1
|
Ezaddoustdar A, Kalina D, Bielohuby M, Boehm M, Wygrecka M. dEREGulated pathways: unraveling the role of epiregulin in skin, kidney, and lung fibrosis. Am J Physiol Cell Physiol 2025; 328:C617-C626. [PMID: 39750963 DOI: 10.1152/ajpcell.00813.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/24/2024] [Accepted: 12/24/2024] [Indexed: 01/04/2025]
Abstract
The epidermal growth factor receptor (EGFR) signaling pathway is an evolutionary conserved mechanism to control cell behavior during tissue development and homeostasis. Deregulation of this pathway has been associated with abnormal cell behavior, including hyperproliferation, senescence, and an inflammatory cell phenotype, thereby contributing to pathologies across a variety of organs, including the kidneys, skin, and lungs. To date, there are seven distinct EGFR ligands described. Although binding of these ligands to the receptor is cell type-specific and spatio-temporally controlled with distinct affinities and kinetics, epiregulin (EREG) stands out as a long-acting EGFR ligand that emerges under pathological conditions, particularly in tissue fibrosis. Although EREG has been extensively studied in cancer, its contribution to the maladaptive remodeling of tissue is elusive. The aim of this review is to highlight the role of EREG in skin, kidney, and lung fibrosis and to discuss opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Aysan Ezaddoustdar
- Center for Infection and Genomics of the Lung, Faculty of Medicine, Justus Liebig University, Member of the German Center for Lung Research, Giessen, Germany
| | | | | | | | - Malgorzata Wygrecka
- Center for Infection and Genomics of the Lung, Faculty of Medicine, Justus Liebig University, Member of the German Center for Lung Research, Giessen, Germany
- CSL Innovation GmbH, Marburg, Germany
- Institute for Lung Health, Justus Liebig University, Giessen, Germany
| |
Collapse
|
2
|
Acharyya RK, Rej RK, Hu B, Chen Z, Wu D, Lu J, Metwally H, McEachern D, Wang Y, Jiang W, Bai L, Tošović J, Gersch CL, Xu G, Zhang W, Wu W, Priestley ES, Sui Z, Sarkari F, Wen B, Sun D, Rae JM, Wang S. Discovery of ERD-1233 as a Potent and Orally Efficacious Estrogen Receptor PROTAC Degrader for the Treatment of ER+ Human Breast Cancer. J Med Chem 2024; 67:19010-19037. [PMID: 39485242 DOI: 10.1021/acs.jmedchem.4c01521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Despite the development of highly effective therapies for the treatment of estrogen receptor α (ERα)-positive human breast cancer, clinical resistance to current therapies requires the development of novel therapeutic strategies. Herein, we report the discovery of ERD-1233 as a potent and orally efficacious ERα degrader designed using the PROTAC technology. ERD-1233 was developed based on Lasofoxifene as the ER binding moiety and a novel cereblon ligand through extensive optimization of the linker. ERD-1233 potently and effectively reduces the ERα protein in vitro and achieves excellent oral bioavailability in mice and rats. Oral administration of ERD-1233 effectively reduces ER protein in ER+ tumors and achieves tumor regression in the ER wild-type MCF-7 xenograft tumor model and strong tumor growth inhibition in the ESR1Y537S mutated model in mice. Our data demonstrate that ERD-1233 is a promising ER PROTAC degrader for extensive evaluation as a new therapy for the treatment of ER+ human breast cancer.
Collapse
Affiliation(s)
- Ranjan Kumar Acharyya
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Rohan Kalyan Rej
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Biao Hu
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Zhixiang Chen
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Dimin Wu
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jianfeng Lu
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Hoda Metwally
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Donna McEachern
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yu Wang
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Wei Jiang
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Longchuan Bai
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jelena Tošović
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Christina L Gersch
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Guozhang Xu
- SK Life Science Laboratories, 2500 Renaissance Blvd, King of Prussia, Pennsylvania 19406, United States
| | - Weihong Zhang
- SK Life Science Laboratories, 2500 Renaissance Blvd, King of Prussia, Pennsylvania 19406, United States
| | - WenXue Wu
- SK Life Science Laboratories, 2500 Renaissance Blvd, King of Prussia, Pennsylvania 19406, United States
| | - E Scott Priestley
- SK Life Science Laboratories, 2500 Renaissance Blvd, King of Prussia, Pennsylvania 19406, United States
| | - Zhihua Sui
- SK Life Science Laboratories, 2500 Renaissance Blvd, King of Prussia, Pennsylvania 19406, United States
| | - Farzad Sarkari
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Bo Wen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Duxin Sun
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - James M Rae
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, United States
- The Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Shaomeng Wang
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
- The Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
3
|
Zhang X, Xu Z, Chen Q, Zhou Z. Notch signaling regulates pulmonary fibrosis. Front Cell Dev Biol 2024; 12:1450038. [PMID: 39450276 PMCID: PMC11499121 DOI: 10.3389/fcell.2024.1450038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
Pulmonary fibrosis is a progressive interstitial lung disease associated with aging. The pathogenesis of pulmonary fibrosis remains unclear, however, alveolar epithelial cell injury, myofibroblast activation, and extracellular matrix (ECM) accumulation are recognized as key contributors. Moreover, recent studies have implicated cellular senescence, endothelial-mesenchymal transition (EndMT), and epigenetic modifications in the pathogenesis of fibrotic diseases. Various signaling pathways regulate pulmonary fibrosis, including the TGF-β, Notch, Wnt, Hedgehog, and mTOR pathways. Among these, the TGF-β pathway is extensively studied, while the Notch pathway has emerged as a recent research focus. The Notch pathway influences the fibrotic process by modulating immune cell differentiation (e.g., macrophages, lymphocytes), inhibiting autophagy, and promoting interstitial transformation. Consequently, inhibiting Notch signaling represents a promising approach to mitigating pulmonary fibrosis. In this review, we discuss the role of Notch signaling pathway in pulmonary fibrosis, aiming to offer insights for future therapeutic investigations.
Collapse
Affiliation(s)
| | - Zhihao Xu
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, China
| | | | | |
Collapse
|
4
|
Li X, Liu Y, Tang Y, Xia Z. Transformation of macrophages into myofibroblasts in fibrosis-related diseases: emerging biological concepts and potential mechanism. Front Immunol 2024; 15:1474688. [PMID: 39386212 PMCID: PMC11461261 DOI: 10.3389/fimmu.2024.1474688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/06/2024] [Indexed: 10/12/2024] Open
Abstract
Macrophage-myofibroblast transformation (MMT) transforms macrophages into myofibroblasts in a specific inflammation or injury microenvironment. MMT is an essential biological process in fibrosis-related diseases involving the lung, heart, kidney, liver, skeletal muscle, and other organs and tissues. This process consists of interacting with various cells and molecules and activating different signal transduction pathways. This review deeply discussed the molecular mechanism of MMT, clarified crucial signal pathways, multiple cytokines, and growth factors, and formed a complex regulatory network. Significantly, the critical role of transforming growth factor-β (TGF-β) and its downstream signaling pathways in this process were clarified. Furthermore, we discussed the significance of MMT in physiological and pathological conditions, such as pulmonary fibrosis and cardiac fibrosis. This review provides a new perspective for understanding the interaction between macrophages and myofibroblasts and new strategies and targets for the prevention and treatment of MMT in fibrotic diseases.
