1
|
Sun H, Zhang CY, Zhang XH, Tai ZX, Su JW, Lin XC, Zhang SL, Li YF, Zhang C, Cai M, Zhang XC, Chen HJ, Zhou Q, Wu YL, Feng WN, Yang JJ. Transcriptomic analysis of transformed small-cell lung cancer from EGFR-mutated lung adenocarcinoma reveals distinct subgroups and precision therapy opportunities. Biomark Res 2025; 13:79. [PMID: 40437627 PMCID: PMC12121208 DOI: 10.1186/s40364-025-00789-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 05/14/2025] [Indexed: 06/01/2025] Open
Abstract
BACKGROUND Small-cell lung cancer (SCLC) transformation is one of the major mechanisms of resistance to Epidermal Growth Factor Receptor tyrosine kinase inhibitors (EGFR-TKIs). Chemotherapy is typically the recommended treatment for transformed SCLC (T-SCLC), similar to primary SCLC. However, the benefits of chemotherapy alone are minimal. Prior research highlights differences between the biological traits of T-SCLC and primary SCLC or EGFR-mutated lung adenocarcinoma (LUAD). This study aims to elucidate the molecular characteristics of T-SCLC and identify potential treatment modalities. METHODS We retrospectively collected tissue samples from LUAD, T-SCLC post-EGFR-TKI resistance, and primary SCLC. Genomics, transcriptomics, and proteomics were performed to clarify the differences between T-SCLC, LUAD, and primary SCLC. Hierarchical clustering analysis was then used to categorize the molecular subtype of T-SCLC, followed by a survival analysis based on these subtypes. RESULTS A study involving 61 patients investigated differences between LUAD, SCLC, and primary SCLC. RNA sequencing revealed distinct gene expression variations, particularly up-regulation in PPM1E, INSM1, and KCNC1 genes in T-SCLC. Pathway analysis linked T-SCLC to the cell cycle and neural differentiation. By conducting Hierarchical clustering analysis on RNA-seq data, the entire population can be categorized into two distinct groups. While certain T-SCLC showed similarities and differences compared to SCLC, with subtypes: LUAD-like and Non-LUAD-like. Notably, the LUAD-like subtype had significantly higher NKX2-1 expression (mean 371.8 vs. 41.8, P < 0.0001). T-SCLC treatment approaches were categorized into matched and unmatched groups, delineated by the alignment of specific therapies with corresponding pathologies. The matched group (13 cases) exhibited a significantly prolonged median progression-free survival compared to the unmatched group (10 cases) (5.4 months vs. 3.6 months, P = 0.02). CONCLUSIONS T-SCLC exhibits marked molecular distinctiveness, setting it apart not only from LUAD but also from classical SCLC. This distinction extends to its classification into two discernible molecular subtypes: LUAD-like and Non-LUAD-like. Customizing therapeutic protocols to align with these specific subtypes have the potential to identify the most appropriate treatment for T-SCLC.
Collapse
Affiliation(s)
- Hao Sun
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, No 106, Zhongshan Second Road, Guangzhou, 510080, China
| | - Chan-Yuan Zhang
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, No 106, Zhongshan Second Road, Guangzhou, 510080, China
- Department of Pulmonary Oncology, The First People's Hospital of Foshan, Foshan, Guangdong, 528000, China
| | - Xiu-Hao Zhang
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, No 106, Zhongshan Second Road, Guangzhou, 510080, China
| | | | - Jun-Wei Su
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, No 106, Zhongshan Second Road, Guangzhou, 510080, China
| | - Xiao-Cheng Lin
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, No 106, Zhongshan Second Road, Guangzhou, 510080, China
| | - Shi-Ling Zhang
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, No 106, Zhongshan Second Road, Guangzhou, 510080, China
| | - Yu-Fa Li
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, No 106, Zhongshan Second Road, Guangzhou, 510080, China
| | | | - Miao Cai
- Geneplus-Beijing, Beijing, China
| | - Xu-Chao Zhang
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, No 106, Zhongshan Second Road, Guangzhou, 510080, China
| | - Hua-Jun Chen
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, No 106, Zhongshan Second Road, Guangzhou, 510080, China
| | - Qing Zhou
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, No 106, Zhongshan Second Road, Guangzhou, 510080, China
| | - Yi-Long Wu
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, No 106, Zhongshan Second Road, Guangzhou, 510080, China.
| | - Wei-Neng Feng
- Department of Pulmonary Oncology, The First People's Hospital of Foshan, Foshan, Guangdong, 528000, China.
| | - Jin-Ji Yang
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, No 106, Zhongshan Second Road, Guangzhou, 510080, China.
| |
Collapse
|
2
|
Kim S, Seo J, Shin Y, Kim M. Expression of insulinoma-associated protein 1 (INSM1) in gastric neuroendocrine and non-neuroendocrine neoplasms. Discov Oncol 2025; 16:754. [PMID: 40358853 PMCID: PMC12075032 DOI: 10.1007/s12672-025-02576-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 05/05/2025] [Indexed: 05/15/2025] Open
Abstract
AIMS Insulinoma-associated protein 1 (INSM1) is a recently added nuclear marker for neuroendocrine differentiation. However, INSM1 expression in gastric neuroendocrine and non-neuroendocrine neoplasms has not been thoroughly investigated. METHODS We examined INSM1 expression in 72 gastric tumors, including 22 gastric neuroendocrine tumors and 50 gastric non-neuroendocrine neoplasms. Synaptophysin and chromogranin immunostaining were also performed for all cases. RESULTS For gastric neuroendocrine neoplasms, INSM1 immunostaining demonstrated excellent sensitivity (21/22, 95.5%), comparable to synaptophysin (22/22, 100.0%), but had lower specificity (32/50, 64.0%) compared with traditional neuroendocrine markers (synaptophysin (36/50, 72.0%) and chromogranin (42/50, 84.0%)). However, decreased expression of INSM1, measured by H-score, was frequently found among neuroendocrine carcinoma cases. Gastric non-neuroendocrine neoplasms frequently exhibited INSM1 positivity (18/50, 36.0%); however, in most cases (16/18, 88.9%), staining was focal (involving < 10% of tumor cells). Tumor histologic subtype and grade may be associated with INSM1 expression. CONCLUSIONS INSM1 nuclear positivity in gastric neoplasms should be interpreted with caution. INSM1 should not be used as a stand-alone marker for determining neuroendocrine differentiation in gastric tumors. Histologic evaluation with concurrent use of traditional neuroendocrine markers is warranted to accurately demonstrate neuroendocrine differentiation and minimize false positivity and false negativity.
Collapse
Affiliation(s)
- Sujeong Kim
- School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Jisu Seo
- School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Youjung Shin
- School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Moonsik Kim
- Department of Pathology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Kyungpook National University School of Medicine, Daegu, 41405, Republic of Korea.
| |
Collapse
|
3
|
Zhou H, He X, Xiong Y, Gong Y, Zhang Y, Li S, Hu R, Li Y, Zhang X, Zhou X, Zhu J, Yang Y, Liu M. Structural insights into a highly flexible zinc finger module unravel INSM1 function in transcription regulation. Nat Commun 2025; 16:2162. [PMID: 40038295 DOI: 10.1038/s41467-025-57478-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 02/24/2025] [Indexed: 03/06/2025] Open
Abstract
Orderly development of neuroendocrine and nervous system of mammals requires INSM1, a key regulator for cell differentiation. Ectopic expression of INSM1 is closely correlated with human neuroendocrine tumorigenesis, which makes INSM1 a reliable diagnostic biomarker and potential therapeutic target. To date, INSM1 is known as a transcription repressor binding to GGGG-contained DNA element and TEAD1 using its five zinc fingers (ZFs), while the binding mechanism remains unknown. Here, we reveal highly variable conformations of the whole structure of the five ZFs, among which ZF1 adopts an unusual CCHC-fold. ZF1 binds to the TEAD domain of TEAD1 through hydrophobic interactions, and forms a ternary complex with TEAD1 and TEAD1-targeted DNA. Based on this, INSM1 cooperates with TEAD1 to repress the transcription of TEAD1-targeted genes. ZF2 and ZF3 of INSM1 can bind to DNA but have no specificity to the GGGG-contained element due to long flexible interdomain linker. Instead, INSM1 collaborates with CTCF to target genome loci having the GGGG-contained element and regulate the expression of adjacent genes. This study defines a functional mode of INSM1 by cooperating with diverse DNA-binding proteins for targeting specific genome loci in transcription regulation, and provides structural information for designing INSM1-related therapeutic drugs and diagnostic probes.
Collapse
Affiliation(s)
- Heng Zhou
- State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoling He
- State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Wuhan, China
| | - Yue Xiong
- State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yixuan Gong
- State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuanyuan Zhang
- State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shuangli Li
- State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Wuhan, China
| | - Rui Hu
- State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ying Li
- State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xu Zhang
- State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xin Zhou
- State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiang Zhu
- State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Wuhan, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Yunhuang Yang
- State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Wuhan, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Maili Liu
- State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Li M, Wang X, Gong J, Lu H. The analysis of molecular classification of pulmonary neuroendocrine tumors and relationship between YAP1 and efficacy. Invest New Drugs 2025; 43:108-117. [PMID: 39786663 DOI: 10.1007/s10637-024-01492-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 12/12/2024] [Indexed: 01/12/2025]
Abstract
A novel molecular classification for small cell lung cancer (SCLC) has been established utilizing the transcription factors achaete-scute homologue 1 (ASCL1), neurogenic differentiation factor 1 (NeuroD1), POU class 2 homeobox 3 (POU2F3), and yes-associated protein 1 (YAP1). This classification was predicated on the transcription factors. Conversely, there is a paucity of information regarding the distribution of these markers in other subtypes of pulmonary neuroendocrine tumors (PNET). Clinical and survival data for PNET patients were gathered from January 2008 to December 2020. Immunohistochemical analysis was employed to evaluate the expression. The relationship between YAP1 expression and outcomes in patients with pulmonary large cell neuroendocrine carcinoma (LCNEC) was examined. Data from low-grade PNET patients who had previously undergone immunotherapy were retrospectively gathered and analyzed. The ASCL1 positive rate was markedly elevated in SCLC (7.1% vs. 60%; P < 0.001) and LCNEC patients (7.1% vs. 38.5%; P = 0.034) compared to PC patients. The YAP1-positive rate was elevated in LCNEC compared to SCLC (43.6% vs. 20%, P = 0.028) and pulmonary carcinoid (PC) patients (43.6% vs. 21.4%; P = 0.021). The DLL3-positive rate in SCLC patients was greater than in SCLC and PC patients (37.1% vs. 23.1% vs. 0%; P = 0.028, P = 0.021). A significant level of tumor heterogeneity was noted, with SCLC and LCNEC patients exhibiting markedly higher heterogeneity than PC patients (65.7% vs. 56.3% vs. 21.4%; P = 0.005, P = 0.025). In patients with LCNEC, YAP1 positivity exhibited no correlation with PD-L1 expression (17.1% vs. 45.7%, P = 0.518). Tumor heterogeneity was also noted in transformed SCLC, with no significant differences in the expression levels of transcription factors between transformed and traditional SCLC. In 13 LCNEC patients with a history of ICI application, YAP1 exhibited no significant effect on PFS (P = 0.331) or OS (P = 0.17) in the subgroup analysis of LCNEC patients. Among the 14 patients with low-grade PNET who underwent immunotherapy, the disease control rate was 85.7%. Patients with high-grade PNET have high levels of expression of ASCL1 and DLL3, whereas patients with LCNEC have high levels of expression of YAP1. With regard to the transcription factor level, it was found that patients with SCLC and LCNEC had a much higher degree of tumor heterogeneity than those with PC. In patients with LCNEC who were receiving monotherapy of ICIs or chemotherapy in combination with ICIs, the expression of YAP1 did not appear to have any clear impact on the prognosis. This is due to the limited sample size of the study, which requires additional investigation. When compared to the expression of TFs in regular SCLC, the expression of TFs in converted SCLC is comparable.
Collapse
Affiliation(s)
- Meihui Li
- Department of Radiotherapy, Shaoxing Second Hospital, Shaoxing, Zhejiang, China
| | - Xinyuan Wang
- Postgraduate Training Base Alliance, Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, 310022, Zhejiang, China
- Department of Thoracic Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, 310022, China
| | - Jiali Gong
- Department of Hematology and Oncology, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China
| | - Hongyang Lu
- Postgraduate Training Base Alliance, Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, 310022, Zhejiang, China.
- Department of Thoracic Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, 310022, China.
| |
Collapse
|
5
|
Ozakinci H, Alontaga AY, Cano P, Koomen JM, Perez BA, Beg AA, Chiappori AA, Haura EB, Boyle TA. Unveiling the Molecular Features of SCLC With a Clinical RNA Expression Panel. JTO Clin Res Rep 2024; 5:100723. [PMID: 39386315 PMCID: PMC11459576 DOI: 10.1016/j.jtocrr.2024.100723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/26/2024] [Accepted: 08/23/2024] [Indexed: 10/12/2024] Open
Abstract
Introduction The translation of gene expression profiles of SCLC to clinical testing remains relatively unexplored. In this study, gene expression variations in SCLC were evaluated to identify potential biomarkers. Methods RNA expression profiling was performed on 44 tumor samples from 35 patients diagnosed with SCLC using the clinically validated RNA Salah Targeted Expression Panel (RNA STEP). RNA sequencing (RNA-Seq) and immunohistochemistry were performed on two different SCLC cohorts, and correlation analyses were performed for the ASCL1, NEUROD1, POU2F3, and YAP1 genes and their corresponding proteins. RNA STEP and RNA-Seq results were evaluated for gene expression profiles and heterogeneity between SCLC primary and metastatic sites. RNA STEP gene expression profiles of independent SCLC samples (n = 35) were compared with lung adenocarcinoma (n = 160) and squamous cell carcinoma results (n = 25). Results The RNA STEP results were highly correlated with RNA-Seq and immunohistochemistry results. The dominant transcription regulator by RNA STEP was ASCL1 in 74.2% of the samples, NEUROD1 in 20%, and POU2F3 in 2.9%. The ASCL1, NEUROD1, and POU2F3 gene expression profiles were heterogeneous between primary and metastatic sites. SCLCs displayed markedly high expression for targetable genes DLL3, EZH2, TERT, and RET. SCLCs were found to have relatively colder immune profiles than lung adenocarcinomas and squamous cell carcinomas, characterized by lower expression of HLA genes, immune cell, and immune checkpoint genes, except the LAG3 gene. Conclusions Clinical-grade SCLC RNA expression profiling has value for SCLC subtyping, design of clinical trials, and identification of patients for trials and potential targeted therapy.
