1
|
Li Y, Liu R, Li J, Gao F, Ma Z, Xie K, Li F, Xu B, Zheng Q, Cai Y, Qu J, Xue X, Jia K, Li X. Senkyunolide A interrupts TRAF6-HDAC3 interaction to epigenetically suppress c-MYC and attenuate cholestatic liver injury. J Adv Res 2025:S2090-1232(25)00221-8. [PMID: 40187727 DOI: 10.1016/j.jare.2025.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 03/12/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025] Open
Abstract
Introduction Cholestatic liver diseases are highly prevalent and lack effective treatment, ultimately progressing to end-stage liver diseases. Our recent study indicates that the interplay between c-MYC and lncRNA H19 exacerbates the ductular reaction during cholestasis. OBJECTIVE This study aims to unveil the underlying mechanisms of the protective effects of senkyunolide A (SenA) on cholangiocyte overproliferation in cholestatic liver diseases. METHODS Through comprehensive characterization using RNA sequencing, CHIP analysis, protein truncation, amino acid mutation or deletion, and the development of SenA derivatives, we explored the effects and mechanisms of SenA in vivo in bile duct ligation mice and in vitro in primary cholangiocytes. RESULTS We demonstrated that SenA effectively mitigates cholangiocyte hyperproliferation by epigenetically suppressing c-MYC expression and disrupting the downstream H19, Let-7a and Lin28a. Mechanically, we identified a potential interaction between the carbonyl group in SenA and Arg483 in TRAF6, disrupting the TRAF6-HDAC3 complex. This dissociation facilitates the binding of HDAC3 to the MYC promoter region, resulting in enhanced histone deacetylation and transcriptional suppression. CONCLUSION We highlight the therapeutic potential of SenA in cholestatic liver diseases by elucidating its role in epigenetic regulation.
Collapse
Affiliation(s)
- Yajing Li
- School of Life Sciences, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing 100029, China
| | - Runping Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing 100029, China.
| | - Jianan Li
- School of Life Sciences, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing 100029, China
| | - Feng Gao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing 100029, China
| | - Zhi Ma
- School of Life Sciences, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing 100029, China
| | - Kaihong Xie
- School of Life Sciences, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing 100029, China
| | - Fanghong Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing 100029, China
| | - Bing Xu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing 100029, China
| | - Qi Zheng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing 100029, China
| | - Yajie Cai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing 100029, China
| | - Jiaorong Qu
- School of Life Sciences, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing 100029, China
| | - Xiaoyong Xue
- School of Life Sciences, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing 100029, China
| | - Kexin Jia
- School of Life Sciences, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing 100029, China
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing 100029, China.
| |
Collapse
|
2
|
Zhang F, Xiong X, Li Z, Wang H, Wang W, Zhao Y, Sun Y. RHEB neddylation by the UBE2F-SAG axis enhances mTORC1 activity and aggravates liver tumorigenesis. EMBO J 2025; 44:1185-1219. [PMID: 39762645 PMCID: PMC11832924 DOI: 10.1038/s44318-024-00353-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 11/27/2024] [Accepted: 12/04/2024] [Indexed: 02/19/2025] Open
Abstract
Small GTPase RHEB is a well-known mTORC1 activator, whereas neddylation modifies cullins and non-cullin substrates to regulate their activity, subcellular localization and stability. Whether and how RHEB is subjected to neddylation modification remains unknown. Here, we report that RHEB is a substrate of NEDD8-conjugating E2 enzyme UBE2F. In cell culture, UBE2F depletion inactivates mTORC1, inhibiting cell cycle progression, cell growth and inducing autophagy. Mechanistically, UBE2F cooperates with E3 ligase SAG in neddylation of RHEB at K169 to enhance its lysosome localization and GTP-binding affinity. Furthermore, liver-specific Ube2f knockout attenuates steatosis and tumorigenesis induced by Pten loss in an mTORC1-dependent manner, suggesting a causal role of UBE2F in liver tumorigenesis. Finally, UBE2F expression levels and mTORC1 activity correlate with patient survival in hepatocellular carcinoma. Collectively, our study identifies RHEB as neddylation substrate of the UBE2F-SAG axis, and highlights the UBE2F-SAG axis as a potential target for the treatment of non-alcoholic fatty liver disease and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Fengwu Zhang
- Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, 310009, Hangzhou, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, 310029, Hangzhou, China
| | - Xiufang Xiong
- Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, 310009, Hangzhou, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, 310029, Hangzhou, China
| | - Zhijian Li
- Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, 310009, Hangzhou, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, 310029, Hangzhou, China
| | - Haibo Wang
- Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, 310009, Hangzhou, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, 310029, Hangzhou, China
| | - Weilin Wang
- Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, 310009, Hangzhou, China
| | - Yongchao Zhao
- Institute of Translational Medicine, Zhejiang University School of Medicine, 310029, Hangzhou, China.
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Cancer Center, Zhejiang University, 310058, Hangzhou, China.
| | - Yi Sun
- Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China.
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, 310009, Hangzhou, China.
- Institute of Translational Medicine, Zhejiang University School of Medicine, 310029, Hangzhou, China.
- Cancer Center, Zhejiang University, 310058, Hangzhou, China.
- Leading Innovative and Entrepreneur Team Introduction Program of Zhejiang, Hangzhou, China.
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, 310053, Hangzhou, China.
- Institute of Fundamental and Transdisciplinary Research Zhejiang University, Hangzhou, China.
| |
Collapse
|
3
|
Carbone M, Gerussi A, Cardinale V, Cazzagon N, Cossiga V, Lleo A, Marrone G, Marzioni M, Moschetta A, Muratori L, Rigamonti C, Vespasiani-Gentilucci U, Fraquelli M, Calvaruso V. Position paper of the Italian Association for the Study of the Liver (AISF): Management and treatment of primary biliary cholangitis. Dig Liver Dis 2024; 56:1461-1474. [PMID: 38902184 DOI: 10.1016/j.dld.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/26/2024] [Accepted: 05/02/2024] [Indexed: 06/22/2024]
|
4
|
Wilken S, Thevathasan T, Kamali C, Guillot A, Ihlow J, Fehrenbach U, Danyel M, Pratschke J, Tacke F, Krenzien F. Patient with a novel syndrome with multiple benign hepatic lesions and extrahepatic neoplasms. Clin J Gastroenterol 2024; 17:300-306. [PMID: 38133737 PMCID: PMC10960739 DOI: 10.1007/s12328-023-01899-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023]
Abstract
Simultaneous occurrence of benign hepatic lesions of different types is a sporadic phenomenon. To the best of our knowledge, we report the first clinical case of a syndrome with simultaneous manifestations of three different entities of benign liver tumors (hepatocellular adenoma, focal nodular hyperplasia and hemangioma) with a novel mutation detected in the liver adenoma and in the presence of a number of further extrahepatic organ neoplasms. Furthermore, we describe for the first time the presence of liver epithelial cells of hepatocytic phenotype expressing cytokeratin 7 (CK7) at the border of the adenoma. These findings may be important for explaining pathogenesis of benign as well as malignant tumors based on genetic and histopathological features.
Collapse
Affiliation(s)
- Silvana Wilken
- Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Tharusan Thevathasan
- Department of Cardiology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Hindenburgdamm 30, 12203, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, Charitéplatz 1, 10117, Berlin, Germany
| | - Can Kamali
- Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Adrien Guillot
- Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum and Campus Charité Mitte, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Jana Ihlow
- Institute of Pathology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Uli Fehrenbach
- Clinic for Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Magdalena Danyel
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, Charitéplatz 1, 10117, Berlin, Germany
- Institute of Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, 13353, Berlin, Germany
| | - Johann Pratschke
- Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum and Campus Charité Mitte, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Felix Krenzien
- Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Charitéplatz 1, 10117, Berlin, Germany.
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, Charitéplatz 1, 10117, Berlin, Germany.
- Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité- Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
| |
Collapse
|
5
|
Cardinale V, Paradiso S, Alvaro D. Biliary stem cells in health and cholangiopathies and cholangiocarcinoma. Curr Opin Gastroenterol 2024; 40:92-98. [PMID: 38320197 DOI: 10.1097/mog.0000000000001005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
PURPOSE OF REVIEW This review discusses evidence regarding progenitor populations of the biliary tree in the tissue regeneration and homeostasis, and the pathobiology of cholangiopathies and malignancies. RECENT FINDINGS In embryogenesis biliary multipotent progenitor subpopulation contributes cells not only to the pancreas and gall bladder but also to the liver. Cells equipped with a constellation of markers suggestive of the primitive endodermal phenotype exist in the peribiliary glands, the bile duct glands, of the intra- and extrahepatic bile ducts. These cells are able to be isolated and cultured easily, which demonstrates the persistence of a stable phenotype during in vitro expansion, the ability to self-renew in vitro, and the ability to differentiate between hepatocyte and biliary and pancreatic islet fates. SUMMARY In normal human livers, stem/progenitors cells are mostly restricted in two distinct niches, which are the bile ductules/canals of Hering and the peribiliary glands (PBGs) present inside the wall of large intrahepatic bile ducts. The existence of a network of stem/progenitor cell niches within the liver and along the entire biliary tree inform a patho-biological-based translational approach to biliary diseases and cholangiocarcinoma since it poses the basis to understand biliary regeneration after extensive or chronic injuries and progression to fibrosis and cancer.
Collapse
Affiliation(s)
| | - Savino Paradiso
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | | |
Collapse
|
6
|
Cabibi D, Giannone AG, Quattrocchi A, Calvaruso V, Porcasi R, Di Grusa D, Pavone AM, Comelli A, Petta S. Quantitative Evaluation by Digital Pathology of Immunohistochemical Expression of CK7, CK19, and EpCAM in Advanced Stages of NASH. Biomedicines 2024; 12:440. [PMID: 38398042 PMCID: PMC10887071 DOI: 10.3390/biomedicines12020440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
(1) Background: Nonalcoholic Steatohepatitis/Nonalcoholic Fatty Liver Disease (NASH/NAFLD) is the most recurrent chronic liver disease. NASH could present with a cholestatic (C) or hepatic (H) pattern of damage. Recently, we observed that increased Epithelial Cell Adhesion Molecule (EpCAM) expression was the main immunohistochemical feature to distinguish C from H pattern in NASH. (2) Methods: In the present study, we used digital pathology to compare the quantitative results of digital image analysis by QuPath software (Q-results), with the semi-quantitative results of observer assessment (S-results) for cytokeratin 7 and 19, (CK7, CK19) as well as EpCAM expression. Patients were classified into H or C group on the basis of the ratio between alanine transaminase (ALT) and alkaline phosphatase (ALP) values, using the "R-ratio formula". (3) Results: Q- and S-results showed a significant correlation for all markers (p < 0.05). Q-EpCAM expression was significantly higher in the C group than in the H group (p < 0.05). Importantly ALP, an indicator of hepatobiliary disorder, was the only biochemical parameter significantly correlated with Q-EpCAM. Instead, Q-CK7, but not Q-CK19, correlated only with γGlutamyl-Transferase (γGT). Of note, Stage 4 fibrosis correlated with Q-EpCAM, Q-CK19, and ALP but not with γGT or ALT. Conclusions: Image analysis confirms the relation between cholestatic-like pattern, associated with a worse prognosis, with increased ALP values, EpCAM positive biliary metaplasia, and advanced fibrosis. These preliminary data could be useful for the implementation of AI algorithms for the assessment of cholestatic NASH.
Collapse
Affiliation(s)
- Daniela Cabibi
- Unit of Anatomic Pathology, Department of Health Promotion Mother and Child Care Internal Medicine and Medical Specialties (PROMISE), University Hospital AOU Policlinico “P. Giaccone”, University of Palermo, Via del Vespro 129, 90127 Palermo, Italy; (D.C.); (A.Q.); (R.P.)
| | - Antonino Giulio Giannone
- Unit of Anatomic Pathology, Department of Health Promotion Mother and Child Care Internal Medicine and Medical Specialties (PROMISE), University Hospital AOU Policlinico “P. Giaccone”, University of Palermo, Via del Vespro 129, 90127 Palermo, Italy; (D.C.); (A.Q.); (R.P.)
| | - Alberto Quattrocchi
- Unit of Anatomic Pathology, Department of Health Promotion Mother and Child Care Internal Medicine and Medical Specialties (PROMISE), University Hospital AOU Policlinico “P. Giaccone”, University of Palermo, Via del Vespro 129, 90127 Palermo, Italy; (D.C.); (A.Q.); (R.P.)
| | - Vincenza Calvaruso
- Section of Gastroenterology and Hepatology, Department of Health Promotion Mother and Child Care Internal Medicine and Medical Specialties (PROMISE), University Hospital AOU Policlinico “P. Giaccone”, University of Palermo, Via del Vespro 129, 90127 Palermo, Italy
| | - Rossana Porcasi
- Unit of Anatomic Pathology, Department of Health Promotion Mother and Child Care Internal Medicine and Medical Specialties (PROMISE), University Hospital AOU Policlinico “P. Giaccone”, University of Palermo, Via del Vespro 129, 90127 Palermo, Italy; (D.C.); (A.Q.); (R.P.)
| | - Domenico Di Grusa
- Unit of Anatomic Pathology, Department of Health Promotion Mother and Child Care Internal Medicine and Medical Specialties (PROMISE), University Hospital AOU Policlinico “P. Giaccone”, University of Palermo, Via del Vespro 129, 90127 Palermo, Italy; (D.C.); (A.Q.); (R.P.)
| | - Anna Maria Pavone
- Ri.MED Foundation, Via Bandiera 11, 90133 Palermo, Italy; (A.M.P.); (A.C.)
| | - Albert Comelli
- Ri.MED Foundation, Via Bandiera 11, 90133 Palermo, Italy; (A.M.P.); (A.C.)
| | - Salvatore Petta
- Section of Gastroenterology and Hepatology, Department of Health Promotion Mother and Child Care Internal Medicine and Medical Specialties (PROMISE), University Hospital AOU Policlinico “P. Giaccone”, University of Palermo, Via del Vespro 129, 90127 Palermo, Italy
| |
Collapse
|
7
|
Floreani A, Gabbia D, De Martin S. Current Perspectives on the Molecular and Clinical Relationships between Primary Biliary Cholangitis and Hepatocellular Carcinoma. Int J Mol Sci 2024; 25:2194. [PMID: 38396870 PMCID: PMC10888596 DOI: 10.3390/ijms25042194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Primary biliary cholangitis (PBC) is an autoimmune liver disease characterised by the immune-mediated destruction of small and medium intrahepatic bile ducts, with variable outcomes and progression. This review summarises the state of the art regarding the risk of neoplastic progression in PBC patients, with a particular focus on the molecular alterations present in PBC and in hepatocellular carcinoma (HCC), which is the most frequent liver cancer in these patients. Major risk factors are male gender, viral infections, e.g., HBV and HCV, non-response to UDCA, and high alcohol intake, as well as some metabolic-associated factors. Overall, HCC development is significantly more frequent in patients with advanced histological stages, being related to liver cirrhosis. It seems to be of fundamental importance to unravel eventual dysfunctional molecular pathways in PBC patients that may be used as biomarkers for HCC development. In the near future, this will possibly take advantage of artificial intelligence-designed algorithms.
Collapse
Affiliation(s)
- Annarosa Floreani
- University of Padova, 35122 Padova, Italy;
- Scientific Consultant IRCCS Negrar, 37024 Verona, Italy
| | - Daniela Gabbia
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy;
| | - Sara De Martin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy;
| |
Collapse
|
8
|
Nejak-Bowen K, Monga SP. Wnt-β-catenin in hepatobiliary homeostasis, injury, and repair. Hepatology 2023; 78:1907-1921. [PMID: 37246413 PMCID: PMC10687322 DOI: 10.1097/hep.0000000000000495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/14/2023] [Indexed: 05/30/2023]
Abstract
Wnt-β-catenin signaling has emerged as an important regulatory pathway in the liver, playing key roles in zonation and mediating contextual hepatobiliary repair after injuries. In this review, we will address the major advances in understanding the role of Wnt signaling in hepatic zonation, regeneration, and cholestasis-induced injury. We will also touch on some important unanswered questions and discuss the relevance of modulating the pathway to provide therapies for complex liver pathologies that remain a continued unmet clinical need.