Collapse
Affiliation(s)
- Xiujun Li
- Health Science Center, Chifeng University, Chifeng, China
| | - Yuyan Liu
- Rehabilitation Medicine College, Shandong Second Medical University, Jinan, China
| | - Yongjun Tang
- Department of Emergency, Affiliated Hospital of Chifeng University, Chifeng, China
| | - Zhaoyi Xia
- Department of Library, Children’s Hospital Affiliated to Shandong University, Jinan, China
- Department of Library, Jinan Children’s Hospital, Jinan, China
| |
Collapse
|
5
|
Mayr CH, Sengupta A, Asgharpour S, Ansari M, Pestoni JC, Ogar P, Angelidis I, Liontos A, Rodriguez-Castillo JA, Lang NJ, Strunz M, Porras-Gonzalez D, Gerckens M, De Sadeleer LJ, Oehrle B, Viteri-Alvarez V, Fernandez IE, Tallquist M, Irmler M, Beckers J, Eickelberg O, Stoleriu GM, Behr J, Kneidinger N, Wuyts WA, Wasnick RM, Yildirim AÖ, Ahlbrecht K, Morty RE, Samakovlis C, Theis FJ, Burgstaller G, Schiller HB. Sfrp1 inhibits lung fibroblast invasion during transition to injury-induced myofibroblasts. Eur Respir J 2024; 63:2301326. [PMID: 38212077 PMCID: PMC10850614 DOI: 10.1183/13993003.01326-2023] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/13/2023] [Indexed: 01/13/2024]
Abstract
BACKGROUND Fibroblast-to-myofibroblast conversion is a major driver of tissue remodelling in organ fibrosis. Distinct lineages of fibroblasts support homeostatic tissue niche functions, yet their specific activation states and phenotypic trajectories during injury and repair have remained unclear. METHODS We combined spatial transcriptomics, multiplexed immunostainings, longitudinal single-cell RNA-sequencing and genetic lineage tracing to study fibroblast fates during mouse lung regeneration. Our findings were validated in idiopathic pulmonary fibrosis patient tissues in situ as well as in cell differentiation and invasion assays using patient lung fibroblasts. Cell differentiation and invasion assays established a function of SFRP1 in regulating human lung fibroblast invasion in response to transforming growth factor (TGF)β1. MEASUREMENTS AND MAIN RESULTS We discovered a transitional fibroblast state characterised by high Sfrp1 expression, derived from both Tcf21-Cre lineage positive and negative cells. Sfrp1 + cells appeared early after injury in peribronchiolar, adventitial and alveolar locations and preceded the emergence of myofibroblasts. We identified lineage-specific paracrine signals and inferred converging transcriptional trajectories towards Sfrp1 + transitional fibroblasts and Cthrc1 + myofibroblasts. TGFβ1 downregulated SFRP1 in noninvasive transitional cells and induced their switch to an invasive CTHRC1+ myofibroblast identity. Finally, using loss-of-function studies we showed that SFRP1 modulates TGFβ1-induced fibroblast invasion and RHOA pathway activity. CONCLUSIONS Our study reveals the convergence of spatially and transcriptionally distinct fibroblast lineages into transcriptionally uniform myofibroblasts and identifies SFRP1 as a modulator of TGFβ1-driven fibroblast phenotypes in fibrogenesis. These findings are relevant in the context of therapeutic interventions that aim at limiting or reversing fibroblast foci formation.
Collapse
Affiliation(s)
- Christoph H Mayr
- Comprehensive Pneumology Center (CPC)/Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
- C.H. Mayr and A. Sengupta contributed equally to this work
| | - Arunima Sengupta
- Comprehensive Pneumology Center (CPC)/Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
- C.H. Mayr and A. Sengupta contributed equally to this work
| | - Sara Asgharpour
- Comprehensive Pneumology Center (CPC)/Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Meshal Ansari
- Comprehensive Pneumology Center (CPC)/Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
- Institute of Computational Biology, Helmholtz Munich, Munich, Germany
| | - Jeanine C Pestoni
- Comprehensive Pneumology Center (CPC)/Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Paulina Ogar
- Comprehensive Pneumology Center (CPC)/Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Ilias Angelidis
- Comprehensive Pneumology Center (CPC)/Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Andreas Liontos
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- SciLifeLab, Stockholm, Sweden
| | | | - Niklas J Lang
- Comprehensive Pneumology Center (CPC)/Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Maximilian Strunz
- Comprehensive Pneumology Center (CPC)/Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Diana Porras-Gonzalez
- Comprehensive Pneumology Center (CPC)/Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Michael Gerckens
- Comprehensive Pneumology Center (CPC)/Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
- Department of Internal Medicine V, Ludwig-Maximilians University (LMU) Munich, Member of the German Center for Lung Research (DZL), CPC-M bioArchive, Munich, Germany
| | - Laurens J De Sadeleer
- Comprehensive Pneumology Center (CPC)/Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department CHROMETA, KU Leuven, Leuven, Belgium
| | - Bettina Oehrle
- Comprehensive Pneumology Center (CPC)/Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Valeria Viteri-Alvarez
- Comprehensive Pneumology Center (CPC)/Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Isis E Fernandez
- Comprehensive Pneumology Center (CPC)/Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Michelle Tallquist
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - Martin Irmler
- Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Johannes Beckers
- Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- Chair of Experimental Genetics, Technical University of Munich, Freising, Germany
| | - Oliver Eickelberg
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gabriel Mircea Stoleriu
- Department of Internal Medicine V, Ludwig-Maximilians University (LMU) Munich, Member of the German Center for Lung Research (DZL), CPC-M bioArchive, Munich, Germany
| | - Jürgen Behr
- Department of Internal Medicine V, Ludwig-Maximilians University (LMU) Munich, Member of the German Center for Lung Research (DZL), CPC-M bioArchive, Munich, Germany
| | - Nikolaus Kneidinger
- Department of Internal Medicine V, Ludwig-Maximilians University (LMU) Munich, Member of the German Center for Lung Research (DZL), CPC-M bioArchive, Munich, Germany
| | - Wim A Wuyts
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department CHROMETA, KU Leuven, Leuven, Belgium
| | - Roxana Maria Wasnick
- Comprehensive Pneumology Center (CPC)/Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Ali Önder Yildirim
- Comprehensive Pneumology Center (CPC)/Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
- Institute of Experimental Pneumology, LMU University Hospital, Ludwig-Maximilians University, Munich, Germany
| | - Katrin Ahlbrecht
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Bad Nauheim, Germany
| | - Rory E Morty
- Department of Translational Pulmonology, University Hospital Heidelberg, and Translational Lung Research Center (TLRC), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Christos Samakovlis
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- SciLifeLab, Stockholm, Sweden
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Munich, Munich, Germany
- Department of Mathematics, Technische Universität München, Munich, Germany
| | - Gerald Burgstaller
- Comprehensive Pneumology Center (CPC)/Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
- G. Burgstaller and H.B. Schiller contributed equally to this article as lead authors and supervised the work
| | - Herbert B Schiller
- Comprehensive Pneumology Center (CPC)/Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
- Institute of Experimental Pneumology, LMU University Hospital, Ludwig-Maximilians University, Munich, Germany
- G. Burgstaller and H.B. Schiller contributed equally to this article as lead authors and supervised the work
| |
Collapse
|
6
|
Hu B, Hu J. Complete elimination of estrogen receptor α by PROTAC estrogen receptor α degrader ERD-148 in breast cancer cells. Breast Cancer Res Treat 2024; 203:383-396. [PMID: 37847455 DOI: 10.1007/s10549-023-07136-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/21/2023] [Indexed: 10/18/2023]
Abstract
PURPOSE Estrogen Receptor α (ERα) is a well-established therapeutic target for Estrogen Receptor (ER)-positive breast cancers. Both Selective Estrogen Receptor Degraders (SERD) and PROTAC ER degraders are synthetic compounds suppressing the ER activity through the degradation of ER. However, the differences between SERD and PROTAC ER degraders are far from clear. METHODS The effect of PROTAC ER degrader ERD-148 and SERD fulvestrant on protein degradation was evaluated by western blot analysis. The cell proliferation was tested by WST-8 assays and the gene expressions were assessed by gene microarray and real-time RT-PCR analysis after the compound treatment. RESULTS ERD-148 is a potent and selective PROTAC ERα degrader. It degrades not only unphosphorylated ERα but also the phosphorylated ERα in the cells. In contrast, the SERD fulvestrant showed much-reduced degradation potency on the phosphorylated ERα. The more complete degradation of ERα by ERD-148 translates into a greater maximum cell growth inhibition. However, ERD-148 and fulvestrant share a similar gene regulation profile except for the variation of regulation potency. Further studies indicate that ERD-148 degrades the ERα in fulvestrant-resistant cells. CONCLUSION PROTAC ER degrader has a different mechanism of action compared to SERD which may be used in treating fulvestrant-resistant cancers.
