1
|
Salman S, Paulet V, Hardonnière K, Kerdine‐Römer S. The role of NRF2 transcription factor in inflammatory skin diseases. Biofactors 2025; 51:e70013. [PMID: 40207460 PMCID: PMC11983367 DOI: 10.1002/biof.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 03/25/2025] [Indexed: 04/11/2025]
Abstract
The skin is the body's largest organ and performs several vital functions, such as controlling the movement of essential substances while protecting against external threats. Although mainly composed of keratinocytes (KCs), the skin also contains a complex network of immune cells that play a critical role in host defense and maintaining skin homeostasis. KCs proliferate in the basal layer of the epidermis and undergo differentiation, altering their functional and phenotypic characteristics. These differentiation steps are crucial for the stratification of the epidermis and the formation of the stratum corneum, ensuring the skin barrier's functions. Exposure to UV, environmental pollutants, or chemicals can lead to an overproduction of reactive species of oxygen (ROS), leading to oxidative stress. To ensure redox homeostasis and prevent damage resulting from the formation of ROS, the skin has an extensive network of antioxidant defense systems, mainly orchestrated by the nuclear factor erythroid-2-related factor 2 (Nrf2) pathway. Indeed, Nrf2 induces the expression of detoxification and antioxidant enzymes and suppresses inductions of pro-inflammatory cytokine genes. In this context, Nrf2 is critical in preserving skin functions such as epidermal differentiation, regulating skin immunity, and managing environmental stresses. Besides, this pathway plays an important role in the pathogenesis of common inflammatory skin diseases such as allergic contact dermatitis, atopic dermatitis, and psoriasis. Therefore, the present review highlights the crucial role of Nrf2 in KCs for maintaining skin homeostasis and regulating skin immunity, as well as its contribution to the pathophysiology of inflammatory skin diseases. Finally, a particular emphasis will be placed on the therapeutic potential of targeting the Nrf2 pathway to alleviate symptoms of these inflammatory skin disorders.
Collapse
Affiliation(s)
- Sara Salman
- Université Paris‐Saclay, INSERM, Inflammation, Microbiome and ImmunosurveillanceOrsayFrance
| | - Virginie Paulet
- Université Paris‐Saclay, INSERM, Inflammation, Microbiome and ImmunosurveillanceOrsayFrance
| | - Kévin Hardonnière
- Université Paris‐Saclay, INSERM, Inflammation, Microbiome and ImmunosurveillanceOrsayFrance
| | - Saadia Kerdine‐Römer
- Université Paris‐Saclay, INSERM, Inflammation, Microbiome and ImmunosurveillanceOrsayFrance
| |
Collapse
|
2
|
Han H, Zhang G, Yang Y, Li C, Li X, Zhong L, Chen Z, Xiong J, Cai T, Zhang L, Zhang X, Zhao Q. Therapeutic potential of monomethyl fumarate and aluminum ion combination in alleviating inflammation and oxidative stress in psoriasis. Redox Biol 2025; 79:103482. [PMID: 39736200 PMCID: PMC11750270 DOI: 10.1016/j.redox.2024.103482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/10/2024] [Accepted: 12/22/2024] [Indexed: 01/01/2025] Open
Abstract
Psoriasis is a chronic inflammatory skin condition characterized by erythematous plaques with white scales. Its pathogenesis is closely linked to oxidative stress and an imbalance in Th1/Th2 immune responses. Current treatments for psoriasis, such as topical agents, systemic therapies and phototherapy, frequently fail to achieve complete remission in clinical settings. Monomethyl fumarate (MMF), which has been approved by the US Food and Drug Administration in 2020 for multiple sclerosis, has demonstrated efficacy in psoriasis management. Additionally, our previous studies have identified aluminum ions as beneficial in psoriasis treatment. This present study investigates the combined therapeutic effects of MMF and aluminum ions and observed that the combination treatment achieves superior efficacy compared to either treatment alone in a psoriasis mouse model through the modulation of the Nrf2/NF-κB signaling pathway, as demonstrated in cellular models. The combination first activates Nrf2 nuclear translocation and induces antioxidant gene expression, followed by the inhibition of NF-κB nuclear translocation and phosphorylation, which reduces Th1 cytokine production and cellular chemotaxis. Concurrently, the treatment elevates Th2 cytokine secretion, thereby increasing the anti-inflammatory response in HaCaT cells. Overall, these findings support the MMF and aluminum ions combination (MMFAL) as a potential therapeutic strategy for psoriasis, effectively diminishing inflammation and oxidative stress.
Collapse
Affiliation(s)
- Hang Han
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Guojiang Zhang
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Yuanyuan Yang
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Chenxi Li
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Xiandeng Li
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Ling Zhong
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Zan Chen
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Jianxia Xiong
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tao Cai
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lingjuan Zhang
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Xiao Zhang
- College of Pharmacy, Chongqing Medical University, Chongqing, China.
| | - Qinjian Zhao
- College of Pharmacy, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
3
|
Wei B, Huang J, Zhang Y, Hu X, Ma C, Li Y, Chen P. Restoration of RECK expression attenuates liver fibrosis induced by carbon tetrachloride through the Nrf2-MMP9 axis. Int Immunopharmacol 2024; 143:113475. [PMID: 39476567 DOI: 10.1016/j.intimp.2024.113475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/08/2024] [Accepted: 10/20/2024] [Indexed: 11/28/2024]
Abstract
Liver fibrosis is a reversible process that can be delayed or even reversed through appropriate intervention during its development. The protein RECK, encoded by the Reck gene, regulates matrix metalloproteinase (MMP) activity and plays a crucial role in extracellular matrix (ECM) degradation and remodeling. Reduced RECK expression is found in various fibrotic tissues. However, the impact of restoring RECK expression on the development and progression of liver fibrosis has not yet been determined. This study found that the restoration of RECK expression attenuated TGF-β1-induced hepatic stellate cell (HSC) activation and mitigated carbon tetrachloride (CCl4)-induced acute liver injury. In a mouse model of liver fibrosis induced by CCl4, restoration of RECK expression reduced the degree of fibrosis, collagen deposition, and level of oxidative stress. RECK competes with Nrf2 for binding to Keap1, resulting in a decrease in the degradation of Nrf2 by Keap1 and an increase in the accumulation of Nrf2 in the cytoplasm. Under oxidative stress conditions, Nrf2 can be translocated to the nucleus for expression, initiating an antioxidant stress response, furthermore, Nrf2 can also activate MMP-9 and degrade the over-deposited collagen, thereby achieving the effect of alleviating liver fibrosis. Our study reveals a novel mechanism by which restoration of RECK expression ameliorates liver fibrosis, providing a promising target for combating liver fibrosis.
Collapse
Affiliation(s)
- Bizhen Wei
- Department of Pathology, School of Medicine, Southeast University, Nanjing, China
| | - Jing Huang
- Department of Pathology, School of Medicine, Southeast University, Nanjing, China; Department of Respiratory and Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yu Zhang
- Department of Pathology, School of Medicine, Southeast University, Nanjing, China
| | - Xiuxiu Hu
- Department of Pathology, School of Medicine, Southeast University, Nanjing, China
| | - Cao Ma
- Department of Pathology, School of Medicine, Southeast University, Nanjing, China; Department of Pathology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yiping Li
- Department of Pathology, School of Medicine, Southeast University, Nanjing, China.
| | - Pingsheng Chen
- Department of Pathology, School of Medicine, Southeast University, Nanjing, China; Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China.