Collapse
Affiliation(s)
- Kari Nejak-Bowen
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
- Pittsburgh Liver Research Center, University of Pittsburgh Medical Center, Pittsburgh, PA USA
| | - Satdarshan P. Monga
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
- Pittsburgh Liver Research Center, University of Pittsburgh Medical Center, Pittsburgh, PA USA
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| |
Collapse
|
9
|
Lee DU, Ponder R, Sandlow S, Yoo A, Lee KJ, Chou H, Fan GH, Urrunaga NH. The impact of recipient and donor gender-match and mismatch on the post-liver transplant outcomes of patients with primary biliary cholangitis. Dig Liver Dis 2023; 55:1242-1252. [PMID: 37085440 PMCID: PMC10524091 DOI: 10.1016/j.dld.2023.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/05/2023] [Accepted: 03/25/2023] [Indexed: 04/23/2023]
Abstract
BACKGROUND & AIMS In this study, we evaluate the effects of donor gender on post-liver transplant (LT) prognosis. We specifically consider patients with primary biliary cholangitis (PBC). METHODS The 2005 to 2019 UNOS transplant registry was used to select patients with PBC. The study cohort was stratified by donor gender. All-cause mortality and graft failure hazards were compared using iterative Cox regression analysis. Subanalyses were performed to evaluate gender mismatch on post-LT prognosis. RESULTS There were 1885 patients with PBC. Of these cases, 965 entries had male donors and 920 had female donors. Median follow-up was 4.82 (25-75% IQR 1.83-8.93) years. Having a male donor was associated with higher all-cause mortality (aHR 1.28 95%CI 1.03-1.58) and graft failure (aHR 1.70 95%CI 1.02-2.82). Corresponding incidence rates were also relatively increased. In the sub-analysis of female recipients (n = 1581), those with gender-mismatch (male donors, n = 769) were associated with higher all-cause mortality (aHR 1.41 95%CI 1.11-1.78) but not graft failure. In the male recipient subanalysis (n = 304), no associations were found between gender-mismatch (female donors, n = 108) and all-cause mortality or graft failure. CONCLUSION This study shows that recipients who have male donors experienced higher rates of all-cause mortality following LT. This finding was consistent in the female recipient-male donor mismatch cohort.
Collapse
Affiliation(s)
- David Uihwan Lee
- Division of Gastroenterology and Hepatology, University of Maryland, 620W Lexington St, Baltimore, MD 21201, USA.
| | - Reid Ponder
- Department of Medicine, Tufts University School of Medicine, Washington St, Boston, MA 02111, USA
| | - Sarah Sandlow
- Department of Medicine, Tufts University School of Medicine, Washington St, Boston, MA 02111, USA
| | - Ashley Yoo
- Division of Gastroenterology and Hepatology, University of Maryland, 620W Lexington St, Baltimore, MD 21201, USA
| | - Ki Jung Lee
- Department of Medicine, Tufts University School of Medicine, Washington St, Boston, MA 02111, USA
| | - Harrison Chou
- Department of Medicine, Tufts University School of Medicine, Washington St, Boston, MA 02111, USA
| | - Gregory Hongyuan Fan
- Department of Medicine, Tufts University School of Medicine, Washington St, Boston, MA 02111, USA
| | - Nathalie Helen Urrunaga
- Division of Gastroenterology and Hepatology, University of Maryland, 620W Lexington St, Baltimore, MD 21201, USA
| |
Collapse
|
10
|
Cardinale V, Lanthier N, Baptista PM, Carpino G, Carnevale G, Orlando G, Angelico R, Manzia TM, Schuppan D, Pinzani M, Alvaro D, Ciccocioppo R, Uygun BE. Cell transplantation-based regenerative medicine in liver diseases. Stem Cell Reports 2023; 18:1555-1572. [PMID: 37557073 PMCID: PMC10444572 DOI: 10.1016/j.stemcr.2023.06.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 08/11/2023] Open
Abstract
This review aims to evaluate the current preclinical state of liver bioengineering, the clinical context for liver cell therapies, the cell sources, the delivery routes, and the results of clinical trials for end-stage liver disease. Different clinical settings, such as inborn errors of metabolism, acute liver failure, chronic liver disease, liver cirrhosis, and acute-on-chronic liver failure, as well as multiple cellular sources were analyzed; namely, hepatocytes, hepatic progenitor cells, biliary tree stem/progenitor cells, mesenchymal stromal cells, and macrophages. The highly heterogeneous clinical scenario of liver disease and the availability of multiple cellular sources endowed with different biological properties make this a multidisciplinary translational research challenge. Data on each individual liver disease and more accurate endpoints are urgently needed, together with a characterization of the regenerative pathways leading to potential therapeutic benefit. Here, we critically review these topics and identify related research needs and perspectives in preclinical and clinical settings.
Collapse
Affiliation(s)
- Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy.
| | - Nicolas Lanthier
- Service d'Hépato-gastroentérologie, Cliniques Universitaires Saint-Luc, Laboratory of Hepatogastroenterology, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Pedro M Baptista
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain; Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas (CIBERehd), Madrid, Spain; Fundación ARAID, Zaragoza, Spain; Department of Biomedical and Aerospace Engineering, Universidad Carlos III de Madrid, Madrid, Spain
| | - Guido Carpino
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, Italy
| | - Gianluca Carnevale
- Department of Surgery, Medicine, Dentistry, and Morphological Sciences with Interest in Transplant, Oncology, and Regenerative Medicine, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Giuseppe Orlando
- Section of Transplantation, Department of Surgery, Wake Forest University School of Medicine, Winston Salem, NC, USA
| | - Roberta Angelico
- Hepatobiliary Surgery and Transplant Unit, Department of Surgical Sciences, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Tommaso Maria Manzia
- Hepatobiliary Surgery and Transplant Unit, Department of Surgical Sciences, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Detlef Schuppan
- Institute of Translational Immunology, Research Center for Immune Therapy, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany; Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Massimo Pinzani
- UCL Institute for Liver and Digestive Health, Division of Medicine, Royal Free Hospital, London, UK
| | - Domenico Alvaro
- Department of Translation and Precision Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Rachele Ciccocioppo
- Gastroenterology Unit, Department of Medicine, A.O.U.I. Policlinico G.B. Rossi & University of Verona, Verona, Italy.
| | - Basak E Uygun
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Shriners Hospitals for Children, Boston, MA 02114, USA; Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA.
| |
Collapse
|
11
|
Carpino G, Cardinale V, Carbone M. Reply to: "Ductular reaction is a prognostic factor in primary biliary cholangitis". JHEP Rep 2023; 5:100786. [PMID: 37554922 PMCID: PMC10405088 DOI: 10.1016/j.jhepr.2023.100786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 04/20/2023] [Indexed: 08/10/2023] Open
Affiliation(s)
- Guido Carpino
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, Rome, 00161, Italy
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, 04100, Italy
| | - Marco Carbone
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy and European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Monza, Italy
| |
Collapse
|
12
|
Xu YN, Xu W, Zhang X, Wang DY, Zheng XR, Liu W, Chen JM, Chen GF, Liu CH, Liu P, Mu YP. BM-MSCs overexpressing the Numb enhance the therapeutic effect on cholestatic liver fibrosis by inhibiting the ductular reaction. Stem Cell Res Ther 2023; 14:45. [PMID: 36941658 PMCID: PMC10029310 DOI: 10.1186/s13287-023-03276-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 03/09/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Cholestatic liver fibrosis (CLF) is caused by inflammatory destruction of the intrahepatic bile duct and abnormal proliferation of the small bile duct after cholestasis. Activation of the Notch signaling pathway is required for hepatic stem cells to differentiate into cholangiocytes during the pathogenesis of CLF. Our previous research found that the expression of the Numb protein, a negative regulator of Notch signaling, was significantly reduced in the livers of patients with primary biliary cholangitis and CLF rats. However, the relationship between the Numb gene and CLF is largely unclear. In this study, we investigated the role of the Numb gene in the treatment of bile duct ligation (BDL)-induced CLF. METHODS In vivo, bone marrow-derived mesenchymal stem cells (BM-MSCs) with Numb gene overexpression or knockdown obtained using lentivirus transfection were transplanted into the livers of rats with BDL-induced CLF. The effects of the Numb gene on stem cell differentiation and CLF were evaluated by performing histology, tests of liver function, and measurements of liver hydroxyproline, cytokine gene and protein levels. In vitro, the Numb gene was overexpressed or knocked down in the WB-F344 cell line by lentivirus transfection, Then, cells were subjected immunofluorescence staining and the detection of mRNA levels of related factors, which provided further evidence supporting the results from in vivo experiments. RESULTS BM-MSCs overexpressing the Numb gene differentiated into hepatocytes, thereby inhibiting CLF progression. Conversely, BM-MSCs with Numb knockdown differentiated into biliary epithelial cells (BECs), thereby promoting the ductular reaction (DR) and the progression of CLF. In addition, we confirmed that knockdown of Numb in sodium butyrate-treated WB-F344 cells aggravated WB-F344 cell differentiation into BECs, while overexpression of Numb inhibited this process. CONCLUSIONS The transplantation of BM-MSCs overexpressing Numb may be a useful new treatment strategy for CLF.
Collapse
Affiliation(s)
- Yan-Nan Xu
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine (TCM), Institute of Liver Diseases, Shanghai University of TCM, Key Laboratory of Liver and Kidney Disease of the Ministry of Education, Clinical Key Laboratory of TCM of Shanghai, 528, Zhangheng Road, Pudong District, Shanghai, 201203, China
| | - Wen Xu
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine (TCM), Institute of Liver Diseases, Shanghai University of TCM, Key Laboratory of Liver and Kidney Disease of the Ministry of Education, Clinical Key Laboratory of TCM of Shanghai, 528, Zhangheng Road, Pudong District, Shanghai, 201203, China
| | - Xu Zhang
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine (TCM), Institute of Liver Diseases, Shanghai University of TCM, Key Laboratory of Liver and Kidney Disease of the Ministry of Education, Clinical Key Laboratory of TCM of Shanghai, 528, Zhangheng Road, Pudong District, Shanghai, 201203, China
| | - Dan-Yang Wang
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine (TCM), Institute of Liver Diseases, Shanghai University of TCM, Key Laboratory of Liver and Kidney Disease of the Ministry of Education, Clinical Key Laboratory of TCM of Shanghai, 528, Zhangheng Road, Pudong District, Shanghai, 201203, China
| | - Xin-Rui Zheng
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine (TCM), Institute of Liver Diseases, Shanghai University of TCM, Key Laboratory of Liver and Kidney Disease of the Ministry of Education, Clinical Key Laboratory of TCM of Shanghai, 528, Zhangheng Road, Pudong District, Shanghai, 201203, China
| | - Wei Liu
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine (TCM), Institute of Liver Diseases, Shanghai University of TCM, Key Laboratory of Liver and Kidney Disease of the Ministry of Education, Clinical Key Laboratory of TCM of Shanghai, 528, Zhangheng Road, Pudong District, Shanghai, 201203, China
| | - Jia-Mei Chen
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine (TCM), Institute of Liver Diseases, Shanghai University of TCM, Key Laboratory of Liver and Kidney Disease of the Ministry of Education, Clinical Key Laboratory of TCM of Shanghai, 528, Zhangheng Road, Pudong District, Shanghai, 201203, China
| | - Gao-Feng Chen
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine (TCM), Institute of Liver Diseases, Shanghai University of TCM, Key Laboratory of Liver and Kidney Disease of the Ministry of Education, Clinical Key Laboratory of TCM of Shanghai, 528, Zhangheng Road, Pudong District, Shanghai, 201203, China
| | - Cheng-Hai Liu
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine (TCM), Institute of Liver Diseases, Shanghai University of TCM, Key Laboratory of Liver and Kidney Disease of the Ministry of Education, Clinical Key Laboratory of TCM of Shanghai, 528, Zhangheng Road, Pudong District, Shanghai, 201203, China
| | - Ping Liu
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine (TCM), Institute of Liver Diseases, Shanghai University of TCM, Key Laboratory of Liver and Kidney Disease of the Ministry of Education, Clinical Key Laboratory of TCM of Shanghai, 528, Zhangheng Road, Pudong District, Shanghai, 201203, China.
| | - Yong-Ping Mu
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine (TCM), Institute of Liver Diseases, Shanghai University of TCM, Key Laboratory of Liver and Kidney Disease of the Ministry of Education, Clinical Key Laboratory of TCM of Shanghai, 528, Zhangheng Road, Pudong District, Shanghai, 201203, China.
| |
Collapse
|
13
|
Kim M, Rizvi F, Shin D, Gouon-Evans V. Update on Hepatobiliary Plasticity. Semin Liver Dis 2023; 43:13-23. [PMID: 36764306 PMCID: PMC10005859 DOI: 10.1055/s-0042-1760306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
The liver field has been debating for decades the contribution of the plasticity of the two epithelial compartments in the liver, hepatocytes and biliary epithelial cells (BECs), to derive each other as a repair mechanism. The hepatobiliary plasticity has been first observed in diseased human livers by the presence of biphenotypic cells expressing hepatocyte and BEC markers within bile ducts and regenerative nodules or budding from strings of proliferative BECs in septa. These observations are not surprising as hepatocytes and BECs derive from a common fetal progenitor, the hepatoblast, and, as such, they are expected to compensate for each other's loss in adults. To investigate the cell origin of regenerated cell compartments and associated molecular mechanisms, numerous murine and zebrafish models with ability to trace cell fates have been extensively developed. This short review summarizes the clinical and preclinical studies illustrating the hepatobiliary plasticity and its potential therapeutic application.
Collapse
Affiliation(s)
- Minwook Kim
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Fatima Rizvi
- Department of Medicine, Gastroenterology Section, Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, Massachusetts
| | - Donghun Shin
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Valerie Gouon-Evans
- Department of Medicine, Gastroenterology Section, Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, Massachusetts
| |
Collapse
|
14
|
Secretin alleviates biliary and liver injury during late-stage primary biliary cholangitis via restoration of secretory processes. J Hepatol 2023; 78:99-113. [PMID: 35987275 DOI: 10.1016/j.jhep.2022.07.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 07/22/2022] [Accepted: 07/29/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND & AIMS Primary biliary cholangitis (PBC) is characterised by ductopenia, ductular reaction, impairment of anion exchanger 2 (AE2) and the 'bicarbonate umbrella'. Ductulo-canalicular junction (DCJ) derangement is hypothesised to promote PBC progression. The secretin (Sct)/secretin receptor (SR) axis regulates cystic fibrosis transmembrane receptor (CFTR) and AE2, thus promoting choleresis. We evaluated the role of Sct/SR signalling on biliary secretory processes and subsequent injury in a late-stage PBC mouse model and human samples. METHODS At 32 weeks of age, female and male wild-type and dominant-negative transforming growth factor beta receptor II (late-stage PBC model) mice were treated with Sct for 1 or 8 weeks. Bulk RNA-sequencing was performed in isolated cholangiocytes from mouse models. RESULTS Biliary Sct/SR/CFTR/AE2 expression and bile bicarbonate levels were reduced in late-stage PBC mouse models and human samples. Sct treatment decreased bile duct loss, ductular reaction, inflammation, and fibrosis in late-stage PBC models. Sct reduced hepatic bile acid levels, modified bile acid composition, and restored the DCJ and 'bicarbonate umbrella'. RNA-sequencing identified that Sct promoted mature epithelial marker expression, specifically anterior grade protein 2 (Agr2). Late-stage PBC models and human samples exhibited reduced biliary mucin 1 levels, which were enhanced by Sct treatment. CONCLUSION Loss of Sct/SR signalling in late-stage PBC results in a faulty 'bicarbonate umbrella' and reduced Agr2-mediated mucin production. Sct restores cholangiocyte secretory processes and DCJ formation through enhanced mature cholangiocyte phenotypes and bile duct growth. Sct treatment may be beneficial for individuals with late-stage PBC. IMPACT AND IMPLICATIONS Secretin (Sct) regulates biliary proliferation and bicarbonate secretion in cholangiocytes via its receptor, SR, and in mouse models and human samples of late-stage primary biliary cholangitis (PBC), the Sct/SR axis is blunted along with loss of the protective 'bicarbonate umbrella'. We found that both short- and long-term Sct treatment ameliorated ductular reaction, immune cell influx, and liver fibrosis in late-stage PBC mouse models. Importantly, Sct treatment promoted bicarbonate and mucin secretion and hepatic bile acid efflux, thus reducing cholestatic and toxic bile acid-associated injury in late-stage PBC mouse models. Our work perpetuates the hypothesis that PBC pathogenesis hinges on secretory defects, and restoration of secretory processes that promote the 'bicarbonate umbrella' may be important for amelioration of PBC-associated damage.