Collapse
Affiliation(s)
- Biao Hu
- Department of Internal Medicine, University of Michigan, G349B, 520 NCRC, 1600 Huron Parkway, Ann Arbor, MI, 48109, USA.
| | - Jiantao Hu
- Department of Internal Medicine, University of Michigan, G349B, 520 NCRC, 1600 Huron Parkway, Ann Arbor, MI, 48109, USA
| |
Collapse
|
7
|
Ptaschinski C, Zhu D, Fonseca W, Lukacs NW. Stem cell factor inhibition reduces Th2 inflammation and cellular infiltration in a mouse model of eosinophilic esophagitis. Mucosal Immunol 2023; 16:727-739. [PMID: 37557983 PMCID: PMC10680063 DOI: 10.1016/j.mucimm.2023.07.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/11/2023]
Abstract
Eosinophilic esophagitis (EoE) is a T helper (Th)2-mediated inflammatory disorder characterized endoscopically by eosinophilic infiltration leading to fibrosis of the esophagus. Stem cell factor (SCF), a multifunctional cytokine, is upregulated in several allergic diseases, including in patients with EoE. Mast cells and eosinophils express c-kit, the cell surface receptor for SCF, and have been found to play an important role in EoE. Therefore, we investigated whether blocking SCF represents a potential therapeutic approach for EoE. Esophageal inflammation was induced in mice using peanut allergen. In mice with experimental EoE, we found that SCF was upregulated in the esophageal tissue. In EoE mice injected with a polyclonal antibody specific for SCF, we observed a decrease in both mast cells and eosinophils by histological and flow cytometric analysis. Furthermore, Th2 cytokines in the esophagus were decreased in anti-SCF treated mice, as were levels of Th2 cytokines from lung-draining and esophageal lymph nodes. Serum levels of peanut-specific immunoglobulin E were reduced following treatment with anti-SCF. In Kitlf/f-Col1-Cre-ERT mice, which have SCF deleted primarily in myofibroblasts that develop in EoE, we observed similar results as the anti-SCF treated animals for inflammatory cell accumulation, cytokines, and histopathology. These results indicate that therapeutic treatments targeting SCF can reduce allergic inflammation in EoE.
Collapse
Affiliation(s)
- Catherine Ptaschinski
- Department of Pathology, University of Michigan, Ann Arbor, USA; Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, USA.
| | - Diana Zhu
- Department of Pathology, University of Michigan, Ann Arbor, USA
| | - Wendy Fonseca
- Department of Pathology, University of Michigan, Ann Arbor, USA
| | - Nicholas W Lukacs
- Department of Pathology, University of Michigan, Ann Arbor, USA; Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, USA
| |
Collapse
|
8
|
Chen Z, Hu B, Rej RK, Wu D, Acharyya RK, Wang M, Xu T, Lu J, Metwally H, Wang Y, McEachern D, Bai L, Gersch CL, Wang M, Zhang W, Li Q, Wen B, Sun D, Rae JM, Wang S. Discovery of ERD-3111 as a Potent and Orally Efficacious Estrogen Receptor PROTAC Degrader with Strong Antitumor Activity. J Med Chem 2023; 66:12559-12585. [PMID: 37647546 DOI: 10.1021/acs.jmedchem.3c01186] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Estrogen receptor α (ERα) is a prime target for the treatment of ER-positive (ER+) breast cancer. Despite the development of several effective therapies targeting ERα signaling, clinical resistance remains a major challenge. In this study, we report the discovery of a new class of potent and orally bioavailable ERα degraders using the PROTAC technology, with ERD-3111 being the most promising compound. ERD-3111 exhibits potent in vitro degradation activity against ERα and demonstrates high oral bioavailability in mice, rats, and dogs. Oral administration of ERD-3111 effectively reduces the levels of wild-type and mutated ERα proteins in tumor tissues. ERD-3111 achieves tumor regression or complete tumor growth inhibition in the parental MCF-7 xenograft model with wild-type ER and two clinically relevant ESR1 mutated models in mice. ERD-3111 is a promising ERα degrader for further extensive evaluations for the treatment of ER+ breast cancer.
Collapse
Affiliation(s)
- Zhixiang Chen
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Biao Hu
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Rohan Kalyan Rej
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Dimin Wu
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ranjan Kumar Acharyya
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Mingliang Wang
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Tianfeng Xu
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jianfeng Lu
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Hoda Metwally
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yu Wang
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Donna McEachern
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Longchuan Bai
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Christina L Gersch
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Meilin Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Wenjing Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Qiuxia Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Bo Wen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Duxin Sun
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - James M Rae
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, United States
- The Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Shaomeng Wang
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
- The Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
9
|
El-Horany HES, Atef MM, Abdel Ghafar MT, Fouda MH, Nasef NA, Hegab II, Helal DS, Elseady W, Hafez YM, Hagag RY, Seleem MA, Saleh MM, Radwan DA, Abd El-Lateef AE, Abd-Ellatif RN. Empagliflozin Ameliorates Bleomycin-Induced Pulmonary Fibrosis in Rats by Modulating Sesn2/AMPK/Nrf2 Signaling and Targeting Ferroptosis and Autophagy. Int J Mol Sci 2023; 24:ijms24119481. [PMID: 37298433 DOI: 10.3390/ijms24119481] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Pulmonary fibrosis (PF) is a life-threatening disorder that severely disrupts normal lung architecture and function, resulting in severe respiratory failure and death. It has no definite treatment. Empagliflozin (EMPA), a sodium-glucose cotransporter 2 (SGLT2) inhibitor, has protective potential in PF. However, the mechanisms underlying these effects require further elucidation. Therefore, this study aimed to evaluate the ameliorative effect of EMPA against bleomycin (BLM)-induced PF and the potential mechanisms. Twenty-four male Wister rats were randomly divided into four groups: control, BLM treated, EMPA treated, and EMPA+BLM treated. EMPA significantly improved the histopathological injuries illustrated by both hematoxylin and eosin and Masson's trichrome-stained lung tissue sections, as confirmed by electron microscopic examination. It significantly reduced the lung index, hydroxyproline content, and transforming growth factor β1 levels in the BLM rat model. It had an anti-inflammatory effect, as evidenced by a decrease in the inflammatory cytokines' tumor necrosis factor alpha and high mobility group box 1, inflammatory cell infiltration into the bronchoalveolar lavage fluid, and the CD68 immunoreaction. Furthermore, EMPA mitigated oxidative stress, DNA fragmentation, ferroptosis, and endoplasmic reticulum stress, as evidenced by the up-regulation of nuclear factor erythroid 2-related factor expression, heme oxygenase-1 activity, glutathione peroxidase 4 levels, and a decrease in C/EBP homologous protein levels. This protective potential could be explained on the basis of autophagy induction via up-regulating lung sestrin2 expression and the LC3 II immunoreaction observed in this study. Our findings indicated that EMPA protected against BLM-induced PF-associated cellular stress by enhancing autophagy and modulating sestrin2/adenosine monophosphate-activated protein kinase/nuclear factor erythroid 2-related factor 2/heme oxygenase 1 signaling.
Collapse
Affiliation(s)
- Hemat El-Sayed El-Horany
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta 31511, Egypt
- Department of Biochemistry, College of Medicine, Ha'il University, Hail 81411, Saudi Arabia
| | - Marwa Mohamed Atef
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta 31511, Egypt
| | | | - Mohamed H Fouda
- Clinical Pathology Department, Faculty of Medicine, Tanta University, Tanta 31511, Egypt
| | - Nahla Anas Nasef
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta 31511, Egypt
| | - Islam Ibrahim Hegab
- Physiology Department, Faculty of Medicine, Tanta University, Tanta 31511, Egypt
- Department of Bio-Physiology, Ibn Sina National College for Medical Studies, Jeddah 22421, Saudi Arabia
| | - Duaa S Helal
- Pathology Department, Faculty of Medicine, Tanta University, Tanta 31511, Egypt
| | - Walaa Elseady
- Anatomy and Embryology Department, Faculty of Medicine, Tanta University, Tanta 31511, Egypt
| | - Yasser Mostafa Hafez
- Internal Medicine Department, Faculty of Medicine, Tanta University, Tanta 31511, Egypt
| | - Rasha Youssef Hagag
- Internal Medicine Department, Faculty of Medicine, Tanta University, Tanta 31511, Egypt
| | | | - Mai Mahmoud Saleh
- Chest Diseases Department, Faculty of Medicine, Tanta University, Tanta 31511, Egypt
| | - Doaa A Radwan
- Anatomy and Embryology Department, Faculty of Medicine, Tanta University, Tanta 31511, Egypt
| | | | - Rania Nagi Abd-Ellatif
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta 31511, Egypt
| |
Collapse
|
10
|
Lasky JA, Thannickal VJ. NOTCH-ing up Surface Tension in the Fibrotic Lung. Am J Respir Crit Care Med 2023; 207:235-236. [PMID: 36351003 PMCID: PMC9896643 DOI: 10.1164/rccm.202210-1901ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Joseph A Lasky
- School of Medicine Tulane University New Orleans, Louisiana
| | | |
Collapse
|
11
|
Pulmonary Fibrosis as a Result of Acute Lung Inflammation: Molecular Mechanisms, Relevant In Vivo Models, Prognostic and Therapeutic Approaches. Int J Mol Sci 2022; 23:ijms232314959. [PMID: 36499287 PMCID: PMC9735580 DOI: 10.3390/ijms232314959] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
Pulmonary fibrosis is a chronic progressive lung disease that steadily leads to lung architecture disruption and respiratory failure. The development of pulmonary fibrosis is mostly the result of previous acute lung inflammation, caused by a wide variety of etiological factors, not resolved over time and causing the deposition of fibrotic tissue in the lungs. Despite a long history of study and good coverage of the problem in the scientific literature, the effective therapeutic approaches for pulmonary fibrosis treatment are currently lacking. Thus, the study of the molecular mechanisms underlying the transition from acute lung inflammation to pulmonary fibrosis, and the search for new molecular markers and promising therapeutic targets to prevent pulmonary fibrosis development, remain highly relevant tasks. This review focuses on the etiology, pathogenesis, morphological characteristics and outcomes of acute lung inflammation as a precursor of pulmonary fibrosis; the pathomorphological changes in the lungs during fibrosis development; the known molecular mechanisms and key players of the signaling pathways mediating acute lung inflammation and pulmonary fibrosis, as well as the characteristics of the most common in vivo models of these processes. Moreover, the prognostic markers of acute lung injury severity and pulmonary fibrosis development as well as approved and potential therapeutic approaches suppressing the transition from acute lung inflammation to fibrosis are discussed.