Collapse
Affiliation(s)
- Hilal Ozakinci
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Aileen Y. Alontaga
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Pedro Cano
- Department of Pathology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - John M. Koomen
- Department of Pathology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Bradford A. Perez
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
- Florida Cancer Specialists & Research Institute, Trinity Cancer Center, Trinity, Florida
| | - Amer A. Beg
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Alberto A. Chiappori
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Eric B. Haura
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Theresa A. Boyle
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
- Department of Pathology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| |
Collapse
|
6
|
Gao R, Zhang X, Chen X, Lin Y, Jin L, Zheng H, Yu X. Comparison of insulinoma-associated protein 1 (INSM1) with traditional neuroendocrine markers in gastrointestinal and pancreatic mixed neuroendocrine-non-neuroendocrine neoplasms (MiNENs). Diagn Pathol 2024; 19:144. [PMID: 39472993 PMCID: PMC11520864 DOI: 10.1186/s13000-024-01568-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/24/2024] [Indexed: 11/02/2024] Open
Abstract
The traditional diagnostic markers for mixed neuroendocrine-non-neuroendocrine neoplasms (MiNENs) are synaptophysin (SYP), chromogranin A (CHGA) and CD56. However, there is still a lack of a large series of article focused on the expression of insulinoma-associated protein 1 (INSM1) in gastrointestinal and pancreatic MiNENs. This study compared the expression of INSM1 and traditional neuroendocrine markers in MiNENs. In this study, we collected 46 cases of gastrointestinal and pancreatic MiNENs and performed immunohistochemical staining for INSM1, SYP, CHGA, and CD56. Histologically, the neuroendocrine components of MiNENs were all neuroendocrine carcinomas, with small cell neuroendocrine carcinomas accounting for 15.2% (7/46) and large cell neuroendocrine carcinomas accounting for 84.8% (39/46). With respect to immunohistochemical expression, the overall sensitivity of INSM1 was 80.4% (37/46), which was lower than that of SYP (100%, 46/46), but comparable to that of CHGA (67.4%, 31/46) or CD56 (73.9%, 34/46). The overall specificity of INSM1 was 91.3% (42/46), which was greater than that of SYP (63.0%, 29/46) and CD56 (69.6, 32/46), but was not significantly different from that of CHGA (82.6%, 38/46). The proportion of 3 + staining for SYP (100%, 46/46) was greater than that of INSM1 (71.7, 33/46), while the proportion of 3 + staining for CHGA (10.9, 5/46) or CD56 (21.7, 10/46) was lower than that of INSM1. In conclusion, INSM1 exhibited high sensitivity and specificity in the diagnosis of gastrointestinal and pancreatic MiNENs.
Collapse
Affiliation(s)
- Rui Gao
- Department of Pathology, Fujian Provincial Hospital, Provincial Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, NO.134 East Street, Gulou District, Fuzhou, Fujian, 350001, P.R. China.
| | - Xi Zhang
- Department of Gastroenterology, Fujian Provincial Hospital, Provincial Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian, P.R. China
| | - Xin Chen
- Department of Pathology, Fujian Provincial Hospital, Provincial Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, NO.134 East Street, Gulou District, Fuzhou, Fujian, 350001, P.R. China
| | - Ying Lin
- Department of Pathology, Fujian Provincial Hospital, Provincial Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, NO.134 East Street, Gulou District, Fuzhou, Fujian, 350001, P.R. China
| | - Long Jin
- Department of Pathology, Fujian Provincial Hospital, Provincial Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, NO.134 East Street, Gulou District, Fuzhou, Fujian, 350001, P.R. China.
| | - Huawei Zheng
- Department of Pathology, Fujian Provincial Hospital, Provincial Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, NO.134 East Street, Gulou District, Fuzhou, Fujian, 350001, P.R. China
| | - Xunbin Yu
- Department of Pathology, Fujian Provincial Hospital, Provincial Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, NO.134 East Street, Gulou District, Fuzhou, Fujian, 350001, P.R. China
| |
Collapse
|
7
|
Nguyen A, Nuñez CG, Tran TA, Girard L, Peyton M, Catalan R, Guerena C, Avila K, Drapkin BJ, Chandra R, Minna JD, Martinez ED. Jumonji histone demethylases are therapeutic targets in small cell lung cancer. Oncogene 2024; 43:2885-2899. [PMID: 39154123 PMCID: PMC11405284 DOI: 10.1038/s41388-024-03125-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/30/2024] [Accepted: 08/06/2024] [Indexed: 08/19/2024]
Abstract
Small cell lung cancer (SCLC) is a recalcitrant cancer of neuroendocrine (NE) origin. Changes in therapeutic approaches against SCLC have been lacking over the decades. Here, we use preclinical models to identify a new therapeutic vulnerability in SCLC consisting of the targetable Jumonji lysine demethylase (KDM) family. We show that Jumonji demethylase inhibitors block malignant growth and that etoposide-resistant SCLC cell lines are particularly sensitive to Jumonji inhibition. Mechanistically, small molecule-mediated inhibition of Jumonji KDMs activates endoplasmic reticulum (ER) stress genes, upregulates ER stress signaling, and triggers apoptotic cell death. Furthermore, Jumonji inhibitors decrease protein levels of SCLC NE markers INSM1 and Secretogranin-3 and of driver transcription factors ASCL1 and NEUROD1. Genetic knockdown of KDM4A, a Jumonji demethylase highly expressed in SCLC and a known regulator of ER stress genes, induces ER stress response genes, decreases INSM1, Secretogranin-3, and NEUROD1 and inhibits proliferation of SCLC in vitro and in vivo. Lastly, we demonstrate that two different small molecule Jumonji KDM inhibitors (pan-inhibitor JIB-04 and KDM4 inhibitor SD70) block the growth of SCLC tumor xenografts in vivo. Our study highlights the translational potential of Jumonji KDM inhibitors against SCLC, a clinically feasible approach in light of recently opened clinical trials evaluating this drug class, and establishes KDM4A as a relevant target across SCLC subtypes.
Collapse
Affiliation(s)
- Aiden Nguyen
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX, USA
| | - Clarissa G Nuñez
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX, USA
| | - Tram Anh Tran
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX, USA
| | - Luc Girard
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX, USA
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Michael Peyton
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX, USA
| | - Rodrigo Catalan
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX, USA
| | - Cristina Guerena
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX, USA
| | - Kimberley Avila
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX, USA
| | - Benjamin J Drapkin
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX, USA
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
- Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Raghav Chandra
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX, USA
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - John D Minna
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX, USA
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, USA
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
- Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Elisabeth D Martinez
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX, USA.
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, USA.
- Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
8
|
Jakowczuk T, Ren S. A comparative study of INSM1 (clone MRQ70) immunoreactivity on CytoLyt® pretreated cytology and resection specimens of pancreatic neuroendocrine tumors. Diagn Cytopathol 2024; 52:381-386. [PMID: 38655814 DOI: 10.1002/dc.25328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/08/2024] [Accepted: 04/12/2024] [Indexed: 04/26/2024]
Abstract
INTRODUCTION Insulinoma-associated protein 1 (INSM1) is a newly characterized sensitive and specific immunohistochemical marker for neuroendocrine (NE) tumors. Whereas more traditional NE markers, such as chromogranin A and synaptophysin, are cytoplasmic, INSM1 is uniquely nuclear and thus could serve as a useful addition to NE tumor workup. While application of immunohistochemical studies to cytology specimens is becoming increasingly relevant, knowledge of the effects of the certain fixatives as well as the pattern and intensity of immunoexpression are important considerations. METHODS Sixteen cases of pancreatic neuroendocrine tumor (PanNET) diagnosed between 2015 and 2021 underwent both fine-needle aspiration, which was subsequently prepared in CytoLyt®-fixed cytology cell block (CCB), and surgical resection, in which specimens were prepared into formalin-fixed paraffin embedded blocks (FFPE). For all samples, INSM1 immunoreactivity was classified according to staining intensity and extent, then compared between CCBs and matched FFPEs. RESULTS All 16 FFPE specimens demonstrated strong and diffuse INSM1 immunoreactivity, while only 10/16 (62.5%) CCBs were positive. Of those 10, only 2/10 (20%) demonstrated strong and diffuse reactivity. CONCLUSION The choice of fixative has a demonstrable effect on the immunoreactivity of INSM1 in PanNET. Even though the sensitivity is lower in CytoLyt®-fixed cell block specimens, the addition of INSM1 is useful, especially in challenging cases that may be negative for one or more of the traditional NE markers.
Collapse
Affiliation(s)
- Tiffany Jakowczuk
- Cooper Medical School of Rowan University, Camden, New Jersey, United States of America
| | - Shuyue Ren
- Department of Pathology and Laboratory Medicine, Cooper University Hospital, Camden, New Jersey, United States of America
| |
Collapse
|
9
|
Ito T. Molecular pathology of small cell lung cancer: Overview from studies on neuroendocrine differentiation regulated by ASCL1 and Notch signaling. Pathol Int 2024; 74:239-251. [PMID: 38607250 DOI: 10.1111/pin.13426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/20/2024] [Accepted: 03/24/2024] [Indexed: 04/13/2024]
Abstract
Pulmonary neuroendocrine (NE) cells are rare airway epithelial cells. The balance between Achaete-scute complex homolog 1 (ASCL1) and hairy and enhancer of split 1, one of the target molecules of the Notch signaling pathway, is crucial for NE differentiation. Small cell lung cancer (SCLC) is a highly aggressive lung tumor, characterized by rapid cell proliferation, a high metastatic potential, and the acquisition of resistance to treatment. The subtypes of SCLC are defined by the expression status of NE cell-lineage transcription factors, such as ASCL1, which roles are supported by SRY-box 2, insulinoma-associated protein 1, NK2 homeobox 1, and wingless-related integration site signaling. This network reinforces NE differentiation and may induce the characteristic morphology and chemosensitivity of SCLC. Notch signaling mediates cell-fate decisions, resulting in an NE to non-NE fate switch. The suppression of NE differentiation may change the histological type of SCLC to a non-SCLC morphology. In SCLC with NE differentiation, Notch signaling is typically inactive and genetically or epigenetically regulated. However, Notch signaling may be activated after chemotherapy, and, in concert with Yes-associated protein signaling and RE1-silencing transcription factor, suppresses NE differentiation, producing intratumor heterogeneity and chemoresistance. Accumulated information on the molecular mechanisms of SCLC will contribute to further advances in the control of this recalcitrant cancer.
Collapse
Grants
- 20H03691 Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan
- 18K19489 Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan
- 16590318 Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan
- 25460439 Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan
- Smoking Research Foundation, Japan
Collapse
Affiliation(s)
- Takaaki Ito
- Department of Medical Technology, Kumamoto Health Science University Faculty of Health Sciences, Kumamoto, Japan
- Department of Pathology and Experimental Medicine, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
- Department of Brain Morphogenesis, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
10
|
Fűr GM, Nemes K, Magó É, Benő AÁ, Topolcsányi P, Moldvay J, Pongor LS. Applied models and molecular characteristics of small cell lung cancer. Pathol Oncol Res 2024; 30:1611743. [PMID: 38711976 PMCID: PMC11070512 DOI: 10.3389/pore.2024.1611743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/03/2024] [Indexed: 05/08/2024]
Abstract
Small cell lung cancer (SCLC) is a highly aggressive type of cancer frequently diagnosed with metastatic spread, rendering it surgically unresectable for the majority of patients. Although initial responses to platinum-based therapies are often observed, SCLC invariably relapses within months, frequently developing drug-resistance ultimately contributing to short overall survival rates. Recently, SCLC research aimed to elucidate the dynamic changes in the genetic and epigenetic landscape. These have revealed distinct subtypes of SCLC, each characterized by unique molecular signatures. The recent understanding of the molecular heterogeneity of SCLC has opened up potential avenues for precision medicine, enabling the development of targeted therapeutic strategies. In this review, we delve into the applied models and computational approaches that have been instrumental in the identification of promising drug candidates. We also explore the emerging molecular diagnostic tools that hold the potential to transform clinical practice and patient care.
Collapse
Affiliation(s)
- Gabriella Mihalekné Fűr
- Cancer Genomics and Epigenetics Core Group, Hungarian Centre of Excellence for Molecular Medicine (HCEMM), Szeged, Hungary
| | - Kolos Nemes
- Cancer Genomics and Epigenetics Core Group, Hungarian Centre of Excellence for Molecular Medicine (HCEMM), Szeged, Hungary
| | - Éva Magó
- Cancer Genomics and Epigenetics Core Group, Hungarian Centre of Excellence for Molecular Medicine (HCEMM), Szeged, Hungary
- Genome Integrity and DNA Repair Core Group, Hungarian Centre of Excellence for Molecular Medicine (HCEMM), Szeged, Hungary
| | - Alexandra Á. Benő
- Cancer Genomics and Epigenetics Core Group, Hungarian Centre of Excellence for Molecular Medicine (HCEMM), Szeged, Hungary
| | - Petronella Topolcsányi
- Cancer Genomics and Epigenetics Core Group, Hungarian Centre of Excellence for Molecular Medicine (HCEMM), Szeged, Hungary
| | - Judit Moldvay
- Department of Pulmonology, Szeged University Szent-Gyorgyi Albert Medical School, Szeged, Hungary
- 1st Department of Pulmonology, National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Lőrinc S. Pongor
- Cancer Genomics and Epigenetics Core Group, Hungarian Centre of Excellence for Molecular Medicine (HCEMM), Szeged, Hungary
| |
Collapse
|
11
|
Möller K, Uhlig R, Gorbokon N, Dum D, Menz A, Büscheck F, Luebke AM, Hube-Magg C, Hinsch A, Höflmayer D, Fraune C, Lebok P, Weidemann S, Lennartz M, Jacobsen F, Clauditz TS, Steurer S, Burandt E, Krech R, Krech T, Marx AH, Sauter G, Simon R, Bernreuther C, Minner S. Comparison of INSM1 immunostaining with established neuroendocrine markers synaptophysin and chromogranin A in over 14,000 neuroendocrine and non-neuroendocrine tumors. Mol Cell Endocrinol 2024; 581:112106. [PMID: 37951531 DOI: 10.1016/j.mce.2023.112106] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/04/2023] [Accepted: 11/03/2023] [Indexed: 11/14/2023]
Abstract
INSM1 is a transcription factor protein which is increasingly used as an immunohistochemical marker for neuroendocrine differentiation. To determine the prevalence of INSM1 expression in tumors and its expression pattern in normal tissues, tissue microarrays containing 14,908 samples from 117 different tumor types/subtypes as well as 76 different normal tissues were analyzed by immunohistochemistry. INSM1 was positive in 89.2% of 471 neuroendocrine neoplasms (NEN) and in 3.5% of 11,815 non-neuroendocrine neoplasms that were successfully analyzed. At least an occasional weak INSM1 positivity was observed in 59 different non-neuroendocrine tumor entities, of which 15 entities contained at least one case with strong INSM1 staining. A comparison with synaptophysin and chromogranin A staining revealed that in NEN, synaptophysin showed the highest sensitivity (93.3%), followed by INSM1 (89.2%) and chromogranin A (87.5%). In neuroendocrine carcinomas (NEC), sensitivity was highest for INSM1 (88.0%), followed by synaptophysin (86.5%) and chromogranin A (66.4%). If INSM1 was used as an additional marker, the sensitivity for detecting neuroendocrine differentiation in NEN increased from 96.6% (synaptophysin and chromogranin A) to 97.2% (synaptophysin, chromogranin A and INSM1). Our study shows that INSM1 is a useful additional marker for neuroendocrine differentiation with high sensitivity, particularly in NEC.
