1
|
Zuiker E, Serpa G, De M, Liu Y, Wozniak DJ, Gowdy KM, Charron J, Birket SE, Kiedrowski MR, Hemann EA, Long ME. Targeting the MEK1/2 pathway to combat Staphylococcus aureus infection and inflammation in cystic fibrosis. mBio 2025:e0077525. [PMID: 40422262 DOI: 10.1128/mbio.00775-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Accepted: 04/22/2025] [Indexed: 05/28/2025] Open
Abstract
Staphylococcus aureus infections remain an ongoing challenge for people with cystic fibrosis (PwCF), with the increased global prevalence of multidrug-resistant strains requiring new therapeutic approaches. Our previous studies demonstrated anti-inflammatory effects of several MEK1/2 inhibitor compounds, including PD0325901, CI-1040, and trametinib, in human phagocytes from PwCF and a murine S. aureus pulmonary infection model (M. De, G. Serpa, E. Zuiker, K. B. Hisert, et al., Front Cell Infect Microbiol 14:1275940, 2024, https://doi.org/10.3389/fcimb.2024.1275940). A recently developed MEK1/2 inhibitor compound, ATR-002, has been recognized for its ability to exert direct antibacterial effects on gram-positive bacterial species, including S. aureus (C. Bruchhagen, M. Jarick, C. Mewis, T. Hertlein, et al., Sci Rep 8:9114, 2018, https://doi.org/10.1038/s41598-018-27445-7). However, whether ATR-002 elicits antibacterial effects on clinically relevant strains of S. aureus or anti-inflammatory effects is unknown. In this study, the effects of ATR-002 on human CF macrophage TLR2-induced pro-inflammatory cytokine secretion were evaluated, demonstrating that ATR-002 reduced TNF-α and IL-8 secretion induced by the TLR2 agonists FSL-1 or Pam3CSK4. The antibacterial effects of ATR-002 were evaluated by minimum inhibitory concentration testing using S. aureus clinical isolates obtained from PwCF. Utilization of a murine methicillin-resistant S. aureus (MRSA) pulmonary infection model further confirmed the in vivo anti-inflammatory and antibacterial effects of ATR-002. Finally, infection of wild-type and Mek2KO mice revealed that loss of MEK2 was host-protective during MRSA pulmonary infection by reducing neutrophil-mediated inflammation without altering bacterial clearance. In summary, this study highlights the therapeutic potential of targeting the MEK1/2 pathway to combat MRSA pulmonary infections.IMPORTANCEStaphylococcus aureus infections pose a significant burden on global healthcare systems. Community-associated transmission of methicillin-resistant S. aureus (MRSA) and the increasing prevalence of other drug-resistant S. aureus isolates limit therapeutic options to combat this opportunistic pathogen. Infection-induced inflammation is a significant driver of tissue damage, especially in cystic fibrosis pulmonary infections. However, therapeutic strategies that can reduce inflammation without compromising host defense and bacterial clearance mechanisms are lacking. This study investigates the dual anti-inflammatory and antibacterial effects of a MEK1/2 inhibitor as a therapeutic strategy to target both host and pathogen with a single compound. This work also identifies host MEK2 as a specific target that can be modulated to reduce inflammation without impairing host defense against MRSA pulmonary infection. Results from this study can inform future human clinical trials to evaluate the ability of the MEK1/2 inhibitor compound ATR-002 to both combat S. aureus infections and reduce inflammation that accompanies these infections.
Collapse
Affiliation(s)
- Eryn Zuiker
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Gregory Serpa
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Mithu De
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Yiwei Liu
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Daniel J Wozniak
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Kymberly M Gowdy
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Jean Charron
- Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval (Oncology Axis), Quebec City, Quebec, Canada
- Département de Biologie Moléculaire, Biochimie Médicale and Pathologie, Université Laval, Quebec City, Quebec, Canada
| | - Susan E Birket
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Megan R Kiedrowski
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Emily A Hemann
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Matthew E Long
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| |
Collapse
|
2
|
Shull LM, Wolter DJ, Kunkle DE, Legg KA, Giedroc DP, Skaar EP, Hoffman LR, Reniere ML. Analysis of genetic requirements and nutrient availability for Staphylococcus aureus growth in cystic fibrosis sputum. mBio 2025; 16:e0037425. [PMID: 40172197 PMCID: PMC12077221 DOI: 10.1128/mbio.00374-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 03/03/2025] [Indexed: 04/04/2025] Open
Abstract
Staphylococcus aureus is one of the most common pathogens isolated from the lungs of people with cystic fibrosis (CF), but little is known about its ability to colonize this niche. We performed a transposon-sequencing (Tn-seq) screen to identify genes necessary for S. aureus growth in media prepared from ex vivo CF sputum. We identified 19 genes that were required for growth in all sputum media tested and dozens more that were required for growth in at least one sputum medium. Depleted mutants of interest included insertions in many genes important for surviving metal starvation, as well as the primary regulator of cysteine metabolism, cymR. To investigate the mechanisms by which these genes contribute to S. aureus growth in sputum, we quantified low-molecular-weight thiols, nutrient transition metals, and the host metal-sequestration protein calprotectin in sputum from 11 individuals with CF. In all samples, the abundance of calprotectin exceeded nutrient metal concentration, explaining the S. aureus requirement for metal-starvation genes. Furthermore, all samples contain potentially toxic quantities of cysteine and sufficient glutathione to satisfy the organic sulfur requirements of S. aureus. Deletion of the cysteine importer genes tcyA and tcyP in the ∆cymR background restored growth to wild-type levels in CF sputum, suggesting that the mechanism by which cymR is required for growth in sputum is to prevent uncontrolled import of cysteine or cystine from this environment. Overall, this work demonstrates that calprotectin and cysteine limit S. aureus growth in CF sputum.IMPORTANCEStaphylococcus aureus is a major cause of lung infections in people with cystic fibrosis (CF). This work identifies genes required for S. aureus growth in this niche, which represent potential targets for anti-Staphylococcal treatments. We show that genes involved in surviving metal starvation are required for growth in CF sputum. We also found that the primary regulator of cysteine metabolism, CymR, plays a critical role in preventing cysteine intoxication during growth in CF sputum. To support these models, we analyzed sputum from 11 individuals with CF to determine concentrations of calprotectin, nutrient metals, and low-molecular-weight thiols, which have not previously been quantified together in the same samples.
Collapse
Affiliation(s)
- Lauren M. Shull
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Daniel J. Wolter
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, USA
| | - Dillon E. Kunkle
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Katherine A. Legg
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA
| | - David P. Giedroc
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana, USA
| | - Eric P. Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Lucas R. Hoffman
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, USA
| | - Michelle L. Reniere
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
3
|
Feizi S, Cooksley CM, Reyne N, Boog B, Finnie J, Shaghayegh G, Hon K, Ramezanpour M, Psaltis AJ, Wormald PJ, Cmielewski P, McCarron A, Donnelley M, Parsons D, Vreugde S. An immunocompetent rat model of Mycobacterium abscessus multinodular granulomatous lung infection. Tuberculosis (Edinb) 2025; 152:102629. [PMID: 40056658 DOI: 10.1016/j.tube.2025.102629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/27/2025] [Accepted: 03/03/2025] [Indexed: 03/10/2025]
Abstract
Animal models that can mimic progressive granulomatous pulmonary disease (PD) due to non-tuberculous mycobacteria (NTM) have not been established in rats to date. These models could assist with the study of the pathophysiology of NTM-PD as well as the preclinical development of new therapies. In the present study, an immunocompetent rat model of progressive Mycobacterium abscessus (MABs)- PD was developed using MABs originating from a patient with cystic fibrosis. MABs was embedded in agarose beads and delivered intratracheally to the lungs of Sprague Dawley rats two times at a one-week time interval. The bacterial burden of lysed lungs, spleen and liver was assessed by calculating colony forming units (CFUs) on day 28. Lung CFUs indicated a ∼1.2-2 log10 total CFU increase compared to the initial total bacterial load instilled into the lungs. In all infected rats, multinodular granulomatous inflammatory lesions containing MABs were found in the lung. These findings support the establishment of an immunocompetent MABs PD rat model, characterised by an increase in mycobacterial burden over time and a chronic granulomatous inflammatory response to the MABs infection.
Collapse
Affiliation(s)
- Sholeh Feizi
- Basil Hetzel Institute for Translational Health Research, Woodville, South Australia, Australia; Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Clare M Cooksley
- Basil Hetzel Institute for Translational Health Research, Woodville, South Australia, Australia; Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Nicole Reyne
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia; Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia; Respiratory and Sleep Medicine, Women's and Children's Hospital, North Adelaide, South Australia, Australia
| | - Bernadette Boog
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia; Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia; Respiratory and Sleep Medicine, Women's and Children's Hospital, North Adelaide, South Australia, Australia
| | - John Finnie
- School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Gohar Shaghayegh
- Basil Hetzel Institute for Translational Health Research, Woodville, South Australia, Australia; Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Karen Hon
- Basil Hetzel Institute for Translational Health Research, Woodville, South Australia, Australia; Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Mahnaz Ramezanpour
- Basil Hetzel Institute for Translational Health Research, Woodville, South Australia, Australia; Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Alkis J Psaltis
- Basil Hetzel Institute for Translational Health Research, Woodville, South Australia, Australia; Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Peter-John Wormald
- Basil Hetzel Institute for Translational Health Research, Woodville, South Australia, Australia; Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Patricia Cmielewski
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia; Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia; Respiratory and Sleep Medicine, Women's and Children's Hospital, North Adelaide, South Australia, Australia
| | - Alexandra McCarron
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia; Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia; Respiratory and Sleep Medicine, Women's and Children's Hospital, North Adelaide, South Australia, Australia
| | - Martin Donnelley
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia; Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia; Respiratory and Sleep Medicine, Women's and Children's Hospital, North Adelaide, South Australia, Australia
| | - David Parsons
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia; Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia; Respiratory and Sleep Medicine, Women's and Children's Hospital, North Adelaide, South Australia, Australia
| | - Sarah Vreugde
- Basil Hetzel Institute for Translational Health Research, Woodville, South Australia, Australia; Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia.
| |
Collapse
|
4
|
Fuglsang-Madsen A, Haagensen JAJ, De Rudder C, Simões FB, Molin S, Johansen HK. Establishment of a 3D-Printed Tissue-on-a-Chip Model for Live Imaging of Bacterial Infections. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1476:69-85. [PMID: 39825043 DOI: 10.1007/5584_2024_829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Abstract
Despite advances in healthcare, bacterial pathogens remain a severe global health threat, exacerbated by rising antibiotic resistance. Lower respiratory tract infections, with their high death toll, are of particular concern. Accurately replicating host-pathogen interactions in laboratory models is crucial for understanding these diseases and evaluating new therapies. In this communication, we briefly present existing in vivo models for cystic fibrosis and their limitations in replicating human respiratory infections. We then present a novel, 3D-printed, cytocompatible microfluidic lung-on-a-chip device, designed to simulate the human lung environment, and with possible use in recapitulating general infectious diseases.Our device enables the colonisation of fully differentiated lung epithelia at an air-liquid interface with Pseudomonas aeruginosa, a key pathogen in many severe infections. By incorporating dynamic flow, we replicate the clearance of bacterial toxins and planktonic cells, simulating both acute and chronic infections. This platform supports real-time monitoring of therapeutic interventions, mimics repeated drug administrations as in clinical settings, and facilitates the analysis of colony-forming units and cytokine secretion over time. Our findings indicate that this lung-on-a-chip device has significant potential for advancing infectious disease research, in optimizing treatment strategies against infections and in developing novel treatments.
Collapse
Affiliation(s)
- Albert Fuglsang-Madsen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs, Lyngby, Denmark
| | - Janus Anders Juul Haagensen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs, Lyngby, Denmark
| | - Charlotte De Rudder
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs, Lyngby, Denmark
- Present Address: University of Luxembourg, Centre for Systems Biomedicine, Luxembourg, Belgium
| | - Filipa Bica Simões
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs, Lyngby, Denmark
| | - Søren Molin
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs, Lyngby, Denmark
| | - Helle Krogh Johansen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark.
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
5
|
Rout-Pitt N, Boog B, McCarron A, Reyne N, Parsons D, Donnelley M. Insights into epithelial-mesenchymal transition from cystic fibrosis rat models. J Cyst Fibros 2025; 24:149-156. [PMID: 39266334 DOI: 10.1016/j.jcf.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/08/2024] [Accepted: 09/03/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND Molecular pathways contributing to Cystic Fibrosis pathogenesis remain poorly understood. Epithelial-mesenchymal transition (EMT) has been recently observed in CF lungs and certain CFTR mutation classes may be more susceptible than others. No investigations of EMT processes in CF animal models have been reported. AIM The aim of this study was to assess the expression of EMT-related markers in Phe508del and knockout (CFTR-KO) rat lung tissue and tracheal-derived basal epithelial stem cells, to determine whether CFTR dysfunction can produce an EMT state. METHOD The expression of EMT-related markers in lung tissue and cultured tracheal basal epithelial stem cells from wildtype (WT), Phe508del, and CFTR-KO rats were assessed using qPCR and Western blots. Cell responses were evaluated in the presence of Rho-associated protein kinase (ROCK) inhibitor Y27632, which blocks EMT-pathways, or after treatment with TGFβ1 to stimulate EMT. RESULTS Different gene expression profiles were observed between Phe508del and CFTR-KO rat models compared to wild type. There was lower expression of type 1 collagen in KO lungs and primary cell cultures, while Phe508del lungs and cells had higher expression, particularly when treated with TGFβ1. The addition of Y27632 rescued changes in EMT related genes in Phe508del cells but not in KO cells. CONCLUSION Our findings show the first evidence of upregulated EMT pathways in the lungs and airway cells of any CF animal model. Differences in the regulation of the EMT genes and proteins in the Phe508del and CFTR-KO cells suggest that the signalling pathways underlying EMT are CFTR mutation dependent.