Collapse
|
12
|
Abstract
The mammalian respiratory system or lung is a tree-like branching structure, and the main site of gas exchange with the external environment. Structurally, the lung is broadly classified into the proximal (or conducting) airways and the distal alveolar region, where the gas exchange occurs. In parallel with the respiratory tree, the pulmonary vasculature starts with large pulmonary arteries that subdivide rapidly ending in capillaries adjacent to alveolar structures to enable gas exchange. The NOTCH signalling pathway plays an important role in lung development, differentiation and regeneration post-injury. Signalling via the NOTCH pathway is mediated through activation of four NOTCH receptors (NOTCH1-4), with each receptor capable of regulating unique biological processes. Dysregulation of the NOTCH pathway has been associated with development and pathophysiology of multiple adult acute and chronic lung diseases. This includes accumulating evidence that alteration of NOTCH3 signalling plays an important role in the development and pathogenesis of chronic obstructive pulmonary disease, lung cancer, asthma, idiopathic pulmonary fibrosis and pulmonary arterial hypertension. Herein, we provide a comprehensive summary of the role of NOTCH3 signalling in regulating repair/regeneration of the adult lung, its association with development of lung disease and potential therapeutic strategies to target its signalling activity.
Collapse
|
13
|
Li R, Jia Y, Kong X, Nie Y, Deng Y, Liu Y. Novel drug delivery systems and disease models for pulmonary fibrosis. J Control Release 2022; 348:95-114. [PMID: 35636615 DOI: 10.1016/j.jconrel.2022.05.039] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/17/2022] [Accepted: 05/21/2022] [Indexed: 12/19/2022]
Abstract
Pulmonary fibrosis (PF) is a serious and progressive lung disease which is possibly life-threatening. It causes lung scarring and affects lung functions including epithelial cell injury, massive recruitment of immune cells and abnormal accumulation of extracellular matrix (ECM). There is currently no cure for PF. Treatment for PF is aimed at slowing the course of the disease and relieving symptoms. Pirfenidone (PFD) and nintedanib (NDNB) are currently the only two FDA-approved oral medicines to slow down the progress of idiopathic pulmonary fibrosis, a specific type of PF. Novel drug delivery systems and therapies have been developed to improve the prognosis of the disease, as well as reduce or minimize the toxicities during drug treatment. The drug delivery routes for these therapies are various including oral, intravenous, nasal, inhalant, intratracheal and transdermal; although this is dependent on specific treatment mechanisms. In addition, researchers have also expanded current animal models that could not fully restore the clinicopathology, and developed a series of in vitro models such as organoids to study the pathogenesis and treatment of PF. This review describes recent advances on pathogenesis exploration, classifies and specifies the progress of drug delivery systems by their delivery routes, as well as an overview on the in vitro and in vivo models for PF research.
Collapse
Affiliation(s)
- Rui Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Yizhen Jia
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Xiaohan Kong
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Yichu Nie
- Clinical Research Institute, The First People's Hospital of Foshan, Foshan 528000, China
| | - Yang Deng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Yang Liu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China; School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
14
|
Zheng Q, Lei Y, Hui S, Tong M, Liang L. HDAC3 promotes pulmonary fibrosis by activating NOTCH1 and STAT1 signaling and up-regulating inflammasome components AIM2 and ASC. Cytokine 2022; 153:155842. [DOI: 10.1016/j.cyto.2022.155842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 12/14/2022]
|
15
|
The histone methyltransferase DOT1L is a new epigenetic regulator of pulmonary fibrosis. Cell Death Dis 2022; 13:60. [PMID: 35039472 PMCID: PMC8763868 DOI: 10.1038/s41419-021-04365-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 09/30/2021] [Accepted: 10/11/2021] [Indexed: 12/17/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive interstitial lung disease with increasing occurrence, high death rates, and unfavorable treatment regimens. The pathogenesis underlying IPF is complex and the epigenetic contributions to IPF are largely unknown. Recent studies have shown that DOT1L (Disruptor of telomeric silencing-1 like), a histone H3K79 methyltransferase, contributes to fibrosis response, but its role in IPF remains unclear. DOT1L, H3K79me3, and the profibrotic proteins levels were upregulated in the pulmonary fibrosis models both in vivo and in vitro. Lentivirus-mediated DOT1L knockdown or DOT1L-specific inhibitor EPZ5676 alleviated the pathogenesis of bleomycin-induced mouse pulmonary fibrosis. Furthermore, heterozygous DOT1L-deficient mice (Dot1l+/−) showed less sensitive to pulmonary fibrosis, as shown by decreased lung fibrosis phenotypes in vivo. Mechanically, DOT1L regulated TGF-β1-induced fibroblasts fibrosis by increasing enrichments of H3K79me3 on the promoter of Jag1 gene (encoding the Notch ligand Jagged1), enhancing the expression of Jagged1, which in turn stimulated exuberant Notch signaling and actuated the fibrosis response. In conclusion, our study confirmed DOT1L to be an epigenetic modifier in the pathogenesis of lung fibrosis, revealed a counterbalancing mechanism governing Jag1 transcription by modulating H3K79 trimethylation at the Jag1 promoter, activating the Notch signaling, and affecting the expression of profibrotic proteins to accelerate the lung fibrosis.
Collapse
|
16
|
Pacurari M, Mitra A, Turner T. Idiopathic Pulmonary Comorbidities and Mechanisms. Int J Inflam 2021; 2021:3963659. [PMID: 34691383 PMCID: PMC8528608 DOI: 10.1155/2021/3963659] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 09/24/2021] [Accepted: 10/05/2021] [Indexed: 11/20/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a disease with an unknown etiology mainly characterized by a progressive decline of lung function due to the scarring of the tissue deep in the lungs. The overall survival after diagnosis remains low between 3 and 5 years. IPF is a heterogeneous disease and much progress has been made in the past decade in understanding the disease mechanisms that contributed to the development of two new drugs, pirfenidone and nintedanib, which improved the therapeutic management of the disease. The understanding of the cofactors and comorbidities of IPF also contributed to improved management of the disease outcome. In the present review, we evaluate scientific evidence which indicates IPF as a risk factor for other diseases based on the complexity of molecular and cellular mechanisms involved in the disease development and of comorbidities. We conclude from the existing literature that while much progress has been made in understating the mechanisms involved in IPF development, further studies are still necessary to fully understand IPF pathogenesis which will contribute to the identification of novel therapeutic targets for IPF management as well as other diseases for which IPF is a major risk factor.
