1
|
Liu S, Song L, Huang S, Liu Z, Xu Y, Wang Z, Qiu H, Wang J, Chen Z, Xiao Y, Wang H, Zhu X, Zhang K, Zhang X, Lin H. Hydroxyapatite microspheres encapsulated within hybrid hydrogel promote skin regeneration through the activation of Calcium Signaling and Motor Protein pathway. Bioact Mater 2025; 50:287-304. [PMID: 40292340 PMCID: PMC12022663 DOI: 10.1016/j.bioactmat.2025.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/12/2025] [Accepted: 04/02/2025] [Indexed: 04/30/2025] Open
Abstract
Hydroxyapatite (HAp), traditionally recognized for its efficacy in bone regeneration, has rarely been explored for skin regeneration applications. This investigation explored HAp microspheres with distinct physicochemical properties tailored away from conventional bone regeneration parameters, and the capacity promoting skin regeneration and mitigating the aging process were investigated when encapsulated in hyaluronate hydrogels. By benchmarking against well-established dermal fillers like PMMA and PLLA, it was revealed the specific attributes of HAp that were conducive to skin regeneration, providing initial insights into the underlying mechanism. HAp enhanced the fibroblast functionality by triggering minimal adaptive immune responses and enhancing the Calcium Signaling and Motor Protein Signaling pathways. This modulation supported the production of normal collagen fibers, essential for ECM maturation and skin structural integrity. The significant ECM regeneration and remodeling capabilities exhibited by the HAp-encapsulated hybrid hydrogels suggested promising application in facial rejuvenation procedures, potentially making a breakthrough in aesthetic and reconstructive surgery.
Collapse
Affiliation(s)
- Shuo Liu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Lu Song
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Shuwen Huang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Zhanhong Liu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Yang Xu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Zhiyuan Wang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - He Qiu
- Department of Cosmetic and Plastic Surgery, West China School of Public, Health and West China Fourth Hospital, Sichuan University, Sichuan, Chengdu, China
| | - Jing Wang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Zhiru Chen
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Yumei Xiao
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
- Research Center for Material Genome Engineering, Sichuan University, Chengdu, 610064, China
| | - Hang Wang
- State Key Laboratory of Oral Diseases, Department of Cosmetic and Plastic, Surgery, Oral and Maxillofacial Surgery, National Clinical Research Center, for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xiangdong Zhu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
- Institute of Regulatory Science for Medical Devices, Sichuan University, Chengdu, 610064, China
- Research Center for Material Genome Engineering, Sichuan University, Chengdu, 610064, China
| | - Kai Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
- Institute of Regulatory Science for Medical Devices, Sichuan University, Chengdu, 610064, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Hai Lin
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
- Institute of Regulatory Science for Medical Devices, Sichuan University, Chengdu, 610064, China
- Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education, Chengdu, 610065, China
| |
Collapse
|
2
|
Froom ZSCS, Callaghan NI, Davenport Huyer L. Cellular crosstalk in fibrosis: insights into macrophage and fibroblast dynamics. J Biol Chem 2025:110203. [PMID: 40334985 DOI: 10.1016/j.jbc.2025.110203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/27/2025] [Accepted: 04/29/2025] [Indexed: 05/09/2025] Open
Abstract
Pathological fibrosis, the excessive deposition of extracellular matrix and tissue stiffening that causes progressive organ dysfunction, underlies diverse chronic diseases. The fibrotic microenvironment is driven by the dynamic microenvironmental interaction between various cell types; macrophages and fibroblasts play central roles in fibrotic disease initiation, maintenance, and progression. Macrophage functional plasticity to microenvironmental stimuli modulates fibroblast functionality by releasing pro-inflammatory cytokines, growth factors, and matrix remodeling enzymes that promote fibroblast proliferation, activation, and differentiation into myofibroblasts. Activated fibroblasts and myofibroblasts serve as the fibrotic effector cells, secreting extracellular matrix components and initiating microenvironmental contracture. Fibroblasts also modulate macrophage function through the release of their own pro-inflammatory cytokines and growth factors, creating bidirectional crosstalk that reinforces the chronic fibrotic cycle. The intricate interplay between macrophages and fibroblasts, including their secretomes and signaling interactions, leads to tissue damage and pathological loss of tissue function. In this review, we examine macrophage-fibroblast reciprocal dynamic interactions in pathological fibrotic conditions. We discuss the specific lineages and functionality of macrophages and fibroblasts implicated in fibrotic progression, with focus on their signal transduction pathways and secretory signalling that enables their pro-fibrotic behaviour. We then finish with a set of recommendations for future experimentation with the goal of developing a set of potential targets for anti-fibrotic therapeutic candidates. Understanding the cellular interactions between macrophages and fibroblasts provides valuable insights into potential therapeutic strategies to mitigate fibrotic disease progression.
Collapse
Affiliation(s)
- Zachary S C S Froom
- School of Biomedical Engineering, Faculties of Medicine and Engineering, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Neal I Callaghan
- Department of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Locke Davenport Huyer
- School of Biomedical Engineering, Faculties of Medicine and Engineering, Dalhousie University, Halifax, NS B3H 4R2, Canada; Department of Microbiology & Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada; Department of Biomaterials & Applied Oral Sciences, Faculty of Dentistry, Dalhousie University, Halifax, NS B3H 4R2, Canada; Nova Scotia Health, Halifax, NS B3S 0H6, Canada.
| |
Collapse
|
3
|
Watanabe N, Hara Y, Nishito Y, Kounoe M, Sekiyama K, Takamasu E, Kise T, Chinen N, Shimada K, Sugihara M, Kawaji H. Tissue degrading and remodelling molecules in giant cell arteritis. Rheumatology (Oxford) 2025; 64:3095-3103. [PMID: 39837478 PMCID: PMC12048063 DOI: 10.1093/rheumatology/keae710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 12/11/2024] [Indexed: 01/23/2025] Open
Abstract
OBJECTIVES GCA is a granulomatous vasculitis affecting large vessels, leading to intimal occlusion accompanied by the accumulation of myofibroblasts. Histopathologically, GCA is characterized by destruction of the tunica media and hypertrophy of the intima with invasion of activated CD4+ T cells, macrophages and multinucleated giant cells (MNGCs). Despite these well-defined histopathological features, the molecular pathology of GCA has largely remained elusive. We aimed to characterize the pathologic features of GCA at the molecular level. METHODS To identify key molecules involved in GCA pathogenesis, we conducted genome-wide gene expression profiling on arterial lesions obtained through temporal artery biopsy of 16 patients who had not received any prior treatment. The resulting data were examined to reveal specific pathways and genes, and some of the molecules were followed up by immunohistochemistry. RESULTS Our analysis revealed a unique gene expression pattern in GCA lesions, including enrichment of immune cells and phagocytic pathways related to microglia and osteoclasts. Subsequent immunohistochemistry analysis identified the presence of MMP12 (macrophage elastase), HLA-DRA, and phagocytosis- and osteoclast-associated molecules in infiltrating macrophages and MNGCs. Additionally, we discovered LRRC15-expressing cells in the tunica intima, suggesting a myofibroblast subpopulation that suppresses cytotoxic CD8+ T cells. These molecules were upregulated in other granulomatous diseases affecting not only arteries but also lymph nodes. CONCLUSION Our study revealed novel molecules associated with the pathological features of GCA, providing a foundation for better understanding of GCA pathogenesis and development of targeted therapeutic strategies.
Collapse
Affiliation(s)
- Nobumasa Watanabe
- Research Center for Genome & Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Yuichiro Hara
- Research Center for Genome & Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Yasumasa Nishito
- Center for Basic Technology Research, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Mai Kounoe
- Center for Medical Research Cooperation, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kazunari Sekiyama
- Center for Medical Research Cooperation, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Eisuke Takamasu
- Department of Rheumatic Diseases, Tokyo Metropolitan Tama Medical Center, Tokyo, Japan
| | - Takayasu Kise
- Department of Rheumatic Diseases, Tokyo Metropolitan Tama Medical Center, Tokyo, Japan
| | - Naofumi Chinen
- Department of Rheumatic Diseases, Tokyo Metropolitan Tama-Nambu Chiiki Hospital, Tokyo, Japan
| | - Kota Shimada
- Department of Rheumatic Diseases, Tokyo Metropolitan Tama Medical Center, Tokyo, Japan
| | - Makoto Sugihara
- Research Center for Genome & Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Department of Rheumatic Diseases, Tokyo Metropolitan Tama-Hokubu Medical Center, Tokyo, Japan
| | - Hideya Kawaji
- Research Center for Genome & Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
4
|
Park S, Yoon K, Hong E, Kim MW, Kang MG, Mizuno S, Kim HJ, Lee MJ, Choi HJ, Heo JS, Bae JB, An H, Park N, Park H, Kim P, Son M, Pang K, Park JY, Takahashi S, Kwon YJ, Kang DW, Kim SJ. Tm4sf19 inhibition ameliorates inflammation and bone destruction in collagen-induced arthritis by suppressing TLR4-mediated inflammatory signaling and abnormal osteoclast activation. Bone Res 2025; 13:40. [PMID: 40128226 PMCID: PMC11933450 DOI: 10.1038/s41413-025-00419-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 01/02/2025] [Accepted: 02/20/2025] [Indexed: 03/26/2025] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by inflammation and abnormal osteoclast activation, leading to bone destruction. We previously demonstrated that the large extracellular loop (LEL) of Tm4sf19 is important for its function in osteoclast differentiation, and LEL-Fc, a competitive inhibitor of Tm4sf19, effectively suppresses osteoclast multinucleation and prevent bone loss associated with osteoporosis. This study aimed to investigate the role of Tm4sf19 in RA, an inflammatory and abnormal osteoclast disease, using a mouse model of collagen-induced arthritis (CIA). Tm4sf19 expression was observed in macrophages and osteoclasts within the inflamed synovium, and Tm4sf19 expression was increased together with inflammatory genes in the joint bones of CIA-induced mice compared with the sham control group. Inhibition of Tm4sf19 by LEL-Fc demonstrated both preventive and therapeutic effects in a CIA mouse model, reducing the CIA score, swelling, inflammation, cartilage damage, and bone damage. Knockout of Tm4sf19 gene or inhibition of Tm4sf19 activity by LEL-Fc suppressed LPS/IFN-γ-induced TLR4-mediated inflammatory signaling in macrophages. LEL-Fc disrupted not only the interaction between Tm4sf19 and TLR4/MD2, but also the interaction between TLR4 and MD2. μCT analysis showed that LEL-Fc treatment significantly reduced joint bone destruction and bone loss caused by hyperactivated osteoclasts in CIA mice. Taken together, these findings suggest that LEL-Fc may be a potential treatment for RA and RA-induced osteoporosis by simultaneously targeting joint inflammation and bone destruction caused by abnormal osteoclast activation.
Collapse
Affiliation(s)
- Sujin Park
- GILO Institute, GILO Foundation, Seoul, Republic of Korea
| | | | - Eunji Hong
- GILO Institute, GILO Foundation, Seoul, Republic of Korea
| | | | - Min Gi Kang
- GILO Institute, GILO Foundation, Seoul, Republic of Korea
| | - Seiya Mizuno
- Laboratory Animal Resource Center in Transborder Medical Research Center, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | | | | | | | - Jin Sun Heo
- GILO Institute, GILO Foundation, Seoul, Republic of Korea
| | | | - Haein An
- GILO Institute, GILO Foundation, Seoul, Republic of Korea
| | - Naim Park
- Medpacto Inc., Seoul, Republic of Korea
| | - Hyeyeon Park
- GILO Institute, GILO Foundation, Seoul, Republic of Korea
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Republic of Korea
| | - Pyunggang Kim
- GILO Institute, GILO Foundation, Seoul, Republic of Korea
| | - Minjung Son
- GILO Institute, GILO Foundation, Seoul, Republic of Korea
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Republic of Korea
| | - Kyoungwha Pang
- GILO Institute, GILO Foundation, Seoul, Republic of Korea
| | - Je Yeun Park
- GILO Institute, GILO Foundation, Seoul, Republic of Korea
| | - Satoru Takahashi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yong Jung Kwon
- GILO Institute, GILO Foundation, Seoul, Republic of Korea
| | | | - Seong-Jin Kim
- GILO Institute, GILO Foundation, Seoul, Republic of Korea.
- Medpacto Inc., Seoul, Republic of Korea.
| |
Collapse
|
5
|
Chor A, Dutra HDS, Dias ML, Gonçalves RP, Rossi AM, Takiya CM, Farina M. Leukopenia, weight loss and oral mucositis induced by 5-Fluorouracil in hamsters' model: A regenerative approach using electrospun poly(Lactic-co-Glycolic Acid) membrane. Oncotarget 2025; 16:103-117. [PMID: 39969203 PMCID: PMC11837862 DOI: 10.18632/oncotarget.28685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 12/09/2024] [Indexed: 02/20/2025] Open
Abstract
Clinical parameters of leukogram and weight were analyzed in animal models before and after seven days of 5-FU infusions. A comparison of leukograms before and after 5-FU administrations was analyzed. The results showed a significant difference (p = 0,004), confirming immunosuppression. There was a decrease in the weight of the animals after 7 days of 5-FU infusions (p = 0.02). After immunosuppression occurred, oral mucositis (OM) ulcerative lesions were observed. Two of the animals were selected to receive PLGA dressings. Then, electrospun PLGA membranes, with or without autologous cells, were applied to the ulcerative lesions, aiming to accelerate the regeneration process. Although this therapeutic innovation for OM lesions was still not tested in the bioengineering area, morphological analysis presented promising results. Lesions covered by cell-free PLGA, exhibited areas of inflammation persistence and angiogenesis. The cell-seeded cell-seeded PLGA membrane exhibited complete reepithelialization after 6 days, with minor inflammatory infiltrate. Interestingly, the present work showed preclinical parameters of cachexia induced by chemotherapy for cancer treatment. Moreover, it showed an innovative approach by applying dressings consisting of electrospun PLGA with the addition of autologous mesenchymal cells for OM ulcerative lesions. This promising innovation will pave the way for future applications in oral mucosa lesions.
Collapse
Affiliation(s)
- Ana Chor
- Biomineralization Laboratory, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Department of Condensed Matter, Applied Physics and Nanoscience, Brazilian Center for Research in Physics, Rio de Janeiro 220-180, Brazil
- These authors contributed equally to this work
| | - Hélio dos Santos Dutra
- University Hospital, Bone Marrow Transplantation Unit, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Marcos Lopes Dias
- Catalysis Laboratory for Polymerization, Recycling and Biodegradable Polymers, Institute of Macromolecules Professor Eloisa Mano, Federal University of Rio de Janeiro, Rio de Janeiro 21941-598, Brazil
| | - Raquel Pires Gonçalves
- Catalysis Laboratory for Polymerization, Recycling and Biodegradable Polymers, Institute of Macromolecules Professor Eloisa Mano, Federal University of Rio de Janeiro, Rio de Janeiro 21941-598, Brazil
- Department of Condensed Matter, Applied Physics and Nanoscience, Brazilian Center for Research in Physics, Rio de Janeiro 220-180, Brazil
| | - Alexandre Malta Rossi
- Department of Condensed Matter, Applied Physics and Nanoscience, Brazilian Center for Research in Physics, Rio de Janeiro 220-180, Brazil
| | - Christina Maeda Takiya
- Immunopathology Laboratory, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 20941-902, Brazil
- These authors contributed equally to this work
| | - Marcos Farina
- Biomineralization Laboratory, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
6
|
Azahaf S, Spit KA, de Blok CJ, Bult P, Nanayakkara PW. The Role of Positron Emission Tomography Imaging in Breast Implant Illness. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2025; 13:e6458. [PMID: 39823024 PMCID: PMC11737493 DOI: 10.1097/gox.0000000000006458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/14/2024] [Indexed: 01/19/2025]
Abstract
Background Explantation often alleviates symptoms in women with breast implant illness. However, persistent complaints in some cases may be linked to persistent silicone-induced inflammation from residual silicone particles. Positron emission tomography (PET) imaging could potentially detect this inflammation. This case series describes the PET findings in women with ongoing symptoms after explantation. Methods A retrospective review was performed of cases from the silicone outpatient clinic at the Amsterdam University Medical Centers, the Netherlands. All women underwent PET imaging due to persistent systemic symptoms after explantation (n = 17) or replacement (n = 1). Results Before PET imaging, silicone deposits were demonstrated in all 18 cases using ultrasound or magnetic resonance imaging. PET imaging revealed varying fluorodeoxyglucose avidity in axillary, parasternal, mediastinal, cervical, or supraclavicular lymph nodes and extranodal sites in all patients, up to 11 years after explantation. The median implantation time was 17 years, the average number of implant sets was 2, and the median time from explantation to PET was 2 years. In cases where biopsy was performed, silicone lymphadenitis with characteristic foreign body reaction was confirmed. The PET findings suggest that silicone residues can provoke inflammation even years after explantation. However, not all women with silicone residues may exhibit fluorodeoxyglucose-positive PET scans, indicating variability in susceptibility to silicone-induced inflammation. Conclusions PET imaging may be a useful diagnostic tool for detecting silicone-induced inflammation in patients with persistent complaints after explantation. However, given inherent limitations, further research is warranted to fully assess its potential diagnostic utility in breast implant illness.