| |
Collapse
|
4
|
Kamel NM, El-Sayed SS, El-Said YAM, El-Kersh DM, Hashem MM, Mohamed SS. Unlocking milk thistle's anti-psoriatic potential in mice: Targeting PI3K/AKT/mTOR and KEAP1/NRF2/NF-κB pathways to modulate inflammation and oxidative stress. Int Immunopharmacol 2024; 139:112781. [PMID: 39059101 DOI: 10.1016/j.intimp.2024.112781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/05/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Silybum marianum, known as milk thistle (MT), is traditionally used to manage liver diseases. This study aimed to investigate the role of MT extract topical application as a potential treatment for imiquimod (IMQ)-induced psoriatic lesions in mice with particular emphasis on phosphoinositol-3 Kinase (PI3K)/ protein kinase B (AKT)/ mammalian target of rapamycin (mTOR) and Kelch-like ECH-associated protein 1 (KEAP1)/ nuclear factor erythroid-2-related factor (NRF2)/ nuclear factor-kappa B (NF-κB) molecular cascades involvement. To address this aim, forty male Swiss albino mice were subdivided into four groups (n = 10 mice/group): control, IMQ model, standard group where mice were treated topically with IMQ, then the anti-psoriatic mometasone cream, and MT extract-treated group where mice were treated topically with IMQ followed by MT extract. In most measured parameters, MT extract, rich in silymarin, exhibited potent anti-psoriatic activity comparable to the standard cortisone treatment. MT extract mitigated dorsal skin erythema, scaling, and epidermal thickening, reflected by lowering the Psoriasis Area Severity Index (PASI) score. Moreover, it alleviated IMQ-induced splenomegaly. Mechanistically, the PI3K/AKT/mTOR pathway was the main functional pathway behind such improvements, where it was significantly inhibited by MT extract application. This led to NRF2 activation via KEAP1 downregulation with subsequent anti-inflammatory effect proven by reducing NF-κB, interleukin (IL)-23, and IL-17A and antioxidant ability proven by boosting the antioxidant glutathione and heme oxygenase-1. Such improvements were confirmed by alleviating the histopathological alteration. Thus, MT extract could be a promising therapeutic agent for psoriasis treatment by inhibiting PI3K/AKT/mTOR cascade, along with NRF2 signaling activation.
Collapse
Affiliation(s)
- Nada M Kamel
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt.
| | - Sarah S El-Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt.
| | - Yasmin A M El-Said
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt.
| | - Dina M El-Kersh
- Department of Pharmacognosy, Faculty of Pharmacy, The British University in Egypt, El Sherouk City, Suez Desert Road, Cairo, 11873, Egypt.
| | - Mona M Hashem
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt.
| | - Sarah S Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt.
| |
Collapse
|
5
|
Xu WD, Yang C, Huang AF. The role of Nrf2 in immune cells and inflammatory autoimmune diseases: a comprehensive review. Expert Opin Ther Targets 2024; 28:789-806. [PMID: 39256980 DOI: 10.1080/14728222.2024.2401518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 09/03/2024] [Indexed: 09/12/2024]
Abstract
INTRODUCTION Nrf2 regulates mild stress, chronic inflammation, and metabolic changes by regulating different immune cells via downstream signaling. Collection of information about the role of Nrf2 in inflammatory autoimmune diseases will better understand the therapeutic potential of targeting Nrf2 in these diseases. AREAS COVERED In this review, we comprehensively discussed biological function of Nrf2 in different immune cells, including Nrf2 preventing oxidative tissue injury, affecting apoptosis of immune cells and inflammatory cytokine production. Moreover, we discussed the role of Nrf2 in the development of inflammatory autoimmune diseases. EXPERT OPINION Nrf2 binds to downstream signaling molecules and then provides durable protection against different cellular and organ stress. It has emerged as an important target for inflammatory autoimmune diseases. Development of Nrf2 modulator drugs needs to consider factors such as target specificity, short/long term safety, disease indication identification, and the extent of variation in Nrf2 activity. We carefully discussed the dual role of Nrf2 in some diseases, which helps to better target Nrf2 in the future.
Collapse
Affiliation(s)
- Wang-Dong Xu
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Chan Yang
- Preventive Health Center, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - An-Fang Huang
- Department of Rheumatology and Immunology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
6
|
Alfardan AS, Nadeem A, Ahmad SF, Al-Harbi NO, Alqinyah M, Attia SM, El-Sherbeeny AM, Al-Harbi MM, Al-Shabanah OA, Ibrahim KE, Alhazzani K, Alanazi AZ. DNMT inhibitor, 5-aza-2'-deoxycytidine mitigates di(2-ethylhexyl) phthalate-induced aggravation of psoriasiform inflammation in mice via reduction in global DNA methylation in dermal and peripheral compartments. Int Immunopharmacol 2024; 137:112503. [PMID: 38906008 DOI: 10.1016/j.intimp.2024.112503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/03/2024] [Accepted: 06/14/2024] [Indexed: 06/23/2024]
Abstract
Psoriasis is classified as an autoimmune disorder characterized by abnormal immune response leading to the development of chronic dermal inflammation. Most individuals have a genetic vulnerability that may be further influenced by epigenetic changes occurring due to multiple variables such as pollutant exposure. Epigenetic modifications such as DNA methylation possess a dynamic nature, enabling cellular differentiation and adaptation by controlling gene expression. Di(2-ethylhexyl) phthalate (DEHP) and psoriatic inflammation are known to cause modification of DNA methylation via DNA methyltransferase (DNMT). However, it is not known whether DEHP, a ubiquitous plasticizer affects psoriatic inflammation via DNMT modulation. Therefore, this study investigated the effect of DNMT inhibitor, 5-aza-2'-deoxycytidine (AZA) on DEHP-induced changes in the expression of DNMT1, global DNA methylation, and anti-/inflammatory parameters (p-STAT3, IL-17A, IL-6, iNOS, IL-10, Foxp3, Nrf2, HO-1) in the skin and the peripheral adaptive/ myeloid immune cells (CD4+ T cells/CD11b+ cells) in imiquimod (IMQ) model of psoriasiform inflammation. Further, psoriasis-associated clinical/histopathological features (ear thickness, ear weight, ear PASI score, MPO activity, and H&E staining of the ear and the back skin) were also analyzed in IMQ model. Our data show that IMQ-treated mice with DEHP exposure had increased DNMT1 expression and DNA methylation which was associated with elevated inflammatory (p-STAT3, IL-17A, IL-6, iNOS) and downregulated anti-inflammatory mediators (IL-10, Foxp3, Nrf2, HO-1) in the peripheral immune cells (CD4+ T cells/CD11b+ cells) and the skin as compared to IMQ-treated mice. Treatment with DNMT1 inhibitor caused reduction in inflammatory and elevation in anti-inflammatory parameters with significant improvement in clinical/histopathological symptoms in both IMQ-treated and DEHP-exposed IMQ-treated mice. In conclusion, our study shows strong evidence indicating that DNMT1 plays an important role in DEHP-induced exacerbation of psoriasiform inflammation in mice through hypermethylation of DNA.
Collapse
Affiliation(s)
- Ali S Alfardan
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Naif O Al-Harbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad Alqinyah
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed M El-Sherbeeny
- Industrial Engineering Department, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia
| | - Mohammad M Al-Harbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Othman A Al-Shabanah
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Khalid E Ibrahim
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Khalid Alhazzani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Z Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
7
|
Lin X, Meng X, Lin J. The Role of Aryl Hydrocarbon Receptor in the Pathogenesis and Treatment of Psoriasis. J Cutan Med Surg 2024; 28:276-286. [PMID: 38497283 DOI: 10.1177/12034754241239050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
The pathogenesis of psoriasis is complex. Aryl hydrocarbon receptor (AhR) is a transcription factor that can be bound and activated by structurally diverse ligands and plays an important role in a range of biological processes and in the pathogenesis of different diseases. Recently, the role of AhR in psoriasis has attracted attention. AhR has toxicological functions and physiological functions. The overexpression and activation of AhR induced by the environmental pollutant and exogenous AhR agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) can drive the development of psoriasis. This TCDD-mediated toxicological response disrupts the physiological functions of AhR resulting in skin barrier disorders and the release of inflammatory cytokines, 2 of the pivotal factors of psoriasis. In addition, highly upregulated kynureninase in psoriasis decreases endogenous AhR agonists, thereby weakening the physiological functions of AhR. Activating AhR physiological signalling should be useful in the treatment of psoriasis. Studies have demonstrated that physiological activation of AhR can dampen the severity of psoriasis. The oldest and effective treatment for psoriasis coal tar works by activating AhR, and both new anti-psoriasis drugs tapinarof and benvitimod are formulations of AhR agonist, supporting that activation of AhR can be used as a new strategy for the treatment of psoriasis. Preclinical and preliminary clinical studies have revealed the anti-psoriasis effects of a number of AhR agonists, providing potential candidates for the development of new drugs for the treatment of psoriasis.