Collapse
Affiliation(s)
- Maricica Pacurari
- Department of Biology, College of Science, Engineering, and Technology, Jackson State University, Jackson, MS 39217, USA
| | - Amal Mitra
- Department of Epidemiology and Biostatistics, School of Public Health, Jackson State University, Jackson, MS 39217, USA
| | - Timothy Turner
- Department of Biology, College of Science, Engineering, and Technology, Jackson State University, Jackson, MS 39217, USA
| |
Collapse
|
17
|
Gajjala PR, Madala SK. Notch3: A New Culprit in Fibrotic Lung Disease. Am J Respir Cell Mol Biol 2021; 64:403-404. [PMID: 33591242 PMCID: PMC8008798 DOI: 10.1165/rcmb.2021-0024ed] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- Prathibha R Gajjala
- Department of Pediatrics University of Cincinnati Cincinnati, Ohio and.,Division of Pulmonary Medicine Cincinnati Children's Hospital Medical Center Cincinnati, Ohio
| | - Satish K Madala
- Department of Pediatrics University of Cincinnati Cincinnati, Ohio and.,Division of Pulmonary Medicine Cincinnati Children's Hospital Medical Center Cincinnati, Ohio
| |
Collapse
|
18
|
Vera L, Garcia-Olloqui P, Petri E, Viñado AC, Valera PS, Blasco-Iturri Z, Calvo IA, Cenzano I, Ruppert C, Zulueta JJ, Prosper F, Saez B, Pardo-Saganta A. Notch3 Deficiency Attenuates Pulmonary Fibrosis and Impedes Lung-Function Decline. Am J Respir Cell Mol Biol 2021; 64:465-476. [PMID: 33493092 DOI: 10.1165/rcmb.2020-0516oc] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/30/2020] [Indexed: 01/05/2023] Open
Abstract
Fibroblast activation includes differentiation to myofibroblasts and is a key feature of organ fibrosis. The Notch pathway has been involved in myofibroblast differentiation in several tissues, including the lung. Here, we identify a subset of collagen-expressing cells in the lung that exhibit Notch3 activity at homeostasis. After injury, this activation increases, being found in αSMA-expressing myofibroblasts in the mouse and human fibrotic lung. Although previous studies suggest a contribution of Notch3 in stromal activation, in vivo evidence of the role of Notch3 in lung fibrosis remains unknown. In this study, we examine the effects of Notch3 deletion in pulmonary fibrosis and demonstrate that Notch3-deficient lungs are protected from lung injury with significantly reduced collagen deposition after bleomycin administration. The induction of profibrotic genes is reduced in bleomycin-treated Notch3-knockout lungs that consistently present fewer αSMA-positive myofibroblasts. As a result, the volume of healthy lung tissue is higher and lung function is improved in the absence of Notch3. Using in vitro cultures of lung primary fibroblasts, we confirmed that Notch3 participates in their survival and differentiation. Thus, Notch3 deficiency mitigates the development of lung fibrosis because of its role in mediating fibroblast activation. Our findings reveal a previously unidentified mechanism underlying lung fibrogenesis and provide a potential novel therapeutic approach to target pulmonary fibrosis.
Collapse
Affiliation(s)
| | | | - Eva Petri
- Department of Regenerative Medicine and
| | - Ana Cristina Viñado
- Department of Hematology-Oncology, Center for Applied Medical Research, Universidad de Navarra, Pamplona, Spain
| | | | - Zuriñe Blasco-Iturri
- Molecular and Functional Biomarkers Lab, Center for Cooperative Research in Biomaterials (CIC BiomaGUNE), San Sebastián, Spain
| | - Isabel A Calvo
- Department of Hematology-Oncology, Center for Applied Medical Research, Universidad de Navarra, Pamplona, Spain
| | - Itziar Cenzano
- Department of Hematology-Oncology, Center for Applied Medical Research, Universidad de Navarra, Pamplona, Spain
| | - Clemens Ruppert
- Biobank of the Universities of Giessen and Marburg Lung Center and the European Idiopathic Pulmonary Fibrosis Registry, German Center for Lung Research, Giessen, Germany; and
| | - Javier J Zulueta
- Pulmonary Department, Clinica Universidad de Navarra, Pamplona, Spain
| | - Felipe Prosper
- Department of Regenerative Medicine and
- Department of Hematology-Oncology, Center for Applied Medical Research, Universidad de Navarra, Pamplona, Spain
| | - Borja Saez
- Department of Hematology-Oncology, Center for Applied Medical Research, Universidad de Navarra, Pamplona, Spain
| | | |
Collapse
|
19
|
Skurikhin E, Nebolsin V, Widera D, Ermakova N, Pershina O, Pakhomova A, Krupin V, Pan E, Zhukova M, Novikov F, Sandrikina L, Morozov S, Kubatiev A, Dygai A. Antifibrotic and Regenerative Effects of Treamid in Pulmonary Fibrosis. Int J Mol Sci 2020; 21:ijms21218380. [PMID: 33171668 PMCID: PMC7664690 DOI: 10.3390/ijms21218380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/26/2020] [Accepted: 11/06/2020] [Indexed: 12/16/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive disease characterized by interstitial fibrosis and progressive respiratory failure. Pirfenidone and nintedanib slow down but do not stop the progression of IPF. Thus, new compounds with high antifibrotic activity and simultaneously regenerative activity are an unmet clinical need. Recently, we showed that Treamid can help restoring the pancreas and testicular tissue in mice with metabolic disorders. We hypothesized that Treamid may be effective in antifibrotic therapy and regeneration of damaged lung tissue in pulmonary fibrosis. In this study, experiments were performed on male C57BL/6 mice with bleomycin-induced pulmonary fibrosis. We applied histological and immunohistochemical methods, ELISA, and assessed the expression of markers of endothelial and epithelial cells in primary cultures of CD31+ and CD326+ lung cells. Finally, we evaluated esterase activity and apoptosis of lung cells in vitro. Our data indicate that Treamid exhibits antifibrotic activity in mice with pulmonary fibrosis and has a positive effect on capillaries of the lungs. Treamid also increases the number of endothelial progenitor cells in the lungs of animals with pulmonary fibrosis. Lastly, Treamid increases esterase activity and decreases apoptosis of CD31+ lung cells in vitro. Based on these findings, we suggest that Treamid may represent a promising compound for the development of new antifibrotic agents, which are capable of stimulating regeneration of lung endothelium in IPF patients.
Collapse
Affiliation(s)
- Evgenii Skurikhin
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Lenin, 3, 634028 Tomsk, Russia; (N.E.); (O.P.); (A.P.); (V.K.); (E.P.); (L.S.); (A.D.)
- Correspondence: ; Tel.: +7-3822-418-375
| | | | - Darius Widera
- Stem Cell Biology and Regenerative Medicine Group, School of Pharmacy, University of Reading, Whiteknights campus, Reading RG6 6AP, UK;
| | - Natalia Ermakova
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Lenin, 3, 634028 Tomsk, Russia; (N.E.); (O.P.); (A.P.); (V.K.); (E.P.); (L.S.); (A.D.)
| | - Olga Pershina
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Lenin, 3, 634028 Tomsk, Russia; (N.E.); (O.P.); (A.P.); (V.K.); (E.P.); (L.S.); (A.D.)
| | - Angelina Pakhomova
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Lenin, 3, 634028 Tomsk, Russia; (N.E.); (O.P.); (A.P.); (V.K.); (E.P.); (L.S.); (A.D.)
| | - Vyacheslav Krupin
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Lenin, 3, 634028 Tomsk, Russia; (N.E.); (O.P.); (A.P.); (V.K.); (E.P.); (L.S.); (A.D.)
| | - Edgar Pan
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Lenin, 3, 634028 Tomsk, Russia; (N.E.); (O.P.); (A.P.); (V.K.); (E.P.); (L.S.); (A.D.)
| | - Mariia Zhukova
- Siberian State Medical University, 634028 Tomsk, Russia;
| | - Fedor Novikov
- “PHARMENTERPRISES” Ltd., 143026 Moscow, Russia; (V.N.); (F.N.)
| | - Lubov Sandrikina
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Lenin, 3, 634028 Tomsk, Russia; (N.E.); (O.P.); (A.P.); (V.K.); (E.P.); (L.S.); (A.D.)
| | - Sergey Morozov
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (S.M.); (A.K.)
| | - Aslan Kubatiev
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (S.M.); (A.K.)
| | - Alexander Dygai
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Lenin, 3, 634028 Tomsk, Russia; (N.E.); (O.P.); (A.P.); (V.K.); (E.P.); (L.S.); (A.D.)