Collapse
Affiliation(s)
- Katharina Möller
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ria Uhlig
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Natalia Gorbokon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - David Dum
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anne Menz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Franziska Büscheck
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas M Luebke
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andrea Hinsch
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Doris Höflmayer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Fraune
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Patrick Lebok
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Institute of Pathology, Clinical Center Osnabrueck, Osnabrueck, Germany
| | - Sören Weidemann
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maximilian Lennartz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Frank Jacobsen
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Till S Clauditz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eike Burandt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Rainer Krech
- Institute of Pathology, Clinical Center Osnabrueck, Osnabrueck, Germany
| | - Till Krech
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Institute of Pathology, Clinical Center Osnabrueck, Osnabrueck, Germany
| | - Andreas H Marx
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Pathology, Academic Hospital Fuerth, Fuerth Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Christian Bernreuther
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
12
|
Mandl A, Jasmine S, Krueger T, Kumar R, Coleman IM, Dalrymple SL, Antony L, Rosen DM, Jing Y, Hanratty B, Patel RA, Jin-Yih L, Dias J, Celatka CA, Tapper AE, Kleppe M, Kanayama M, Speranzini V, Wang YZ, Luo J, Corey E, Sena LA, Casero RA, Lotan T, Trock BJ, Kachhap SK, Denmeade SR, Carducci MA, Mattevi A, Haffner MC, Nelson PS, Rienhoff HY, Isaacs JT, Brennen WN. LSD1 inhibition suppresses ASCL1 and de-represses YAP1 to drive potent activity against neuroendocrine prostate cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.17.576106. [PMID: 38328141 PMCID: PMC10849473 DOI: 10.1101/2024.01.17.576106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Lysine-specific demethylase 1 (LSD1 or KDM1A ) has emerged as a critical mediator of tumor progression in metastatic castration-resistant prostate cancer (mCRPC). Among mCRPC subtypes, neuroendocrine prostate cancer (NEPC) is an exceptionally aggressive variant driven by lineage plasticity, an adaptive resistance mechanism to androgen receptor axis-targeted therapies. Our study shows that LSD1 expression is elevated in NEPC and associated with unfavorable clinical outcomes. Using genetic approaches, we validated the on-target effects of LSD1 inhibition across various models. We investigated the therapeutic potential of bomedemstat, an orally bioavailable, irreversible LSD1 inhibitor with low nanomolar potency. Our findings demonstrate potent antitumor activity against CRPC models, including tumor regressions in NEPC patient-derived xenografts. Mechanistically, our study uncovers that LSD1 inhibition suppresses the neuronal transcriptional program by downregulating ASCL1 through disrupting LSD1:INSM1 interactions and de-repressing YAP1 silencing. Our data support the clinical development of LSD1 inhibitors for treating CRPC - especially the aggressive NE phenotype. Statement of Significance Neuroendocrine prostate cancer presents a clinical challenge due to the lack of effective treatments. Our research demonstrates that bomedemstat, a potent and selective LSD1 inhibitor, effectively combats neuroendocrine prostate cancer by downregulating the ASCL1- dependent NE transcriptional program and re-expressing YAP1.
Collapse
|
13
|
Guo H, Li W, Guo Y, Chen N, Cui J. Molecular classification of small cell lung cancer subtypes: Characteristics, prognostic factors, and clinical translation. Chin Med J (Engl) 2024; 137:130-139. [PMID: 37660289 PMCID: PMC10798698 DOI: 10.1097/cm9.0000000000002693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Indexed: 09/04/2023] Open
Abstract
ABSTRACT Small cell lung cancer (SCLC) is a highly malignant tumor with a very poor prognosis; therefore, more effective treatments are urgently needed for patients afflicted with the disease. In recent years, emerging molecular classifications based on key transcription factors of SCLC have provided more information on the tumor pathophysiology, metastasis, immune microenvironment, and acquired therapeutic resistance and reflected the intertumoral heterogeneity of the various SCLC phenotypes. Additionally, advances in genomics and single-cell sequencing analysis have further revealed the high intratumoral heterogeneity and plasticity of the disease. Herein, we review and summarize these recent lines of evidence and discuss the possible pathogenesis of SCLC.
Collapse
Affiliation(s)
| | | | | | | | - Jiuwei Cui
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|
14
|
Yang Y, Yue C, Li Y, Piao Y. The role of insulinoma-associated protein 1 in predicting the progression and prognosis of human olfactory neuroblastoma in China. Pathol Res Pract 2024; 253:155040. [PMID: 38171083 DOI: 10.1016/j.prp.2023.155040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/29/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024]
Abstract
OBJECTIVE Recent studies have suggested that insulinoma-associated protein 1 (INSM1) is a useful marker for pathological diagnosis of neuroendocrine tumors. In the present study, we investigated the association between INSM1 expression and prognosis in patients with olfactory neuroblastoma (ONB) and assessed the usefulness of INSM1 as a prognostic biomarker in these patients. METHOD Immunohistochemistry was performed on 109 ONB patients who underwent endoscopic surgery at Beijing Tong Ren Hospital (Beijing, China) between June 2006 and November 2021 Patient age at the time of surgery ranged from 10 months to 72 years (mean age, 43.55 ± 13.47 years). In total, 63 (57.8%) and 46 (42.2%) tumors occurred in male and female patients, respectively. The percentages of grade I-IV cases were 13.8% (15/109), 36.7% (40/109), 29.4% (32/109) and 20.2% (22/109), respectively. RESULTS The expression rate (moderately/strongly positive) of INSM1 was significantly higher in high-grade (Ⅲ/Ⅳ; 83%; 45/54) than low-grade (Ⅰ/Ⅱ; 27%; 15/55) ONB cases. High expression levels of INSM1 were significantly positively associated with high pathological stage (p < 0.001), local recurrence, and death. Kaplan‑Meier analysis revealed that patients with high INSM1 expression had significantly shorter disease‑free survival (DFS) and mean survival (75.01 ± 10.71 vs. 158.56 ± 10.32) times, and shorter overall survival (OS). Multivariate Cox regression analysis revealed that INSM1 was an independent prognostic factor for DFS (HR: 4.963, 95%CI [2.11-10.84] p < 0.001) and OS (HR: 4.791, 95%CI [2.117-10.485], p < 0.001) after adjusting for sex, age, and tumor grade. In addition, INSM1 was an independent prognostic factor for DFS in patients treated with surgery (HR: 3.714, 95%CI [1.267-10.889], p = 0.017) and chemotherapy (HR: 5.574, 95%CI [1.584-19.612], p = 0.007). CONCLUSION INSM1 expression had a positive association with the prognosis of patients with ONB and could serve as a prognostic biomarker in these patients.
Collapse
Affiliation(s)
- Yunyun Yang
- Department of Pathology, Affiliated Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China; Beijing Key Laboratory of Head and Neck Molecular Pathological Diagnosis, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Changli Yue
- Department of Pathology, Affiliated Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China; Beijing Key Laboratory of Head and Neck Molecular Pathological Diagnosis, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yahui Li
- Department of Pathology, Affiliated Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China; Beijing Key Laboratory of Head and Neck Molecular Pathological Diagnosis, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yingshi Piao
- Department of Pathology, Affiliated Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China; Beijing Key Laboratory of Head and Neck Molecular Pathological Diagnosis, Beijing Tongren Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
15
|
Weber M, Nguyen MB, Li MY, Flora P, Shuda M, Ezhkova E. Merkel Cell Polyomavirus T Antigen-Mediated Reprogramming in Adult Merkel Cell Progenitors. J Invest Dermatol 2023; 143:2163-2176.e6. [PMID: 37257637 PMCID: PMC10592583 DOI: 10.1016/j.jid.2023.04.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 06/02/2023]
Abstract
Whether Merkel cells regenerate in adult skin and from which progenitor cells they regenerate are a subject of debate. Understanding Merkel cell regeneration is of interest to the study of Merkel cell carcinoma, a rare neuroendocrine skin cancer hypothesized to originate in a Merkel cell progenitor transformed by Merkel cell polyomavirus small and large T antigens. We sought to understand what the adult Merkel cell progenitors are and whether they can give rise to Merkel cell carcinoma. We used lineage tracing to identify SOX9-expressing cells (SOX9+ cells) as Merkel cell progenitors in postnatal murine skin. Merkel cell regeneration from SOX9+ progenitors occurs rarely in mature skin unless in response to minor mechanical injury. Merkel cell polyomavirus small T antigen and functional imitation of large T antigen in SOX9+ cells enforced neuroendocrine and Merkel cell lineage reprogramming in a subset of cells. These results identify SOX9+ cells as postnatal Merkel cell progenitors that can be reprogrammed by Merkel cell polyomavirus T antigens to express neuroendocrine markers.
Collapse
Affiliation(s)
- Madison Weber
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Minh Binh Nguyen
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Meng Yen Li
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Pooja Flora
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Masahiro Shuda
- Cancer Virology Program, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Elena Ezhkova
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| |
Collapse
|
16
|
Atay S. A 15-Gene-Based Risk Signature for Predicting Overall Survival in SCLC Patients Who Have Undergone Surgical Resection. Cancers (Basel) 2023; 15:5219. [PMID: 37958393 PMCID: PMC10649828 DOI: 10.3390/cancers15215219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Small cell lung cancer (SCLC) is a malignancy with a poor prognosis whose treatment has not progressed for decades. The survival benefit of surgery and the selection of surgical candidates are still controversial in SCLC. This study is the first report to identify transcriptomic alterations associated with prognosis and propose a gene expression-based risk signature that can be used to predict overall survival (OS) in SCLC patients who have undergone potentially curative surgery. An integrative transcriptome analysis of three gene expression datasets (GSE30219, GSE43346, and GSE149507) revealed 1734 up-regulated and 2907 down-regulated genes. Cox-Mantel test, Cox regression, and Lasso regression analyses were used to identify genes to be included in the risk signature. EGAD00001001244 and GSE60052-cohorts were used for internal and external validation, respectively. Overall survival was significantly poorer in patients with high-risk scores compared to the low-risk group. The discriminatory performance of the risk signature was superior to other parameters. Multivariate analysis showed that the risk signature has the potential to be an independent predictor of prognosis. The prognostic genes were enriched in pathways including regulation of transcription, cell cycle, cell metabolism, and angiogenesis. Determining the roles of the identified prognostic genes in the pathogenesis of SCLC may contribute to the development of new treatment strategies. The risk signature needs to be validated in a larger cohort of patients to test its usefulness in clinical decision-making.
Collapse
Affiliation(s)
- Sevcan Atay
- Department of Medical Biochemistry, Faculty of Medicine, Ege University, 35100 Izmir, Turkey
| |
Collapse
|
17
|
Chen C, Wu J, Hicks C, Lan MS. Repurposing a plant alkaloid homoharringtonine targets insulinoma associated-1 in N-Myc-activated neuroblastoma. Cell Signal 2023; 109:110753. [PMID: 37301315 PMCID: PMC10527743 DOI: 10.1016/j.cellsig.2023.110753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/30/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023]
Abstract
High-risk neuroblastoma (NB) is a heterogeneous and malignant childhood cancer that is frequently characterized by MYCN proto-oncogene amplification or elevated N-Myc protein (N-Myc) expression. An N-Myc downstream target gene, insulinoma associated-1 (INSM1) has emerged as a biomarker that plays a critical role in facilitating NB tumor cell growth and transformation. N-Myc activates endogenous INSM1 gene expression through binding to the E2-box of the INSM1 proximal promoter in NB. We identified a plant alkaloid, homoharringtonine (HHT), from a chemical library screening showing potent inhibition of INSM1 promoter activity. This positive-hit plant alkaloid exemplifies an effective screening approach for repurposed compound targeting INSM1 expression in NB cancer therapy. The elevated N-Myc and INSM1 expression in NB constitutes a positive-loop through INSM1 activation that promotes N-Myc stability. In the present study, the biological effects and anti-tumor properties of HHT against NB were examined. HHT either down regulates and/or interferes with the binding of N-Myc to the E2-box of the INSM1 promoter and the inhibition of PI3K/AKT-mediated N-Myc stability could lead to the NB cell apoptosis. HHT inhibition of NB cell proliferation is consistent with the INSM1 expression as higher level of INSM1 exhibits a more sensitive IC50 value. The combination treatment of HHT and A674563 provides a better option of increasing potency and reducing cellular cytotoxicity than HHT or A674563 treatment alone. Taken together, the suppression of the INSM1-associated signaling pathway axis promotes the inhibition of NB tumor cell growth. This study developed a feasible approach for repurposing an effective anti-NB drug.
Collapse
Affiliation(s)
- Chiachen Chen
- Department of Genetics, Louisiana State University Health Sciences Center, 533 Bolivar St. CSRB, New Orleans, LA 70112, USA
| | - Jiande Wu
- Department of Genetics, Louisiana State University Health Sciences Center, 533 Bolivar St. CSRB, New Orleans, LA 70112, USA; Bioinformatics and Genomics Program, 533 Bolivar St. CSRB, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Chindo Hicks
- Department of Genetics, Louisiana State University Health Sciences Center, 533 Bolivar St. CSRB, New Orleans, LA 70112, USA; Bioinformatics and Genomics Program, 533 Bolivar St. CSRB, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Michael S Lan
- Department of Genetics, Louisiana State University Health Sciences Center, 533 Bolivar St. CSRB, New Orleans, LA 70112, USA.
| |
Collapse
|
18
|
Sanada M, Yamazaki M, Yamada T, Fujino K, Kudoh S, Tenjin Y, Saito H, Kudo N, Sato Y, Matsuo A, Suzuki M, Ito T. Heterogeneous expression and role of receptor tyrosine kinase-like orphan receptor 2 (ROR2) in small cell lung cancer. Hum Cell 2023; 36:409-420. [PMID: 36463543 DOI: 10.1007/s13577-022-00830-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/19/2022] [Indexed: 12/07/2022]
Abstract
The present study investigated the expression and role of ROR2 in small cell lung cancer (SCLC). To examine the expression of ROR2, 27 surgically resected SCLC tissue samples were immunostained for ROR2. Sixteen tissue samples were positive and some showed intratumor heterogeneity in staining intensity. The heterogeneity of ROR2 expression was also observed in tumor tissues from a PDX model of SCLC, in which there were cells with high ROR2 expression (ROR2high cells) and without its expression (ROR2low cells). These cells were subjected to a RNA sequence analysis. GSEA was performed and the results obtained revealed the enrichment of molecules such as G2M checkpoint, mitotic spindle, and E2F targets in ROR2high cells. The rate of EdU incorporation was significantly higher in ROR2high cells than ROR2low cells from the PDX model and the SCLC cell lines. Cell proliferation was suppressed in ROR2 KO SBC3 cells in vitro and in vivo. Comparisons of down-regulated differentially expressed genes in ROR2 KO SBC3 cells with up-regulated DEG in ROR2high cells from the PDX model revealed 135 common genes. After a Metascape analysis of these genes, we focused on Aurora kinases. In SCLC cell lines, the knockdown of ROR2 suppressed Aurora kinases. Therefore, ROR2 appears to regulate the cell cycle through Aurora kinases. The present results reveal a role for ROR2 in SCLC and afford a candidate system (ROR2-Aurora kinase) accompanying tumor heterogeneity in SCLC.
Collapse
Affiliation(s)
- Mune Sanada
- Department of Thoracic Surgery, Graduate School of Medical Science, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan.,Department of Pathology and Experimental Medicine, Graduate School of Medical Science, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Masaya Yamazaki
- Department of Medical Biochemistry, Graduate School of Medical Science, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Tatsuya Yamada
- Department of Thoracic Surgery, Graduate School of Medical Science, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Kosuke Fujino
- Department of Thoracic Surgery, Graduate School of Medical Science, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Shinji Kudoh
- Department of Pathology and Experimental Medicine, Graduate School of Medical Science, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Yuki Tenjin
- Department of Respiratory Medicine, Graduate School of Medical Science, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Haruki Saito
- Departments of Otolaryngology-Head and Neck Surgery, Graduate School of Medical Science, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Noritaka Kudo
- Department of Pathology and Experimental Medicine, Graduate School of Medical Science, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan.,Department of Pathology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Younosuke Sato
- Department of Pathology and Experimental Medicine, Graduate School of Medical Science, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Akira Matsuo
- Department of Pathology and Experimental Medicine, Graduate School of Medical Science, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan.,Department of Brain Morphology, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-Ku, Kumamoto, 860-0811, Japan
| | - Makoto Suzuki
- Department of Thoracic Surgery, Graduate School of Medical Science, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Takaaki Ito
- Department of Pathology and Experimental Medicine, Graduate School of Medical Science, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan. .,Department of Brain Morphology, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-Ku, Kumamoto, 860-0811, Japan. .,Department of Medical Technology, Faculty of Health Sciences, Kumamoto Health Science University, 325 Izumi, Kita-Ku, Kumamoto, Kumamoto, 861-5598, Japan.
| |
Collapse
|
19
|
Weissferdt A, Sepesi B, Ning J, Hermsen M, Ferrarotto R, Glisson B, Hanna E, Bell D. Optimal Combination of Neuroendocrine Markers for the Detection of High-Grade Neuroendocrine Tumors of the Sinonasal Tract and Lung. Curr Oncol Rep 2023; 25:1-10. [PMID: 36422794 DOI: 10.1007/s11912-022-01346-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Identification of neuroendocrine (NE) differentiation is critical to the classification of head and neck (HN) and lung tumors. In combination with tumor morphology, immunohistochemical (IHC) documentation of NE differentiation is necessary for the diagnosis of NE tumors. The purpose of this study is to determine the sensitivity and concordance of two novel NE markers (mASH1, INSM1) across a group of high-grade NE tumors of the sinonasal tract and lung, and to compare their expression with the current widespread use of conventional NE markers, synaptophysin (SYN) and chromogranin A (CGA). In addition, expression of PARP1 is examined as a potential novel therapeutic target. RECENT FINDINGS Thirty-nine high-grade NE tumors, 23 of the HN and 16 of the lung, were reevaluated by two subspecialized HN and thoracic pathologists, and subsequently stained with mASH1, INSM1, and PARP1. Sensitivity and degree of concordance of all possible combinations of markers were assessed. Sensitivities (standard error) were as follows: mASH1 41% (0.08), INSM1 44% (0.08), SYN 56% (0.08), and CGA 42% (0.09); combination of all four NE markers: 73% (0.08). Sensitivity and standard error for PARP1 was 90% and 0.05, respectively. Highest sensitivity to detect NE differentiation in high-grade NE tumors of the HN and thoracic region was achieved with a combination of four NE markers. Moderate concordance was found with combinations of mASH1 and INSM1 and traditional NE markers, respectively. Consistent overexpression of PARP1 in high-grade tumors with NE differentiation in the HN and lung opens eligibility for PARP1 inhibitor trials.