Collapse
Affiliation(s)
- Xiran Lin
- Department of Dermatology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xianmin Meng
- Department of Pathology and Laboratory Medicine, Axia Women's Health, Oaks, PA, USA
| | - Jingrong Lin
- Department of Dermatology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
8
|
Ando M, Nagata K, Takeshita R, Ito N, Noguchi S, Minamikawa N, Kodama N, Yamamoto A, Yashiro T, Hachisu M, Ichihara G, Kishino S, Yamamoto M, Ogawa J, Nishiyama C. The gut lactic acid bacteria metabolite, 10-oxo- cis-6, trans-11-octadecadienoic acid, suppresses inflammatory bowel disease in mice by modulating the NRF2 pathway and GPCR-signaling. Front Immunol 2024; 15:1374425. [PMID: 38745644 PMCID: PMC11091332 DOI: 10.3389/fimmu.2024.1374425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/05/2024] [Indexed: 05/16/2024] Open
Abstract
Various gut bacteria, including Lactobacillus plantarum, possess several enzymes that produce hydroxy fatty acids (FAs), oxo FAs, conjugated FAs, and partially saturated FAs from polyunsaturated FAs as secondary metabolites. Among these derivatives, we identified 10-oxo-cis-6,trans-11-octadecadienoic acid (γKetoC), a γ-linolenic acid (GLA)-derived enon FA, as the most effective immunomodulator, which inhibited the antigen-induced immunoactivation and LPS-induced production of inflammatory cytokines. The treatment with γKetoC significantly suppressed proliferation of CD4+ T cells, LPS-induced activation of bone marrow-derived dendritic cells (BMDCs), and LPS-induced IL-6 release from peritoneal cells, splenocytes, and CD11c+ cells isolated from the spleen. γKetoC also inhibited the release of inflammatory cytokines from BMDCs stimulated with poly-I:C, R-848, or CpG. Further in vitro experiments using an agonist of GPR40/120 suggested the involvement of these GPCRs in the effects of γKetoC on DCs. We also found that γKetoC stimulated the NRF2 pathway in DCs, and the suppressive effects of γKetoC and agonist of GPR40/120 on the release of IL-6 and IL-12 were reduced in Nrf2-/- BMDCs. We evaluated the role of NRF2 in the anti-inflammatory effects of γKetoC in a dextran sodium sulfate-induced colitis model. The oral administration of γKetoC significantly reduced body weight loss, improved stool scores, and attenuated atrophy of the colon, in wild-type C57BL/6 and Nrf2+/- mice with colitis. In contrast, the pathology of colitis was deteriorated in Nrf2-/- mice even with the administration of γKetoC. Collectively, the present results demonstrated the involvement of the NRF2 pathway and GPCRs in γKetoC-mediated anti-inflammatory responses.
Collapse
Affiliation(s)
- Miki Ando
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Kazuki Nagata
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Ryuki Takeshita
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Naoto Ito
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Sakura Noguchi
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Natsuki Minamikawa
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Naoki Kodama
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Asuka Yamamoto
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Takuya Yashiro
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Masakazu Hachisu
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Gaku Ichihara
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Science, Tokyo University of Science, Chiba, Japan
| | - Shigenobu Kishino
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Masayuki Yamamoto
- Department of Molecular Biochemistry, Tohoku University Tohoku Medical Megabank Organization, Sendai, Japan
| | - Jun Ogawa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Chiharu Nishiyama
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| |
Collapse
|
9
|
Alfardan AS, Nadeem A, Ahmad SF, Al-Harbi NO, Alqinyah M, Attia SM, Sarawi W, Alanazi AZ, Alhazzani K, Ibrahim KE. Worsening of imiquimod-induced psoriasiform inflammation in mice by environmental pollutant, di-(2-ethylhexyl) phthalate through dysregulation in IL-17A and Nrf2/iNOS signaling in peripheral myeloid and CD4 + T cells. Int Immunopharmacol 2024; 126:111293. [PMID: 38056199 DOI: 10.1016/j.intimp.2023.111293] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/02/2023] [Accepted: 11/23/2023] [Indexed: 12/08/2023]
Abstract
Psoriasis is a devastating autoimmune illness resulting from excessive keratinocyte growth and leukocyte infiltration into the dermis/epidermis. In the pathogenesis of psoriasis, different immune cells such as myeloid cells and CD4 + T cells play a key role. Th17/Th1 immune responses and oxidant-antioxidant responses are critical in regulation of psoriatic inflammation. Di-2-ethylhexyl phthalate (DEHP) is one of the well-known plasticizers and has widespread use worldwide. DEHP exposure through ingestion may produce harmful effects on the skin through systemic inflammation and oxidative stress, which may modify psoriatic inflammation. However, the effect of oral DEHP exposure on inflammatory cytokines and Nrf2/iNOS signaling in myeloid cells and CD4 + T cells in the context of psoriatic inflammation has not been investigated earlier. Therefore, this study explored the effect of DEHP on systemic inflammation in myeloid cells (IL-6, IL-17A, IL-23), Th17 (p-STAT3, IL-17A, IL-23R, TNF-α), Th1 (IFN-γ), Treg (Foxp3, IL-10), and Nrf2/iNOS signaling in imiquimod (IMQ)-induced mouse model of psoriasis-like inflammation. Our study showed increased Th17 signaling in imiquimod model which was further aggravated by DEHP exposure. Further, Nrf2 and iNOS signaling were also elevated in IMQ model where DEHP exposure further increased iNOS expression but did not modify the Nrf2 expression. Most importantly, IL-17A levels were also elevated in myeloid cells along with IL-6 which were further elevated by DEHP exposure. Overall, this study shows that IL-17A signaling is upregulated, whereas there is deficiency of Nrf2/HO-1 signaling by DEHP exposure in mice with psoriasiform inflammation. These observations suggest that DEHP aggravates IL-17A-mediated signaling both in CD4 + T cells as well as myeloid cells which is linked to exacerbation of IMQ-induced psoriatic inflammation in mice. Strategies that counteract the effect of DEHP exposure in the context of psoriatic inflammation through downregulation of IL-17A may be fruitful.
Collapse
Affiliation(s)
- Ali S Alfardan
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Naif O Al-Harbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed Alqinyah
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Wedad Sarawi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Z Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Khalid Alhazzani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Khalid E Ibrahim
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
10
|
He Y, Jia H, Yang Q, Shan W, Chen X, Huang X, Liu T, Sun R. Specific Activation of CB2R Ameliorates Psoriasis-Like Skin Lesions by Inhibiting Inflammation and Oxidative Stress. Inflammation 2023:10.1007/s10753-023-01805-6. [PMID: 37000322 DOI: 10.1007/s10753-023-01805-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 04/01/2023]
Abstract
Psoriasis is a chronic inflammatory skin disease. Inflammation and oxidative stress play crucial roles in the pathogenesis of psoriasis. Cannabinoid receptor type 2 (CB2R) is an attractive target for treating various inflammatory disorders. However, the precise role and mechanism of CB2R activation in psoriasis remain to be further elucidated. In this study, imiquimod (IMQ)-induced experimental psoriasis mice and tumor necrosis factor-α (TNF-α)-activated keratinocytes (HaCaT) were used to examine the effect of CB2R activation on psoriasis-like lesions and the mechanism in vivo and in vitro. Our results demonstrated that activation of CB2R by the specific agonist GW842166X (GW) significantly ameliorated IMQ-induced psoriasiform skin lesions in mice by reducing epidermal thickness and decreasing plaque thickness. On the one hand, GW alleviated inflammation by decreasing inflammatory cytokines and abating inflammatory cell infiltration. On the other hand, this treatment reduced the level of iNOS and downregulated the expression of CB2R in psoriatic skin tissue. Further studies suggested that the Kelch-like ECH-associated protein 1/nuclear factor erythroid-2-related factor (Keap1/Nrf2) signaling pathway might be involved. Our findings reveal that selective activation of CB2R may serve as a new strategy for the treatment of psoriasis.