Collapse
Affiliation(s)
- Siham Azahaf
- From the Section General Internal Medicine, Department of Internal Medicine, Amsterdam Public Health Research Institute, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Karlinde A. Spit
- From the Section General Internal Medicine, Department of Internal Medicine, Amsterdam Public Health Research Institute, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Christel J.M. de Blok
- From the Section General Internal Medicine, Department of Internal Medicine, Amsterdam Public Health Research Institute, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Peter Bult
- Department of Pathology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Prabath W.B. Nanayakkara
- From the Section General Internal Medicine, Department of Internal Medicine, Amsterdam Public Health Research Institute, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Fang JY, Yang Z, Hu W, Hoang BX, Han B. Viscoelastic Hydrogel Modulates Phenotype of Macrophage-Derived Multinucleated Cells and Macrophage Differentiation in Foreign Body Reactions. J Biomed Mater Res A 2025; 113:e37814. [PMID: 39429027 DOI: 10.1002/jbm.a.37814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/23/2024] [Accepted: 10/07/2024] [Indexed: 10/22/2024]
Abstract
Biomaterial-induced macrophage-derived multinucleated cells (MNCs) are often observed at or near material implantation sites, yet their subtypes and roles in tissue repair and wound healing remain unclear. This study compares material-induced MNCs to cytokine-induced MNCs using both in vitro and in vivo models. 3D-embedded Raw264.7 cells and rat bone marrow-derived monocytes (BMDMs), with or without cytokines such as IL-4 and RANKL, were characterized for their MNC morphologies and subtypes via in situ immunocytochemistry and flow cytometry. Macrophage polarization and osteoclastic differentiation were assessed through NO production, arginase activity, and tartrate-resistant acid phosphatase levels. 3D matrix-induced MNCs expressed the same phenotypic heterogeneity as the IL-4 and RANK-treated ones. 3D matrix-induced MNCs displayed the same phenotypic heterogeneity as those treated with IL-4 and RANKL. A high viscoelastic matrix (1006.48 ± 92.29 Pa) induced larger populations of proinflammatory and osteoclast-like MNCs, whereas a low viscoelastic matrix (38.61 ± 7.56 Pa) supported active differentiation and gene expression across pro-, anti-inflammatory, and osteoclast-like macrophages. Matrix viscoelasticity also influenced the effects of IL-4 and RANKL on macrophage-derived MNC polarization. In an in vivo subcutaneous implantation model, medium to high viscoelastic matrices exhibited higher populations of CD86+ and RANK+ MNCs, while low viscoelastic matrices showed higher populations of CD206+ MNCs. These findings suggest that matrix viscoelasticity modulates macrophage differentiation and MNC phenotype, with low viscoelastic matrices potentially favoring anti-inflammatory MNCs and macrophage differentiation suitable for subcutaneous implantation.
Collapse
Affiliation(s)
- Josephine Y Fang
- Nimni-Cordoba Tissue Engineering and Drug Discovery Laboratory, Departments of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, USA
- Department of Craniofacial Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, USA
| | - Zhi Yang
- Nimni-Cordoba Tissue Engineering and Drug Discovery Laboratory, Departments of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Wei Hu
- M.C. Gill Composites Center, University of Southern California, Los Angeles, USA
| | - Ba Xuan Hoang
- Nimni-Cordoba Tissue Engineering and Drug Discovery Laboratory, Departments of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Bo Han
- Nimni-Cordoba Tissue Engineering and Drug Discovery Laboratory, Departments of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, USA
- Department of Biomedical Enginnering, Viterbi School of Engineering, University of Southern California, Los Angeles, USA
| |
Collapse
|
8
|
Sabe H, Yahara Y, Ishii M. Cell fusion dynamics: mechanisms of multinucleation in osteoclasts and macrophages. Inflamm Regen 2024; 44:49. [PMID: 39605032 PMCID: PMC11600601 DOI: 10.1186/s41232-024-00360-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
Cell-cell fusion is a vital biological process where the membranes of two or more cells merge to form a syncytium. This phenomenon is critical in various physiological and pathological contexts, including embryonic development, tissue repair, immune responses, and the progression of several diseases. Osteoclasts, which are cells from the monocyte/macrophage lineage responsible for bone resorption, have enhanced functionality due to cell fusion. Additionally, other multinucleated giant cells (MGCs) also arise from the fusion of monocytes and macrophages, typically during chronic inflammation and reactions to foreign materials such as prostheses or medical devices. Foreign body giant cells (FBGCs) and Langhans giant cells (LGCs) emerge only under pathological conditions and are involved in phagocytosis, antigen presentation, and the secretion of inflammatory mediators. This review provides a comprehensive overview of the mechanisms underlying the formation of multinucleated cells, with a particular emphasis on macrophages and osteoclasts. Elucidating the intracellular structures, signaling cascades, and fusion-mediating proteins involved in cell-cell fusion enhances our understanding of this fundamental biological process and helps identify potential therapeutic targets for disorders mediated by cell fusion.
Collapse
Affiliation(s)
- Hideaki Sabe
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan
- WPI-Immunology Frontier Research Center, Osaka University, Suita, Osaka, 565-0871, Japan
- Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yasuhito Yahara
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan.
- WPI-Immunology Frontier Research Center, Osaka University, Suita, Osaka, 565-0871, Japan.
| | - Masaru Ishii
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan
- WPI-Immunology Frontier Research Center, Osaka University, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
9
|
Dooling LJ, Anlaş AA, Tobin MP, Ontko NM, Marchena T, Wang M, Andrechak JC, Discher DE. Clustered macrophages cooperate to eliminate tumors via coordinated intrudopodia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.19.613918. [PMID: 39345601 PMCID: PMC11430028 DOI: 10.1101/2024.09.19.613918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Macrophages often pervade solid tumors, but their nearest neighbor organization is understudied and potentially enables key functions such as phagocytosis. Here, we observe dynamic macrophage clusters in tumors under conditions that maximize cancer cell phagocytosis and use reductionist approaches to uncover pathways to cluster formation and roles for tumor-intrusive pseudopodia, which we term 'intrudopodia'. Macrophage clusters form over hours on low- adhesion substrates after M1 polarization with interferons, including T cell-derived cytokines, and yet clusters prove fluid on timescales of minutes. Clusters also sort from M2 macrophages that disperse on the same substrates. M1 macrophages upregulate specific cell-cell adhesion receptors but suppress actomyosin contractility, and while both pathways contribute to cluster formation, decreased cortical tension was predicted to unleash pseudopodia. Macrophage neighbors in tumor spheroids indeed extend intrudopodia between adjacent cancer cell junctions - at least when phagocytosis conditions are maximized, and coordinated intrudopodia help detach and individualize cancer cells for rapid engulfment. Macrophage clusters thereby provide a cooperative advantage for phagocytosis to overcome solid tumor cohesion.
Collapse
|
10
|
Chinen LTD, Torres JA, Calsavara VF, Brito ABC, Silva VSE, Novello RGS, Fernandes TC, Decina A, Dachez R, Paterlini-Brechot P. Circulating Polyploid Giant Cancer Cells, a Potential Prognostic Marker in Patients with Carcinoma. Int J Mol Sci 2024; 25:9841. [PMID: 39337327 PMCID: PMC11432346 DOI: 10.3390/ijms25189841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Polyploid Giant Cancer Cells (PGCCs) have been recognized as tumor cells that are resistant to anticancer therapies. However, it remains unclear whether their presence in the bloodstream can be consistently detected and utilized as a clinical marker to guide therapeutic anticancer regimens. To address these questions, we conducted a retrospective study involving 228 patients diagnosed with six different types of carcinomas (colon, gastric, NSCLC, breast, anal canal, kidney), with the majority of them (70%) being non-metastatic. Employing a highly sensitive liquid biopsy approach, ISET®, and cytopathological readout, we isolated and detected circulating PGCCs in the patients' blood samples. PGCCs were identified in 46 (20.18%) out of 228 patients, including in 14.47% of 152 non-metastatic and 29.85% of 67 metastatic cases. Patients were subsequently monitored for a mean follow up period of 44.74 months (95%CI: 33.39-55.79 months). Remarkably, the presence of circulating PGCCs emerged as a statistically significant indicator of poor overall survival. Our findings suggest that circulating PGCCs hold promise as a reliable prognostic indicator. They underscore the importance of further extensive investigations into the role of circulating PGCCs as a prognostic marker and the development of anti-PGCC therapeutic strategies to improve cancer management and patient survival.
Collapse
Affiliation(s)
| | | | - Vinicius Fernando Calsavara
- Department of Computational Biomedicine, Biostatistics Shared Resource, Cedars-Sinai Cancer Center, Los Angeles, CA 90069, USA
| | | | - Virgílio Sousa E Silva
- Department of Clinical Oncology, A.C. Camargo Cancer Center, São Paulo 01509-900, Brazil
| | | | | | - Alessandra Decina
- Rarecells Faculté de Médecine Necker, 160 Rue de Vaugirard, 75015 Paris, France
| | - Roger Dachez
- Cytopathology Laboratory Innodiag, F-92100 Boulogne-Billancourt, France
| | | |
Collapse
|
11
|
Aswani Y, Patel A, Zhan X, Ansari S, Marcelino LG, Aswani N, Patel DD, Kandemirli S, Averill S, Bhatt S. Imaging in Erdheim-Chester Disease. Radiographics 2024; 44:e240011. [PMID: 39172709 DOI: 10.1148/rg.240011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Erdheim-Chester disease (ECD) is a rare, multisystemic, inflammatory, non-Langerhans cell histiocytic neoplasm. The discovery of recurrent and somatic mutations in the mitogen-activated protein kinase signaling pathway, most commonly BRAFV600E, has led to a reclassification of ECD from an inflammatory disorder to a neoplastic process. It is now included in the revised 2016 World Health Organization classification of hematopoietic tumors and in the Langerhans group in the revised 2016 Histiocytosis Classification of the Histiocyte Society. When symptomatic, ECD most commonly manifests with bone pain and fatigue. Also, neurologic manifestations, central diabetes insipidus, exophthalmos, and periorbital xanthelasma-like lesions are frequently encountered. Pathologic findings may vary depending on the site of biopsy and may display a spectrum of features. Thus, due to the diverse clinical presentation and variable histologic findings, imaging can often show the first sign of the disease. Radiologic findings are, however, interpreted in conjunction with clinical and histologic findings to establish the diagnosis of ECD. From providing classic findings that facilitate diagnosis to helping radiologists determine the extent of disease and predicting a prognosis, the role of radiology in ECD has evolved with the understanding of the disease itself. Insights into the molecular pathogenesis and the development of targeted therapeutic agents along with approval of vemurafenib and cobimetinib have necessitated revision of the guidelines for the management of ECD. The authors discuss various radiologic findings of ECD and differential diagnoses by using an organ system-based approach and briefly describe the revised consensus recommendations for evaluation, diagnosis, and treatment based on the International Medical Symposia on ECD from a radiologist's perspective. ©RSNA, 2024 Supplemental material is available for this article. The full digital presentation is available online.
Collapse
Affiliation(s)
- Yashant Aswani
- From the Department of Radiology, University of Iowa Hospitals & Clinics, 200 Hawkins Dr, 3882 John Pappajohn Pavilion, Iowa City, IA 52242 (Y.A., A.P., X.Z., S.K., S. Averill); Department of Radiology, Rush University Medical Center, Chicago, Ill (S. Ansari); Department of Radiology, Radiology Institute of University of São Paulo, São Paulo, Brazil (L.G.M.); Department of Neurology, Geetanjali Medical College and Hospital, Udaipur, India (N.A.); Department of Radiology, Seth GS Medical College and KEM Hospital, Mumbai, India (D.D.P.); and Department of Radiology, Mayo Clinic, Jacksonville, Fla (S.B.)
| | - Aditi Patel
- From the Department of Radiology, University of Iowa Hospitals & Clinics, 200 Hawkins Dr, 3882 John Pappajohn Pavilion, Iowa City, IA 52242 (Y.A., A.P., X.Z., S.K., S. Averill); Department of Radiology, Rush University Medical Center, Chicago, Ill (S. Ansari); Department of Radiology, Radiology Institute of University of São Paulo, São Paulo, Brazil (L.G.M.); Department of Neurology, Geetanjali Medical College and Hospital, Udaipur, India (N.A.); Department of Radiology, Seth GS Medical College and KEM Hospital, Mumbai, India (D.D.P.); and Department of Radiology, Mayo Clinic, Jacksonville, Fla (S.B.)
| | - Xin Zhan
- From the Department of Radiology, University of Iowa Hospitals & Clinics, 200 Hawkins Dr, 3882 John Pappajohn Pavilion, Iowa City, IA 52242 (Y.A., A.P., X.Z., S.K., S. Averill); Department of Radiology, Rush University Medical Center, Chicago, Ill (S. Ansari); Department of Radiology, Radiology Institute of University of São Paulo, São Paulo, Brazil (L.G.M.); Department of Neurology, Geetanjali Medical College and Hospital, Udaipur, India (N.A.); Department of Radiology, Seth GS Medical College and KEM Hospital, Mumbai, India (D.D.P.); and Department of Radiology, Mayo Clinic, Jacksonville, Fla (S.B.)
| | - Shehbaz Ansari
- From the Department of Radiology, University of Iowa Hospitals & Clinics, 200 Hawkins Dr, 3882 John Pappajohn Pavilion, Iowa City, IA 52242 (Y.A., A.P., X.Z., S.K., S. Averill); Department of Radiology, Rush University Medical Center, Chicago, Ill (S. Ansari); Department of Radiology, Radiology Institute of University of São Paulo, São Paulo, Brazil (L.G.M.); Department of Neurology, Geetanjali Medical College and Hospital, Udaipur, India (N.A.); Department of Radiology, Seth GS Medical College and KEM Hospital, Mumbai, India (D.D.P.); and Department of Radiology, Mayo Clinic, Jacksonville, Fla (S.B.)
| | - Leonardo Gomes Marcelino
- From the Department of Radiology, University of Iowa Hospitals & Clinics, 200 Hawkins Dr, 3882 John Pappajohn Pavilion, Iowa City, IA 52242 (Y.A., A.P., X.Z., S.K., S. Averill); Department of Radiology, Rush University Medical Center, Chicago, Ill (S. Ansari); Department of Radiology, Radiology Institute of University of São Paulo, São Paulo, Brazil (L.G.M.); Department of Neurology, Geetanjali Medical College and Hospital, Udaipur, India (N.A.); Department of Radiology, Seth GS Medical College and KEM Hospital, Mumbai, India (D.D.P.); and Department of Radiology, Mayo Clinic, Jacksonville, Fla (S.B.)