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (S.M.); (A.K.)
| |
Collapse
|
20
|
Zhou L, Gao R, Hong H, Li X, Yang J, Shen W, Wang Z, Yang J. Emodin inhibiting neutrophil elastase-induced epithelial-mesenchymal transition through Notch1 signalling in alveolar epithelial cells. J Cell Mol Med 2020; 24:11998-12007. [PMID: 32935466 PMCID: PMC7578861 DOI: 10.1111/jcmm.15827] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 08/10/2020] [Accepted: 08/14/2020] [Indexed: 12/21/2022] Open
Abstract
The transition of alveolar type II epithelial cells into fibroblasts has been reported to cause and/or aggravate pulmonary fibrosis (PF), which is characterized by fibroblast proliferation, an enhanced production and accumulation of ECM (extracellular matrix), alveolar wall damage and functional capillary unit loss. Traditional Chinese medicine Emodin has been reported to inhibit TGF‐β‐induced epithelial‐mesenchymal transition (EMT) in alveolar epithelial cells through Notch signalling. In the present study, neutrophil elastase (NE, also known as ELA2) treatment promoted EMT, Notch1 cleavage (NICD/Notch1 ratio increase) and NICD nuclear translocation in RLE‐6TN cells and A549 cells. The promotive roles of NE treatment in these events were significantly reversed by Notch1 knockdown. Traditional Chinese medicine Emodin treatment remarkably inhibited the enzyme activity of NE, suppressed EMT, Notch1 cleavage and NICD nuclear translocation within RLE‐6TN and A549 cells, while NE treatment significantly reversed the effects of Emodin. Moreover, in RLE‐6TN, the effects of NE on EMT, Notch1 cleavage and NICD nuclear translocation were remarkably attenuated by Emodin treatment and more attenuated by the combination of Emodin and neutrophil elastase inhibitor Sivelestat or notch signal pathway inhibitor DAPT. In conclusion, we revealed the involvement of NE‐induced Notch1 cleavage in the functions of Emodin suppressing NE‐caused EMT in RLE‐6TN cells and A549 cells. This novel mechanism of Emodin inhibiting EMT might extend the application of Emodin in PF treatment.
Collapse
Affiliation(s)
- Linshui Zhou
- Department of Respiration, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Rundi Gao
- Department of Respiration, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Huihua Hong
- Department of Respiration, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaojuan Li
- Department of Pulmonary Function, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Jia Yang
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Wei Shen
- Department of Traditional Chinese medicine preparation, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhen Wang
- Department of Respiration, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Junchao Yang
- Department of Respiration, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
21
|
Down-regulation of lncRNA MALAT1 alleviates vascular lesion and vascular remodeling of rats with hypertension. Aging (Albany NY) 2020; 11:5192-5205. [PMID: 31343412 PMCID: PMC6682528 DOI: 10.18632/aging.102113] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/16/2019] [Indexed: 12/28/2022]
Abstract
Objective: Recently, the effect of long non-coding RNAs (lncRNAs) in hypertension (HTN) has been identified. This study aims to explore the expression of lncRNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) in HTN and its role in vascular lesion and remodeling of HTN rats. Results: LncRNA MALAT1 expression was up-regulated in HTN patients, and lncRNA MALAT1 could be an effective index of HTN diagnosis. Down-regulated MALAT1 and inhibited Notch-1 could reduce relative factor expression, including inflammation-related factors, endothelial function-related factors and oxidative stress-related factors, and inhibit apoptosis of aortic endothelial cells of HTN rats. Methods: LncRNA MALAT1 expression in HTN patients and healthy controls was detected by reverse transcription quantitative polymerase chain reaction (RT-qPCR). Angiotensin II (Ang II)-induced HTN rat models were injected with MALAT1-siRNA, empty lentivirus vector, Notch pathway inhibitor (DAPT) and dimethyl sulphoxide (DMSO) via caudal vein. After three-week treatment, changes of blood pressure, inflammatory factor levels, endothelial function-related factors, oxidative stress indices and apoptosis of vascular endothelial cells were determined by a series of assays. Conclusion: This study revealed that down-regulated lncRNA MALAT1 could alleviate the vascular lesion and remodeling of HTN rats, the mechanism may be related to the inhibited activation of Notch signaling pathway.
Collapse
|
22
|
Flavonoids in Resina Draconis protect against pulmonary fibrosis via the TGF-β1/NOTCH1 pathway. Mol Cell Toxicol 2020. [DOI: 10.1007/s13273-019-00070-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
23
|
Nakashima T, Liu T, Hu B, Wu Z, Ullenbruch M, Omori K, Ding L, Hattori N, Phan SH. Role of B7H3/IL-33 Signaling in Pulmonary Fibrosis-induced Profibrogenic Alterations in Bone Marrow. Am J Respir Crit Care Med 2019; 200:1032-1044. [PMID: 31106564 PMCID: PMC6794107 DOI: 10.1164/rccm.201808-1560oc] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 05/14/2019] [Indexed: 01/12/2023] Open
Abstract
Rationale: The impact of lung insult on the bone marrow (BM) and subsequent disease is unknown.Objectives: To study alterations in the BM in response to lung injury/fibrosis and examine their impact on subsequent lung insult.Methods: BM cells from control or bleomycin-treated donor mice were transplanted into naive mice, which were subsequently evaluated for bleomycin-induced pulmonary fibrosis. In addition, the effect of prior bleomycin treatment on subsequent fibrosis was examined in wild-type and B7H3-knockout mice. Samples from patients with idiopathic pulmonary fibrosis were analyzed for potential clinical relevance of the findings.Measurements and Main Results: Recipient mice transplanted with BM from bleomycin-pretreated donors showed significant exacerbation of subsequent fibrosis with increased B7H3+ cell numbers and a T-helper cell type 2-skewed phenotype. Pretreatment with a minimally fibrogenic/nonfibrogenic dose of bleomycin also caused exacerbation, but not in B7H3-deficient mice. Exacerbation was not observed if the mice received naive BM cell transplant after the initial bleomycin pretreatment. Soluble B7H3 stimulated BM Ly6Chi monocytic cell expansion in vitro and caused similar expansion in the lung in vivo. Notably, soluble B7H3 was elevated in plasma of patients with idiopathic pulmonary fibrosis and in BAL fluid in those with acute exacerbation. Finally, ST2 deficiency diminished the bleomycin-induced B7H3 and IL-13 upregulation, suggesting a role for type 2 innate lymphoid cells.Conclusions: Pulmonary fibrosis caused significant alterations in BM with expansion and activation of monocytic cells, which enhanced fibrosis when transplanted to naive recipients with potential mediation by a novel role for B7H3 in the pathophysiology of pulmonary fibrosis in both mice and humans.
