgery, American Hellenic Educational Progressive Association (AHEPA) University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
- *Correspondence: Theodosios S. Papavramidis,
| |
Collapse
|
8
|
Sharma KL, Singh RB, Fidda N, Lloyd RV. Cribriform-morular variant of papillary thyroid carcinoma with poorly differentiated features: report of a case and review of the literature. SURGICAL AND EXPERIMENTAL PATHOLOGY 2022. [DOI: 10.1186/s42047-021-00103-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Introduction
Cribrifrom-morular variant of papillary thyroid carcinoma (CMVPTC) is an uncommon thyroid neoplasm that occurs predominantly in women and is sometime associated with familial adenomatous polyposis (FAP). Some of these tumors may undergo dedifferentiation to poorly differentiated thyroid carcinoma (PDTC). We describe a rare case of this carcinoma in a women without a history of FAP.
Case presentation
A 49-year-old woman with a history of breast carcinoma presented with a thyroid mass. A CMVPTC was diagnosed after excision. There was no history of FAP. Histological examination showed classical features of CMVPTC in most areas, but about 20% of the carcinoma showed features of a poorly differentiated carcinoma with a solid pattern of growth, increase mitotic activity and a high Ki-67 proliferative index (25%). Immunohistochemical stains were positive for nuclear and cytoplasmic beta catenin staining. These special studies supported the diagnosis.
Conclusion
CMVPTC with dedifferentiation to PDTC is a rare carcinoma with only 4 previous documented cases in the literature. This aggressive variant of thyroid carcinoma is more common in females, as is CMVPTC, and is often associated with an aggressive biological course. The cases usually express nuclear beta catenin and estrogen, progesterone and androgen receptors have been reported in some cases. Some cases may have somatic alterations of the APC gene and TERT promoter mutations. These carcinomas may metastasize to lung, bones and lymph nodes. Because of its aggressive behavior, patient with this diagnosis should be treated aggressively to control disease spread and mortality from the carcinoma.
Collapse
|
9
|
Jafarzadeh A, Paknahad MH, Nemati M, Jafarzadeh S, Mahjoubin-Tehran M, Rajabi A, Shojaie L, Mirzaei H. Dysregulated expression and functions of microRNA-330 in cancers: A potential therapeutic target. Biomed Pharmacother 2021; 146:112600. [PMID: 34968919 DOI: 10.1016/j.biopha.2021.112600] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/16/2021] [Accepted: 12/23/2021] [Indexed: 12/21/2022] Open
Abstract
As small non-coding RNAs, MicroRNAs (miRNAs) bind to the 3' untranslated region (3'-UTR) of mRNA targets to control gene transcription and translation. The gene of miR-330 has two miRNA products, including miR-330-3p and miR-330-5p, which exhibit anti-tumorigenesis and/or pro-tumorigenesis effects in many kinds of malignancies. In cancers, miR-330-3p and miR-330-5p aberrant expression can influence many malignancy-related processes such as cell proliferation, migration, invasion, apoptosis and epithelial-mesenchymal transition, as well as angiogenesis and responsiveness to treatment. In many cancer types (such as lung, prostate, gastric, breast, bladder, ovarian, colorectal, and pancreatic cancer, and osteosarcoma), miR-330-5p acts as an anti-tumor agent. These cancers have low levels of miR-330-5p that leads to the upregulation of the tumor promotor target genes leading to tumor progression. Here, overexpression of miR-330-5p using miRNA inducers can prevent tumor development. Dual roles of miR-330-5p have been also indicated in the thyroid, liver and cervical cancers. Moreover, miR-330-3p exhibits pro-tumorigenesis effects in lung cancer, pancreatic cancer, osteosarcoma, bladder cancer, and cervical cancer. Here, downregulation of miR-330-3p using miRNA inhibitors can prevent tumor development. Demonstrated in breast and liver cancers, miR-330-3p also has dual roles. Importantly, the activities of miR-330-3p and/or miR-330-5p are regulated by upstream regulators long non-coding RNAs (lncRNAs), including circular and linear lncRNAs. This review comprehensively explained miR-330-3p and miR-330-5p role in development of cancers, while highlighting their downstream target genes and upstream regulators as well as possible therapeutic strategies.
Collapse
Affiliation(s)
- Abdollah Jafarzadeh
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran; Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| | - Mohammad Hossein Paknahad
- Department of Cardiology, Chamran Cardiovascular Research Education Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Nemati
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Haematology and Laboratory Sciences, School of Para-Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Sara Jafarzadeh
- Student Research Committee, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Mahjoubin-Tehran
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Rajabi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Layla Shojaie
- Research center for Liver diseases, Keck school of medicine, Department of Medicine, University of Southern California, Los angeles, CA, USA.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
10
|
Zhu X, Wang X, Gong Y, Deng J. E-cadherin on epithelial-mesenchymal transition in thyroid cancer. Cancer Cell Int 2021; 21:695. [PMID: 34930256 PMCID: PMC8690896 DOI: 10.1186/s12935-021-02344-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/15/2021] [Indexed: 02/08/2023] Open
Abstract
Thyroid carcinoma is a common malignant tumor of endocrine system and head and neck. Recurrence, metastasis and high malignant expression after routine treatment are serious clinical problems, so it is of great significance to explore its mechanism and find action targets. Epithelial-mesenchymal transition (EMT) is associated with tumor malignancy and invasion. One key change in tumour EMT is low expression of E-cadherin. Therefore, this article reviews the expression of E-cadherin in thyroid cancers (TC), discuss the potential mechanisms involved, and outline opportunities to exploit E-cadherin on regulating the occurrence of EMT as a critical factor in cancer therapeutics.
Collapse
Affiliation(s)
- Xiaoyu Zhu
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Zhijiang Middle Road, Jing'an District, Shanghai, 200040, China
| | - Xiaoping Wang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Zhijiang Middle Road, Jing'an District, Shanghai, 200040, China.
| | - Yifei Gong
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Zhijiang Middle Road, Jing'an District, Shanghai, 200040, China
| | - Junlin Deng
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Zhijiang Middle Road, Jing'an District, Shanghai, 200040, China
| |
Collapse
|
11
|
Viana BPPB, Gomes AVP, Gimba ERP, Ferreira LB. Osteopontin Expression in Thyroid Cancer: Deciphering EMT-Related Molecular Mechanisms. Biomedicines 2021; 9:biomedicines9101372. [PMID: 34680488 PMCID: PMC8533224 DOI: 10.3390/biomedicines9101372] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 12/13/2022] Open
Abstract
Thyroid cancer is the most common tumor arising from the endocrine system and generally presents good prognosis. However, its aggressive subtypes are related to therapeutic resistance and early metastasis. Epithelial–mesenchymal transition (EMT) and its reverse process, the mesenchymal–epithelial transition (MET), are key events mediating cancer progression, including in thyroid cancer. The matricellular protein osteopontin (OPN) has been reported as a master regulator of EMT in many tumor types. Although high OPN expression has been described and associated with important aspects of thyroid cancer progression, there is no clear evidence regarding OPN as a regulator of EMT in thyroid cancer. Thus, taking together the known roles of OPN in the modulation of EMT in cancer and the information reporting the expression of OPN in thyroid tumor progression, this review aims at summarizing and discussing data related to EMT in thyroid cancer and its putative relation to the roles of OPN in the development of thyroid cancer. These data provide new insights into the molecular mechanisms by which OPN could potentially modulate EMT in thyroid tumors, generating evidence for future studies that may contribute to new therapeutic, prognostic and/or diagnostic tools.
Collapse
Affiliation(s)
- Bruna Prunes Pena Baroni Viana
- Grupo de Hemato-Oncologia Molecular, Coordenação de Pesquisa, Instituto Nacional de Câncer, Praça da Cruz Vermelha, 23, 6° andar, Rio de Janeiro 20230-130, CEP, Brazil; (B.P.P.B.V.); (A.V.P.G.)
- Programa de Pós-Graduação Stricto Sensu em Oncologia, Instituto Nacional de Câncer, Rua André Cavalcanti, 37, 3° andar, Rio de Janeiro 20231-050, CEP, Brazil
| | - Amanda Vitória Pampolha Gomes
- Grupo de Hemato-Oncologia Molecular, Coordenação de Pesquisa, Instituto Nacional de Câncer, Praça da Cruz Vermelha, 23, 6° andar, Rio de Janeiro 20230-130, CEP, Brazil; (B.P.P.B.V.); (A.V.P.G.)
- Centro de Ciências Biológicas e da Saúde, Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro, Rua Frei Caneca, 94, Rio de Janeiro 20211-010, CEP, Brazil
| | - Etel Rodrigues Pereira Gimba
- Grupo de Hemato-Oncologia Molecular, Coordenação de Pesquisa, Instituto Nacional de Câncer, Praça da Cruz Vermelha, 23, 6° andar, Rio de Janeiro 20230-130, CEP, Brazil; (B.P.P.B.V.); (A.V.P.G.)
- Programa de Pós-Graduação Stricto Sensu em Oncologia, Instituto Nacional de Câncer, Rua André Cavalcanti, 37, 3° andar, Rio de Janeiro 20231-050, CEP, Brazil
- Departamento de Ciências da Natureza, Universidade Federal Fluminense, Rua Recife 1-7, Bela Vista, Rio das Ostras 28880-000, CEP, Brazil
- Programa de Pós-Graduação em Ciências Biomédicas, Fisiologia e Farmacologia, Instituto Biomédico, Av. Prof. Hernani Melo, 101, Niterói 24210-130, CEP, Brazil
- Correspondence: (E.R.P.G.); (L.B.F.)
| | - Luciana Bueno Ferreira
- Grupo de Hemato-Oncologia Molecular, Coordenação de Pesquisa, Instituto Nacional de Câncer, Praça da Cruz Vermelha, 23, 6° andar, Rio de Janeiro 20230-130, CEP, Brazil; (B.P.P.B.V.); (A.V.P.G.)
- Programa de Pós-Graduação Stricto Sensu em Oncologia, Instituto Nacional de Câncer, Rua André Cavalcanti, 37, 3° andar, Rio de Janeiro 20231-050, CEP, Brazil
- Correspondence: (E.R.P.G.); (L.B.F.)
| |
Collapse
|
12
|
Du W, Liu X, Yang M, Wang W, Sun J. The Regulatory Role of PRRX1 in Cancer Epithelial-Mesenchymal Transition. Onco Targets Ther 2021; 14:4223-4229. [PMID: 34295164 PMCID: PMC8291965 DOI: 10.2147/ott.s316102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/23/2021] [Indexed: 01/26/2023] Open
Abstract
PRRX1 (paired related homeobox 1), a member of the paired homeobox family, exhibits an important role in tumor. It is closely correlated to the occurrence of epithelial-mesenchymal transition (EMT). PRRX1 is an important transcription factor regulating EMT and plays an important role in tumor progression. In the process of tumor metastasis, PRRX1 mainly regulates the occurrence of EMT in tumor cells through TGF-β signaling pathway, Wnt/β-catenin signaling pathway and Notch signaling pathway. PRRX1 is not only closely related to the tumor cell stemness but also involved in miRNA regulation of EMT. Therefore, PRRX1 may be a target for inhibiting the proliferation, metastasis and stemness of tumor cells. The current review provides a systemic profile of the regulatory role of PRRX1 in cancer epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Wenjiao Du
- Institute of Medical Biotechnology, Suzhou Vocational Health College, Suzhou, Jiangsu, 215009, People's Republic of China
| | - Xinchang Liu
- Center for Drug Metabolism and Pharmacokinetics, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, People's Republic of China
| | - Man Yang
- Center for Drug Metabolism and Pharmacokinetics, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, People's Republic of China
| | - Weipeng Wang
- Center for Drug Metabolism and Pharmacokinetics, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, People's Republic of China
| | - Jing Sun
- Institute of Medical Biotechnology, Suzhou Vocational Health College, Suzhou, Jiangsu, 215009, People's Republic of China
| |
Collapse
|
13
|
Prrx1 promotes stemness and angiogenesis via activating TGF-β/smad pathway and upregulating proangiogenic factors in glioma. Cell Death Dis 2021; 12:615. [PMID: 34131109 PMCID: PMC8206106 DOI: 10.1038/s41419-021-03882-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 05/18/2021] [Accepted: 05/21/2021] [Indexed: 02/07/2023]
Abstract
Glioma is one of the most lethal cancers with highly vascularized networks and growing evidences have identified glioma stem cells (GSCs) to account for excessive angiogenesis in glioma. Aberrant expression of paired-related homeobox1 (Prrx1) has been functionally associated with cancer stem cells including GSCs. In this study, Prrx1 was found to be markedly upregulated in glioma specimens and elevated Prrx1 expression was inversely correlated with prognosis of glioma patients. Prrx1 potentiated stemness acquisition in non-stem tumor cells (NSTCs) and stemness maintenance in GSCs, accompanied with increased expression of stemness markers such as SOX2. Prrx1 also promoted glioma angiogenesis by upregulating proangiogenic factors such as VEGF. Consistently, silencing Prrx1 markedly inhibited glioma proliferation, stemness, and angiogenesis in vivo. Using a combination of subcellular proteomics and in vitro analyses, we revealed that Prrx1 directly bound to the promoter regions of TGF-β1 gene, upregulated TGF-β1 expression, and ultimately activated the TGF-β/smad pathway. Silencing TGF-β1 mitigated the malignant behaviors induced by Prrx1. Activation of this pathway cooperates with Prrx1 to upregulate the expression of stemness-related genes and proangiogenic factors. In summary, our findings revealed that Prrx1/TGF-β/smad signal axis exerted a critical role in glioma stemness and angiogeneis. Disrupting the function of this signal axis might represent a new therapeutic strategy in glioma patients.