Collapse
|
15
|
Sjöblom N, Boyd S, Manninen A, Blom S, Knuuttila A, Färkkilä M, Arola J. Automated image analysis of keratin 7 staining can predict disease outcome in primary sclerosing cholangitis. Hepatol Res 2022; 53:322-333. [PMID: 36495019 DOI: 10.1111/hepr.13867] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/12/2022] [Accepted: 12/02/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND AND AIMS Primary sclerosing cholangitis (PSC) is a chronic cholestatic liver disease that obstructs the bile ducts and causes liver cirrhosis and cholangiocarcinoma. Efficient surrogate markers are required to measure disease progression. The cytokeratin 7 (K7) load in a liver specimen is an independent prognostic indicator that can be measured from digitalized slides using artificial intelligence (AI)-based models. METHODS A K7-AI model 2.0 was built to measure the hepatocellular K7 load area of the parenchyma, portal tracts, and biliary epithelium. K7-stained PSC liver biopsy specimens (n = 295) were analyzed. A compound endpoint (liver transplantation, liver-related death, and cholangiocarcinoma) was applied in Kaplan-Meier survival analysis to measure AUC values and positive likelihood ratios for each histological variable detected by the model. RESULTS The K7-AI model 2.0 was a better prognostic tool than plasma alkaline phosphatase, the fibrosis stage evaluated by Nakanuma classification, or K7 score evaluated by a pathologist based on the AUC values of measured variables. A combination of parameters, such as portal tract volume and area of K7-positive hepatocytes analyzed by the model, produced an AUC of 0.81 for predicting the compound endpoint. Portal tract volume measured by the model correlated with the histological fibrosis stage. CONCLUSIONS The K7 staining of histological liver specimens in PSC provides significant information on disease outcomes through objective and reproducible data, including variables that cannot be measured by a human pathologist. The K7-AI model 2.0 could serve as a prognostic tool for clinical endpoints and as a surrogate marker in drug trials.
Collapse
Affiliation(s)
- Nelli Sjöblom
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Sonja Boyd
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | | | - Sami Blom
- Aiforia Technologies Oyj, Helsinki, Finland
| | | | - Martti Färkkilä
- Department of Gastroenterology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Johanna Arola
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
16
|
Gerussi A, Scaravaglio M, Cristoferi L, Verda D, Milani C, De Bernardi E, Ippolito D, Asselta R, Invernizzi P, Kather JN, Carbone M. Artificial intelligence for precision medicine in autoimmune liver disease. Front Immunol 2022; 13:966329. [PMID: 36439097 PMCID: PMC9691668 DOI: 10.3389/fimmu.2022.966329] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 10/13/2022] [Indexed: 09/10/2023] Open
Abstract
Autoimmune liver diseases (AiLDs) are rare autoimmune conditions of the liver and the biliary tree with unknown etiology and limited treatment options. AiLDs are inherently characterized by a high degree of complexity, which poses great challenges in understanding their etiopathogenesis, developing novel biomarkers and risk-stratification tools, and, eventually, generating new drugs. Artificial intelligence (AI) is considered one of the best candidates to support researchers and clinicians in making sense of biological complexity. In this review, we offer a primer on AI and machine learning for clinicians, and discuss recent available literature on its applications in medicine and more specifically how it can help to tackle major unmet needs in AiLDs.
Collapse
Affiliation(s)
- Alessio Gerussi
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Monza, Italy
| | - Miki Scaravaglio
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Monza, Italy
| | - Laura Cristoferi
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Monza, Italy
- Bicocca Bioinformatics Biostatistics and Bioimaging Centre - B4, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | | | - Chiara Milani
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Monza, Italy
| | - Elisabetta De Bernardi
- Department of Medicine and Surgery and Tecnomed Foundation, University of Milano - Bicocca, Monza, Italy
| | | | - Rosanna Asselta
- Humanitas Clinical and Research Center, Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Pietro Invernizzi
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Monza, Italy
| | - Jakob Nikolas Kather
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
- Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Marco Carbone
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Monza, Italy
| |
Collapse
|
17
|
Overi D, Carpino G, Cristoferi L, Onori P, Kennedy L, Francis H, Zucchini N, Rigamonti C, Viganò M, Floreani A, D’Amato D, Gerussi A, Venere R, Alpini G, Glaser S, Alvaro D, Invernizzi P, Gaudio E, Cardinale V, Carbone M. Role of ductular reaction and ductular-canalicular junctions in identifying severe primary biliary cholangitis. JHEP REPORTS : INNOVATION IN HEPATOLOGY 2022; 4:100556. [PMID: 36267871 PMCID: PMC9576897 DOI: 10.1016/j.jhepr.2022.100556] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 07/21/2022] [Accepted: 08/03/2022] [Indexed: 11/29/2022]
Abstract
Background & Aims Primary biliary cholangitis (PBC) is a chronic cholangiopathy characterised by immuno-mediated injury of interlobular bile ducts leading to intrahepatic cholestasis and progressive liver fibrosis. PBC histology is characterised by portal inflammation, progressive fibrosis, ductopenia, and the appearance of the so-called ductular reaction. The aim of the present study was to investigate the pathogenetic relevance of ductular reaction in PBC. Methods Liver biopsies were collected from naïve people with PBC (N = 87). Clinical-serological parameters were obtained at diagnosis and after 1 year of ursodeoxycholic acid (UDCA) treatment. Histological staging was performed on all slides according to multiple scoring systems and criteria for PBC. Liver samples were obtained from Mdr2 -/- mice treated with or without UDCA. Samples were processed for histology, immunohistochemistry, and immunofluorescence. Results Ductular reaction in people with PBC correlated with the disease stage and liver fibrosis, but not with disease activity; an extensive ductular reaction correlated with serum alkaline phosphatase levels at diagnosis, response to UDCA, and individuals' estimated survival, independently from other histological parameters, including disease stage. In people with PBC, reactive ductules were associated with the establishment of junctions with bile canaliculi and with fibrogenetic cell activation. Consistently, in a mouse model of intrahepatic cholestasis, UDCA treatment was effective in reducing ductular reaction and fibrosis and increasing ductular-canalicular junctions. Conclusions Extensive ductular reaction outlines a severe histologic phenotype in PBC and is associated with an inadequate therapy response and a worse estimated prognosis. Lay summary In people affected by primary biliary cholangitis (PBC), the histological appearance of extensive ductular reaction identifies individuals at risk of progressive fibrosis. Ductular reaction at diagnosis correlates with the lack of response to first-line therapy with ursodeoxycholic acid and serves to restore ductular-canalicular junctions in people with PBC. Assessing ductular reaction extension at diagnosis may add valuable information for clinicians.
Collapse
Key Words
- AE2, anion exchanger 2
- ALP, alkaline phosphatase
- ALPt0, ALP at diagnosis
- ALPt12, ALP at 12 months after UDCA therapy
- ALT, alanine aminotransferase
- ALTt0, ALT at diagnosis
- AMA, antimitochondrial antibody
- ANA, antinuclear antibody
- AST, aspartate aminotransferase
- ASTt0, AST at diagnosis
- BAC, bile acid control
- BIL, bilirubin
- BILt0, BIL at diagnosis
- CA, cholangitis activity
- CK19, cytokeratin 19
- CK7, cytokeratin 7
- Cholangiopathy
- Cholestasis
- DCJ, ductular–canalicular junction
- DCJ/d, DCJ per ductule
- DCJ/pt, DCJ per portal tract
- DR, ductular reaction
- EpCAM, epithelial cell adhesion molecule
- GGT, gamma-glutamyl transferase
- HA, hepatitis activity
- HSC, hepatic stellate cell
- Histology
- IH, intermediate hepatocyte
- Liver biopsy
- MF, myofibroblast
- Muc-1, mucin 1
- PBC, primary biliary cholangitis
- PCNA, proliferating cell nuclear antigen
- RT-qPCR, real-time quantitative PCR
- Regeneration
- SCTR, secretin receptor
- SQ, semiquantitative
- UDCA, ursodeoxycholic acid
- ULN, upper limit of normal
- URS, UDCA response score
- Ursodeoxycholic acid
- WT, wild type
- αSMA, α-smooth muscle actin
Collapse
Affiliation(s)
- Diletta Overi
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Guido Carpino
- Department of Movement, Human and Health Sciences, Division of Health Sciences, University of Rome ‘Foro Italico’, Rome, Italy,Corresponding author. Address: Department of Movement, Human and Health Sciences, Division of Health Sciences, University of Rome ‘Foro Italico’, Rome, Italy. Piazza Lauro De Bosis 6, 00135-Rome, Italy. Tel./Fax: +39-06-36733-202..
| | - Laura Cristoferi
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy,European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Monza, Italy
| | - Paolo Onori
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Lindsey Kennedy
- Hepatology and Gastroenterology, Medicine, Indiana University School of Medicine, Indianapolis, IN, USA,Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| | - Heather Francis
- Hepatology and Gastroenterology, Medicine, Indiana University School of Medicine, Indianapolis, IN, USA,Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| | - Nicola Zucchini
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy,European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Monza, Italy
| | - Cristina Rigamonti
- Department of Translational Medicine, Università degli Studi del Piemonte Orientale ‘A. Avogadro’, Novara, Italy
| | - Mauro Viganò
- Division of Hepatology, Ospedale San Giuseppe, University of Milan, Milan, Italy
| | - Annarosa Floreani
- Studiosa Senior, University of Padua, Padua, Italy,Scientific Consultant, IRCCS Negrar, Verona, Italy
| | - Daphne D’Amato
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Alessio Gerussi
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy,European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Monza, Italy
| | - Rosanna Venere
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Gianfranco Alpini
- Hepatology and Gastroenterology, Medicine, Indiana University School of Medicine, Indianapolis, IN, USA,Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| | - Shannon Glaser
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX, USA
| | - Domenico Alvaro
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Pietro Invernizzi
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy,European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Monza, Italy
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Marco Carbone
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy,European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Monza, Italy
| |
Collapse
|
18
|
Desterke C, Chung C, Pan D, Trauner M, Samuel D, Azoulay D, Feray C. Early Deregulation of Cholangiocyte NR0B2 During Primary Sclerosing Cholangitis. GASTRO HEP ADVANCES 2022; 2:49-62. [PMID: 39130146 PMCID: PMC11307415 DOI: 10.1016/j.gastha.2022.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/29/2022] [Indexed: 08/13/2024]
Abstract
Background and Aims Primary sclerosing cholangitis (PSC) is a probable autoimmune liver disease characterized by persistent and progressive biliary inflammation that leads to biliary infection, cirrhosis, or cholangiocarcinoma. Genome-wide omics data are scarce regarding this severe disease. Methods MEDLINE database gene prioritization by text mining (biliary inflammation, biliary fibrosis, biliary stasis) was integrated in distinct omics data: (1) PSC liver transcriptome training and validation cohorts, (2) farnesoid X receptor (FXR) mice liver transcriptome subjected to an FXR agonist or FXR knockout mice; (3) liver single-cell transcriptome of the Abcb4-/- mice model of PSC. Results A liver molecular network highlighted the involvement of nuclear receptor subfamily 0 group B member 2 (NR0B2) and its associated nuclear receptor FXR in a metabolic cascade that may influence the immune response. NR0B2 upregulation in PSC liver was independent of gender, age, body mass index, liver fibrosis, and PSC complications. Heterogeneity of NR0B2 upregulation was found in cholangiocyte cell types in which the NR0B2-based cell fate decision revealed the involvement of several metabolic pathways for detoxification (sulfur, glutathione derivative, and monocarboxylic acid metabolisms). Genes potentially implicated in carcinogenesis were also discovered on this cholangiocyte trajectory: GSTA3, inhibitor of DNA binding 2, and above all, TMEM45A, a transmembrane molecule from the Golgi apparatus considered as oncogenic in several cancers. Conclusion By revisiting PSC through PubMed data mining, we evidenced the early cholangiocyte deregulation of NR0B2, highlighting a metabolic and premalignant reprogramming of the cholangiocyte cell type. The therapeutic targeting of NR0B2 could potentiate that of FXR and enable action on early events of the disease and prevent its progression.
Collapse
Affiliation(s)
- Christophe Desterke
- Hôpital Paul-Brousse, Institut National de la Santé et de la Recherche Médicale UMRS1310, Université Paris-Saclay, Villejuif, France
| | | | - David Pan
- Gilead Sciences, Inc, Foster City, California
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Didier Samuel
- Hôpital Paul-Brousse, Institut National de la Santé et de la Recherche Médicale UMRS1310, Université Paris-Saclay, Villejuif, France
- Centre Hépato-Biliaire, Hôpital Paul-Brousse, Assistance Publique-Hôpitaux de Paris, Institut National de la Santé et de la Recherche Médicale U1193, Université Paris-Saclay, Villejuif, France
| | - Daniel Azoulay
- Centre Hépato-Biliaire, Hôpital Paul-Brousse, Assistance Publique-Hôpitaux de Paris, Institut National de la Santé et de la Recherche Médicale U1193, Université Paris-Saclay, Villejuif, France
| | - Cyrille Feray
- Centre Hépato-Biliaire, Hôpital Paul-Brousse, Assistance Publique-Hôpitaux de Paris, Institut National de la Santé et de la Recherche Médicale U1193, Université Paris-Saclay, Villejuif, France
| |
Collapse
|
19
|
Wang W, Chen D, Wang J, Wen L. Cellular Homeostasis and Repair in the Biliary Tree. Semin Liver Dis 2022; 42:271-282. [PMID: 35672015 DOI: 10.1055/a-1869-7714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
During biliary tree homeostasis, BECs are largely in a quiescent state and their turnover is slow for maintaining normal tissue homeostasis. BTSCs continually replenish new BECs in the luminal surface of EHBDs. In response to various types of biliary injuries, distinct cellular sources, including HPCs, BTSCs, hepatocytes, and BECs, repair or regenerate the injured bile duct. BEC, biliary epithelial cell; BTSC, biliary tree stem/progenitor cell; EHBD, extrahepatic bile ducts; HPC, hepatic progenitor cell.The biliary tree comprises intrahepatic bile ducts and extrahepatic bile ducts lined with epithelial cells known as biliary epithelial cells (BECs). BECs are a common target of various cholangiopathies for which there is an unmet therapeutic need in clinical hepatology. The repair and regeneration of biliary tissue may potentially restore the normal architecture and function of the biliary tree. Hence, the repair and regeneration process in detail, including the replication of existing BECs, expansion and differentiation of the hepatic progenitor cells and biliary tree stem/progenitor cells, and transdifferentiation of the hepatocytes, should be understood. In this paper, we review biliary tree homeostasis, repair, and regeneration and discuss the feasibility of regenerative therapy strategies for cholangiopathy treatment.
Collapse
Affiliation(s)
- Wei Wang
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing, China
| | - Dongfeng Chen
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing, China
| | - Jun Wang
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing, China
| | - Liangzhi Wen
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
20
|
Pennisi G, Pipitone RM, Cabibi D, Enea M, Romero-Gomez M, Viganò M, Bugianesi E, Wong VWS, Fracanzani AL, Sebastiani G, Berzigotti A, Di Salvo F, Giannone AG, La Mantia C, Lupo G, Porcasi R, Vernuccio F, Zito R, Di Marco V, Cammà C, Craxì A, de Ledinghen V, Grimaudo S, Petta S. A cholestatic pattern predicts major liver-related outcomes in patients with non-alcoholic fatty liver disease. Liver Int 2022; 42:1037-1048. [PMID: 35246921 DOI: 10.1111/liv.15232] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/08/2022] [Accepted: 02/16/2022] [Indexed: 02/13/2023]
Abstract
BACKGROUND & AIMS NAFLD patients usually have an increase in AST/ALT levels, but cholestasis can also be observed. We aimed to assess in subjects with NAFLD the impact of the (cholestatic) C pattern on the likelihood of developing major liver-related outcomes (MALO). METHODS Five hundred and eighty-two consecutive patients with biopsy-proven NAFLD or a clinical diagnosis of NAFLD-related compensated cirrhosis were classified as hepatocellular (H), C and mixed (M) patterns, by using the formula (ALT/ALT Upper Limit of Normal-ULN)/(ALP/ALP ULN). MALO were recorded during follow-up. An external cohort of 1281 biopsy-proven NAFLD patients was enrolled as validation set. RESULTS H, M and C patterns were found in 153 (26.3%), 272 (46.7%) and 157 (27%) patients respectively. During a median follow-up of 78 months, only 1 (0.6%) patient with H pattern experienced MALO, whilst 15 (5.5%) and 38 (24.2%) patients in M and C groups had MALO. At multivariate Cox regression analysis, age >55 years (HR 2.55, 95% CI 1.17-5.54; p = .01), platelets <150 000/mmc (HR 0.14, 95% CI 0.06-0.32; p < .001), albumin <4 g/L(HR 0.62, 95% CI 0.35-1.08; p = .09), C versus M pattern (HR 7.86, 95% CI 1.03-60.1; p = .04), C versus H pattern(HR 12.1, 95% CI 1.61-90.9; p = .01) and fibrosis F3-F4(HR 35.8, 95% CI 4.65-275.2; p < .001) were independent risk factors for MALO occurrence. C versus M pattern(HR 14.3, 95% CI 1.90-105.6; p = .008) and C versus H pattern (HR 15.6, 95% CI 2.10-115.1; p = .0068) were confirmed independently associated with MALO occurrence in the validation set. The immunohistochemical analysis found a significantly higher prevalence of moderate-high-grade ductular metaplasia combined with low-grade ductular proliferation in C pattern when compared with the biochemical H pattern. Gene expression analysis showed a lower expression of NR1H3, RXRα and VCAM1 in patients with the C pattern. CONCLUSIONS The presence of a cholestatic pattern in patients with NAFLD predicts a higher risk of MALO independently from other features of liver disease.