Collapse
Affiliation(s)
- Taku Nakashima
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan; and
| | - Tianju Liu
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Biao Hu
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Zhe Wu
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Matthew Ullenbruch
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Keitaro Omori
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan; and
| | - Lin Ding
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Noboru Hattori
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan; and
| | - Sem H. Phan
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
24
|
Kobayashi H. Somatic driver mutations in endometriosis as possible regulators of fibrogenesis (Review). ACTA ACUST UNITED AC 2019. [DOI: 10.3892/wasj.2019.12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hiroshi Kobayashi
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Nara 634-8522, Japan
| |
Collapse
|
25
|
Notch1 promotes the pericyte-myofibroblast transition in idiopathic pulmonary fibrosis through the PDGFR/ROCK1 signal pathway. Exp Mol Med 2019; 51:1-11. [PMID: 30902967 PMCID: PMC6430797 DOI: 10.1038/s12276-019-0228-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 09/02/2018] [Accepted: 09/19/2018] [Indexed: 11/17/2022] Open
Abstract
The goals of this study were to investigate the role of the Notch1/PDGFRβ/ROCK1 signaling pathway in the pathogenesis of pulmonary fibrosis and to explore the possibility of treating fibrosis by targeting Notch1. Lung tissues from patients with pulmonary fibrosis were examined for the expression of Notch1/PDGFRβ/ROCK1 using RT-qPCR, western blotting, and immunostaining. Cultured mouse lung pericytes were transfected with Notch1-overexpressed vectors or shRNA targeting PDGFRβ/ROCK1 to examine cell behaviors, including proliferation, cell cycle arrest, and differentiation toward myofibroblasts. Finally, a mouse pulmonary fibrosis model was prepared, and a Notch1 inhibitor was administered to observe tissue morphology and pericyte cell behaviors. Human pulmonary fibrotic tissues presented with overexpression of Notch1, PDGFRβ, and ROCK1, in addition to a prominent transition of pericytes into myofibroblasts. In cultured mouse lung pericytes, overexpression of Notch1 led to the accelerated proliferation and differentiation of cells, and it also increased the expression of the PDGFRβ and ROCK1 proteins. The knockdown of PDGFRβ/ROCK1 in pericytes remarkably suppressed pericyte proliferation and differentiation. As further substantiation, the administration of a Notch1 inhibitor in a mouse model of lung fibrosis inhibited the PDGFRβ/ROCK1 pathway, suppressed pericyte proliferation and differentiation, and alleviated the severity of fibrosis. Our results showed that the Notch1 signaling pathway was aberrantly activated in pulmonary fibrosis, and this pathway may facilitate disease progression via mediating pericyte proliferation and differentiation. The inhibition of the Notch1 pathway may provide one promising treatment strategy for pulmonary fibrosis. A cell membrane protein called Notch1, which binds to signaling molecules outside cells and then alters the activity of genes inside the cells, might be a promising target for drugs to treat the lung damage of pulmonary fibrosis. This condition, generally of unknown cause, involves thickening, stiffening and scarring of lung tissue. It can lead to serious breathing difficulties and eventually death, especially in people aged over 70. Hui Wang and colleagues at Central South University, Changsha, investigated the significance of the Notch1 signaling pathway by examining lung tissue from patients and manipulating the activity of the pathway in mouse cells. They conclude that Notch1 signaling is activated in pulmonary fibrosis. Drugs that could inhibit the pathway, for example by binding to the Notch1 protein, might open a promising new avenue toward treatment.
Collapse
|
26
|
Guo S. Cancer driver mutations in endometriosis: Variations on the major theme of fibrogenesis. Reprod Med Biol 2018; 17:369-397. [PMID: 30377392 PMCID: PMC6194252 DOI: 10.1002/rmb2.12221] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/03/2018] [Accepted: 06/24/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND One recent study reports cancer driver mutations in deep endometriosis, but its biological/clinical significance remains unclear. Since the natural history of endometriosis is essentially gradual progression toward fibrosis, it is thus hypothesized that the six driver genes reported to be mutated in endometriosis (the RP set) may play important roles in fibrogenesis but not necessarily malignant transformation. METHODS Extensive PubMed search to see whether RP and another set of driver genes not yet reported (NR) to be mutated in endometriosis have any roles in fibrogenesis. All studies reporting on the role of fibrogenesis of the genes in both RP and NR sets were retrieved and evaluated in this review. RESULTS All six RP genes were involved in various aspects of fibrogenesis as compared with only three NR genes. These nine genes can be anchored in networks linking with their upstream and downstream genes that are known to be aberrantly expressed in endometriosis, piecing together seemingly unrelated findings. CONCLUSIONS Given that somatic driver mutations can and do occur frequently in physiologically normal tissues, it is argued that these mutations in endometriosis are not necessarily synonymous with malignancy or premalignancy, but the result of enormous pressure for fibrogenesis.
Collapse
Affiliation(s)
- Sun‐Wei Guo
- Shanghai Obstetrics and Gynecology HospitalFudan UniversityShanghaiChina
- Shanghai Key Laboratory of Female Reproductive Endocrine‐Related DiseasesShanghaiChina
| |
Collapse
|
27
|
Chanda D, Otoupalova E, Smith SR, Volckaert T, De Langhe SP, Thannickal VJ. Developmental pathways in the pathogenesis of lung fibrosis. Mol Aspects Med 2018; 65:56-69. [PMID: 30130563 DOI: 10.1016/j.mam.2018.08.004] [Citation(s) in RCA: 324] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 08/17/2018] [Indexed: 12/20/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and terminal lung disease with no known cure. IPF is a disease of aging, with median age of diagnosis over 65 years. Median survival is between 3 and 5 years after diagnosis. IPF is characterized primarily by excessive deposition of extracellular matrix (ECM) proteins by activated lung fibroblasts and myofibroblasts, resulting in reduced gas exchange and impaired pulmonary function. Growing evidence supports the concept of a pro-fibrotic environment orchestrated by underlying factors such as genetic predisposition, chronic injury and aging, oxidative stress, and impaired regenerative responses may account for disease development and persistence. Currently, two FDA approved drugs have limited efficacy in the treatment of IPF. Many of the genes and gene networks associated with lung development are induced or activated in IPF. In this review, we analyze current knowledge in the field, gained from both basic and clinical research, to provide new insights into the disease process, and potential approaches to treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Diptiman Chanda
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| | - Eva Otoupalova
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Samuel R Smith
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Thomas Volckaert
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Stijn P De Langhe
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Victor J Thannickal
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
28
|
Liu Y, Huang G, Mo B, Wang C. Artesunate ameliorates lung fibrosis via inhibiting the Notch signaling pathway. Exp Ther Med 2017; 14:561-566. [PMID: 28672967 PMCID: PMC5488411 DOI: 10.3892/etm.2017.4573] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 03/31/2017] [Indexed: 01/09/2023] Open
Abstract
The present study aimed to determine the underlying molecular mechanism of the antifibrotic effect of artesunate in pulmonary fibrosis (PF). Primary lung fibroblasts were isolated from the lung tissues of rats, and treated with artesunate (8 µg/ml) and transforming growth factor (TGF)-β1 (5 ng/ml). For in vivo experiments, the rats were administered bleomycin intratracheally, followed by daily intraperitoneal artesunate injections for 27 days. Western blotting, and immunohistochemical and immunofluorescent staining were used to assess the expression of key components of the Notch signaling pathway, including α-smooth muscle actin (α-SMA) and type IV collagen. Artesunate (8 µg/ml) was identified to inhibit TGF-β1-induced α-SMA and collagen protein expression, and repress the Notch signaling pathway, in primary lung fibroblasts. Downregulation of α-SMA and collagen by artesunate was associated with inhibition of the Notch signaling pathway. The daily intraperitoneal injection of artesunate (1 mg/kg) in rats was determined to inhibit bleomycin-induced overexpression of α-SMA and type IV collagen proteins, and inhibit the Notch signaling pathway, in lung tissues. In conclusion, the results of the current study indicate that artesunate inhibits the TGF-β1-induced differentiation of rat primary lung fibroblasts into myofibroblasts and ameliorates bleomycin-induced PF. In addition, the results of the present study suggest that the underlying molecular mechanism for these effects of artesunate is repression of the Notch signaling pathway.
Collapse
Affiliation(s)
- Yujuan Liu
- Division of Respiratory Diseases, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, P.R. China
| | - Guojin Huang
- Division of Respiratory Diseases, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, P.R. China
| | - Biwen Mo
- Division of Respiratory Diseases, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, P.R. China
| | - Changming Wang
- Division of Respiratory Diseases, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, P.R. China
| |
Collapse
|
29
|
Guzy RD, Li L, Smith C, Dorry SJ, Koo HY, Chen L, Ornitz DM. Pulmonary fibrosis requires cell-autonomous mesenchymal fibroblast growth factor (FGF) signaling. J Biol Chem 2017; 292:10364-10378. [PMID: 28487375 DOI: 10.1074/jbc.m117.791764] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Indexed: 12/11/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is characterized by progressive pulmonary scarring, decline in lung function, and often results in death within 3-5 five years after diagnosis. Fibroblast growth factor (FGF) signaling has been implicated in the pathogenesis of IPF; however, the mechanism through which FGF signaling contributes to pulmonary fibrosis remains unclear. We hypothesized that FGF receptor (FGFR) signaling in fibroblasts is required for the fibrotic response to bleomycin. To test this, mice with mesenchyme-specific tamoxifen-inducible inactivation of FGF receptors 1, 2, and 3 (Col1α2-CreER; TCKO mice) were lineage labeled and administered intratracheal bleomycin. Lungs were collected for histologic analysis, whole lung RNA and protein, and dissociated for flow cytometry and FACS. Bleomycin-treated Col1α2-CreER; TCKO mice have decreased pulmonary fibrosis, collagen production, and fewer α-smooth muscle actin-positive (αSMA+) myofibroblasts compared with controls. Freshly isolated Col1α2-CreER; TCKO mesenchymal cells from bleomycin-treated mice have decreased collagen expression compared with wild type mesenchymal cells. Furthermore, lineage labeled FGFR-deficient fibroblasts have decreased enrichment in fibrotic areas and decreased proliferation. These data identify a cell autonomous requirement for mesenchymal FGFR signaling in the development of pulmonary fibrosis, and for the enrichment of the Col1α2-CreER-positive (Col1α2+) mesenchymal lineage in fibrotic tissue following bleomycin exposure. We conclude that mesenchymal FGF signaling is required for the development of pulmonary fibrosis, and that therapeutic strategies aimed directly at mesenchymal FGF signaling could be beneficial in the treatment of IPF.