Collapse
Affiliation(s)
- Annikka Weissferdt
- Department of Pathology, MD Anderson Cancer Center, Houston, TX, USA.,Department of Thoracic Surgery, MD Anderson Cancer Center, Houston, TX, USA
| | - Boris Sepesi
- Department of Thoracic Surgery, MD Anderson Cancer Center, Houston, TX, USA
| | - Jing Ning
- Department of Biostatistics, MD Anderson Cancer Center, Houston, TX, USA
| | - Mario Hermsen
- Head and Neck Oncology, University Hospital of Oviedo, Oviedo, Spain
| | - Renata Ferrarotto
- Department of Head and Neck/Thoracic Medical Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Bonnie Glisson
- Department of Head and Neck/Thoracic Medical Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Ehab Hanna
- Department of Head and Neck Surgery, MD Anderson Cancer Center, Houston, TX, USA
| | - Diana Bell
- Department of Pathology and Head and Neck Disease Team Alignment, City of Hope Comprehensive Cancer Center, Duarte, CA, 91010, USA.
| |
Collapse
|
20
|
Kuji S, Endo A, Kubota M, Uekawa A, Kawakami F, Mikami Y, Koike J, Suzuki N. Immunosensitivity and specificity of insulinoma-associated protein 1 (INSM1) for neuroendocrine neoplasms of the uterine cervix. J Gynecol Oncol 2023; 34:e1. [PMID: 36245222 DOI: 10.3802/jgo.2023.34.e1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 08/19/2022] [Accepted: 08/29/2022] [Indexed: 11/07/2022] Open
Abstract
OBJECTIVE Previously, we reported that insulinoma-associated protein 1 (INSM1) immunohistochemistry (IHC) showed high sensitivity for neuroendocrine carcinoma of the uterine cervix and was an effective method for histopathological diagnosis, but that its specificity remained to be verified. Therefore, the aim was to verify the specificity of INSM1 IHC for a large number of non-neuroendocrine neoplasia (NEN) of the cervix. METHODS RNA sequences were performed for cell lines of small cell carcinoma (TCYIK), squamous cell carcinoma (SiHa), and adenocarcinoma (HeLa). A total of 104 cases of formalin-fixed and paraffin-embedded specimens, 16 cases of cervical NEN and 88 cases of cervical non-NEN, were evaluated immunohistochemically for conventional neuroendocrine markers and INSM1. All processes without antigen retrieval were performed by an automated IHC system. RESULTS The transcripts per million levels of INSM1 in RNA sequences were 1505 in TCYIK, 0 in SiHa, and HeLa. INSM1 immunoreactivity was shown only in the TCYIK. Immunohistochemical results showed that 15 cases of cervical NEN showed positive for INSM1; the positivity score of the tumor cell population and the stain strength for INSM1 were high. Two of the 88 cases of cervical non-NENs were positive for INSM1 in one case each of typical adenocarcinoma and squamous cell carcinoma. The sensitivity of INSM1 for cervical NEN was 94%; specificity, 98%; the positive predictive value, 88%; and the negative predictive value, 99%. CONCLUSION INSM1 is an adjunctive diagnostic method with excellent specificity and sensitivity for diagnosing cervical NEN. Higher specificity can be obtained if morphological evaluation is also performed.
Collapse
Affiliation(s)
- Shiho Kuji
- Department of Obstetrics and Gynecology, St. Marianna University School of Medicine, Kanagawa, Japan.
| | - Akira Endo
- Department of Pathology, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Manabu Kubota
- Department of Pathology, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Atsushi Uekawa
- Department of Obstetrics and Gynecology, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Fumi Kawakami
- Department of Diagnostic Pathology, Kumamoto University Hospital, Kumamoto, Japan
| | - Yoshiki Mikami
- Department of Diagnostic Pathology, Kumamoto University Hospital, Kumamoto, Japan
| | - Junki Koike
- Department of Pathology, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Nao Suzuki
- Department of Obstetrics and Gynecology, St. Marianna University School of Medicine, Kanagawa, Japan
| |
Collapse
|
21
|
Lenz J, Klubíčková N, Ptáková N, Hájková V, Grossmann P, Šteiner P, Kinkor Z, Švajdler M, Michal M, Konečná P, Macháčová D, Hurník P, Tichý M, Tichý F, Kyllar M, Fiala L, Kavka M, Michal M. Extraskeletal myxoid chondrosarcoma: A study of 17 cases focusing on the diagnostic utility of INSM1 expression and presenting rare morphological variants associated with non-EWSR1::NR4A3 fusions. Hum Pathol 2022; 134:19-29. [PMID: 36563884 DOI: 10.1016/j.humpath.2022.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/18/2022] [Accepted: 12/15/2022] [Indexed: 12/25/2022]
Abstract
Extraskeletal myxoid chondrosarcoma (EMC) is a rare sarcoma of uncertain lineage. Insulinoma-associated protein 1 (INSM1) has recently been described as a highly specific and sensitive immunohistochemical marker for EMC. The goal of this study was to evaluate the diagnostic significance of INSM1 immunohistochemistry in EMC. Furthermore, correlations between molecular and morphological findings were performed. Sixteen of 17 EMC cases were stained with the INSM1 antibody. Tumors with at least 5% INSM1-positive cells and any staining intensity were considered positive. Molecular testing was successfully performed in 12/17 cases. The immunohistochemical analysis detected 13 INSM1-positive (81%) and 3 INSM1-negative tumors (19%). The extent of the staining was classified as 1+ in 7 cases (44%), 2+ in 2 cases (13%), 3+ in 2 cases (13%) and 4+ in 2 cases (13%). Intensity of immunostaining was weak in 5 cases (31%), moderate in 2 cases (13%) and strong in 6 cases (38%). Molecular assays revealed 8 EWSR1::NR4A3 positive tumors (67%), 2 TAF15::NR4A3 positive tumors (17%), 1 TCF12::NR4A3 positive tumor (8%) and 1 NR4A3 positive tumor (8%) in which no other gene alteration was identified. Two of them, namely TCF12 positive and one TAF15 positive tumors, were highly cellular and partially associated with pseudopapillary architecture. Our study found that moderate/strong expression of INSM1 in more than 25% of tumor cells was present in only 31% of cases. Thus, the diagnostic utility of INSM1 is rather low. Two morphologically unique cases of non-EWSR1 rearranged EMC with an extremely rare pseudopapillary growth pattern are also reported.
Collapse
Affiliation(s)
- Jiří Lenz
- Department of Pathology, Znojmo Hospital, MUDr. Jana Janského 2675/11, 669 02 Znojmo, Czech Republic; Cytohisto S.r.o., Bří. Mrštíků 3065, 690 02 Břeclav, Czech Republic; Department of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Palackého Tř. 1946/1, 612 42 Brno, Czech Republic.
| | - Natálie Klubíčková
- Department of Pathology, Faculty of Medicine in Pilsen, Charles University, Husova 3, 301 00 Plzeň, Czech Republic; Bioptical Laboratory, Ltd., Mikulášské Nám. 4, 326 00 Pilsen, Czech Republic.
| | - Nikola Ptáková
- Bioptical Laboratory, Ltd., Mikulášské Nám. 4, 326 00 Pilsen, Czech Republic.
| | - Veronika Hájková
- Bioptical Laboratory, Ltd., Mikulášské Nám. 4, 326 00 Pilsen, Czech Republic.
| | - Petr Grossmann
- Bioptical Laboratory, Ltd., Mikulášské Nám. 4, 326 00 Pilsen, Czech Republic.
| | - Petr Šteiner
- Bioptical Laboratory, Ltd., Mikulášské Nám. 4, 326 00 Pilsen, Czech Republic.
| | - Zdeněk Kinkor
- Department of Pathology, Faculty of Medicine in Pilsen, Charles University, Husova 3, 301 00 Plzeň, Czech Republic; Bioptical Laboratory, Ltd., Mikulášské Nám. 4, 326 00 Pilsen, Czech Republic.
| | - Marián Švajdler
- Department of Pathology, Faculty of Medicine in Pilsen, Charles University, Husova 3, 301 00 Plzeň, Czech Republic; Bioptical Laboratory, Ltd., Mikulášské Nám. 4, 326 00 Pilsen, Czech Republic.
| | - Michal Michal
- Department of Pathology, Faculty of Medicine in Pilsen, Charles University, Husova 3, 301 00 Plzeň, Czech Republic; Bioptical Laboratory, Ltd., Mikulášské Nám. 4, 326 00 Pilsen, Czech Republic.
| | - Petra Konečná
- Department of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Palackého Tř. 1946/1, 612 42 Brno, Czech Republic.
| | - Dominika Macháčová
- Department of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Palackého Tř. 1946/1, 612 42 Brno, Czech Republic.
| | - Pavel Hurník
- Institute of Molecular and Clinical Pathology and Medical Genetics, Faculty of Medicine, University of Ostrava, Syllabova 19, 703 00 Ostrava, Czech Republic.
| | - Michal Tichý
- Department of Pathology, Masaryk Memorial Cancer Institute, Žlutý Kopec 543/7, 602 00, Brno, Czech Republic.
| | - František Tichý
- Department of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Palackého Tř. 1946/1, 612 42 Brno, Czech Republic.
| | - Michal Kyllar
- Institute of Morphology, Department of Pathobiology, University of Veterinary Medicine, Veterinärplatz 1, 1210 Vienna, Austria.
| | - Luděk Fiala
- Cytohisto S.r.o., Bří. Mrštíků 3065, 690 02 Břeclav, Czech Republic; Charles University Prague, First Faculty of Medicine, Kateřinská 1660/32, 121 08 Prague, Czech Republic.
| | - Miroslav Kavka
- Department of Surgery, Znojmo Hospital, MUDr. Jana Janského 2675/11, 669 02 Znojmo, Czech Republic.
| | - Michael Michal
- Department of Pathology, Faculty of Medicine in Pilsen, Charles University, Husova 3, 301 00 Plzeň, Czech Republic; Bioptical Laboratory, Ltd., Mikulášské Nám. 4, 326 00 Pilsen, Czech Republic.
| |
Collapse
|
22
|
Zhang Q, Dong Y, Zhou M, Guo Y, Lou L, Qu Z, Zheng Y, Duan Y. INSM1 Expression in Mesenchymal Tumors and Its Clinicopathological Significance. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1580410. [PMID: 36531655 PMCID: PMC9750778 DOI: 10.1155/2022/1580410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 11/03/2022] [Accepted: 11/17/2022] [Indexed: 04/11/2024]
Abstract
BACKGROUND Insulinoma-associated protein 1 (INSM1) has been identified as a nuclear marker of neuroendocrine tumors. Although INSM1 appears to be a subtle and specific biomarker for neuroendocrine tumor, its expression and clinicopathological significance in mesenchymal tumors remain unclear. METHODS We analyzed INSM1 mRNA level in GEO database and conducted immunohistological staining to detect the expression of INSM1 on 576 mesenchymal tumors from pathology department of Tongji Hospital. RESULTS At transcription level, INSM1 expression in AITL (angioimmunoblastic T-cell lymphoma) was higher than their adjacent normal tissues as well as Hodgkin's lymphoma. Moreover, INSM1 expression in well-differentiated liposarcoma (WDLPS) was significantly higher than normal fat (P = 0.014) and dedifferentiated liposarcoma (DDLPS) (P = 0.0248). At protein level, the positive rate of INSM1 in AITL was 18/48 (47.4%), while in DDLPS was 9/20 (45%). INSM1 expression in AITL was significantly higher than Hodgkin's lymphoma (P = 0.008). And INSM1 expression in WDLPS was significantly lower than DDLPS (P = 0.015). CONCLUSION The combination of GEO data and immunohistochemistry data indicated that the expression level of INSM1 was higher in AITL compared with normal control, suggesting that INSM1 may be involved in pathogenesis of AITL. The abnormal expression of INSM1 was found in WDLPS, and the positive rate of INSM1 was higher in DDLPS than in WDLPS. INSM1 may be involved in the regulation of liposarcoma development. There were significant differences in the expression of INSM1 between AITL and Hodgkin's lymphoma and WDLPS and DDLPS. These findings may assist in the differential diagnosis of these tumors when common markers are difficult to identify, enriching the diagnostic index system of mesenchymal tumors.
Collapse
Affiliation(s)
- Qian Zhang
- Institute of Pathology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430000, China
- Department of Pathology, School of Basic Medical Science, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Yuting Dong
- Institute of Pathology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430000, China
- Department of Pathology, School of Basic Medical Science, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Meidong Zhou
- Institute of Pathology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Yujuan Guo
- Institute of Pathology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430000, China
- Department of Pathology, School of Basic Medical Science, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Liping Lou
- Institute of Pathology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Zhiling Qu
- Institute of Pathology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430000, China
- Department of Pathology, School of Basic Medical Science, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Yiyun Zheng
- Institute of Pathology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430000, China
- Department of Pathology, School of Basic Medical Science, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Yaqi Duan
- Institute of Pathology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430000, China
- Department of Pathology, School of Basic Medical Science, Huazhong University of Science and Technology, Wuhan 430000, China
| |
Collapse
|
23
|
Kashima J, Hashimoto T, Yoshida A, Goto Y, Ushiku T, Ohe Y, Watanabe SI, Yatabe Y. Insulinoma-associated-1 (INSM1) expression in thymic squamous cell carcinoma. Virchows Arch 2022; 481:893-901. [PMID: 36305944 DOI: 10.1007/s00428-022-03437-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/05/2022] [Accepted: 10/17/2022] [Indexed: 12/14/2022]
Abstract
Thymic squamous cell carcinoma (TSC) presents distinct immunohistochemical features with its expression of CD5 and CD117, both of which are rarely expressed in squamous cell carcinoma in other organs. We found insulinoma-associated-1 (INSM1) expression in some TSCs; thus, a series of thymic tumors were examined retrospectively. Using surgically resected thymic tumors (TSC, n = 35; thymic atypical carcinoid [TAC], n = 4; and thymoma, n = 112) and non-neoplastic thymic tissue (n = 26), we evaluated immunohistochemically the expressions of INSM1, ASCL1, SOX2, NE markers (synaptophysin, chromogranin A, and CD56), and conventional TSC markers (CD5 and CD117). INSM1 was expressed in 22 TSCs (63%), whereas the positive frequencies of synaptophysin, chromogranin A, and CD56 were limited to 13, 10, and 1 cases, respectively. The discordance was highly contrasted with concordantly positive TACs. INSM1 and NE makers were rarely expressed in thymomas. INSM1 expression in TSCs was also associated with CD5 expression, which was significantly less frequent in INSM1-negative TSCs. INSM1, ASCL1, and SOX2 expressions were correlated with one another, but none of the single transcription factors or their combinations is associated with NE expression. The non-neoplastic medullary thymic epithelium was dispersedly positive for INSM1, particularly around Hassall's corpuscles. Despite positive INSM1, a significant decrease in the frequency of NE maker expression may present as a diagnostic pitfall in TSCs. Furthermore, the discordance, which was inherent in the non-neoplastic thymic epithelium, might be a characteristic feature in TSCs.