Collapse
Affiliation(s)
- Nathan Rout-Pitt
- Robinson Research Institute, University of Adelaide, South Australia; Adelaide Medical School, University of Adelaide, South Australia; Department of Respiratory and Sleep Medicine, Women's and Children's Hospital, South Australia.
| | - Bernadette Boog
- Robinson Research Institute, University of Adelaide, South Australia; Adelaide Medical School, University of Adelaide, South Australia; Department of Respiratory and Sleep Medicine, Women's and Children's Hospital, South Australia.
| | - Alexandra McCarron
- Robinson Research Institute, University of Adelaide, South Australia; Adelaide Medical School, University of Adelaide, South Australia; Department of Respiratory and Sleep Medicine, Women's and Children's Hospital, South Australia.
| | - Nicole Reyne
- Robinson Research Institute, University of Adelaide, South Australia; Adelaide Medical School, University of Adelaide, South Australia; Department of Respiratory and Sleep Medicine, Women's and Children's Hospital, South Australia.
| | - David Parsons
- Robinson Research Institute, University of Adelaide, South Australia; Adelaide Medical School, University of Adelaide, South Australia; Department of Respiratory and Sleep Medicine, Women's and Children's Hospital, South Australia.
| | - Martin Donnelley
- Robinson Research Institute, University of Adelaide, South Australia; Adelaide Medical School, University of Adelaide, South Australia; Department of Respiratory and Sleep Medicine, Women's and Children's Hospital, South Australia.
| |
Collapse
|
6
|
Mohammed SM, Bone RN, Aquino JDC, Mirmira RG, Evans-Molina C, Ismail HM. Changes in immunofluorescence staining during islet regeneration in a cystic fibrosis-related diabetes (CFRD) ferret model. Islets 2024; 16:2436696. [PMID: 39641365 PMCID: PMC11633224 DOI: 10.1080/19382014.2024.2436696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/05/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Knockout (KO) ferrets with the cystic fibrosis transmembrane conductance regulator (CFTR) exhibit distinct phases of dysglycemia and pancreatic remodeling prior to cystic fibrosis-related diabetes (CFRD) development. Following normoglycemia during the first month of life (Phase l), hyperglycemia occurs during the subsequent 2 months (Phase Il) with decreased islet mass, followed by a period of near normoglycemia (Phase Ill) in which the islets regenerate. We aimed to characterize islet hormone expression patterns across these Phases. METHODS Immunofluorescence staining per islet area was performed to characterize islet hormone expression patterns in age matched CFTR KO and wild type (WT) ferrets, focusing on the first three phases. RESULTS In Phase I, insulin staining intensity was higher in CF (p < 0.01) than WT but decreased in Phase III (p < 0.0001). Glucagon was lower in CF during Phases I and increased in Phase III, while proinsulin decreased (p < 0.0001) Phases II and III. CF sections showed lower proinsulin-to-insulin ratio in Phase I (p < 0.01) and in Phase III (p < 0.05) compared to WT. Conversely, glucagon-to-insulin ratio was lower in CF in Phase I (p < 0.0001) but increased in Phase III (p < 0.0001). Mender's coefficient overlap showed higher overlap of insulin over proinsulin in CF sections in Phase II (p < 0.001) and Phase III (p < 0.0001) compared to WT. Mender's coefficient rate was higher in CF sections during Phase II (p < 0.001). CONCLUSION CF ferret islets revealed significant immunofluorescent staining changes compared to WT during various phases of disease, providing insights into CRFD pathophysiology.
Collapse
Affiliation(s)
- Sawash M. Mohammed
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Robert N. Bone
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jacqueline Del Carmen Aquino
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Raghavendra G. Mirmira
- Kovler Diabetes Center and the Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Carmella Evans-Molina
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Heba M. Ismail
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
7
|
Feo E, Gale PA. Therapeutic synthetic anion transporters. Curr Opin Chem Biol 2024; 83:102535. [PMID: 39341172 DOI: 10.1016/j.cbpa.2024.102535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/02/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024]
Abstract
This short review highlights recent examples of small-molecule anion transporters reported in the literature that have potentially useful biological activity. This includes anionophores with antibiotic or antifungal activity, anticancer activity, or the potential to treat channelopathies such as cystic fibrosis. Additionally selective and targeted anion transporters are also discussed.
Collapse
Affiliation(s)
- Elba Feo
- School of Physical and Mathematical Sciences, Faculty of Science, University of Technology Sydney, Ultimo 2007, NSW, Australia
| | - Philip A Gale
- School of Physical and Mathematical Sciences, Faculty of Science, University of Technology Sydney, Ultimo 2007, NSW, Australia.
| |
Collapse
|
8
|
Hinata D, Fukuda R, Ishiguro H, Kamada Y, Okiyoneda T. Enhanced CFTR modulator efficacy in ΔF508 CFTR mouse organoids by ablation of RFFL ubiquitin ligase. Biochem Biophys Res Commun 2024; 733:150433. [PMID: 39047427 DOI: 10.1016/j.bbrc.2024.150433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
The most common CFTR mutant in cystic fibrosis (CF), ΔF508 CFTR, is eliminated by ubiquitination even in the presence of CF drugs, reducing their therapeutic efficacy. RFFL is one of the ubiquitin ligases that remove ΔF508 CFTR from the cell surface despite treatment with the triple combination of CFTR modulators (TEZ/ELX/IVA) used clinically. Although RFFL knockdown has been shown to enhance the efficacy of TEZ/ELX/IVA in cell culture models, its impact in mouse models has not been evaluated. Here, we demonstrate that RFFL ablation significantly improves the effect of TEZ/ELX/IVA, resulting in enhanced function of ΔF508 CFTR in mouse organoids. Since RFFL knockout mice showed no significant abnormalities, our findings support RFFL inhibition as a promising strategy to improve CFtreatment.
Collapse
Affiliation(s)
- Daichi Hinata
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, 669-1330, Hyogo, Japan
| | - Ryosuke Fukuda
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, 669-1330, Hyogo, Japan
| | - Hiroshi Ishiguro
- Department of Human Nutrition, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuka Kamada
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, 669-1330, Hyogo, Japan
| | - Tsukasa Okiyoneda
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, 669-1330, Hyogo, Japan.
| |
Collapse
|
9
|
Liang X, Hou X, Chen YE, Jin JP, Zhang K, Xu J. Endocrine pathology in young rabbits with cystic fibrosis. EGASTROENTEROLOGY 2024; 2:e100102. [PMID: 39605883 PMCID: PMC11594368 DOI: 10.1136/egastro-2024-100102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Background Cystic fibrosis (CF) is an autosomal recessive genetic disorder caused by loss-of-function mutations in the CF transmembrane conductance regulator gene. CF-related pancreatic lesions are known to cause exocrine dysfunctions such as pancreatic insufficiency, and endocrine dysfunctions, including CF related diabetes. In a previous study, we generated CF rabbits using CRISPR/Cas9-mediated gene editing. Methods CF rabbits were subjected to histological analysis with a focus on CF associated pancreatic lesions. Endocrine function related assays were conducted to evaluate CF related pancreatic endocrine disorders in these animals. Results We report that CF rabbits develop spontaneous pancreatic lesions at a young age, characterised by pancreatic inflammation and fibrosis, vacuolar degeneration, epithelium mucus-secretory cell metaplasia, and pancreatic duct dilation. The size of the pancreatic islets in the CF rabbits is significantly smaller than that of the wild type animals. Consistent with these pathological findings, young CF rabbits exhibited signs of pancreatic endocrine related disorders such as lower insulin levels and impaired glucose metabolism. Conclusions Our results suggest that the CF rabbit could serve as a valuable model for translational research on CF related pancreatic endocrine dysfunction.
Collapse
Affiliation(s)
- Xiubin Liang
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Xia Hou
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Y. Eugene Chen
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Jian-Ping Jin
- Department of Physiology and Biophysics, University of Illinois at Chicago College of Medicine, Chicago, IL, 60612, USA
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Jie Xu
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| |
Collapse
|
10
|
McCarron A, Ling KM, Montgomery ST, Martinovich KM, Cmielewski P, Rout-Pitt N, Kicic A, Parsons D, Donnelley M. Lentiviral vector gene therapy and CFTR modulators show comparable effectiveness in cystic fibrosis rat airway models. Gene Ther 2024; 31:553-559. [PMID: 39183346 DOI: 10.1038/s41434-024-00480-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 08/27/2024]
Abstract
Mutation-agnostic treatments such as airway gene therapy have the potential to treat any individual with cystic fibrosis (CF), irrespective of their CF transmembrane conductance regulator (CFTR) gene variants. The aim of this study was to employ two CF rat models, Phe508del and CFTR knockout (KO), to assess the comparative effectiveness of CFTR modulators and lentiviral (LV) vector-mediated gene therapy. Cells were isolated from the tracheas of rats and used to establish air-liquid interface (ALI) cultures. Phe508del rat ALIs were treated with the modulator combination, elexacaftor-tezacaftor-ivacaftor (ETI), and separate groups of Phe508del and KO tracheal epithelial cells were treated with LV-CFTR followed by differentiation at ALI. Ussing chamber measurements were performed to assess CFTR function. ETI-treated Phe508del ALI cultures demonstrated CFTR function that was 59% of wild-type level, while gene-addition therapy restored Phe508del to 68% and KO to 47% of wild-type level, respectively. Our findings show that rat Phe508del-CFTR protein can be successfully rescued with ETI treatment, and that CFTR gene-addition therapy provides significant CFTR correction in Phe508del and KO ALI cultures to levels that were comparable to ETI. These findings highlight the potential of an LV vector-based gene therapy for the treatment of CF lung disease.
Collapse
Affiliation(s)
- Alexandra McCarron
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia.
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia.
- Department of Respiratory and Sleep Medicine, Women's and Children's Hospital, North Adelaide, SA, Australia.
| | - Kak-Ming Ling
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, Nedlands, WA, Australia
- School of Population Health, Curtin University, Bentley, WA, Australia
| | - Samuel T Montgomery
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, Nedlands, WA, Australia
- School of Population Health, Curtin University, Bentley, WA, Australia
| | - Kelly M Martinovich
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, Nedlands, WA, Australia
- Centre for Child Health Research, University of Western Australia, Crawley, WA, Australia
| | - Patricia Cmielewski
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
- Department of Respiratory and Sleep Medicine, Women's and Children's Hospital, North Adelaide, SA, Australia
| | - Nathan Rout-Pitt
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
- Department of Respiratory and Sleep Medicine, Women's and Children's Hospital, North Adelaide, SA, Australia
| | - Anthony Kicic
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, Nedlands, WA, Australia
- School of Population Health, Curtin University, Bentley, WA, Australia
- Department of Respiratory and Sleep, Perth Children's Hospital, Nedlands, WA, Australia
- Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, The University of Western Australia and Harry Perkins Institute of Medical Research, Nedlands, WA, Australia
| | - David Parsons
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
- Department of Respiratory and Sleep Medicine, Women's and Children's Hospital, North Adelaide, SA, Australia
| | - Martin Donnelley
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
- Department of Respiratory and Sleep Medicine, Women's and Children's Hospital, North Adelaide, SA, Australia
| |
Collapse
|
11
|
Vaillancourt M, Aguilar D, Fernandes SE, Jorth PA. A chronic Pseudomonas aeruginosa mouse lung infection modeling the pathophysiology and inflammation of human cystic fibrosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.07.617039. [PMID: 39416002 PMCID: PMC11482824 DOI: 10.1101/2024.10.07.617039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Investigation of chronic cystic fibrosis (CF) lung infections has been limited by a lack of murine models that reproduce obstructive lung pathology, chronicity of bacterial infections, and complex inflammation in human CF lung pathology. Three different approaches have been used separately to address these limitations, including using transgenic Scnn1b-Tg mice overexpressing a lung epithelial sodium channel to mimic the mucus-rich and hyperinflammatory CF lung environment, using synthetic CF sputum medium (SCFM) in an acute infection to induce bacterial phenotypes consistent with human CF, or using agar beads to promote chronic infections. Here, we combine these three models to establish a chronic Pseudomonas aeruginosa lung infection model using SCFM agar beads and Scnn1b-Tg mice (SCFM-Tg-mice) to recapitulate nutrients, mucus, and inflammation characteristic of the human CF lung environment. Like people with CF, SCFM-Tg-mice failed to clear bacterial infections. Lung function measurements showed that infected SCFM-Tg-mice had decreased inspiratory capacity and compliance, elevated airway resistance, and significantly reduced FVC and FEV0.1. Using spectral flow cytometry and multiplex cytokine arrays we show that, like people with CF, SCFM-Tg-mice developed inflammation characterized by eosinophil infiltration and Th2 lymphocytic cytokine responses. Chronically infected SCFM-Tg-mice developed an exacerbated mix of innate and Th1, Th2, and Th17-mediated inflammation, causing higher lung cellular damage, and elevated numbers of unusual Siglec F+ neutrophils. Thus, SCFM-Tg-mice represents a powerful tool to investigate bacterial pathogenesis and potential treatments for chronic CF lung infections and reveal a potential role for Siglec F+ neutrophils in CF inflammation.
Collapse
Affiliation(s)
- Mylene Vaillancourt
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Diane Aguilar
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Sheryl E. Fernandes
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Peter A. Jorth
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
12
|
Shull LM, Wolter DJ, Kunkle DE, Legg KA, Giedroc DP, Skaar EP, Hoffman LR, Reniere ML. Analysis of genetic requirements and nutrient availability for Staphylococcus aureus growth in cystic fibrosis sputum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.24.614743. [PMID: 39386554 PMCID: PMC11463553 DOI: 10.1101/2024.09.24.614743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Staphylococcus aureus is one of the most common pathogens isolated from the lungs of people with cystic fibrosis (CF), but little is known about its ability to colonize this niche. We performed a Tn-seq screen to identify genes necessary for S. aureus growth in media prepared from ex vivo CF sputum. We identified 19 genes that were required for growth in all sputum media tested and dozens more that were required for growth in at least one sputum medium. Depleted mutants of interest included insertions in many genes important for surviving metal starvation as well as the primary regulator of cysteine metabolism cymR. To investigate the mechanisms by which these genes contribute to S. aureus growth in sputum, we quantified low-molecular-weight thiols, nutrient transition metals, and the host metal-sequestration protein calprotectin in sputum from 11 individuals with CF. In all samples, the abundance of calprotectin exceeded nutrient metal concentration, explaining the S. aureus requirement for metal-starvation genes. Further, all samples contain potentially toxic quantities of cysteine and sufficient glutathione to satisfy the organic sulfur requirements of S. aureus. Deletion of the cysteine importer genes tcyA and tcyP in the ∆cymR background restored growth to wild-type levels in CF sputum, suggesting that the mechanism by which cymR is required for growth in sputum is to prevent uncontrolled import of cysteine or cystine from this environment. Overall, this work demonstrates that calprotectin and cysteine limit S. aureus growth in CF sputum.