| | - Nishant Aswani
- From the Department of Radiology, University of Iowa Hospitals & Clinics, 200 Hawkins Dr, 3882 John Pappajohn Pavilion, Iowa City, IA 52242 (Y.A., A.P., X.Z., S.K., S. Averill); Department of Radiology, Rush University Medical Center, Chicago, Ill (S. Ansari); Department of Radiology, Radiology Institute of University of São Paulo, São Paulo, Brazil (L.G.M.); Department of Neurology, Geetanjali Medical College and Hospital, Udaipur, India (N.A.); Department of Radiology, Seth GS Medical College and KEM Hospital, Mumbai, India (D.D.P.); and Department of Radiology, Mayo Clinic, Jacksonville, Fla (S.B.)
| | - Dhrumil Deveshkumar Patel
- From the Department of Radiology, University of Iowa Hospitals & Clinics, 200 Hawkins Dr, 3882 John Pappajohn Pavilion, Iowa City, IA 52242 (Y.A., A.P., X.Z., S.K., S. Averill); Department of Radiology, Rush University Medical Center, Chicago, Ill (S. Ansari); Department of Radiology, Radiology Institute of University of São Paulo, São Paulo, Brazil (L.G.M.); Department of Neurology, Geetanjali Medical College and Hospital, Udaipur, India (N.A.); Department of Radiology, Seth GS Medical College and KEM Hospital, Mumbai, India (D.D.P.); and Department of Radiology, Mayo Clinic, Jacksonville, Fla (S.B.)
| | - Sedat Kandemirli
- From the Department of Radiology, University of Iowa Hospitals & Clinics, 200 Hawkins Dr, 3882 John Pappajohn Pavilion, Iowa City, IA 52242 (Y.A., A.P., X.Z., S.K., S. Averill); Department of Radiology, Rush University Medical Center, Chicago, Ill (S. Ansari); Department of Radiology, Radiology Institute of University of São Paulo, São Paulo, Brazil (L.G.M.); Department of Neurology, Geetanjali Medical College and Hospital, Udaipur, India (N.A.); Department of Radiology, Seth GS Medical College and KEM Hospital, Mumbai, India (D.D.P.); and Department of Radiology, Mayo Clinic, Jacksonville, Fla (S.B.)
| | - Sarah Averill
- From the Department of Radiology, University of Iowa Hospitals & Clinics, 200 Hawkins Dr, 3882 John Pappajohn Pavilion, Iowa City, IA 52242 (Y.A., A.P., X.Z., S.K., S. Averill); Department of Radiology, Rush University Medical Center, Chicago, Ill (S. Ansari); Department of Radiology, Radiology Institute of University of São Paulo, São Paulo, Brazil (L.G.M.); Department of Neurology, Geetanjali Medical College and Hospital, Udaipur, India (N.A.); Department of Radiology, Seth GS Medical College and KEM Hospital, Mumbai, India (D.D.P.); and Department of Radiology, Mayo Clinic, Jacksonville, Fla (S.B.)
| | - Shweta Bhatt
- From the Department of Radiology, University of Iowa Hospitals & Clinics, 200 Hawkins Dr, 3882 John Pappajohn Pavilion, Iowa City, IA 52242 (Y.A., A.P., X.Z., S.K., S. Averill); Department of Radiology, Rush University Medical Center, Chicago, Ill (S. Ansari); Department of Radiology, Radiology Institute of University of São Paulo, São Paulo, Brazil (L.G.M.); Department of Neurology, Geetanjali Medical College and Hospital, Udaipur, India (N.A.); Department of Radiology, Seth GS Medical College and KEM Hospital, Mumbai, India (D.D.P.); and Department of Radiology, Mayo Clinic, Jacksonville, Fla (S.B.)
| |
Collapse
|
12
|
Saadh MJ, Pallathadka H, Abed HS, Menon SV, Sivaprasad GV, Hjazi A, Rizaev J, Suri S, Jawad MA, Husseen B. Detailed role of SR-A1 and SR-E3 in tumor biology, progression, and therapy. Cell Biochem Biophys 2024; 82:1735-1750. [PMID: 38884861 DOI: 10.1007/s12013-024-01350-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2024] [Indexed: 06/18/2024]
Abstract
The first host defense systems are the innate immune response and the inflammatory response. Among innate immune cells, macrophages, are crucial because they preserve tissue homeostasis and eradicate infections by phagocytosis, or the ingestion of particles. Macrophages exhibit phenotypic variability contingent on their stimulation state and tissue environment and may be detected in several tissues. Meanwhile, critical inflammatory functions are played by macrophage scavenger receptors, in particular, SR-A1 (CD204) and SR-E3 (CD206), in a variety of pathophysiologic events. Such receptors, which are mainly found on the surface of multiple types of macrophages, have different effects on processes, including atherosclerosis, innate and adaptive immunity, liver and lung diseases, and, more recently, cancer. Although macrophage scavenger receptors have been demonstrated to be active across the disease spectrum, conflicting experimental findings and insufficient signaling pathways have hindered our comprehension of the molecular processes underlying its array of roles. Herein, as SR-A1 and SR-E3 functions are often binary, either protecting the host or impairing the pathophysiology of cancers has been reviewed. We will look into their function in malignancies, with an emphasis on their recently discovered function in macrophages and the possible therapeutic benefits of SR-A1 and SR-E3 targeting.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | | | - Hussein Salim Abed
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Ramadi, Iraq.
| | - Soumya V Menon
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - G V Sivaprasad
- Department of Basic Science & Humanities, Raghu Engineering College, Visakhapatnam, India
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Jasur Rizaev
- Department of Public health and Healthcare management, Rector, Samarkand State Medical University, 18, Amir Temur Street, Samarkand, Uzbekistan
| | - Sahil Suri
- Centre of Research Impact and Outcome, Chitkara University, Rajpura, 140417, Punjab, India
| | | | - Beneen Husseen
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq
- Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
13
|
Gordon S, Roberti A, Kaufmann SHE. Mononuclear Phagocytes, Cellular Immunity, and Nobel Prizes: A Historic Perspective. Cells 2024; 13:1378. [PMID: 39195266 PMCID: PMC11352343 DOI: 10.3390/cells13161378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
The mononuclear phagocyte system includes monocytes, macrophages, some dendritic cells, and multinuclear giant cells. These cell populations display marked heterogeneity depending on their differentiation from embryonic and bone marrow hematopoietic progenitors, tissue location, and activation. They contribute to tissue homeostasis by interacting with local and systemic immune and non-immune cells through trophic, clearance, and cytocidal functions. During evolution, they contributed to the innate host defense before effector mechanisms of specific adaptive immunity emerged. Mouse macrophages appear at mid-gestation and are distributed throughout the embryo to facilitate organogenesis and clear cells undergoing programmed cell death. Yolk sac, AGM, and fetal liver-derived tissue-resident macrophages persist throughout postnatal and adult life, supplemented by bone marrow-derived blood monocytes, as required after injury and infection. Nobel awards to Elie Metchnikoff and Paul Ehrlich in 1908 drew attention to cellular phagocytic and humoral immunity, respectively. In 2011, prizes were awarded to Jules Hoffmann and Bruce Beutler for contributions to innate immunity and to Ralph Steinman for the discovery of dendritic cells and their role in antigen presentation to T lymphocytes. We trace milestones in the history of mononuclear phagocyte research from the perspective of Nobel awards bearing directly and indirectly on their role in cellular immunity.
Collapse
Affiliation(s)
- Siamon Gordon
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK;
| | - Annabell Roberti
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK;
| | - Stefan H. E. Kaufmann
- Max Planck Institute for Infection Biology, 10117 Berlin, Germany;
- Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
- Hagler Institute for Advanced Study, Texas A&M University, College Station, TX 77843, USA
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| |
Collapse
|
14
|
Burke AB. Craniomaxillofacial Fibro-osseous Lesions in Children. Oral Maxillofac Surg Clin North Am 2024; 36:379-390. [PMID: 38705816 DOI: 10.1016/j.coms.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Craniofacial fibro-osseous lesions represent a diverse spectrum of pathologic conditions where fibrous tissue replaces healthy bone, resulting in the formation of irregular, woven bone. They are more commonly diagnosed in young people, with treatment strategies dependent on clinical behavior and skeletal maturity. This article discusses the examples of craniofacial fibro-osseous lesions, based on the latest classifications, along with their diagnostic criteria and management.
Collapse
Affiliation(s)
- Andrea B Burke
- Department of Oral and Maxillofacial Surgery, University of Washington School of Dentistry, 1959 Northeast Pacific Street, Box 357134, Seattle, WA 98195-7134, USA.
| |
Collapse
|
15
|
Han YN, Gu QR, Wu YC, Topatana W, Jiang ZN. Granulomas without foreign body giant cells in perianal fistula tissue suggest Crohn's disease. J Dig Dis 2024; 25:484-489. [PMID: 39350692 DOI: 10.1111/1751-2980.13312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/11/2024] [Accepted: 08/19/2024] [Indexed: 10/25/2024]
Abstract
OBJECTIVES Histopathological characteristics of granulomas in perianal fistula of patients with Crohn's disease (CD) remain unexplored. We aimed to assess the histopathological features of granulomas in perianal fistula in CD. METHODS A retrospective analysis was conducted by reviewing the medical and pathological records of 4430 cases who underwent perianal fistulectomy at our hospital between June 2015 and June 2023. The patients were divided into the CD group, tuberculosis (TB), and non-CD group, respectively, based on their final diangosis. The detection rate of granulomas and differential histopathological features were investigated. RESULTS Among the 4430 patients, granulomas were identified in 41 cases, including 25 had CD, 2 had pulmonary TB, and 14 only exhibiting perianal lesions with no other comorbidities. Additionally, there were altogether 93 CD cases, resulting in a detection rate of granuloma of 26.9%, which was considerably higher than that in the non-CD group (26.9% vs 0.3%, p < 0.001). The majority (85.7%) of the perianal fistula tissues in the non-CD group contained foreign body giant cells, while this was observed in only 1 (4.0%) out of the 25 cases with CD. We proposed that granulomas in the perianal fistula in the non-CD group were mostly foreign body granulomas. Moreover, granulomas in the non-CD group were larger than that of the CD group (1135 μm vs 519 μm, p < 0.001). CONCLUSION Most CD cases have less granulomas (≤3) and no foreign body giant cells. Ribbon-like granulomas can be seen only in CD cases.
Collapse
Affiliation(s)
- Yi Na Han
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Qian Ru Gu
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Yan Chuang Wu
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Win Topatana
- School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Zhi Nong Jiang
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
16
|
Hong YK, Hwang DY, Yang CC, Cheng SM, Chen PC, Aala WJ, I-Chen Harn H, Evans ST, Onoufriadis A, Liu SL, Lin YC, Chang YH, Lo TK, Hung KS, Lee YC, Tang MJ, Lu KQ, McGrath JA, Hsu CK. Profibrotic Subsets of SPP1 + Macrophages and POSTN + Fibroblasts Contribute to Fibrotic Scarring in Acne Keloidalis. J Invest Dermatol 2024; 144:1491-1504.e10. [PMID: 38218364 DOI: 10.1016/j.jid.2023.12.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/05/2023] [Accepted: 12/19/2023] [Indexed: 01/15/2024]
Abstract
Acne keloidalis is a primary scarring alopecia characterized by longstanding inflammation in the scalp causing keloid-like scar formation and hair loss. Histologically, acne keloidalis is characterized by mixed leukocytic infiltrates in the acute stage followed by a granulomatous reaction and extensive fibrosis in the later stages. To further explore its pathogenesis, bulk RNA sequencing, single-cell RNA sequencing, and spatial transcriptomics were applied to occipital scalp biopsy specimens of lesional and adjacent no-lesional skin in patients with clinically active disease. Unbiased clustering revealed 19 distinct cell populations, including 2 notable populations: POSTN+ fibroblasts with enriched extracellular matrix signatures and SPP1+ myeloid cells with an M2 macrophage phenotype. Cell communication analyses indicated that fibroblasts and myeloid cells communicated by SPP1 signaling networks in lesional skin. A reverse transcriptomics in silico approach identified corticosteroids as possessing the capability to reverse the gene expression signatures of SPP1+ myeloid cells and POSTN+ fibroblasts. Intralesional corticosteroid injection greatly reduced SPP1 and POSTN gene expression as well as acne keloidalis disease activity. Spatial transcriptomics and immunofluorescence staining verified microanatomic specificity of SPP1+ myeloid cells and POSTN+ fibroblasts with disease activity. In summary, the communication between POSTN+ fibroblasts and SPP1+ myeloid cells by SPP1 axis may contribute to the pathogenesis of acne keloidalis.
Collapse
Affiliation(s)
- Yi-Kai Hong
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan
| | - Daw-Yang Hwang
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Chao-Chun Yang
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan
| | - Siao Muk Cheng
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Peng-Chieh Chen
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wilson Jr Aala
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hans I-Chen Harn
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Spencer T Evans
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Alexandros Onoufriadis
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, United Kingdom
| | - Si-Lin Liu
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Chen Lin
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Han Chang
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tzu-Kun Lo
- Department of Dermatology, Tainan Municipal An-Nan Hospital, Tainan, Taiwan
| | - Kuo-Shu Hung
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Chao Lee
- PhD Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Ming-Jer Tang
- International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan; Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kurt Q Lu
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - John A McGrath
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; St John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, United Kingdom
| | - Chao-Kai Hsu
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan; Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
17
|
Abebayehu D, Pfaff BN, Bingham GC, Miller AE, Kibet M, Ghatti S, Griffin DR, Barker TH. A Thy-1-negative immunofibroblast population emerges as a key determinant of fibrotic outcomes to biomaterials. SCIENCE ADVANCES 2024; 10:eadf2675. [PMID: 38875340 PMCID: PMC11177936 DOI: 10.1126/sciadv.adf2675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 05/10/2024] [Indexed: 06/16/2024]
Abstract
Fibrosis-associated fibroblasts have been identified across various fibrotic disorders, but not in the context of biomaterials, fibrotic encapsulation, and the foreign body response. In other fibrotic disorders, a fibroblast subpopulation defined by Thy-1 loss is strongly correlated with fibrosis yet we do not know what promotes Thy-1 loss. We have previously shown that Thy-1 is an integrin regulator enabling normal fibroblast mechanosensing, and here, leveraging nonfibrotic microporous annealed particle (MAP) hydrogels versus classical fibrotic bulk hydrogels, we demonstrate that Thy1-/- mice mount a fibrotic response to MAP gels that includes inflammatory signaling. We found that a distinct and cryptic α-smooth muscle actin-positive Thy-1- fibroblast population emerges in response to interleuklin-1β (IL-1β) and tumor necrosis factor-α (TNFα). Furthermore, IL-1β/TNFα-induced Thy-1- fibroblasts consist of two distinct subpopulations that are strongly proinflammatory. These findings illustrate the emergence of a unique proinflammatory, profibrotic fibroblast subpopulation that is central to fibrotic encapsulation of biomaterials.
