1
|
Nguyen HX, Le NY, Nguyen CN. Quality by design optimization of formulation variables and process parameters for enhanced transdermal delivery of nanosuspension. Drug Deliv Transl Res 2025; 15:2220-2251. [PMID: 39496992 DOI: 10.1007/s13346-024-01733-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2024] [Indexed: 11/06/2024]
Abstract
This investigation aims to fabricate, characterize, and optimize organogel containing andrographolide nanosuspension to enhance transdermal drug delivery into and across the skin in vitro. We identified the critical material attributes (CMAs) and critical process parameters (CPPs) that impact key characteristics of andrographolide nanosuspension using a systematic quality-by-design approach. We prepared andrographolide nanosuspension using the wet milling technique and evaluated various properties of the formulations. The CMAs were types and concentrations of polymers, types and concentrations of surfactants, drug concentration, and lipid concentration. The CPPs were volume of milling media and milling duration. Mean particle size, polydispersity index, encapsulation efficiency, and drug loading capacity as critical quality attributes were selected in the design for the evaluation and optimization of the formulations. Furthermore, we developed and evaluated organogel formulation to carry andrographolide nanosuspension 0.05% w/w. Drug release and permeation studies were conducted to assess the drug release kinetics and transdermal delivery of andrographolide. We presented the alteration in the average particle size, polydispersity index, encapsulation efficiency, drug-loading capacity, and drug release among various formulations to select the optimal parameters. The permeation study indicated that organogel delivered markedly more drug into the receptor fluid and skin tissue than DMSO gel (n = 3, p < 0.05). This enhancement in transdermal drug delivery was demonstrated by cumulative drug permeation after 24 h, steady-state flux, permeability coefficient, and predicted steady-state plasma concentration. Drug quantity in skin layers, total delivery, delivery efficiency, and topical selectivity were also reported. Conclusively, andrographolide nanosuspension-loaded organogel significantly increased transdermal drug delivery in vitro.
Collapse
Affiliation(s)
- Hiep X Nguyen
- College of Pharmacy, California Northstate University, 9700 West Taron Drive, Elk Grove, CA, 95757, USA
- Novoremedy, 2001 Talmage Rd, Ukiah, CA, 95482, USA
| | - Nhi Y Le
- Faculty of Pharmaceutics and Pharmaceutical Technology, Hanoi University of Pharmacy, Hanoi, 100000, Vietnam
| | - Chien N Nguyen
- Faculty of Pharmaceutics and Pharmaceutical Technology, Hanoi University of Pharmacy, Hanoi, 100000, Vietnam.
- National Institute of Pharmaceutical Technology, Hanoi University of Pharmacy, Hanoi, 100000, Vietnam.
| |
Collapse
|
2
|
Dieyi L, Guner G, Chattoraj S, Morrison C. Impact of Air Entrainment on Wet Bead Media Milling of Drug Nanosuspensions and Approaches for Monitoring Entrained Air. J Pharm Sci 2025:103798. [PMID: 40254252 DOI: 10.1016/j.xphs.2025.103798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 04/22/2025]
Abstract
This study investigates the impact of entrained air on the efficiency of the wet bead milling process in pharmaceutical development using two aqueous nanosuspension formulations as case studies. Aqueous formulations of hydrophobic active pharmaceutical ingredients (APIs) are routinely utilized for wet bead milling to help develop nanosuspensions and modulate drug release. However, these formulations can present significant manufacturing challenges, many of which may be directly caused or exacerbated by air entrainment. In addition to investigating how entrained air impacts wet bead milling process robustness and efficiency, this study explores methods of monitoring air entrainment using real time measurements of attributes, such as the slurry density, dissolved oxygen, and slurry height. The drug products were milled under comparable process conditions at two distinct scales. Half of the batches underwent a deaeration process, while the remaining batches served as controls without deaeration. Particle size measurements from the samples taken at predefined timepoints during milling reveal that aeration impedes the milling process, causing a lag in particle attrition that becomes particularly significant as the batch volume to chamber volume (batch-to-chamber) ratio increases. Our work addresses a key gap in the mechanistic understanding of the impact of air entrainment on wet bead milling efficiency. The findings will contribute to the design of more robust and efficient wet bead milling processes and the selection of scalable process analytical tools for monitoring air entrainment during nanosuspension manufacturing at a large scale.