Collapse
Affiliation(s)
- Lauren M. Shull
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Daniel J. Wolter
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, USA
| | - Dillon E. Kunkle
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Katherine A. Legg
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA
| | - David P. Giedroc
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana, USA
| | - Eric P. Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Lucas R. Hoffman
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, USA
| | - Michelle L. Reniere
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
13
|
Reyne N, Smith R, Cmielewski P, Eikelis N, Lawrence M, Louise J, Pirakalathanan P, Parsons D, Donnelley M. Assessment of respiratory mechanics and X-ray velocimetry functional imaging in two cystic fibrosis rat models. Sci Rep 2024; 14:21646. [PMID: 39284856 PMCID: PMC11405763 DOI: 10.1038/s41598-024-71632-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/28/2024] [Indexed: 09/20/2024] Open
Abstract
Two cystic fibrosis (CF) rat models, one carrying the common Phe508del mutation and the other a nonsense cystic fibrosis transmembrane conductance regulator (CFTR) mutation (knockout) were previously characterised. Although relevant CFTR mRNA reductions were present in the lung, no overt CF lung disease was observed. This study used flexiVent lung mechanic assessment and regional ventilation assessment via X-ray velocimetry (XV) functional imaging to assess the lung phenotype in both models. To determine the sensitivity of XV regional ventilation imaging, the effect of a localised physical obstruction (delivery of agar beads to part of the lungs) on lung ventilation was examined. At baseline, Phe508del and knockout CF rats had a lower inspiratory capacity, total respiratory system compliance, and static compliance than wildtype rats. Following agar bead delivery all XV ventilation parameters were altered, with substantial increases in poorly ventilated regions and ventilation heterogeneity. XV ventilation maps accurately identified locations of bead-induced airflow changes. Despite unremarkable lung histopathology, this study indicated that CF rats display altered respiratory mechanics, with CF rats needing to exert additional effort to expand and deflate their lungs due to increased stiffness. This study demonstrated the utility of XV imaging providing spatial lung ventilation information.
Collapse
Affiliation(s)
- Nicole Reyne
- Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia.
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia.
- Respiratory and Sleep Medicine, Women's and Children's Hospital, Adelaide, SA, Australia.
| | - Ronan Smith
- Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
- Respiratory and Sleep Medicine, Women's and Children's Hospital, Adelaide, SA, Australia
| | - Patricia Cmielewski
- Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
- Respiratory and Sleep Medicine, Women's and Children's Hospital, Adelaide, SA, Australia
| | | | - Mark Lawrence
- SCIREQ Scientific Respiratory Equipment Inc, Montreal, QC, Canada
| | - Jennie Louise
- Biostatistics Unit, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | | | - David Parsons
- Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
- Respiratory and Sleep Medicine, Women's and Children's Hospital, Adelaide, SA, Australia
| | - Martin Donnelley
- Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
- Respiratory and Sleep Medicine, Women's and Children's Hospital, Adelaide, SA, Australia
| |
Collapse
|
14
|
Martello S, Ueda Y, Bylicky MA, Pinney J, Dalo J, Scott KMK, Aryankalayil MJ, Coleman CN. Developing an RNA Signature for Radiation Injury Using a Human Liver-on-a-Chip Model. Radiat Res 2024; 202:489-502. [PMID: 39089691 DOI: 10.1667/rade-24-00047.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/14/2024] [Indexed: 08/04/2024]
Abstract
Radiation exposure in a therapeutic setting or during a mass casualty event requires improved medical triaging, where the time to delivery and quantity of medical countermeasures are critical to survival. Radiation-induced liver injury (RILI) and fibrosis can lead to death, but clinical symptoms manifest late in disease pathogenesis and there is no simple diagnostic test to determine RILI. Because animal models do not completely recapitulate clinical symptoms, we used a human liver-on-a-chip model to identify biomarkers of RILI. The goals of this study were: 1. to establish a microfluidic liver-on-a-chip device as a physiologically relevant model for studying radiation-induced tissue damage; and 2. to determine acute changes in RNA expression and biological pathway regulation that identify potential biomarkers and mechanisms of RILI. To model functional human liver tissue, we used the Emulate organ-on-a-chip system to establish a co-culture of human liver sinusoidal endothelial cells (LSECs) and hepatocytes. The chips were subject to 0 Gy (sham), 1 Gy, 4 Gy, or 10 Gy irradiation and cells were collected at 6 h, 24 h, or 7 days postirradiation for RNA isolation. To identify significant expression changes in messenger RNA (mRNA) and long non-coding RNA (lncRNA), we performed RNA sequencing (RNASeq) to conduct whole transcriptome analysis. We found distinct differences in expression patterns by time, dose, and cell type, with higher doses of radiation resulting in the most pronounced expression changes, as anticipated. Ingenuity Pathway Analysis indicated significant inhibition of the cell viability pathway 24 h after 10 Gy exposure in LSECs but activation of this pathway in hepatocytes, highlighting differences between cell types despite receiving the same radiation dose. Overall, hepatocytes showed fewer gene expression changes in response to radiation, with only 3 statistically significant differentially expressed genes at 7 days: APOBEC3H, PTCHD4, and GDNF. We further highlight lncRNA of interest including DINO and PURPL in hepatocytes and TMPO-AS1 and PRC-AS1 in LSECs, identifying potential biomarkers of RILI. We demonstrated the potential utility of a human liver-on-a-chip model with primary cells to model organ-specific radiation injury, establishing a model for radiation medical countermeasure development and further biomarker validation. Furthermore, we identified biomarkers that differentiate radiation dose and defined cell-specific targets for potential radiation mitigation therapies.
Collapse
Affiliation(s)
- Shannon Martello
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Yuki Ueda
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Michelle A Bylicky
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | | | - Juan Dalo
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Kevin M K Scott
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Molykutty J Aryankalayil
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - C Norman Coleman
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
- Radiation Research Program, National Cancer Institute, National Institutes of Health, Rockville, Maryland 20850
| |
Collapse
|
15
|
Gorskaya AV, Vasilev DS. Problems in the Diagnosis of Dysfunctions of the Olfactory Analyzer in Laboratory Animals Based on Behavioral and Electrophysiological Study Methods. NEUROSCIENCE AND BEHAVIORAL PHYSIOLOGY 2024; 54:990-1002. [DOI: 10.1007/s11055-024-01702-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2025]
|
16
|
Liu F, Kaplan AL, Levring J, Einsiedel J, Tiedt S, Distler K, Omattage NS, Kondratov IS, Moroz YS, Pietz HL, Irwin JJ, Gmeiner P, Shoichet BK, Chen J. Structure-based discovery of CFTR potentiators and inhibitors. Cell 2024; 187:3712-3725.e34. [PMID: 38810646 PMCID: PMC11262615 DOI: 10.1016/j.cell.2024.04.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 03/19/2024] [Accepted: 04/29/2024] [Indexed: 05/31/2024]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is a crucial ion channel whose loss of function leads to cystic fibrosis, whereas its hyperactivation leads to secretory diarrhea. Small molecules that improve CFTR folding (correctors) or function (potentiators) are clinically available. However, the only potentiator, ivacaftor, has suboptimal pharmacokinetics and inhibitors have yet to be clinically developed. Here, we combine molecular docking, electrophysiology, cryo-EM, and medicinal chemistry to identify CFTR modulators. We docked ∼155 million molecules into the potentiator site on CFTR, synthesized 53 test ligands, and used structure-based optimization to identify candidate modulators. This approach uncovered mid-nanomolar potentiators, as well as inhibitors, that bind to the same allosteric site. These molecules represent potential leads for the development of more effective drugs for cystic fibrosis and secretory diarrhea, demonstrating the feasibility of large-scale docking for ion channel drug discovery.
Collapse
Affiliation(s)
- Fangyu Liu
- Laboratory of Membrane Biology and Biophysics, The Rockefeller University, New York, NY 10065, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Anat Levit Kaplan
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jesper Levring
- Laboratory of Membrane Biology and Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - Jürgen Einsiedel
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander University Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, D-91058 Erlangen, Germany
| | - Stephanie Tiedt
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander University Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, D-91058 Erlangen, Germany
| | - Katharina Distler
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander University Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, D-91058 Erlangen, Germany
| | - Natalie S Omattage
- Laboratory of Membrane Biology and Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - Ivan S Kondratov
- Enamine Ltd., Chervonotkatska Street 78, 02094 Kyïv, Ukraine; V.P. Kukhar Institute of Bioorganic Chemistry & Petrochemistry, National Academy of Sciences of Ukraine, Murmanska Street 1, 02660 Kyïv, Ukraine
| | - Yurii S Moroz
- Chemspace, Chervonotkatska Street 85, 02094 Kyïv, Ukraine; Taras Shevchenko National University of Kyïv, Volodymyrska Street 60, 01601 Kyïv, Ukraine
| | - Harlan L Pietz
- Laboratory of Membrane Biology and Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - John J Irwin
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander University Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, D-91058 Erlangen, Germany.
| | - Brian K Shoichet
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA.
| | - Jue Chen
- Laboratory of Membrane Biology and Biophysics, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
17
|
Liu A, Chokshi M, Nguyen N, Powell RT, Stephan CC, Bao G. Cystic fibrosis cell models for high-throughput analysis and drug screening. J Cyst Fibros 2024; 23:716-724. [PMID: 39060183 DOI: 10.1016/j.jcf.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/24/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024]
Abstract
Cystic fibrosis (CF) is a single-gene disorder that affects the lung, digestive system, and other organs. Mutations in the CF transmembrane conductance regulator (CFTR) gene are classified into several classes based on their pathogenic mechanism and clinical severity. The distinct and heterogeneous clinical behavior of each CF class and the respective CFTR mutations have made the development of a durable therapy for all CF patients extremely challenging. While the FDA-approved drug elexacaftor/tezacaftor/ivacaftor (Trikafta) benefits CF patients carrying at least one F508del mutation in CFTR, it's not effective for many CF patients carrying a variety of other CFTR mutations. To establish a better understanding of CF pathophysiology and aid the development of novel therapeutics for different classes of CF patients, we have created four CF-mutation-specific cell models that recapitulate respectively four distinct CF classes and disease phenotypes, as confirmed by sequencing, CFTR mRNA and protein quantification. The channel function of each cell model was first validated using a well-established FLIPR (Fluorescent Imaging Plate Reader) membrane potential assay and then assessed by the YFP-based functional assay. Integrated with a halide-sensitive fluorescent reporter, these CF cell models can be used for high-throughput drug screening, as demonstrated by a proof-of-concept study using Trikafta. These cell models have the potential to advance CFTR mutation-specific therapies thus addressing the unmet needs of CF patients with rare mutations.
Collapse
Affiliation(s)
- Aidi Liu
- Department of Bioengineering, Rice University, Houston, Texas 77030, USA
| | - Mithil Chokshi
- Department of Bioengineering, Rice University, Houston, Texas 77030, USA
| | - Nghi Nguyen
- Institute of Biosciences and Technology, Texas A&M University, Houston, Texas, 77030, USA
| | - Reid T Powell
- Institute of Biosciences and Technology, Texas A&M University, Houston, Texas, 77030, USA
| | - Clifford C Stephan
- Institute of Biosciences and Technology, Texas A&M University, Houston, Texas, 77030, USA
| | - Gang Bao
- Department of Bioengineering, Rice University, Houston, Texas 77030, USA.
| |
Collapse
|
18
|
Bényei ÉB, Nazeer RR, Askenasy I, Mancini L, Ho PM, Sivarajan GAC, Swain JEV, Welch M. The past, present and future of polymicrobial infection research: Modelling, eavesdropping, terraforming and other stories. Adv Microb Physiol 2024; 85:259-323. [PMID: 39059822 DOI: 10.1016/bs.ampbs.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Over the last two centuries, great advances have been made in microbiology as a discipline. Much of this progress has come about as a consequence of studying the growth and physiology of individual microbial species in well-defined laboratory media; so-called "axenic growth". However, in the real world, microbes rarely live in such "splendid isolation" (to paraphrase Foster) and more often-than-not, share the niche with a plethora of co-habitants. The resulting interactions between species (and even between kingdoms) are only very poorly understood, both on a theoretical and experimental level. Nevertheless, the last few years have seen significant progress, and in this review, we assess the importance of polymicrobial infections, and show how improved experimental traction is advancing our understanding of these. A particular focus is on developments that are allowing us to capture the key features of polymicrobial infection scenarios, especially as those associated with the human airways (both healthy and diseased).