Collapse
Affiliation(s)
- Daniel Abebayehu
- Department of Biomedical Engineering, Schools of Engineering and Medicine, University of Virginia, Charlottesville, VA 22908, USA
- Robert Berne Cardiovascular Research Center, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Blaise N. Pfaff
- Department of Biomedical Engineering, Schools of Engineering and Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Grace C. Bingham
- Department of Biomedical Engineering, Schools of Engineering and Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Andrew E. Miller
- Department of Biomedical Engineering, Schools of Engineering and Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Mathew Kibet
- Department of Biomedical Engineering, Schools of Engineering and Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Surabhi Ghatti
- Department of Biomedical Engineering, Schools of Engineering and Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Donald R. Griffin
- Department of Biomedical Engineering, Schools of Engineering and Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Thomas H. Barker
- Department of Biomedical Engineering, Schools of Engineering and Medicine, University of Virginia, Charlottesville, VA 22908, USA
- Robert Berne Cardiovascular Research Center, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
- Department of Cell Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
18
|
Choi M, Toscano C, Edman MC, de Paiva CS, Hamm-Alvarez SF. The Aging Lacrimal Gland of Female C57BL/6J Mice Exhibits Multinucleate Macrophage Infiltration Associated With Lipid Dysregulation. Invest Ophthalmol Vis Sci 2024; 65:1. [PMID: 38829671 PMCID: PMC11156205 DOI: 10.1167/iovs.65.6.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/08/2024] [Indexed: 06/05/2024] Open
Abstract
Purpose Loss of function of the lacrimal gland (LG), which produces the aqueous tear film, is implicated in age-related dry eye. To better understand this deterioration, we evaluated changes in lipid metabolism and inflammation in LGs from an aging model. Methods LG sections from female C57BL/6J mice of different ages (young, 2-3 months; intermediate, 10-14 months; old, ≥24 months) were stained with Oil Red-O or Toluidine blue to detect lipids. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis and western blotting of LG lysates determined differences in the expression of genes and proteins related to lipid metabolism. A photobleaching protocol to quench age-related autofluorescence was used in LG sections to evaluate changes in immunofluorescence associated with NPC1, NPC2, CTSL, and macrophages (F4/80, CD11b) with age using confocal fluorescence microscopy. Results Old LGs showed increased lipids prominent in basal aggregates in acinar cells and in extra-acinar sites. LG gene expression of Npc1, Npc2, Lipa, and Mcoln2, encoding proteins involved in lipid metabolism, was increased with age. NPC1 was also significantly increased in old LGs by western blotting. In photobleached LG sections, confocal fluorescence microscopy imaging of NPC1, NPC2, and CTSL immunofluorescence showed age-associated enrichment in macrophages labeled to detect F4/80. Although mononuclear macrophages were detectable in LG at all ages, this novel multinucleate macrophage population containing NPC1, NPC2, and CTSL and enriched in F4/80 and some CD11b was increased with age at extra-acinar sites. Conclusions Lipid-metabolizing proteins enriched in F4/80-positive multinucleated macrophages are increased in old LGs adjacent to sites of lipid deposition in acini.
Collapse
Affiliation(s)
- Minchang Choi
- Department of Pharmacology and Pharmaceutical Sciences, USC Alfred E. Mann School of Pharmacy, Los Angeles, California, United States
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine of USC, Los Angeles, California, United States
| | - Cindy Toscano
- Department of Pharmacology and Pharmaceutical Sciences, USC Alfred E. Mann School of Pharmacy, Los Angeles, California, United States
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine of USC, Los Angeles, California, United States
| | - Maria C. Edman
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine of USC, Los Angeles, California, United States
- Department of Ophthalmology, Keck School of Medicine of USC, Los Angeles, California, United States
| | - Cintia S. de Paiva
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
| | - Sarah F. Hamm-Alvarez
- Department of Pharmacology and Pharmaceutical Sciences, USC Alfred E. Mann School of Pharmacy, Los Angeles, California, United States
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine of USC, Los Angeles, California, United States
- Department of Ophthalmology, Keck School of Medicine of USC, Los Angeles, California, United States
| |
Collapse
|
19
|
Funk OH, Levy DL, Fay DS. Epidermal cell fusion promotes the transition from an embryonic to a larval transcriptome in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.22.595354. [PMID: 38826300 PMCID: PMC11142173 DOI: 10.1101/2024.05.22.595354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Cell fusion is a fundamental process in the development of multicellular organisms, yet its impact on gene regulation, particularly during crucial developmental stages, remains poorly understood. The Caenorhabditis elegans epidermis comprises 8-10 syncytial cells, with the largest integrating 139 individual nuclei through cell-cell fusion governed by the fusogenic protein EFF-1. To explore the effects of cell fusion on developmental progression and associated gene expression changes, we conducted transcriptomic analyses of eff-1 fusion-deficient mutants. Our RNAseq findings showed widespread transcriptomic changes that were enriched for epidermal genes and key molecular pathways involved in epidermal function during larval development. Subsequent single-molecule fluorescence in situ hybridization validated the altered expression of mRNA transcripts, confirming quantifiable changes in gene expression in the absence of embryonic epidermal fusion. These results underscore the significance of cell-cell fusion in shaping transcriptional programs during development and raise questions regarding the precise identities and specialized functions of different subclasses of nuclei within developing syncytial cells and tissues.
Collapse
|
20
|
Zhao Y, Ning J, Teng H, Deng Y, Sheldon M, Shi L, Martinez C, Zhang J, Tian A, Sun Y, Nakagawa S, Yao F, Wang H, Ma L. Long noncoding RNA Malat1 protects against osteoporosis and bone metastasis. Nat Commun 2024; 15:2384. [PMID: 38493144 PMCID: PMC10944492 DOI: 10.1038/s41467-024-46602-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/04/2024] [Indexed: 03/18/2024] Open
Abstract
MALAT1, one of the few highly conserved nuclear long noncoding RNAs (lncRNAs), is abundantly expressed in normal tissues. Previously, targeted inactivation and genetic rescue experiments identified MALAT1 as a suppressor of breast cancer lung metastasis. On the other hand, Malat1-knockout mice are viable and develop normally. On a quest to discover the fundamental roles of MALAT1 in physiological and pathological processes, we find that this lncRNA is downregulated during osteoclastogenesis in humans and mice. Remarkably, Malat1 deficiency in mice promotes osteoporosis and bone metastasis of melanoma and mammary tumor cells, which can be rescued by genetic add-back of Malat1. Mechanistically, Malat1 binds to Tead3 protein, a macrophage-osteoclast-specific Tead family member, blocking Tead3 from binding and activating Nfatc1, a master regulator of osteoclastogenesis, which results in the inhibition of Nfatc1-mediated gene transcription and osteoclast differentiation. Notably, single-cell transcriptome analysis of clinical bone samples reveals that reduced MALAT1 expression in pre-osteoclasts and osteoclasts is associated with osteoporosis and metastatic bone lesions. Altogether, these findings identify Malat1 as a lncRNA that protects against osteoporosis and bone metastasis.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jingyuan Ning
- Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100010, China
| | - Hongqi Teng
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yalan Deng
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Marisela Sheldon
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Lei Shi
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Consuelo Martinez
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jie Zhang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Annie Tian
- Department of Kinesiology, Rice University, Houston, TX, 77005, USA
| | - Yutong Sun
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Shinichi Nakagawa
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Fan Yao
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Hai Wang
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Li Ma
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, 77030, USA.
| |
Collapse
|
21
|
Toya M, Kushioka J, Shen H, Utsunomiya T, Hirata H, Tsubosaka M, Gao Q, Chow SKH, Zhang N, Goodman SB. Sex differences of NF-κB-targeted therapy for mitigating osteoporosis associated with chronic inflammation of bone. Bone Joint Res 2024; 13:28-39. [PMID: 38194999 PMCID: PMC10776185 DOI: 10.1302/2046-3758.131.bjr-2023-0040.r3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2024] Open
Abstract
Aims Transcription factor nuclear factor kappa B (NF-κB) plays a major role in the pathogenesis of chronic inflammatory diseases in all organ systems. Despite its importance, NF-κB targeted drug therapy to mitigate chronic inflammation has had limited success in preclinical studies. We hypothesized that sex differences affect the response to NF-κB treatment during chronic inflammation in bone. This study investigated the therapeutic effects of NF-κB decoy oligodeoxynucleotides (ODN) during chronic inflammation in male and female mice. Methods We used a murine model of chronic inflammation induced by continuous intramedullary delivery of lipopolysaccharide-contaminated polyethylene particles (cPE) using an osmotic pump. Specimens were evaluated using micro-CT and histomorphometric analyses. Sex-specific osteogenic and osteoclastic differentiation potentials were also investigated in vitro, including alkaline phosphatase, Alizarin Red, tartrate-resistant acid phosphatase staining, and gene expression using reverse transcription polymerase chain reaction (RT-PCR). Results Local delivery of NF-κB decoy ODN in vivo increased osteogenesis in males, but not females, in the presence of chronic inflammation induced by cPE. Bone resorption activity was decreased in both sexes. In vitro osteogenic and osteoclastic differentiation assays during inflammatory conditions did not reveal differences among the groups. Receptor activator of nuclear factor kappa Β ligand (Rankl) gene expression by osteoblasts was significantly decreased only in males when treated with ODN. Conclusion We demonstrated that NF-κB decoy ODN increased osteogenesis in male mice and decreased bone resorption activity in both sexes in preclinical models of chronic inflammation. NF-κB signalling could be a therapeutic target for chronic inflammatory diseases involving bone, especially in males.
Collapse
Affiliation(s)
- Masakazu Toya
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Junichi Kushioka
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Huaishuang Shen
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Takeshi Utsunomiya
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
- Department of Orthopaedic Surgery, Kyushu University, Fukuoka, Japan
| | - Hirohito Hirata
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Masanori Tsubosaka
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Qi Gao
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Simon K-H. Chow
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Ning Zhang
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Stuart B. Goodman
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
- Department of Bioengineering, Stanford University, Stanford, California, USA
| |
Collapse
|
22
|
Song L, Zhang D, Wang H, Xia X, Huang W, Gonzales J, Via LE, Wang D. Automated quantitative assay of fibrosis characteristics in tuberculosis granulomas. Front Microbiol 2024; 14:1301141. [PMID: 38235425 PMCID: PMC10792068 DOI: 10.3389/fmicb.2023.1301141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 11/06/2023] [Indexed: 01/19/2024] Open
Abstract
Introduction Granulomas, the pathological hallmark of Mycobacterium tuberculosis (Mtb) infection, are formed by different cell populations. Across various stages of tuberculosis conditions, most granulomas are classical caseous granulomas. They are composed of a necrotic center surrounded by multilayers of histocytes, with the outermost layer encircled by fibrosis. Although fibrosis characterizes the architecture of granulomas, little is known about the detailed parameters of fibrosis during this process. Methods In this study, samples were collected from patients with tuberculosis (spanning 16 organ types), and Mtb-infected marmosets and fibrotic collagen were characterized by second harmonic generation (SHG)/two-photon excited fluorescence (TPEF) microscopy using a stain-free, fully automated analysis program. Results Histopathological examination revealed that most granulomas share common features, including necrosis, solitary and compact structure, and especially the presence of multinuclear giant cells. Masson's trichrome staining showed that different granuloma types have varying degrees of fibrosis. SHG imaging uncovered a higher proportion (4%~13%) of aggregated collagens than of disseminated type collagens (2%~5%) in granulomas from matched tissues. Furthermore, most of the aggregated collagen presented as short and thick clusters (200~620 µm), unlike the long and thick (200~300 µm) disseminated collagens within the matched tissues. Matrix metalloproteinase-9, which is involved in fibrosis and granuloma formation, was strongly expressed in the granulomas in different tissues. Discussion Our data illustrated that different tuberculosis granulomas have some degree of fibrosis in which collagen strings are short and thick. Moreover, this study revealed that the SHG imaging program could contribute to uncovering the fibrosis characteristics of tuberculosis granulomas.
Collapse
Affiliation(s)
- Li Song
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Yichang Central People’s Hospital, Yichang, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
- Institute of Infection and Inflammation, China Three Gorges University, Yichang, China
| | - Ding Zhang
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Yichang Central People’s Hospital, Yichang, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
- Institute of Infection and Inflammation, China Three Gorges University, Yichang, China
| | - Hankun Wang
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Yichang Central People’s Hospital, Yichang, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
- Institute of Infection and Inflammation, China Three Gorges University, Yichang, China
| | - Xuan Xia
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Yichang Central People’s Hospital, Yichang, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
- Institute of Infection and Inflammation, China Three Gorges University, Yichang, China
| | - Weifeng Huang
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Yichang Central People’s Hospital, Yichang, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
- Institute of Infection and Inflammation, China Three Gorges University, Yichang, China
| | - Jacqueline Gonzales
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Laura E. Via
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Decheng Wang
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Yichang Central People’s Hospital, Yichang, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
- Institute of Infection and Inflammation, China Three Gorges University, Yichang, China
| |
Collapse
|
23
|
Abstract
Most enveloped viruses encode viral fusion proteins to penetrate host cell by membrane fusion. Interestingly, many enveloped viruses can also use viral fusion proteins to induce cell-cell fusion, both in vitro and in vivo, leading to the formation of syncytia or multinucleated giant cells (MGCs). In addition, some non-enveloped viruses encode specialized viral proteins that induce cell-cell fusion to facilitate viral spread. Overall, viruses that can induce cell-cell fusion are nearly ubiquitous in mammals. Virus cell-to-cell spread by inducing cell-cell fusion may overcome entry and post-entry blocks in target cells and allow evasion of neutralizing antibodies. However, molecular mechanisms of virus-induced cell-cell fusion remain largely unknown. Here, I summarize the current understanding of virus-induced cell fusion and syncytia formation.
Collapse
Affiliation(s)
- Maorong Xie
- Division of Infection and Immunity, UCL, London, UK.
| |
Collapse
|
24
|
Sahoo NK, Mowar A, Dubey P, Maheshwari I. An Audit of Histopathological Pattern of Peripheral Giant Cell Granuloma - A Retrospective Study. Ann Maxillofac Surg 2024; 14:62-65. [PMID: 39184407 PMCID: PMC11340838 DOI: 10.4103/ams.ams_20_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/19/2024] [Accepted: 05/22/2024] [Indexed: 08/27/2024] Open
Abstract
Introduction Peripheral giant cell granuloma (PGCG) is a type of reactive hyperplastic lesion in the oral cavity that develops due to local irritation or chronic trauma, originating from the periosteum or periodontal membrane. It primarily affects the alveolar mucosa of the posterior mandibular region and has a peak incidence in the age range of the fourth to sixth decades of life, with a 2:1 female predilection. The aim of the study was to analyse the histopathological pattern of peripheral giant cell granuloma. Materials and Methods This retrospective study was conducted at a tertiary care teaching hospital from 2018 to 2023 after obtaining the required institutional ethical board approval (SMC/UECM/2023/627/296). All the cases of maxillofacial lesions referred/reported to and which conformed to the set inclusion and exclusion criteria were included. Data were analysed by calculating the percentage of the variables. IBM SPSS version 20 software was used to analyse the descriptive data. Results Out of 12 patients, four were males and eight were females. The age ranged from 20 to 60 years with an average age of 40 years. All the patients included in the study showed multinucleated giant cells and inflammatory cells, 83.3% showed fibrous stroma and 50% showed para-keratinisation and haemosiderin pigments. Discussion PGCG, a reparative lesion, seems to occur mostly in the 40-60 years of life with female predilection and commonly seen histopathological features included multinuclear giant cells, inflammatory cells in all cases, 83.3% fibrous stroma and 50% both para-keratinisation and haemosiderin pigments.