Collapse
Affiliation(s)
- Jumpei Kashima
- Department of Diagnostic Pathology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan.,Department of Pathology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Taiki Hashimoto
- Department of Diagnostic Pathology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Akihiko Yoshida
- Department of Diagnostic Pathology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Yasushi Goto
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Tetsuo Ushiku
- Department of Pathology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Yuichiro Ohe
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Shun-Ichi Watanabe
- Department of Thoracic Surgery, National Cancer Center Hospital, Tokyo, Japan
| | - Yasushi Yatabe
- Department of Diagnostic Pathology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan.
| |
Collapse
|
24
|
Co-Expression of Adaptor Protein FAM159B with Different Markers for Neuroendocrine Cells: An Immunocytochemical and Immunohistochemical Study. Int J Mol Sci 2022; 23:ijms232113503. [DOI: 10.3390/ijms232113503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/23/2022] [Accepted: 11/03/2022] [Indexed: 11/06/2022] Open
Abstract
Little is known about the adaptor protein FAM159B. Recently, FAM159B was shown to be particularly expressed in neuroendocrine cells and tissues, such as pancreatic islets and neuroendocrine cells of the bronchopulmonary and gastrointestinal tracts, as well as in different types of neuroendocrine tumours. To gain insights into possible interactions of FAM159B with other proteins and/or receptors, we analysed the co-expression of FAM159B and various neuroendocrine-specific markers in the cancer cell lines BON-1, PC-3, NCI-h82, OH-1, and A431 and also in human pancreatic tissues and pancreatic neuroendocrine tumours. The markers included prominent markers of neuroendocrine differentiation, such as chromogranin A (CgA), neuron-specific enolase (NSE), synaptophysin (SYP), insulinoma-associated protein 1 (INSM1), neural cell adhesion molecule 1 (NCAM1), serotonin (5-HT), somatostatin-14/28 (SST), and several receptors that are typically expressed by neuroendocrine cells, such as dopamine receptor 2 (D2R), somatostatin receptor (SSTR) 1, 2, 3, 4 and 5, and regulator of G-protein signalling 9 (RGS9). FAM159B was expressed evenly throughout the cytosol in all five cancer cell lines. Immunocytochemical and immunohistochemical analyses revealed co-expression of FAM159B with SYP, INSM1, RGS9, D2R, SSTR2, SSTR3, SSTR4, and SSTR5 and strong overlapping co-localisation with NSE. Double-labelling and co-immunoprecipitation Western blot analyses confirmed a direct association between FAM159B and NSE. These results suggest the involvement of FAM159B in several intracellular signalling pathways and a direct or indirect influence on diverse membrane proteins and receptors.
Collapse
|
25
|
Chen C, Lan MS. Interplay: The Essential Role between INSM1 and N-Myc in Aggressive Neuroblastoma. BIOLOGY 2022; 11:biology11101376. [PMID: 36290282 PMCID: PMC9598261 DOI: 10.3390/biology11101376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/24/2022]
Abstract
Simple Summary Neuroblastoma (NB) is a cancer that starts in certain very early forms of nerve cells of the sympathetic nervous system, most often found in an embryo or fetus. Symptoms may include bone pain, an abdominal mass, frequent urination, limping, anemia, spinal cord weakness, or bruising of the eye area. N-Myc is a key driver of high-risk NB. An elevated expression of N-Myc often predicts a poorer prognosis, in both time to tumor progression and overall survival rate. We discovered a transcription factor, insulinoma-associated-1 (INSM1), as the downstream target gene of N-Myc. INSM1 has emerged as a novel NB biomarker that plays a critical role in facilitating NB tumor cell development. Both N-Myc and INSM1 demonstrate high clinical relevance to NB. Therefore, further understanding the association of INSM1 and N-Myc functions in aggressive NB should be beneficial for future NB treatment. Abstract An aggressive form of neuroblastoma (NB), a malignant childhood cancer derived from granule neuron precursors and sympathoadrenal lineage, frequently comprises MYCN amplification/elevated N-Myc expression, which contributes to the development of neural crest-derived embryonal malignancy. N-Myc is an oncogenic driver in NB. Persistent N-Myc expression during the maturation of SA precursor cells can cause blockage of the apoptosis and induce abnormal proliferation, resulting in NB development. An insulinoma-associated-1 (INSM1) zinc-finger transcription factor has emerged as an NB biomarker that plays a critical role in facilitating tumor cell growth and transformation. INSM1 plays an essential role in sympathoadrenal cell differentiation. N-Myc activates endogenous INSM1 through an E2-box of the INSM1 proximal promoter, whereas INSM1 enhances N-Myc stability via RAC-α-serine/threonine protein kinase (AKT) phosphorylation in NB. The ectopic expression of INSM1 stimulates NB tumor growth in contrast to the knockdown of INSM1 that inhibits NB cell proliferation. The clinical pathological result and bioinformatics analysis show that INSM1 is a strong diagnostic and a prognostic biomarker for the evaluation of NB progression. The INSM1/N-Myc expression shows high clinical relevance in NB. Therefore, targeting the INSM1/N-Myc-associated signaling axis should be a feasible approach to identifying new drugs for the suppression of NB tumor growth.
Collapse
Affiliation(s)
| | - Michael S. Lan
- Correspondence: ; Tel.: +1-504-568-2437; Fax: +1-504-568-8500
| |
Collapse
|
26
|
Insulinoma-Associated Protein 1 (INSM1): Diagnostic, Prognostic, and Therapeutic Use in Small Cell Lung Cancer. JOURNAL OF MOLECULAR PATHOLOGY 2022. [DOI: 10.3390/jmp3030013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Small cell lung carcinoma (SCLC) is an aggressive and difficult to treat cancer. Although immunohistochemistry is not mandatory for a SCLC diagnosis, it might be required, especially in small samples. Insulinoma-associated protein 1 (INSM1) is expressed in endocrine and nervous tissues during embryogenesis, generally absent in adults and re-expressed in SCLC and other neuroendocrine neoplasms. Its high specificity propelled its use as diagnostic biomarker and an attractive therapeutic target. Herein, we aim to provide a systematic and critical review on the use of INSM1 for diagnosis, prognostication and the treatment of SCLC. An extensive bibliographic search was conducted in PubMed® focusing on articles published since 2015. According to the literature, INSM1 is a highly sensitive (75–100%) and specific (82–100%) neuroendocrine immunohistochemical marker for SCLC diagnosis. It can be used in histological and cytological samples. Although advantageous, its standalone use is currently not recommended. Studies correlating INSM1 expression and prognosis have disclosed contrasting results, although the expression seemed to entail a worse survival. Targeting INSM1 effectively suppressed SCLC growth either as a suicide gene therapy regulator or as an indirect target of molecular-targeted therapy. INSM1 represents a valuable biomarker for a SCLC diagnosis that additionally offers vast opportunities for the development of new prognostic and therapeutic strategies.
Collapse
|
27
|
Iida Y, Nakanishi Y, Shimizu T, Nomoto M, Nakagawa Y, Ito R, Takahashi N, Masuda S, Gon Y. Comprehensive genetic analysis of histological components of combined small cell carcinoma. Thorac Cancer 2022; 13:2362-2370. [PMID: 35815661 PMCID: PMC9376179 DOI: 10.1111/1759-7714.14574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/19/2022] [Accepted: 06/20/2022] [Indexed: 11/29/2022] Open
Abstract
Background Combined small‐cell lung cancer (cSCLC) is a rare type of small‐cell lung cancer (SCLC) that includes both SCLC and non‐small‐cell lung cancer (NSCLC). The molecular biological mechanisms underlying the heterogeneity of histological types in combined or metachronously transformed SCLC (mtSCLC) remain unclear. This study aimed to investigate the relationship between genetic alterations and each histological component heterogeneously detected in cSCLC and mtSCLC. Methods This study included four cSCLC cases and one mtSCLC case. Formalin‐fixed and paraffin‐embedded sections of each histological component of these tumors were subjected to next‐generation sequencing (NGS) and quantitative reverse transcription‐polymerase chain reaction to investigate the genetic mutations and expression levels of neuroendocrine cell‐specific transcription factors (achaete‐scute homolog‐1 [ASCL1], brain‐2 [BRN2] also known as POU domain class 3 transcription factor 2, nuclear factor 1 B [NF1B], insulinoma‐associated protein 1 [INSM1], and thyroid transcription factor‐1 [TTF‐1]). Results NGS analysis revealed that SCLC and NSCLC components share the same somatic mutations detected most frequently in TP53, and also in RB1 and EGFR. Gene expression analysis showed ASCL1 expression was significantly lower in the NSCLC component than in the SCLC component. Conclusion We conclude that the morphological evolution of heterogeneous histological components in cSCLC may be associated with differences in ASCL1 expression levels, but not in acquired somatic gene mutations.
Collapse
Affiliation(s)
- Yuko Iida
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Yoko Nakanishi
- Division of Oncologic Pathology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Tetsuo Shimizu
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Masayuki Nomoto
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Yoshiko Nakagawa
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Reiko Ito
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Noriaki Takahashi
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Shinobu Masuda
- Division of Oncologic Pathology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Yasuhiro Gon
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
28
|
Miyakawa K, Miyashita N, Horie M, Terasaki Y, Tanaka H, Urushiyama H, Fukuda K, Okabe Y, Ishii T, Kuwahara N, Suzuki HI, Nagase T, Saito A. ASCL1 regulates super-enhancer-associated miRNAs to define molecular subtypes of small cell lung cancer. Cancer Sci 2022; 113:3932-3946. [PMID: 35789143 PMCID: PMC9633298 DOI: 10.1111/cas.15481] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 11/29/2022] Open
Abstract
Small cell lung cancer (SCLC) is a highly aggressive neuroendocrine tumor with dismal prognosis. Recently, molecular subtypes of SCLC have been defined by the expression status of ASCL1, NEUROD1, YAP1, and POU2F3 transcription regulators. ASCL1 is essential for neuroendocrine differentiation and is expressed in the majority of SCLC. Although previous studies investigated ASCL1 target genes in SCLC cells, ASCL1‐mediated regulation of miRNAs and its relationship to molecular subtypes remain poorly explored. Here, we performed genome‐wide profiling of chromatin modifications (H3K27me3, H3K4me3, and H3K27ac) by CUT&Tag assay and ASCL1 knockdown followed by RNA sequencing and miRNA array analyses in SCLC cells. ASCL1 could preferentially regulate genes associated with super‐enhancers (SEs) defined by enrichment of H3K27ac marking. Moreover, ASCL1 positively regulated several SE‐associated miRNAs, such as miR‐7, miR‐375, miR‐200b‐3p, and miR‐429, leading to repression of their targets, whereas ASCL1 suppressed miR‐455‐3p, an abundant miRNA in other molecular subtypes. We further elucidated unique patterns of SE‐associated miRNAs in different SCLC molecular subtypes, highlighting subtype‐specific miRNA networks with functional relevance. Notably, we found apparent de‐repression of common target genes of different miRNAs following ASCL1 knockdown, suggesting combinatorial action of multiple miRNAs underlying molecular heterogeneity of SCLC (e.g., co‐targeting of YAP1 by miR‐9 and miR‐375). Our comprehensive analyses provide novel insights into SCLC pathogenesis and a clue to understanding subtype‐dependent phenotypic differences.
Collapse
Affiliation(s)
- Kazuko Miyakawa
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Naoya Miyashita
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masafumi Horie
- Department of Molecular and Cellular Pathology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Yasuhiro Terasaki
- Department of Analytic Human Pathology, Nippon Medical School, Tokyo, Japan
| | - Hidenori Tanaka
- Department of Molecular and Cellular Pathology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan.,Department of Otorhinolaryngology-Head and Neck Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hirokazu Urushiyama
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kensuke Fukuda
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yugo Okabe
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takashi Ishii
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Division for Health Service Promotion, The University of Tokyo, Tokyo, Japan
| | - Naomi Kuwahara
- Department of Analytic Human Pathology, Nippon Medical School, Tokyo, Japan
| | - Hiroshi I Suzuki
- Division of Molecular Oncology, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Institute for Glyco-core Research (iGCORE), Nagoya, Japan
| | - Takahide Nagase
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Akira Saito
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
29
|
Masawa M, Sato-Yazawa H, Kashiwagi K, Ishii J, Miyata-Hiramatsu C, Iwamoto M, Kohno K, Miyazawa T, Onozaki M, Noda S, Shimizu Y, Niho S, Yazawa T. REST Inactivation and Coexpression of ASCL1 and POU3F4 Are Necessary for the Complete Transformation of RB1/TP53-Inactivated Lung Adenocarcinoma into Neuroendocrine Carcinoma. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:847-861. [PMID: 35367201 DOI: 10.1016/j.ajpath.2022.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/22/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Although recent reports have revealed the importance of the inactivation of both RB1 and TP53 in the transformation from lung adenocarcinoma into neuroendocrine carcinoma (NEC), the requirements for complete transformation into NEC have not been elucidated. To investigate alterations in the characteristics associated with the inactivation of RB1/TP53 and define the requirements for transformation into NEC cells, RB1/TP53 double-knockout A549 lung adenocarcinoma cells were established, and additional knockout of REST and transfection of ASCL1 and POU class 3 homeobox transcription factors (TFs) was conducted. More than 60 genes that are abundantly expressed in neural cells and several genes associated with epithelial-to-mesenchymal transition were up-regulated in RB1/TP53 double-knockout A549 cells. Although the expression of chromogranin A and synaptophysin was induced by additional knockout of REST (which mimics the status of most NECs), the expression of another neuroendocrine marker, CD56, and proneural TFs was not induced. However, coexpression of ASCL1 and POU3F4 in RB1/TP53/REST triple-knockout A549 cells induced the expression of not only CD56 but also other proneural TFs (NEUROD1 and insulinoma-associated 1) and induced NEC-like morphology. These findings suggest that the inactivation of RB1 and TP53 induces a state necessary for the transformation of lung adenocarcinoma into NEC and that further inactivation of REST and coexpression of ASCL1 and POU3F4 are the triggers for complete transformation into NEC.