Collapse
Affiliation(s)
| | | | - Isabel Askenasy
- Department of Biochemistry, Tennis Court Road, Cambridge, United Kingdom
| | - Leonardo Mancini
- Department of Biochemistry, Tennis Court Road, Cambridge, United Kingdom
| | - Pok-Man Ho
- Department of Biochemistry, Tennis Court Road, Cambridge, United Kingdom
| | | | - Jemima E V Swain
- Department of Biochemistry, Tennis Court Road, Cambridge, United Kingdom
| | - Martin Welch
- Department of Biochemistry, Tennis Court Road, Cambridge, United Kingdom.
| |
Collapse
|
19
|
Han X, Li D, Zhu Y, Schneider-Futschik EK. Recommended Tool Compounds for Modifying the Cystic Fibrosis Transmembrane Conductance Regulator Channel Variants. ACS Pharmacol Transl Sci 2024; 7:933-950. [PMID: 38633590 PMCID: PMC11019735 DOI: 10.1021/acsptsci.3c00362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 04/19/2024]
Abstract
Cystic fibrosis (CF) is a genetic disorder arising from variations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, leading to multiple organ system defects. CFTR tool compounds are molecules that can modify the activity of the CFTR channel. Especially, patients that are currently not able to benefit from approved CFTR modulators, such as patients with rare CFTR variants, benefit from further research in discovering novel tools to modulate CFTR. This Review explores the development and classification of CFTR tool compounds, including CFTR blockers (CFTRinh-172, GlyH-101), potentiators (VRT-532, Genistein), correctors (VRT-325, Corr-4a), and other approved and unapproved modulators, with detailed descriptions and discussions for each compound. The challenges and future directions in targeting rare variants and optimizing drug delivery, and the potential synergistic effects in combination therapies are outlined. CFTR modulation holds promise not only for CF treatment but also for generating CF models that contribute to CF research and potentially treating other diseases such as secretory diarrhea. Therefore, continued research on CFTR tool compounds is critical.
Collapse
Affiliation(s)
- XiaoXuan Han
- Department of Biochemistry & Pharmacology,
School of Biomedical Sciences, Faculty of Medicine, Dentistry and
Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Danni Li
- Department of Biochemistry & Pharmacology,
School of Biomedical Sciences, Faculty of Medicine, Dentistry and
Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Yimin Zhu
- Department of Biochemistry & Pharmacology,
School of Biomedical Sciences, Faculty of Medicine, Dentistry and
Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Elena K. Schneider-Futschik
- Department of Biochemistry & Pharmacology,
School of Biomedical Sciences, Faculty of Medicine, Dentistry and
Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
20
|
Liu F, Kaplan AL, Levring J, Einsiedel J, Tiedt S, Distler K, Omattage NS, Kondratov IS, Moroz YS, Pietz HL, Irwin JJ, Gmeiner P, Shoichet BK, Chen J. Structure-based discovery of CFTR potentiators and inhibitors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.09.557002. [PMID: 37745391 PMCID: PMC10515777 DOI: 10.1101/2023.09.09.557002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is a crucial ion channel whose loss of function leads to cystic fibrosis, while its hyperactivation leads to secretory diarrhea. Small molecules that improve CFTR folding (correctors) or function (potentiators) are clinically available. However, the only potentiator, ivacaftor, has suboptimal pharmacokinetics and inhibitors have yet to be clinically developed. Here we combine molecular docking, electrophysiology, cryo-EM, and medicinal chemistry to identify novel CFTR modulators. We docked ~155 million molecules into the potentiator site on CFTR, synthesized 53 test ligands, and used structure-based optimization to identify candidate modulators. This approach uncovered novel mid-nanomolar potentiators as well as inhibitors that bind to the same allosteric site. These molecules represent potential leads for the development of more effective drugs for cystic fibrosis and secretory diarrhea, demonstrating the feasibility of large-scale docking for ion channel drug discovery.
Collapse
Affiliation(s)
- Fangyu Liu
- Laboratory of Membrane Biology and Biophysics, The Rockefeller University, New York, NY 10065, USA
- Dept. of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco CA 94143, USA
| | - Anat Levit Kaplan
- Dept. of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco CA 94143, USA
| | - Jesper Levring
- Laboratory of Membrane Biology and Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - Jürgen Einsiedel
- Dept. of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander University Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, D-91058 Erlangen, Germany
| | - Stephanie Tiedt
- Dept. of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander University Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, D-91058 Erlangen, Germany
| | - Katharina Distler
- Dept. of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander University Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, D-91058 Erlangen, Germany
| | - Natalie S Omattage
- Laboratory of Membrane Biology and Biophysics, The Rockefeller University, New York, NY 10065, USA
- Current address: Department of Infectious Diseases, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Ivan S Kondratov
- Enamine Ltd. (www.enamine.net), Chervonotkatska Street 78, Kyїv 02094, Ukraine
- V.P. Kukhar Institute of Bioorganic Chemistry & Petrochemistry, National Academy of Sciences of Ukraine, Murmanska Street 1, Kyїv 02660, Ukraine
| | - Yurii S Moroz
- Chemspace (www.chem-space.com), Chervonotkatska Street 85, Kyїv 02094, Ukraine
- Taras Shevchenko National University of Kyїv, Volodymyrska Street 60, Kyїv 01601, Ukraine
| | - Harlan L Pietz
- Laboratory of Membrane Biology and Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - John J Irwin
- Dept. of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco CA 94143, USA
| | - Peter Gmeiner
- Dept. of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander University Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, D-91058 Erlangen, Germany
| | - Brian K Shoichet
- Dept. of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco CA 94143, USA
| | - Jue Chen
- Laboratory of Membrane Biology and Biophysics, The Rockefeller University, New York, NY 10065, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| |
Collapse
|
21
|
Fröhlich E. Animals in Respiratory Research. Int J Mol Sci 2024; 25:2903. [PMID: 38474149 DOI: 10.3390/ijms25052903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/20/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
The respiratory barrier, a thin epithelial barrier that separates the interior of the human body from the environment, is easily damaged by toxicants, and chronic respiratory diseases are common. It also allows the permeation of drugs for topical treatment. Animal experimentation is used to train medical technicians, evaluate toxicants, and develop inhaled formulations. Species differences in the architecture of the respiratory tract explain why some species are better at predicting human toxicity than others. Some species are useful as disease models. This review describes the anatomical differences between the human and mammalian lungs and lists the characteristics of currently used mammalian models for the most relevant chronic respiratory diseases (asthma, chronic obstructive pulmonary disease, cystic fibrosis, pulmonary hypertension, pulmonary fibrosis, and tuberculosis). The generation of animal models is not easy because they do not develop these diseases spontaneously. Mouse models are common, but other species are more appropriate for some diseases. Zebrafish and fruit flies can help study immunological aspects. It is expected that combinations of in silico, in vitro, and in vivo (mammalian and invertebrate) models will be used in the future for drug development.
Collapse
Affiliation(s)
- Eleonore Fröhlich
- Center for Medical Research, Medical University of Graz, 8010 Graz, Austria
- Research Center Pharmaceutical Engineering GmbH, 8010 Graz, Austria
| |
Collapse
|
22
|
Borgo C, D’Amore C, Capurro V, Tomati V, Pedemonte N, Bosello Travain V, Salvi M. SUMOylation Inhibition Enhances Protein Transcription under CMV Promoter: A Lesson from a Study with the F508del-CFTR Mutant. Int J Mol Sci 2024; 25:2302. [PMID: 38396982 PMCID: PMC10889535 DOI: 10.3390/ijms25042302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/02/2024] [Accepted: 02/11/2024] [Indexed: 02/25/2024] Open
Abstract
Cystic fibrosis (CF) is a genetic disorder caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR), a selective anion channel expressed in the epithelium of various organs. The most frequent mutation is F508del. This mutation leads to a misfolded CFTR protein quickly degraded via ubiquitination in the endoplasmic reticulum. Although preventing ubiquitination stabilizes the protein, functionality is not restored due to impaired plasma membrane transport. However, inhibiting the ubiquitination process can improve the effectiveness of correctors which act as chemical chaperones, facilitating F508del CFTR trafficking to the plasma membrane. Previous studies indicate a crosstalk between SUMOylation and ubiquitination in the regulation of CFTR. In this study, we investigated the potential of inhibiting SUMOylation to increase the effects of correctors and enhance the rescue of the F508del mutant across various cell models. In the widely used CFBE41o-cell line expressing F508del-CFTR, inhibiting SUMOylation substantially boosted F508del expression, thereby increasing the efficacy of correctors. Interestingly, this outcome did not result from enhanced stability of the mutant channel, but rather from augmented cytomegalovirus (CMV) promoter-mediated gene expression of F508del-CFTR. Notably, CFTR regulated by endogenous promoters in multiple cell lines or patient cells was not influenced by SUMOylation inhibitors.
Collapse
Affiliation(s)
- Christian Borgo
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (C.B.); (C.D.)
| | - Claudio D’Amore
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (C.B.); (C.D.)
| | - Valeria Capurro
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genova, Italy; (V.C.); (V.T.); (N.P.)
| | - Valeria Tomati
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genova, Italy; (V.C.); (V.T.); (N.P.)
| | - Nicoletta Pedemonte
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genova, Italy; (V.C.); (V.T.); (N.P.)
| | | | - Mauro Salvi
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (C.B.); (C.D.)
| |
Collapse
|
23
|
Manzor M, Koutsogiannaki S, DiBlasi M, Schaefers M, Priebe G, Yuki K. Cystic Fibrosis Mice Are Highly Susceptible to Repeated Acute Pseudomonas aeruginosa Pneumonia after Intranasal Inoculation. BIOMED RESEARCH INTERNATIONAL 2024; 2024:4769779. [PMID: 38347907 PMCID: PMC10861279 DOI: 10.1155/2024/4769779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/15/2024]
Abstract
Cystic fibrosis (CF) is a genetic disorder caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) that controls chloride current. A number of different CFTR transgenic mouse lines have been developed and subjected to both acute and chronic infection models. However, prior studies showed no substantial differences in bacterial clearance between CF and non-CF mice after single inoculations. Here, using F508del transgenic CF mice, we examined the role of repeated acute Pseudomonas aeruginosa (PA) infection, with the second inoculation 7 days after the first. We found that CF mice were more susceptible to PA infection than non-CF mice following the second inoculation, with non-CF mice showing better neutrophil recruitment and effector functions. We further investigated the characteristics of lung immune cells using single-cell RNA sequencing, finding that non-CF lung neutrophils had more prominent upregulation of adhesion molecules including intercellular adhesion molecule-1 (ICAM-1) compared to CF lung neutrophils. Although people with CF are often colonized with bacteria and have high numbers of neutrophils in the airways during chronic infection, these data suggest that CF neutrophils have deficient effector functions in the setting of repeated acute infection.
Collapse
Affiliation(s)
- Mariel Manzor
- Department of Anesthesiology, Critical Care and Pain Medicine, Cardiac Anesthesia Division, Boston Children's Hospital, Boston, USA
| | - Sophia Koutsogiannaki
- Department of Anesthesiology, Critical Care and Pain Medicine, Cardiac Anesthesia Division, Boston Children's Hospital, Boston, USA
- Department of Anaesthesia, Harvard Medical School, Boston, USA
- Department of Immunology, Harvard Medical School, Boston, USA
- Broad Institute of MIT and Harvard, Cambridge, USA
| | - Marco DiBlasi
- Department of Anesthesiology, Critical Care and Pain Medicine, Critical Care Division, Boston Children's Hospital, Boston, USA
| | - Matthew Schaefers
- Department of Anaesthesia, Harvard Medical School, Boston, USA
- Department of Anesthesiology, Critical Care and Pain Medicine, Critical Care Division, Boston Children's Hospital, Boston, USA
| | - Gregory Priebe
- Department of Anaesthesia, Harvard Medical School, Boston, USA
- Broad Institute of MIT and Harvard, Cambridge, USA
- Department of Anesthesiology, Critical Care and Pain Medicine, Critical Care Division, Boston Children's Hospital, Boston, USA
- Department of Pediatrics, Division of Infectious Diseases, Boston Children's Hospital, Boston, USA
| | - Koichi Yuki
- Department of Anesthesiology, Critical Care and Pain Medicine, Cardiac Anesthesia Division, Boston Children's Hospital, Boston, USA
- Department of Anaesthesia, Harvard Medical School, Boston, USA
- Department of Immunology, Harvard Medical School, Boston, USA
- Broad Institute of MIT and Harvard, Cambridge, USA
| |
Collapse
|
24
|
Abrami M, Biasin A, Tescione F, Tierno D, Dapas B, Carbone A, Grassi G, Conese M, Di Gioia S, Larobina D, Grassi M. Mucus Structure, Viscoelastic Properties, and Composition in Chronic Respiratory Diseases. Int J Mol Sci 2024; 25:1933. [PMID: 38339210 PMCID: PMC10856136 DOI: 10.3390/ijms25031933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
The respiratory mucus, a viscoelastic gel, effectuates a primary line of the airway defense when operated by the mucociliary clearance. In chronic respiratory diseases (CRDs), such as asthma, chronic obstructive pulmonary disease (COPD), and cystic fibrosis (CF), the mucus is overproduced and its solid content augments, changing its structure and viscoelastic properties and determining a derangement of essential defense mechanisms against opportunistic microbial (virus and bacteria) pathogens. This ensues in damaging of the airways, leading to a vicious cycle of obstruction and infection responsible for the harsh clinical evolution of these CRDs. Here, we review the essential features of normal and pathological mucus (i.e., sputum in CF, COPD, and asthma), i.e., mucin content, structure (mesh size), micro/macro-rheology, pH, and osmotic pressure, ending with the awareness that sputum biomarkers (mucins, inflammatory proteins and peptides, and metabolites) might serve to indicate acute exacerbation and response to therapies. There are some indications that old and novel treatments may change the structure, viscoelastic properties, and biomarker content of sputum; however, a wealth of work is still needed to embrace these measures as correlates of disease severity in association with (or even as substitutes of) pulmonary functional tests.