Collapse
|
14
|
Chen W, Wu J, Shi W, Zhang G, Chen X, Ji A, Wang Z, Wu J, Jiang C. PRRX1 deficiency induces mesenchymal-epithelial transition through PITX2/miR-200-dependent SLUG/CTNNB1 regulation in hepatocellular carcinoma. Cancer Sci 2021; 112:2158-2172. [PMID: 33587761 PMCID: PMC8177778 DOI: 10.1111/cas.14853] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 02/06/2021] [Accepted: 02/11/2021] [Indexed: 01/04/2023] Open
Abstract
Metastasis is a major obstacle to better prognosis in patients with hepatocellular carcinoma (HCC). Mesenchymal-epithelial transition (MET) is the driving force for metastatic colonization in which E-cadherin re-expression is a critical procedure. It has been reported that the loss of paired-related homeobox transcription factor 1 (PRRX1) is required for cancer cell metastasis. However, the role of PRRX1 in MET and how its downregulation triggers E-cadherin re-expression are unknown. In this study, we performed a systematic, mechanistic study regarding the role of PRRX1 in MET of HCC. We observed PRRX1 downregulation in HCC tissues, which correlated with early metastasis and short overall survival. Overexpression of PRRX1 induced epithelial-mesenchymal transition (EMT), but did not promote metastasis formation, while knockdown of PRRX1 promoted metastasis and colonization of circulating HCC cells as shown in animal model. PRRX1 protein levels reversely correlated with E-cadherin levels in HCC cell lines. PRRX1 knockdown promoted E-cadherin re-expression and cell proliferation and inhibited cell invasion and migration. The microarray results showed that PRRX1 deficiency regulated extracellular matrix (ECM) interaction, focal adhesion, TGF-β signaling and cancer pathways. PRRX1 knockdown upregulated paired-like homeodomain 2 (PITX2) and inhibited catenin beta 1 (CTNNB1) and SNAIL family zinc finger 2 (SLUG). Silencing of PITX2 reversed CTNNB1 and SLUG inhibition and E-cadherin re-expression. PITX2 upregulation increased miR-200a and miR-200b/429, which further inhibited the transcription of CTNNB1 and SLUG, respectively, thus abrogating the inhibitory effect on E-cadherin. In conclusion, our data showed that the downregulation of PRRX1 induced E-cadherin re-expression through PITX2/miR-200a/CTNNB1 and PITX2/miR-200b/429/SLUG pathway.
Collapse
Affiliation(s)
- Weibo Chen
- Department of Hepatobiliary SurgeryAffiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
- Department of Hepatopancreatobiliary Surgerythe Third Affiliated Hospital of Soochow UniversityChangzhouChina
| | - Junyi Wu
- Department of Hepatobiliary SurgeryAffiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| | - Weiwei Shi
- Department of Hepatobiliary SurgeryAffiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| | - Guang Zhang
- Department of Hepatobiliary SurgeryAffiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| | - Xuemin Chen
- Department of Hepatopancreatobiliary Surgerythe Third Affiliated Hospital of Soochow UniversityChangzhouChina
| | - Anlai Ji
- Department of Hepatobiliary SurgeryAffiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| | - Zhongxia Wang
- Department of Hepatobiliary SurgeryAffiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| | - Junhua Wu
- Jiangsu Key Laboratory of Molecular MedicineMedical SchoolNanjing UniversityNanjingChina
| | - Chunping Jiang
- Department of Hepatobiliary SurgeryAffiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| |
Collapse
|
15
|
Zhu M, Ye C, Wang J, Yang G, Ying X. Activation of COL11A1 by PRRX1 promotes tumor progression and radioresistance in ovarian cancer. Int J Radiat Biol 2021; 97:958-967. [PMID: 33970764 DOI: 10.1080/09553002.2021.1928780] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 04/19/2021] [Accepted: 05/03/2021] [Indexed: 12/24/2022]
Abstract
PURPOSE Although radiotherapy is a common treatment option for all kinds of cancer patients, including ovarian cancer, a major obstacle limiting its application in the development of resistance. Therefore, it is urgently needed to clarify the mechanism of radiosensitivity modulation. MATERIALS AND METHODS We obtained open datasets and analyzed the expression of collagen type XI alpha 1 (COL11A1) in ovarian cancer patients with different stages. Meanwhile, the correlation of COL11A1 and survival outcomes is determined by Kaplan-Meier analysis. The role of COL11A1 in cell proliferation was observed in an in vitro knockdown system. SKOV3 radioresistant cells were established to determine the role of COL11A1 on radioresistant in ovarian cancer. RESULTS AND DISCUSSION COL11A1 were highly enriched in late-stage ovarian cancer tumor tissues and negatively correlated with survival outcomes in ovarian cancer. The functional analysis found that COL11A1 promoted ovarian cancer cell proliferation in vitro. Importantly, COL11A1 decreased radiosensitivity in ovarian cancer by AKT activation. Paired related homeobox 1 (PRRX1) acted as an upstream transcription factor to regulate COL11A1 expression in ovarian cancer. Increased COL11A1 expression is related to low survival outcomes and radiosensitivity in ovarian cancer. CONCLUSIONS Targeting COL11A1 is a promising strategy for improving radiotherapy efficiency.
Collapse
Affiliation(s)
- Miaomiao Zhu
- Department of Obstetrics and Gynecology, the Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chenxia Ye
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jing Wang
- Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, China
| | - Guangxia Yang
- Department of Rheumatology, the Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Xiaoyan Ying
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
16
|
Lopez-Campistrous A, Adewuyi EE, Williams DC, McMullen TPW. Gene expression profile of epithelial-mesenchymal transition mediators in papillary thyroid cancer. Endocrine 2021; 72:452-461. [PMID: 32914379 DOI: 10.1007/s12020-020-02466-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 08/19/2020] [Indexed: 01/06/2023]
Abstract
PURPOSE Platelet derived growth receptor alpha (PDGFRA) promotes the epithelial-mesenchymal transition (EMT) in thyroid follicular cells and is linked to lymphatic metastases in papillary thyroid cancer (PTC). We probed the regulatory network of genes linked to PDGFRA and EMT, comparing matched patient primary tumor and metastatic specimens, as well as engineered cell lines and ex vivo primary cultures with and without PDGFRA. METHODS Freshly isolated thyroid tumors with or without metastases, with matching neighboring benign or normal tissue, was isolated for comparative transcriptional analysis using a TaqMan Low Density array (TLDA) assay with genes representing important markers of EMT, cellular adhesion, apoptosis, differentiation, senescence, and signal transduction pathways in thyroid cancer. Transfected primary cultures and immortalized cell lines were also analyzed with respect to PDGFRA expression and cell phenotype. RESULTS We reveal the consistent upregulation of serine protease DPP4 and structural protein SPP1 with the progression of PTC to metastatic disease, as well as with PDGFRA expression. Conversely, epithelial integrity gene TFF3 and transcription factor SOX10 were strongly down-regulated. This gene network also includes important mediators of EMT including DSG1, MMP3, MMP9, and BECN. We observed similar genomic changes in ex vivo normal thyroid cells transfected with PDGFRA that also exhibited a partially dedifferentiated phenotype. In particular, we observed lamellopodia with induction of PDGFRA and illustrate that DPP4 and SPP1 were upregulated in this process, with decreased TFF3 and SOX10 as seen in tissue specimens. PDGFRA did decrease nuclear protein levels of differentiation factor TTF1, but not the transcription of TTF1 and PAX8. CONCLUSIONS We demonstrate that PDGFRA activates EMT pathways and decreases expression of genes favoring epithelial integrity, pushing follicular cells toward a dedifferentiated phenotype. SPP1 and DPP4, previously linked with adverse outcomes in thyroid cancer, appear to be regulated by PDGFRA. PDGFRA expression promotes metastatic disease through multiple EMT levers that favor formation of an invasive phenotype and increased metalloproteinase expression.
Collapse
Affiliation(s)
| | | | | | - Todd P W McMullen
- Department of Surgery, University of Alberta, Edmonton, Canada.
- Department of Oncology, University of Alberta, Edmonton, Canada.
| |
Collapse
|
17
|
Thyroid Cancer Stem-Like Cells: From Microenvironmental Niches to Therapeutic Strategies. J Clin Med 2021; 10:jcm10071455. [PMID: 33916320 PMCID: PMC8037626 DOI: 10.3390/jcm10071455] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 02/08/2023] Open
Abstract
Thyroid cancer (TC) is the most common endocrine malignancy. Recent progress in thyroid cancer biology revealed a certain degree of intratumoral heterogeneity, highlighting the coexistence of cellular subpopulations with distinct proliferative capacities and differentiation abilities. Among those subpopulations, cancer stem-like cells (CSCs) are hypothesized to drive TC heterogeneity, contributing to its metastatic potential and therapy resistance. CSCs principally exist in tumor areas with specific microenvironmental conditions, the so-called stem cell niches. In particular, in thyroid cancer, CSCs' survival is enhanced in the hypoxic niche, the immune niche, and some areas with specific extracellular matrix composition. In this review, we summarize the current knowledge about thyroid CSCs, the tumoral niches that allow their survival, and the implications for TC therapy.
Collapse
|
18
|
Expression and clinical significance of paired- related homeobox 1 and Smad2 in gastric cancer. Eur J Cancer Prev 2021; 30:154-160. [PMID: 32868636 DOI: 10.1097/cej.0000000000000619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND China has a high incidence rate and low survival rate of gastric cancer. Therefore, there is a great need to further identify novel oncogenes and clinically applicable molecular targets for the diagnosis and treatment of this disease. METHODS Expressions of PRRX1, Smad2, epithelial phenotype marker E-cadherin, and interstitial phenotype vimentin protein in a sample of 64 gastric carcinoma and adjacent nontumorous tissues were detected by immunohistochemistry. Their relationship and correlations with clinicopathological features were analyzed. RESULTS The positive rates of PRRX1, Smad2, E-cadherin, and vimentin protein in primary tumors were 60.94% (39/64), 59.38% (38/64), 34.38%(22/64), and 64.06% (41/64), respectively. A significant correlation was found among the expression of PRRX1, Smad2, E-cadherin, and vimentin (P < 0.05). Expression of the PRRX1, Smad2, and vimentin protein in gastric cancer tissue was correlated with Borrmann classification, lymph node-positive number, the degree of differentiation, depth of tumor invasion, and serum pepsinogen I (PGI) level (P < 0.05), but not with age, sex, serum carcinoembryonic antigen, serum CA199, or PGI/PGII (P > 0.05). CONCLUSION The positive rate of PRRX1 protein expression was positively correlated with the protein expression of Smad2 and vimentin, but negatively correlated with E-cadherin protein. PRRX1, Smad2, and vimentin proteins are associated with Borrmann type, lymph node positives, histologic grade, depth of tumor invasion, and serum PGI levels, all of which contribute to a poor prognosis for patients with gastric cancer.