Collapse
Affiliation(s)
- Meitetsu Masawa
- Department of Respiratory Medicine, Dokkyo Medical University School of Medicine and Graduate School of Medicine, Mibu-machi, Japan
| | - Hanako Sato-Yazawa
- Department of Pathology, Dokkyo Medical University School of Medicine and Graduate School of Medicine, Mibu-machi, Japan.
| | - Korehito Kashiwagi
- Department of Pathology, Dokkyo Medical University School of Medicine and Graduate School of Medicine, Mibu-machi, Japan
| | - Jun Ishii
- Department of Pathology, Dokkyo Medical University School of Medicine and Graduate School of Medicine, Mibu-machi, Japan
| | - Chie Miyata-Hiramatsu
- Department of Pathology, Dokkyo Medical University School of Medicine and Graduate School of Medicine, Mibu-machi, Japan
| | - Masami Iwamoto
- Department of Pathology, Dokkyo Medical University School of Medicine and Graduate School of Medicine, Mibu-machi, Japan; Department of Pathology, The Jikei University School of Medicine, Minato-ku, Japan
| | - Kakeru Kohno
- Department of Pathology, Dokkyo Medical University School of Medicine and Graduate School of Medicine, Mibu-machi, Japan; Institute of Life Innovation Studies, Toyo University, Itakura-machi, Japan
| | - Tadasuke Miyazawa
- Department of Pathology, Dokkyo Medical University School of Medicine and Graduate School of Medicine, Mibu-machi, Japan
| | - Masato Onozaki
- Department of Diagnostic Pathology, Dokkyo Medical University School of Medicine and Graduate School of Medicine, Mibu-machi, Japan
| | - Shuhei Noda
- Department of Diagnostic Pathology, Dokkyo Medical University School of Medicine and Graduate School of Medicine, Mibu-machi, Japan
| | - Yasuo Shimizu
- Department of Respiratory Medicine, Dokkyo Medical University School of Medicine and Graduate School of Medicine, Mibu-machi, Japan
| | - Seiji Niho
- Department of Respiratory Medicine, Dokkyo Medical University School of Medicine and Graduate School of Medicine, Mibu-machi, Japan
| | - Takuya Yazawa
- Department of Pathology, Dokkyo Medical University School of Medicine and Graduate School of Medicine, Mibu-machi, Japan.
| |
Collapse
|
30
|
Liang J, Guan X, Bao G, Yao Y, Zhong X. Molecular subtyping of small cell lung cancer. Semin Cancer Biol 2022; 86:450-462. [DOI: 10.1016/j.semcancer.2022.05.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 01/12/2023]
|
31
|
Abstract
Small cell lung cancer (SCLC) is a rapidly growing, highly metastatic, and relatively immune-cold lung cancer subtype. Historically viewed in the laboratory and clinic as a single disease, new discoveries suggest that SCLC comprises multiple molecular subsets. Expression of MYC family members and lineage-related transcription factors ASCL1, NEUROD1, and POU2F3 (and, in some studies, YAP1) define unique molecular states that have been associated with distinct responses to a variety of therapies. However, SCLC tumors exhibit a high degree of intratumoral heterogeneity, with recent studies suggesting the existence of tumor cell plasticity and phenotypic switching between subtype states. While SCLC plasticity is correlated with, and likely drives, therapeutic resistance, the mechanisms underlying this plasticity are still largely unknown. Subtype states are also associated with immune-related gene expression, which likely impacts response to immune checkpoint blockade and may reveal novel targets for alternative immunotherapeutic approaches. In this review, we synthesize recent discoveries on the mechanisms of SCLC plasticity and how these processes may impinge on antitumor immunity.
Collapse
Affiliation(s)
- Kate D Sutherland
- Australian Cancer Research Foundation (ACRF) Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Abbie S Ireland
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | - Trudy G Oliver
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| |
Collapse
|
32
|
Ito T, Kudoh S, Fujino K, Sanada M, Tenjin Y, Saito H, Nakaishi-Fukuchi Y, Kameyama H, Ichimura T, Udaka N, Kudo N, Matsuo A, Sato Y. Pulmonary Neuroendocrine Cells and Small Cell Lung Carcinoma: Immunohistochemical Study Focusing on Mechanisms of Neuroendocrine Differentiation. Acta Histochem Cytochem 2022; 55:75-83. [PMID: 35821751 PMCID: PMC9253501 DOI: 10.1267/ahc.22-00031] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 04/12/2022] [Indexed: 12/03/2022] Open
Abstract
Neuroendocrine (NE) differentiation has been histochemically detected in normal and cancer tissues and cells. Immunohistochemical analyses have provided a more detailed understanding of NE biology and pathology. Pulmonary NE cells are a rare lung epithelial type, and small cell carcinoma of the lung (SCLC) is a high-grade NE tumor. Pulmonary NE and SCLC cells share common mechanisms for NE differentiation. Neural or NE cell lineage-specific transcription factors, such as achaete-scute homologue 1 (Ascl1) and insulinoma-associated protein 1 (INSM1), are crucial for the development of pulmonary NE cells, and NE differentiation is influenced by the balance between Ascl1 and the suppressive neural transcription factor, hairy-enhancer of split 1, a representative target molecule of the Notch signaling pathway. In this review, we discuss the importance of Ascl1 and INSM1 in identifying pulmonary NE and SCLC cells and introduce Ascl1-related molecules detected by comparative RNA-sequence analyses. The molecular classification of SCLC based on the expression of lineage-specific transcription or co-transcription factors, including ASCL1, NEUROD1, POU2F3, and YAP1, was recently proposed. We attempted to characterize these 4 SCLC subtypes using integrated immunohistochemical studies, which will provide insights into the molecular characteristics of these subtypes and clarify the inter- and intratumor heterogeneities of SCLC.
Collapse
Affiliation(s)
- Takaaki Ito
- Department of Medical Technology, Faculty of Health Science Kumamoto Health Science University
| | - Shinji Kudoh
- Department of Pathology and Experimental Medicine, Kumamoto University Graduate School of Medical Sciences
| | - Kosuke Fujino
- Department of Pathology and Experimental Medicine, Kumamoto University Graduate School of Medical Sciences
| | - Mune Sanada
- Department of Pathology and Experimental Medicine, Kumamoto University Graduate School of Medical Sciences
| | - Yuki Tenjin
- Department of Pathology and Experimental Medicine, Kumamoto University Graduate School of Medical Sciences
| | - Haruki Saito
- Department of Pathology and Experimental Medicine, Kumamoto University Graduate School of Medical Sciences
| | - Yuko Nakaishi-Fukuchi
- Department of Medical Technology, Faculty of Health Science Kumamoto Health Science University
| | - Hiroki Kameyama
- Department of Medical Technology, Faculty of Health Science Kumamoto Health Science University
| | | | - Naoko Udaka
- Division of Surgical Pathology, Yokohama City University Hospital
| | - Noritaka Kudo
- Department of Pathology and Experimental Medicine, Kumamoto University Graduate School of Medical Sciences
| | - Akira Matsuo
- Department of Pathology and Experimental Medicine, Kumamoto University Graduate School of Medical Sciences
| | - Younosuke Sato
- Department of Pathology and Experimental Medicine, Kumamoto University Graduate School of Medical Sciences
| |
Collapse
|
33
|
Righi L, Volante M, Papotti M. Small-Cell Carcinoma of the Lung: What We Learned about It? Acta Cytol 2021; 66:257-268. [PMID: 34784591 DOI: 10.1159/000519688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 09/14/2021] [Indexed: 12/14/2022]
Abstract
Small-cell lung carcinoma (SCLC) is a high-grade aggressive disease that belongs to the neuroendocrine (NE) group of lung tumors that also includes typical carcinoid, atypical carcinoid, and large-cell NE carcinoma. SCLC has specific histological diagnostic criteria that are sometimes troublesome to be assessed in cytological samples that indeed represent the most frequent source of diagnostic material due to the typical advanced presentation at the onset of SCLC. However, cytological preparations could be in some instances more reliable than histology due to the better preservation of nuclear details. Cytological criteria for diagnosis of SCLC include high cellularity, small cell size, scant cytoplasm, coarsely granulated chromatin with "salt-and-pepper" appearance, inconspicuous or absent nucleoli, Azzopardi crush effect, and necrotic debris in the background. Despite being distinctive, these features could be incomplete to differentiate SCLC with other small-cell neoplasia. Therefore, immunocytochemical determination of diagnostic biomarkers is crucial to achieve a confident diagnosis. Furthermore, recent findings on molecular and transcriptomic studies of SCLC revealed the potential rise of new predictive and prognostic biomarkers that, whenever validated by immunocytochemistry, may potentially assist to tailor the best therapy, including immune checkpoint inhibition.
Collapse
Affiliation(s)
- Luisella Righi
- Pathology Unit, Department of Oncology, University of Torino at San Luigi Hospital, Orbassano (Torino), Italy
| | - Marco Volante
- Pathology Unit, Department of Oncology, University of Torino at San Luigi Hospital, Orbassano (Torino), Italy
| | - Mauro Papotti
- Pathology Unit, Department of Oncology, University of Torino at City of Health and Science, Torino, Italy,
| |
Collapse
|
34
|
Ciobanu OA, Martin S, Fica S. Perspectives on the diagnostic, predictive and prognostic markers of neuroendocrine neoplasms (Review). Exp Ther Med 2021; 22:1479. [PMID: 34765020 PMCID: PMC8576627 DOI: 10.3892/etm.2021.10914] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/23/2021] [Indexed: 12/15/2022] Open
Abstract
Neuroendocrine neoplasms (NENs) are a heterogeneous group of rare tumors with different types of physiology and prognosis. Therefore, prognostic information, including morphological differentiation, grade, tumor stage and primary location, are invaluable and contribute to the formulation of treatment decisions. Biomarkers that are currently used, including chromogranin A (CgA), serotonin and neuron-specific enolase, are singular parameters that cannot be used to accurately predict variables associated with tumor growth, including proliferation, metabolic rate and metastatic potential. In addition, site-specific biomarkers, such as insulin and gastrin, cannot be applied to all types of NENs. The clinical application of broad-spectrum markers, as it is the case for CgA, remains controversial despite being widely used. Due to limitations of the currently available mono-analyte biomarkers, recent studies were conducted to explore novel parameters for NEN diagnosis, prognosis, therapy stratification and evaluation of treatment response. Identification of prognostic factors for predicting NEN outcome is a critical requirement for the planning of adequate clinical management. Advances in ‘liquid’ biopsies and genomic analysis techniques, including microRNA, circulating tumor DNA or circulating tumor cells and sophisticated biomathematical analysis techniques, such as NETest or molecular image-based biomarkers, are currently under investigation as potentially novel tools for the management of NENs in the future. Despite these recent findings yielding promising observations, further research is necessary. The present review therefore summarizes the existing knowledge and recent advancements in the exploration of biochemical markers for NENs, with focus on gastroenteropancreatic-neuroendocrine tumors.
Collapse
Affiliation(s)
- Oana Alexandra Ciobanu
- Department of Endocrinology and Diabetes, Elias Hospital, 011461 Bucharest, Romania.,Department of Endocrinology, Carol Davila University of Medicine and Pharmacy, 20021 Bucharest, Romania
| | - Sorina Martin
- Department of Endocrinology and Diabetes, Elias Hospital, 011461 Bucharest, Romania.,Department of Endocrinology, Carol Davila University of Medicine and Pharmacy, 20021 Bucharest, Romania
| | - Simona Fica
- Department of Endocrinology and Diabetes, Elias Hospital, 011461 Bucharest, Romania.,Department of Endocrinology, Carol Davila University of Medicine and Pharmacy, 20021 Bucharest, Romania
| |
Collapse
|
35
|
A Novel Strategy for the Diagnosis of Pulmonary High-Grade Neuroendocrine Tumor. Diagnostics (Basel) 2021; 11:diagnostics11111945. [PMID: 34829292 PMCID: PMC8625242 DOI: 10.3390/diagnostics11111945] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/05/2021] [Accepted: 10/15/2021] [Indexed: 01/04/2023] Open
Abstract
Correctly diagnosing a histologic type of lung cancer is important for selecting the appropriate treatment because the aggressiveness, chemotherapy regimen, surgical approach, and prognosis vary significantly among histologic types. Pulmonary NETs, which are characterized by neuroendocrine morphologies, represent approximately 20% of all lung cancers. In particular, high-grade neuroendocrine tumors (small cell lung cancer and large cell neuroendocrine tumor) are highly proliferative cancers that have a poorer prognosis than other non-small cell lung cancers. The combination of hematoxylin and eosin staining, Ki-67, and immunostaining of classic neuroendocrine markers, such as chromogranin A, CD56, and synaptophysin, are normally used to diagnose high-grade neuroendocrine tumors; however, they are frequently heterogeneous. This article reviews the diagnostic methods of lung cancer diagnosis focused on immunostaining. In particular, we describe the usefulness of immunostaining by Stathmin-1, which is a cytosolic phosphoprotein and a key regulator of cell division due to its microtubule depolymerization in a phosphorylation-dependent manner, for the diagnosis of high-grade neuroendocrine tumors.
Collapse
|
36
|
ASCL1, NKX2-1, and PROX1 co-regulate subtype-specific genes in small-cell lung cancer. iScience 2021; 24:102953. [PMID: 34466783 PMCID: PMC8384902 DOI: 10.1016/j.isci.2021.102953] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 07/05/2021] [Accepted: 08/02/2021] [Indexed: 12/20/2022] Open
Abstract
Lineage-defining transcription factors (LTFs) play key roles in small-cell lung cancer (SCLC) pathophysiology. Delineating the LTF-regulated genes operative in SCLC could provide a road map to identify SCLC dependencies. We integrated chromatin landscape and transcriptome analyses of patient-derived SCLC preclinical models to identify super-enhancers (SEs) and their associated genes in the ASCL1-, NEUROD1-, and POU2F3-high SCLC subtypes. We find SE signatures predict LTF-based classification of SCLC, and the SE-associated genes are enriched with those defined as common essential genes in DepMap. In addition, in ASCL1-high SCLC, we show ASCL1 complexes with NKX2-1 and PROX1 to co-regulate genes functioning in NOTCH signaling, catecholamine biosynthesis, and cell-cycle processes. Depletion of ASCL1 demonstrates it is a key dependency factor in preclinical SCLC models and directly regulates multiple DepMap-defined essential genes. We provide LTF/SE-based subtype-specific gene sets for SCLC for further therapeutic investigation. Super-enhancers support lineage-defining transcription factor SCLC classification SCLC super-enhancer-associated genes represent essential and lineage-identity genes ASCL1, NKX2-1, and PROX1 proteins interact in a complex in SCLC-A ASCL1, NKX2-1, and PROX1 regulate Notch-signaling, NE-specific, and cell-cycle genes
Collapse
|
37
|
Ting CH, Wang TY, Wu PS. Insulinoma-associated Protein 1 Expression and Its Diagnostic Significance in Female Genital Tract Neuroendocrine Carcinomas. Int J Gynecol Pathol 2021; 40:452-459. [PMID: 33323849 DOI: 10.1097/pgp.0000000000000722] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Neuroendocrine carcinomas (NECs) are rare, but aggressive malignant tumors of the female genital tract, especially in the uterine the cervix. Beside histologic morphology, positivity of neuroendocrine markers with immunohistochemistry plays an important role in diagnosis of NECs. Insulinoma-associated protein 1 (INSM1) is a novel marker reported to be widely expressed in a variety of neuroendocrine tumors. A previous study also suggested INSM1 has superior performance to conventional neuroendocrine markers in cervical NECs. In our present study, comparison between immunomarkers was performed in female genital tract NECs. Forty-nine patients with gynecologic NECs (4 vagina, 39 cervix, 5 endometrium, 1 ovary) were included from 1993 to 2019 at our center. Immunohistochemistry was performed with INSM1, CD56, synaptophysin (SYN), chromogranin-A (CgA), and thyroid transcription factor 1 (TTF1). The results show INSM1 has superior sensitivity and intensity compared with CD56, SYN, CgA, and TTF1 in cervical small cell NECs, but not in large cell NECs. In contrast to cervical NECs, INSM1 immunohistochemistry shows only focal and weak staining in endometrial NECs. Our result suggested INSM1 is a sensitive marker which can be used as first-line test in histologic suspicious cervical cases, especially small cell NECs. However, negative INSM1 stain does not exclude the possibility of NECs. In endometrial NECs, conventional panel with CD56, SYN, CgA has better diagnostic performance than INSM1 alone.