Collapse
Affiliation(s)
- Yufeng He
- Department of Dermatology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Honglin Jia
- Department of Dermatology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Qunfang Yang
- Department of Pharmacology, College of Pharmacy and Laboratory Medicine, Army Medical University, Chongqing, 400038, China
| | - Wenjun Shan
- Department of Pharmacology, College of Pharmacy and Laboratory Medicine, Army Medical University, Chongqing, 400038, China
| | - Xiaohong Chen
- Department of Pharmacology, College of Pharmacy and Laboratory Medicine, Army Medical University, Chongqing, 400038, China
| | - Xianqiong Huang
- Department of Dermatology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Tao Liu
- Department of Pharmacology, College of Pharmacy and Laboratory Medicine, Army Medical University, Chongqing, 400038, China.
| | - Renshan Sun
- Department of Dermatology, Daping Hospital, Army Medical University, Chongqing, 400042, China.
- Department of Dermatology, Health Science Center, South China Hospital, Shenzhen University, Guangdong, 518116, China.
| |
Collapse
|
11
|
A Kaleidoscope of Keratin Gene Expression and the Mosaic of Its Regulatory Mechanisms. Int J Mol Sci 2023; 24:ijms24065603. [PMID: 36982676 PMCID: PMC10052683 DOI: 10.3390/ijms24065603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Keratins are a family of intermediate filament-forming proteins highly specific to epithelial cells. A combination of expressed keratin genes is a defining property of the epithelium belonging to a certain type, organ/tissue, cell differentiation potential, and at normal or pathological conditions. In a variety of processes such as differentiation and maturation, as well as during acute or chronic injury and malignant transformation, keratin expression undergoes switching: an initial keratin profile changes accordingly to changed cell functions and location within a tissue as well as other parameters of cellular phenotype and physiology. Tight control of keratin expression implies the presence of complex regulatory landscapes within the keratin gene loci. Here, we highlight patterns of keratin expression in different biological conditions and summarize disparate data on mechanisms controlling keratin expression at the level of genomic regulatory elements, transcription factors (TFs), and chromatin spatial structure.
Collapse
|
12
|
Kodama N, Okada H, Hachisu M, Ando M, Ito N, Nagata K, Katagiri M, Yasuda Y, Hiroki I, Yashiro T, Ichihara G, Yamamoto M, Nishiyama C. A rose flavor compound activating the NRF2 pathway in dendritic cells ameliorates contact hypersensitivity in mice. Front Nutr 2023; 10:1081263. [PMID: 36845043 PMCID: PMC9946980 DOI: 10.3389/fnut.2023.1081263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/23/2023] [Indexed: 02/11/2023] Open
Abstract
Dendritic cells (DCs), which are typical antigen-presenting cells, localize to various sites in the body, particularly the front line of infection as sentinels, and are involved in innate and adaptive immune responses. Although the functions of DCs, such as pathogen-induced cytokine production and antigen-specific T cell activation, are important for host defenses against infection and tumorigenesis, the hyper- and/or extended activation of DCs leads to inflammatory and autoimmune diseases. In the present study, β-damascone, a major ingredient of rose fragrance, was selected from an aroma library as a candidate compound that suppresses antigen-induced immune responses. β-Damascone inhibited the functions of DCs, including the antigen-dependent proliferation of T cells, DC-induced Th1 development, and the TLR ligand-induced production of inflammatory cytokines by DCs. The β-damascone treatment also increased the protein level of the transcription factor NF-E2-related factor 2 (NRF2), which plays key roles in antioxidant responses, and the transcription of Hmox1 and Nqo1, target genes of NRF2, in DCs. Nrf2 -/ - DCs induced Th1-development and produced large amount of IL-12p40 even in the presence of β-damascone, whereas these functions by Nrf2 +/- DCs were inhibited by β-damascone under the same conditions. The intake of β-damascone suppressed ear swelling in contact hypersensitivity (CHS) model mice, but not in CHS-induced Nrf2 -/ - mice. Collectively, the present results indicate the potential of the rose aroma compound β-damascone, which suppresses DC-mediated immune responses by activating the NRF2 pathway in DCs, for the prevention and/or attenuation of immune-mediated diseases.
Collapse
Affiliation(s)
- Naoki Kodama
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Hikaru Okada
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Masakazu Hachisu
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Miki Ando
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Naoto Ito
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Kazuki Nagata
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Mayuka Katagiri
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Yayoi Yasuda
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Ikumi Hiroki
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Takuya Yashiro
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Gaku Ichihara
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Chiharu Nishiyama
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan,*Correspondence: Chiharu Nishiyama,
| |
Collapse
|
13
|
Corzo Leon DE, Scheynius A, MacCallum DM, Munro CA. Malassezia sympodialis Mala s 1 allergen is a potential KELCH protein that cross reacts with human skin. FEMS Yeast Res 2023; 23:foad028. [PMID: 37188635 PMCID: PMC10281499 DOI: 10.1093/femsyr/foad028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/28/2023] [Accepted: 05/12/2023] [Indexed: 05/17/2023] Open
Abstract
Malassezia are the dominant commensal yeast species of the human skin microbiota and are associated with inflammatory skin diseases, such as atopic eczema (AE). The Mala s 1 allergen of Malassezia sympodialis is a β-propeller protein, inducing both IgE and T-cell reactivity in AE patients. We demonstrate by immuno-electron microscopy that Mala s 1 is mainly located in the M. sympodialis yeast cell wall. An anti-Mala s 1 antibody did not inhibit M. sympodialis growth suggesting Mala s 1 may not be an antifungal target. In silico analysis of the predicted Mala s 1 protein sequence identified a motif indicative of a KELCH protein, a subgroup of β-propeller proteins. To test the hypothesis that antibodies against Mala s 1 cross-react with human skin (KELCH) proteins we examined the binding of the anti-Mala s 1 antibody to human skin explants and visualized binding in the epidermal skin layer. Putative human targets recognized by the anti-Mala s 1 antibody were identified by immunoblotting and proteomics. We propose that Mala s 1 is a KELCH-like β-propeller protein with similarity to human skin proteins. Mala s 1 recognition may trigger cross-reactive responses that contribute to skin diseases associated with M. sympodialis.
Collapse
Affiliation(s)
- Dora E Corzo Leon
- School of Medicine, Medical Sciences & Nutrition University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Annika Scheynius
- Department of Clinical Science and Education, Karolinska Institutet, and Sachs' Children and Youth Hospital, Södersjukhuset, SE-118 83 Stockholm, Sweden
| | - Donna M MacCallum
- School of Medicine, Medical Sciences & Nutrition University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Carol A Munro
- School of Medicine, Medical Sciences & Nutrition University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| |
Collapse
|
14
|
Manai F, Govoni S, Amadio M. The Challenge of Dimethyl Fumarate Repurposing in Eye Pathologies. Cells 2022; 11:cells11244061. [PMID: 36552824 PMCID: PMC9777082 DOI: 10.3390/cells11244061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/28/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Dimethyl fumarate (DMF) is a small molecule currently approved and used in the treatment of psoriasis and multiple sclerosis due to its immuno-modulatory, anti-inflammatory, and antioxidant properties. As an Nrf2 activator through Keap1 protein inhibition, DMF unveils a potential therapeutical use that is much broader than expected so far. In this comprehensive review we discuss the state-of-art and future perspectives regarding the potential repositioning of this molecule in the panorama of eye pathologies, including Age-related Macular Degeneration (AMD). The DMF's mechanism of action, an extensive analysis of the in vitro and in vivo evidence of its beneficial effects, together with a search of the current clinical trials, are here reported. Altogether, this evidence gives an overview of the new potential applications of this molecule in the context of ophthalmological diseases characterized by inflammation and oxidative stress, with a special focus on AMD, for which our gene-disease (KEAP1-AMD) database search, followed by a protein-protein interaction analysis, further supports the rationale of DMF use. The necessity to find a topical route of DMF administration to the eye is also discussed. In conclusion, the challenge of DMF repurposing in eye pathologies is feasible and worth scientific attention and well-focused research efforts.