Collapse
|
19
|
Yang R, Liu Y, Wang Y, Wang X, Ci H, Song C, Wu S. Low PRRX1 expression and high ZEB1 expression are significantly correlated with epithelial-mesenchymal transition and tumor angiogenesis in non-small cell lung cancer. Medicine (Baltimore) 2021; 100:e24472. [PMID: 33530259 PMCID: PMC7850718 DOI: 10.1097/md.0000000000024472] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 01/04/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Paired related homeobox 1 (PRRX1) and zinc finger E-box binding homeobox 1 (ZEB1) have been observed to play a vital role in the epithelial-mesenchymal transition (EMT) process in different types of cancer. The microvessel density (MVD) is the most common indicator used to quantify angiogenesis. This study aimed to investigate expression of PRRX1 and ZEB1 in non-small cell lung cancer (NSCLC) and to explore associations between these factors and tumor prognosis, EMT markers and angiogenesis. METHODS Data for a total of 111 surgically resected NSCLC cases from January 2013 to December 2014 were collected. We used an immunohistochemical method to detect expression levels of PRRX1, ZEB1, and E-cadherin, and to assess MVD (marked by CD34 staining). SPSS 26.0 was employed to evaluate the connection between these factors and clinical and histopathological features, overall survival (OS) and tumor angiogenesis. RESULTS PRRX1 expression was obviously lower in tumor samples than in control samples. Low expression of PRRX1, which was more common in the high-MVD group than in the low-MVD group (P = .009), correlated positively with E-cadherin expression (P < .001). Additionally, we showed that ZEB1 was expressed at higher levels in tumor samples than in normal samples. High expression of ZEB1 was associated negatively with E-cadherin expression (P < .001) and positively associated with high MVD (P = .001). Based on Kaplan-Meier and multivariate survival analyses, we found that PRRX1, ZEB1, E-cadherin and the MVD had predictive value for OS in NSCLC patients. CONCLUSIONS These findings suggest that PRRX1 and ZEB1 may serve as novel prognostic biomarkers and potential therapeutic targets.
Collapse
Affiliation(s)
- Ruixue Yang
- Department of Pathology, the First Affiliated Hospital of Bengbu Medical College
- Department of Pathology
| | - Yuanqun Liu
- Department of Pathology, the First Affiliated Hospital of Bengbu Medical College
- Department of Pathology
| | - Yufei Wang
- Department of Pathology, the First Affiliated Hospital of Bengbu Medical College
- Department of Pathology
| | - Xiaolin Wang
- Department of Pathology, the First Affiliated Hospital of Bengbu Medical College
- Department of Pathology
| | - Hongfei Ci
- Department of Pathology, the First Affiliated Hospital of Bengbu Medical College
- Department of Pathology
| | - Chao Song
- Department of Thoracic Surgery, Bengbu Medical College, Bengbu, Anhui Province, China
| | - Shiwu Wu
- Department of Pathology, the First Affiliated Hospital of Bengbu Medical College
- Department of Pathology
| |
Collapse
|
20
|
[Hobnail variant of papillary thyroid carcinoma]. Ann Pathol 2020; 41:201-206. [PMID: 33272718 DOI: 10.1016/j.annpat.2020.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 09/01/2020] [Accepted: 10/25/2020] [Indexed: 11/24/2022]
Abstract
We report the case of a hobnail variant of papillary thyroid carcinoma revealed by a cervical mass in a 67 years-old patient. This new entity in the 2017 WHO classification is rare. Histopathological diagnosis is based on four main criteria, present in≥30% of tumor cells: a discohesive tumor, micropapillary structures and loss of cell polarity and hobnail cells. This tumor expresses markers of thyroid differentiation. The most widely described molecular alteration is BRAF V600E mutation associated with other alterations, especially p53 mutations. This reflects the agressivness of this variant. It is important to recognize the hobnail variant of papillary thyroid carcinoma and to specify it in the pathological report because of its more pejorative prognosis, with local invasion, lymph node and distant metastasis, and deacreased survival. No specific management is recommended, but a close follow up seems necessary.
Collapse
|
21
|
Das PK, Asha SY, Abe I, Islam F, Lam AK. Roles of Non-Coding RNAs on Anaplastic Thyroid Carcinomas. Cancers (Basel) 2020; 12:3159. [PMID: 33126409 PMCID: PMC7693255 DOI: 10.3390/cancers12113159] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/23/2020] [Accepted: 10/24/2020] [Indexed: 12/18/2022] Open
Abstract
Anaplastic thyroid cancer (ATC) remains as one of the most aggressive human carcinomas with poor survival rates in patients with the cancer despite therapeutic interventions. Novel targeted and personalized therapies could solve the puzzle of poor survival rates of patients with ATC. In this review, we discuss the role of non-coding RNAs in the regulation of gene expression in ATC as well as how the changes in their expression could potentially reshape the characteristics of ATCs. A broad range of miRNA, such as miR-205, miR-19a, miR-17-3p and miR-17-5p, miR-618, miR-20a, miR-155, etc., have abnormal expressions in ATC tissues and cells when compared to those of non-neoplastic thyroid tissues and cells. Moreover, lncRNAs, such as H19, Human leukocyte antigen (HLA) complex P5 (HCP5), Urothelial carcinoma-associated 1 (UCA1), Nuclear paraspeckle assembly transcript 1 (NEAT1), etc., participate in transcription and post-transcriptional regulation of gene expression in ATC cells. Dysregulations of these non-coding RNAs were associated with development and progression of ATC by modulating the functions of oncogenes during tumour progression. Thus, restoration of the abnormal expression of these miRNAs and lncRNAs may serve as promising ways to treat the patients with ATC. In addition, siRNA mediated inhibition of several oncogenes may act as a potential option against ATC. Thus, non-coding RNAs can be useful as prognostic biomarkers and potential therapeutic targets for the better management of patients with ATC.
Collapse
Affiliation(s)
- Plabon Kumar Das
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh; (P.K.D.); (S.Y.A.)
| | - Saharia Yeasmin Asha
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh; (P.K.D.); (S.Y.A.)
| | - Ichiro Abe
- School of Medicine, Griffith University, Gold Coast, QLD 4222, Australia;
- Department of Endocrinology and Diabetes Mellitus, Fukuoka University Chikushi Hospital, Chikushino, Fukuoka 818-8502, Japan
| | - Farhadul Islam
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh; (P.K.D.); (S.Y.A.)
- Institute for Glycomics, Griffith University, Gold Coast Campus, Gold Coast, QLD 4222, Australia
| | - Alfred K. Lam
- School of Medicine, Griffith University, Gold Coast, QLD 4222, Australia;
| |
Collapse
|
22
|
Min WP, Wei XF. Silencing SIX1 inhibits epithelial mesenchymal transition through regulating TGF-β/Smad2/3 signaling pathway in papillary thyroid carcinoma. Auris Nasus Larynx 2020; 48:487-495. [PMID: 33077306 DOI: 10.1016/j.anl.2020.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 12/30/2022]
Abstract
OBJECTIVE To investigate the sineoculis homeobox homolog 1 (SIX1) affect the epithelial mesenchymal transition (EMT) in papillary thyroid carcinoma (PTC) through regulating TGF-β/Smad2/3 signaling pathway. METHODS The SIX1 expression in cytological specimens, tissues or PTC cell lines was detected by qRT-PCR, western blotting or immunohistochemistry. A series of vitro experiments including flow cytometry, CCK-8, wound-healing and Transwell were used to evaluate the biological characteristics in a PTC cell line (NPA cells), which were divided into Blank, Negative control (NC), SIX1, SIX1-siRNA, LY-364947 (TGF-β/Smad2/3 pathway inhibitor) and SIX1 + LY-364947 groups. TGF-β/Smad2/3 pathway and EMT related protein expression were measured by qRT-PCR and western blotting. RESULTS SIX1 mRNA expression was increased in cytological specimens from PTC patients as compared with the non-toxic nodular goitre (NTG) patients. Moreover, compared with adjacent normal tissues, expressions of SIX1, N-cadherin and Vimentin were higher while E-cadherin was lower in PTC tissues; and SIX1 was positively correlated with N-cadherin and Vimentin but was negatively correlated with E-cadherin. Furthermore, the SIX1 expression was associated with histopathology, extrathyroidal extension (ETE), lymph node metastasis (LNM), pT stage, TNM stage, and distant metastasis. In addition, the expressions of TGFβ1, p-SMAD2/3, N-cadherin and Vimentin were downregulated in NPA cells after LY-364947 treatment with upregulated E-cadherin, decreased cell proliferation and metastasis, and enhanced cell apoptosis, which was reversed by SIX1 overexpression. CONCLUSION Silencing SIX1 can inhibit TGF-β/Smad2/3 pathway, thereby suppressing EMT in PTC, which may be a novel avenue for the treatment of PTC.
Collapse
Affiliation(s)
- Wen-Pu Min
- Department of Nuclear Medicine, The First People's Hospital of Jingzhou City, The First Affiliated Hospital of Yangtze University, Jingzhou 434000, Hubei Province, China
| | - Xiao-Feng Wei
- Department of Nuclear Medicine, The First People's Hospital of Jingzhou City, The First Affiliated Hospital of Yangtze University, Jingzhou 434000, Hubei Province, China.
| |
Collapse
|
23
|
Narayanan D, Mandal R, Hardin H, Chanana V, Schwalbe M, Rosenbaum J, Buehler D, Lloyd RV. Long Non-coding RNAs in Pulmonary Neuroendocrine Neoplasms. Endocr Pathol 2020; 31:254-263. [PMID: 32388776 DOI: 10.1007/s12022-020-09626-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Pulmonary neuroendocrine neoplasms (NENs) are classified into low-grade neuroendocrine tumors and high-grade neuroendocrine carcinomas (NECs). There are significant differences in therapeutic strategies of the different NEN subtypes, and therefore, precise classification of pulmonary NENs is critical. However, challenges in pulmonary NEN classification include overlap of diagnostic histological features among the subtypes and reduced or negative expression of neuroendocrine markers in poorly differentiated pulmonary NECs. Recently, transcription factor insulinoma-associated protein 1 (INSM1) was identified as a sensitive marker of neuroendocrine and neuroepithelial differentiation. In this study, INSM1 expression was detected by immunohistochemistry in greater than 94% of pulmonary NENs, indicating that it is a highly sensitive marker of pulmonary NENs and is useful to detect poorly differentiated pulmonary NECs. Although there are well-established morphological and immunohistologic criteria to diagnose pulmonary NENs, there is no universal consensus regarding prognostic markers of pulmonary NENs. Studies have shown that non-small cell lung cancers express long non-coding RNAs (lncRNAs), which regulate gene expression, epithelial-to-mesenchymal transition, and carcinogenesis. We characterized expression and function of lncRNAs, including HOX transcript antisense RNA (HOTAIR), maternally expressed 3 (MEG3), and prostate cancer antigen 3 (PCA3) in pulmonary NENs, including typical carcinoid tumors, atypical carcinoid tumors, small cell lung carcinoma (SCLC/NEC), and large cell neuroendocrine carcinoma (LCNEC/NEC). In situ hybridization and real-time polymerase chain reaction studies showed higher expression (p < 0.01) of all lncRNAs in SCLC/NEC. Small interfering RNA studies indicated a role for MEG3 and PCA3 in tumor proliferation. Therefore, these lncRNAs may serve as prognostic indicators of pulmonary NEN aggressiveness and as possible therapeutic targets.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Biomarkers, Tumor/analysis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Neuroendocrine/diagnosis
- Carcinoma, Neuroendocrine/genetics
- Carcinoma, Neuroendocrine/mortality
- Carcinoma, Neuroendocrine/pathology
- Cohort Studies
- Female
- Humans
- Immunohistochemistry
- In Situ Hybridization
- Lung Neoplasms/diagnosis
- Lung Neoplasms/genetics
- Lung Neoplasms/mortality
- Lung Neoplasms/pathology
- Male
- Middle Aged
- Neoplasm Grading
- Neuroendocrine Tumors/diagnosis
- Neuroendocrine Tumors/genetics
- Neuroendocrine Tumors/mortality
- Neuroendocrine Tumors/pathology
- Prognosis
- RNA, Long Noncoding/physiology
- Tissue Array Analysis
- Tumor Cells, Cultured
- Young Adult
Collapse
Affiliation(s)
- Damodaran Narayanan
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Madison, WI, 53792-8550, USA
| | - Rakesh Mandal
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Madison, WI, 53792-8550, USA
| | - Heather Hardin
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Madison, WI, 53792-8550, USA
| | - Vishal Chanana
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Madison, WI, 53792-8550, USA
| | - Michael Schwalbe
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Madison, WI, 53792-8550, USA
| | - Jason Rosenbaum
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Madison, WI, 53792-8550, USA
| | - Darya Buehler
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Madison, WI, 53792-8550, USA
| | - Ricardo V Lloyd
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Madison, WI, 53792-8550, USA.
| |
Collapse
|
24
|
Samimi H, Sajjadi-Jazi SM, Seifirad S, Atlasi R, Mahmoodzadeh H, Faghihi MA, Haghpanah V. Molecular mechanisms of long non-coding RNAs in anaplastic thyroid cancer: a systematic review. Cancer Cell Int 2020; 20:352. [PMID: 32760219 PMCID: PMC7392660 DOI: 10.1186/s12935-020-01439-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/11/2020] [Accepted: 07/20/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND anaplastic thyroid cancer (ATC) is one of the most lethal and aggressive cancers. Evidence has shown that the tumorigenesis of ATC is a multistep process involving the accumulation of genetic and epigenetic changes. Several studies have suggested that long non-coding RNAs (lncRNAs) may play an important role in the development and progression of ATC. In this article, we have collected the published reports about the role of lncRNAs in ATC. METHODS "Scopus", "Web of Science", "PubMed", "Embase", etc. were systematically searched for articles published since 1990 to 2020 in English language, using the predefined keywords. RESULTS 961 papers were reviewed and finally 33 papers which fulfilled the inclusion and exclusion criteria were selected. Based on this systematic review, among a lot of evidences on examining the function of lncRNAs in thyroid cancer, there are only a small number of studies about the role of lncRNAs and their molecular mechanisms in the pathogenesis of ATC. CONCLUSIONS lncRNAs play a crucial role in regulation of different processes involved in the development and progression of ATC. Currently, just a few lncRNAs have been identified in ATC that may serve as prognosis markers such as GAS5, MIR22HG, and CASC2. Also, because of the dysregulation of Klhl14-AS, HOTAIRM1, and PCA3 during ATC development and progression, they may act as therapeutic targets. However, for most lncRNAs, only a single experiment has evaluated the expression profile in ATC tissues/cells. Therefore, further functional studies and expression profiling is needed to resolve this limitation and identify novel and valid biomarkers.