Collapse
Affiliation(s)
- Lenora Dieyi
- Process Engineering and Analytics, Drug Product Development, GSK R&D, Upper Providence, PA, USA.
| | - Gulenay Guner
- Process Engineering and Analytics, Drug Product Development, GSK R&D, Upper Providence, PA, USA
| | - Sayantan Chattoraj
- Process Engineering and Analytics, Drug Product Development, GSK R&D, Upper Providence, PA, USA
| | - Christopher Morrison
- Process Engineering and Analytics, Drug Product Development, GSK R&D, Upper Providence, PA, USA
| |
Collapse
|
3
|
Nguyen TH, Pham HT, Nguyen KKT, Ngo LH, Mai ANT, Lam THA, Phan NTK, Pham DT, Hoang DT, Nguyen TD, Truong LTX. Fabrication and evaluation of BerNPs regarding the growth and development of Streptococcus mutans. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2025; 16:308-315. [PMID: 40041429 PMCID: PMC11878152 DOI: 10.3762/bjnano.16.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 01/27/2025] [Indexed: 03/06/2025]
Abstract
In this study, berberine nanoparticles (BerNPs) were prepared using a wet-milling method with zirconium balls to enhance bioavailability and expand potential applications. The particle size and physicochemical properties of the BerNPs were analyzed using field-emission scanning electron microscopy (FE-SEM), UV-vis spectroscopy, X-ray diffraction, and Fourier-transform infrared spectroscopy. The broth dilution method was used to determine the antimicrobial activity of the BerNPs against Streptococcus mutans (S. mutans). The impact of the BerNPs on the cell surface of S. mutans was evaluated through FE-SEM analysis, focusing on its ability to inhibit biofilm formation. The results demonstrated that BerNPs were produced with an average particle size of 40-65 nm. The chemical structure of BerNPs remained consistent with that of berberine, with no modifications occurring during nanoparticle preparation. The BerNPs exhibited the ability to inhibit S. mutans, with minimum inhibitory concentration and minimum bactericidal concentration values of 78.1 and 312.5 µg/mL, respectively. BerNPs caused significant damage to S. mutans cells, disrupting the cell membrane structure, and leading to cell lysis and death. Additionally, BerNPs effectively inhibited the biofilm formation of S. mutans. In summary, BerNPs demonstrated a potent inhibitory effect on the activities of S. mutans at selectively applied concentrations.
Collapse
Affiliation(s)
- Tuyen Huu Nguyen
- Laboratory of Biotechnology, Research Laboratories of Saigon Hi-Tech Park, Ho Chi Minh City, Vietnam
| | - Hong Thanh Pham
- Faculty of Medical Technology, Van Lang University, Ho Chi Minh City, Vietnam
| | | | - Loan Hong Ngo
- Laboratory of Biotechnology, Research Laboratories of Saigon Hi-Tech Park, Ho Chi Minh City, Vietnam
| | - Anh Ngoc Tuan Mai
- Laboratory of Biotechnology, Research Laboratories of Saigon Hi-Tech Park, Ho Chi Minh City, Vietnam
| | - Thu Hoang Anh Lam
- Laboratory of Biotechnology, Research Laboratories of Saigon Hi-Tech Park, Ho Chi Minh City, Vietnam
| | - Ngan Thi Kim Phan
- Laboratory of Biotechnology, Research Laboratories of Saigon Hi-Tech Park, Ho Chi Minh City, Vietnam
| | - Dung Tien Pham
- Laboratory of Biotechnology, Research Laboratories of Saigon Hi-Tech Park, Ho Chi Minh City, Vietnam
| | - Duong Thuy Hoang
- Laboratory of Biotechnology, Research Laboratories of Saigon Hi-Tech Park, Ho Chi Minh City, Vietnam
| | - Thuc Dong Nguyen
- Laboratory of Biotechnology, Research Laboratories of Saigon Hi-Tech Park, Ho Chi Minh City, Vietnam
| | | |
Collapse
|
4
|
Shiri S, Gharanjig K, Tahghighi A, Hosseinnezhad M, Etezad M. Formulation and characterization of BBR loaded niosomes using saponin as a nonionic biosurfactant investigating synergistic effects to enhance antibacterial activity. Sci Rep 2025; 15:5231. [PMID: 39939626 PMCID: PMC11822194 DOI: 10.1038/s41598-025-87950-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 01/23/2025] [Indexed: 02/14/2025] Open
Abstract
This study aimed to enhance the antibacterial efficacy of BBR, a natural alkaloid with limited bioavailability and solubility, by encapsulating it in niosomes using saponin as a biosurfactant. Niosomes, non-ionic surfactant-based vesicles, improve drug stability and targeted delivery. The niosomes were synthesized using a ball milling-assisted method to optimize particle size and encapsulation efficiency. The formulation was characterized for particle size, zeta potential, encapsulation efficiency, and release kinetics. Niosomes with saponin had a particle size of 185 nm, a negative zeta potential, and the slowest release rate, following the Higuchi model. BBR-loaded niosomes achieved impressive entrapment efficiency (E.E%) of up to 93.7. The addition of saponin was expected to boost the antibacterial effects through synergistic mechanisms. The antibacterial efficacy of the formulation was assessed against Staphylococcus aureus and Escherichia coli. The resulting niosomal formulation exhibited significantly improved antibacterial activity compared to free BBR. The minimum bactericidal concentration (MIC) of the niosomes containing saponin (NSa2) and BBR against S. aureus and E. coli was found to be 0.08 ± 0.0 mg/ml. In contrast, the MBC of BBR alone against S. aureus was 0.24 ± 0.02 mg/ml, while for E. coli, it was 0.25 ± 0.02 mg/ml. These findings suggest that this niosomal formulation could be a promising approach for delivering BBR with improved therapeutic efficiency.