Collapse
Affiliation(s)
- Michela Abrami
- Department of Engineering and Architecture, University of Trieste, Via Valerio 6/A, I-34127 Trieste, Italy; (M.A.); (A.B.); (M.G.)
| | - Alice Biasin
- Department of Engineering and Architecture, University of Trieste, Via Valerio 6/A, I-34127 Trieste, Italy; (M.A.); (A.B.); (M.G.)
| | - Fabiana Tescione
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, P.le E. Fermi 1, I-80055 Portici, Italy; (F.T.); (D.L.)
| | - Domenico Tierno
- Clinical Department of Medical, Surgical and Health Sciences, Cattinara University Hospital, University of Trieste, Strada di Fiume 447, I-34149 Trieste, Italy; (D.T.); (G.G.)
| | - Barbara Dapas
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, I-34127 Trieste, Italy;
| | - Annalucia Carbone
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 121, I-71122 Foggia, Italy; (A.C.); (S.D.G.)
| | - Gabriele Grassi
- Clinical Department of Medical, Surgical and Health Sciences, Cattinara University Hospital, University of Trieste, Strada di Fiume 447, I-34149 Trieste, Italy; (D.T.); (G.G.)
| | - Massimo Conese
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 121, I-71122 Foggia, Italy; (A.C.); (S.D.G.)
| | - Sante Di Gioia
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 121, I-71122 Foggia, Italy; (A.C.); (S.D.G.)
| | - Domenico Larobina
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, P.le E. Fermi 1, I-80055 Portici, Italy; (F.T.); (D.L.)
| | - Mario Grassi
- Department of Engineering and Architecture, University of Trieste, Via Valerio 6/A, I-34127 Trieste, Italy; (M.A.); (A.B.); (M.G.)
| |
Collapse
|
25
|
Sarkar S, Barnaby R, Nymon AB, Taatjes DJ, Kelley TJ, Stanton BA. Extracellular vesicles secreted by primary human bronchial epithelial cells reduce Pseudomonas aeruginosa burden and inflammation in cystic fibrosis mouse lung. Am J Physiol Lung Cell Mol Physiol 2024; 326:L164-L174. [PMID: 38084406 PMCID: PMC11279747 DOI: 10.1152/ajplung.00253.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/18/2023] [Accepted: 12/05/2023] [Indexed: 01/26/2024] Open
Abstract
Cystic fibrosis (CF) results in a reduction in the volume of airway surface liquid, increased accumulation of viscous mucus, persistent antibiotic-resistant lung infections that cause chronic inflammation, and a decline in lung function. More than 50% of adults with CF are chronically colonized by Pseudomonas aeruginosa (P. aeruginosa), the primary reason for morbidity and mortality in people with CF (pwCF). Although highly effective modulator therapy (HEMT) is an important part of disease management in CF, HEMT does not eliminate P. aeruginosa or lung inflammation. Thus, new treatments are required to reduce lung infection and inflammation in CF. In a previous in vitro study, we demonstrated that primary human bronchial epithelial cells (HBECs) secrete extracellular vesicles (EVs) that block the ability of P. aeruginosa to form biofilms by reducing the abundance of several proteins necessary for biofilm formation as well as enhancing the sensitivity of P. aeruginosa to β-lactam antibiotics. In this study, using a CF mouse model of P. aeruginosa infection, we demonstrate that intratracheal administration of EVs secreted by HBEC reduced P. aeruginosa lung burden and several proinflammatory cytokines including IFN-γ, TNF-α, and MIP-1β in bronchoalveolar lavage fluid (BALF), even in the absence of antibiotics. Moreover, EVs decreased neutrophils in BALF. Thus, EVs secreted by HBEC reduce the lung burden of P. aeruginosa, decrease inflammation, and reduce neutrophils in a CF mouse model. These results suggest that HBEC via the secretion of EVs may play an important role in the immune response to P. aeruginosa lung infection.NEW & NOTEWORTHY Our findings show that extracellular vesicles secreted by primary human bronchial epithelial cells significantly reduce Pseudomonas aeruginosa burden, inflammation, and weight loss in a cystic fibrosis mouse model of infection.
Collapse
Affiliation(s)
- Sharanya Sarkar
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, New Hampshire, United States
| | - Roxanna Barnaby
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, New Hampshire, United States
| | - Amanda B Nymon
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, New Hampshire, United States
| | - Douglas J Taatjes
- Department of Pathology and Laboratory Medicine, Center for Biomedical Shared Resources, Larner College of Medicine, University of Vermont, Burlington, Vermont, United States
| | - Thomas J Kelley
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States
| | - Bruce A Stanton
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, New Hampshire, United States
| |
Collapse
|
26
|
Bernieh A, Bove K, Garcia V, Tiao G, Lazar L, Sathe M, Sanchez J, Gonzalez R, Gonzalez-Gomez I. Intrahepatic Cholangiolitis in Cystic Fibrosis (ICCF): An Under-Appreciated Cause of Persistent Cholestasis in Infancy. Pediatr Dev Pathol 2024; 27:13-22. [PMID: 37801635 DOI: 10.1177/10935266231201935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/08/2023]
Abstract
Liver histology in infants with cystic fibrosis (CF) and persistent cholestasis is seldom reported in detail. We extend previous observation of a distinctive intrahepatic cholangiopathy (ICCF) to 3 additional infants homozygous for CFTR pathological variants and a fourth infant with a heterozygous CFTR variant, summarizing our experience in 10 infants with CFTR variants and persistent cholestasis. Cholangiograms demonstrate abnormal extrahepatic ducts in 2 infants with CF, 1 with uniform dilatation interpreted as a choledochal cyst and the other with narrow patent ducts. Liver histology in 3 CF homozygotes had prominent ductular reaction with a focally destructive cholangiolitis (inflammation of small bile ducts). The CFTR heterozygote had generalized portal edema with ductular reaction and paucity but no cholangitis. Cholestasis slowly subsided in all infants. ICCF is characterized by severe ductular reaction, prominent cholangiocyte injury, and multifocal necrotizing cholangiolitis. Local aggregates of portal ceroid might suggest previous bile leakage from damaged ducts. ICCF in liver biopsies from infants with cystic fibrosis and persistent cholestasis is unrelated to the specific CFTR genotype. Liver biopsy findings and intraoperative cholangiogram help rule out biliary atresia. ICCF is an early manifestation of CF, a likely prototype for pathogenesis of cystic fibrosis liver disease later in life.
Collapse
Affiliation(s)
- Anas Bernieh
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kevin Bove
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Victor Garcia
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Gregory Tiao
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Lauren Lazar
- University of Texas Southwestern, Dallas, TX, USA
| | | | | | - Raquel Gonzalez
- Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | | |
Collapse
|
27
|
Maeshima R, Jacobs AI, Dalbay MT, Hart SL. BMI1 Transduction of Human Airway Epithelial Cells for Expansion of Proliferation and Differentiation. Methods Mol Biol 2024; 2725:225-237. [PMID: 37856028 DOI: 10.1007/978-1-0716-3507-0_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Air-liquid interface (ALI)-cultured cells are widely used as in vitro models of the human respiratory airway in studies of pulmonary physiology, disease, and therapies. However, the primary basal cells required to establish the ALI cultures generally lose their ability to differentiate by the second or third passage, requiring a fresh batch, which can be limiting, particularly from donors with rare genotypes or in studies where gene modification or editing is required. We have developed a method that preserves the ability to expand primary cells and maintain their capacity to differentiate by lentiviral transduction with BMI1. BMI1-transduced basal airway cells are maintained in submerged culture in the same way as primary basal cells but can be passaged more than 20 times retaining their differentiation capacity in ALI cultures. BMI1-transduced basal cells can be frozen and stored long term in liquid nitrogen, enabling transfer of samples between research groups.
Collapse
Affiliation(s)
- Ruhina Maeshima
- Cilia Disorders Section, Genetic and Genomic Medicine Department, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Amy I Jacobs
- Cilia Disorders Section, Genetic and Genomic Medicine Department, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Melis T Dalbay
- Cilia Disorders Section, Genetic and Genomic Medicine Department, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Stephen L Hart
- Cilia Disorders Section, Genetic and Genomic Medicine Department, UCL Great Ormond Street Institute of Child Health, London, UK.
| |
Collapse
|
28
|
Hangjin L, Junting Y, Yiqin W, Hui Q, Shen Y, Jizhe W. Culture expansion of primary human nasal epithelial cells (NEC) isolated with a nasal scraping spoon. J Int Med Res 2023; 51:3000605231207759. [PMID: 37917806 PMCID: PMC10623993 DOI: 10.1177/03000605231207759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 09/21/2023] [Indexed: 11/04/2023] Open
Abstract
OBJECTIVE To obtain high-purity nasal epithelial cells (NEC) while avoiding the irritation experienced by patients during nasal biopsies. METHODS This prospective, observational study enrolled patients undergoing surgical treatment for nasal septum deviation. After general anaesthesia, a novel nasal scraping spoon was used to collect epithelial cells from the mid-part of the inferior turbinate. The cells were evenly plated on six-well plates coated with rat tail collagen. The morphology and growth of the cells were observed at different time-points using an inverted phase-contrast microscope. Immunofluorescent staining of cytokeratin 18 was used to identify NEC. Ki67 staining was used to check cell viability. RESULTS This study collected samples from 19 patients during a short procedure. No postoperative complications were observed. Cell samples ranging from 8.31 × 105 to 2.04 × 106 cells/sample were obtained. The culture model was suitable for primary NEC culture as demonstrated by the faster proliferation (5-7 days). There was no fungal or bacterial contamination. Immunofluorescent staining confirmed the presence and proliferative activity of NEC in the cultures. CONCLUSION A novel nasal scraping spoon provided an easy sampling method, avoided nasal injuries and psychological barriers to sampling and sufficient viable NEC to establish primary cultures.
Collapse
Affiliation(s)
- Li Hangjin
- Department of Otolaryngology, Head and Neck Surgery, Second Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Yin Junting
- Department of Otolaryngology, Head and Neck Surgery, Second Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Wang Yiqin
- Department of Otolaryngology, Head and Neck Surgery, Second Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Qu Hui
- Department of Otolaryngology, Head and Neck Surgery, Second Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Yu Shen
- Dalian University of Technology, Dalian, Liaoning Province, China
| | - Wang Jizhe
- Department of Otolaryngology, Head and Neck Surgery, Second Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| |
Collapse
|
29
|
Harris E, Easter M, Ren J, Krick S, Barnes J, Rowe SM. An ex vivo rat trachea model reveals abnormal airway physiology and a gland secretion defect in cystic fibrosis. PLoS One 2023; 18:e0293367. [PMID: 37874846 PMCID: PMC10597513 DOI: 10.1371/journal.pone.0293367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/10/2023] [Indexed: 10/26/2023] Open
Abstract
Cystic fibrosis (CF) is a genetic disease hallmarked by aberrant ion transport that results in delayed mucus clearance, chronic infection, and progressive lung function decline. Several animal models have been developed to study the airway anatomy and mucus physiology in CF, but they are costly and difficult to maintain, making them less accessible for many applications. A more available CFTR-/- rat model has been developed and characterized to develop CF airway abnormalities, but consistent dosing of pharmacologic agents and longitudinal evaluation remain a challenge. In this study, we report the development and characterization of a novel ex vivo trachea model that utilizes both wild type (WT) and CFTR-/- rat tracheae cultured on a porcine gelatin matrix. Here we show that the ex vivo tracheae remain viable for weeks, maintain a CF disease phenotype that can be readily quantified, and respond to stimulation of mucus and fluid secretion by cholinergic stimulation. Furthermore, we show that ex vivo tracheae may be used for well-controlled pharmacological treatments, which are difficult to perform on freshly excised trachea or in vivo models with this degree of scrutiny. With improved interrogation possible with a durable trachea, we also established firm evidence of a gland secretion defect in CFTR-/- rat tracheae compared to WT controls. Finally, we demonstrate that the ex vivo tracheae can be used to generate high mucus protein yields for subsequent studies, which are currently limited by in vivo mucus collection techniques. Overall, this study suggests that the ex vivo trachea model is an effective, easy to set up culture model to study airway and mucus physiology.
Collapse
Affiliation(s)
- Elex Harris
- Gregory Fleming James Cystic Fibrosis Research Center, Univ. of Alabama at Birmingham, Birmingham, AL, United States of America
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Molly Easter
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Janna Ren
- Gregory Fleming James Cystic Fibrosis Research Center, Univ. of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Stefanie Krick
- Gregory Fleming James Cystic Fibrosis Research Center, Univ. of Alabama at Birmingham, Birmingham, AL, United States of America
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Jarrod Barnes
- Gregory Fleming James Cystic Fibrosis Research Center, Univ. of Alabama at Birmingham, Birmingham, AL, United States of America
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Steven M. Rowe
- Gregory Fleming James Cystic Fibrosis Research Center, Univ. of Alabama at Birmingham, Birmingham, AL, United States of America
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America
- Departments of Pediatrics and Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States of America
| |
Collapse
|
30
|
Grandy S, Scur M, Dolan K, Nickerson R, Cheng Z. Using model systems to unravel host-Pseudomonas aeruginosa interactions. Environ Microbiol 2023; 25:1765-1784. [PMID: 37290773 DOI: 10.1111/1462-2920.16440] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/29/2023] [Indexed: 06/10/2023]
Abstract
Using model systems in infection biology has led to the discoveries of many pathogen-encoded virulence factors and critical host immune factors to fight pathogenic infections. Studies of the remarkable Pseudomonas aeruginosa bacterium that infects and causes disease in hosts as divergent as humans and plants afford unique opportunities to shed new light on virulence strategies and host defence mechanisms. One of the rationales for using model systems as a discovery tool to characterise bacterial factors driving human infection outcomes is that many P. aeruginosa virulence factors are required for pathogenesis in diverse different hosts. On the other side, many host signalling components, such as the evolutionarily conserved mitogen-activated protein kinases, are involved in immune signalling in a diverse range of hosts. Some model organisms that have less complex immune systems also allow dissection of the direct impacts of innate immunity on host defence without the interference of adaptive immunity. In this review, we start with discussing the occurrence of P. aeruginosa in the environment and the ability of this bacterium to cause disease in various hosts as a natural opportunistic pathogen. We then summarise the use of some model systems to study host defence and P. aeruginosa virulence.