Collapse
Affiliation(s)
- Federico Manai
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy
| | - Stefano Govoni
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, 27100 Pavia, Italy
| | - Marialaura Amadio
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, 27100 Pavia, Italy
- Correspondence: ; Tel.: +39-0382-987888
| |
Collapse
|
15
|
Panieri E, Telkoparan-Akillilar P, Saso L. NRF2, a crucial modulator of skin cells protection against vitiligo, psoriasis, and cancer. Biofactors 2022; 49:228-250. [PMID: 36310374 DOI: 10.1002/biof.1912] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/05/2022] [Indexed: 11/12/2022]
Abstract
The skin represents a physical barrier between the organism and the environment that has evolved to confer protection against biological, chemical, and physical insults. The inner layer, known as dermis, is constituted by connective tissue and different types of immune cells whereas the outer layer, the epidermis, is composed by different layers of keratinocytes and an abundant number of melanocytes, localized in the stratum basale of the epidermis. Oxidative stress is a common alteration of inflammatory skin disorders such as vitiligo, dermatitis, or psoriasis but can also play a causal role in skin carcinogenesis and tumor progression. Nuclear factor (erythroid-derived 2)-like 2 (NRF2) has emerged as a crucial regulator of cell defense mechanisms activating complex transcriptional programs that facilitate reactive oxygen species detoxification, repair oxidative damage and prevent xenobiotic-induced toxicity. Accumulating evidence suggests that the keratinocytes, melanocytes, and other skin cell types express high levels of NRF2, which is known to play a pivotal role in the skin homeostasis, differentiation, and metabolism during normal and pathologic conditions. In the present review, we summarize the current evidence linking NRF2 to skin pathophysiology and we discuss some recent modulators of NRF2 activity that have shown a therapeutic efficacy in skin protection against tumor initiation and common inflammatory skin conditions such as vitiligo or psoriasis, with a particular emphasis on natural compounds.
Collapse
Affiliation(s)
- Emiliano Panieri
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
- Department of General Direction (DG), Section of Hazardous Substances, Environmental Education and Training for the Technical Coordination of Management Activities (DGTEC), Italian Institute for Environmental Protection and Research, Rome, Italy
| | | | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
16
|
Ogawa T, Ishitsuka Y. The Role of KEAP1-NRF2 System in Atopic Dermatitis and Psoriasis. Antioxidants (Basel) 2022; 11:antiox11071397. [PMID: 35883888 PMCID: PMC9312147 DOI: 10.3390/antiox11071397] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/16/2022] [Accepted: 07/18/2022] [Indexed: 02/06/2023] Open
Abstract
The Kelch-like erythroid cell-derived protein with cap‘n’collar homology-associated protein 1 (KEAP1)-nuclear factor erythroid-2-related factor 2 (NRF2) system, a thiol-based sensor-effector apparatus, exerts antioxidative and anti-inflammatory effects and maintains skin homeostasis. Thus, NRF2 activation appears to be a promising treatment option for various skin diseases. However, NRF2-mediated defense responses may deteriorate skin inflammation in a context-dependent manner. Atopic dermatitis (AD) and psoriasis are two common chronic inflammatory skin diseases caused by a defective skin barrier, dysregulated immune responses, genetic predispositions, and environmental factors. This review focuses on the role of the KEAP1-NRF2 system in the pathophysiology of AD and psoriasis and the therapeutic approaches that utilize this system.
Collapse
Affiliation(s)
- Tatsuya Ogawa
- Department of Dermatology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Ibaraki, Japan;
- Correspondence: ; Tel.: +81-29-853-3128; Fax: +81-29-853-3217
| | - Yosuke Ishitsuka
- Department of Dermatology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Ibaraki, Japan;
- Department of Dermatology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita 565-0871, Osaka, Japan
| |
Collapse
|
17
|
Donato-Trancoso A, Correa Atella G, Romana-Souza B. Dietary olive oil intake aggravates psoriatic skin inflammation in mice via Nrf2 activation and polyunsaturated fatty acid imbalance. Int Immunopharmacol 2022; 108:108851. [PMID: 35588658 DOI: 10.1016/j.intimp.2022.108851] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 01/12/2023]
Abstract
Psoriasis is a chronic inflammatory skin disease, which does not have effective treatment options. However, olive oil has been suggested as an alternative to treat psoriasis, but no study has evaluated the mechanisms involved in the effects of olive oil on psoriasis. Thus, the current study investigated whether olive oil could ameliorate psoriasiform skin inflammation. To test this, mice received topical application of imiquimod to induce inflammation and were treated orally with olive oil. Human immortalized keratinocytes were also treated with imiquimod and olive oil. Epidermal thickness and keratinocyte proliferation were increased in imiquimod-induced lesions of olive-oil-treated animals. In both in vitro and in vivo studies, protein levels of nuclear factor erythroid 2-related factor 2 (Nrf2) were elevated following imiquimod and olive oil administration. Inhibition of Nrf2 abolished the increased proliferation of keratinocytes treated with imiquimod and olive oil, demonstrating the role of Nrf2 in olive oil-mediated exacerbation of psoriasiform skin inflammation. In addition, lower levels of linoleic acid and higher levels of oleic acid were observed in imiquimod- and olive-oil-treated animals, which may also contribute to the adverse effects of olive oil on psoriasis. In conclusion, dietary intake of olive oil aggravates the symptoms of psoriatic skin lesions through the overexpression of Nrf2 and an imbalance in oleic and linoleic acids levels, suggesting that a diet rich in olive oil may have significant negative effects on psoriasis.
Collapse
Affiliation(s)
- Aline Donato-Trancoso
- Department of Histology and Embryology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Geórgia Correa Atella
- Laboratory of Lipid and Lipoprotein Biochemistry, Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruna Romana-Souza
- Department of Histology and Embryology, Rio de Janeiro State University, Rio de Janeiro, Brazil.
| |
Collapse
|
18
|
Loricrin at the Boundary between Inside and Outside. Biomolecules 2022; 12:biom12050673. [PMID: 35625601 PMCID: PMC9138667 DOI: 10.3390/biom12050673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 04/30/2022] [Accepted: 05/04/2022] [Indexed: 02/04/2023] Open
Abstract
Cornification is a specialized mode of the cell-death program exclusively allowed for terrestrial amniotes. Recent investigations suggest that loricrin (LOR) is an important cornification effector. As the connotation of its name (“lorica” meaning an armor in Latin) suggests, the keratin-associated protein LOR promotes the maturation of the epidermal structure through organizing covalent cross-linkages, endowing the epidermis with the protection against oxidative injuries. By reviewing cornification mechanisms, we seek to classify ichthyosiform dermatoses based on their function, rather than clinical manifestations. We also reviewed recent mechanistic insights into the Kelch-like erythroid cell-derived protein with the cap “n” collar homology-associated protein 1/nuclear factor erythroid 2-related factor 2 (NRF2) signaling pathway in skin health and diseases, as LOR and NRF2 coordinate the epidermis-intrinsic xenobiotic metabolism. Finally, we refine the theoretical framework of cross-talking between keratinocytes and epidermal resident leukocytes, dissecting an LOR immunomodulatory function.