Collapse
Affiliation(s)
- Grazia Pennisi
- Section of Gastroenterology and Hepatology, Dipartimento Di Promozione Della Salute, Materno Infantile, Medicina Interna e Specialistica Di Eccellenza (PROMISE), University of Palermo, Palermo, Italy
| | - Rosaria Maria Pipitone
- Section of Gastroenterology and Hepatology, Dipartimento Di Promozione Della Salute, Materno Infantile, Medicina Interna e Specialistica Di Eccellenza (PROMISE), University of Palermo, Palermo, Italy
| | - Daniela Cabibi
- Dipartimento Di Promozione Della Salute, Materno Infantile, Medicina Interna e Specialistica Di Eccellenza (PROMISE), Palermo, Italy
| | - Marco Enea
- Dipartimento Di Promozione Della Salute, Materno Infantile, Medicina Interna e Specialistica Di Eccellenza (PROMISE), Palermo, Italy
| | - Manuel Romero-Gomez
- Digestive Diseases Unit, Hospital Universitario Virgen del Rocío, Biomedical Research Networking Center in Hepatic and Digestive Diseases, Instituto de Biomedicina de Sevilla, University of Seville, Seville, Spain
| | - Mauro Viganò
- Hepatology Unit, Ospedale San Giuseppe, University of Milan, Milan, Italy
| | - Elisabetta Bugianesi
- Division of Gastroenterology, Department of Medical Sciences, University of Torino, Turin, Italy
| | - Vincent Wai-Sun Wong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong City, Hong Kong
| | - Anna Ludovica Fracanzani
- Department of Pathophysiology and Transplantation, Ca' Granda IRCCS Foundation, Policlinico Hospital, University of Milan, Milan, Italy
| | - Giada Sebastiani
- Division of Gastroenterology and Hepatology, McGill University Health Centre, Quebec, Canada
| | - Annalisa Berzigotti
- Hepatology Group, University Clinic for Visceral Surgery and Medicine, Inselspital, Department for Biomedical Research, University of Bern, Bern, Switzerland
| | - Francesca Di Salvo
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Palermo, Italy
| | - Antonino Giulio Giannone
- Dipartimento Di Promozione Della Salute, Materno Infantile, Medicina Interna e Specialistica Di Eccellenza (PROMISE), Palermo, Italy
| | - Claudia La Mantia
- Section of Gastroenterology and Hepatology, Dipartimento Di Promozione Della Salute, Materno Infantile, Medicina Interna e Specialistica Di Eccellenza (PROMISE), University of Palermo, Palermo, Italy
| | - Giulia Lupo
- Section of Gastroenterology and Hepatology, Dipartimento Di Promozione Della Salute, Materno Infantile, Medicina Interna e Specialistica Di Eccellenza (PROMISE), University of Palermo, Palermo, Italy
| | - Rossana Porcasi
- Dipartimento Di Promozione Della Salute, Materno Infantile, Medicina Interna e Specialistica Di Eccellenza (PROMISE), Palermo, Italy
| | - Federica Vernuccio
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica avanzata (BIND), University of Palermo, Palermo, Italy
| | - Rossella Zito
- Dipartimento Di Promozione Della Salute, Materno Infantile, Medicina Interna e Specialistica Di Eccellenza (PROMISE), Palermo, Italy
| | - Vito Di Marco
- Section of Gastroenterology and Hepatology, Dipartimento Di Promozione Della Salute, Materno Infantile, Medicina Interna e Specialistica Di Eccellenza (PROMISE), University of Palermo, Palermo, Italy
| | - Calogero Cammà
- Section of Gastroenterology and Hepatology, Dipartimento Di Promozione Della Salute, Materno Infantile, Medicina Interna e Specialistica Di Eccellenza (PROMISE), University of Palermo, Palermo, Italy
| | - Antonio Craxì
- Section of Gastroenterology and Hepatology, Dipartimento Di Promozione Della Salute, Materno Infantile, Medicina Interna e Specialistica Di Eccellenza (PROMISE), University of Palermo, Palermo, Italy
| | - Victor de Ledinghen
- Centre d'Investigation de la Fibrose Hépatique, Hôpital Haut-Lévêque, Bordeaux University Hospital, Pessac, & INSERM U1053, Université de Bordeaux, Pessac, France
| | - Stefania Grimaudo
- Section of Gastroenterology and Hepatology, Dipartimento Di Promozione Della Salute, Materno Infantile, Medicina Interna e Specialistica Di Eccellenza (PROMISE), University of Palermo, Palermo, Italy
| | - Salvatore Petta
- Section of Gastroenterology and Hepatology, Dipartimento Di Promozione Della Salute, Materno Infantile, Medicina Interna e Specialistica Di Eccellenza (PROMISE), University of Palermo, Palermo, Italy
| |
Collapse
|
21
|
Lan T, Qian S, Tang C, Gao J. Role of Immune Cells in Biliary Repair. Front Immunol 2022; 13:866040. [PMID: 35432349 PMCID: PMC9005827 DOI: 10.3389/fimmu.2022.866040] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/08/2022] [Indexed: 02/06/2023] Open
Abstract
The biliary system is comprised of cholangiocytes and plays an important role in maintaining liver function. Under normal conditions, cholangiocytes remain in the stationary phase and maintain a very low turnover rate. However, the robust biliary repair is initiated in disease conditions, and different repair mechanisms can be activated depending on the pathological changes. During biliary disease, immune cells including monocytes, lymphocytes, neutrophils, and mast cells are recruited to the liver. The cellular interactions between cholangiocytes and these recruited immune cells as well as hepatic resident immune cells, including Kupffer cells, determine disease outcomes. However, the role of immune cells in the initiation, regulation, and suspension of biliary repair remains elusive. The cellular processes of cholangiocyte proliferation, progenitor cell differentiation, and hepatocyte-cholangiocyte transdifferentiation during biliary diseases are reviewed to manifest the underlying mechanism of biliary repair. Furthermore, the potential role of immune cells in crucial biliary repair mechanisms is highlighted. The mechanisms of biliary repair in immune-mediated cholangiopathies, inherited cholangiopathies, obstructive cholangiopathies, and cholangiocarcinoma are also summarized. Additionally, novel techniques that could clarify the underlying mechanisms of biliary repair are displayed. Collectively, this review aims to deepen the understanding of the mechanisms of biliary repair and contributes potential novel therapeutic methods for treating biliary diseases.
Collapse
Affiliation(s)
- Tian Lan
- Lab of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Shuaijie Qian
- Lab of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Chengwei Tang
- Lab of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Jinhang Gao
- Lab of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
22
|
de Jong IEM, Overi D, Carpino G, Gouw ASH, van den Heuvel MC, van Kempen LC, Mancone C, Onori P, Cardinale V, Casadei L, Alvaro D, Porte RJ, Gaudio E. Persistent biliary hypoxia and lack of regeneration are key mechanisms in the pathogenesis of posttransplant nonanastomotic strictures. Hepatology 2022; 75:814-830. [PMID: 34543480 PMCID: PMC9300015 DOI: 10.1002/hep.32166] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 08/30/2021] [Accepted: 09/16/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND AIMS Nonanastomotic biliary strictures (NAS) are a major cause of morbidity after orthotopic liver transplantation (OLT). Although ischemic injury of peribiliary glands (PBGs) and peribiliary vascular plexus during OLT has been associated with the later development of NAS, the exact underlying mechanisms remain unclear. We hypothesized that bile ducts of patients with NAS suffer from ongoing biliary hypoxia and lack of regeneration from PBG stem/progenitor cells. APPROACH AND RESULTS Forty-two patients, requiring retransplantation for either NAS (n = 18), hepatic artery thrombosis (HAT; n = 13), or nonbiliary graft failure (controls; n = 11), were included in this study. Histomorphological analysis of perihilar bile ducts was performed to assess differences in markers of cell proliferation and differentiation in PBGs, microvascular density (MVD), and hypoxia. In addition, isolated human biliary tree stem cells (hBTSCs) were used to examine exo-metabolomics during in vitro differentiation toward mature cholangiocytes. Bile ducts of patients with NAS or HAT had significantly reduced indices of PBG mass, cellular proliferation and differentiation (mucus production, secretin receptor expression, and primary cilia), reduced MVD, and increased PBG apoptosis and hypoxia marker expression, compared to controls. Metabolomics of hBTSCs during in vitro differentiation toward cholangiocytes revealed a switch from a glycolytic to oxidative metabolism, indicating the need for oxygen. CONCLUSIONS NAS are characterized by a microscopic phenotype of chronic biliary hypoxia attributed to loss of microvasculature, resulting in reduced proliferation and differentiation of PBG stem/progenitor cells into mature cholangiocytes. These findings suggest that persistent biliary hypoxia is a key mechanism underlying the development of NAS after OLT.
Collapse
Affiliation(s)
- Iris E M de Jong
- Surgical Research LaboratoryDepartment of SurgeryUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands.,Section of Hepatobiliary Surgery and Liver TransplantationDepartment of SurgeryUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| | - Diletta Overi
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic SciencesSapienza University of RomeRomeItaly
| | - Guido Carpino
- Division of Health SciencesDepartment of Movement, Human and Health SciencesUniversity of Rome "Foro Italico"RomeItaly
| | - Annette S H Gouw
- Department of PathologyUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| | - Marius C van den Heuvel
- Department of PathologyUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| | - Léon C van Kempen
- Department of PathologyUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| | - Carmine Mancone
- Department of Molecular MedicineSapienza University of RomeRomeItaly
| | - Paolo Onori
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic SciencesSapienza University of RomeRomeItaly
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and BiotechnologiesPolo Pontino, Sapienza University of RomeRomeItaly
| | - Luca Casadei
- Department of ChemistrySapienza University of RomeRomeItaly
| | - Domenico Alvaro
- Department of Translational and Precision MedicineSapienza University of RomeRomeItaly
| | - Robert J Porte
- Section of Hepatobiliary Surgery and Liver TransplantationDepartment of SurgeryUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic SciencesSapienza University of RomeRomeItaly
| |
Collapse
|
23
|
Li B, Li F, Gu T, Guo Y, Shen B, Xu X, Shen Z, Chen L, Zhang Q, Dong H, Cai X, Lu L. Specific knockdown of Y-box binding protein 1 in hepatic progenitor cells inhibits proliferation and alleviates liver fibrosis. Eur J Pharmacol 2022; 921:174866. [DOI: 10.1016/j.ejphar.2022.174866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/10/2021] [Accepted: 01/06/2022] [Indexed: 12/12/2022]
|
24
|
Meadows V, Baiocchi L, Kundu D, Sato K, Fuentes Y, Wu C, Chakraborty S, Glaser S, Alpini G, Kennedy L, Francis H. Biliary Epithelial Senescence in Liver Disease: There Will Be SASP. Front Mol Biosci 2021; 8:803098. [PMID: 34993234 PMCID: PMC8724525 DOI: 10.3389/fmolb.2021.803098] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/23/2021] [Indexed: 12/12/2022] Open
Abstract
Cellular senescence is a pathophysiological phenomenon in which proliferative cells enter cell cycle arrest following DNA damage and other stress signals. Natural, permanent DNA damage can occur after repetitive cell division; however, acute stress or other injuries can push cells into premature senescence and eventually a senescence-associated secretory phenotype (SASP). In recent years, there has been increased evidence for the role of premature senescence in disease progression including diabetes, cardiac diseases, and end-stage liver diseases including cholestasis. Liver size and function change with aging, and presumably with increasing cellular senescence, so it is important to understand the mechanisms by which cellular senescence affects the functional nature of the liver in health and disease. As well, cells in a SASP state secrete a multitude of inflammatory and pro-fibrogenic factors that modulate the microenvironment. Cellular SASP and the associated, secreted factors have been implicated in the progression of liver diseases, such as cholestatic injury that target the biliary epithelial cells (i.e., cholangiocytes) lining the bile ducts. Indeed, cholangiocyte senescence/SASP is proposed to be a driver of disease phenotypes in a variety of liver injuries. Within this review, we will discuss the impact of cholangiocyte senescence and SASP in the pathogenesis of cholestatic disorders.
Collapse
Affiliation(s)
- Vik Meadows
- Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN, United States
| | | | - Debjyoti Kundu
- Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN, United States
| | - Keisaku Sato
- Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN, United States
| | - Yessenia Fuentes
- Clinical and Translational Sciences Institute, STEM GEHCS Program, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Chaodong Wu
- Department of Nutrition, Texas A&M University, College Station, TX, United States
| | - Sanjukta Chakraborty
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX, United States
| | - Shannon Glaser
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX, United States
| | - Gianfranco Alpini
- Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN, United States
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, United States
| | - Lindsey Kennedy
- Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN, United States
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, United States
| | - Heather Francis
- Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN, United States
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, United States
| |
Collapse
|
25
|
Kosar K, Cornuet P, Singh S, Lee E, Liu S, Gayden J, Sato T, Freyberg Z, Arteel G, Nejak‐Bowen K. WNT7B Regulates Cholangiocyte Proliferation and Function During Murine Cholestasis. Hepatol Commun 2021; 5:2019-2034. [PMID: 34558852 PMCID: PMC8631094 DOI: 10.1002/hep4.1784] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/25/2021] [Accepted: 06/14/2021] [Indexed: 12/16/2022] Open
Abstract
We previously identified an up-regulation of specific Wnt proteins in the cholangiocyte compartment during cholestatic liver injury and found that mice lacking Wnt secretion from hepatocytes and cholangiocytes showed fewer proliferating cholangiocytes and high mortality in response to a 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) diet, a murine model of primary sclerosing cholangitis. In vitro studies demonstrated that Wnt7b, one of the Wnts up-regulated during cholestasis, induces proliferation of cholangiocytes in an autocrine manner and increases secretion of proinflammatory cytokines. We hypothesized that loss of Wnt7b may exacerbate some of the complications of cholangiopathies by decreasing the ability of bile ducts to induce repair. Wnt7b-flox mice were bred with Krt19-cre mice to deplete Wnt7b expression in only cholangiocytes (CC) or with albumin-Cre mice to delete Wnt7b expression in both hepatocytes and cholangiocytes (HC + CC). These mice were placed on a DDC diet for 1 month then killed for evaluation. Contrary to our expectations, we found that mice lacking Wnt7b from CC and HC + CC compartments had improved biliary injury, decreased cellular senescence, and lesser bile acid accumulation after DDC exposure compared to controls, along with decreased expression of inflammatory cytokines. Although Wnt7b knockout (KO) resulted in fewer proliferating cholangiocytes, CC and HC + CC KO mice on a DDC diet also had more hepatocytes expressing cholangiocyte markers compared to wild-type mice on a DDC diet, indicating that Wnt7b suppression promotes hepatocyte reprogramming. Conclusion: Wnt7b induces a proproliferative proinflammatory program in cholangiocytes, and its loss is compensated for by conversion of hepatocytes to a biliary phenotype during cholestatic injury.
Collapse
Affiliation(s)
- Karis Kosar
- Department of PathologyUniversity of PittsburghPittsburghPAUSA
| | - Pamela Cornuet
- Department of PathologyUniversity of PittsburghPittsburghPAUSA
| | - Sucha Singh
- Department of PathologyUniversity of PittsburghPittsburghPAUSA
| | - Elizabeth Lee
- Department of PathologyUniversity of PittsburghPittsburghPAUSA
| | - Silvia Liu
- Department of PathologyUniversity of PittsburghPittsburghPAUSA
- Pittsburgh Liver Research CenterUniversity of PittsburghPittsburghPAUSA
| | - Jenesis Gayden
- Department of PsychiatryUniversity of PittsburghPittsburghPAUSA
| | - Toshifumi Sato
- Department of MedicineGastroenterology DivisionUniversity of PittsburghPittsburghPAUSA
| | - Zachary Freyberg
- Pittsburgh Liver Research CenterUniversity of PittsburghPittsburghPAUSA
- Department of PsychiatryUniversity of PittsburghPittsburghPAUSA
- Department of Cell BiologyUniversity of PittsburghPittsburghPAUSA
| | - Gavin Arteel
- Pittsburgh Liver Research CenterUniversity of PittsburghPittsburghPAUSA
- Department of MedicineGastroenterology DivisionUniversity of PittsburghPittsburghPAUSA
| | - Kari Nejak‐Bowen
- Department of PathologyUniversity of PittsburghPittsburghPAUSA
- Pittsburgh Liver Research CenterUniversity of PittsburghPittsburghPAUSA
| |
Collapse
|
26
|
Campana L, Esser H, Huch M, Forbes S. Liver regeneration and inflammation: from fundamental science to clinical applications. Nat Rev Mol Cell Biol 2021; 22:608-624. [PMID: 34079104 DOI: 10.1038/s41580-021-00373-7] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2021] [Indexed: 02/05/2023]
Abstract
Liver regeneration is a complex process involving the crosstalk of multiple cell types, including hepatocytes, hepatic stellate cells, endothelial cells and inflammatory cells. The healthy liver is mitotically quiescent, but following toxic damage or resection the cells can rapidly enter the cell cycle to restore liver mass and function. During this process of regeneration, epithelial and non-parenchymal cells respond in a tightly coordinated fashion. Recent studies have described the interaction between inflammatory cells and a number of other cell types in the liver. In particular, macrophages can support biliary regeneration, contribute to fibrosis remodelling by repressing hepatic stellate cell activation and improve liver regeneration by scavenging dead or dying cells in situ. In this Review, we describe the mechanisms of tissue repair following damage, highlighting the close relationship between inflammation and liver regeneration, and discuss how recent findings can help design novel therapeutic approaches.