Collapse
Affiliation(s)
- Hilda Samimi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sayed Mahmoud Sajjadi-Jazi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Soroush Seifirad
- Division of Cardiology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, PERFUSE Study Group, Boston, MA USA
| | - Rasha Atlasi
- Evidence Based Practice Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Habibollah Mahmoodzadeh
- Department of Surgery, Iranian National Cancer Institute, Imam Khomeini Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Faghihi
- Persian BayanGene Research and Training Center, Dr. Faghihi’s Medical Genetic Center, Shiraz, Iran
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, USA
| | - Vahid Haghpanah
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Personalized Medicine Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Endocrinology and Metabolism Research Center (EMRC), Dr. Shariati Hospital, North Kargar Ave., Tehran, 14114 Iran
| |
Collapse
|
25
|
Stino AM, Rumora AE, Kim B, Feldman EL. Evolving concepts on the role of dyslipidemia, bioenergetics, and inflammation in the pathogenesis and treatment of diabetic peripheral neuropathy. J Peripher Nerv Syst 2020; 25:76-84. [PMID: 32412144 PMCID: PMC7375363 DOI: 10.1111/jns.12387] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/11/2020] [Accepted: 05/11/2020] [Indexed: 12/14/2022]
Abstract
Diabetic peripheral neuropathy (DPN) is one of the most widespread and disabling neurological conditions, accounting for half of all neuropathy cases worldwide. Despite its high prevalence, no approved disease modifying therapies exist. There is now a growing body of evidence that DPN secondary to type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM) represents different disease processes, with T2DM DPN best understood within the context of metabolic syndrome rather than hyperglycemia. In this review, we highlight currently understood mechanisms of DPN, along with their corresponding potential therapeutic targets. We frame this discussion within a practical overview of how the field evolved from initial human observations to murine pathomechanistic and therapeutic models into ongoing and human clinical trials, with particular emphasis on T2DM DPN and metabolic syndrome.
Collapse
Affiliation(s)
- Amro Maher Stino
- Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI, USA 48109
- Division of Neuromuscular Medicine, University of Michigan School of Medicine, Ann Arbor, MI, USA 48109
| | - Amy E. Rumora
- Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI, USA 48109
| | - Bhumsoo Kim
- Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI, USA 48109
| | - Eva L. Feldman
- Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI, USA 48109
- Division of Neuromuscular Medicine, University of Michigan School of Medicine, Ann Arbor, MI, USA 48109
| |
Collapse
|
26
|
Liang M, Yu S, Tang S, Bai L, Cheng J, Gu Y, Li S, Zheng X, Duan L, Wang L, Zhang Y, Huang X. A Panel of Plasma Exosomal miRNAs as Potential Biomarkers for Differential Diagnosis of Thyroid Nodules. Front Genet 2020; 11:449. [PMID: 32508877 PMCID: PMC7248304 DOI: 10.3389/fgene.2020.00449] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/14/2020] [Indexed: 12/20/2022] Open
Abstract
Background: A liquid biopsy using circulating exosomal genetic materials provides new insights for thyroid cancer diagnosis. This study aimed to identify plasma-derived exosomal biomarkers that could be used for early detection of papillary thyroid carcinoma (PTC). Method: Exosomal miRNAs in plasma were isolated from patients with benign thyroid nodules and patients with PTC. Profiling of exosomal miRNA was performed using RNA sequencing (RNA-seq) to identify miRNA candidates and differentiate the benign from malignant. The validation cohort consisted of 30 patients with benign thyroid nodules, 35 PTC patients, and 31 healthy individuals. Real-time PCR was used to quantify the expression of miRNA candidates. The diagnostic potential of the candidates was evaluated by receiver operating characteristic (ROC) curves. Results: After RNA-seq, eight plasma exosomal miRNAs were selected as candidates. Further validation indicated that the levels of exosomal miR-16-2-3p, miR-223-5p, miR-34c-5p, miR-182-5p, miR-223-3p, and miR-146b-5p were significantly lower in nodules compared to healthy controls (p < 0.0001), whereas miR-16-2-3p and miR-223-5p were significantly higher in the PTC cases than in those with benign nodules (p < 0.05). ROC analyses revealed that the above six miRNAs were potent indicators for detection of thyroid nodules. Meanwhile, miR-16-2-3p and miR-223-5p can be utilized for detecting PTC from benign nodules. Additionally, combined miRNA panels showed increased diagnostic sensitivities and specificities compared to single miRNA markers. Conclusion: Six aberrantly expressed plasma exosomal miRNAs may be used as diagnostic biomarkers to differentiate thyroid nodules from healthy individuals. The panel consisting of miR-16-2-3p, miR-223-5p, miR-101-3p, and miR-34c-5p are eligible for discriminating benign from malignant thyroid nodules.
Collapse
Affiliation(s)
- Meihua Liang
- Department of Endocrinology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Siming Yu
- Department of Pharmacy, Drug Clinical Trails Institution, Peking University Shenzhen Hospital, Shenzhen, China
| | - Shuli Tang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Lu Bai
- Biotherapy Center, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jianan Cheng
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yuanlong Gu
- Hematology Oncology, Taizhou Municipal Hospital, Taizhou, China
| | - Shuang Li
- Department of Endocrinology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xin Zheng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Lian Duan
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Liang Wang
- Moffitt Cancer Center, Tampa, FL, United States
| | - Yanqiao Zhang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xiaoyi Huang
- Biotherapy Center, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
27
|
Peng Y, Fang X, Yao H, Zhang Y, Shi J. MiR-146b-5p Regulates the Expression of Long Noncoding RNA MALAT1 and Its Effect on the Invasion and Proliferation of Papillary Thyroid Cancer. Cancer Biother Radiopharm 2020; 36:433-440. [PMID: 32343601 DOI: 10.1089/cbr.2019.3322] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Background: The incidence of thyroid cancer has increased dramatically in recent decades due, in large part, to identifications of subclinical diseases. Literature on thyroid cancer has examined the pathogenesis of high invasive papillary thyroid cancer (PTC) and has improved the prevention and treatment of PTC. This study aims to investigate the effects of metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) on PTC migration and invasion, and clarify the regulatory mechanisms between miR-146b-5p and MALAT1. Materials and Methods: In this study, we examined the differential expression of MALAT1, miR-146b-5p, and DNA methyltransferases 3A (DNMT3A) in PTC tissues. The effect of MALAT1 on the proliferation and invasion ability of PTC cells was verified by constructing a sh-MALAT1 knockdown cell model. Correlations between MALAT1, miR-146b-5p, and DNMT3A were analyzed by the Pearson correlation method. Finally, we verified the regulatory relationship between miR-146b-5p and MALAT1 by the luciferase assay and rescue assay. Results: The expression of MALAT1 was upregulated in PTC tissues and cells, while a MALAT1 knockdown counteracted cellular activity, migration, and invasion of B-CPAP and K1 cells. The relationship between miR-146b-5p and DNMT3A was negative, while the relationship between miR-146b-5p and MALAT1 was positive. Both genes were separately detected using the Pearson correlation method. The luciferase assay and rescue assay demonstrated that a binding site in miR-146b-5p was existent in the 3' untranslated region of DNMT3A, while a knockdown of DNMT3A partially rescued si-miR-146b-5p induced proliferation, migration, and invasion effects on PTC cells. Conclusions: The MALAT1 gene is highly expressed in PTC, while the knockdown MALAT1 gene attenuates the cellular activity and invasive ability of PTC cells. The microRNA miR-146b-5p can promote a MALAT1 expression by negatively regulating DNMT3A in PTC.
Collapse
Affiliation(s)
- You Peng
- Department of Oncological Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Xiang Fang
- Department of Laboratory Medicine, and Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Hongli Yao
- Department of Gynecology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Yu Zhang
- Department of Oncological Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Jingjing Shi
- Department of Oncological Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China
| |
Collapse
|
28
|
Ma B, Ma J, Yang Y, He X, Pan X, Wang Z, Qian Y. Effects of miR-330-3p on Invasion, Migration and EMT of Gastric Cancer Cells by Targeting PRRX1-Mediated Wnt/β-Catenin Signaling Pathway. Onco Targets Ther 2020; 13:3411-3423. [PMID: 32368097 PMCID: PMC7183782 DOI: 10.2147/ott.s238665] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 03/05/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND miRNA, as a biological marker, had more and more attention in recent years due to the important role it plays in cancer. Currently, there are extensive studies on miRNAs, among which miR-330-3p is reported to be implicated in the pathophysiological processes of various cancers. However, little progress has been made in the mechanism of miR-330-3p in gastric cancer. OBJECTIVE To explore the expression and relevant mechanism of miR-330-3p and PRRX1 in gastric cancer (GC). METHODS Forty-five GC patients (study group), from whom paired GC and paracancerous tissues were collected, and another 45 healthy subjects (control group) who underwent physical examination during the same period were enrolled. In addition, GC cells and human gastric mucosa cells were purchased, and miR-330-3p-mimics, miR-330-3p-inhibitor, miR-NC, si-PRRX1, and sh-PRRX1 were transfected into MKN45, SGC7901 cell. QRT-PCR was employed to assess the miR-330-3p and PRRX1 expressions in the samples, and the cell expressions of PRRX1, GSK-3β, p-GSK-3β, β-catenin, p-β-catenin, cyclin D1, N-cadherin, E-cadherin and vimentin were evaluated by Western blot (WB). MTT, Transwell and wound-healing experiments were adopted to detect cell proliferation, invasion and migration. RESULTS MiR-330-3p was under-expressed, while PRRX1 was highly expressed in the serum of patients, both of which had an area under the curve (AUC) of more than 0.9. MiR-330-3p and PRRX1 were associated with tumor diameter, TNM staging, lymph node metastasis and differentiation of GC patients. Overexpression of miR-330-3p and inhibition of PRRX1 expression could suppress epithelial-mesenchymal transition (EMT), proliferation, invasion and apoptosis of cells. What is more, WB assay showed that overexpressed miR-330-3p and inhibited PRRX1 could inhibit the expression levels of p-GSK-3β, β-catenin, cyclin D1, N-cadherin and vimentin proteins, while elevating GSK-3β, p-β-catenin and E-cadherin protein expressions. Dual-luciferase reporter assay confirmed that there was a targeting relation between miR-330-3p and PRRX1. Furthermore, rescue experiments revealed that the cell proliferation, invasion, migration did not differ significantly between co-transfected miR-330-3p-mimics+sh-PRRX1, miR-330-3p-inhibitor+si-PRRX1 groups of MKN45 and SGC7901 and the miR-NC group (without transfected sequences). CONCLUSION Overexpressed miR-330-3p can promote cell EMT, proliferation, invasion and apoptosis through inhibiting PRRX1-mediated Wnt/β-catenin signaling pathway, which is expected to be a potential therapeutic target for GC.