Collapse
|
19
|
Rockwell CE, Jin Y, Boss AP, Kaiser LM, Awali S. The Complicated Role of Nuclear Factor Erythroid-Derived 2-Like 2 in Allergy and Asthma. Drug Metab Dispos 2022; 50:500-507. [PMID: 34930784 PMCID: PMC11022934 DOI: 10.1124/dmd.121.000414] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 12/02/2021] [Indexed: 11/22/2022] Open
Abstract
Nuclear factor erythroid-derived 2-like 2 (Nrf2) is a stress-activated transcription factor that is highly responsive to oxidative stress and electrophilic stimuli. Upon activation, Nrf2 upregulates a battery of cytoprotective genes meant to prevent cell death or damage. In many models of inflammation, Nrf2 protects against the immune response and decreases injury, including in the context of asthma and allergy. However, in some models of asthma and allergy, Nrf2 either does not play a role or can even exacerbate inflammation. In general, the reasons behind these discrepancies are not clear and the mechanisms by which Nrf2 modulates immune response are largely uncharacterized. The aim of this review is to highlight current literature assessing the role of Nrf2 in allergy and asthma to understand Nrf2 as a potential therapeutic target. SIGNIFICANCE STATEMENT: Nuclear factor erythroid-derived 2-like 2 (Nrf2) is an important immune mediator that modulates numerous immune cell types in various inflammatory diseases, including allergy and asthma. There is considerable interest in Nrf2 as a drug target in inflammation, which is complicated by the complex nature of Nrf2 in the immune system. This review focuses on the role of Nrf2 in asthma and allergy, including in regulating immune cell function and in detoxifying xenobiotics that exacerbate these diseases.
Collapse
Affiliation(s)
- Cheryl E Rockwell
- Department of Pharmacology and Toxicology, College of Human Medicine (C.E.R., Y.J., A.P.B., L.M.K., S.A.), Institute for Integrative Toxicology (C.E.R.), Cell and Molecular Biology Program (C.E.R.), Applied Immunology Center for Education and Research (C.E.R.), Department of Food Science and Human Nutrition (A.P.B.), and College of Osteopathic Medicine (L.M.K.), Michigan State University, East Lansing, Michigan
| | - Yining Jin
- Department of Pharmacology and Toxicology, College of Human Medicine (C.E.R., Y.J., A.P.B., L.M.K., S.A.), Institute for Integrative Toxicology (C.E.R.), Cell and Molecular Biology Program (C.E.R.), Applied Immunology Center for Education and Research (C.E.R.), Department of Food Science and Human Nutrition (A.P.B.), and College of Osteopathic Medicine (L.M.K.), Michigan State University, East Lansing, Michigan
| | - Allison P Boss
- Department of Pharmacology and Toxicology, College of Human Medicine (C.E.R., Y.J., A.P.B., L.M.K., S.A.), Institute for Integrative Toxicology (C.E.R.), Cell and Molecular Biology Program (C.E.R.), Applied Immunology Center for Education and Research (C.E.R.), Department of Food Science and Human Nutrition (A.P.B.), and College of Osteopathic Medicine (L.M.K.), Michigan State University, East Lansing, Michigan
| | - Luca M Kaiser
- Department of Pharmacology and Toxicology, College of Human Medicine (C.E.R., Y.J., A.P.B., L.M.K., S.A.), Institute for Integrative Toxicology (C.E.R.), Cell and Molecular Biology Program (C.E.R.), Applied Immunology Center for Education and Research (C.E.R.), Department of Food Science and Human Nutrition (A.P.B.), and College of Osteopathic Medicine (L.M.K.), Michigan State University, East Lansing, Michigan
| | - Saamera Awali
- Department of Pharmacology and Toxicology, College of Human Medicine (C.E.R., Y.J., A.P.B., L.M.K., S.A.), Institute for Integrative Toxicology (C.E.R.), Cell and Molecular Biology Program (C.E.R.), Applied Immunology Center for Education and Research (C.E.R.), Department of Food Science and Human Nutrition (A.P.B.), and College of Osteopathic Medicine (L.M.K.), Michigan State University, East Lansing, Michigan
| |
Collapse
|
20
|
Gao W, Guo L, Yang Y, Wang Y, Xia S, Gong H, Zhang BK, Yan M. Dissecting the Crosstalk Between Nrf2 and NF-κB Response Pathways in Drug-Induced Toxicity. Front Cell Dev Biol 2022; 9:809952. [PMID: 35186957 PMCID: PMC8847224 DOI: 10.3389/fcell.2021.809952] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/29/2021] [Indexed: 12/12/2022] Open
Abstract
Nrf2 and NF-κB are important regulators of the response to oxidative stress and inflammation in the body. Previous pharmacological and genetic studies have confirmed crosstalk between the two. The deficiency of Nrf2 elevates the expression of NF-κB, leading to increased production of inflammatory factors, while NF-κB can affect the expression of downstream target genes by regulating the transcription and activity of Nrf2. At the same time, many therapeutic drug-induced organ toxicities, including hepatotoxicity, nephrotoxicity, cardiotoxicity, pulmonary toxicity, dermal toxicity, and neurotoxicity, have received increasing attention from researchers in clinical practice. Drug-induced organ injury can destroy body function, reduce the patients’ quality of life, and even threaten the lives of patients. Therefore, it is urgent to find protective drugs to ameliorate drug-induced injury. There is substantial evidence that protective medications can alleviate drug-induced organ toxicity by modulating both Nrf2 and NF-κB signaling pathways. Thus, it has become increasingly important to explore the crosstalk mechanism between Nrf2 and NF-κB in drug-induced toxicity. In this review, we summarize the potential molecular mechanisms of Nrf2 and NF-κB pathways and the important effects on adverse effects including toxic reactions and look forward to finding protective drugs that can target the crosstalk between the two.
Collapse
Affiliation(s)
- Wen Gao
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Lin Guo
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yan Yang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yu Wang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Shuang Xia
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hui Gong
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Bi-Kui Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Miao Yan
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Miao Yan,
| |
Collapse
|
21
|
Ishitsuka Y, Ogawa T, Nakamura Y, Kubota N, Fujisawa Y, Watanabe R, Okiyama N, Fujimoto M, Roop DR, Ishida-Yamamoto A. Loricrin and NRF2 Coordinate Cornification. JID INNOVATIONS 2022; 2:100065. [PMID: 35024686 PMCID: PMC8659797 DOI: 10.1016/j.xjidi.2021.100065] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/08/2021] [Accepted: 08/20/2021] [Indexed: 12/30/2022] Open
Abstract
Cornification involves cytoskeletal cross-linkages in corneocytes (the brick) and the secretion of lipids/adhesion structures to the interstitial space (the mortar). Because the assembly of lipid envelopes precedes corneocyte maturation, loricrin is supposed to be dispensable for the protection against desiccation. Although the phenotypes of Lor knockout (LKO) mice are obscure, the antioxidative response on the KEAP1/NRF2 signaling pathway compensates for the structural defect in utero. In this study, we asked how the compensatory response is evoked after the defects are repaired. To this end, the postnatal phenotypes of LKO mice were analyzed with particular attention to the permeability barrier function primarily maintained by the mortar. Ultrastructural analysis revealed substantially thinner cornified cell envelopes and increased numbers of lamellar granules in LKO mice. Superficial epidermal damages triggered the adaptive repairing responses that evoke the NRF2-dependent upregulation of genes associated with lamellar granule secretion in LKO mice. We also found that corneodesmosomes are less degraded in LKO mice. The observation suggests that loricrin and NRF2 are important effectors of cornification, in which proteins need to be secreted, cross-linked, and degraded in a coordinated manner.