Collapse
Affiliation(s)
- Lara Campana
- Centre for Regenerative Medicine, Institute of Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Hannah Esser
- Centre for Regenerative Medicine, Institute of Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Meritxell Huch
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Stuart Forbes
- Centre for Regenerative Medicine, Institute of Regeneration and Repair, The University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
27
|
Zhou Y, Chen Y, Zhang X, Xu Q, Wu Z, Cao X, Shao M, Shu Y, Lv T, Lu C, Xie M, Wen T, Yang J, Shi Y, Bu H. Brahma-Related Gene 1 Inhibition Prevents Liver Fibrosis and Cholangiocarcinoma by Attenuating Progenitor Expansion. Hepatology 2021; 74:797-815. [PMID: 33650193 DOI: 10.1002/hep.31780] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 01/18/2021] [Accepted: 01/29/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND AIMS Intrahepatic cholangiocarcinoma (iCCA) is closely correlated with hepatic progenitor cell (HPC) expansion and liver fibrosis. Brahma-related gene 1 (Brg1), an enzymatic subunit of the switch/sucrose nonfermentable complex that is critical in stem cell maintenance and tumor promotion, is prominently up-regulated in both HPCs and iCCA; however, its role in this correlation remains undefined. APPROACH AND RESULTS A retrospective cohort study indicated that high Brg1 expression suggests poor prognosis in patients with iCCA. In chronically injured livers induced by a 0.1% 3,5-diethoxycarbonyl-1,4-dihydrocollidine diet or bile duct ligation surgery, HPCs were dramatically activated, as indicated by their enhanced expression of Brg1 and a subset of stem cell markers; however, Brg1 ablation in HPCs strongly suppressed HPC expansion and liver fibrosis. Furthermore, in a chemically induced iCCA model, inhibition of Brg1 by a specific inhibitor or inducible gene ablation markedly improved histology and suppressed iCCA growth. Mechanistically, in addition to transcriptionally promoting both Wnt receptor genes and target genes, Brg1 was found to bind to the β-catenin/transcription factor 4 transcription complex, suggesting a possible approach for regulation of Wnt/β-catenin signaling. CONCLUSIONS We have demonstrated the function of Brg1 in promoting HPC expansion, liver cirrhosis, and, ultimately, iCCA development in chronically injured livers, which is largely dependent on Wnt/β-catenin signaling. Our data suggest that therapies targeting Brg1-expressing HPCs are promising for the treatment of liver cirrhosis and iCCA.
Collapse
Affiliation(s)
- Yongjie Zhou
- Laboratory of PathologyKey Laboratory of Transplant Engineering and ImmunologyNHCWest China HospitalSichuan UniversityChengduChina
- Laboratory of Liver TransplantationFrontiers Science Center for Disease-Related Molecular NetworkWest China HospitalSichuan UniversityChengduChina
| | - Yuwei Chen
- Laboratory of PathologyKey Laboratory of Transplant Engineering and ImmunologyNHCWest China HospitalSichuan UniversityChengduChina
| | - Xiaoyun Zhang
- Laboratory of Liver TransplantationFrontiers Science Center for Disease-Related Molecular NetworkWest China HospitalSichuan UniversityChengduChina
- Department of Liver SurgeryWest China HospitalSichuan UniversityChengduChina
| | - Qing Xu
- Laboratory of PathologyKey Laboratory of Transplant Engineering and ImmunologyNHCWest China HospitalSichuan UniversityChengduChina
| | - Zhenru Wu
- Laboratory of PathologyKey Laboratory of Transplant Engineering and ImmunologyNHCWest China HospitalSichuan UniversityChengduChina
| | - Xiaoyue Cao
- Laboratory of PathologyKey Laboratory of Transplant Engineering and ImmunologyNHCWest China HospitalSichuan UniversityChengduChina
| | - Mingyang Shao
- Laboratory of PathologyKey Laboratory of Transplant Engineering and ImmunologyNHCWest China HospitalSichuan UniversityChengduChina
| | - Yuke Shu
- Laboratory of PathologyKey Laboratory of Transplant Engineering and ImmunologyNHCWest China HospitalSichuan UniversityChengduChina
| | - Tao Lv
- Laboratory of Liver TransplantationFrontiers Science Center for Disease-Related Molecular NetworkWest China HospitalSichuan UniversityChengduChina
- Department of Liver SurgeryWest China HospitalSichuan UniversityChengduChina
| | - Changli Lu
- Department of PathologyWest China HospitalSichuan UniversityChengduChina
| | - Mingjun Xie
- Department of General SurgeryThe First People's Hospital of YibinYibinChina
| | - Tianfu Wen
- Laboratory of Liver TransplantationFrontiers Science Center for Disease-Related Molecular NetworkWest China HospitalSichuan UniversityChengduChina
- Department of Liver SurgeryWest China HospitalSichuan UniversityChengduChina
| | - Jiayin Yang
- Laboratory of Liver TransplantationFrontiers Science Center for Disease-Related Molecular NetworkWest China HospitalSichuan UniversityChengduChina
- Department of Liver SurgeryWest China HospitalSichuan UniversityChengduChina
| | - Yujun Shi
- Laboratory of PathologyKey Laboratory of Transplant Engineering and ImmunologyNHCWest China HospitalSichuan UniversityChengduChina
- Laboratory of Liver TransplantationFrontiers Science Center for Disease-Related Molecular NetworkWest China HospitalSichuan UniversityChengduChina
| | - Hong Bu
- Laboratory of PathologyKey Laboratory of Transplant Engineering and ImmunologyNHCWest China HospitalSichuan UniversityChengduChina
- Department of PathologyWest China HospitalSichuan UniversityChengduChina
| |
Collapse
|
28
|
Sarcognato S, Sacchi D, Grillo F, Cazzagon N, Fabris L, Cadamuro M, Cataldo I, Covelli C, Mangia A, Guido M. Autoimmune biliary diseases: primary biliary cholangitis and primary sclerosing cholangitis. Pathologica 2021; 113:170-184. [PMID: 34294935 PMCID: PMC8299325 DOI: 10.32074/1591-951x-245] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 01/04/2021] [Indexed: 12/12/2022] Open
Abstract
Autoimmune cholestatic liver diseases are rare hepato-biliary disorders characterized by a progressive, inflammatory destruction of bile ducts. Primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC) are the main autoimmune cholestatic liver diseases. Both may evolve into secondary biliary cirrhosis and its complications. Therapeutic options are limited and liver transplantation remains the only definitive treatment for PBC and PSC. Most PBC and PSC patients have a typical presentation, which does not require liver biopsy. However, in routine clinical practice, important variants or specific subgroups that benefit from liver biopsy for proper management may be observed. Herein, we provide a general overview of clinical and pathological characteristic of PBC and PSC, highlighting the most important features for routine diagnostic practice.
Collapse
Affiliation(s)
| | - Diana Sacchi
- Department of Pathology, Azienda ULSS2 Marca Trevigiana, Treviso, Italy
| | - Federica Grillo
- Anatomic Pathology Unit, University of Genova and Policlinico San Martino Hospital, Genova, Italy
| | - Nora Cazzagon
- Department of Surgery, Oncology and Gastroenterology - DISCOG, University of Padova, Padova, Italy
| | - Luca Fabris
- Department of Molecular Medicine - DMM, University of Padova, Padova, Italy
| | | | - Ivana Cataldo
- Department of Pathology, Azienda ULSS2 Marca Trevigiana, Treviso, Italy
| | - Claudia Covelli
- Pathology Unit, Fondazione IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo, Italy
| | - Alessandra Mangia
- Liver Unit, Fondazione IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo, Italy
| | - Maria Guido
- Department of Pathology, Azienda ULSS2 Marca Trevigiana, Treviso, Italy.,Department of Medicine - DIMED, University of Padova, Padova, Italy
| |
Collapse
|
29
|
Kawata K, Joshita S, Shimoda S, Yamashita Y, Yamashita M, Kitsugi K, Takatori S, Ohta K, Ito J, Shimoyama S, Noritake H, Suda T, Harada K. The ursodeoxycholic acid response score predicts pathological features in primary biliary cholangitis. Hepatol Res 2021; 51:80-89. [PMID: 33080094 DOI: 10.1111/hepr.13584] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/30/2020] [Accepted: 10/13/2020] [Indexed: 12/12/2022]
Abstract
AIM The ursodeoxycholic acid response score (URS) can predict the biochemical response to 12 months of ursodeoxycholic acid (UDCA) treatment in patients with primary biliary cholangitis (PBC). We investigated the relationship between the URS and the histopathological features before and after UDCA treatment. METHODS Patients with PBC (n = 126) were examined for the association between the probability of response (POR) to UDCA based on the URS formulas and clinicopathological features. Furthermore, 30 patients were examined for the association between the POR and pathological changes. RESULTS The POR area under the receiver operating characteristic curve (AUROC) for predicting the biochemical response to UDCA was 0.861. The PORs of stage 1 in the Nakanuma system and grade 0 in the CK7 grading in hepatocytes were significantly higher than those of stage 3 and grade 3, respectively. The AUROCs for the prediction of stage ≥2, stage ≥3 and stage 4 in the Nakanuma system at pretreatment were 0.592, 0.710 and 0.817, respectively. The AUROCs for the prediction of grade ≥1, grade ≥2 and grade 3 in the CK7 hepatocyte grading were 0.741, 0.824 and 0.970, respectively. Furthermore, the AUROC for predicting the histological stage progression after UDCA treatment in the Scheuer classification and the Nakanuma system were 0.712 and 0.799, respectively. CONCLUSIONS The URS not only predicts the biochemical response, but also reflects the Nakanuma system and the CK7 hepatocyte grading at pretreatment. This scoring system can identify an inadequate histological response to UDCA treatment in the Scheuer classification and the Nakanuma system.
Collapse
Affiliation(s)
- Kazuhito Kawata
- Department of Internal Medicine II, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Satoru Joshita
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, Japan
| | - Shinji Shimoda
- Department of Medicine and Biosystemic Science Graduate School of Medical Sciences, Kyushu University, Japan
| | - Yuki Yamashita
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, Japan
| | - Maho Yamashita
- Department of Internal Medicine II, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Kensuke Kitsugi
- Department of Internal Medicine II, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Shingo Takatori
- Department of Internal Medicine II, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Kazuyoshi Ohta
- Department of Internal Medicine II, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Jun Ito
- Department of Internal Medicine II, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Shin Shimoyama
- Department of Internal Medicine II, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Hidenao Noritake
- Department of Internal Medicine II, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Takafumi Suda
- Department of Internal Medicine II, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Kenichi Harada
- Department of Human Pathology, Kanazawa University Graduate School of Medicine, Kanazawa
| |
Collapse
|
30
|
Carbone M, Ronca V, Invernizzi P. Reply to: "A spotlight on natural killer cells in primary biliary cholangitis". J Hepatol 2021; 74:255-256. [PMID: 33069497 DOI: 10.1016/j.jhep.2020.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 09/20/2020] [Indexed: 12/04/2022]
Affiliation(s)
- Marco Carbone
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milan Bicocca, Milan, Italy; European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Monza, Italy
| | - Vincenzo Ronca
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milan Bicocca, Milan, Italy; European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Monza, Italy
| | - Pietro Invernizzi
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milan Bicocca, Milan, Italy; European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Monza, Italy.
| |
Collapse
|
31
|
Alvaro D, Carpino G, Craxi A, Floreani A, Moschetta A, Invernizzi P. Primary biliary cholangitis management: controversies, perspectives and daily practice implications from an expert panel. Liver Int 2020; 40:2590-2601. [PMID: 32757367 DOI: 10.1111/liv.14627] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/24/2020] [Accepted: 07/26/2020] [Indexed: 02/13/2023]
Abstract
Primary biliary cholangitis (PBC) is a rare progressive immune-mediated liver disease that, if not adequately treated, may culminate in end-stage disease and need for transplantation. According to current guidelines, PBC is diagnosed in the presence of antimitochondrial antibodies (AMA) or specific antinuclear antibodies, and of a cholestatic biochemical profile, while biopsy is recommended only in selected cases. All patients receive ursodeoxycholic acid (UDCA) in first line; the only registered second-line therapy is obeticholic acid (OCA) for UDCA-inadequate responders. Despite the recent advances in understanding PBC pathogenesis and developing new treatments, many grey areas remain. Six Italian experts selected the following topics as the most urgent to address in PBC management: diagnosis and natural history of PBC: as a portion of the subjects with isolated AMA, normal alkaline phosphatase (ALP) levels and no symptoms of liver disease could have PBC by histology, defining how to manage and follow this population is crucial; role of liver biopsy: recent evidence suggests that biopsy may provide relevant information for risk stratification and prediction of UDCA response, possibly facilitating personalized approaches; risk stratification: the tools for risk stratification are well established, but some issues (eg bile acid dosage in routine practice) remain controversial; and therapy: those in more advanced stages of development are nuclear receptor modulators and fibrates, but more data are needed to plan personalized strategies. In this manuscript, for each topic, current evidence, controversies and future perspectives are summarized with the possible implications for clinical practice.
Collapse
Affiliation(s)
- Domenico Alvaro
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Guido Carpino
- Division of Health Sciences, Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Antonio Craxi
- Gastroenterology and Liver Unit, PROMISE, University of Palermo, Palermo, Italy
| | - Annarosa Floreani
- Studioso Senior University of Padova and, Scientific Consultant IRCCS Negrar, Verona, Italy.,Scientific Consultant IRCCS Negrar, Verona, Italy
| | - Antonio Moschetta
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Pietro Invernizzi
- Division of Gastroenterology and Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Monza, Italy
| |
Collapse
|
32
|
Paulsen JD, Zeck B, Sun K, Simoes C, Theise ND, Chiriboga L. Keratin 19 and mesenchymal markers for evaluation of epithelial-mesenchymal transition and stem cell niche components in primary biliary cholangitis by sequential elution-stripping multiplex immunohistochemistry. J Histotechnol 2020; 43:163-173. [PMID: 32998669 DOI: 10.1080/01478885.2020.1807228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Multiplexed immunohistochemical techniques give insight into contextual cellular relationships by offering the ability to collect cell-specific data with spatial information from formalin-fixed, paraffin-embedded tissue sections. We established an automated sequential elution-stripping multiplex immunohistochemical assay to address two controversial scientific questions in the field of hepatopathology: 1) whether epithelial-to-mesenchymal transition or mesenchymal-to-epithelial transition occurs during liver injury and repair of a chronic liver disease and 2) if there is a stromal:epithelial relationship along the canals of Hering that would support the concept of this biliary structure being a stem/progenitor cell niche. Our 4-plex assay includes both epithelial and mesenchymal clinical immunohistochemical markers and was performed on clinical human liver specimens in patients with primary biliary cholangitis. The assay demonstrated that in each specimen, co-expression of epithelial and mesenchymal markers was observed in extraportal cholangiocytes. In regard to possible mesenchymal components in a stem cell niche, 82.3% ± 5.5% of extraportal cholangiocytes were intimately associated with a vimentin-positive cell. Co-expression of epithelial and mesenchymal markers by extraportal cholangiocytes is evidence for epithelial to mesenchymal transition in primary biliary cholangitis. Vimentin-positive stromal cells are frequently juxtaposed to extraportal cholangiocytes, supporting an epithelial:mesenchymal relationship within the hepatobiliary stem cell niche. Our automated sequential elution-stripping multiplex immunohistochemical assay is a cost-effective multiplexing technique that can be readily applied to a small series of clinical pathology samples in order to answer scientific questions involving cell:cell relationships and cellular antibody expression.