Collapse
Affiliation(s)
- Nanda Kishore Sahoo
- Department of Oral and Maxillofacial Surgery, Subharti Dental College and Hospital, Swami Vivekanand Subharti University, Meerut, Uttar Pradesh, India
| | - Apoorva Mowar
- Department of Oral and Maxillofacial Surgery, Subharti Dental College and Hospital, Swami Vivekanand Subharti University, Meerut, Uttar Pradesh, India
| | - Prajesh Dubey
- Department of Oral and Maxillofacial Surgery, Subharti Dental College and Hospital, Swami Vivekanand Subharti University, Meerut, Uttar Pradesh, India
| | - Isha Maheshwari
- Department of Oral and Maxillofacial Surgery, Subharti Dental College and Hospital, Swami Vivekanand Subharti University, Meerut, Uttar Pradesh, India
| |
Collapse
|
25
|
Panez-Toro I, Heymann D, Gouin F, Amiaud J, Heymann MF, Córdova LA. Roles of inflammatory cell infiltrate in periprosthetic osteolysis. Front Immunol 2023; 14:1310262. [PMID: 38106424 PMCID: PMC10722268 DOI: 10.3389/fimmu.2023.1310262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/13/2023] [Indexed: 12/19/2023] Open
Abstract
Classically, particle-induced periprosthetic osteolysis at the implant-bone interface has explained the aseptic loosening of joint replacement. This response is preceded by triggering both the innate and acquired immune response with subsequent activation of osteoclasts, the bone-resorbing cells. Although particle-induced periprosthetic osteolysis has been considered a foreign body chronic inflammation mediated by myelomonocytic-derived cells, current reports describe wide heterogeneous inflammatory cells infiltrating the periprosthetic tissues. This review aims to discuss the role of those non-myelomonocytic cells in periprosthetic tissues exposed to wear particles by showing original data. Specifically, we discuss the role of T cells (CD3+, CD4+, and CD8+) and B cells (CD20+) coexisting with CD68+/TRAP- multinucleated giant cells associated with both polyethylene and metallic particles infiltrating retrieved periprosthetic membranes. This review contributes valuable insight to support the complex cell and molecular mechanisms behind the aseptic loosening theories of orthopedic implants.
Collapse
Affiliation(s)
- Isidora Panez-Toro
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, University of Chile, Independencia, Santiago, Chile
- Nantes Université, Centre National de Recherche Scientifique (CNRS), UMR6286, US2B, Nantes, France
- Institut de Cancérologie de l’Ouest, Tumor Heterogeneity and Precision Medicine Laboratory, Saint-Herblain, France
| | - Dominique Heymann
- Nantes Université, Centre National de Recherche Scientifique (CNRS), UMR6286, US2B, Nantes, France
- Institut de Cancérologie de l’Ouest, Tumor Heterogeneity and Precision Medicine Laboratory, Saint-Herblain, France
- Nantes Université, Laboratory of Histology and Embryology, Medical School, Nantes, France
- The University of Sheffield, Dept of Oncology and Metabolism, Sheffield, United Kingdom
| | - François Gouin
- Department of Surgical Oncology, Centre Léon Bérard, Lyon, France
| | - Jérôme Amiaud
- Nantes Université, Laboratory of Histology and Embryology, Medical School, Nantes, France
| | - Marie-Françoise Heymann
- Nantes Université, Centre National de Recherche Scientifique (CNRS), UMR6286, US2B, Nantes, France
- Institut de Cancérologie de l’Ouest, Tumor Heterogeneity and Precision Medicine Laboratory, Saint-Herblain, France
| | - Luis A. Córdova
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, University of Chile, Independencia, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
- Oral and Maxillofacial Surgery, Clínica MEDS, Santiago, Chile
| |
Collapse
|
26
|
Padmanabhan J, Chen K, Sivaraj D, Henn D, Kuehlmann BA, Kussie HC, Zhao ET, Kahn A, Bonham CA, Dohi T, Beck TC, Trotsyuk AA, Stern-Buchbinder ZA, Than PA, Hosseini HS, Barrera JA, Magbual NJ, Leeolou MC, Fischer KS, Tigchelaar SS, Lin JQ, Perrault DP, Borrelli MR, Kwon SH, Maan ZN, Dunn JCY, Nazerali R, Januszyk M, Prantl L, Gurtner GC. Allometrically scaling tissue forces drive pathological foreign-body responses to implants via Rac2-activated myeloid cells. Nat Biomed Eng 2023; 7:1419-1436. [PMID: 37749310 PMCID: PMC10651488 DOI: 10.1038/s41551-023-01091-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 08/02/2023] [Indexed: 09/27/2023]
Abstract
Small animals do not replicate the severity of the human foreign-body response (FBR) to implants. Here we show that the FBR can be driven by forces generated at the implant surface that, owing to allometric scaling, increase exponentially with body size. We found that the human FBR is mediated by immune-cell-specific RAC2 mechanotransduction signalling, independently of the chemistry and mechanical properties of the implant, and that a pathological FBR that is human-like at the molecular, cellular and tissue levels can be induced in mice via the application of human-tissue-scale forces through a vibrating silicone implant. FBRs to such elevated extrinsic forces in the mice were also mediated by the activation of Rac2 signalling in a subpopulation of mechanoresponsive myeloid cells, which could be substantially reduced via the pharmacological or genetic inhibition of Rac2. Our findings provide an explanation for the stark differences in FBRs observed in small animals and humans, and have implications for the design and safety of implantable devices.
Collapse
Affiliation(s)
- Jagannath Padmanabhan
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Kellen Chen
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Surgery, University of Arizona College of Medicine, Tucson, AZ, USA.
| | - Dharshan Sivaraj
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Surgery, University of Arizona College of Medicine, Tucson, AZ, USA.
| | - Dominic Henn
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Department of Plastic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Britta A Kuehlmann
- Department of Plastic and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Hudson C Kussie
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Department of Surgery, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Eric T Zhao
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Anum Kahn
- Cell Sciences Imaging Facility (CSIF), Beckman Center, Stanford University, Stanford, CA, USA
| | - Clark A Bonham
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Teruyuki Dohi
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Thomas C Beck
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Artem A Trotsyuk
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Department of Surgery, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Zachary A Stern-Buchbinder
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Peter A Than
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Hadi S Hosseini
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Janos A Barrera
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Noah J Magbual
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Melissa C Leeolou
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Katharina S Fischer
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Seth S Tigchelaar
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - John Q Lin
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - David P Perrault
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Mimi R Borrelli
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Sun Hyung Kwon
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Zeshaan N Maan
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - James C Y Dunn
- Division of Pediatric Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Rahim Nazerali
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael Januszyk
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Lukas Prantl
- Department of Plastic and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Geoffrey C Gurtner
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Surgery, University of Arizona College of Medicine, Tucson, AZ, USA.
| |
Collapse
|
27
|
Hazra S, Kalyan Dinda S, Kumar Mondal N, Hossain SR, Datta P, Yasmin Mondal A, Malakar P, Manna D. Giant cells: multiple cells unite to survive. Front Cell Infect Microbiol 2023; 13:1220589. [PMID: 37790914 PMCID: PMC10543420 DOI: 10.3389/fcimb.2023.1220589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/26/2023] [Indexed: 10/05/2023] Open
Abstract
Multinucleated Giant Cells (MGCs) are specialized cells that develop from the fusion of multiple cells, and their presence is commonly observed in human cells during various infections. However, MGC formation is not restricted to infections alone but can also occur through different mechanisms, such as endoreplication and abortive cell cycle. These processes lead to the formation of polyploid cells, eventually resulting in the formation of MGCs. In Entamoeba, a protozoan parasite that causes amoebic dysentery and liver abscesses in humans, the formation of MGCs is a unique phenomenon and not been reported in any other protozoa. This organism is exposed to various hostile environmental conditions, including changes in temperature, pH, and nutrient availability, which can lead to stress and damage to its cells. The formation of MGCs in Entamoeba is thought to be a survival strategy to cope with these adverse conditions. This organism forms MGCs through cell aggregation and fusion in response to osmotic and heat stress. The MGCs in Entamoeba are thought to have increased resistance to various stresses and can survive longer than normal cells under adverse conditions. This increased survival could be due to the presence of multiple nuclei, which could provide redundancy in case of DNA damage or mutations. Additionally, MGCs may play a role in the virulence of Entamoeba as they are found in the inflammatory foci of amoebic liver abscesses and other infections caused by Entamoeba. The presence of MGCs in these infections suggests that they may contribute to the pathogenesis of the disease. Overall, this article offers valuable insights into the intriguing phenomenon of MGC formation in Entamoeba. By unraveling the mechanisms behind this process and examining its implications, researchers can gain a deeper understanding of the complex biology of Entamoeba and potentially identify new targets for therapeutic interventions. The study of MGCs in Entamoeba serves as a gateway to exploring the broader field of cell fusion in various organisms, providing a foundation for future investigations into related cellular processes and their significance in health and disease.
Collapse
Affiliation(s)
- Shreyasee Hazra
- Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational and Research Institute (RKMVERI), Kolkata, India
| | - Suman Kalyan Dinda
- Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational and Research Institute (RKMVERI), Kolkata, India
| | - Naba Kumar Mondal
- Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational and Research Institute (RKMVERI), Kolkata, India
| | - Sk Rajjack Hossain
- Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational and Research Institute (RKMVERI), Kolkata, India
| | - Pratyay Datta
- Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational and Research Institute (RKMVERI), Kolkata, India
| | - Afsana Yasmin Mondal
- Institute of Health Sciences, Presidency University, Kolkata, West Bengal, India
| | - Pushkar Malakar
- Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational and Research Institute (RKMVERI), Kolkata, India
| | - Dipak Manna
- Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational and Research Institute (RKMVERI), Kolkata, India
| |
Collapse
|
28
|
Tawagi E, Ung T, Cheng HLM, Santerre JP. Arrhenius-model-based degradable oligourethane hydrogels for controlled growth factor release. Acta Biomater 2023; 166:167-186. [PMID: 37207744 DOI: 10.1016/j.actbio.2023.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/22/2023] [Accepted: 05/12/2023] [Indexed: 05/21/2023]
Abstract
Biodegradable hydrogels are growing in demand to enable the delivery of biomolecules (e.g. growth factors) for regenerative medicine. This research investigated the resorption of an oligourethane/polyacrylic acid hydrogel, a biodegradable hydrogel which supports tissue regeneration. The Arrhenius model was used to characterize the resorption of the polymeric gels in relevant in vitro conditions, and the Flory-Rehner equation was used to correlate the volumetric swelling ratio with the extent of degradation. The study found that the swelling rate of the hydrogel follows the Arrhenius model at elevated temperatures, estimating degradation time in saline solution at 37°C to be between 5 and 13 months, serving as a preliminary approximation of degradation in vivo. The degradation products had low cytotoxicity towards endothelial cells, and the hydrogel supported stromal cell proliferation. Additionally, the hydrogels were able to release growth factors and maintain the biomolecules' bioactivity towards cell proliferation. The study of the vascular endothelial growth factor (VEGF) release from the hydrogel used a diffusion process model, showing that the electrostatic attraction between VEGF and the anionic hydrogel allowed for controlled and sustained VEGF release over three weeks. In a rat subcutaneous implant model, a selected hydrogel with desired degradation rates exhibited minimal foreign body response and supported M2a macrophage phenotype, and vascularization. The low M1 and high M2a macrophage phenotypes within the implants were associated with tissue integration. This research supports the use of oligourethane/polyacrylic acid hydrogels as a promising material for delivering growth factors and supporting tissue regeneration. STATEMENT OF SIGNIFICANCE: There is a need for degradable elastomeric hydrogels that can support the formation of soft tissues and minimize long-term foreign body responses. An Arrhenius model was used to estimate the relative breakdown of hydrogels, in-vitro. The results demonstrate that hydrogels made from a combination of poly(acrylic acid) and oligo-urethane diacrylates can be designed to resorb over defined periods ranging from months to years depending on the chemical formulation prescribed by the model. The hydrogel formulations also provided for different release profiles of growth factors, relevant to tissue regeneration. In-vivo, these hydrogels had minimal inflammatory effects and showed evidence of integration into the surrounding tissue. The hydrogel approach can help the field design a broader range of biomaterials for tissue regeneration.
Collapse
Affiliation(s)
- Eric Tawagi
- Institute of Biomedical Engineering, University of Toronto, 661 University Avenue, 14th Floor, Room 1435, Toronto, ON M5G 1M1, Canada; Translational Biology & Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON, Canada
| | - Trevor Ung
- Translational Biology & Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON, Canada
| | - Hai-Ling Margaret Cheng
- Institute of Biomedical Engineering, University of Toronto, 661 University Avenue, 14th Floor, Room 1435, Toronto, ON M5G 1M1, Canada; Translational Biology & Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON, Canada; The Edward S. Rogers Sr. Department of Electrical & Computer Engineering, University of Toronto, Toronto, ON, Canada
| | - J Paul Santerre
- Institute of Biomedical Engineering, University of Toronto, 661 University Avenue, 14th Floor, Room 1435, Toronto, ON M5G 1M1, Canada; Translational Biology & Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON, Canada; Faculty of Dentistry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
29
|
Hild V, Mellert K, Möller P, Barth TFE. Giant Cells of Various Lesions Are Characterised by Different Expression Patterns of HLA-Molecules and Molecules Involved in the Cell Cycle, Bone Metabolism, and Lineage Affiliation: An Immunohistochemical Study with a Review of the Literature. Cancers (Basel) 2023; 15:3702. [PMID: 37509363 PMCID: PMC10377796 DOI: 10.3390/cancers15143702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Giant cells (GCs) are thought to originate from the fusion of monocytic lineage cells and arise amid multiple backgrounds. To compare GCs of different origins, we immunohistochemically characterised the GCs of reactive and neoplastic lesions (n = 47). We studied the expression of 15 molecules including HLA class II molecules those relevant to the cell cycle, bone metabolism and lineage affiliation. HLA-DR was detectable in the GCs of sarcoidosis, sarcoid-like lesions, tuberculosis, and foreign body granuloma. Cyclin D1 was expressed by the GCs of neoplastic lesions as well as the GCs of bony callus, fibroid epulis, and brown tumours. While cyclin E was detected in the GCs of all lesions, p16 and p21 showed a heterogeneous expression pattern. RANK was expressed by the GCs of all lesions except sarcoid-like lesions and xanthogranuloma. All GCs were RANK-L-negative, and the GCs of all lesions were osteoprotegerin-positive. Osteonectin was limited to the GCs of chondroblastoma. Osteopontin and TRAP were detected in the GCs of all lesions except xanthogranuloma. RUNX2 was heterogeneously expressed in the reactive and neoplastic cohort. The GCs of all lesions except foreign body granuloma expressed CD68, and all GCs were CD163- and langerin-negative. This profiling points to a functional diversity of GCs despite their similar morphology.
Collapse
Affiliation(s)
- Vivien Hild
- Institute of Pathology, University Hospital Ulm, 89081 Ulm, Germany
| | - Kevin Mellert
- Institute of Pathology, University Hospital Ulm, 89081 Ulm, Germany
| | - Peter Möller
- Institute of Pathology, University Hospital Ulm, 89081 Ulm, Germany
| | - Thomas F E Barth
- Institute of Pathology, University Hospital Ulm, 89081 Ulm, Germany
| |
Collapse
|
30
|
Valenzi E, Bahudhanapati H, Tan J, Tabib T, Sullivan DI, Nouraie M, Sembrat J, Fan L, Chen K, Liu S, Rojas M, Lafargue A, Felsher DW, Tran PT, Kass DJ, Lafyatis R. Single-nucleus chromatin accessibility identifies a critical role for TWIST1 in idiopathic pulmonary fibrosis myofibroblast activity. Eur Respir J 2023; 62:2200474. [PMID: 37142338 PMCID: PMC10411550 DOI: 10.1183/13993003.00474-2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/20/2023] [Indexed: 05/06/2023]
Abstract
BACKGROUND In idiopathic pulmonary fibrosis (IPF), myofibroblasts are key effectors of fibrosis and architectural distortion by excessive deposition of extracellular matrix and their acquired contractile capacity. Single-cell RNA-sequencing (scRNA-seq) has precisely defined the IPF myofibroblast transcriptome, but identifying critical transcription factor activity by this approach is imprecise. METHODS We performed single-nucleus assay for transposase-accessible chromatin sequencing on explanted lungs from patients with IPF (n=3) and donor controls (n=2) and integrated this with a larger scRNA-seq dataset (10 IPF, eight controls) to identify differentially accessible chromatin regions and enriched transcription factor motifs within lung cell populations. We performed RNA-sequencing on pulmonary fibroblasts of bleomycin-injured Twist1-overexpressing COL1A2 Cre-ER mice to examine alterations in fibrosis-relevant pathways following Twist1 overexpression in collagen-producing cells. RESULTS TWIST1, and other E-box transcription factor motifs, were significantly enriched in open chromatin of IPF myofibroblasts compared to both IPF nonmyogenic (log2 fold change (FC) 8.909, adjusted p-value 1.82×10-35) and control fibroblasts (log2FC 8.975, adjusted p-value 3.72×10-28). TWIST1 expression was selectively upregulated in IPF myofibroblasts (log2FC 3.136, adjusted p-value 1.41×10- 24), with two regions of TWIST1 having significantly increased accessibility in IPF myofibroblasts. Overexpression of Twist1 in COL1A2-expressing fibroblasts of bleomycin-injured mice resulted in increased collagen synthesis and upregulation of genes with enriched chromatin accessibility in IPF myofibroblasts. CONCLUSIONS Our studies utilising human multiomic single-cell analyses combined with in vivo murine disease models confirm a critical regulatory function for TWIST1 in IPF myofibroblast activity in the fibrotic lung. Understanding the global process of opening TWIST1 and other E-box transcription factor motifs that govern myofibroblast differentiation may identify new therapeutic interventions for fibrotic pulmonary diseases.