Collapse
Key Words
- CD, corneodesmosome
- CDSN, corneodesmosin
- CE, cornified envelope
- CEf, immature/fragile cornified envelope
- DKO, Lor–Nrf2 double knockout
- DMF, dimethyl fumarate
- K, keratin
- KC, keratinocyte
- LG, lamellar granule
- LKO, Lor knockout
- LOR, loricrin
- NKO, Nrf2 knockout
- SC, stratum corneum
- SG, stratum granulosum
- TEWL, transepidermal water loss
- TS, tape-stripping
- WT, wild type
Collapse
Affiliation(s)
- Yosuke Ishitsuka
- Department of Dermatology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Tatsuya Ogawa
- Department of Dermatology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yoshiyuki Nakamura
- Department of Dermatology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Noriko Kubota
- Department of Dermatology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yasuhiro Fujisawa
- Department of Dermatology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Rei Watanabe
- Department of Dermatology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Naoko Okiyama
- Department of Dermatology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Manabu Fujimoto
- Department of Dermatology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Dennis R Roop
- Department of Dermatology and Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | | |
Collapse
|
22
|
Ishitsuka Y, Roop DR. The Epidermis: Redox Governor of Health and Diseases. Antioxidants (Basel) 2021; 11:47. [PMID: 35052551 PMCID: PMC8772843 DOI: 10.3390/antiox11010047] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 12/25/2021] [Indexed: 12/13/2022] Open
Abstract
A functional epithelial barrier necessitates protection against dehydration, and ichthyoses are caused by defects in maintaining the permeability barrier in the stratum corneum (SC), the uppermost protective layer composed of dead cells and secretory materials from the living layer stratum granulosum (SG). We have found that loricrin (LOR) is an essential effector of cornification that occurs in the uppermost layer of SG (SG1). LOR promotes the maturation of corneocytes and extracellular adhesion structure through organizing disulfide cross-linkages, albeit being dispensable for the SC permeability barrier. This review takes psoriasis and AD as the prototype of impaired cornification. Despite exhibiting immunological traits that oppose each other, both conditions share the epidermal differentiation complex as a susceptible locus. We also review recent mechanistic insights on skin diseases, focusing on the Kelch-like erythroid cell-derived protein with the cap "n" collar homology-associated protein 1/NFE2-related factor 2 signaling pathway, as they coordinate the epidermis-intrinsic xenobiotic metabolism. Finally, we refine the theoretical framework of thiol-mediated crosstalk between keratinocytes and leukocytes in the epidermis that was put forward earlier.
Collapse
Affiliation(s)
- Yosuke Ishitsuka
- Department of Dermatology Integrated Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Dennis R. Roop
- Charles C. Gates Center for Regenerative Medicine, Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| |
Collapse
|
23
|
Campbell NK, Fitzgerald HK, Dunne A. Regulation of inflammation by the antioxidant haem oxygenase 1. Nat Rev Immunol 2021; 21:411-425. [PMID: 33514947 DOI: 10.1038/s41577-020-00491-x] [Citation(s) in RCA: 250] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2020] [Indexed: 01/30/2023]
Abstract
Haem oxygenase 1 (HO-1), an inducible enzyme responsible for the breakdown of haem, is primarily considered an antioxidant, and has long been overlooked by immunologists. However, research over the past two decades in particular has demonstrated that HO-1 also exhibits numerous anti-inflammatory properties. These emerging immunomodulatory functions have made HO-1 an appealing target for treatment of diseases characterized by high levels of chronic inflammation. In this Review, we present an introduction to HO-1 for immunologists, including an overview of its roles in iron metabolism and antioxidant defence, and the factors which regulate its expression. We discuss the impact of HO-1 induction in specific immune cell populations and provide new insights into the immunomodulation that accompanies haem catabolism, including its relationship to immunometabolism. Furthermore, we highlight the therapeutic potential of HO-1 induction to treat chronic inflammatory and autoimmune diseases, and the issues faced when trying to translate such therapies to the clinic. Finally, we examine a number of alternative, safer strategies that are under investigation to harness the therapeutic potential of HO-1, including the use of phytochemicals, novel HO-1 inducers and carbon monoxide-based therapies.
Collapse
Affiliation(s)
- Nicole K Campbell
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland. .,Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia. .,Department of Molecular and Translational Sciences, Monash University, Clayton, Victoria, Australia.
| | - Hannah K Fitzgerald
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Aisling Dunne
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,School of Medicine, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
24
|
Freeborn RA, Rockwell CE. The role of Nrf2 in autoimmunity and infectious disease: Therapeutic possibilities. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2021; 91:61-110. [PMID: 34099113 DOI: 10.1016/bs.apha.2020.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Nrf2 is a cytoprotective transcription factor which is involved in ameliorating oxidative stress and toxic insults. Recently, an immunomodulatory role for Nrf2 has gained appreciation as it has been shown to protect cells and hosts alike in a variety of immune and inflammatory disorders. However, Nrf2 utilizes numerous distinct pathways to elicit its immunomodulatory effects. In this review, we summarize the literature discussing the roles of Nrf2 in autoimmunity and infectious diseases with a goal of understanding the potential to therapeutically target Nrf2.
Collapse
Affiliation(s)
- Robert A Freeborn
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
| | - Cheryl E Rockwell
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States; Cell and Molecular Biology Program, Michigan State University, East Lansing, MI, United States.
| |
Collapse
|
25
|
Hoogendoorn A, Avery TD, Li J, Bursill C, Abell A, Grace PM. Emerging Therapeutic Applications for Fumarates. Trends Pharmacol Sci 2021; 42:239-254. [PMID: 33618840 PMCID: PMC7954891 DOI: 10.1016/j.tips.2021.01.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 01/14/2021] [Accepted: 01/20/2021] [Indexed: 02/08/2023]
Abstract
Fumarates are successfully used for the treatment of psoriasis and multiple sclerosis. Their antioxidative, immunomodulatory, and neuroprotective properties make fumarates attractive therapeutic candidates for other pathologies. The exact working mechanisms of fumarates are, however, not fully understood. Further elucidation of the mechanisms is required if these drugs are to be successfully repurposed for other diseases. Towards this, administration route, dosage, and treatment timing, frequency, and duration are important parameters to consider and optimize with clinical paradigms in mind. Here, we summarize the rapidly expanding literature on the pharmacokinetics and pharmacodynamics of fumarates, including a discussion on two recently FDA-approved fumarates VumerityTM and BafiertamTM. We review emerging applications of fumarates, focusing on neurological and cardiovascular diseases.
Collapse
Affiliation(s)
- Ayla Hoogendoorn
- Vascular and Heart Health, Life Long Health Theme, South Australian Health and Medical Research Institute, Adelaide, Australia; ARC Centre of Excellence for Nanoscale BioPhotonics, The University of Adelaide, Australia.