Collapse
Affiliation(s)
- John David Paulsen
- Department of Pathology, NYU Langone Health , New York, USA.,Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai/The Mount Sinai Hospital , New York, USA
| | - Briana Zeck
- NYU Langone Health, Center for Biospecimen Research and Development , New York, USA
| | - Katherine Sun
- Department of Pathology, NYU Langone Health , New York, USA
| | - Camila Simoes
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai/The Mount Sinai Hospital , New York, USA
| | - Neil D Theise
- Department of Pathology, NYU Langone Health , New York, USA
| | - Luis Chiriboga
- Department of Pathology, NYU Langone Health , New York, USA.,NYU Langone Health, Center for Biospecimen Research and Development , New York, USA
| |
Collapse
|
33
|
Safarikia S, Carpino G, Overi D, Cardinale V, Venere R, Franchitto A, Onori P, Alvaro D, Gaudio E. Distinct EpCAM-Positive Stem Cell Niches Are Engaged in Chronic and Neoplastic Liver Diseases. Front Med (Lausanne) 2020; 7:479. [PMID: 32984373 PMCID: PMC7492539 DOI: 10.3389/fmed.2020.00479] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/15/2020] [Indexed: 12/12/2022] Open
Abstract
In normal human livers, EpCAMpos cells are mostly restricted in two distinct niches, which are (i) the bile ductules and (ii) the mucous glands present inside the wall of large intrahepatic bile ducts (the so-called peribiliary glands). These EpCAMpos cell niches have been proven to harbor stem/progenitor cells with great importance in liver and biliary tree regeneration and in the pathophysiology of human diseases. The EpCAMpos progenitor cells within bile ductules are engaged in driving regenerative processes in chronic diseases affecting hepatocytes or interlobular bile ducts. The EpCAMpos population within peribiliary glands is activated when regenerative needs are finalized to repair large intra- or extra-hepatic bile ducts affected by chronic pathologies, including primary sclerosing cholangitis and ischemia-induced cholangiopathies after orthotopic liver transplantation. Finally, the presence of distinct EpCAMpos cell populations may explain the histological and molecular heterogeneity characterizing cholangiocarcinoma, based on the concept of multiple candidate cells of origin. This review aimed to describe the precise anatomical distribution of EpCAMpos populations within the liver and the biliary tree and to discuss their contribution in the pathophysiology of human liver diseases, as well as their potential role in regenerative medicine of the liver.
Collapse
Affiliation(s)
- Samira Safarikia
- Department of Precision and Translational Medicine, Sapienza University of Rome, Rome, Italy
| | - Guido Carpino
- Department of Movement, Human and Health Sciences, Division of Health Sciences, University of Rome "Foro Italico," Rome, Italy
| | - Diletta Overi
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Rosanna Venere
- Department of Precision and Translational Medicine, Sapienza University of Rome, Rome, Italy
| | - Antonio Franchitto
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Paolo Onori
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Domenico Alvaro
- Department of Precision and Translational Medicine, Sapienza University of Rome, Rome, Italy
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
34
|
Azad AI, Krishnan A, Troop L, Li Y, Katsumi T, Pavelko K, Kostallari E, Guicciardi ME, Gores GJ. Targeted Apoptosis of Ductular Reactive Cells Reduces Hepatic Fibrosis in a Mouse Model of Cholestasis. Hepatology 2020; 72:1013-1028. [PMID: 32128842 PMCID: PMC7774262 DOI: 10.1002/hep.31211] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 02/03/2020] [Accepted: 02/11/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND AIMS In cholestatic liver diseases, ductular reactive (DR) cells extend into the hepatic parenchyma and promote inflammation and fibrosis. We have previously observed that multidrug-resistant 2 (Mdr2-/- ) double knockout (DKO) mice lacking tumor necrosis factor-related apoptosis-inducing ligand receptor (Tr-/- ) display a more extensive ductular reaction and hepatic fibrosis compared to Mdr2-/- mice. This observation suggests that the magnitude of the DR-cell population may be regulated by apoptosis. APPROACH AND RESULTS To examine this concept, we cultured epithelial cell adhesion molecule-positive reactive cholangioids (ERCs) obtained from wild-type (WT), Tr-/- , Mdr2-/- and DKO mice. Single-cell transcriptomics and immunostaining of both WT and DKO ERCs confirmed their DR-cell phenotype. Moreover, DKO ERCs displayed a unique translational cluster with expression of chemokines, indicating a reactive state. Incubation with the myeloid cell leukemia 1 (MCL1) inhibitor S63845, a proapoptotic BH3-mimetic therapy, significantly decreased DKO and Mdr2-/- ERC viability compared to WT. Intravenous administration of S63845 significantly reduced the DR-cell population and markers of inflammation and liver fibrosis in Mdr2-/- and DKO mice. Furthermore, DKO mice treated with S63845 displayed a significant decrease in hepatic B lymphocytes compared to untreated mice as assessed by high-definition mass cytometry by time-of-flight. Coculture of bone marrow-derived macrophages with ERCs from DKO mouse livers up-regulated expression of the B cell-directed chemokine (C-C motif) ligand 5. Finally, DR cells were noted to be primed for apoptosis with Bcl-2 homologous antagonist/killer activation in vitro and in vivo in primary sclerosing cholangitis liver specimens. CONCLUSIONS DR cells appear to play a key role in recruiting immune cells to the liver to actively create an inflammatory and profibrogenic microenvironment. Pharmacologic targeting of MCL1 in a mouse model of chronic cholestasis reduces DR-cell and B-cell populations and hepatic fibrosis.
Collapse
Affiliation(s)
- Adiba I. Azad
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | - Anuradha Krishnan
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | - Leia Troop
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | - Ying Li
- Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN
| | - Tomohiro Katsumi
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | - Kevin Pavelko
- Department of Immunology, Mayo Clinic, Rochester, MN
| | - Enis Kostallari
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | | | - Gregory J. Gores
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| |
Collapse
|
35
|
Sydor S, Manka P, van Buren L, Theurer S, Schwertheim S, Best J, Heegsma J, Saeed A, Vetter D, Schlattjan M, Dittrich A, Fiel MI, Baba HA, Dechêne A, Cubero FJ, Gerken G, Canbay A, Moshage H, Friedman SL, Faber KN, Bechmann LP. Hepatocyte KLF6 expression affects FXR signalling and the clinical course of primary sclerosing cholangitis. Liver Int 2020; 40:2172-2181. [PMID: 32462764 DOI: 10.1111/liv.14542] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 04/26/2020] [Accepted: 05/19/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Primary sclerosing cholangitis (PSC) is characterized by chronic cholestasis and inflammation, which promotes cirrhosis and an increased risk of cholangiocellular carcinoma (CCA). The transcription factor Krueppel-like-factor-6 (KLF6) is a mediator of liver regeneration, steatosis, and hepatocellular carcinoma (HCC), but no data are yet available on its potential role in cholestasis. Here, we aimed to identify the impact of hepatic KLF6 expression on cholestatic liver injury and PSC and identify potential effects on farnesoid-X-receptor (FXR) signalling. METHODS Hepatocellular KLF6 expression was quantified by immunohistochemistry (IHC) in liver biopsies of PSC patients and correlated with serum parameters and clinical outcome. Liver injury was analysed in hepatocyte-specific Klf6-knockout mice following bile duct ligation (BDL). Chromatin-immunoprecipitation-assays (ChIP) and KLF6-overexpressing HepG2 cells were used to analyse the interaction of KLF6 and FXR target genes such as NR0B2. RESULTS Based on IHC, PSC patients could be subdivided into two groups showing either low (<80%) or high (>80%) hepatocellular KLF6 expression. In patients with high KLF6 expression, we observed a superior survival in Kaplan-Meier analysis. Klf6-knockout mice showed reduced hepatic necrosis following BDL when compared to controls. KLF6 suppressed NR0B2 expression in HepG2 cells mediated through binding of KLF6 to the NR0B2 promoter region. CONCLUSION Here, we show an association between KLF6 expression and the clinical course and overall survival in PSC patients. Mechanistically, we identified a direct interaction of KLF6 with the FXR target gene NR0B2.
Collapse
Affiliation(s)
- Svenja Sydor
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke-University Hospital Magdeburg, Magdeburg, Germany.,Department of Internal Medicine, University Hospital Knappschaftskrankenhaus, Ruhr-University Bochum, Bochum, Germany
| | - Paul Manka
- Department of Gastroenterology and Hepatology, University Hospital Essen, Essen, Germany
| | - Lea van Buren
- Department of Gastroenterology and Hepatology, University Hospital Essen, Essen, Germany
| | - Sarah Theurer
- Department of Pathology, University Hospital of Essen, Essen, Germany
| | - Suzan Schwertheim
- Department of Pathology, University Hospital of Essen, Essen, Germany
| | - Jan Best
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke-University Hospital Magdeburg, Magdeburg, Germany
| | - Janette Heegsma
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ali Saeed
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Diana Vetter
- Department of Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Martin Schlattjan
- Department of Pathology, University Hospital of Essen, Essen, Germany
| | - Anna Dittrich
- Department of Systems Biology, Institute of Biology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Maria I Fiel
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hideo A Baba
- Department of Pathology, University Hospital of Essen, Essen, Germany
| | - Alexander Dechêne
- Nürnberg Hospital, Department of Internal Medicine 6, Nürnberg, Germany
| | - Francisco J Cubero
- Department of Immunology, Opthalmology and ORL, Complutense University School of Medicine, Madrid, Spain.,de Octubre Health Research Institute (imas 12), Madrid, Spain
| | - Guido Gerken
- Department of Gastroenterology and Hepatology, University Hospital Essen, Essen, Germany
| | - Ali Canbay
- Department of Internal Medicine, University Hospital Knappschaftskrankenhaus, Ruhr-University Bochum, Bochum, Germany
| | - Han Moshage
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Scott L Friedman
- Department of Systems Biology, Institute of Biology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Klaas Nico Faber
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Lars P Bechmann
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke-University Hospital Magdeburg, Magdeburg, Germany.,Department of Internal Medicine, University Hospital Knappschaftskrankenhaus, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
36
|
Abstract
Several patient and treatment related factors significantly modify outcomes of biliary atresia. The extremely variable prognosis mandates intensive postoperative monitoring following portoenterostomy. Accurate prediction of outcome and progression of liver injury would enable individualized treatment and follow-up protocols, patient counseling and meaningful stratification of patients into clinical trials. While results on most biomarkers of cholestasis, hepatocyte function, fibrosis and inflammation studied so far are inconsistent or have not been validated in independent patient cohorts, postoperative serum bilirubin level 3 months after portoenterostomy remains the most accurate clinically feasible predictor of native liver survival. Although liver stiffness and a novel marker of cholangiocyte integrity, serum matrix metalloproteinase-7, correlate with liver fibrosis and may discriminate biliary atresia from other causes of neonatal cholestasis, further information on their ability to predict portoenterostomy outcomes is needed. Recent gene expression profiling has shown promise in overcoming the sampling error associated with histological quantification of liver fibrosis, and provides an important possibility to stratify patients for clinical trials according to the prognosis of native liver survival already preoperatively. As activity and extent of ductular reaction is linked with progression of liver fibrosis in cholangiopathies, further research is also warranted to evaluate predictive value of ductular reaction, matrix metalloproteinase-7 and the underlying gene expression signatures in relation to circulating bile acids in biliary atresia. Discovery of accurate predictive tools will ultimately increase our understanding of the unpredictable response to surgery and pathophysiology of progressive liver injury in biliary atresia.
Collapse
|
37
|
Carpino G, Del Ben M, Pastori D, Carnevale R, Baratta F, Overi D, Francis H, Cardinale V, Onori P, Safarikia S, Cammisotto V, Alvaro D, Svegliati-Baroni G, Angelico F, Gaudio E, Violi F. Increased Liver Localization of Lipopolysaccharides in Human and Experimental NAFLD. Hepatology 2020; 72:470-485. [PMID: 31808577 DOI: 10.1002/hep.31056] [Citation(s) in RCA: 252] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 11/13/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIMS Lipopolysaccharides (LPS) is increased in nonalcoholic fatty liver disease (NAFLD), but its relationship with liver inflammation is not defined. APPROACH AND RESULTS We studied Escherichia coli LPS in patients with biopsy-proven NAFLD, 25 simple steatosis (nonalcoholic fatty liver) and 25 nonalcoholic steatohepatitis (NASH), and in mice with diet-induced NASH. NASH patients had higher serum LPS and hepatocytes LPS localization than controls, which was correlated with serum zonulin and phosphorylated nuclear factor-κB expression. Toll-like receptor 4 positive (TLR4+ ) macrophages were higher in NASH than simple steatosis or controls and correlated with serum LPS. NASH biopsies showed a higher CD61+ platelets, and most of them were TLR4+ . TLR4+ platelets correlated with serum LPS values. In mice with NASH, LPS serum levels and LPS hepatocyte localization were increased compared with control mice and associated with nuclear factor-κB activation. Mice on aspirin developed lower fibrosis and extent compared with untreated ones. Treatment with TLR4 inhibitor resulted in lower liver inflammation in mice with NASH. CONCLUSIONS In NAFLD, Escherichia coli LPS may increase liver damage by inducing macrophage and platelet activation through the TLR4 pathway.
Collapse
Affiliation(s)
- Guido Carpino
- Department of Movement, Human and Health Sciences, Division of Health Sciences, University of Rome "Foro Italico,", Rome, Italy
| | - Maria Del Ben
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | - Daniele Pastori
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | - Roberto Carnevale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
- Mediterranea Cardiocentro, Naples, Italy
| | - Francesco Baratta
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | - Diletta Overi
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Heather Francis
- Indiana Center for Liver Research, Richard L. Roudebush VA Medical Center and Indiana University, Indianapolis, IN
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Paolo Onori
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Samira Safarikia
- Department of Precision and Translational Medicine, Sapienza University of Rome, Rome, Italy
| | - Vittoria Cammisotto
- Department of General Surgery and Surgical Specialty Paride Stefanini, Sapienza University of Rome, Rome, Italy
| | - Domenico Alvaro
- Department of Precision and Translational Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Francesco Angelico
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Francesco Violi
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
- Mediterranea Cardiocentro, Naples, Italy
| |
Collapse
|
38
|
An P, Wei G, Huang P, Li W, Qi X, Lin Y, Vaid KA, Wang J, Zhang S, Li Y, Or YS, Jiang L, Popov YV. A novel non-bile acid FXR agonist EDP-305 potently suppresses liver injury and fibrosis without worsening of ductular reaction. Liver Int 2020; 40:1655-1669. [PMID: 32329946 PMCID: PMC7384094 DOI: 10.1111/liv.14490] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 04/06/2020] [Accepted: 04/20/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND EDP-305 is a novel and potent farnesoid X receptor (FXR) agonist, with no/minimal cross-reactivity to TGR5 or other nuclear receptors. Herein we report therapeutic efficacy of EDP-305, in direct comparison with the first-in-class FXR agonist obeticholic acid (OCA), in mouse models of liver disease. METHODS EDP-305 (10 and 30 mg/kg/day) or OCA (30mg/kg/day) was tested in mouse models of pre-established biliary fibrosis (BALBc.Mdr2-/-, n = 9-12/group) and steatohepatitis induced by methionine/choline-deficient diet (MCD, n = 7-12/group). Effects on biliary epithelium were evaluated in vivo and in primary EpCAM + hepatic progenitor cell (HPC) cultures. RESULTS In a BALBc.Mdr2-/- model, EDP-305 reduced serum transaminases by up to 53% and decreased portal pressure, compared to untreated controls. Periportal bridging fibrosis was suppressed by EDP-305 at both doses, with up to a 39% decrease in collagen deposition in high-dose EDP-305. In MCD-fed mice, EDP-305 treatment reduced serum ALT by 62% compared to controls, and profoundly inhibited perisinusoidal 'chicken wire' fibrosis, with over 80% reduction in collagen deposition. In both models, treatment with 30mg/kg OCA reduced serum transaminases up to 30%, but did not improve fibrosis. The limited impact on fibrosis was mediated by cholestasis-independent worsening of ductular reaction by OCA in both disease models; OCA but not EDP-305 at therapeutic doses promoted ductular proliferation in healthy mice and favoured differentiation of primary HPC towards cholangiocyte lineage in vitro. CONCLUSIONS EDP-305 potently improved pre-established liver injury and hepatic fibrosis in murine biliary and metabolic models of liver disease, supporting the clinical evaluation of EDP-305 in fibrotic liver diseases including cholangiopathies and non-alcoholic steatohepatitis.