Collapse
Affiliation(s)
- Bingqiang Ma
- Department of General Surgery, Cancer Center, Key Laboratory for Diagnosis and Treatment of Gastrointestinal Cancer, Gansu Provincial Hospital, Lanzhou, Gansu Province, People’s Republic of China
| | - Jianxun Ma
- Department of General Surgery, Cancer Center, Key Laboratory for Diagnosis and Treatment of Gastrointestinal Cancer, Gansu Provincial Hospital, Lanzhou, Gansu Province, People’s Republic of China
| | - Yili Yang
- Department of General Surgery, Cancer Center, Key Laboratory for Diagnosis and Treatment of Gastrointestinal Cancer, Gansu Provincial Hospital, Lanzhou, Gansu Province, People’s Republic of China
| | - Xueyuan He
- Department of General Surgery, Cancer Center, Key Laboratory for Diagnosis and Treatment of Gastrointestinal Cancer, Gansu Provincial Hospital, Lanzhou, Gansu Province, People’s Republic of China
| | - Xinmin Pan
- Department of General Surgery, Cancer Center, Key Laboratory for Diagnosis and Treatment of Gastrointestinal Cancer, Gansu Provincial Hospital, Lanzhou, Gansu Province, People’s Republic of China
| | - Zhan Wang
- Department of General Surgery, Cancer Center, Key Laboratory for Diagnosis and Treatment of Gastrointestinal Cancer, Gansu Provincial Hospital, Lanzhou, Gansu Province, People’s Republic of China
| | - Yaowen Qian
- Department of General Surgery, Cancer Center, Key Laboratory for Diagnosis and Treatment of Gastrointestinal Cancer, Gansu Provincial Hospital, Lanzhou, Gansu Province, People’s Republic of China
| |
Collapse
|
29
|
Identification of Potential Biomarkers for Thyroid Cancer Using Bioinformatics Strategy: A Study Based on GEO Datasets. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9710421. [PMID: 32337286 PMCID: PMC7152968 DOI: 10.1155/2020/9710421] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 01/29/2020] [Accepted: 03/05/2020] [Indexed: 12/13/2022]
Abstract
Background The molecular mechanisms and genetic markers of thyroid cancer are unclear. In this study, we used bioinformatics to screen for key genes and pathways associated with thyroid cancer development and to reveal its potential molecular mechanisms. Methods The GSE3467, GSE3678, GSE33630, and GSE53157 expression profiles downloaded from the Gene Expression Omnibus database (GEO) contained a total of 164 tissue samples (64 normal thyroid tissue samples and 100 thyroid cancer samples). The four datasets were integrated and analyzed by the RobustRankAggreg (RRA) method to obtain differentially expressed genes (DEGs). Using these DEGs, we performed gene ontology (GO) functional annotation, pathway analysis, protein-protein interaction (PPI) analysis and survival analysis. Then, CMap was used to identify the candidate small molecules that might reverse thyroid cancer gene expression. Results By integrating the four datasets, 330 DEGs, including 154 upregulated and 176 downregulated genes, were identified. GO analysis showed that the upregulated genes were mainly involved in extracellular region, extracellular exosome, and heparin binding. The downregulated genes were mainly concentrated in thyroid hormone generation and proteinaceous extracellular matrix. Pathway analysis showed that the upregulated DEGs were mainly attached to ECM-receptor interaction, p53 signaling pathway, and TGF-beta signaling pathway. Downregulation of DEGs was mainly involved in tyrosine metabolism, mineral absorption, and thyroxine biosynthesis. Among the top 30 hub genes obtained in PPI network, the expression levels of FN1, NMU, CHRDL1, GNAI1, ITGA2, GNA14 and AVPR1A were associated with the prognosis of thyroid cancer. Finally, four small molecules that could reverse the gene expression induced by thyroid cancer, namely ikarugamycin, adrenosterone, hexamethonium bromide and clofazimine, were obtained in the CMap database. Conclusion The identification of the key genes and pathways enhances the understanding of the molecular mechanisms for thyroid cancer. In addition, these key genes may be potential therapeutic targets and biomarkers for the treatment of thyroid cancer.
Collapse
|
30
|
Veschi V, Verona F, Lo Iacono M, D'Accardo C, Porcelli G, Turdo A, Gaggianesi M, Forte S, Giuffrida D, Memeo L, Todaro M. Cancer Stem Cells in Thyroid Tumors: From the Origin to Metastasis. Front Endocrinol (Lausanne) 2020; 11:566. [PMID: 32982967 PMCID: PMC7477072 DOI: 10.3389/fendo.2020.00566] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/10/2020] [Indexed: 12/13/2022] Open
Abstract
Thyroid tumors are extremely heterogeneous varying from almost benign tumors with good prognosis as papillary or follicular tumors, to the undifferentiated ones with severe prognosis. Recently, several models of thyroid carcinogenesis have been described, mostly hypothesizing a major role of the thyroid cancer stem cell (TCSC) population in both cancer initiation and metastasis formation. However, the cellular origin of TCSC is still incompletely understood. Here, we review the principal epigenetic mechanisms relevant to TCSC origin and maintenance in both well-differentiated and anaplastic thyroid tumors. Specifically, we describe the alterations in DNA methylation, histone modifiers, and microRNAs (miRNAs) involved in TCSC survival, focusing on the potential of targeting aberrant epigenetic modifications for developing novel therapeutic approaches. Moreover, we discuss the bidirectional relationship between TCSCs and immune cells. The cells of innate and adaptive response can promote the TCSC-driven tumorigenesis, and conversely, TCSCs may favor the expansion of immune cells with protumorigenic functions. Finally, we evaluate the role of the tumor microenvironment and the complex cross-talk of chemokines, hormones, and cytokines in regulating thyroid tumor initiation, progression, and therapy refractoriness. The re-education of the stromal cells can be an effective strategy to fight thyroid cancer. Dissecting the genetic and epigenetic landscape of TCSCs and their interactions with tumor microenvironment cells is urgently needed to select more appropriate treatment and improve the outcome of patients affected by advanced differentiated and undifferentiated thyroid cancers.
Collapse
Affiliation(s)
- Veronica Veschi
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Francesco Verona
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Melania Lo Iacono
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Caterina D'Accardo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Gaetana Porcelli
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Alice Turdo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Miriam Gaggianesi
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Stefano Forte
- Department of Experimental Oncology, Mediterranean Institute of Oncology (IOM), Catania, Italy
| | - Dario Giuffrida
- Department of Experimental Oncology, Mediterranean Institute of Oncology (IOM), Catania, Italy
| | - Lorenzo Memeo
- Department of Experimental Oncology, Mediterranean Institute of Oncology (IOM), Catania, Italy
| | - Matilde Todaro
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
- *Correspondence: Matilde Todaro
| |
Collapse
|
31
|
Shakib H, Rajabi S, Dehghan MH, Mashayekhi FJ, Safari-Alighiarloo N, Hedayati M. Epithelial-to-mesenchymal transition in thyroid cancer: a comprehensive review. Endocrine 2019; 66:435-455. [PMID: 31378850 DOI: 10.1007/s12020-019-02030-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 07/19/2019] [Indexed: 12/12/2022]
Abstract
The Metastatic progression of solid tumors, such as thyroid cancer is a complex process which involves various factors. Current understanding on the role of epithelial-mesenchymal transition (EMT) in thyroid carcinomas suggests that EMT is implicated in the progression from follicular thyroid cancer (FTC) and papillary thyroid cancer (PTC) to poorly differentiated thyroid carcinoma (PDTC) and anaplastic thyroid cancer (ATC). According to the literature, the initiation of the EMT program in thyroid epithelial cells elevates the number of stem cells, which contribute to recurrent and metastatic diseases. The EMT process is orchestrated by a complex network of transcription factors, growth factors, signaling cascades, epigenetic modulations, and the tumor milieu. These factors have been shown to be dysregulated in thyroid carcinomas. Therefore, molecular interferences restoring the expression of tumor suppressors, or thwarting overexpressed oncogenes is a hopeful therapeutic method to improve the treatment of progressive diseases. In this review, we summarize the recent findings on EMT in thyroid cancer focusing on the main role-players and regulators of this process in thyroid tumors.
Collapse
Affiliation(s)
- Heewa Shakib
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sadegh Rajabi
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | - Nahid Safari-Alighiarloo
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
32
|
Wang Y, Hardin H, Chu YH, Esbona K, Zhang R, Lloyd RV. Long Non-coding RNA Expression in Anaplastic Thyroid Carcinomas. Endocr Pathol 2019; 30:262-269. [PMID: 31468286 DOI: 10.1007/s12022-019-09589-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Long non-coding RNAs (lncRNAs) participate in transcription and in epigenetic or post-transcriptional regulation of gene expression. They also have roles in epithelial to mesenchymal transition and in carcinogenesis. Because lncRNAs may also have a role in thyroid cancer progression, we examined a group of thyroid tumors which included papillary thyroid carcinomas and anaplastic thyroid carcinomas to determine the specific lncRNAs that were upregulated during thyroid tumor progression. An RT2 Profiler PCR Array Human Cancer Pathway Finder consisting of 84 lncRNAs (Qiagen) and fresh tissues of normal thyroid, PTCs, and ATCs with gene expression profiling was used to determine genes upregulated and downregulated in ATCs. Two of the most highly upregulated genes, prostate cancer antigen 3 (PCA3) and HOX antisense intergenic RNA myeloid 1 (HOTAIRM1 or HAM-1), were selected for further studies using a thyroid tissue microarray(TMA) with formalin-fixed paraffin-embedded tissues of normal thyroid (NT, n = 10), nodular goiters (NG, n = 10), follicular adenoma (FA, n = 32), follicular carcinoma (FCA, n = 28), papillary thyroid carcinoma (PTC, n = 28), follicular variant of papillary thyroid carcinoma (FVPTC, n = 28), and anaplastic thyroid carcinoma (ATC, n = 10). TMA sections were analyzed by in situ hybridization (ISH) using RNAscope technology. The results of ISH analyses were imaged with Vectra imaging technology and quantified with Nuance® and inForm® software. The TMA analysis was validated by qRT-PCR using FFPE tissues for RNA preparation. Cultured thyroid carcinoma cell lines (n = 7) were also used to analyze for lncRNAs by qRT-PCR. The results showed 11 lncRNAs upregulated and 7 downregulated lncRNAs more than twofold in the ATCS compared with PTCs. Two of the upregulated lncRNAs, PCA3 and HAM-1, were analyzed on a thyroid carcinoma TMA. There was increased expression of both lncRNAs in ATCs and PTCs compared with NT after TMA analysis. qRT-PCR analyses showed increased expression of both lncRNAs in ATCs compared with NT and PTCs. Analyses of these lncRNAs from cultured thyroid carcinoma cell lines by qRT-PCR showed the highest levels of lncRNA expression in ATCs. TGF-β treatment of cultured PTC and ATC cells for 21 days led to increased expression of PCA3 lncRNA in both cell lines by day 14. These results show that the lncRNAs PCA3 and HAM-1 are upregulated during thyroid tumor development and progression and may function as oncogenes during tumor progression.
Collapse
Affiliation(s)
- Yanping Wang
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792, USA
| | - Heather Hardin
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792, USA
| | - Ying-Hsia Chu
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792, USA
| | - Karla Esbona
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792, USA
| | - Ranran Zhang
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792, USA
| | - Ricardo V Lloyd
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792, USA.
| |
Collapse
|
33
|
Jiang YP, Tang YL, Wang SS, Wu JS, Zhang M, Pang X, Wu JB, Chen Y, Tang YJ, Liang XH. PRRX1-induced epithelial-to-mesenchymal transition in salivary adenoid cystic carcinoma activates the metabolic reprogramming of free fatty acids to promote invasion and metastasis. Cell Prolif 2019; 53:e12705. [PMID: 31657086 PMCID: PMC6985691 DOI: 10.1111/cpr.12705] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/04/2019] [Accepted: 09/14/2019] [Indexed: 02/05/2023] Open
Abstract
Objectives Increasing evidences demonstrate a close correlation between epithelial‐to‐mesenchymal transition (EMT) induction and cancer lipid metabolism. However, the molecular mechanisms have not been clarified. Materials and methods In our study, the relative expression level of PRRX1 was detected, its relationship with free fatty acid (FFA) and PPARG2 was analysed in 85 SACC tissues and 15 salivary glands from the benign salivary tumours. We also compared the FFAs composition and levels in these SACC cells. PPARG2 was detected in PRRX1‐induced FFAs treatment as well as Src and MMP‐9 were detected in FFAs treatment–induced invasion and migration of SACC cells, and ChIP test was performed to identify the target interactions. Results Our data showed that overexpression of PRRX1 induced EMT and facilitated the invasion and migration of SACC cells, and PRRX1 expression was closely associated with high FFAs level and poor prognosis of SACC patients. Furthermore, PRRX1 silence led to the increase of PPARG2 and the reduction of FFAs level and the migration and invasion of SACC cells. And inhibition of PPARG2 rescued FFAs level and migration and invasion capabilities of SACC cells. Free fatty acids treatment induced an increase of Stat5‐DNA binding activity via Src‐ and MMP‐9‐dependent pathway. Conclusions Collectively, our findings showed that the PRRX1/PPARG2/FFAs signalling in SACC was important for accelerating tumour metastasis through the induction of EMT and the metabolic reprogramming of FFAs.