Collapse
|
38
|
Bai R, Li L, Chen X, Zhao Y, Song W, Tian H, Cui J. Advances in novel molecular typing and precise treatment strategies for small cell lung cancer. Chin J Cancer Res 2021; 33:522-534. [PMID: 34584377 PMCID: PMC8435821 DOI: 10.21147/j.issn.1000-9604.2021.04.09] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022] Open
Abstract
Small cell lung cancer (SCLC) is a high-grade neuroendocrine (NE) cancer characterized by high circulating tumor-cell burden and early extensive metastasis. Considering the complexity of SCLC genes and the immune microenvironment, their unique molecular heterogeneity profiles have been continuously explored. The understanding of SCLC subtypes has recently changed from traditional "classical" and "variant" types to "NE" and "non-NE" phenotypes and to the subtypes defined by major transcriptional regulators, which indicates the gradual revelation of high intratumoral heterogeneity and plasticity characteristics of SCLCs. Advances in genomics as well as the development of single-cell sequencing analysis and new preclinical models have helped investigators gain many new insights into SCLCs and the development of targeted therapy and immunotherapy strategies. This article provides an overview of changes in molecular typing, tumor heterogeneity, and plasticity and that of advances in the precise treatment of different subtypes of SCLC.
Collapse
Affiliation(s)
- Rilan Bai
- Cancer Center, the First Hospital of Jilin University, Changchun 130021, China
| | - Lingyu Li
- Cancer Center, the First Hospital of Jilin University, Changchun 130021, China
| | - Xiao Chen
- Cancer Center, the First Hospital of Jilin University, Changchun 130021, China
| | - Yuguang Zhao
- Cancer Center, the First Hospital of Jilin University, Changchun 130021, China
| | - Wei Song
- Cancer Center, the First Hospital of Jilin University, Changchun 130021, China
| | - Huimin Tian
- Cancer Center, the First Hospital of Jilin University, Changchun 130021, China
| | - Jiuwei Cui
- Cancer Center, the First Hospital of Jilin University, Changchun 130021, China
| |
Collapse
|
39
|
Kasajima A, Konukiewitz B, Schlitter AM, Weichert W, Bräsen JH, Agaimy A, Klöppel G. Mesenchymal/non-epithelial mimickers of neuroendocrine neoplasms with a focus on fusion gene-associated and SWI/SNF-deficient tumors. Virchows Arch 2021; 479:1209-1219. [PMID: 34350470 PMCID: PMC8724147 DOI: 10.1007/s00428-021-03156-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/24/2022]
Abstract
Mimickers of neuroendocrine neoplasms (NEN) include a number of important pitfall tumors. Here, we describe our experience with mesenchymal mimics of NENs to illustrate their spectrum and draw the attention particularly to a group of mesenchymal/non-epithelial neoplasms (MN) that combine epithelioid histology with neuroendocrine (NE-) features and peculiar genetic abnormalities. In a consultation series of 4498 cases collected between 2009 and 2021, 2099 neoplasms expressing synaptophysin and/or chromograninA were reviewed and analyzed. A total of 364 (18%) were diagnosed as non-NENs, while the remaining tumors were NEN. The group of mesenchymal/non-epithelial neoplasms with NE-features (MN-NE) included 31/364 (8%) cases. These mostly malignant neoplasms showed an epithelioid morphology. While all but one tumor expressed synaptophysin, mostly patchy, only 10/29 (34%) co-expressed chromograninA. A total of 13/31 (42%) of the MN-NE showed EWSR1-related gene fusions (6 Ewing sarcomas, 5 clear cell sarcomas, and 1 desmoplastic small round cell tumor, 1 neoplasm with FUS-CREM gene fusion) and 7 (23%) were SWI/SNF (SMARCB1 or SMARCA4)-deficient neoplasms. The remaining MN-NE included synovial sarcoma, sclerosing epithelioid mesenchymal neoplasm, melanoma, alveolar soft part sarcoma, solitary fibrous tumor, and chordoma. A total of 27/31 MN-NE were from the last 8 years, and 6 of them were located in the pancreas. Eleven MN-NE were initially diagnosed as neuroendocrine carcinomas (NECs). MN-NE with epithelioid features play an increasing role as mimickers of NECs. They mostly belong to tumors with gene fusions involving the EWSR1 gene, or with SWI/SNF complex deficiency. Synaptophysin expression is mostly patchy and chromograninA expression is infrequent in MN-NE of this series and data extracted from literature.
Collapse
Affiliation(s)
- Atsuko Kasajima
- Department of Pathology, Technical University Munich, Trogerstr. 18, 81675, Munich, Germany.
- The German Cancer Consortium (DKTK), Heidelberg, Germany.
| | - Björn Konukiewitz
- Department of Pathology, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Anna Melissa Schlitter
- Department of Pathology, Technical University Munich, Trogerstr. 18, 81675, Munich, Germany
- The German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Wilko Weichert
- Department of Pathology, Technical University Munich, Trogerstr. 18, 81675, Munich, Germany
- The German Cancer Consortium (DKTK), Heidelberg, Germany
| | | | - Abbas Agaimy
- Institute of Pathology, Friedrich-Alexander-University, Erlangen-Nürnberg, University Hospital, Erlangen, Germany
| | - Günter Klöppel
- Department of Pathology, Technical University Munich, Trogerstr. 18, 81675, Munich, Germany
| |
Collapse
|
40
|
Capodanno Y, Chen Y, Schrader J, Tomosugi M, Sumi S, Yokoyama A, Hiraoka N, Ohki R. Cross-talk among MEN1, p53 and Notch regulates the proliferation of pancreatic neuroendocrine tumor cells by modulating INSM1 expression and subcellular localization. Neoplasia 2021; 23:979-992. [PMID: 34352404 PMCID: PMC8350333 DOI: 10.1016/j.neo.2021.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 01/14/2023] Open
Abstract
Genomic analysis of Pancreatic Neuroendocrine Tumors (PanNETs) has revealed that these tumors often lack mutations in typical cancer-related genes such as the tumor suppressor gene p53. Instead, PanNET tumorigenesis usually involves mutations in specific PanNET-related genes, such as tumor suppressor gene MEN1. Using a PanNET mouse model, human tissues and human cell lines, we studied the cross-talk among MEN1, p53 and Notch signaling pathways and their role in PanNETs. Here, we show that reactivation of the early developmental program of islet cells underlies PanNET tumorigenesis by restoring the proliferative capacity of PanNET cells. We investigated the role of INSM1, a transcriptional regulator of islet cells' development, and revealed that its expression and subcellular localization is regulated by MEN1 and p53. Both human and mouse data show that loss of MEN1 in a p53 wild-type genetic background results in increased nuclear INSM1 expression and cell proliferation. Additionally, inhibition of Notch signaling in a p53 wild-type background reduces the proliferation of PanNET cells, due to repression of INSM1 transcription and nuclear localization. Our study elucidates the molecular mechanisms governing the interactions of INSM1 with MEN1, p53 and Notch and their roles in PanNET tumorigenesis, suggesting INSM1 as a key transcriptional regulator of PanNET cell proliferation.
Collapse
Affiliation(s)
- Ylenia Capodanno
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | - Yu Chen
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | - Joerg Schrader
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mitsuhiro Tomosugi
- Laboratory of Organ and Tissue Reconstruction, Institute for Frontier Life and Medical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Shoiciro Sumi
- Laboratory of Organ and Tissue Reconstruction, Institute for Frontier Life and Medical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Akihiko Yokoyama
- Tsuruoka Metabolomics Laboratory, National Cancer Center, Yamagata, Japan
| | - Nobuyoshi Hiraoka
- Division of Molecular pathology, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | - Rieko Ohki
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan.
| |
Collapse
|
41
|
Wang M, Abi-Raad R, Baldassarri R, Adeniran AJ, Cai G. Expression of insulinoma-associated protein 1 in non-small cell lung cancers: a diagnostic pitfall for neuroendocrine tumors. Hum Pathol 2021; 115:104-111. [PMID: 34216697 DOI: 10.1016/j.humpath.2021.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 11/26/2022]
Abstract
Insulinoma-associated protein 1 (INSM1) has been reported as a highly sensitive and specific marker of neuroendocrine tumors. INSM1 expression has also been reported, although uncommonly, in non-neuroendocrine tumors. This study aimed to elucidate potential nonspecific INSM1 expression in non-small cell non-neuroendocrine lung cancers (NSCNELCs), especially in squamous cell carcinomas (SqCCs) with basaloid features to avoid diagnostic pitfalls. Tissue microarrays (TMAs) were constructed for 324 NSCNELCs, including 196 adenocarcinomas (AdCs), 86 SqCCs, and 42 other NSCNELCs. In addition, 38 whole-tissue sections of SqCCs with basaloid features were examined. INSM1 immunostain was semiquantitively evaluated based on the percentage of nuclear staining in tumor cells, categorized as negative, focal (<10% tumor cells), and positive (>10% tumor cells). Among 324 TMAs, 6.2% (20/324) were positive for INSM1, 4.9% (16/324) were focal, and 88.9% (289/34) were negative. Of 196 AdCs, 5.1% (10/196) were positive for INSM1, 4.7% (9/196) were focal, and 90.3% (177/196) were negative. Of 86 SqCCs, 9.3% (8/86) were positive for INSM1, 5.8% (5/86) were focal, and 84.9% (73/86) were negative. Of the remaining 42 NSCNELCs, 4.8% (2/42) were positive for INSM1, 4.8% (2/42) were focal, and 90.4% (38/44) were negative. Among 38 cases of whole-tissue sections of SqCCs with basaloid features, 15.8% (6/38) were positive for INSM1, 18.4% (7/38) were focal, and 65.8% (25/38) were negative. Our study demonstrates that INSM1 is expressed in a significant subset of NSCNELCs, suggesting caution in interpreting INSM1 staining, especially with limited samples. INSM1 should not be used as a stand-alone neuroendocrine marker in differentiating primary lung tumors.
Collapse
Affiliation(s)
- Minhua Wang
- Department of Pathology, Yale University School of Medicine, New Haven, CT, 06510, USA.
| | - Rita Abi-Raad
- Department of Pathology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Rebecca Baldassarri
- Department of Pathology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Adebowale J Adeniran
- Department of Pathology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Guoping Cai
- Department of Pathology, Yale University School of Medicine, New Haven, CT, 06510, USA; Yale Cancer Center, Yale University School of Medicine, New Haven, CT, 06510, USA
| |
Collapse
|
42
|
Inoue Y, Nikolic A, Farnsworth D, Shi R, Johnson FD, Liu A, Ladanyi M, Somwar R, Gallo M, Lockwood WW. Extracellular signal-regulated kinase mediates chromatin rewiring and lineage transformation in lung cancer. eLife 2021; 10:66524. [PMID: 34121659 PMCID: PMC8337080 DOI: 10.7554/elife.66524] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 06/11/2021] [Indexed: 12/11/2022] Open
Abstract
Lineage transformation between lung cancer subtypes is a poorly understood phenomenon associated with resistance to treatment and poor patient outcomes. Here, we aimed to model this transition to define underlying biological mechanisms and identify potential avenues for therapeutic intervention. Small cell lung cancer (SCLC) is neuroendocrine in identity and, in contrast to non-SCLC (NSCLC), rarely contains mutations that drive the MAPK pathway. Likewise, NSCLCs that transform to SCLC concomitantly with development of therapy resistance downregulate MAPK signaling, suggesting an inverse relationship between pathway activation and lineage state. To test this, we activated MAPK in SCLC through conditional expression of mutant KRAS or EGFR, which revealed suppression of the neuroendocrine differentiation program via ERK. We found that ERK induces the expression of ETS factors that mediate transformation into a NSCLC-like state. ATAC-seq demonstrated ERK-driven changes in chromatin accessibility at putative regulatory regions and global chromatin rewiring at neuroendocrine and ETS transcriptional targets. Further, ERK-mediated induction of ETS factors as well as suppression of neuroendocrine differentiation were dependent on histone acetyltransferase activities of CBP/p300. Overall, we describe how the ERK-CBP/p300-ETS axis promotes a lineage shift between neuroendocrine and non-neuroendocrine lung cancer phenotypes and provide rationale for the disruption of this program during transformation-driven resistance to targeted therapy.
Collapse
Affiliation(s)
- Yusuke Inoue
- Department of Integrative Oncology, BC Cancer Agency, Columbia, Canada
| | - Ana Nikolic
- Department of Biochemistry and Molecular Biology, Arnie Charbonneau Cancer Institute, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Dylan Farnsworth
- Department of Integrative Oncology, BC Cancer Agency, Columbia, Canada
| | - Rocky Shi
- Department of Integrative Oncology, BC Cancer Agency, Columbia, Canada
| | - Fraser D Johnson
- Department of Integrative Oncology, BC Cancer Agency, Columbia, Canada
| | - Alvin Liu
- Department of Integrative Oncology, BC Cancer Agency, Columbia, Canada
| | - Marc Ladanyi
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Romel Somwar
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Marco Gallo
- Department of Biochemistry and Molecular Biology, Arnie Charbonneau Cancer Institute, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - William W Lockwood
- Department of Integrative Oncology, BC Cancer Agency, Columbia, Canada.,Department of Pathology & Laboratory Medicine, University of British Columbia, Columbia, Canada
| |
Collapse
|
43
|
Breast cancer with neuroendocrine differentiation: an update based on the latest WHO classification. Mod Pathol 2021; 34:1062-1073. [PMID: 33531618 DOI: 10.1038/s41379-021-00736-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 02/08/2023]
Abstract
Breast cancers with neuroendocrine (NE) differentiation are very heterogeneous, comprising broadly cancers that are morphologically similar to NE tumors (NET) of other anatomic sites, infiltrating breast carcinomas, no special type (IBC-NST) and other special subtypes with NE morphology and/or NE markers expression. Depending on the classification schemes, they are variably included into "NE breast cancers". The latest WHO classification harmonized NE breast cancers with NE neoplasms (NEN) of other organ systems, defined NEN into well-differentiated NET (low Nottingham grade) and poorly-differentiated NE carcinoma (NEC) (high Nottingham grade). Other IBC with NE differentiation are diagnosed based on solely the non-NEN component. Due to the changes in diagnostic criteria, variable results were obtained in the previous studies on NE breast cancers. Hence, the clinical value of NE differentiation in breast cancers is not well investigated and understood. In this review, the current understanding in the pathogenesis, clinical, prognostic, immunhistochemical, and molecular features of "NE breast cancers" is summarized. Controversial issues in their diagnosis and classification are also discussed.
Collapse
|
44
|
Norton JP, Augert A, Eastwood E, Basom R, Rudin CM, MacPherson D. Protein neddylation as a therapeutic target in pulmonary and extrapulmonary small cell carcinomas. Genes Dev 2021; 35:870-887. [PMID: 34016692 PMCID: PMC8168556 DOI: 10.1101/gad.348316.121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 04/07/2021] [Indexed: 12/13/2022]
Abstract
Small cell lung carcinoma (SCLC) is among the most lethal of all solid tumor malignancies. In an effort to identify novel therapeutic approaches for this recalcitrant cancer type, we applied genome-scale CRISPR/Cas9 inactivation screens to cell lines that we derived from a murine model of SCLC. SCLC cells were particularly sensitive to the deletion of NEDD8 and other neddylation pathway genes. Genetic suppression or pharmacological inhibition of this pathway using MLN4924 caused cell death not only in mouse SCLC cell lines but also in patient-derived xenograft (PDX) models of pulmonary and extrapulmonary small cell carcinoma treated ex vivo or in vivo. A subset of PDX models were exceptionally sensitive to neddylation inhibition. Neddylation inhibition suppressed expression of major regulators of neuroendocrine cell state such as INSM1 and ASCL1, which a subset of SCLC rely upon for cell proliferation and survival. To identify potential mechanisms of resistance to neddylation inhibition, we performed a genome-scale CRISPR/Cas9 suppressor screen. Deletion of components of the COP9 signalosome strongly mitigated the effects of neddylation inhibition in small cell carcinoma, including the ability of MLN4924 to suppress neuroendocrine transcriptional program expression. This work identifies neddylation as a regulator of neuroendocrine cell state and potential therapeutic target for small cell carcinomas.