Collapse
Affiliation(s)
- Eleanor Valenzi
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- These authors contributed equally to this work
| | - Harinath Bahudhanapati
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- These authors contributed equally to this work
| | - Jiangning Tan
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Tracy Tabib
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Daniel I Sullivan
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mehdi Nouraie
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - John Sembrat
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Li Fan
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kong Chen
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Silvia Liu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mauricio Rojas
- Division of Pulmonary, Critical Care and Sleep Medicine, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Audrey Lafargue
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Dean W Felsher
- Division of Oncology, Departments of Medicine and Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Phuoc T Tran
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Daniel J Kass
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- These authors contributed equally to this work
| | - Robert Lafyatis
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- These authors contributed equally to this work
| |
Collapse
|
31
|
Seebach E, Kraus FV, Elschner T, Kubatzky KF. Staphylococci planktonic and biofilm environments differentially affect osteoclast formation. Inflamm Res 2023:10.1007/s00011-023-01745-9. [PMID: 37329360 DOI: 10.1007/s00011-023-01745-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/21/2023] [Accepted: 05/15/2023] [Indexed: 06/19/2023] Open
Abstract
INTRODUCTION The pathophysiology of chronic implant-related bone infections is characterized by an increase in osteoclast numbers and enhanced bone resorption. Biofilms are a major reason for chronicity of such infections as the biofilm matrix protects bacteria against antibiotics and impairs the function of immune cells. Macrophages are osteoclast precursor cells and therefore linked to inflammation and bone destruction. OBJECTIVE AND METHOD Investigations on the impact of biofilms on the ability of macrophages to form osteoclasts are yet missing and we, therefore, analyzed the effect of Staphylococcus aureus (SA) and Staphylococcus epidermidis (SE) planktonic and biofilm environments on osteoclastogenesis using RAW 264.7 cells and conditioned media (CM). RESULTS Priming with the osteoclastogenic cytokine RANKL before CM addition enabled the cells to differentiate into osteoclasts. This effect was highest in SE planktonic or SA biofilm CM. Simultaneous stimulation with CM and RANKL, however, suppressed osteoclast formation and resulted in formation of inflammation-associated multinucleated giant cells (MGCs) which was most pronounced in SE planktonic CM. CONCLUSION Our data indicate that the biofilm environment and its high lactate levels are not actively promoting osteoclastogenesis. Hence, the inflammatory immune response against planktonic bacterial factors through Toll-like receptors seems to be the central cause for the pathological osteoclast formation. Therefore, immune stimulation or approaches that aim at biofilm disruption need to consider that this might result in enhanced inflammation-mediated bone destruction.
Collapse
Affiliation(s)
- Elisabeth Seebach
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany.
| | - Franziska V Kraus
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
- Department of Internal Medicine 5 - Hematology Oncology Rheumatology, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Tabea Elschner
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
- Institute for Cardiovascular Sciences and Institute of Neurovascular Cell Biology (INVZ), University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Katharina F Kubatzky
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany.
| |
Collapse
|
32
|
Goto Y, Mizobuchi H. Pathological roles of macrophages in Leishmania infections. Parasitol Int 2023; 94:102738. [PMID: 36738983 DOI: 10.1016/j.parint.2023.102738] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
Macrophages are the major host cells for Leishmania parasites, and determine the fate of infection by either limiting or allowing growth of the parasites, resulting in development or control of leishmaniasis, respectively. They also play important roles in causing pathological outcomes during Leishmania infection. The pathophysiology is complex and include a wide variety of molecular and cellular responses including enhancement of inflammatory responses by releasing cytokines, causing damages to surrounding cells by reactive oxygen species, or disordered phagocytosis of other cells. It is of note that disease severity in leishmaniasis sometimes does not correlate with parasite burdens, indicating that pathological roles of macrophages are not necessarily linked to their parasite-killing activities that are often defined by M1/M2 status. Here, we review the roles of macrophages in leishmaniasis with a focus on their pathological mechanisms in disease development.
Collapse
Affiliation(s)
- Yasuyuki Goto
- Laboratory of Molecular Immunology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| | - Haruka Mizobuchi
- Laboratory of Molecular Immunology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
33
|
Arumugam SD, Kanniyappan B, Giri U, Muthanandam S. Aggressive giant cell lesion of mandible-confusing to common: true neoplasm versus reactive lesion. BMJ Case Rep 2023; 16:e253499. [PMID: 37142281 PMCID: PMC10163411 DOI: 10.1136/bcr-2022-253499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2023] [Indexed: 05/06/2023] Open
Abstract
Destructive lesions in the craniofacial region especially in the jawbones, if associated with giant cells, include a spectrum of lesions that pose difficulty in diagnosis. The nature of such a lesion in the jawbones is questionable about whether it is a reactive/benign lesion or aggressive/non-aggressive. Clinical, radiological and histopathological correlation may be a reliable indicator to differentiate between the qualities of the lesion, which directly accounts for effective and individual planning of the treatment. Here we present a case of a woman in her late 20s with an unusual destructive lesion of the mandible.
Collapse
Affiliation(s)
- Santha Devy Arumugam
- Oral & Maxillofacial Pathology and Oral Microbiology, Sri Balaji Vidyapeeth University, Pondicherry, India
| | - Bharathraj Kanniyappan
- Oral & Maxillofacial Surgery, Sri Balaji Vidyapeeth University, Pondicherry, Puducherry, India
| | - Umamaheswari Giri
- Oral & Maxillofacial Pathology and Oral Microbiology, Sri Balaji Vidyapeeth University, Pondicherry, India
| | | |
Collapse
|
34
|
Kushioka J, Toya M, Shen H, Hirata H, Zhang N, Huang E, Tsubosaka M, Gao Q, Teissier V, Li X, Utsunomiya T, Goodman SB. Therapeutic effects of MSCs, genetically modified MSCs, and NFĸB-inhibitor on chronic inflammatory osteolysis in aged mice. J Orthop Res 2023; 41:1004-1013. [PMID: 36031590 PMCID: PMC9971358 DOI: 10.1002/jor.25434] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 02/04/2023]
Abstract
The number of total joint replacements is increasing, especially in elderly patients, and so too are implant-related complications such as prosthesis loosening. Wear particles from the prosthesis induce a chronic inflammatory reaction and subsequent osteolysis, leading to the need for revision surgery. This study investigated the therapeutic effect of NF-ĸB decoy oligodeoxynucleotides (ODN), mesenchymal stem cells (MSCs), and genetically-modified NF-ĸB sensing interleukin-4 over-secreting MSCs (IL4-MSCs) on chronic inflammation in aged mice. The model was generated by continuous infusion of contaminated polyethylene particles into the intramedullary space of the distal femur of aged mice (15-17 months old) for 6 weeks. Local delivery of ODN showed increased bone mineral density (BMD), decreased osteoclast-like cells, increased alkaline phosphatase (ALP)-positive area, and increased M2/M1 macrophage ratio. Local injection of MSCs and IL4-MSCs significantly decreased osteoclast-like cells and increased the M2/M1 ratio, with a greater trend for IL4-MSCs than MSCs. MSCs significantly increased ALP-positive area and BMD values compared with the control. The IL4-MSCs demonstrated higher values for both ALP-positive area and BMD. These findings demonstrated the therapeutic effects of ODN, MSCs, and IL4-MSCs on chronic inflammatory osteolysis in aged mice. The two MSC-based therapies were more effective than ODN in increasing the M2/M1 macrophage ratio, reducing bone resorption, and increasing bone formation. Specifically, MSCs were more effective in increasing bone formation, and IL4-MSCs were more effective in mitigating inflammation. This study suggests potential therapeutic strategies for treating wear particle-associated inflammatory osteolysis after arthroplasty in the elderly.
Collapse
Affiliation(s)
- Junichi Kushioka
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Masakazu Toya
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Huaishuang Shen
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Hirohito Hirata
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Ning Zhang
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Ejun Huang
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Masanori Tsubosaka
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Qi Gao
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Victoria Teissier
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Xueping Li
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | | | - Stuart B. Goodman
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
- Department of Bioengineering, Stanford University, Stanford, California, USA
| |
Collapse
|
35
|
Williams DF. The plasticity of biocompatibility. Biomaterials 2023; 296:122077. [PMID: 36907003 DOI: 10.1016/j.biomaterials.2023.122077] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/19/2023] [Accepted: 03/02/2023] [Indexed: 03/11/2023]
Abstract
Biocompatibility concerns the phenomena that occur within the interactions between biomaterials and human patients, which ultimately control the performance of many facets of medical technology. It involves aspects of materials science, many different forms of engineering and nanotechnology, chemistry, biophysics, molecular and cellular biology, immunology, pathology and a myriad of clinical applications. It is not surprising that an overarching framework of mechanisms of biocompatibility has been difficult to elucidate and validate. This essay discusses one fundamental reason for this; we have tended to consider biocompatibility pathways as essentially linear sequences of events which follow well-understood processes of materials science and biology. The reality, however, is that the pathways may involve a great deal of plasticity, in which many additional idiosyncratic factors, including those of genetic, epigenetic and viral origin, exert influence, as do complex mechanical, physical and pharmacological variables. Plasticity is an inherent core feature of the performance of synthetic materials; here we follow the more recent biological applications of plasticity concepts into the sphere of biocompatibility pathways. A straightforward linear pathway may result in successful outcomes for many patients; we may describe this in terms of classic biocompatibility pathways. In other situations, which usually command much more attention because of their unsuccessful outcomes, these plasticity-driven processes follow alternative biocompatibility pathways; often, the variability in outcomes with identical technologies is due to biological plasticity rather than material or device deficiency.
Collapse
Affiliation(s)
- David F Williams
- Wake Forest Institute of Regenerative Medicine, Winston-Salem, North Carolina, USA.
| |
Collapse
|
36
|
Ahmadzadeh K, Pereira M, Vanoppen M, Bernaerts E, Ko J, Mitera T, Maksoudian C, Manshian BB, Soenen S, Rose CD, Matthys P, Wouters C, Behmoaras J. Multinucleation resets human macrophages for specialized functions at the expense of their identity. EMBO Rep 2023; 24:e56310. [PMID: 36597777 PMCID: PMC9986822 DOI: 10.15252/embr.202256310] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 01/05/2023] Open
Abstract
Macrophages undergo plasma membrane fusion and cell multinucleation to form multinucleated giant cells (MGCs) such as osteoclasts in bone, Langhans giant cells (LGCs) as part of granulomas or foreign-body giant cells (FBGCs) in reaction to exogenous material. How multinucleation per se contributes to functional specialization of mature mononuclear macrophages remains poorly understood in humans. Here, we integrate comparative transcriptomics with functional assays in purified mature mononuclear and multinucleated human osteoclasts, LGCs and FBGCs. Strikingly, in all three types of MGCs, multinucleation causes a pronounced downregulation of macrophage identity. We show enhanced lysosome-mediated intracellular iron homeostasis promoting MGC formation. The transition from mononuclear to multinuclear state is accompanied by cell specialization specific to each polykaryon. Enhanced phagocytic and mitochondrial function associate with FBGCs and osteoclasts, respectively. Moreover, human LGCs preferentially express B7-H3 (CD276) and can form granuloma-like clusters in vitro, suggesting that their multinucleation potentiates T cell activation. These findings demonstrate how cell-cell fusion and multinucleation reset human macrophage identity as part of an advanced maturation step that confers MGC-specific functionality.
Collapse
Affiliation(s)
- Kourosh Ahmadzadeh
- Laboratory of Immunobiology, Department Microbiology, Immunology and Transplantation, Rega InstituteKU Leuven—University of LeuvenLeuvenBelgium
| | - Marie Pereira
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Hammersmith HospitalImperial College LondonLondonUK
| | - Margot Vanoppen
- Laboratory of Immunobiology, Department Microbiology, Immunology and Transplantation, Rega InstituteKU Leuven—University of LeuvenLeuvenBelgium
| | - Eline Bernaerts
- Laboratory of Immunobiology, Department Microbiology, Immunology and Transplantation, Rega InstituteKU Leuven—University of LeuvenLeuvenBelgium
| | - Jeong‐Hun Ko
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Hammersmith HospitalImperial College LondonLondonUK
| | - Tania Mitera
- Laboratory of Immunobiology, Department Microbiology, Immunology and Transplantation, Rega InstituteKU Leuven—University of LeuvenLeuvenBelgium
| | - Christy Maksoudian
- NanoHealth and Optical Imaging Group, Translational Cell and Tissue Research Unit, Department of Imaging and PathologyKU LeuvenLeuvenBelgium
| | - Bella B Manshian
- Translational Cell and Tissue Research Unit, Department of Imaging and PathologyKU LeuvenLeuvenBelgium
| | - Stefaan Soenen
- NanoHealth and Optical Imaging Group, Translational Cell and Tissue Research Unit, Department of Imaging and PathologyKU LeuvenLeuvenBelgium
| | - Carlos D Rose
- Division of Pediatric Rheumatology Nemours Children's HospitalThomas Jefferson UniversityPhiladelphiaPAUSA
| | - Patrick Matthys
- Laboratory of Immunobiology, Department Microbiology, Immunology and Transplantation, Rega InstituteKU Leuven—University of LeuvenLeuvenBelgium
| | - Carine Wouters
- Laboratory of Immunobiology, Department Microbiology, Immunology and Transplantation, Rega InstituteKU Leuven—University of LeuvenLeuvenBelgium
- Division Pediatric RheumatologyUZ LeuvenLeuvenBelgium
- European Reference Network for Rare ImmunodeficiencyAutoinflammatory and Autoimmune Diseases (RITA) at University Hospital LeuvenLeuvenBelgium
| | - Jacques Behmoaras
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Hammersmith HospitalImperial College LondonLondonUK
- Programme in Cardiovascular and Metabolic Disorders and Centre for Computational BiologyDuke‐NUS Medical School SingaporeSingaporeSingapore
| |
Collapse
|
37
|
Mechanisms of Foreign Body Giant Cell Formation in Response to Implantable Biomaterials. Polymers (Basel) 2023; 15:polym15051313. [PMID: 36904554 PMCID: PMC10007405 DOI: 10.3390/polym15051313] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 03/08/2023] Open
Abstract
Long term function of implantable biomaterials are determined by their integration with the host's body. Immune reactions against these implants could impair the function and integration of the implants. Some biomaterial-based implants lead to macrophage fusion and the formation of multinucleated giant cells, also known as foreign body giant cells (FBGCs). FBGCs may compromise the biomaterial performance and may lead to implant rejection and adverse events in some cases. Despite their critical role in response to implants, there is a limited understanding of cellular and molecular mechanisms involved in forming FBGCs. Here, we focused on better understanding the steps and mechanisms triggering macrophage fusion and FBGCs formation, specifically in response to biomaterials. These steps included macrophage adhesion to the biomaterial surface, fusion competency, mechanosensing and mechanotransduction-mediated migration, and the final fusion. We also described some of the key biomarkers and biomolecules involved in these steps. Understanding these steps on a molecular level would lead to enhance biomaterials design and improve their function in the context of cell transplantation, tissue engineering, and drug delivery.