Collapse
Affiliation(s)
- Ya-Ping Jiang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology (Sichuan University), Chengdu, China.,Department of Implant, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ya-Ling Tang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology (Sichuan University), Chengdu, China
| | - Sha-Sha Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology (Sichuan University), Chengdu, China
| | - Jia-Shun Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology (Sichuan University), Chengdu, China
| | - Mei Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology (Sichuan University), Chengdu, China
| | - Xin Pang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology (Sichuan University), Chengdu, China
| | - Jing-Biao Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology (Sichuan University), Chengdu, China
| | - Yu Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology (Sichuan University), Chengdu, China
| | - Ya-Jie Tang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.,Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Xin-Hua Liang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology (Sichuan University), Chengdu, China
| |
Collapse
|
34
|
Wu HY, Wei Y, Pan SL. Down-regulation and clinical significance of miR-7-2-3p in papillary thyroid carcinoma with multiple detecting methods. IET Syst Biol 2019; 13:225-233. [PMID: 31538956 PMCID: PMC8687168 DOI: 10.1049/iet-syb.2019.0025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 05/30/2019] [Accepted: 06/10/2019] [Indexed: 04/05/2024] Open
Abstract
Altered miRNA expression participates in the biological progress of thyroid carcinoma and functions as a diagnostic marker or therapeutic agent. However, the role of miR-7-2-3p is currently unclear. The authors' study was the first investigation of miR-7-2-3p expression level and diagnostic ability in several public databases. Potential target genes were obtained from DIANA Tools, and function enrichment analysis was then performed. Furthermore, the authors examined expression levels of potential targets in the Human Protein Atlas (HPA) and the Cancer Genome Atlas (TCGA). Finally, the potential transcription factors (TFs) were predicted by JASPAR. TCGA, GSE62054, GSE73182, GSE40807, and GSE55780 revealed that miR-7-2-3p expression in papillary thyroid carcinoma (PTC) tissues was notably lower compared with non-tumour tissues, while its expression in E-MATB-736 showed no remarkable difference. Function enrichment analysis showed that 698 genes were enriched in pathways, including pathways in cancer, and glioma. CCND1, GSK3B, and ITGAV of pathways in cancer were inverse correlations with miR-7-2-3p in both post-transcription and protein levels. According to the TF prediction, the prospective upstream TFs of miR-7-2-3p were ISX, SPI1, PRRX1, and BARX1. MiR-7-2-3p was significantly down-regulated and may act on PTC progression by crucial pathways. However, the mechanisms of miR-7-2-3p need further investigation.
Collapse
Affiliation(s)
- Hua-Yu Wu
- Department of Cell Biology and Genetics, School of Pre-clinical Medicine, Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Yi Wei
- Department of Pathophysiology, School of Pre-clinical Medicine, Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Shang-Ling Pan
- Department of Pathophysiology, School of Pre-clinical Medicine, Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.
| |
Collapse
|
35
|
Hobnail cells in encapsulated papillary thyroid carcinoma: Report of 2 cases with immunohistochemical and molecular findings and literature analysis. Pathol Res Pract 2019; 216:152678. [PMID: 31740230 DOI: 10.1016/j.prp.2019.152678] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 09/27/2019] [Indexed: 02/04/2023]
Abstract
Papillary thyroid carcinoma (PTC) is the most common malignant tumor of the thyroid gland with most tumors behaving in an indolent fashion. However, morphologic variants have been described, such as tall cell, diffuse sclerosing, columnar cell etc. which are biologically more aggressive. One of these variants includes the more recently described hobnail variant (HVPTC) which shows micropapillae and presence of large cells with apically placed hyperchromatic nuclei, reverse polarity, and eosinophilic cytoplasm, akin to hobnail cells. The presence of >30% hobnail cells in a PTC deserves categorization as a hobnail variant. This variant is usually associated with extra thyroidal extension, lymphovascular invasion and lymph node metastasis. We describe the pathologic and molecular features of two cases of encapsulated PTC with hobnail cells in a 68 year old male and a 22 year old female (30% and 10% hobnail cells respectively). Both cases presented as low stage (pT2) tumors and showed no aggressive features like lymph node metastasis, or extrathyroidal extension (ETE) at the time of presentation. Tumors in both cases showed presence of BRAFV600E mutation, absence of RAS and/or TP53 mutations, and were negative for RET and PAX88/PPARG gene rearrangements.
Collapse
|
36
|
Fuziwara CS, Saito KC, Kimura ET. Interplay of TGFβ signaling and microRNA in thyroid cell loss of differentiation and cancer progression. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2019; 63:536-544. [PMID: 31482959 PMCID: PMC10522270 DOI: 10.20945/2359-3997000000172] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 08/04/2019] [Indexed: 11/23/2022]
Abstract
Thyroid cancer has been rapidly increasing in prevalence among humans in last 2 decades and is the most prevalent endocrine malignancy. Overall, thyroid-cancer patients have good rates of long-term survival, but a small percentage present poor outcome. Thyroid cancer aggressiveness is essentially related with thyroid follicular cell loss of differentiation and metastasis. The discovery of oncogenes that drive thyroid cancer (such as RET, RAS, and BRAF), and are aligned in the MAPK/ERK pathway has led to a new perspective of thyroid oncogenesis. The uncovering of additional oncogene-modulated signaling pathways revealed an intricate and active signaling cross-talk. Among these, microRNAs, which are a class of small, noncoding RNAs, expanded this cross-talk by modulating several components of the oncogenic network - thus establishing a new layer of regulation. In this context, TGFβ signaling plays an important role in cancer as a dual factor: it can exert an antimitogenic effect in normal thyroid follicular cells, and promote epithelial-to-mesenchymal transition, cell migration, and invasion in cancer cells. In this review, we explore how microRNAs influence the loss of thyroid differentiation and the increase in aggressiveness of thyroid cancers by regulating the dual function of TGFβ. This review provides directions for future research to encourage the development of new strategies and molecular approaches that can improve the treatment of aggressive thyroid cancer.
Collapse
Affiliation(s)
- Cesar Seigi Fuziwara
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Kelly Cristina Saito
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Edna Teruko Kimura
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brasil
| |
Collapse
|
37
|
Chai WX, Sun LG, Dai FH, Shao HS, Zheng NG, Cai HY. Inhibition of PRRX2 suppressed colon cancer liver metastasis via inactivation of Wnt/β-catenin signaling pathway. Pathol Res Pract 2019; 215:152593. [PMID: 31471104 DOI: 10.1016/j.prp.2019.152593] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/23/2019] [Accepted: 08/09/2019] [Indexed: 02/07/2023]
Abstract
The aim of this study was to investigate whether PRRX2 may regulate the liver metastasis of colon cancer via the Wnt/β-catenin signaling pathway. PRRX2 and β-catenin in patients with the liver metastases of colon cancer was detected by immunochemistry. Colon cancer cells (CT-26 and CMT93) were divided into Normal, si-Ctrl, si-PRRX2 and si-PRRX2 +LiCl groups. Cell invasive and migrating abilities and the related proteins were detected. Liver-metastatic mice model was constructed consisting of Normal, NC shRNA and PRRX2 shRNA groups to examine the function of PRRX2 shRNA on liver metastasis. We found that PRRX2 and β-catenin positive rate was elevated in colon cancer tissues, especially in those tissues with liver metastasis, and there was a close relation between PRRX2 and the clinical staging, lymph node metastasis and numbers of liver metastases of colon cancer patients with liver metastasis. In vitro, the invasive and migrating abilities of CT-26 and CMT93 cells decreased apparently in the si-PRRX2 group, with down-regulation of PRRX2, p-GSK3βSer9/GSK3β, nucleus and cytoplasm β-catenin, TCF4 and Vimentin but up-regulation of E-cadherin. However, LiCl, the Wnt/β-catenin pathway activator, can reverse the inhibitory effect of si-PRRX2 on invasive and migrating ability of colon cancer cells. In vivo, the volume and weight of transplanted tumor and the number of liver metastases in the PRRX2 shRNA group were significantly reduced, with the similar protein expression patterns as in vitro. In a word, PRRX2 inhibition may reduce invasive and migrating abilities to hinder epithelial-mesenchymal transition (EMT), and suppress colon cancer liver metastasis through inactivation of Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Wen-Xiao Chai
- Department of Interventional Oncology, Gansu Provincial People's Hospital, Lanzhou 730000, Gansu, China
| | - Li-Guo Sun
- Department of Surgical Oncology, Dingxi City People's Hospital, Dingxi 743000, Gansu, China
| | - Fu-Hong Dai
- Department of Interventional Oncology, Gansu Provincial People's Hospital, Lanzhou 730000, Gansu, China
| | - Hong-Sheng Shao
- Department of Radiology, Rehabilitation Center Hospital of Gansu Province, Lanzhou 730000, Gansu, China
| | - Ning-Gang Zheng
- Department of Interventional Oncology, Gansu Provincial People's Hospital, Lanzhou 730000, Gansu, China
| | - Hong-Yi Cai
- Department of Radiation oncology, Gansu Provincial People's Hospital, Lanzhou 730000, Gansu, China.
| |
Collapse
|
38
|
Ye D, Jiang Y, Sun Y, Li Y, Cai Y, Wang Q, Wang O, Chen E, Zhang X. METTL7B promotes migration and invasion in thyroid cancer through epithelial-mesenchymal transition. J Mol Endocrinol 2019; 63:51-61. [PMID: 31121562 DOI: 10.1530/jme-18-0261] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 05/03/2019] [Indexed: 12/14/2022]
Abstract
Thyroid cancer is associated with one of the most malignant endocrine tumors. However, molecular mechanisms underlying thyroid tumorigenesis and progression remain unclear. In order to investigate these mechanisms, we performed whole-transcriptome sequencing, which indicated that a differentially expressed gene, METTL7B, was highly expressed in thyroid cancers. We analyzed METTL7B expression using TCGA and performed qRT-PCR on tissue samples. Moreover, an analysis of clinicopathological characteristics revealed a positive correlation between METTL7B and lymph node metastasis. A series of in vitro experiments indicated that METTL7B enhanced migration and invasion of thyroid carcinoma cells. Further studies revealed that METTL7B may enhance TGF-β1-induced epithelial-mesenchymal transition (EMT). Our results indicate that METTL7B may promote metastasis of thyroid cancer through EMT and may therefore be considered as a potential biomarker for the diagnosis and prognosis of thyroid carcinoma.
Collapse
Affiliation(s)
- Danrong Ye
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yang Jiang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yihan Sun
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yuefeng Li
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yefeng Cai
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Qingxuan Wang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Ouchen Wang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Endong Chen
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Xiaohua Zhang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| |
Collapse
|
39
|
Down-regulated HSDL2 expression suppresses cell proliferation and promotes apoptosis in papillary thyroid carcinoma. Biosci Rep 2019; 39:BSR20190425. [PMID: 31101684 PMCID: PMC6549096 DOI: 10.1042/bsr20190425] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/18/2019] [Accepted: 04/29/2019] [Indexed: 01/23/2023] Open
Abstract
Papillary thyroid carcinoma (PTC) is the most common type of thyroid cancer. Hydroxysteroid dehydrogenase like 2 (HSDL2) can regulate lipid metabolism and take part in cell proliferation. The purpose of the present study was to explore functional role of HSDL2 gene in PTC. The expression of HSDL2 protein in PTC tissues was estimated using immunohistochemistry analysis (IHC). HSDL2 mRNA level was detected through quantitative real-time polymerase chain reaction (qRT-PCR). Effects of HSDL2 gene on cell proliferation and apoptosis were assessed using the shRNA method for both in vitro and in vivo experiments. Potential target genes of HSDL2 were determined via bioinformatics analyses and Western blotting. HSDL2 was up-regulated in PTC tissues and cell lines compared with the controls (all P<0.05). Inhibiting HSDL expression could suppress PTC cell proliferation and cycle, and promote apoptosis in vitro. In vivo, the knockdown of HSDL2 gene could significantly suppress tumor growth (all P<0.05). Furthermore, AKT3, NFATc2 and PPP3CA genes might be potential targets of HSDL2 in PTC. HSDL2 expression was increased in PTC tissues and cells, which could promote tumor progression in vitro and in vivo.