Collapse
Affiliation(s)
- Justin P Norton
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA.,Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Arnaud Augert
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA.,Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Emily Eastwood
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA.,Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Ryan Basom
- Genomics and Bioinformatics Shared Resource, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Charles M Rudin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - David MacPherson
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA.,Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA.,Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
45
|
Yang X, Nanayakkara J, Claypool D, Saghafinia S, Wong JJM, Xu M, Wang X, Nicol CJB, Michael IP, Hafner M, Yang X, Renwick N. A miR-375/YAP axis regulates neuroendocrine differentiation and tumorigenesis in lung carcinoid cells. Sci Rep 2021; 11:10455. [PMID: 34001972 PMCID: PMC8129150 DOI: 10.1038/s41598-021-89855-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 04/30/2021] [Indexed: 02/03/2023] Open
Abstract
Lung carcinoids are variably aggressive and mechanistically understudied neuroendocrine neoplasms (NENs). Here, we identified and elucidated the function of a miR-375/yes-associated protein (YAP) axis in lung carcinoid (H727) cells. miR-375 and YAP are respectively high and low expressed in wild-type H727 cells. Following lentiviral CRISPR/Cas9-mediated miR-375 depletion, we identified distinct transcriptomic changes including dramatic YAP upregulation. We also observed a significant decrease in neuroendocrine differentiation and substantial reductions in cell proliferation, transformation, and tumor growth in cell culture and xenograft mouse disease models. Similarly, YAP overexpression resulted in distinct and partially overlapping transcriptomic changes, phenocopying the effects of miR-375 depletion in the same models as above. Transient YAP knockdown in miR-375-depleted cells reversed the effects of miR-375 on neuroendocrine differentiation and cell proliferation. Pathways analysis and confirmatory real-time PCR studies of shared dysregulated target genes indicate that this axis controls neuroendocrine related functions such as neural differentiation, exocytosis, and secretion. Taken together, we provide compelling evidence that a miR-375/YAP axis is a critical mediator of neuroendocrine differentiation and tumorigenesis in lung carcinoid cells.
Collapse
Affiliation(s)
- Xiaojing Yang
- grid.410356.50000 0004 1936 8331Laboratory of Translational RNA Biology, Department of Pathology and Molecular Medicine, Queen’s University, 88 Stuart St, Kingston, ON K7L 3N6 Canada
| | - Jina Nanayakkara
- grid.410356.50000 0004 1936 8331Laboratory of Translational RNA Biology, Department of Pathology and Molecular Medicine, Queen’s University, 88 Stuart St, Kingston, ON K7L 3N6 Canada
| | - Duncan Claypool
- grid.420086.80000 0001 2237 2479Laboratory of Muscle Stem Cells and Gene Regulation, NIAMS, 50 South Drive, Bethesda, MD 20892 USA
| | - Sadegh Saghafinia
- grid.5333.60000000121839049Swiss Institute for Experimental Cancer Research, School of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Justin J. M. Wong
- grid.410356.50000 0004 1936 8331Laboratory of Translational RNA Biology, Department of Pathology and Molecular Medicine, Queen’s University, 88 Stuart St, Kingston, ON K7L 3N6 Canada
| | - Minqi Xu
- grid.410356.50000 0004 1936 8331Laboratory of Translational RNA Biology, Department of Pathology and Molecular Medicine, Queen’s University, 88 Stuart St, Kingston, ON K7L 3N6 Canada
| | - Xiantao Wang
- grid.420086.80000 0001 2237 2479Laboratory of Muscle Stem Cells and Gene Regulation, NIAMS, 50 South Drive, Bethesda, MD 20892 USA
| | - Christopher J. B. Nicol
- grid.410356.50000 0004 1936 8331Department of Pathology and Molecular Medicine, Queen’s University, 88 Stuart St, Kingston, ON K7L 3N6 Canada ,Division of Cancer Biology and Genetics, Queen’s Cancer Research Institute, 10 Stuart St, Kingston, ON K7L 3N6 Canada
| | - Iacovos P. Michael
- grid.5333.60000000121839049Swiss Institute for Experimental Cancer Research, School of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Markus Hafner
- grid.420086.80000 0001 2237 2479Laboratory of Muscle Stem Cells and Gene Regulation, NIAMS, 50 South Drive, Bethesda, MD 20892 USA
| | - Xiaolong Yang
- grid.410356.50000 0004 1936 8331Cancer Research Laboratory, Department of Pathology and Molecular Medicine, Queen’s University, 88 Stuart St, Kingston, ON K7L 3N6 Canada
| | - Neil Renwick
- grid.410356.50000 0004 1936 8331Laboratory of Translational RNA Biology, Department of Pathology and Molecular Medicine, Queen’s University, 88 Stuart St, Kingston, ON K7L 3N6 Canada
| |
Collapse
|
46
|
Chauhan L, Ram U, Hari K, Jolly MK. Topological signatures in regulatory network enable phenotypic heterogeneity in small cell lung cancer. eLife 2021; 10:e64522. [PMID: 33729159 PMCID: PMC8012062 DOI: 10.7554/elife.64522] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 03/16/2021] [Indexed: 02/07/2023] Open
Abstract
Phenotypic (non-genetic) heterogeneity has significant implications for the development and evolution of organs, organisms, and populations. Recent observations in multiple cancers have unraveled the role of phenotypic heterogeneity in driving metastasis and therapy recalcitrance. However, the origins of such phenotypic heterogeneity are poorly understood in most cancers. Here, we investigate a regulatory network underlying phenotypic heterogeneity in small cell lung cancer, a devastating disease with no molecular targeted therapy. Discrete and continuous dynamical simulations of this network reveal its multistable behavior that can explain co-existence of four experimentally observed phenotypes. Analysis of the network topology uncovers that multistability emerges from two teams of players that mutually inhibit each other, but members of a team activate one another, forming a 'toggle switch' between the two teams. Deciphering these topological signatures in cancer-related regulatory networks can unravel their 'latent' design principles and offer a rational approach to characterize phenotypic heterogeneity in a tumor.
Collapse
Affiliation(s)
- Lakshya Chauhan
- Centre for BioSystems Science and Engineering, Indian Institute of ScienceBangaloreIndia
- Undergraduate Programme, Indian Institute of ScienceBangaloreIndia
| | - Uday Ram
- Centre for BioSystems Science and Engineering, Indian Institute of ScienceBangaloreIndia
- Undergraduate Programme, Indian Institute of ScienceBangaloreIndia
| | - Kishore Hari
- Centre for BioSystems Science and Engineering, Indian Institute of ScienceBangaloreIndia
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of ScienceBangaloreIndia
| |
Collapse
|
47
|
Seok JY, Kang M, De Peralta-Venturina M, Fan X. Diagnostic Utility of INSM1 in Medullary Thyroid Carcinoma. Int J Surg Pathol 2021; 29:615-626. [PMID: 33650906 DOI: 10.1177/1066896921995935] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Insulinoma-associated protein 1 (INSM1) is shown to be an excellent marker for neuroendocrine differentiation. However, the diagnostic utility of INSM1 in medullary thyroid carcinoma (MTC) has not yet been extensively investigated. INSM1 staining was performed on 21 MTCs, 7 MTC mimickers (including 3 papillary carcinomas, 2 poorly differentiated carcinomas, 1 follicular adenoma, and 1 nodular plasma cell hyperplasia), and 3 cases of C-cell hyperplasia. INSM1 staining of these cases was compared with the traditional MTC markers including calcitonin (CT), monoclonal carcinoembryonic antigen (mCEA), chromogranin A (CgA), and synaptophysin (Syn). The H-score was generated using the QuPath program, an open-source image analysis software. All 21 MTC cases and 3 C-cell hyperplasia cases were positive for all markers. The MTC mimickers were entirely negative for INSM1. INSM1 and Syn displayed, more consistently, high expression with minimal variability than CgA that showed a wide range of expression with significant variability. mCEA and CT exhibited mostly a high expression with some variability. Being a nuclear stain, interpretation was easier with INSM1 compared to other cytoplasmic markers. INSM1 is an excellent marker for neuroendocrine differentiation, entirely applicable in the diagnosis of MTC and C-cell hyperplasia with high sensitivity and specificity. In comparison with the traditional MTC markers, INSM1 is unique in the crisp nuclear staining pattern with a consistent, diffuse, and strong expression. INSM1 can be potentially combined with CT or mCEA as a dual stain, especially when the lesional tissue is limited for a panel of immunostains.
Collapse
Affiliation(s)
- Jae Yeon Seok
- Department of Pathology, Gil Medical Center, Gachon University College of Medicine, Incheon, Republic of Korea.,22494Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Myunghee Kang
- Department of Pathology, Gil Medical Center, Gachon University College of Medicine, Incheon, Republic of Korea
| | | | - Xuemo Fan
- 22494Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
48
|
Zou Q, Zhang L, Cheng Z, Guo X, Cao D. INSM1 Is Less Sensitive But More Specific Than Synaptophysin in Gynecologic High-grade Neuroendocrine Carcinomas: An Immunohistochemical Study of 75 Cases With Specificity Test and Literature Review. Am J Surg Pathol 2021; 45:147-159. [PMID: 33264139 DOI: 10.1097/pas.0000000000001641] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Insulinoma-associated protein 1 (INSM1) has emerged as a promising diagnostic marker for high-grade neuroendocrine carcinomas (HGNECs); however, it is controversial whether INSM1 is more sensitive than conventional markers chromogranin, synaptophysin, and CD56. Here, we investigated immunohistochemical expression of INSM1 in 75 gynecologic HGNECs using full tissue sections (30 small-cell carcinomas [SmCCs], 34 large-cell neuroendocrine carcinomas [LCNECs], and 11 mixed SmCC and LCNEC), with specificity analysis in 422 gynecologic non-neuroendocrine tumors (410 in tissue microarrays and 12 full sections) and comparison with conventional neuroendocrine markers for their sensitivity and specificity. Positive INSM1 staining was seen in 69 (92%) HGNECs, whereas chromogranin, synaptophysin, and CD56 staining was seen in 61 (81%), 72 (96%), and 44 (69%) tumors, respectively (INSM1 vs. chromogranin, P=0.09; INSM1 vs. synaptophysin, P=0.4942; and INSM1 vs. CD56, P<0.001). The mean percentage of INSM1-positive tumor cells was 54% (median: 60%, range: 0% to 100%), similar to chromogranin (58%, P=0.2903) and higher than CD56 (30%, P=0.00001) but significantly lower than synaptophysin (89%, P<0.00001). INSM1 showed no staining difference among SmCCs, LCNECs, and mixed SmCC-LCNECs. Among the 422 non-neuroendocrine tumors, positive staining was seen in 5% tumors for INSM1, 18% for chromogranin, 19% for synaptophysin, and 25% for CD56. Our study indicates that INSM1 is a highly specific marker (95% specificity) for gynecologic HGNECs with high sensitivity (92%), but it is less sensitive than synaptophysin (96% sensitivity). INSM1 is more specific than chromogranin, synaptophysin, and CD56 for gynecologic HGNECs. Our literature review reveals that INSM1 has consistently (the same antibody clone A8 used for all reported studies) shown higher or similar sensitivity to chromogranin (for all 3 chromogranin antibody clones LK2H10, DAK-A3, DAKO polyclonal); however, whether INSM1 is more or less sensitive than synaptophysin or CD56 for HGNECs is highly dependent on the antibody clones used for synaptophysin (clones MRQ-40 and SNP88 showing higher sensitivity than clones 27G12 and DAK-SYNAP) or CD56 (clones CD564, MRQ-42, and MRQ-54 showing higher sensitivity than clones 123C3D5, 1B6, and Leu243).
Collapse
Affiliation(s)
- Qiong Zou
- Department of Pathology, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province
| | - Lily Zhang
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO
| | - Zhiqiang Cheng
- Department of Pathology, Shenzhen People's Hospital, Shenzhen, Guangdong Province, China
| | - Xiaojing Guo
- Department of Pathology, Shenzhen People's Hospital, Shenzhen, Guangdong Province, China
| | - Dengfeng Cao
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO
| |
Collapse
|
49
|
Zombori T, Turkevi-Nagy S, Sejben A, Juhász-Nagy G, Cserni G, Furák J, Tiszlavicz L, Krenács L, Kővári B. The panel of syntaxin 1 and insulinoma-associated protein 1 outperforms classic neuroendocrine markers in pulmonary neuroendocrine neoplasms. APMIS 2021; 129:186-194. [PMID: 33417719 DOI: 10.1111/apm.13113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 01/04/2021] [Indexed: 11/26/2022]
Abstract
Syntaxin-1 (STX1) is a recently described highly sensitive and specific neuroendocrine marker. We evaluated the applicability of STX1 as an immunohistochemical marker in pulmonary neuroendocrine neoplasms (NENs). We compared STX1 with established neuroendocrine markers, including insulinoma-associated protein 1 (INSM1). Typical carcinoids (n = 33), atypical carcinoids (n = 7), small cell lung carcinomas ([SCLCs] n = 30), and large cell neuroendocrine lung carcinomas (n = 17) were immunostained using tissue microarray for STX1, chromogranin A, synaptophysin, CD56, and INSM1. Eighty-four of eighty-seven (96.5%) NENs showed STX1 positivity. Carcinoids and LCNECs typically presented a combined strong membranous and weak cytoplasmic staining pattern; cytoplasmic expression was predominately observed in SCLCs. The sensitivity of STX1 was 90% in SCLCs and 100% in typical carcinoids, atypical carcinoids, and large cell neuroendocrine lung carcinomas. The overall sensitivity of STX1 in pulmonary NENs was 96.6%, and the sensitivity of the other markers was as follows: chromogranin A (85.2%), synaptophysin (85.2%), CD56 (92.9%), and INSM1 (97.7%). STX1 was found to be an excellent neuroendocrine marker of pulmonary NENs, with sensitivity and specificity surpassing that of classic markers. We propose a panel of STX1 and INSM1 for the routine immunohistochemical workup of pulmonary NENs.
Collapse
Affiliation(s)
- Tamás Zombori
- Department of Pathology, University of Szeged, Szeged, Hungary
| | | | - Anita Sejben
- Department of Pathology, University of Szeged, Szeged, Hungary
| | | | - Gábor Cserni
- Department of Pathology, University of Szeged, Szeged, Hungary.,Bács-Kiskun County Teaching Hospital, Kecskemét, Hungary
| | - József Furák
- Department of Surgery, University of Szeged, Szeged, Hungary
| | | | - László Krenács
- Laboratory of Tumor Pathology and Molecular Diagnostics, Szeged, Hungary
| | - Bence Kővári
- Department of Pathology, University of Szeged, Szeged, Hungary.,Department of Pathology, Henry Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| |
Collapse
|
50
|
Morphologic and molecular classification of lung neuroendocrine neoplasms. Virchows Arch 2021; 478:5-19. [PMID: 33474631 PMCID: PMC7966641 DOI: 10.1007/s00428-020-03015-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/17/2020] [Accepted: 12/28/2020] [Indexed: 12/14/2022]
Abstract
Neuroendocrine neoplasms (NENs) of the lung encompass neuroendocrine tumors (NETs) composed of typical (TC) and atypical (AC) carcinoids and full-fledged carcinomas (NECs) inclusive of large cell neuroendocrine carcinoma (LCNEC) and small cell carcinoma (SCLC). NETs and NECs are thought to represent distinct and separate lesions with neither molecular overlap nor common developmental continuum. Two perspectives were addressed regarding the morphologic and molecular classification of lung NENs: (i) a supervised approach by browsing the traditional classification, the relevant gene alterations, and their clinical implications; and (ii) an unsupervised approach, by reappraising neoplasms according to risk factors and natural history of disease to construct an interpretation model relied on biological data. We herein emphasize lights and shadows of the current classification of lung NENs and provide an alternative outlook on these tumors focused on what we currently know about the biological determinants and the natural history of disease.
Collapse
|