Collapse
Affiliation(s)
- Shannen Grandy
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Michal Scur
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Kathleen Dolan
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Rhea Nickerson
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Zhenyu Cheng
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
31
|
Fantone KM, Goldberg JB, Stecenko AA, Rada B. Sputum from People with Cystic Fibrosis Reduces the Killing of Methicillin-Resistant Staphylococcus aureus by Neutrophils and Diminishes Phagosomal Production of Reactive Oxygen Species. Pathogens 2023; 12:1148. [PMID: 37764956 PMCID: PMC10538153 DOI: 10.3390/pathogens12091148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/23/2023] [Accepted: 08/27/2023] [Indexed: 09/29/2023] Open
Abstract
Cystic fibrosis (CF) airway disease is characterized by chronic polymicrobial infections and an infiltration of neutrophils (PMNs). Staphylococcus aureus has been the most prevalent respiratory pathogen in CF. In particular, methicillin-resistant S. aureus (MRSA) represents a huge clinical burden in CF due to its association with lung disease and increased resistance to antibiotics. In CF, PMNs are unable to kill and clear MRSA. The reason for this remains largely unknown. Our study found that CF PMNs are as equally capable of killing MRSA as healthy PMNs. We show that the CF sputum, however, significantly impairs the ability of human PMNs to kill CF MRSA isolates. In the absence of CF sputum, PMNs kill MRSA via intracellular mechanisms mediated by phagocytosis, rather than extracellular mechanisms via NET formation. CF sputum does not affect the phagocytosis of MRSA via healthy or CF PMNs. Our results demonstrate that CF sputum exposure impairs phagosomal levels of reactive oxygen species (ROS) in MRSA-phagocytosing PMNs. While phagosomal co-localizations of MRSA with primary granule markers, myeloperoxidase and cathepsin D, were significantly reduced upon CF sputum exposure, that of a third azurophilic granule marker, neutrophil elastase, remained unaffected. This suggests that CF sputum does not compromise the fusion of primary granules with phagosomes but diminishes phagosomal ROS levels via another, likely more specific, mechanism. Overall, we identified the airway environment as an important factor that restricts neutrophils' oxidative microbicidal activities in CF against MRSA. These results deliver new details of the complex host-pathogen interactions present in the CF lung.
Collapse
Affiliation(s)
- Kayla M. Fantone
- Department of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, GA 30602, USA;
| | - Joanna B. Goldberg
- Division of Pulmonology, Asthma, Cystic Fibrosis and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30602, USA; (J.B.G.); (A.A.S.)
| | - Arlene A. Stecenko
- Division of Pulmonology, Asthma, Cystic Fibrosis and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30602, USA; (J.B.G.); (A.A.S.)
| | - Balázs Rada
- Department of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, GA 30602, USA;
| |
Collapse
|
32
|
Miao Y, Zhao X, Lei J, Ding J, Feng H, Wu K, Liu J, Wang C, Ye D, Wang X, Wang J, Yang Z. Characterization of Lung Microbiomes in Pneumonic Hu Sheep Using Culture Technique and 16S rRNA Gene Sequencing. Animals (Basel) 2023; 13:2763. [PMID: 37685027 PMCID: PMC10486422 DOI: 10.3390/ani13172763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/13/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Hu sheep, a locally bred species in China known for its high productivity, is currently suffering from pneumonia. Here, we combine high-throughput 16SrRNA gene sequencing and bacterial culturing to examine the bacterial community in pneumonic Hu Sheep lungs (p < 0.05). The results showed that the abundance and diversity of lung bacteria in healthy sheep were significantly higher than those in pneumonia sheep (p = 0.139), while there was no significant difference between moderate and severe pneumonia. Furthermore, the composition of the lung microbiota community underwent significant alterations between different levels of pneumonia severity. The application of LEfSe analysis revealed a notable enrichment of Mannheimiae within the lungs of sheep afflicted with moderate pneumonia (p < 0.01), surpassing the levels observed in their healthy counterparts. Additionally, Fusobacterium emerged as the prevailing bacterial group within the lungs of sheep suffering from severe pneumonia. Integrating the results of bacterial isolation and identification, we conclusively determined that Mannheimia haemolytica was the primary pathogenic bacterium within the lungs of sheep afflicted with moderate pneumonia. Furthermore, the exacerbation of pneumonia may be attributed to the synergistic interplay between Fusobacterium spp. and other bacterial species. Our results provide new insights for guiding preventive and therapeutic measures for pneumonia of different severities in sheep.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Zengqi Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (Y.M.); (X.Z.); (J.L.); (J.D.); (H.F.); (K.W.); (C.W.); (X.W.); (J.W.)
| |
Collapse
|
33
|
Leon-Icaza SA, Bagayoko S, Vergé R, Iakobachvili N, Ferrand C, Aydogan T, Bernard C, Sanchez Dafun A, Murris-Espin M, Mazières J, Bordignon PJ, Mazères S, Bernes-Lasserre P, Ramé V, Lagarde JM, Marcoux J, Bousquet MP, Chalut C, Guilhot C, Clevers H, Peters PJ, Molle V, Lugo-Villarino G, Cam K, Berry L, Meunier E, Cougoule C. Druggable redox pathways against Mycobacterium abscessus in cystic fibrosis patient-derived airway organoids. PLoS Pathog 2023; 19:e1011559. [PMID: 37619220 PMCID: PMC10449475 DOI: 10.1371/journal.ppat.1011559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 07/13/2023] [Indexed: 08/26/2023] Open
Abstract
Mycobacterium abscessus (Mabs) drives life-shortening mortality in cystic fibrosis (CF) patients, primarily because of its resistance to chemotherapeutic agents. To date, our knowledge on the host and bacterial determinants driving Mabs pathology in CF patient lung remains rudimentary. Here, we used human airway organoids (AOs) microinjected with smooth (S) or rough (R-)Mabs to evaluate bacteria fitness, host responses to infection, and new treatment efficacy. We show that S Mabs formed biofilm, and R Mabs formed cord serpentines and displayed a higher virulence. While Mabs infection triggers enhanced oxidative stress, pharmacological activation of antioxidant pathways resulted in better control of Mabs growth and reduced virulence. Genetic and pharmacological inhibition of the CFTR is associated with better growth and higher virulence of S and R Mabs. Finally, pharmacological activation of antioxidant pathways inhibited Mabs growth, at least in part through the quinone oxidoreductase NQO1, and improved efficacy in combination with cefoxitin, a first line antibiotic. In conclusion, we have established AOs as a suitable human system to decipher mechanisms of CF-driven respiratory infection by Mabs and propose boosting of the NRF2-NQO1 axis as a potential host-directed strategy to improve Mabs infection control.
Collapse
Affiliation(s)
- Stephen Adonai Leon-Icaza
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III–Paul Sabatier (UPS), Toulouse, France
| | - Salimata Bagayoko
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III–Paul Sabatier (UPS), Toulouse, France
| | - Romain Vergé
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III–Paul Sabatier (UPS), Toulouse, France
| | - Nino Iakobachvili
- M4i Nanoscopy Division, Maastricht University, Maastricht, Netherlands
| | - Chloé Ferrand
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III–Paul Sabatier (UPS), Toulouse, France
| | - Talip Aydogan
- Laboratory of Pathogen Host Interactions (LPHI), Université Montpellier, CNRS, Montpellier, France
| | - Célia Bernard
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III–Paul Sabatier (UPS), Toulouse, France
| | - Angelique Sanchez Dafun
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III–Paul Sabatier (UPS), Toulouse, France
| | - Marlène Murris-Espin
- Service de Pneumologie, Hôpital Larrey, CHU de Toulouse, Toulouse, France
- Centre de ressource et de compétence pour la mucoviscidose de l’adulte (CRCM adulte), CHU de Toulouse, Toulouse, France
| | - Julien Mazières
- Service de Pneumologie, Hôpital Larrey, CHU de Toulouse, Toulouse, France
| | - Pierre Jean Bordignon
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III–Paul Sabatier (UPS), Toulouse, France
| | - Serge Mazères
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III–Paul Sabatier (UPS), Toulouse, France
| | | | - Victoria Ramé
- Imactiv-3D SAS, 1 Place Pierre POTIER, Toulouse, France
| | | | - Julien Marcoux
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III–Paul Sabatier (UPS), Toulouse, France
| | - Marie-Pierre Bousquet
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III–Paul Sabatier (UPS), Toulouse, France
| | - Christian Chalut
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III–Paul Sabatier (UPS), Toulouse, France
| | - Christophe Guilhot
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III–Paul Sabatier (UPS), Toulouse, France
| | - Hans Clevers
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center, Utrecht, Netherlands
| | - Peter J. Peters
- M4i Nanoscopy Division, Maastricht University, Maastricht, Netherlands
| | - Virginie Molle
- Laboratory of Pathogen Host Interactions (LPHI), Université Montpellier, CNRS, Montpellier, France
| | - Geanncarlo Lugo-Villarino
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III–Paul Sabatier (UPS), Toulouse, France
| | - Kaymeuang Cam
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III–Paul Sabatier (UPS), Toulouse, France
| | - Laurence Berry
- Laboratory of Pathogen Host Interactions (LPHI), Université Montpellier, CNRS, Montpellier, France
| | - Etienne Meunier
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III–Paul Sabatier (UPS), Toulouse, France
| | - Céline Cougoule
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III–Paul Sabatier (UPS), Toulouse, France
| |
Collapse
|
34
|
Shevade K, Peddada S, Mader K, Przybyla L. Functional genomics in stem cell models: considerations and applications. Front Cell Dev Biol 2023; 11:1236553. [PMID: 37554308 PMCID: PMC10404852 DOI: 10.3389/fcell.2023.1236553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/13/2023] [Indexed: 08/10/2023] Open
Abstract
Protocols to differentiate human pluripotent stem cells have advanced in terms of cell type specificity and tissue-level complexity over the past 2 decades, which has facilitated human disease modeling in the most relevant cell types. The ability to generate induced PSCs (iPSCs) from patients further enables the study of disease mutations in an appropriate cellular context to reveal the mechanisms that underlie disease etiology and progression. As iPSC-derived disease models have improved in robustness and scale, they have also been adopted more widely for use in drug screens to discover new therapies and therapeutic targets. Advancement in genome editing technologies, in particular the discovery of CRISPR-Cas9, has further allowed for rapid development of iPSCs containing disease-causing mutations. CRISPR-Cas9 technologies have now evolved beyond creating single gene edits, aided by the fusion of inhibitory (CRISPRi) or activation (CRISPRa) domains to a catalytically dead Cas9 protein, enabling inhibition or activation of endogenous gene loci. These tools have been used in CRISPR knockout, CRISPRi, or CRISPRa screens to identify genetic modifiers that synergize or antagonize with disease mutations in a systematic and unbiased manner, resulting in identification of disease mechanisms and discovery of new therapeutic targets to accelerate drug discovery research. However, many technical challenges remain when applying large-scale functional genomics approaches to differentiated PSC populations. Here we review current technologies in the field of iPSC disease modeling and CRISPR-based functional genomics screens and practical considerations for implementation across a range of modalities, applications, and disease areas, as well as explore CRISPR screens that have been performed in iPSC models to-date and the insights and therapies these screens have produced.
Collapse
Affiliation(s)
- Kaivalya Shevade
- Laboratory for Genomics Research, San Francisco, CA, United States
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, United States
| | - Sailaja Peddada
- Laboratory for Genomics Research, San Francisco, CA, United States
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, United States
| | - Karl Mader
- Laboratory for Genomics Research, San Francisco, CA, United States
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, United States
| | - Laralynne Przybyla
- Laboratory for Genomics Research, San Francisco, CA, United States
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
35
|
Ruzycki CA, Montoya D, Irshad H, Cox J, Zhou Y, McDonald JD, Kuehl PJ. Inhalation delivery of nucleic acid gene therapies in preclinical drug development. Expert Opin Drug Deliv 2023; 20:1097-1113. [PMID: 37732957 DOI: 10.1080/17425247.2023.2261369] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/18/2023] [Indexed: 09/22/2023]
Abstract
INTRODUCTION Inhaled gene therapy programs targeting diseases of the lung have seen increasing interest in recent years, though as of yet no product has successfully entered the market. Preclinical research to support such programs is critically important in maximizing the chances of developing successful candidates. AREAS COVERED Aspects of inhalation delivery of gene therapies are reviewed, with a focus on preclinical research in animal models. Various barriers to inhalation delivery of gene therapies are discussed, including aerosolization stresses, aerosol behavior in the respiratory tract, and disposition processes post-deposition. Important aspects of animal models are considered, including determinations of biologically relevant determinations of dose and issues related to translatability. EXPERT OPINION Development of clinically-efficacious inhaled gene therapies has proven difficult owing to numerous challenges. Fit-for-purpose experimental and analytical methods are necessary for determinations of biologically relevant doses in preclinical animal models. Further developments in disease-specific animal models may aid in improving the translatability of results in future work, and we expect to see accelerated interests in inhalation gene therapies for various diseases. Sponsors, researchers, and regulators are encouraged to engage in early and frequent discussion regarding candidate therapies, and additional dissemination of preclinical methodologies would be of immense value in avoiding common pitfalls.