Collapse
|
40
|
Zhang E, Li X. LncRNA SOX2-OT regulates proliferation and metastasis of nasopharyngeal carcinoma cells through miR-146b-5p/HNRNPA2B1 pathway. J Cell Biochem 2019; 120:16575-16588. [PMID: 31099048 DOI: 10.1002/jcb.28917] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 04/10/2019] [Accepted: 04/11/2019] [Indexed: 12/14/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is an aggressive malignancy with a high mortality on account of its frequent metastasis and poor prognosis. An extensive body of investigations has proven that long noncoding RNAs are implicated in a variety of biological processes. Although SOX2-OT has been reported to play an oncogenic role in osteosarcoma, the mechanism of SOX2-OT-driven NPC progression is still obscure. The aim of this study was to elucidate the biological function of SOX2-OT and the related possible mechanism in NPC. In our study, SOX2-OT was notably elevated in NPC samples and cells. Further, a high expression level of SOX2-OT was correlated with poor clinical outcomes of NPC. Results from loss-of-function experiments suggested that knockdown of SOX2-OT repressed cell proliferation, arrested cell cycle, facilitated cell apoptosis, and inhibited cell metastasis of NPC. To further investigate the molecular mechanism of SOX2-OT, miR-146b-5p was found to directly bind to SOX2-OT, which mediated the role of SOX2-OT in NPC tumorigenesis. In addition, HNRNPA2B1 was a target of miR-146b-5p and SOX2-OT modulated the expression of HNRNPA2B1 through competitively binding to miR-146b-5p. At last, we discovered that SOX2-OT regulated NPC progression by targeting miR-146b-5p/HNRNPA2B1 pathway, which may provide more innovative targets for the treatment of patients with NPC.
Collapse
Affiliation(s)
- Enqin Zhang
- Department of Otorhinolaryngology, Ankang in Shaanxi Province Chinese Traditional Medicine Hospital, Ankang, Shaanxi, China
| | - Xueping Li
- Department of Otorhinolaryngology, Ankang in Shaanxi Province Chinese Central Medicine Hospital, Ankang, Shaanxi, China
| |
Collapse
|
41
|
Xu CB, Liu XSBJ, Li JQ, Zhao X, Xin D, Yu D. microRNA-539 functions as a tumor suppressor in papillary thyroid carcinoma via the transforming growth factor β1/Smads signaling pathway by targeting secretory leukocyte protease inhibitor. J Cell Biochem 2019; 120:10830-10846. [PMID: 30706537 DOI: 10.1002/jcb.28374] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/29/2019] [Indexed: 01/29/2023]
Abstract
Papillary thyroid carcinoma (PTC) is the most common type of thyroid malignancy, with growing incidence every year. microRNAs (miRs) are known to regulate the physiological and pathological processes of cancers, such as proliferation, migration, invasion, survival, and epithelial-mesenchymal transition (EMT). Herein, this study aimed to investigate the effect of miR-539 on cell proliferation, apoptosis, and EMT by targeting secretory leukocyte protease inhibitor (SLPI) via the transforming growth factor β1 (TGF-β1)/Smads signaling pathway in PTC. First, PTC-related differentially expressed genes and regulatory miR were screened using bioinformatics analysis, dual luciferase reporter gene assay, and ribonucleoprotein immunoprecipitation, which identified the SLPI gene and the regulatory miR-539 for this study. We identified SLPI as a highly expressed gene in PTC tissues, and SLPI was targeted and negatively regulated by miR-539. Then, we introduced a series of miR-539 mimics, miR-539 inhibitors, and small interfering RNA against SLPI plasmids into CGTHW-3 cells to examine the effects of miR-539 and SLPI on the expression of TGF-β1/Smads signaling pathway-, EMT-, and apoptosis-related factors, as well as cell proliferation, migration, invasion, and apoptosis. The obtained results indicated that CGTHW-3 cells treated with silenced SLPI or overexpressed miR-539 suppressed the cell proliferation, migration, invasion abilities, and resistance to apoptosis of PTC cells, corresponding to increased expression of Bcl-2-associated X protein, TGF-β1, Sekelsky mothers against dpp 4, and epithelial cadherin, and decreased B cell lymphoma 2, Vimentin, and N-cadherin. Altogether, we concluded that overexpressed miR-539 could inhibit the PTC cell proliferation and promote apoptosis and EMT by targeting SPLI via activation of the TGF-β1/Smads signaling pathway.
Collapse
Affiliation(s)
- Cheng-Bi Xu
- Department of Otolaryngology - Head and Neck Surgery, The Second Hospital of Jilin University, Changchun, P. R. China
| | - Xue-Shi-Bo-Jie Liu
- Department of Otolaryngology - Head and Neck Surgery, The Second Hospital of Jilin University, Changchun, P. R. China
| | - Jin-Qiu Li
- Department of Otolaryngology - Head and Neck Surgery, The Second Hospital of Jilin University, Changchun, P. R. China
| | - Xue Zhao
- Department of Otolaryngology - Head and Neck Surgery, The Second Hospital of Jilin University, Changchun, P. R. China
| | - Ding Xin
- Department of Otolaryngology - Head and Neck Surgery, The Second Hospital of Jilin University, Changchun, P. R. China
| | - Dan Yu
- Department of Otolaryngology - Head and Neck Surgery, The Second Hospital of Jilin University, Changchun, P. R. China
| |
Collapse
|
42
|
Jiang J, Zheng M, Zhang M, Yang X, Li L, Wang SS, Wu JS, Yu XH, Wu JB, Pang X, Tang YJ, Tang YL, Liang XH. PRRX1 Regulates Cellular Phenotype Plasticity and Dormancy of Head and Neck Squamous Cell Carcinoma Through miR-642b-3p. Neoplasia 2019; 21:216-229. [PMID: 30622052 PMCID: PMC6324219 DOI: 10.1016/j.neo.2018.12.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/05/2018] [Accepted: 12/06/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND: Dormancy is one characteristic of cancer cells to make patients remain asymptomatic before metastasis and relapse, which is closely related to the survival rate of cancer patients, including head and neck squamous cell carcinoma (HNSCC). PRRX1 has previously been implicated in the invasion and metastasis of the epithelial-mesenchymal transition (EMT) process in different types of human carcinoma. However, whether PRRX1 can regulate cancer dormancy and its reactivation, leading to the migration and invasion of HNSCC cells, remains elusive. The aim of this study was to determine the role of PRRX1 in cellular phenotype plasticity and cancer dormancy of HNSCC cells and its association with miRNAs in HNSCC. METHODS: The expression of PRRX1 was detected by immunohistochemical staining in primary HNSCC samples and the metastatic lymph nodes. Meanwhile, the role of PRRX1 and its relationship with miR-642b-3p and EMT in cellular phenotype plasticity and cancer dormancy of HNSCC were investigated in vitro and in vivo. RESULTS: PRRX1 was significantly higher at the invasive front of HNSCC samples compared with the metastatic lymph nodes, and such switch process was accompanied by the cellular phenotype plasticity and cell dormancy activation. In HNSCC cell lines, PRRX1 positively promoted the expression of known EMT inducers and cooperated with activated TGF-β1 to contribute to EMT and migration and invasion of HNSCC cells. Then, we found that overexpression of miR-642b-3p, one of the most significantly downregulated miRNAs in PRRX1-overexpressed cells, significantly reduced the migration and invasion, and increased cell proliferation and apoptosis. And miR-642b-3p restoration reversed PRRX1-induced cell dormancy and EMT of HNSCC cells through TGF-β2 and p38. Finally, we demonstrated that overexpressed PRRX1 was closely correlated with miR-642b-3p downregulation and the upregulation of TGF-β2 and p38 in a xenograft model of HNSCC. CONCLUSIONS: Our findings showed that PRRX1 may be one of the main driving forces for the cellular phenotype plasticity and tumor dormancy of HNSCC. Therefore, we can raise the possibility that EMT may help to keep cancer cell in dormant state and mesenchymal-epithelial transition may resurge dormancy in HNSCC.
Collapse
Affiliation(s)
- Jian Jiang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No. 14, Sec. 3, Renminnan Road, Chengdu, Sichuan 610041, China; Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| | - Min Zheng
- Department of Stomatology, Zhoushan Hospital, Wenzhou Medical University. No .739, Dingshen Road, Lincheng Street, Zhoushan, 316021, Zhejiang,China.
| | - Mei Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No. 14, Sec. 3, Renminnan Road, Chengdu, Sichuan 610041, China.
| | - Xiao Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No. 14, Sec. 3, Renminnan Road, Chengdu, Sichuan 610041, China.
| | - Li Li
- Department of Stomatology, Zhoushan Hospital, Wenzhou Medical University. No .739, Dingshen Road, Lincheng Street, Zhoushan, 316021, Zhejiang,China.
| | - Sha-Sha Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No. 14, Sec. 3, Renminnan Road, Chengdu, Sichuan 610041, China.
| | - Jia-Shun Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No. 14, Sec. 3, Renminnan Road, Chengdu, Sichuan 610041, China.
| | - Xiang-Hua Yu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No. 14, Sec. 3, Renminnan Road, Chengdu, Sichuan 610041, China.
| | - Jing-Biao Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No. 14, Sec. 3, Renminnan Road, Chengdu, Sichuan 610041, China.
| | - Xin Pang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No. 14, Sec. 3, Renminnan Road, Chengdu, Sichuan 610041, China.
| | - Ya-Jie Tang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China.
| | - Ya-Ling Tang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Oral Pathology, West China Hospital of Stomatology, Sichuan University, No. 14, Sec. 3, Renminnan Road, Chengdu, Sichuan 610041, China.
| | - Xin-Hua Liang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No. 14, Sec. 3, Renminnan Road, Chengdu, Sichuan 610041, China.
| |
Collapse
|
43
|
Jia M, Shi Y, Li Z, Lu X, Wang J. MicroRNA-146b-5p as an oncomiR promotes papillary thyroid carcinoma development by targeting CCDC6. Cancer Lett 2018; 443:145-156. [PMID: 30503553 DOI: 10.1016/j.canlet.2018.11.026] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 11/21/2018] [Accepted: 11/24/2018] [Indexed: 12/19/2022]
Abstract
The microRNA-146b-5p (miR-146b-5p) is known to be involved in the development of papillary thyroid cancer (PTC); however, the underlying mechanism is unclear. Here we have investigated the biological functions and underlying molecular mechanisms of miR-146b-5p in PTC. The expression of miR-146b-5p was assessed in 92 pairs of PTC and adjacent normal tissues and showed correlation with the clinicopathological status such as the tumour size. Effects of miR-146b-5p and its direct target, coiled-coil domain containing 6 (CCDC6), on cell proliferation, migration, invasion, and cell cycle were evaluated through gain- and loss-of-function studies in vitro and in vivo. The expression of CCDC6 was further examined in 187 PTC cases and was found to be correlated with the clinicopathological status. Overexpression of miR-146b-5p was observed in PTC tissues that correlated with advanced PTC. miR-146b-5p promoted cell proliferation, migration, invasion, and cell cycle progression in vitro, whereas CCDC6 reversed this effect. miR-146b-5p promoted PTC growth in a subcutaneous mouse model in vivo, whereas overexpression of CCDC6 exerted the opposite effect. In conclusion, miR-146b-5p expression correlated with advanced PTC and promoted PTC development by targeting CCDC6 in vitro and in vivo; it could, therefore, serve as a promising target for PTC treatment.
Collapse
Affiliation(s)
- Meng Jia
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China; Faculty of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Yang Shi
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Zhuyao Li
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Xiubo Lu
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China; Faculty of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| | - Jiaxiang Wang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China; Faculty of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| |
Collapse
|
44
|
Metabolomic Alterations in Thyrospheres and Adherent Parental Cells in Papillary Thyroid Carcinoma Cell Lines: A Pilot Study. Int J Mol Sci 2018; 19:ijms19102948. [PMID: 30262749 PMCID: PMC6213810 DOI: 10.3390/ijms19102948] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 09/25/2018] [Indexed: 12/13/2022] Open
Abstract
Papillary thyroid carcinoma (PTC), is characterized by a heterogeneous group of cells, including cancer stem cells (CSCs), crucially involved in tumor initiation, progression and recurrence. CSCs appear to have a distinct metabolic phenotype, compared to non-stem cancer cells. How they adapt their metabolism to the cancer process is still unclear, and no data are yet available for PTC. We recently isolated thyrospheres, containing cancer stem-like cells, from B-CPAP and TPC-1 cell lines derived from PTC of the BRAF-like expression profile class, and stem-like cells from Nthy-ori3-1 normal thyreocyte-derived cell line. In the present study, gas chromatography/mass spectrometry metabolomic profiles of cancer thyrospheres were compared to cancer parental adherent cells and to non cancer thyrospheres profiles. A statistically significant decrease of glycolytic pathway metabolites and variations in Krebs cycle metabolites was found in thyrospheres versus parental cells. Moreover, cancer stem-like cells showed statistically significant differences in Krebs cycle intermediates, amino acids, cholesterol, and fatty acids content, compared to non-cancer stem-like cells. For the first time, data are reported on the metabolic profile of PTC cancer stem-like cells and confirm that changes in metabolic pathways can be explored as new biomarkers and targets for therapy in this tumor.