Collapse
Affiliation(s)
- Ping An
- Divison of Gastroenterology and HepatologyBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMAUSA,Division of Gastroenterology and HepatologyRenmin HospitalWuhan UniversityWuhanChina
| | - Guangyan Wei
- Divison of Gastroenterology and HepatologyBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMAUSA,Department of Radiation OncologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Pinzhu Huang
- Divison of Gastroenterology and HepatologyBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMAUSA,Department of Colon and Rectum SurgeryThe Sixth Affiliated HospitalSun Yat-sen UniversityGuangzhouChina
| | - Wenda Li
- Divison of Gastroenterology and HepatologyBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMAUSA,Department of Hepatobiliary SurgerSun Yat-sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Xiaolong Qi
- Divison of Gastroenterology and HepatologyBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMAUSA,Institute of Portal HypertensionThe First Hospital of Lanzhou UniversityLanzhouChina
| | - Yi Lin
- Divison of Gastroenterology and HepatologyBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMAUSA
| | - Kahini A. Vaid
- Divison of Gastroenterology and HepatologyBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMAUSA
| | - Jun Wang
- Division of NeurosurgeryRenmin HospitalWuhan UniversityWuhanChina
| | | | - Yang Li
- Enanta Pharmaceuticals, Inc.WatertownMAUSA
| | - Yat Sun Or
- Enanta Pharmaceuticals, Inc.WatertownMAUSA
| | | | - Yury V. Popov
- Divison of Gastroenterology and HepatologyBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMAUSA
| |
Collapse
|
39
|
Cubero FJ, Mohamed MR, Woitok MM, Zhao G, Hatting M, Nevzorova YA, Chen C, Haybaeck J, de Bruin A, Avila MA, Boekschoten MV, Davis RJ, Trautwein C. Loss of c-Jun N-terminal Kinase 1 and 2 Function in Liver Epithelial Cells Triggers Biliary Hyperproliferation Resembling Cholangiocarcinoma. Hepatol Commun 2020; 4:834-851. [PMID: 32490320 PMCID: PMC7262317 DOI: 10.1002/hep4.1495] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 02/07/2020] [Indexed: 12/12/2022] Open
Abstract
Targeted inhibition of the c-Jun N-terminal kinases (JNKs) has shown therapeutic potential in intrahepatic cholangiocarcinoma (CCA)-related tumorigenesis. However, the cell-type-specific role and mechanisms triggered by JNK in liver parenchymal cells during CCA remain largely unknown. Here, we aimed to investigate the relevance of JNK1 and JNK2 function in hepatocytes in two different models of experimental carcinogenesis, the dethylnitrosamine (DEN) model and in nuclear factor kappa B essential modulator (NEMO)hepatocyte-specific knockout (Δhepa) mice, focusing on liver damage, cell death, compensatory proliferation, fibrogenesis, and tumor development. Moreover, regulation of essential genes was assessed by reverse transcription polymerase chain reaction, immunoblottings, and immunostainings. Additionally, specific Jnk2 inhibition in hepatocytes of NEMOΔhepa/JNK1Δhepa mice was performed using small interfering (si) RNA (siJnk2) nanodelivery. Finally, active signaling pathways were blocked using specific inhibitors. Compound deletion of Jnk1 and Jnk2 in hepatocytes diminished hepatocellular carcinoma (HCC) in both the DEN model and in NEMOΔhepa mice but in contrast caused massive proliferation of the biliary ducts. Indeed, Jnk1/2 deficiency in hepatocytes of NEMOΔhepa (NEMOΔhepa/JNKΔhepa) animals caused elevated fibrosis, increased apoptosis, increased compensatory proliferation, and elevated inflammatory cytokines expression but reduced HCC. Furthermore, siJnk2 treatment in NEMOΔhepa/JNK1Δhepa mice recapitulated the phenotype of NEMOΔhepa/JNKΔhepa mice. Next, we sought to investigate the impact of molecular pathways in response to compound JNK deficiency in NEMOΔhepa mice. We found that NEMOΔhepa/JNKΔhepa livers exhibited overexpression of the interleukin-6/signal transducer and activator of transcription 3 pathway in addition to epidermal growth factor receptor (EGFR)-rapidly accelerated fibrosarcoma (Raf)-mitogen-activated protein kinase kinase (MEK)-extracellular signal-regulated kinase (ERK) cascade. The functional relevance was tested by administering lapatinib, which is a dual tyrosine kinase inhibitor of erythroblastic oncogene B-2 (ErbB2) and EGFR signaling, to NEMOΔhepa/JNKΔhepa mice. Lapatinib effectively inhibited cystogenesis, improved transaminases, and effectively blocked EGFR-Raf-MEK-ERK signaling. Conclusion: We define a novel function of JNK1/2 in cholangiocyte hyperproliferation. This opens new therapeutic avenues devised to inhibit pathways of cholangiocarcinogenesis.
Collapse
Affiliation(s)
- Francisco Javier Cubero
- Department of Internal Medicine IIIUniversity Hospital RWTH AachenAachenGermany
- Department of Immunology, Ophthalmology, and ENTComplutense University School of MedicineMadridSpain
- 12 de Octubre Health Research InstituteMadridSpain
| | - Mohamed Ramadan Mohamed
- Department of Internal Medicine IIIUniversity Hospital RWTH AachenAachenGermany
- Department of Therapeutic ChemistryNational Research CenterGizaEgypt
| | - Marius M. Woitok
- Department of Internal Medicine IIIUniversity Hospital RWTH AachenAachenGermany
| | - Gang Zhao
- Department of Internal Medicine IIIUniversity Hospital RWTH AachenAachenGermany
| | - Maximilian Hatting
- Department of Internal Medicine IIIUniversity Hospital RWTH AachenAachenGermany
| | - Yulia A. Nevzorova
- Department of Internal Medicine IIIUniversity Hospital RWTH AachenAachenGermany
- Department of Genetics, Physiology, and MicrobiologyFaculty of BiologyComplutense UniversityMadridSpain
| | - Chaobo Chen
- Department of Immunology, Ophthalmology, and ENTComplutense University School of MedicineMadridSpain
| | - Johannes Haybaeck
- Department of PathologyOtto‐von‐Guericke UniversityMagdeburgGermany
- Diagnostic and Research Center for Molecular BioMedicineInstitute of PathologyMedical University of GrazGrazAustria
- Department of Pathology, Neuropathology, and Molecular PathologyMedical University of InnsbruckInnsbruckAustria
| | - Alain de Bruin
- Department of PathobiologyFaculty of Veterinary MedicineDutch Molecular Pathology CenterUtrecht UniversityUtrechtthe Netherlands
- Department of PediatricsUniversity Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
| | - Matias A. Avila
- Instituto de Investigación Sanitaria de NavarraPamplonaSpain
- Hepatology ProgramCenter for Applied Medical ResearchUniversity of NavarraPamplonaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y DigestivasInstituto de Salud Carlos IIIMadridSpain
| | - Mark V. Boekschoten
- Nutrition, Metabolism, and Genomics GroupDivision of Human NutritionWageningen UniversityWageningenthe Netherlands
| | - Roger J. Davis
- Howard Hughes Medical InstituteUniversity of Massachusetts Medical SchoolWorcesterMA
| | - Christian Trautwein
- Department of Internal Medicine IIIUniversity Hospital RWTH AachenAachenGermany
| |
Collapse
|
40
|
Hepatocyte Injury and Hepatic Stem Cell Niche in the Progression of Non-Alcoholic Steatohepatitis. Cells 2020; 9:cells9030590. [PMID: 32131439 PMCID: PMC7140508 DOI: 10.3390/cells9030590] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/21/2020] [Accepted: 02/27/2020] [Indexed: 02/07/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a chronic liver disease characterized by lipid accumulation in hepatocytes in the absence of excessive alcohol consumption. The global prevalence of NAFLD is constantly increasing. NAFLD is a disease spectrum comprising distinct stages with different prognoses. Non-alcoholic steatohepatitis (NASH) is a progressive condition, characterized by liver inflammation and hepatocyte ballooning, with or without fibrosis. The natural history of NAFLD is negatively influenced by NASH onset and by the progression towards advanced fibrosis. Pathogenetic mechanisms and cellular interactions leading to NASH and fibrosis involve hepatocytes, liver macrophages, myofibroblast cell subpopulations, and the resident progenitor cell niche. These cells are implied in the regenerative trajectories following liver injury, and impairment or perturbation of these mechanisms could lead to NASH and fibrosis. Recent evidence underlines the contribution of extra-hepatic organs/tissues (e.g., gut, adipose tissue) in influencing NASH development by interacting with hepatic cells through various molecular pathways. The present review aims to summarize the role of hepatic parenchymal and non-parenchymal cells, their mutual influence, and the possible interactions with extra-hepatic tissues and organs in the pathogenesis of NAFLD.
Collapse
|
41
|
Ko S, Russell JO, Molina LM, Monga SP. Liver Progenitors and Adult Cell Plasticity in Hepatic Injury and Repair: Knowns and Unknowns. ANNUAL REVIEW OF PATHOLOGY 2020; 15:23-50. [PMID: 31399003 PMCID: PMC7212705 DOI: 10.1146/annurev-pathmechdis-012419-032824] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The liver is a complex organ performing numerous vital physiological functions. For that reason, it possesses immense regenerative potential. The capacity for repair is largely attributable to the ability of its differentiated epithelial cells, hepatocytes and biliary epithelial cells, to proliferate after injury. However, in cases of extreme acute injury or prolonged chronic insult, the liver may fail to regenerate or do so suboptimally. This often results in life-threatening end-stage liver disease for which liver transplantation is the only effective treatment. In many forms of liver injury, bipotent liver progenitor cells are theorized to be activated as an additional tier of liver repair. However, the existence, origin, fate, activation, and contribution to regeneration of liver progenitor cells is hotly debated, especially since hepatocytes and biliary epithelial cells themselves may serve as facultative stem cells for one another during severe liver injury. Here, we discuss the evidence both supporting and refuting the existence of liver progenitor cells in a variety of experimental models. We also debate the validity of developing therapies harnessing the capabilities of these cells as potential treatments for patients with severe and chronic liver diseases.
Collapse
Affiliation(s)
- Sungjin Ko
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA;
- Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | - Jacquelyn O Russell
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA;
- Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | - Laura M Molina
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA;
- Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | - Satdarshan P Monga
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA;
- Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| |
Collapse
|
42
|
Jarman EJ, Boulter L. Targeting the Wnt signaling pathway: the challenge of reducing scarring without affecting repair. Expert Opin Investig Drugs 2020; 29:179-190. [DOI: 10.1080/13543784.2020.1718105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Edward J. Jarman
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, Edinburgh, UK
| | - Luke Boulter
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, Edinburgh, UK
| |
Collapse
|
43
|
Franchitto A, Carpino G, Alisi A, De Peppo F, Overi D, De Stefanis C, Romito I, De Vito R, Caccamo R, Sonia B, Alessandra S, Mosca A, Alterio A, Onori P, Gaudio E, Nobili V. The Contribution of the Adipose Tissue-Liver Axis in Pediatric Patients with Nonalcoholic Fatty Liver Disease after Laparoscopic Sleeve Gastrectomy. J Pediatr 2020; 216:117-127.e2. [PMID: 31526528 DOI: 10.1016/j.jpeds.2019.07.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/16/2019] [Accepted: 07/12/2019] [Indexed: 02/08/2023]
Abstract
OBJECTIVE To evaluate the histopathologic modifications in liver and visceral adipose tissue (VAT), and to correlate these changes with clinical measures, adipokine production, and proinflammatory cytokines in a population of adolescents with obesity with nonalcoholic fatty liver disease (NAFLD) who underwent laparoscopic sleeve gastrectomy (LSG). STUDY DESIGN Twenty adolescents with obesity who underwent LSG and with biopsy-proven NAFLD were included. Patients underwent clinical evaluation and blood tests at baseline and 1 year after the surgical procedure. Liver and VAT specimens were processed for routine histology, immunohistochemistry, and immunofluorescence. RESULTS In adolescents with obesity and NAFLD, hepatic histologic alterations were uncorrelated with VAT inflammation. LSG induced in both liver and VAT tissue histopathology amelioration and macrophage profile modification that were correlated with body mass index and improvement in insulin resistance. The adipokine profile in liver and VAT was associated with weight loss and histologic improvement after LSG. Serum proinflammatory cytokines were correlated with liver and VAT histopathology and IL-1β and IL-6 levels were independently predicted by liver necroinflammatory grade. CONCLUSIONS This study suggests a unique adipose tissue/fatty liver crosstalk in pediatric patients. LSG induces a similar pattern of histologic improvement in the liver and in VAT. Besides VAT, our results strengthen the role of the liver in adipocytokine production and its contribution to systemic inflammation in pediatric patients with NAFLD.
Collapse
Affiliation(s)
- Antonio Franchitto
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Guido Carpino
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Anna Alisi
- Research Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children Hospital, Rome, Italy
| | - Francesco De Peppo
- Department of Pediatric Surgery, Pediatric Surgery Unit, "Bambino Gesù" Children's Hospital, Rome, Italy
| | - Diletta Overi
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Cristiano De Stefanis
- Histology-Core Facility "Bambino Gesù" Children's Hospital- Institute of Hospitalization and Scientific Care, Rome, Italy
| | - Ilaria Romito
- Research Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children Hospital, Rome, Italy
| | - Rita De Vito
- Department of Pathology, Bambino Gesù Children's Hospital, Rome, Italy
| | - Romina Caccamo
- Department of Pediatric Surgery, Pediatric Surgery Unit, "Bambino Gesù" Children's Hospital, Rome, Italy
| | - Battaglia Sonia
- Department of Pediatric Surgery, Pediatric Surgery Unit, "Bambino Gesù" Children's Hospital, Rome, Italy
| | | | - Antonella Mosca
- Hepatology, Gastroenterology and Nutrition Unit - Bambino Gesù Children's Hospital, Rome, Italy.
| | - Arianna Alterio
- Hepatology, Gastroenterology and Nutrition Unit - Bambino Gesù Children's Hospital, Rome, Italy
| | - Paolo Onori
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Valerio Nobili
- Hepatology, Gastroenterology and Nutrition Unit - Bambino Gesù Children's Hospital, Rome, Italy; Department of Pediatric - University "La Sapienza", Rome, Italy
| |
Collapse
|
44
|
Baiocchi L, Zhou T, Liangpunsakul S, Ilaria L, Milana M, Meng F, Kennedy L, Kusumanchi P, Yang Z, Ceci L, Glaser S, Francis H, Alpini G. Possible application of melatonin treatment in human diseases of the biliary tract. Am J Physiol Gastrointest Liver Physiol 2019; 317:G651-G660. [PMID: 31509434 PMCID: PMC6879895 DOI: 10.1152/ajpgi.00110.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 09/02/2019] [Accepted: 09/09/2019] [Indexed: 02/08/2023]
Abstract
Melatonin was discovered in 1958 by Aaron Lerner. Its name comes from the ability of melatonin to change the shape of amphibian melanophores from stellate to roundish. Starting from the 1980s, the role of melatonin in the regulation of mammalian circadian and seasonal clocks has been elucidated. Presently, several other effects have been identified in different organs. For example, the beneficial effects of melatonin in models of liver damage have been described. This review gives first a general background on experimental and clinical data on the use of melatonin in liver damage. The second part of the review focuses on the findings related to the role of melatonin in biliary functions, suggesting a possible use of melatonin therapy in human diseases of the biliary tree.
Collapse
Affiliation(s)
- Leonardo Baiocchi
- Liver Unit, Department of Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Tianhao Zhou
- Department of Medical Physiology, Texas A & M University, College of Medicine, Bryan, Texas
| | - Suthat Liangpunsakul
- Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Lenci Ilaria
- Liver Unit, Department of Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Martina Milana
- Liver Unit, Department of Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Fanyin Meng
- Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Lindsey Kennedy
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Praveen Kusumanchi
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Zhihong Yang
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Ludovica Ceci
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Shannon Glaser
- Department of Medical Physiology, Texas A & M University, College of Medicine, Bryan, Texas
| | - Heather Francis
- Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Gianfranco Alpini
- Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
45
|
Yang XW, Fu XH, Zhang YJ. Clinical and pathological characteristics of cholangiolocellular carcinoma. Shijie Huaren Xiaohua Zazhi 2019; 27:1114-1117. [DOI: 10.11569/wcjd.v27.i18.1114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cholangiolocellular carcinoma (CLC), due to its special cell origin, has dual clinical and radiological features of hepatocellular carcinoma and cholangiocellular carcinoma, and has a relatively good prognosis due to the characteristics of inert growth. Its growth characteristics and clinical characteristics are obviously different from those of traditional intrahepatic cholangiocarcinoma (ICC). Therefore, CLC is a special type of primary liver malignancy. With regard to cell origin, clinical pathology, growth characteristics, and prognosis, CLC is a distinct disease from traditional hepatic cholangiocarcinoma; however, it is often confused with ICC in the relevant research worldwide. In this paper, we review the clinical and pathological characteristics of CLC to raise the attention to this problem and strengthen the relevant research.