| | - Thomas D Avery
- ARC Centre of Excellence for Nanoscale BioPhotonics, The University of Adelaide, Australia; Institute for Photonics and Advanced Sensing & Department of Chemistry, The University of Adelaide, Australia
| | - Jiahe Li
- Laboratories of Neuroimmunology, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christina Bursill
- Vascular and Heart Health, Life Long Health Theme, South Australian Health and Medical Research Institute, Adelaide, Australia; ARC Centre of Excellence for Nanoscale BioPhotonics, The University of Adelaide, Australia; Faculty of Health and Medical Science, University of Adelaide, Adelaide, Australia
| | - Andrew Abell
- ARC Centre of Excellence for Nanoscale BioPhotonics, The University of Adelaide, Australia; Institute for Photonics and Advanced Sensing & Department of Chemistry, The University of Adelaide, Australia
| | - Peter M Grace
- Laboratories of Neuroimmunology, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
26
|
Ogawa T, Ishitsuka Y, Fujimoto M, Nomura T. KEAP1 and epidermal differentiation: Psoriatic epidermis as a model. JOURNAL OF CUTANEOUS IMMUNOLOGY AND ALLERGY 2021. [DOI: 10.1002/cia2.12164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Tatsuya Ogawa
- Department of Dermatology Faculty of Medicine University of Tsukuba Tsukuba Japan
| | - Yosuke Ishitsuka
- Department of Dermatology Faculty of Medicine University of Tsukuba Tsukuba Japan
- Department of Dermatology Graduate School of Medicine Osaka University Suita Japan
| | - Manabu Fujimoto
- Department of Dermatology Faculty of Medicine University of Tsukuba Tsukuba Japan
- Department of Dermatology Graduate School of Medicine Osaka University Suita Japan
| | - Toshifumi Nomura
- Department of Dermatology Faculty of Medicine University of Tsukuba Tsukuba Japan
| |
Collapse
|
27
|
Ishitsuka Y, Roop DR, Ogawa T. "Structural imprinting" of the cutaneous immune effector function. Tissue Barriers 2021; 9:1851561. [PMID: 33270506 PMCID: PMC7849724 DOI: 10.1080/21688370.2020.1851561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/07/2020] [Accepted: 11/10/2020] [Indexed: 01/30/2023] Open
Abstract
Keratinization provides tolerance to desiccation and mechanical durability. Loricrin, which is an epidermal thiol-rich protein, efficiently stabilizes terminally differentiated keratinocytes and maintains redox homeostasis. The discovery of the largely asymptomatic loricrin knockout (LKO) phenotype decades ago was rather unpredicted. Nevertheless, when including redox-driven, NF-E2-related factor 2-mediated backup responses, LKO mice provide opportunities for the observation of altered or "quasi-normal" homeostasis. Specifically, given that the tissue structure, as well as the local metabolism, transmits immunological signals, we sought to dissect the consequence of truncated epidermal differentiation program from immunological perspectives. Through a review of the aggregated evidence, we have attempted to generate an integrated view of the regulation of the peripheral immune system, which possibly occurs within the squamous epithelial tissue with truncated differentiation. This synthesis might not only provide insights into keratinization but also lead to the identification of factors intrinsic to the epidermis that imprint the immune effector function.
Collapse
Affiliation(s)
- Yosuke Ishitsuka
- Department of Dermatology, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Dermatology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Dennis R. Roop
- Department of Dermatology and Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Tatsuya Ogawa
- Department of Dermatology, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
28
|
Ishitsuka Y, Ogawa T, Roop D. The KEAP1/NRF2 Signaling Pathway in Keratinization. Antioxidants (Basel) 2020; 9:E751. [PMID: 32823937 PMCID: PMC7465315 DOI: 10.3390/antiox9080751] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/09/2020] [Accepted: 08/10/2020] [Indexed: 12/18/2022] Open
Abstract
Keratinization is a tissue adaptation, but aberrant keratinization is associated with skin disorders such as ichthyoses, atopic dermatitis, psoriasis, and acne. The disease phenotype stems from the interaction between genes and the environment; therefore, an understanding of the adaptation machinery may lead to a new appreciation of pathomechanisms. The KEAP1/NRF2 signaling pathway mediates the environmental responses of squamous epithelial tissue. The unpredicted outcome of the Keap1-null mutation in mice allowed us to revisit the basic principle of the biological process of keratinization: sulfur metabolism establishes unparalleled cytoprotection in the body wall of terrestrial mammals. We summarize the recent understanding of the KEAP1/NRF2 signaling pathway, which is a thiol-based sensor-effector apparatus, with particular focuses on epidermal differentiation in the context of the gene-environment interaction, the structure/function principles involved in KEAP1/NRF2 signaling, lessons from mouse models, and their pathological implications. This synthesis may provide insights into keratinization, which provides physical insulation and constitutes an essential innate integumentary defense system.
Collapse
Affiliation(s)
- Yosuke Ishitsuka
- Department of Dermatology, Faculty of Medicine, University of Tsukuba 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan;
| | - Tatsuya Ogawa
- Department of Dermatology, Faculty of Medicine, University of Tsukuba 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan;
| | - Dennis Roop
- Department of Dermatology and Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| |
Collapse
|
29
|
Furue M. Regulation of Filaggrin, Loricrin, and Involucrin by IL-4, IL-13, IL-17A, IL-22, AHR, and NRF2: Pathogenic Implications in Atopic Dermatitis. Int J Mol Sci 2020; 21:E5382. [PMID: 32751111 PMCID: PMC7432778 DOI: 10.3390/ijms21155382] [Citation(s) in RCA: 222] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 12/16/2022] Open
Abstract
Atopic dermatitis (AD) is an eczematous, pruritic skin disorder with extensive barrier dysfunction and elevated interleukin (IL)-4 and IL-13 signatures. The barrier dysfunction correlates with the downregulation of barrier-related molecules such as filaggrin (FLG), loricrin (LOR), and involucrin (IVL). IL-4 and IL-13 potently inhibit the expression of these molecules by activating signal transducer and activator of transcription (STAT)6 and STAT3. In addition to IL-4 and IL-13, IL-22 and IL-17A are probably involved in the barrier dysfunction by inhibiting the expression of these barrier-related molecules. In contrast, natural or medicinal ligands for aryl hydrocarbon receptor (AHR) are potent upregulators of FLG, LOR, and IVL expression. As IL-4, IL-13, IL-22, and IL-17A are all capable of inducing oxidative stress, antioxidative AHR agonists such as coal tar, glyteer, and tapinarof exert particular therapeutic efficacy for AD. These antioxidative AHR ligands are known to activate an antioxidative transcription factor, nuclear factor E2-related factor 2 (NRF2). This article focuses on the mechanisms by which FLG, LOR, and IVL expression is regulated by IL-4, IL-13, IL-22, and IL-17A. The author also summarizes how AHR and NRF2 dual activators exert their beneficial effects in the treatment of AD.
Collapse
Affiliation(s)
- Masutaka Furue
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashiku, Fukuoka 812-8582, Japan; ; Tel.: +81-92-642-5581; Fax: +81-92-642-5600
- Research and Clinical Center for Yusho and Dioxin, Kyushu University, Maidashi 3-1-1, Higashiku, Fukuoka 812-8582, Japan
- Division of Skin Surface Sensing, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashiku, Fukuoka 812-8582, Japan
| |
Collapse
|
30
|
Inoue Y, Uchiyama A, Sekiguchi A, Yamazaki S, Fujiwara C, Yokoyama Y, Ogino S, Torii R, Hosoi M, Akai R, Iwawaki T, Ishikawa O, Motegi S. Protective effect of dimethyl fumarate for the development of pressure ulcers after cutaneous ischemia‐reperfusion injury. Wound Repair Regen 2020; 28:600-608. [DOI: 10.1111/wrr.12824] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 12/29/2022]
Affiliation(s)
- Yuta Inoue
- Department of Dermatology Gunma University Graduate School of Medicine Maebashi Japan
| | - Akihiko Uchiyama
- Department of Dermatology Gunma University Graduate School of Medicine Maebashi Japan
| | - Akiko Sekiguchi
- Department of Dermatology Gunma University Graduate School of Medicine Maebashi Japan
| | - Sahori Yamazaki
- Department of Dermatology Gunma University Graduate School of Medicine Maebashi Japan
| | - Chisako Fujiwara
- Department of Dermatology Gunma University Graduate School of Medicine Maebashi Japan
| | - Yoko Yokoyama
- Department of Dermatology Gunma University Graduate School of Medicine Maebashi Japan
| | - Sachiko Ogino
- Department of Dermatology Gunma University Graduate School of Medicine Maebashi Japan
| | - Ryoko Torii
- Department of Dermatology Gunma University Graduate School of Medicine Maebashi Japan
| | - Mari Hosoi
- Department of Dermatology Gunma University Graduate School of Medicine Maebashi Japan
| | - Ryoko Akai
- Division of Cell Medicine, Department of Life Science Medical Research Institute, Kanazawa Medical University Ishikawa Japan
| | - Takao Iwawaki
- Division of Cell Medicine, Department of Life Science Medical Research Institute, Kanazawa Medical University Ishikawa Japan
| | - Osamu Ishikawa
- Department of Dermatology Gunma University Graduate School of Medicine Maebashi Japan
| | - Sei‐ichiro Motegi
- Department of Dermatology Gunma University Graduate School of Medicine Maebashi Japan
| |
Collapse
|