Collapse
|
45
|
Thyroid cancer stem-like cell exosomes: regulation of EMT via transfer of lncRNAs. J Transl Med 2018; 98:1133-1142. [PMID: 29967342 PMCID: PMC6138523 DOI: 10.1038/s41374-018-0065-0] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/23/2018] [Accepted: 03/20/2018] [Indexed: 12/12/2022] Open
Abstract
Thyroid cancers are the most common endocrine malignancy and approximately 2% of thyroid cancers are anaplastic thyroid carcinoma (ATC), one of the most lethal and treatment resistant human cancers. Cancer stem-like cells (CSCs) may initiate tumorigenesis, induce resistance to chemotherapy and radiation therapy, have multipotent capability and may be responsible for recurrent and metastatic disease. The production of CSCs has been linked to epithelial-mesenchymal transition (EMT) and the acquisition of stemness. Exosomes are small (30-150 nm) membranous vesicles secreted by most cells that play a significant role in cell-to-cell communication. Many non-coding RNAs (ncRNA), such as long-non-coding RNAs (lncRNA), can initiate tumorigenesis and the EMT process. Exosomes carry ncRNAs to local and distant cell populations. This study examines secreted exosomes from two in vitro cell culture models; an EMT model and a CSC model. The EMT was induced in a papillary thyroid carcinoma (PTC) cell line by TGFβ1 treatment. Exosomes from this model were isolated and cultured with naïve PTC cells and examined for EMT induction. In the CSC model, exosomes were isolated from a CSC clonal line, cultured with a normal thyroid cell line and examined for EMT induction. The EMT exosomes transferred the lncRNA MALAT1 and EMT effectors SLUG and SOX2; however, EMT was not induced in this model. The exosomes from the CSC model also transferred the lncRNA MALAT1 and the transcription factors SLUG and SOX2 but additionally transferred linc-ROR and induced EMT in the normal thyroid cells. Preliminary siRNA studies directed towards linc-ROR reduced invasion. We hypothesize that CSC exosomes transfer lncRNAs, importantly linc-ROR, to induce EMT and inculcate the local tumor microenvironment and the distant metastatic niche. Therapies directed towards CSCs, their exosomes and/or the lncRNAs they carry may reduce a tumor's metastatic capacity.
Collapse
|
46
|
Zhang X, Liu L, Deng X, Li D, Cai H, Ma Y, Jia C, Wu B, Fan Y, Lv Z. MicroRNA 483-3p targets Pard3 to potentiate TGF-β1-induced cell migration, invasion, and epithelial-mesenchymal transition in anaplastic thyroid cancer cells. Oncogene 2018; 38:699-715. [PMID: 30171257 PMCID: PMC6756112 DOI: 10.1038/s41388-018-0447-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/09/2018] [Accepted: 07/14/2018] [Indexed: 01/06/2023]
Abstract
Anaplastic thyroid cancer (ATC) is associated with poor prognosis and is often untreatable. MicroRNA 483-3p (miR-483) and partitioning-defective 3 (Pard3), a member of the Pard family, have functions and regulatory mechanisms in ATC. The abnormal regulation of miR-483 may play an important role in tumorigenesis, and Par3 is known to regulate cell polarity, cell migration, and cell division. Tumor proliferation promoted by the regulation of miRNA expression can be regulated in thyroid cancer by upregulating transforming growth factor-β1 (TGF-β1), which is thought to interact with Pard3. When compared with adjacent non-tumor tissues, we found that miR-483 was upregulated and Pard3 was downregulated in 80 thyroid tumor samples. Disease-free survival was decreased when expression of miR-483 was upregulated and Pard3 expression was downregulated. Cell growth, migration, and invasion were induced by overexpression of miR-483. However, knockdown of miR-483 resulted in a loss of cell invasion and viability, both in vitro and in vivo. The expression of Pard3 was increased by the inhibition of miR-483, but TGF-β1-induced cell migration and invasion were decreased by miR-483 inhibition. A dual-luciferase reporter assay determined that Pard3 expression was downregulated when targeted with miR-483. The epithelial–mesenchymal transition (EMT), as well as Tiam1-Rac signaling, was induced by TGF-β1, which was decreased by the overexpression of Pard3. Pard3 decreased the inhibition of EMT and Tiam-Rac1 signaling, which resulted from transfection of ATC cells with miR-483. Overall, the results showed that downregulation of Pard3 resulted in increased cell invasion and EMT in ATC, which was promoted by treatment with miR-483. These findings suggest novel therapeutic targets and treatment strategies for this disease.
Collapse
Affiliation(s)
- Xiaoping Zhang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China.,Shanghai Center of Thyroid Diseases, Shanghai, 200072, China
| | - Lin Liu
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China.,Shanghai Center of Thyroid Diseases, Shanghai, 200072, China
| | - Xianzhao Deng
- Center of Thyroid, Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Dan Li
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China.,Shanghai Center of Thyroid Diseases, Shanghai, 200072, China
| | - Haidong Cai
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China.,Shanghai Center of Thyroid Diseases, Shanghai, 200072, China
| | - Yushui Ma
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China.,Shanghai Center of Thyroid Diseases, Shanghai, 200072, China
| | - Chengyou Jia
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China.,Shanghai Center of Thyroid Diseases, Shanghai, 200072, China
| | - Bo Wu
- Center of Thyroid, Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.
| | - Youben Fan
- Center of Thyroid, Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.
| | - Zhongwei Lv
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China. .,Shanghai Center of Thyroid Diseases, Shanghai, 200072, China.
| |
Collapse
|
47
|
Zheng CH, Chen XM, Zhang FB, Zhao C, Tu SS. Inhibition of CXCR4 regulates epithelial mesenchymal transition of NSCLC via the Hippo-YAP signaling pathway. Cell Biol Int 2018; 42:1386-1394. [PMID: 29972256 DOI: 10.1002/cbin.11024] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/30/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Chun-Hui Zheng
- Department of Cardiothoracic Surgery, Lishui Central Hospital; Lishui Hospital of Zhejiang University; 323000 Zhejiang Province P. R. China
| | - Xiao-Mei Chen
- Operating Room, Lishui Central Hospital; Lishui Hospital of Zhejiang University; 323000 Zhejiang Province P. R. China
| | - Fang-Biao Zhang
- Department of Cardiothoracic Surgery, Lishui Central Hospital; Lishui Hospital of Zhejiang University; 323000 Zhejiang Province P. R. China
| | - Chun Zhao
- Department of Cardiothoracic Surgery, Lishui Central Hospital; Lishui Hospital of Zhejiang University; 323000 Zhejiang Province P. R. China
| | - Shao-Song Tu
- Department of Cardiothoracic Surgery, Lishui Central Hospital; Lishui Hospital of Zhejiang University; 323000 Zhejiang Province P. R. China
| |
Collapse
|
48
|
Recent Advances in the Classification of Low-grade Papillary-like Thyroid Neoplasms and Aggressive Papillary Thyroid Carcinomas: Evolution of Diagnostic Criteria. Adv Anat Pathol 2018; 25:263-272. [PMID: 29762157 DOI: 10.1097/pap.0000000000000198] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Papillary thyroid carcinomas account for ∼80% of well-differentiated thyroid tumors. During the past decade, several new variants of papillary-like thyroid neoplasms and papillary thyroid carcinomas have been recognized. Some of these neoplasms that were previously classified as malignant have been reclassified as low-grade neoplasms, as the diagnostic criteria have evolved. Similarly, some of the papillary thyroid carcinomas that were previously classified as conventional or classic papillary thyroid carcinomas have now been recognized as more aggressive variants of papillary thyroid carcinomas. Recognizing these differences becomes more important for the proper medical, surgical, and radiotherapeutic management of patients with these neoplasms.
Collapse
|
49
|
Li Y, Wang W, Wang F, Wu Q, Li W, Zhong X, Tian K, Zeng T, Gao L, Liu Y, Li S, Jiang X, Du G, Zhou Y. Paired related homeobox 1 transactivates dopamine D2 receptor to maintain propagation and tumorigenicity of glioma-initiating cells. J Mol Cell Biol 2018; 9:302-314. [PMID: 28486630 DOI: 10.1093/jmcb/mjx017] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 05/05/2017] [Indexed: 12/22/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a highly invasive brain tumor with limited therapeutic means and poor prognosis. Recent studies indicate that glioma-initiating cells/glioma stem cells (GICs/GSCs) may be responsible for tumor initiation, infiltration, and recurrence. GICs could aberrantly employ molecular machinery balancing self-renewal and differentiation of embryonic neural precursors. Here, we find that paired related homeobox 1 (PRRX1), a homeodomain transcription factor that was previously reported to control skeletal development, is expressed in cortical neural progenitors and is required for their self-renewal and proper differentiation. Further, PRRX1 is overrepresented in glioma samples and labels GICs. Glioma cells and GICs depleted with PRRX1 could not propagate in vitro or form tumors in the xenograft mouse model. The GIC self-renewal function regulated by PRRX1 is mediated by dopamine D2 receptor (DRD2). PRRX1 directly binds to the DRD2 promoter and transactivates its expression in GICs. Blockage of the DRD2 signaling hampers GIC self-renewal, whereas its overexpression restores the propagating and tumorigenic potential of PRRX1-depleted GICs. Finally, PRRX1 potentiates GICs via DRD2-mediated extracellular signal-related kinase (ERK) and AKT activation. Thus, our study suggests that therapeutic targeting the PRRX1-DRD2-ERK/AKT axis in GICs is a promising strategy for treating GBMs.
Collapse
Affiliation(s)
- Yamu Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences at Wuhan University, Wuhan 430072, China
| | - Wen Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences at Wuhan University, Wuhan 430072, China
| | - Fangyu Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences at Wuhan University, Wuhan 430072, China
| | - Qiushuang Wu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences at Wuhan University, Wuhan 430072, China
| | - Wei Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences at Wuhan University, Wuhan 430072, China
| | - Xiaoling Zhong
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences at Wuhan University, Wuhan 430072, China
| | - Kuan Tian
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences at Wuhan University, Wuhan 430072, China
| | - Tao Zeng
- Department of Neurosurgery, The Tenth Affiliated Hospital, Tongji University, Shanghai 200072, China.,Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Liang Gao
- Department of Neurosurgery, The Tenth Affiliated Hospital, Tongji University, Shanghai 200072, China
| | - Ying Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences at Wuhan University, Wuhan 430072, China.,Medical Research Institute, Wuhan University, Wuhan 430072, China
| | - Shu Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences at Wuhan University, Wuhan 430072, China.,Medical Research Institute, Wuhan University, Wuhan 430072, China
| | - Xiaobing Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Guangwei Du
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX 77225, USA
| | - Yan Zhou
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences at Wuhan University, Wuhan 430072, China
| |
Collapse
|
50
|
Zhang R, Hardin H, Huang W, Buehler D, Lloyd RV. Long Non-coding RNA Linc-ROR Is Upregulated in Papillary Thyroid Carcinoma. Endocr Pathol 2018; 29:1-8. [PMID: 29280051 DOI: 10.1007/s12022-017-9507-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Long non-coding RNAs (lncRNAs) may contribute to carcinogenesis and tumor progression by regulating transcription and gene expression. The role of lncRNAs in the regulation of thyroid cancer progression is being extensively examined. Here, we analyzed three lncRNAs that were overexpressed in papillary thyroid carcinomas, long intergenic non-protein coding RNA, regulator of reprogramming (Linc-ROR, ROR) PVT1 oncogene (PVT1), and HOX transcript antisense intergenic RNA (HOTAIR) to determine their roles in thyroid tumor development and progression. ROR expression has not been previously examined in thyroid carcinomas. Tissue microarrays (TMAs) of formalin-fixed paraffin-embedded tissue sections from 129 thyroid cases of benign and malignant tissues were analyzed by in situ hybridization (ISH), automated image analysis, and real-time PCR. All three lncRNAs were most highly expressed in the nuclei of PTCs. SiRNA experiments with a PTC cell line, TPC1, showed inhibition of proliferation with siRNAs for all three lncRNAs while invasion was inhibited with siRNAs for ROR and HOTAIR. SiRNA experiments with ROR also led to increased expression of miR-145, supporting the role of ROR as an endogenous miR-145 sponge. After treatment with TGF-β, there was increased expression of ROR, PVT1, and HOTAIR in the PTC1 cell line compared to control groups, indicating an induction of their expression during epithelial to mesenchymal transition (EMT). These results indicate that ROR, PVT1, and HOTAIR have important regulatory roles during the development of PTCs.
Collapse
Affiliation(s)
- Ranran Zhang
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792, USA
| | - Heather Hardin
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792, USA
| | - Wei Huang
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792, USA
| | - Darya Buehler
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792, USA
| | - Ricardo V Lloyd
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792, USA.
| |
Collapse
|