Collapse
|
38
|
Bagci B, Karakas C, Kaur H, Smoller BR. Histopathologic Aspects of Malignancy-Associated Granuloma Annulare: A Single Institution Experience. Dermatopathology (Basel) 2023; 10:95-103. [PMID: 36975384 PMCID: PMC10047897 DOI: 10.3390/dermatopathology10010015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Granuloma annulare (GA) is a benign, self-limiting granulomatous inflammatory disease that exhibits different histologic patterns. Infrequently, granuloma annulare can be associated with malignancy, the so-called malignancy-associated granuloma annulare (MGA). In this study, we aimed to compare the clinical and histopathological differences between GA and MGA. We retrospectively reviewed patient charts and identified 35 patients diagnosed with GA and concurrent hematological or solid organ malignancies as a case group. Additionally, we identified 33 patients without any known solid organ or hematological malignancy as a control group. MGA is commonly seen in the seventh decade of life, while GA affects the younger population. MGA is most commonly presented in the extremities of the body. The most common malignancy associated with MGA was chronic lymphocytic leukemia. Prostate cancer was the most common type of solid organ malignancy that was associated with MGA. The most common histopathological pattern seen in MGA was interstitial, comprising half of the cases. Multinucleated giant cells were present in half of the MGA cases and in most of the control group. In the literature, there are no established features that distinguish MGA from GA. Although MGA and GA have overlapping features, in our series, we found that the interstitial pattern was more common in MGA, while the necrobiotic pattern was more common in GA.
Collapse
Affiliation(s)
- Buket Bagci
- Department of Pathology and Laboratory Medicine, Loma Linda University, Loma Linda, CA 92354, USA
- Correspondence:
| | - Cansu Karakas
- Department of Pathology and Laboratory Medicine, University of Rochester Medical, Rochester, NY 14642, USA
| | - Harsimran Kaur
- Department of Pathology and Laboratory Medicine, University of Rochester Medical, Rochester, NY 14642, USA
| | - Bruce R. Smoller
- Department of Pathology and Laboratory Medicine, University of Rochester Medical, Rochester, NY 14642, USA
| |
Collapse
|
39
|
Trabzonlu L, Pienta KJ, Trock BJ, De Marzo AM, Amend SR. Presence of cells in the polyaneuploid cancer cell (PACC) state predicts the risk of recurrence in prostate cancer. Prostate 2023; 83:277-285. [PMID: 36372998 PMCID: PMC9839595 DOI: 10.1002/pros.24459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/25/2022] [Accepted: 11/01/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND The nonproliferating polyaneuploid cancer cell (PACC) state is associated with therapeutic resistance in cancer. A subset of cancer cells enters the PACC state by polyploidization and acts as cancer stem cells by undergoing depolyploidization and repopulating the tumor cell population after the therapeutic stress is relieved. Our aim was to systematically assess the presence and importance of this entity in men who underwent radical prostatectomy with curative intent to treat their presumed localized prostate cancer (PCa). MATERIALS AND METHODS Men with National Comprehensive Cancer Network intermediate- or high-risk PCa who underwent radical prostatectomy l from 2007 to 2015 and who did not receive neoadjuvant treatment were included. From the cohort of 2159 patients, the analysis focused on a subcohort of 209 patients and 38 cases. Prostate tissue microarrays (TMAs) were prepared from formalin-fixed, paraffin-embedded blocks of the radical prostatectomy specimens. A total of 2807 tissue samples of matched normal/benign and cancer were arrayed in nine TMA blocks. The presence of PACCs and the number of PACCs on each core were noted. RESULTS The total number of cells in the PACC state and the total number of cores with PACCs were significantly correlated with increasing Gleason score (p = 0.0004) and increasing Cancer of the Prostate Risk Assessment Postsurgical (CAPRA-S) (p = 0.004), but no other variables. In univariate proportional hazards models of metastasis-free survival, year of surgery, Gleason score (9-10 vs. 7-8), pathology stage, CAPRA-S, total PACCs, and cores positive for PACCs were all statistically significant. The multivariable models with PACCs that gave the best fit included CAPRA-S. Adding either total PACCs or cores positive for PACCs to CAPRA-S both significantly improved model fit compared to CAPRA-S alone. CONCLUSION Our findings show that the number of PACCs and the number of cores positive for PACCs are statistically significant prognostic factors for metastasis-free survival, after adjusting for CAPRA-S, in a case-cohort of intermediate- or high-risk men who underwent radical prostatectomy. In addition, despite the small number of men with complete data to evaluate time to metastatic castration-resistant PCa (mCRPC), the total number of PACCs was a statistically significant predictor of mCRPC in univariate analysis and suggested a prognostic effect even after adjusting for CAPRA-S.
Collapse
Affiliation(s)
- Levent Trabzonlu
- Department of Pathology and Laboratory MedicineLoyola University Medical CenterMaywoodIllinoisUSA
| | - Kenneth J. Pienta
- Cancer Ecology Center, The Brady Urological InstituteJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Bruce J. Trock
- The Brady Urological InstituteJohns Hopkins School of MedicineBaltimoreMarylandUSA
| | - Angelo M. De Marzo
- Departments of Pathology, Urology and Oncology, The Johns Hopkins University School of MedicineThe Sidney Kimmel Comprehensive Cancer Center at Johns HopkinsBaltimoreMarylandUSA
| | - Sarah R. Amend
- Cancer Ecology Center, The Brady Urological InstituteJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
40
|
Kang MS, Lee GH, Kwon IH, Yang MJ, Heo MB, Choi JW, Lee TG, Yoon CH, Baek B, Sung MC, Kim DW, Park EJ. Uptake and toxicity of cerium dioxide nanoparticles with different aspect ratio. Toxicol Lett 2022; 373:196-209. [PMID: 36464203 DOI: 10.1016/j.toxlet.2022.11.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/18/2022] [Accepted: 11/21/2022] [Indexed: 12/05/2022]
Abstract
Cerium dioxide nanoparticles (CeONPs) have been extensively applied in research for future energy development due to two common oxidation states on their surface. Considering that shape (aspect ratio) is a key determinant of NPs-induced toxicity, we compared the toxicity of hexagonal (H)- and rod-shaped (R)-CeONPs in mice. At 24 h after pharyngeal aspiration, both types of CeONPs recruited surrounding immune cells (monocytes and neutrophils) into the lung, and R-CeONPs induced a more severe pulmonary inflammatory response compared with H-CeONPs. To identify an indicator to predict pulmonary inflammatory responses at the cellular level, we also investigated their responses in alveolar macrophage cells. At 24 h after treatment, both types of CeONPs were mainly located within the vacuoles (partially, in the lysosome) in the cytoplasm. Mitochondrial damage, intracellular calcium accumulation, and increased NO production were observed in cells exposed to both types of CeONPs, ultimately resulting in a decrease in cell viability. More interestingly, both types of CeONPs formed multinucleated giant cells. Meanwhile, contrary to when suspended in deionized water, R-CeONPs were strongly aggregated with a negative charge in cell culture media, whereas H-CeONPs were relatively well-dispersed with a positive charge. R-CeONPs-induced lysosomal extension was also recovered by premix with negatively charged DNA, and even NPs suspended in cell culture media without cells were detected under the FACS system, suggesting interference by protein corona. Therefore, we suggest that shape (aspect ratio) is an important factor determining inhaled NPs-induced pathology and that the effect of the surface charge and protein corona should be carefully considered in interpreting results derived from in vitro tests. Furthermore, we propose that the relationship between the formation of multinucleated giant cells and the inflammatory response of inhaled CeONPs should be further studied.
Collapse
Affiliation(s)
- Min-Sung Kang
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, 02447, Republic of Korea; Jeonbuk Branch Institute, Korea Institute of Toxicology, 56212, Republic of Korea
| | - Gwang-Hee Lee
- School of Civil, Environmental and Architectural Engineering, Korea University, 02841, Republic of Korea
| | - Ik Hwan Kwon
- Safety Measurement Institute, Korea Research Institute of Standards and Science, 34113, Republic of Korea
| | - Mi-Jin Yang
- Jeonbuk Branch Institute, Korea Institute of Toxicology, 56212, Republic of Korea
| | - Min Beom Heo
- Safety Measurement Institute, Korea Research Institute of Standards and Science, 34113, Republic of Korea
| | - Jae-Won Choi
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, 02447, Republic of Korea; Safety Measurement Institute, Korea Research Institute of Standards and Science, 34113, Republic of Korea
| | - Tae Geol Lee
- Safety Measurement Institute, Korea Research Institute of Standards and Science, 34113, Republic of Korea
| | - Cheol-Ho Yoon
- Environmental Analysis Team, Korea Basic Science Institute, Seoul 28119, Republic of Korea
| | - Bosung Baek
- Toxicity Evaluation Center, Keyprime Research Company, 28161, Republic of Korea; Department of Biochemistry and Molecular Biology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Myeong-Chang Sung
- School of Civil, Environmental and Architectural Engineering, Korea University, 02841, Republic of Korea
| | - Dong-Wan Kim
- School of Civil, Environmental and Architectural Engineering, Korea University, 02841, Republic of Korea.
| | - Eun-Jung Park
- Department of Biochemistry and Molecular Biology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; Human Health and Environmental Toxins Research Center, Kyung Hee University, 02447, Republic of Korea.
| |
Collapse
|
41
|
Kubo Y, Gonzalez JAH, Beckmann R, Weiler M, Pahlavani H, Saldivar MC, Szymanski K, Rosenhain S, Fragoulis A, Leeflang S, Slowik A, Gremse F, Wolf M, Mirzaali MJ, Zadpoor AA, Wruck CJ, Pufe T, Tohidnezhad M, Jahr H. Nuclear factor erythroid 2-related factor 2 (Nrf2) deficiency causes age-dependent progression of female osteoporosis. BMC Musculoskelet Disord 2022; 23:1015. [PMID: 36434613 PMCID: PMC9700883 DOI: 10.1186/s12891-022-05942-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 11/02/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Nuclear factor erythroid 2-related factor 2 (Nrf2) is a crucial transcription factor for cellular redox homeostasis. The association of Nrf2 with elderly female osteoporotic has yet to be fully described. The aim was to elucidate a potential age-dependent Nrf2 contribution to female osteoporosis in mice. METHODS Eighteen female wild type (WT) and 16 Nrf2-knockout (KO) mice were sacrificed at different ages (12 weeks = young mature adult and 90 weeks = old) to analyze their femurs. The morphological properties (trabecular and cortical) were evaluated by micro-computed tomography (μCT) and compared to gold standard histochemistry analysis. The quasi-static compression tests were performed to calculate the mechanical properties of bones. Additionally, the population of bone resorbing cells and aromatase expression by osteocytes was immunohistochemically evaluated and empty osteocyte lacunae was counted in cortical bone. RESULTS Old Nrf2-KO mice revealed a significantly reduced trabecular bone mineral density (BMD), cortical thickness, cortical area, and bone fraction compared to old WT mice, regardless of no significant difference in skeletally mature young adult mice between WT and KO. Specifically, while all old WT mice showed thin metaphyseal trabeculae, trabecular bone was completely absent in 60% of old KO mice. Additionally, old KO mice showed significantly more osteoclast-like cells and fewer aromatase-positive osteocytes than WT mice, whereas the occurrence of empty osteocyte lacunae did not differ between both groups. Nrf2-KO mice further showed an age-dependently reduced fracture resilience compared to age-matched WT mice. CONCLUSION Our results suggest that chronic Nrf2 loss can lead to age-dependent progression of female osteoporosis.
Collapse
Affiliation(s)
- Yusuke Kubo
- grid.412301.50000 0000 8653 1507Department of Anatomy and Cell Biology, Uniklinik RWTH Aachen, Wendlingweg 2, 52074 Aachen, Germany
| | - Jesus Abraham Herrera Gonzalez
- grid.412301.50000 0000 8653 1507Department of Anatomy and Cell Biology, Uniklinik RWTH Aachen, Wendlingweg 2, 52074 Aachen, Germany
| | - Rainer Beckmann
- grid.412301.50000 0000 8653 1507Department of Anatomy and Cell Biology, Uniklinik RWTH Aachen, Wendlingweg 2, 52074 Aachen, Germany
| | - Marek Weiler
- grid.412301.50000 0000 8653 1507Institute for Experimental Molecular Imaging, Helmholtz Institute for Biomedical Engineering, Uniklinik RWTH Aachen, Forckenbeckstraße 55, 52074 Aachen, Germany
| | - Helda Pahlavani
- grid.5292.c0000 0001 2097 4740Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Mauricio Cruz Saldivar
- grid.5292.c0000 0001 2097 4740Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Katharina Szymanski
- grid.412301.50000 0000 8653 1507Department of Anatomy and Cell Biology, Uniklinik RWTH Aachen, Wendlingweg 2, 52074 Aachen, Germany
| | - Stefanie Rosenhain
- grid.412301.50000 0000 8653 1507Institute for Experimental Molecular Imaging, Helmholtz Institute for Biomedical Engineering, Uniklinik RWTH Aachen, Forckenbeckstraße 55, 52074 Aachen, Germany
| | - Athanassios Fragoulis
- grid.412301.50000 0000 8653 1507Department of Anatomy and Cell Biology, Uniklinik RWTH Aachen, Wendlingweg 2, 52074 Aachen, Germany
| | - Sander Leeflang
- grid.5292.c0000 0001 2097 4740Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Alexander Slowik
- grid.412301.50000 0000 8653 1507Department of Anatomy and Cell Biology, Uniklinik RWTH Aachen, Wendlingweg 2, 52074 Aachen, Germany
| | - Felix Gremse
- grid.412301.50000 0000 8653 1507Institute for Experimental Molecular Imaging, Helmholtz Institute for Biomedical Engineering, Uniklinik RWTH Aachen, Forckenbeckstraße 55, 52074 Aachen, Germany
| | - Michael Wolf
- grid.412301.50000 0000 8653 1507Department of Orthodontics, Uniklinik RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Mohammad Javad Mirzaali
- grid.5292.c0000 0001 2097 4740Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Amir Abbas Zadpoor
- grid.5292.c0000 0001 2097 4740Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Christoph Jan Wruck
- grid.412301.50000 0000 8653 1507Department of Anatomy and Cell Biology, Uniklinik RWTH Aachen, Wendlingweg 2, 52074 Aachen, Germany
| | - Thomas Pufe
- grid.412301.50000 0000 8653 1507Department of Anatomy and Cell Biology, Uniklinik RWTH Aachen, Wendlingweg 2, 52074 Aachen, Germany
| | - Mersedeh Tohidnezhad
- grid.412301.50000 0000 8653 1507Department of Anatomy and Cell Biology, Uniklinik RWTH Aachen, Wendlingweg 2, 52074 Aachen, Germany
| | - Holger Jahr
- grid.412301.50000 0000 8653 1507Department of Anatomy and Cell Biology, Uniklinik RWTH Aachen, Wendlingweg 2, 52074 Aachen, Germany ,grid.1957.a0000 0001 0728 696XInstitute of Structural Mechanics and Lightweight Design, RWTH Aachen University, Wüllnerstraße 7, 52062 Aachen, Germany
| |
Collapse
|
42
|
Milhomem AC, de Souza Jorge IM, dos Santos Arruda F, Tomé FD, da Costa EL, Vinaud MC, Pereira JX, de Souza Lino Júnior R. Tissue Remodeling After Implantation with Polymethylmethacrylate: An Experimental Study in Mice. Aesthetic Plast Surg 2022; 47:1205-1216. [DOI: 10.1007/s00266-022-03179-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/06/2022] [Indexed: 11/26/2022]
|
43
|
Abstract
Nuclear movement is crucial for the development of many cell types and organisms. Nuclear movement is highly conserved, indicating its necessity for cellular function and development. In addition to mononucleated cells, there are several examples of cells in which multiple nuclei exist within a shared cytoplasm. These multinucleated cells and syncytia have important functions for development and homeostasis. Here, we review a subset of the developmental contexts in which the regulation of the movement and positioning of multiple nuclei are well understood, including pronuclear migration, the Drosophila syncytial blastoderm, the Caenorhabditis elegans hypodermis, skeletal muscle and filamentous fungi. We apply the principles learned from these models to other systems.