Collapse
Affiliation(s)
- Conor A Ruzycki
- Lovelace Biomedical Research Institute, Albuquerque, NM, USA
| | - Derek Montoya
- Lovelace Biomedical Research Institute, Albuquerque, NM, USA
| | - Hammad Irshad
- Lovelace Biomedical Research Institute, Albuquerque, NM, USA
| | - Jason Cox
- Lovelace Biomedical Research Institute, Albuquerque, NM, USA
| | - Yue Zhou
- Lovelace Biomedical Research Institute, Albuquerque, NM, USA
| | | | - Philip J Kuehl
- Lovelace Biomedical Research Institute, Albuquerque, NM, USA
| |
Collapse
|
36
|
Hill DB. Editorial: Mucus and the mucociliary interface: continuity and clearance. Front Physiol 2023; 14:1233276. [PMID: 37383143 PMCID: PMC10295136 DOI: 10.3389/fphys.2023.1233276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 06/30/2023] Open
Affiliation(s)
- David B. Hill
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- School of Medicine, Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Physics and Astronomy, College of Arts and Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
37
|
Sandri A, Saitta GM, Veschetti L, Boschi F, Passarelli Mantovani R, Carelli M, Melotti P, Signoretto C, Boaretti M, Malerba G, Lleò MM. In Vivo Inflammation Caused by Achromobacter spp. Cystic Fibrosis Clinical Isolates Exhibiting Different Pathogenic Characteristics. Int J Mol Sci 2023; 24:ijms24087432. [PMID: 37108596 PMCID: PMC10139000 DOI: 10.3390/ijms24087432] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/06/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Achromobacter spp. lung infection in cystic fibrosis has been associated with inflammation, increased frequency of exacerbations, and decline of respiratory function. We aimed to evaluate in vivo the inflammatory effects of clinical isolates exhibiting different pathogenic characteristics. Eight clinical isolates were selected based on different pathogenic characteristics previously assessed: virulence in Galleria mellonella larvae, cytotoxicity in human bronchial epithelial cells, and biofilm formation. Acute lung infection was established by intratracheal instillation with 10.5 × 108 bacterial cells in wild-type and CFTR-knockout (KO) mice expressing a luciferase gene under control of interleukin-8 promoter. Lung inflammation was monitored by in vivo bioluminescence imaging up to 48 h after infection, and mortality was recorded up to 96 h. Lung bacterial load was evaluated by CFU count. Virulent isolates caused higher lung inflammation and mice mortality, especially in KO animals. Isolates both virulent and cytotoxic showed higher persistence in mice lungs, while biofilm formation was not associated with lung inflammation, mice mortality, or bacterial persistence. A positive correlation between virulence and lung inflammation was observed. These results indicate that Achromobacter spp. pathogenic characteristics such as virulence and cytotoxicity may be associated with clinically relevant effects and highlight the importance of elucidating their mechanisms.
Collapse
Affiliation(s)
- Angela Sandri
- Department of Diagnostics and Public Health, Microbiology Section, University of Verona, 37134 Verona, Italy
| | - Giulia Maria Saitta
- Department of Diagnostics and Public Health, Microbiology Section, University of Verona, 37134 Verona, Italy
| | - Laura Veschetti
- GMLab, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy
| | - Federico Boschi
- Department of Engineering for Innovation Medicine, University of Verona, 37134 Verona, Italy
| | - Rebeca Passarelli Mantovani
- Department of Diagnostics and Public Health, Microbiology Section, University of Verona, 37134 Verona, Italy
| | - Maria Carelli
- Department of Diagnostics and Public Health, Microbiology Section, University of Verona, 37134 Verona, Italy
| | - Paola Melotti
- Cystic Fibrosis Center, Azienda Ospedaliera Universitaria Integrata Verona, 37126 Verona, Italy
| | - Caterina Signoretto
- Department of Diagnostics and Public Health, Microbiology Section, University of Verona, 37134 Verona, Italy
| | - Marzia Boaretti
- Department of Diagnostics and Public Health, Microbiology Section, University of Verona, 37134 Verona, Italy
| | - Giovanni Malerba
- GMLab, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy
| | - Maria M Lleò
- Department of Diagnostics and Public Health, Microbiology Section, University of Verona, 37134 Verona, Italy
| |
Collapse
|
38
|
Shrestha N, Rout-Pitt N, McCarron A, Jackson CA, Bulmer AC, McAinch AJ, Donnelley M, Parsons DW, Hryciw DH. Changes in Essential Fatty Acids and Ileal Genes Associated with Metabolizing Enzymes and Fatty Acid Transporters in Rodent Models of Cystic Fibrosis. Int J Mol Sci 2023; 24:ijms24087194. [PMID: 37108362 PMCID: PMC10138779 DOI: 10.3390/ijms24087194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/03/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Cystic fibrosis (CF), the result of mutations in the CF transmembrane conductance regulator (CFTR), causes essential fatty acid deficiency. The aim of this study was to characterize fatty acid handling in two rodent models of CF; one strain which harbors the loss of phenylalanine at position 508 (Phe508del) in CFTR and the other lacks functional CFTR (510X). Fatty acid concentrations were determined using gas chromatography in serum from Phe508del and 510X rats. The relative expression of genes responsible for fatty acid transport and metabolism were quantified using real-time PCR. Ileal tissue morphology was assessed histologically. There was an age-dependent decrease in eicosapentaenoic acid and the linoleic acid:α-linolenic acid ratio, a genotype-dependent decrease in docosapentaenoic acid (n-3) and an increase in the arachidonic acid:docosahexaenoic acid ratio in Phe508del rat serum, which was not observed in 510X rats. In the ileum, Cftr mRNA was increased in Phe508del rats but decreased in 510X rats. Further, Elvol2, Slc27a1, Slc27a2 and Got2 mRNA were increased in Phe508del rats only. As assessed by Sirius Red staining, collagen was increased in Phe508del and 510X ileum. Thus, CF rat models exhibit alterations in the concentration of circulating fatty acids, which may be due to altered transport and metabolism, in addition to fibrosis and microscopic structural changes in the ileum.
Collapse
Affiliation(s)
- Nirajan Shrestha
- School of Pharmacy and Medical Sciences, Griffith University, Southport, QLD 4215, Australia
| | - Nathan Rout-Pitt
- Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5001, Australia
- Respiratory and Sleep Medicine, Women's and Children's Hospital, 72 King William Road, North Adelaide, SA 5006, Australia
| | - Alexandra McCarron
- Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5001, Australia
- Respiratory and Sleep Medicine, Women's and Children's Hospital, 72 King William Road, North Adelaide, SA 5006, Australia
| | - Courtney A Jackson
- School of Environment and Science, Griffith University, Nathan, QLD 4215, Australia
| | - Andrew C Bulmer
- School of Pharmacy and Medical Sciences, Griffith University, Southport, QLD 4215, Australia
| | - Andrew J McAinch
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3000, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, St. Albans, VIC 3021, Australia
| | - Martin Donnelley
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5001, Australia
- Respiratory and Sleep Medicine, Women's and Children's Hospital, 72 King William Road, North Adelaide, SA 5006, Australia
- School of Environment and Science, Griffith University, Nathan, QLD 4215, Australia
| | - David W Parsons
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5001, Australia
- Respiratory and Sleep Medicine, Women's and Children's Hospital, 72 King William Road, North Adelaide, SA 5006, Australia
- School of Environment and Science, Griffith University, Nathan, QLD 4215, Australia
| | - Deanne H Hryciw
- School of Environment and Science, Griffith University, Nathan, QLD 4215, Australia
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3000, Australia
- Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia
| |
Collapse
|
39
|
Spelier S, van Doorn EPM, van der Ent CK, Beekman JM, Koppens MAJ. Readthrough compounds for nonsense mutations: bridging the translational gap. Trends Mol Med 2023; 29:297-314. [PMID: 36828712 DOI: 10.1016/j.molmed.2023.01.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/28/2022] [Accepted: 01/19/2023] [Indexed: 02/24/2023]
Abstract
Approximately 10% of all pathological mutations are nonsense mutations that are responsible for several severe genetic diseases for which no treatment regimens are currently available. The most widespread strategy for treating nonsense mutations is by enhancing ribosomal readthrough of premature termination codons (PTCs) to restore the production of the full-length protein. In the past decade several compounds with readthrough potential have been identified. However, although preclinical results on these compounds are promising, clinical studies have not yielded positive outcomes. We review preclinical and clinical research related to readthrough compounds and characterize factors that contribute to the observed translational gap.
Collapse
Affiliation(s)
- Sacha Spelier
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, 3584, EA, Utrecht, The Netherlands; Regenerative Medicine Utrecht, University Medical Center, Utrecht University, 3584, CT, Utrecht, The Netherlands
| | - Eveline P M van Doorn
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, 3584, EA, Utrecht, The Netherlands
| | - Cornelis K van der Ent
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, 3584, EA, Utrecht, The Netherlands; Regenerative Medicine Utrecht, University Medical Center, Utrecht University, 3584, CT, Utrecht, The Netherlands
| | - Jeffrey M Beekman
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, 3584, EA, Utrecht, The Netherlands; Regenerative Medicine Utrecht, University Medical Center, Utrecht University, 3584, CT, Utrecht, The Netherlands; Center for Living Technologies, Eindhoven-Wageningen-Utrecht Alliance, Utrecht, The Netherlands
| | - Martijn A J Koppens
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, 3584, EA, Utrecht, The Netherlands; Regenerative Medicine Utrecht, University Medical Center, Utrecht University, 3584, CT, Utrecht, The Netherlands; Department of Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, 3584, EA, Utrecht, The Netherlands.
| |
Collapse
|
40
|
Al-U’datt DGF, Tranchant CC, Al-Husein B, Hiram R, Al-Dwairi A, AlQudah M, Al-shboul O, Jaradat S, Alqbelat J, Almajwal A. Involvement and possible role of transglutaminases 1 and 2 in mediating fibrotic signalling, collagen cross-linking and cell proliferation in neonatal rat ventricular fibroblasts. PLoS One 2023; 18:e0281320. [PMID: 36848364 PMCID: PMC9970086 DOI: 10.1371/journal.pone.0281320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/19/2023] [Indexed: 03/01/2023] Open
Abstract
Transglutaminase (TG) isoforms control diverse normal and pathophysiologic processes through their capacity to cross-link extracellular matrix (ECM) proteins. Their functional and signalling roles in cardiac fibrosis remain poorly understood, despite some evidence of TG2 involvement in abnormal ECM remodelling in heart diseases. In this study, we investigated the role of TG1 and TG2 in mediating fibrotic signalling, collagen cross-linking, and cell proliferation in healthy fibroblasts by siRNA-mediated knockdown. siRNA for TG1, TG2 or negative control was transfected into cultured neonatal rat ventricular fibroblasts and cardiomyocytes. mRNA expression of TGs and profibrotic, proliferation and apoptotic markers was assessed by qPCR. Cell proliferation and soluble and insoluble collagen were determined by ELISA and LC-MS/MS, respectively. TG1 and TG2 were both expressed in neonatal rat cardiomyocytes and fibroblasts before transfection. Other TGs were not detected before and after transfection. TG2 was predominantly expressed and more effectively silenced than TG1. Knocking down TG1 or TG2 significantly modified profibrotic markers mRNA expression in fibroblasts, decreasing connective tissue growth factor (CTGF) and increasing transforming growth factor-β1 compared to the negative siRNA control. Reduced expression of collagen 3A1 was found upon TG1 knockdown, while TG2 knockdown raised α-smooth muscle actin expression. TG2 knockdown further increased fibroblast proliferation and the expression of proliferation marker cyclin D1. Lower insoluble collagen content and collagen cross-linking were evidenced upon silencing TG1 or TG2. Transcript levels of collagen 1A1, fibronectin 1, matrix metalloproteinase-2, cyclin E2, and BCL-2-associated X protein/B-cell lymphoma 2 ratio were strongly correlated with TG1 mRNA expression, whereas TG2 expression correlated strongly with CTGF mRNA abundance. These findings support a functional and signalling role for TG1 and TG2 from fibroblasts in regulating key processes underlying myocardial ECM homeostasis and dysregulation, suggesting that these isoforms could be potential and promising targets for the development of cardiac fibrosis therapies.
Collapse
Affiliation(s)
- Doa’a G. F. Al-U’datt
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Carole C. Tranchant
- School of Food Science, Nutrition and Family Studies, Faculty of Health Sciences and Community Services, Université de Moncton, New Brunswick, Canada
| | - Belal Al-Husein
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Roddy Hiram
- Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada
- Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Ahmed Al-Dwairi
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Mohammad AlQudah
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
- Physiology Department, Arabian Gulf University, Manama, Bahrain
| | - Othman Al-shboul
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Saied Jaradat
- Princess Haya Biotechnology Center, Jordan University of Science and Technology, Irbid, Jordan
| | - Jenan Alqbelat
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Ali Almajwal
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
41
|
Reyne N, McCarron A, Cmielewski P, Parsons D, Donnelley M. To bead or not to bead: A review of Pseudomonas aeruginosa lung infection models for cystic fibrosis. Front Physiol 2023; 14:1104856. [PMID: 36824474 PMCID: PMC9942929 DOI: 10.3389/fphys.2023.1104856] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/25/2023] [Indexed: 02/10/2023] Open
Abstract
Cystic fibrosis (CF) lung disease is characterised by recurring bacterial infections resulting in inflammation, lung damage and ultimately respiratory failure. Pseudomonas aeruginosa is considered one of the most important lung pathogens in those with cystic fibrosis. While multiple cystic fibrosis animal models have been developed, many fail to mirror the cystic fibrosis lung disease of humans, including the colonisation by opportunistic environmental pathogens. Delivering bacteria to the lungs of animals in different forms is a way to model cystic fibrosis bacterial lung infections and disease. This review presents an overview of previous models, and factors to consider when generating a new P. aeruginosa lung infection model. The future development and application of lung infection models that more accurately reflect human cystic fibrosis lung disease has the potential to assist in understanding the pathophysiology of cystic fibrosis lung disease and for developing treatments.