Collapse
Affiliation(s)
- Robert D Guzy
- From the Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, Illinois 60637, .,the Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri 63110, and
| | - Ling Li
- the Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri 63110, and
| | - Craig Smith
- the Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri 63110, and
| | - Samuel J Dorry
- From the Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, Illinois 60637
| | - Hyun Young Koo
- From the Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, Illinois 60637
| | - Lin Chen
- the Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns, and Combined Injury, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - David M Ornitz
- the Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri 63110, and
| |
Collapse
|
30
|
|
31
|
Swonger JM, Liu JS, Ivey MJ, Tallquist MD. Genetic tools for identifying and manipulating fibroblasts in the mouse. Differentiation 2016; 92:66-83. [PMID: 27342817 PMCID: PMC5079827 DOI: 10.1016/j.diff.2016.05.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 05/27/2016] [Accepted: 05/31/2016] [Indexed: 01/18/2023]
Abstract
The use of mouse genetic tools to track and manipulate fibroblasts has provided invaluable in vivo information regarding the activities of these cells. Recently, many new mouse strains have been described for the specific purpose of studying fibroblast behavior. Colorimetric reporter mice and lines expressing Cre are available for the study of fibroblasts in the organs prone to fibrosis, including heart, kidney, liver, lung, and skeletal muscle. In this review we summarize the current state of the models that have been used to define tissue resident fibroblast populations. While these complex genetic reagents provide unique insights into the process of fibrosis, they also require a thorough understanding of the caveats and limitations. Here, we discuss the specificity and efficiency of the available genetic models and briefly describe how they have been used to document the mechanisms of fibrosis.
Collapse
Affiliation(s)
- Jessica M Swonger
- Departments of Medicine and Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| | - Jocelyn S Liu
- Departments of Medicine and Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| | - Malina J Ivey
- Departments of Medicine and Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| | - Michelle D Tallquist
- Departments of Medicine and Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA.
| |
Collapse
|
32
|
Kida Y, Zullo JA, Goligorsky MS. Endothelial sirtuin 1 inactivation enhances capillary rarefaction and fibrosis following kidney injury through Notch activation. Biochem Biophys Res Commun 2016; 478:1074-9. [PMID: 27524235 DOI: 10.1016/j.bbrc.2016.08.066] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 08/10/2016] [Indexed: 11/29/2022]
Abstract
Peritubular capillary (PTC) rarefaction along with tissue fibrosis is a hallmark of chronic kidney disease (CKD). However, molecular mechanisms of PTC loss have been poorly understood. Previous studies have demonstrated that functional loss of endothelial sirtuin 1 (SIRT1) impairs angiogenesis during development and tissue damage. Here, we found that endothelial SIRT1 dysfunction causes activation of endothelial Notch1 signaling, which leads to PTC rarefaction and fibrosis following kidney injury. In mice lacking functional SIRT1 in the endothelium (Sirt1 mutant), kidney injury enhanced apoptosis and senescence of PTC endothelial cells with impaired endothelial proliferation and expanded myofibroblast population and collagen deposition. Compared to wild-type kidneys, Sirt1 mutant kidneys up-regulated expression of Delta-like 4 (DLL4, a potent Notch1 ligand), Hey1 and Hes1 (Notch target genes), and Notch intracellular domain-1 (NICD1, active form of Notch1) in microvascular endothelial cells (MVECs) post-injury. Sirt1 mutant primary kidney MVECs reduced motility and vascular assembly and enhanced senescence compared to wild-type kidney MVECs. This difference in the phenotype was negated with Notch inhibition. Concurrent stimulation of DLL4 and transforming growth factor (TGF)-β1 increased trans-differentiation of primary kidney pericytes into myofibroblast more than TGF-β1 treatment alone. Collectively, these results indicate that endothelial SIRT1 counteracts PTC rarefaction by repression of Notch1 signaling and antagonizes fibrosis via suppression of endothelial DLL4 expression.
Collapse
Affiliation(s)
- Yujiro Kida
- Renal Research Institute, Department of Medicine, New York Medical College, Valhalla, NY, USA.
| | - Joseph A Zullo
- Renal Research Institute, Department of Medicine, New York Medical College, Valhalla, NY, USA; Renal Research Institute, Department of Physiology, New York Medical College, Valhalla, NY, USA
| | - Michael S Goligorsky
- Renal Research Institute, Department of Medicine, New York Medical College, Valhalla, NY, USA; Renal Research Institute, Department of Pharmacology, New York Medical College, Valhalla, NY, USA; Renal Research Institute, Department of Physiology, New York Medical College, Valhalla, NY, USA
| |
Collapse
|
33
|
Hu B, Phan SH. Notch in fibrosis and as a target of anti-fibrotic therapy. Pharmacol Res 2016; 108:57-64. [PMID: 27107790 DOI: 10.1016/j.phrs.2016.04.010] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 04/13/2016] [Indexed: 02/07/2023]
Abstract
The Notch pathway represents a highly conserved signaling network with essential roles in regulation of key cellular processes and functions, many of which are critical for development. Accumulating evidence indicates that it is also essential for fibrosis and thus the pathogenesis of chronic fibroproliferative diseases in diverse organs and tissues. Different effects of Notch activation are observed depending on cellular and tissue context as well as in both physiologic and pathologic states. Close interactions of Notch signaling pathway with other signaling pathways have been identified. In this review, current knowledge on the role of the Notch signaling with special focus on fibrosis and its potential as a therapeutic target is summarized.
Collapse
Affiliation(s)
- Biao Hu
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Sem H Phan
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
34
|
Sucre JMS, Wilkinson D, Vijayaraj P, Paul M, Dunn B, Alva-Ornelas JA, Gomperts BN. A three-dimensional human model of the fibroblast activation that accompanies bronchopulmonary dysplasia identifies Notch-mediated pathophysiology. Am J Physiol Lung Cell Mol Physiol 2016; 310:L889-98. [PMID: 26968771 DOI: 10.1152/ajplung.00446.2015] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 03/07/2016] [Indexed: 12/13/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a leading complication of premature birth and occurs primarily in infants delivered during the saccular stage of lung development. Histopathology shows decreased alveolarization and a pattern of fibroblast proliferation and differentiation to the myofibroblast phenotype. Little is known about the molecular pathways and cellular mechanisms that define BPD pathophysiology and progression. We have developed a novel three-dimensional human model of the fibroblast activation associated with BPD, and using this model we have identified the Notch pathway as a key driver of fibroblast activation and proliferation in response to changes in oxygen. Fetal lung fibroblasts were cultured on sodium alginate beads to generate lung organoids. After exposure to alternating hypoxia and hyperoxia, the organoids developed a phenotypic response characterized by increased α-smooth muscle actin (α-SMA) expression and other genes known to be upregulated in BPD and also demonstrated increased expression of downstream effectors of the Notch pathway. Inhibition of Notch with a γ-secretase inhibitor prevented the development of the pattern of cellular proliferation and α-SMA expression in our model. Analysis of human autopsy tissue from the lungs of infants who expired with BPD demonstrated evidence of Notch activation within fibrotic areas of the alveolar septae, suggesting that Notch may be a key driver of BPD pathophysiology.
Collapse
Affiliation(s)
- Jennifer M S Sucre
- UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Dan Wilkinson
- UCLA Department of Materials Science and Engineering, UCLA, Los Angeles, California
| | - Preethi Vijayaraj
- UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, California; Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California; and
| | - Manash Paul
- UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Bruce Dunn
- UCLA Department of Materials Science and Engineering, UCLA, Los Angeles, California
| | - Jackelyn A Alva-Ornelas
- UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Brigitte N Gomperts
- UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, California; Pulmonary Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California; Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California; and Eli and Edythe Broad Stem Cell Research Center, UCLA, Los Angeles, California
| |
Collapse
|