Collapse
Affiliation(s)
- Jorel R. Padilla
- Biology Department, Boston College, Chestnut Hill, MA 02467, USA
| | | | - Eric S. Folker
- Biology Department, Boston College, Chestnut Hill, MA 02467, USA
| |
Collapse
|
44
|
Elson A, Anuj A, Barnea-Zohar M, Reuven N. The origins and formation of bone-resorbing osteoclasts. Bone 2022; 164:116538. [PMID: 36028118 DOI: 10.1016/j.bone.2022.116538] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 02/07/2023]
Abstract
Osteoclasts (OCLs) are hematopoietic cells whose physiological function is to degrade bone. OCLs are key players in the processes that determine and maintain the mass, shape, and physical properties of bone. OCLs adhere to bone tightly and degrade its matrix by secreting protons and proteases onto the underlying surface. The combination of low pH and proteases degrades the mineral and protein components of the matrix and forms a resorption pit; the degraded material is internalized by the cell and then secreted into the circulation. Insufficient or excessive activity of OCLs can lead to significant changes in bone and either cause or exacerbate symptoms of diseases, as in osteoporosis, osteopetrosis, and cancer-induced bone lysis. OCLs are derived from monocyte-macrophage precursor cells whose origins are in two distinct embryonic cell lineages - erythromyeloid progenitor cells of the yolk sac, and hematopoietic stem cells. OCLs are formed in a multi-stage process that is induced by the cytokines M-CSF and RANKL, during which the cells differentiate, fuse to form multi-nucleated cells, and then differentiate further to become mature, bone-resorbing OCLs. Recent studies indicate that OCLs can undergo fission in vivo to generate smaller cells, called "osteomorphs", that can be "re-cycled" by fusing with other cells to form new OCLs. In this review we describe OCLs and discuss their cellular origins and the cellular and molecular events that drive osteoclastogenesis.
Collapse
Affiliation(s)
- Ari Elson
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Anuj Anuj
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Maayan Barnea-Zohar
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Nina Reuven
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
45
|
Liebler-Tenorio EM, Heyl J, Wedlich N, Figl J, Köhler H, Krishnamoorthy G, Nieuwenhuizen NE, Grode L, Kaufmann SHE, Menge C. Vaccine-Induced Subcutaneous Granulomas in Goats Reflect Differences in Host-Mycobacterium Interactions between BCG- and Recombinant BCG-Derivative Vaccines. Int J Mol Sci 2022; 23:10992. [PMID: 36232295 PMCID: PMC9570401 DOI: 10.3390/ijms231910992] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Tuberculous granulomas are highly dynamic structures reflecting the complex host-mycobacterium interactions. The objective of this study was to compare granuloma development at the site of vaccination with BCG and its recombinant derivatives in goats. To characterize the host response, epithelioid cells, multinucleated giant cells (MNGC), T cell subsets, B cells, plasma cells, dendritic cells and mycobacterial antigen were labelled by immunohistochemistry, and lipids and acid-fast bacteria (AFB) were labelled by specific staining. Granulomas with central caseous necrosis developed at the injection site of most goats though lesion size and extent of necrosis differed between vaccine strains. CD4+ T and B cells were more scarce and CD8+ cells were more numerous in granulomas induced by recombinant derivatives compared to their parental BCG strain. Further, the numbers of MNGCs and cells with lipid bodies were markedly lower in groups administered with recombinant BCG strains. Microscopic detection of AFB and mycobacterial antigen was rather frequent in the area of central necrosis, however, the isolation of bacteria in culture was rarely successful. In summary, BCG and its recombinant derivatives induced reproducibly subcutaneous caseous granulomas in goats that can be easily monitored and surgically removed for further studies. The granulomas reflected the genetic modifications of the recombinant BCG-derivatives and are therefore suitable models to compare reactions to different mycobacteria or TB vaccines.
Collapse
Affiliation(s)
| | - Johannes Heyl
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut, 07743 Jena, Germany
| | - Nadine Wedlich
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut, 07743 Jena, Germany
| | - Julia Figl
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut, 07743 Jena, Germany
| | - Heike Köhler
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut, 07743 Jena, Germany
| | | | | | - Leander Grode
- Vakzine Projekt Management GmbH, 30625 Hannover, Germany
| | - Stefan H. E. Kaufmann
- Department of Immunology, Max Planck Institute for Infection Biology, 10117 Berlin, Germany
- Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
- Hagler Institute for Advanced Study, Texas A&M University, College Station, TX 77843, USA
| | - Christian Menge
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut, 07743 Jena, Germany
| |
Collapse
|
46
|
Kazi S, Raptis S, Abbaspour F, Zeng W. Foreign body-type giant cell reaction with extensive granulation tissue and intense inflammation after chemotherapy mimicking residual lymphoma on FDG PET. Eur J Hybrid Imaging 2022; 6:18. [PMID: 36104639 PMCID: PMC9474748 DOI: 10.1186/s41824-022-00137-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 05/16/2022] [Indexed: 11/16/2022] Open
Abstract
Foreign body-type giant cell reaction is typically a biological and immunological reaction to the presence of foreign bodies such as catheters, parasites or biomaterials with a collection of fused macrophages (giant cell). We reported an unusual case of [18F]FDG PET findings in diffuse large B cell lymphoma in the urinary bladder following incomplete resection and chemotherapy. As the restaging [18F]FDG PET showed intense [18F]FDG uptake in the urinary bladder at the resection site concerning for recurrence, the lesion was subsequently resected and histopathology showed extensive granulation tissue with foreign body-type giant cell reaction with no suspected foreign bodies or neoplasia.
Collapse
|
47
|
Shen H, Kushioka J, Toya M, Utsunomiya T, Hirata H, Huang EE, Tsubosaka M, Gao Q, Li X, Teissier V, Zhang N, Goodman SB. Sex differences in the therapeutic effect of unaltered versus NFκB sensing IL-4 over-expressing mesenchymal stromal cells in a murine model of chronic inflammatory bone loss. Front Bioeng Biotechnol 2022; 10:962114. [PMID: 36046680 PMCID: PMC9421000 DOI: 10.3389/fbioe.2022.962114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 06/29/2022] [Indexed: 11/24/2022] Open
Abstract
Wear particles from joint arthroplasties induce chronic inflammation associated with prolonged upregulation of nuclear factor kappa-B (NF-κB) signaling in macrophages and osteoclasts, which leads to osteolysis and implant loosening. Mesenchymal stromal cell (MSC)-based therapy showed great potential for immunomodulation and mitigation of osteolysis in vivo, especially in the chronic phase of inflammation. We previously generated genetically modified MSCs that secrete the anti-inflammatory cytokine interleukin 4 (IL-4) in response to NF-κB activation (NFκB-IL-4 MSCs). However, whether the impact of sexual difference in the internal environment can alter the therapeutic effects of IL-4 over-secreting MSCs that simultaneously mitigate prolonged inflammation and enhance bone formation remains unknown. This study investigated the therapeutic effects of unaltered MSCs versus NFκB-IL-4 MSCs in mitigating chronic inflammation and enhancing bone formation in male and female mice. The murine model was established by continuous infusion of polyethylene particles contaminated with lipopolysaccharide (cPE) into the medullary cavity of the distal femur for 6 weeks to induce chronic inflammation. Unaltered MSCs or NFκB-IL-4 MSCs were infused into the femoral intramedullary cavity in sex-matched groups beginning 3 weeks after primary surgery. Femurs were harvested at 6 weeks, and bone marrow density was measured with micro-computational tomography. Numbers of osteoclast-like cells, osteoblasts, and macrophages were evaluated with histochemical and immunofluorescence staining. cPE infusion resulted in severe bone loss at the surgery site, increased tartrate-resistant acid phosphatase positive osteoclasts and M1 pro-inflammatory macrophages, and decreased alkaline phosphatase expression. MSC-based therapy effectively decreased local bone loss and polarized M1 macrophages into an M2 anti-inflammatory phenotype. In females, unaltered MSCs demonstrated a larger impact in enhancing the osteogenesis, but they demonstrated similar anti-inflammatory effects compared to NFκB-IL-4 MSCs. These results demonstrated that local inflammatory bone loss can be effectively modulated via MSC-based treatments in a sexually dimorphic manner, which could be an efficacious therapeutic strategy for treatment of periprosthetic osteolysis in both genders.
Collapse
Affiliation(s)
- Huaishuang Shen
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Junichi Kushioka
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Masakazu Toya
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | | | - Hirohito Hirata
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Ejun Elijah Huang
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Masanori Tsubosaka
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Qi Gao
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Xueping Li
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Victoria Teissier
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Ning Zhang
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Stuart B. Goodman
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, United States
- Department of Bioengineering, Stanford University, Stanford, CA, United States
- *Correspondence: Stuart B. Goodman,
| |
Collapse
|
48
|
Watanabe R, Hashimoto M. Pathogenic role of monocytes/macrophages in large vessel vasculitis. Front Immunol 2022; 13:859502. [PMID: 35967455 PMCID: PMC9372263 DOI: 10.3389/fimmu.2022.859502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 07/11/2022] [Indexed: 11/21/2022] Open
Abstract
Vasculitis is an autoimmune vascular inflammation with an unknown etiology and causes vessel wall destruction. Depending on the size of the blood vessels, it is classified as large, medium, and small vessel vasculitis. A wide variety of immune cells are involved in the pathogenesis of vasculitis. Among these immune cells, monocytes and macrophages are functionally characterized by their capacity for phagocytosis, antigen presentation, and cytokine/chemokine production. After a long debate, recent technological advances have revealed the cellular origin of tissue macrophages in the vessel wall. Tissue macrophages are mainly derived from embryonic progenitor cells under homeostatic conditions, whereas bone marrow-derived circulating monocytes are recruited under inflammatory conditions, and then differentiate into macrophages in the arterial wall. Such macrophages infiltrate into an otherwise immunoprotected vascular site, digest tissue matrix with abundant proteolytic enzymes, and further recruit inflammatory cells through cytokine/chemokine production. In this way, macrophages amplify the inflammatory cascade and eventually cause tissue destruction. Recent studies have also demonstrated that monocytes/macrophages can be divided into several subpopulations based on the cell surface markers and gene expression. In this review, the subpopulations of circulating monocytes and the ontogeny of tissue macrophages in the artery are discussed. We also update the immunopathology of large vessel vasculitis, with a special focus on giant cell arteritis, and outline how monocytes/macrophages participate in the disease process of vascular inflammation. Finally, we discuss limitations of the current research and provide future research perspectives, particularly in humans. Through these processes, we explore the possibility of therapeutic strategies targeting monocytes/macrophages in vasculitis.
Collapse
|
49
|
Ahmad F, Rani A, Alam A, Zarin S, Pandey S, Singh H, Hasnain SE, Ehtesham NZ. Macrophage: A Cell With Many Faces and Functions in Tuberculosis. Front Immunol 2022; 13:747799. [PMID: 35603185 PMCID: PMC9122124 DOI: 10.3389/fimmu.2022.747799] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 03/30/2022] [Indexed: 01/16/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) is the causative agent of human tuberculosis (TB) which primarily infects the macrophages. Nearly a quarter of the world's population is infected latently by Mtb. Only around 5%-10% of those infected develop active TB disease, particularly during suppressed host immune conditions or comorbidity such as HIV, hinting toward the heterogeneity of Mtb infection. The aerosolized Mtb first reaches the lungs, and the resident alveolar macrophages (AMs) are among the first cells to encounter the Mtb infection. Evidence suggests that early clearance of Mtb infection is associated with robust innate immune responses in resident macrophages. In addition to lung-resident macrophage subsets, the recruited monocytes and monocyte-derived macrophages (MDMs) have been suggested to have a protective role during Mtb infection. Mtb, by virtue of its unique cell surface lipids and secreted protein effectors, can evade killing by the innate immune cells and preferentially establish a niche within the AMs. Continuous efforts to delineate the determinants of host defense mechanisms have brought to the center stage the crucial role of macrophage phenotypical variations for functional adaptations in TB. The morphological and functional heterogeneity and plasticity of the macrophages aid in confining the dissemination of Mtb. However, during a suppressed or hyperactivated immune state, the Mtb virulence factors can affect macrophage homeostasis which may skew to favor pathogen growth, causing active TB. This mini-review is aimed at summarizing the interplay of Mtb pathomechanisms in the macrophages and the implications of macrophage heterogeneity and plasticity during Mtb infection.
Collapse
Affiliation(s)
- Faraz Ahmad
- Laboratory of Infection Biology and Cell Signaling, Indian Council of Medical Research (ICMR)-National Institute of Pathology, New Delhi, India
| | - Anshu Rani
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi (IIT-D), New Delhi, India
| | - Anwar Alam
- Laboratory of Infection Biology and Cell Signaling, Indian Council of Medical Research (ICMR)-National Institute of Pathology, New Delhi, India
| | - Sheeba Zarin
- Laboratory of Infection Biology and Cell Signaling, Indian Council of Medical Research (ICMR)-National Institute of Pathology, New Delhi, India
| | - Saurabh Pandey
- Department of Biochemistry, Jamia Hamdard, New Delhi, India
| | - Hina Singh
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi (IIT-D), New Delhi, India
| | - Seyed Ehtesham Hasnain
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi (IIT-D), New Delhi, India
- Department of Life Science, School of Basic Sciences and Research, Sharda University, Greater Noida, India
| | - Nasreen Zafar Ehtesham
- Laboratory of Infection Biology and Cell Signaling, Indian Council of Medical Research (ICMR)-National Institute of Pathology, New Delhi, India
| |
Collapse
|
50
|
Giant Multinucleated Cells Are Associated with Mastocytic Inflammatory Signature Equine Asthma. Animals (Basel) 2022; 12:ani12091070. [PMID: 35565497 PMCID: PMC9103648 DOI: 10.3390/ani12091070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/12/2022] [Accepted: 04/18/2022] [Indexed: 01/22/2023] Open
Abstract
Equine asthma is currently diagnosed by the presence of increased neutrophil (>5%), mast cell (>2%), and/or eosinophil (>1%) differential cell count. Macrophages are normal resident cells within the alveoli. Their presence in BALF is considered normal, but the clinical implication of the presence of activated or fused macrophages (giant multinucleated cells, GMC) is currently overlooked. We aimed to assess the prevalence, cytological determinants, and clinical significance of increased GMC counts in BALF of 34 asthmatic horses compared to 10 controls. Counts were performed on 15 randomly selected high magnification fields per cytospin slide (40×), and expressed as GMC:single macrophage (GMC:M) ratio. Regression models were used for statistical analysis. GMC was frequently observed in both asthmatic and control horses, with an increased prevalence of equine asthma (p = 0.01). GMC:M ratio was significantly higher in severe vs. mild to moderate equine asthmatic and control horses. In asthmatic horses, an increased GMC:M ratio was significantly associated with BALF mastocytosis (p = 0.01), once adjusting for age and the presence and severity of clinical signs of the horses. Tachypnea was the only clinical sign that tended to be positively associated with GMC:M ratio after adjustment (p = 0.08). In conclusion, our data suggest that a relationship might exist between molecular mechanisms regulating GMC formation and mast cell recruitment in the equine lung. The same mechanisms could lead to tachypnea even in the absence of respiratory effort at rest. We suggest including GMC count in the basic cytological assessment of BALF samples to gain more insights into their role in equine asthma.
Collapse
|