Collapse
Affiliation(s)
- Nicole Reyne
- Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia,Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia,Respiratory and Sleep Medicine, Women’s and Children’s Hospital, North Adelaide, SA, Australia,*Correspondence: Nicole Reyne,
| | - Alexandra McCarron
- Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia,Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia,Respiratory and Sleep Medicine, Women’s and Children’s Hospital, North Adelaide, SA, Australia
| | - Patricia Cmielewski
- Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia,Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia,Respiratory and Sleep Medicine, Women’s and Children’s Hospital, North Adelaide, SA, Australia
| | - David Parsons
- Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia,Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia,Respiratory and Sleep Medicine, Women’s and Children’s Hospital, North Adelaide, SA, Australia
| | - Martin Donnelley
- Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia,Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia,Respiratory and Sleep Medicine, Women’s and Children’s Hospital, North Adelaide, SA, Australia
| |
Collapse
|
42
|
Secli V, Di Biagio C, Martini A, Michetti E, Pacello F, Ammendola S, Battistoni A. Localized Infections with P. aeruginosa Strains Defective in Zinc Uptake Reveal That Zebrafish Embryos Recapitulate Nutritional Immunity Responses of Higher Eukaryotes. Int J Mol Sci 2023; 24:ijms24020944. [PMID: 36674459 PMCID: PMC9862628 DOI: 10.3390/ijms24020944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/14/2022] [Accepted: 12/23/2022] [Indexed: 01/06/2023] Open
Abstract
The innate immune responses of mammals to microbial infections include strategies based on manipulating the local concentration of metals such as iron (Fe) and zinc (Zn), commonly described as nutritional immunity. To evaluate whether these strategies are also present in zebrafish embryos, we have conducted a series of heart cavity-localized infection experiments with Pseudomonas aeruginosa strains characterized by a different ability to acquire Zn. We have found that, 48 h after infection, the bacterial strains lacking critical components of the Zn importers ZnuABC and ZrmABCD have a reduced colonization capacity compared to the wild-type strain. This observation, together with the finding of a high level of expression of Zur-regulated genes, suggests the existence of antimicrobial mechanisms based on Zn sequestration. However, we have observed that strains lacking such Zn importers have a selective advantage over the wild-type strain in the early stages of infection. Analysis of the expression of the gene that encodes for a Zn efflux pump has revealed that at short times after infection, P. aeruginosa is exposed to high concentrations of Zn. At the same time, zebrafish respond to the infection by activating the expression of the Zn transporters Slc30a1 and Slc30a4, whose mammalian homologs mediate a redistribution of Zn in phagocytes aimed at intoxicating bacteria with a metal excess. These observations indicate that teleosts share similar nutritional immunity mechanisms with higher vertebrates, and confirm the usefulness of the zebrafish model for studying host-pathogen interactions.
Collapse
Affiliation(s)
- Valerio Secli
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Claudia Di Biagio
- Laboratory of Experimental Ecology and Aquaculture, Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Arianna Martini
- Laboratory of Experimental Ecology and Aquaculture, Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
- Council for Agricultural Research and Economics, Research, Centre for Animal Production and Aquaculture, Via Salaria 31, 00015 Monterotondo, Italy
| | - Emma Michetti
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Francesca Pacello
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Serena Ammendola
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Andrea Battistoni
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
- Correspondence:
| |
Collapse
|
43
|
Lindgren NR, McDaniel MS, Novak L, Swords WE. Acute polymicrobial airway infections: analysis in cystic fibrosis mice. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001290. [PMID: 36748431 PMCID: PMC9993112 DOI: 10.1099/mic.0.001290] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Cystic fibrosis (CF) is a genetic disorder affecting epithelial ion transport, which among other impacts results in defective mucociliary clearance and innate defenses in the respiratory tract. Consequently, people with CF experience lifelong infections of the respiratory mucosa that are chronic and polymicrobial in nature. Young children with CF are initially colonized by opportunists like nontypeable Haemophilus influenzae (NTHi), which normally resides within the microbiome of the nasopharynx and upper airways and can also cause infections of the respiratory mucosa that include bronchitis and otitis media. NTHi is typically supplanted by other microbes as patients age; for example, people with CF are often chronically infected with mucoid strains of Pseudomonas aeruginosa, which prior work in our laboratory has shown to promote colonization and persistence by other opportunists that include Stenotrophomonas maltophilia. Our previous work has shown that polymicrobial infection impacts host colonization and persistence of incoming microbes via diverse mechanisms that include priming of host immunity that can promote microbial clearance, and cooperativity within polymicrobial biofilms, which can promote persistence. In infection studies with BALB/c Cftrtm1UNC mice, results showed, as previously observed for WT BALB/c mice, preceding infection with NTHi decreased colonization and persistence by P. aeruginosa. Likewise, polymicrobial infection of BALB/c Cftrtm1UNC and C57BL/6 Cftrtm1UncTg(FABPhCFTR)1Jaw/J mice showed correlation between S. maltophilia and P. aeruginosa, with increased bacterial colonization and lung pathology. Based on these results, we conclude that our previous observations regarding polymicrobial infections with CF opportunists in WT mice are also validated using CF mice.
Collapse
Affiliation(s)
- Natalie R Lindgren
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama, Birmingham, USA.,Gregory Fleming James Center for Cystic Fibrosis Research, University of Alabama, Birmingham, Birmingham, USA
| | - Melissa S McDaniel
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama, Birmingham, USA.,Gregory Fleming James Center for Cystic Fibrosis Research, University of Alabama, Birmingham, Birmingham, USA
| | - Lea Novak
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, USA
| | - W Edward Swords
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama, Birmingham, USA.,Gregory Fleming James Center for Cystic Fibrosis Research, University of Alabama, Birmingham, Birmingham, USA
| |
Collapse
|
44
|
Wu Q, Liang X, Hou X, Song Z, Bouhamdan M, Qiu Y, Koike Y, Rajagopalan C, Wei HG, Jiang H, Hish G, Zhang J, Chen YE, Jin JP, Xu J, Zhang K, Sun F. Cystic fibrosis rabbits develop spontaneous hepatobiliary lesions and CF-associated liver disease (CFLD)-like phenotypes. PNAS NEXUS 2023; 2:pgac306. [PMID: 36712930 PMCID: PMC9832953 DOI: 10.1093/pnasnexus/pgac306] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 12/22/2022] [Indexed: 12/25/2022]
Abstract
Cystic fibrosis (CF) is an autosomal recessive genetic disease affecting multiple organs. Approximately 30% CF patients develop CF-related liver disease (CFLD), which is the third most common cause of morbidity and mortality of CF. CFLD is progressive, and many of the severe forms eventually need liver transplantation. The mechanistic studies and therapeutic interventions to CFLD are unfortunately very limited. Utilizing the CRISPR/Cas9 technology, we recently generated CF rabbits by introducing mutations to the rabbit CF transmembrane conductance regulator (CFTR) gene. Here we report the liver phenotypes and mechanistic insights into the liver pathogenesis in these animals. CF rabbits develop spontaneous hepatobiliary lesions and abnormal biliary secretion accompanied with altered bile acid profiles. They exhibit nonalcoholic steatohepatitis (NASH)-like phenotypes, characterized by hepatic inflammation, steatosis, and fibrosis, as well as altered lipid profiles and diminished glycogen storage. Mechanistically, our data reveal that multiple stress-induced metabolic regulators involved in hepatic lipid homeostasis were up-regulated in the livers of CF-rabbits, and that endoplasmic reticulum (ER) stress response mediated through IRE1α-XBP1 axis as well as NF-κB- and JNK-mediated inflammatory responses prevail in CF rabbit livers. These findings show that CF rabbits manifest many CFLD-like phenotypes and suggest targeting hepatic ER stress and inflammatory pathways for potential CFLD treatment.
Collapse
Affiliation(s)
- Qingtian Wu
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Xiubin Liang
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Xia Hou
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Zhenfeng Song
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Mohamad Bouhamdan
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Yining Qiu
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Yui Koike
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Carthic Rajagopalan
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Hong-Guang Wei
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Hong Jiang
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Gerry Hish
- Laboratory Animal Resources, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Jifeng Zhang
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Y Eugene Chen
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Jian-Ping Jin
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Jie Xu
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Fei Sun
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
45
|
Heise RL. Computational, Ex Vivo, and Tissue Engineering Techniques for Modeling Large Airways. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1413:107-120. [PMID: 37195528 DOI: 10.1007/978-3-031-26625-6_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The large airways are a critical component of the respiratory tree serving both an immunoprotective role and a physiological role for ventilation. The physiological role of the large airways is to move a large amount of air to and from the gas exchange surfaces of the alveoli. This air becomes divided along the respiratory tree as it moves from the large airways to smaller airways, bronchioles, and alveoli. The large airways are incredibly important from an immunoprotective role as the large airways are an early line of defense against inhaled particles, bacteria, and viruses. The key immunoprotective feature of the large airways is mucus production and mucociliary clearance mechanism. Each of these key features of the lung is important from both a basic physiology perspective and an engineering perspective for regenerative medicine. In this chapter, we will cover the large airways from an engineering perspective to highlight existing models of the large airways as well as future directions for modeling and repair.
Collapse
Affiliation(s)
- Rebecca L Heise
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
46
|
Barton TE, Frost F, Fothergill JL, Neill DR. Challenges and opportunities in the development of novel antimicrobial therapeutics for cystic fibrosis. J Med Microbiol 2022; 71. [PMID: 36748497 DOI: 10.1099/jmm.0.001643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Chronic respiratory infection is the primary driver of mortality in individuals with cystic fibrosis (CF). Existing drug screening models utilised in preclinical antimicrobial development are unable to mimic the complex CF respiratory environment. Consequently, antimicrobials showing promising activity in preclinical models often fail to translate through to clinical efficacy in people with CF. Model systems used in CF anti-infective drug discovery and development range from antimicrobial susceptibility testing in nutrient broth, through to 2D and 3D in vitro tissue culture systems and in vivo models. No single model fully recapitulates every key aspect of the CF lung. To improve the outcomes of people with CF (PwCF) it is necessary to develop a set of preclinical models that collectively recapitulate the CF respiratory environment to a high degree of accuracy. Models must be validated for their ability to mimic aspects of the CF lung and associated lung infection, through evaluation of biomarkers that can also be assessed following treatment in the clinic. This will give preclinical models greater predictive power for identification of antimicrobials with clinical efficacy. The landscape of CF is changing, with the advent of modulator therapies that correct the function of the CFTR protein, while antivirulence drugs and phage therapy are emerging alternative treatments to chronic infection. This review discusses the challenges faced in current antimicrobial development pipelines, including the advantages and disadvantages of current preclinical models and the impact of emerging treatments.
Collapse
Affiliation(s)
- Thomas E Barton
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Ronald Ross Building, 8 West Derby Street, Liverpool, L69 7BE, UK
| | - Frederick Frost
- Adult Cystic Fibrosis Centre, Liverpool Heart & Chest Hospital NHS Foundation Trust, Liverpool, UK.,Liverpool Centre for Cardiovascular Sciences, University of Liverpool, Liverpool, UK
| | - Joanne L Fothergill
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Ronald Ross Building, 8 West Derby Street, Liverpool, L69 7BE, UK
| | - Daniel R Neill
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Ronald Ross Building, 8 West Derby Street, Liverpool, L69 7BE, UK
| |
Collapse
|
47
|
Livraghi-Butrico A, Franklin TB, Wolfgang MC. The rat takes the cheese: a novel model of CFTR-dependent chronic bacterial airway infection. Eur Respir J 2022. [DOI: 10.1183/13993003.00832-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
48
|
Jung HW, Lee I, Lee SH, Morgan K, Parsons D, Donnelley M. Mucociliary Transit Assessment Using Automatic Tracking in Phase Contrast X-Ray Images of Live Mouse Nasal Airways. J Med Biol Eng 2022. [DOI: 10.1007/s40846-022-00718-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Abstract
Purpose
The rate of mucociliary transit (MCT) is an indicator of the hydration and health of the airways for cystic fibrosis (CF). To determine the effectiveness of cystic fibrosis respiratory therapies, we have developed a novel method to non-invasively quantify the local rate and patterns of MCT behaviour in vivo by using synchrotron phase contrast X-ray imaging (PCXI) to visualise the MCT motion of micron-sized spherical particles deposited onto the airway surfaces of live mice.
Methods
In this study the baseline MCT behaviour was assessed in the nasal airways of CFTR-null and normal mice which were then treated with hypertonic saline (HS) or mannitol. To assess MCT, the particle motion was tracked throughout the synchrotron PCXI sequences using fully-automated custom image analysis software.
Results
There was no significant difference in the MCT rate between normal and CFTR-null mice, but the analysis of MCT particle tracking showed that HS may have a longer duration of action in CFTR-null mice than in the normal mice.
Conclusion
This study demonstrated that changes in MCT rate in CF and normal mouse nasal airways can be measured using PCXI and customised tracking software and used for assessing the effects of airway rehydrating pharmaceutical treatments.
Collapse
|
49
|
Grubb BR, Livraghi-Butrico A. Animal models of cystic fibrosis in the era of highly effective modulator therapies. Curr Opin Pharmacol 2022; 64:102235. [DOI: 10.1016/j.coph.2022.102235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 12/17/2022]
|
50
|
Donnelley M, Cmielewski P, Morgan K, Delhove J, Reyne N, McCarron A, Rout-Pitt N, Drysdale V, Carpentieri C, Spiers K, Takeuchi A, Uesugi K, Yagi N, Parsons D. Improved in-vivo airway gene transfer via magnetic-guidance, with protocol development informed by synchrotron imaging. Sci Rep 2022; 12:9000. [PMID: 35637239 PMCID: PMC9151774 DOI: 10.1038/s41598-022-12895-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/11/2022] [Indexed: 11/24/2022] Open
Abstract
Gene vectors to treat cystic fibrosis lung disease should be targeted to the conducting airways, as peripheral lung transduction does not offer therapeutic benefit. Viral transduction efficiency is directly related to the vector residence time. However, delivered fluids such as gene vectors naturally spread to the alveoli during inspiration, and therapeutic particles of any form are rapidly cleared via mucociliary transit. Extending gene vector residence time within the conducting airways is important, but hard to achieve. Gene vector conjugated magnetic particles that can be guided to the conducting airway surfaces could improve regional targeting. Due to the challenges of in-vivo visualisation, the behaviour of such small magnetic particles on the airway surface in the presence of an applied magnetic field is poorly understood. The aim of this study was to use synchrotron imaging to visualise the in-vivo motion of a range of magnetic particles in the trachea of anaesthetised rats to examine the dynamics and patterns of individual and bulk particle behaviour in-vivo. We also then assessed whether lentiviral-magnetic particle delivery in the presence of a magnetic field increases transduction efficiency in the rat trachea. Synchrotron X-ray imaging revealed the behaviour of magnetic particles in stationary and moving magnetic fields, both in-vitro and in-vivo. Particles could not easily be dragged along the live airway surface with the magnet, but during delivery deposition was focussed within the field of view where the magnetic field was the strongest. Transduction efficiency was also improved six-fold when the lentiviral-magnetic particles were delivered in the presence of a magnetic field. Together these results show that lentiviral-magnetic particles and magnetic fields may be a valuable approach for improving gene vector targeting and increasing transduction levels in the conducting airways in-vivo.
Collapse
|