Collapse
Affiliation(s)
- Xin-Wei Yang
- Second Department of Biliary Tract Diseases, Eastern Hepatobiliary Surgery Hospital Affiliated to Naval Military Medical University, Shanghai 200438, China
| | - Xiao-Hui Fu
- Second Department of Biliary Tract Diseases, Eastern Hepatobiliary Surgery Hospital Affiliated to Naval Military Medical University, Shanghai 200438, China
| | - Yong-Jie Zhang
- Second Department of Biliary Tract Diseases, Eastern Hepatobiliary Surgery Hospital Affiliated to Naval Military Medical University, Shanghai 200438, China
| |
Collapse
|
46
|
Terziroli Beretta-Piccoli B, Mieli-Vergani G, Vergani D, Vierling JM, Adams D, Alpini G, Banales JM, Beuers U, Björnsson E, Bowlus C, Carbone M, Chazouillères O, Dalekos G, De Gottardi A, Harada K, Hirschfield G, Invernizzi P, Jones D, Krawitt E, Lanzavecchia A, Lian ZX, Ma X, Manns M, Mavilio D, Quigley EM, Sallusto F, Shimoda S, Strazzabosco M, Swain M, Tanaka A, Trauner M, Tsuneyama K, Zigmond E, Gershwin ME. The challenges of primary biliary cholangitis: What is new and what needs to be done. J Autoimmun 2019; 105:102328. [PMID: 31548157 DOI: 10.1016/j.jaut.2019.102328] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 08/18/2019] [Accepted: 08/20/2019] [Indexed: 02/06/2023]
Abstract
Primary Biliary Cholangitis (PBC) is an uncommon, chronic, cholangiopathy of autoimmune origin and unknown etiology characterized by positive anti-mitochondrial autoantibodies (AMA), female preponderance and progression to cirrhosis if left untreated. The diagnosis is based on AMA- or PBC-specific anti-nuclear antibody (ANA)-positivity in the presence of a cholestatic biochemical profile, histologic confirmation being mandatory only in seronegative cases. First-line treatment is ursodeoxycholic acid (UDCA), which is effective in preventing disease progression in about two thirds of the patients. The only approved second-line treatment is obeticholic acid. This article summarizes the most relevant conclusions of a meeting held in Lugano, Switzerland, from September 23rd-25th 2018, gathering basic and clinical scientists with various background from around the world to discuss the latest advances in PBC research. The meeting was dedicated to Ian Mackay, pioneer in the field of autoimmune liver diseases. The role of liver histology needs to be reconsidered: liver pathology consistent with PBC in AMA-positive individuals without biochemical cholestasis is increasingly reported, raising the question as to whether biochemical cholestasis is a reliable disease marker for both clinical practice and trials. The urgent need for new biomarkers, including more accurate markers of cholestasis, was also widely discussed during the meeting. Moreover, new insights in interactions of bile acids with biliary epithelia in PBC provide solid evidence of a role for impaired epithelial protection against potentially toxic hydrophobic bile acids, raising the fundamental question as to whether this bile acid-induced epithelial damage is the cause or the consequence of the autoimmune attack to the biliary epithelium. Strategies are needed to identify difficult-to-treat patients at an early disease stage, when new therapeutic approaches targeting immunologic pathways, in addition to bile acid-based therapies, may be effective. In conclusion, using interdisciplinary approaches, groundbreaking advances can be expected before long in respect to our understanding of the etiopathogenesis of PBC, with the ultimate aim of improving its treatment.
Collapse
Affiliation(s)
- Benedetta Terziroli Beretta-Piccoli
- Epatocentro Ticino, Lugano, Switzerland; Institute of Liver Studies, MowatLabs, King's College Hospital, London, UK; European Reference Network ERN RARE-LIVER.
| | - Giorgina Mieli-Vergani
- Paediatric Liver, GI and Nutrition Centre, MowatLabs, King's College Hospital, London, UK
| | - Diego Vergani
- Institute of Liver Studies, MowatLabs, King's College Hospital, London, UK
| | - John M Vierling
- Division of Abdominal Transplantation and Section of Gastroenterology and Hepatology, Departments of Medicine and Surgery, Baylor College of Medicine, Houston, TX, USA
| | - David Adams
- Birmingham NIHR Biomedical Research Centre, Institute of Immunology and Immunotherapy, College of Medical and Dental SciencesMedical School, University of Birmingham, Birmingham, UK
| | - Gianfranco Alpini
- Indiana Center for Liver Research, Richard L. Roudebush VA Medical Center and Indiana University, Indianapolis, IN, USA
| | - Jesus M Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), CIBERehd, Ikerbasque, San Sebastián, Spain
| | - Ulrich Beuers
- European Reference Network ERN RARE-LIVER; Department of Gastroenterology & Hepatology and Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Einar Björnsson
- Division of Gastroenterology and Hepatology, Landspitali the National University Hospital of Iceland, Reykjavík, Iceland
| | - Christopher Bowlus
- Division of Gastroenterology and Hepatology, University of California at Davis School of Medicine, Davis, CA, USA
| | - Marco Carbone
- Division Gastroenterology and Center for Autoimmune Liver Diseases, University of Milan-Bicocca School of Medicine, Monza, Italy
| | - Olivier Chazouillères
- European Reference Network ERN RARE-LIVER; Service d'Hépatologie, Hôpital Saint-Antoine, Paris, France
| | - George Dalekos
- Institute of Internal Medicine and Hepatology, Department of Medicine and Research, Laboratory of Internal Medicine, School of Medicine, University of Thessaly, Larissa, Greece
| | - Andrea De Gottardi
- European Reference Network ERN RARE-LIVER; Epatocentro Ticino & Division of Gastroenterology and Hepatology Ente Ospedaliero Cantonale and Università della Svizzera Italiana, Lugano, Switzerland
| | - Kenichi Harada
- Department of Human Pathology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Gideon Hirschfield
- Toronto Centre for Liver Disease, University Health Network and University of Toronto, Toronto, Canada
| | - Pietro Invernizzi
- European Reference Network ERN RARE-LIVER; Division Gastroenterology and Center for Autoimmune Liver Diseases, University of Milan-Bicocca School of Medicine, Monza, Italy
| | - David Jones
- Institute of Cellular Medicine and NIHR Newcastle Biomedical Research Centre, Newcastle University, Newcastle upon Tyne, UK
| | - Edward Krawitt
- Department of Medicine, University of Vermont, Burlington, VT, USA
| | | | - Zhe-Xiong Lian
- Institutes for Life Sciences, South China University of Technology, Higher Education Mega Center, Guangzhou, China
| | - Xiong Ma
- Shanghai Institute of Digestive Disease, Renji Hospital, Jiao Tong University School of Medicine, Shanghai, China
| | - Michael Manns
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School (MHH), Hannover, Germany
| | - Domenico Mavilio
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy; Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Italy
| | - Eamon Mm Quigley
- Lynda K. and David M. Underwood Center for Digestive Disorders, Houston Methodist Hospital and Weill Cornell Medical College, Houston, TX, USA
| | - Federica Sallusto
- Institute for Research in Biomedicine (IRB), Bellinzona, Switzerland
| | - Shinji Shimoda
- Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Mario Strazzabosco
- Liver Center, Department of Medicine, Yale University, New Haven, CT, USA
| | - Mark Swain
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Atsushi Tanaka
- Department of Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Ehud Zigmond
- Research Center for Digestive Tract and Liver Diseases, Tel-Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - M Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, Davis, California, USA.
| |
Collapse
|
47
|
Abstract
For many years the one-size-fits-all approach has been the only one available to manage patients affected by primary biliary cholangitis. The introduction of obeticholic acid in 2016 as a second-line treatment, together with the creation and validation of several biochemically based scores to stratify the risk of progressive disease, has opened up the need to redefine clinical practice by changing the actual paradigm. The precision medicine initiative is a model of patient-centered health care that aims to improve medicine based on genotypic and molecular characteristics that correlate to specific phenotypic, individual characteristics. In summary, the aim of the precision medicine is to define the right treatment for the right person at the right time. The availability of a second-line disease-modifying drug and new molecules in phase 2 or 3 trials makes this an exciting time for the precision medicine initiative in primary biliary cholangitis. In this review we describe the current risk stratification tools and we track a possible path towards the application of precision medicine in clinical daily life.
Collapse
Affiliation(s)
- Vincenzo Ronca
- Division of Gastroenterology and Center for Autoimmune Liver Diseases, San Gerardo Hospital, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Alessio Gerussi
- Division of Gastroenterology and Center for Autoimmune Liver Diseases, San Gerardo Hospital, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Laura Cristoferi
- Division of Gastroenterology and Center for Autoimmune Liver Diseases, San Gerardo Hospital, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Marco Carbone
- Division of Gastroenterology and Center for Autoimmune Liver Diseases, San Gerardo Hospital, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Pietro Invernizzi
- Division of Gastroenterology and Center for Autoimmune Liver Diseases, San Gerardo Hospital, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| |
Collapse
|
48
|
Franchitto A, Overi D, Mancinelli R, Mitterhofer AP, Muiesan P, Tinti F, Umbro I, Hubscher SG, Onori P, Gaudio E, Carpino G. Peribiliary gland damage due to liver transplantation involves peribiliary vascular plexus and vascular endothelial growth factor. Eur J Histochem 2019; 63:3022. [PMID: 31113191 PMCID: PMC6517787 DOI: 10.4081/ejh.2019.3022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 04/23/2019] [Indexed: 02/06/2023] Open
Abstract
Extrahepatic bile ducts are characterized by the presence of peribiliary glands (PBGs), which represent stem cell niches implicated in biliary regeneration. Orthotopic liver transplantation may be complicated by non-anastomotic strictures (NAS) of the bile ducts, which have been associated with ischemic injury of PBGs and occur more frequently in livers obtained from donors after circulatory death than in those from brain-dead donors. The aims of the present study were to investigate the PBG phenotype in bile ducts after transplantation, the integrity of the peribiliary vascular plexus (PVP) around PBGs, and the expression of vascular endothelial growth factor-A (VEGF-A) by PBGs. Transplanted ducts obtained from patients who underwent liver transplantation were studied (N=62). Controls included explanted bile duct samples not used for transplantation (N=10) with normal histology. Samples were processed for histology, immunohistochemistry and immunofluorescence. Surface epithelium is severely injured in transplanted ducts; PBGs are diffusely damaged, particularly in ducts obtained from circulatory-dead compared to brain-dead donors. PVP is reduced in transplanted compared to controls. PBGs in transplanted ducts contain more numerous progenitor and proliferating cells compared to controls, show higher positivity for VEGF-A compared to controls, and express VEGF receptor-2. In conclusion, PBGs and associated PVP are damaged in transplanted extrahepatic bile ducts; however, an activation of the PBG niche takes place and is characterized by proliferation and VEGF-A expression. This response could have a relevant role in reconstituting biliary epithelium and vascular plexus and could be implicated in the genesis of non-anastomotic strictures.
Collapse
Affiliation(s)
- Antonio Franchitto
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Van Haele M, Snoeck J, Roskams T. Human Liver Regeneration: An Etiology Dependent Process. Int J Mol Sci 2019; 20:ijms20092332. [PMID: 31083462 PMCID: PMC6539121 DOI: 10.3390/ijms20092332] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/06/2019] [Accepted: 05/09/2019] [Indexed: 02/07/2023] Open
Abstract
Regeneration of the liver has been an interesting and well-investigated topic for many decades. This etiology and time-dependent mechanism has proven to be extremely challenging to investigate, certainly in human diseases. A reason for this challenge is found in the numerous interactions of different cell components, of which some are even only temporarily present (e.g., inflammatory cells). To orchestrate regeneration of the epithelial cells, their interaction with the non-epithelial components is of utmost importance. Hepatocytes, cholangiocytes, liver progenitor cells, and peribiliary glands have proven to be compartments of regeneration. The ductular reaction is a common denominator in virtually all liver diseases; however, it is predominantly found in late-stage hepatic and biliary diseases. Ductular reaction is an intriguing example of interplay between epithelial and non-epithelial cells and encompasses bipotential liver progenitor cells which are able to compensate for the loss of the exhausted hepatocytes and cholangiocytes in biliary and hepatocytic liver diseases. In this manuscript, we focus on the etiology-specific damage that is observed in different human diseases and how the liver regulates the regenerative response in an acute and chronic setting. Furthermore, we describe the importance of morphological keynotes in different etiologies and how spatial information is of relevance for every basic and translational research of liver regeneration.
Collapse
Affiliation(s)
- Matthias Van Haele
- Department of Imaging and Pathology, Translational Cell and Tissue Research, KU Leuven and University Hospitals Leuven, 3000 Leuven, Belgium.
| | - Janne Snoeck
- Department of Imaging and Pathology, Translational Cell and Tissue Research, KU Leuven and University Hospitals Leuven, 3000 Leuven, Belgium.
| | - Tania Roskams
- Department of Imaging and Pathology, Translational Cell and Tissue Research, KU Leuven and University Hospitals Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
50
|
Aguilar-Bravo B, Rodrigo-Torres D, Ariño S, Coll M, Pose E, Blaya D, Graupera I, Perea L, Vallverdú J, Rubio-Tomás T, Dubuquoy L, Armengol C, Nigro AL, Stärkel P, Mathurin P, Bataller R, Caballería J, Lozano JJ, Ginès P, Sancho-Bru P. Ductular Reaction Cells Display an Inflammatory Profile and Recruit Neutrophils in Alcoholic Hepatitis. Hepatology 2019; 69:2180-2195. [PMID: 30565271 PMCID: PMC9189898 DOI: 10.1002/hep.30472] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 12/13/2018] [Indexed: 12/19/2022]
Abstract
Chronic liver diseases are characterized by the expansion of ductular reaction (DR) cells and the expression of liver progenitor cell (LPC) markers. In alcoholic hepatitis (AH), the degree of DR expansion correlates with disease progression and short-term survival. However, little is known about the biological properties of DR cells, their impact on the pathogenesis of human liver disease, and their contribution to tissue repair. In this study, we have evaluated the transcriptomic profile of DR cells by laser capture microdissection in patients with AH and assessed its association with disease progression. The transcriptome analysis of cytokeratin 7-positive (KRT7+ ) DR cells uncovered intrinsic gene pathways expressed in DR and genes associated with alcoholic liver disease progression. Importantly, DR presented a proinflammatory profile with expression of neutrophil recruiting C-X-C motif chemokine ligand (CXC) and C-C motif chemokine ligand chemokines. Moreover, LPC markers correlated with liver expression and circulating levels of inflammatory mediators such as CXCL5. Histologically, DR was associated with neutrophil infiltration at the periportal area. In order to model the DR and to assess its functional role, we generated LPC organoids derived from patients with cirrhosis. Liver organoids mimicked the transcriptomic and proinflammatory profile of DR cells. Conditioned medium from organoids induced neutrophil migration and enhanced cytokine expression in neutrophils. Likewise, neutrophils promoted the proinflammatory profile and the expression of chemokines of liver organoids. Conclusion: Transcriptomic and functional analysis of KRT7+ cells indicate that DR has a proinflammatory profile and promote neutrophil recruitment. These results indicate that DR may be involved in the liver inflammatory response in AH, and suggest that therapeutic strategies targeting DR cells may be useful to mitigate the inflammatory cell recruitment in AH.
Collapse
Affiliation(s)
- Beatriz Aguilar-Bravo
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Daniel Rodrigo-Torres
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Silvia Ariño
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Mar Coll
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Elisa Pose
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain,Liver Unit, Hospital Clínic, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Delia Blaya
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Isabel Graupera
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain,Liver Unit, Hospital Clínic, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Luis Perea
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Júlia Vallverdú
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Teresa Rubio-Tomás
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Laurent Dubuquoy
- Lille Service des Maladies de l’Appareil Digestif, Hopital Huriez, Unité INSERM 995, Faculté de médecine, Lille, France
| | - Carolina Armengol
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain,Childhood Liver Oncology group (c-LOG), Program of Predictive and Personalized Medicine of Cancer (PMPPC), Health Sciences Institute Germans Trias i Pujol (IGTP), Campus Can Ruti, Badalona, Spain
| | - Antonio Lo Nigro
- Ri. Med Foundation, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Palermo, Italy
| | - Peter Stärkel
- Department of Hepato-Gastroenterology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Philippe Mathurin
- Lille Service des Maladies de l’Appareil Digestif, Hopital Huriez, Unité INSERM 995, Faculté de médecine, Lille, France
| | - Ramon Bataller
- Pittsburgh Liver Research Center, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Joan Caballería
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain,Liver Unit, Hospital Clínic, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Juan José Lozano
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Pere Ginès
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain,Liver Unit, Hospital Clínic, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Pau Sancho-Bru
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| |
Collapse
|