Collapse
Affiliation(s)
- Soudeh Shiri
- Institute for Color Science and Technology, Department of Organic Colorants, Tehran, Iran
| | - Kamaladin Gharanjig
- Institute for Color Science and Technology, Department of Organic Colorants, Tehran, Iran.
| | - Azar Tahghighi
- Medicinal Chemistry Laboratory, Department of Clinical Research, Pasteur Institute of Iran, Tehran, Iran
| | - Mozhgan Hosseinnezhad
- Institute for Color Science and Technology, Department of Organic Colorants, Tehran, Iran
| | - Masoud Etezad
- Institute for Color Science and Technology, Department of Organic Colorants, Tehran, Iran
| |
Collapse
|
5
|
Qu J, Wang L, Jia C, Zhang S, Li C, Wu W, Li W. Preparation and characterization of andrographolide nano-cocrystals using hummer acoustic resonance technology. Int J Pharm 2025; 668:124993. [PMID: 39586510 DOI: 10.1016/j.ijpharm.2024.124993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/05/2024] [Accepted: 11/20/2024] [Indexed: 11/27/2024]
Abstract
Andrographolide (AG) is a diterpene lactone with significant anti-inflammatory and antitumor activities. However, the poor water solubility limits its clinical application. An andrographolide-salicylic acid (AG-SLA) nano-cocrystal delivery system was rapidly developed using hummer acoustic resonance (HAR) technology in this research. The formulation of the AG-SLA nano-cocrystal suspension and the process parameters for HAR technology were optimized in a high-throughput manner, with SDS-Tween 80 as the optimal composite stabilizer. Nano-cocrystal suspension of AG-SLA with an average particle size of 190 nm were successfully prepared, and then the optimal formulation were tenfold scaled up. Freeze-drying was adopted to solidify the nano-cocrystal and improve its stability. Various analytical techniques were used to characterize the particle size and solid state of the nano-cocrystals. The high-energy input from the HAR instrument induced partial amorphization of the nano-cocrystals, as confirmed by PXRD and DSC analyses. Saturation solubility experiments demonstrated that the solubility in pH 1.2 hydrochloric acid buffer and pH 6.8 phosphate buffer increased by 5.74 times and 6.82 times, respectively, compared to raw AG. In vitro dissolution tests indicated that the cumulative release over 120 min in pH 1.2 hydrochloric acid buffer and pH 6.8 phosphate buffer increased by 1.60 times and 1.88 times, respectively, compared to raw AG.
Collapse
Affiliation(s)
- Jianlu Qu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Li Wang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Chaoliang Jia
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shule Zhang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Cunhao Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Wei Wu
- Shenzhen Huasheng Process Intensification Technology Co., Ltd., Shenzhen 518057, China.
| | - Wenlong Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Intelligent and Green Pharmaceuticals for Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
6
|
Sleziona D, Ely DR, Thommes M. Mechanisms of drug release from a melt-milled, poorly soluble drug substance. J Pharm Sci 2025; 114:394-401. [PMID: 39426564 DOI: 10.1016/j.xphs.2024.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024]
Abstract
Increasing the dissolution kinetics of low aqueous soluble drugs is one of the main priorities in drug formulation. New strategies must be developed, which should consider the two main dissolution mechanisms: surface reaction and diffusion. One promising tool is the so-called solid crystal suspension, a solid dispersion consisting of purely crystalline substances. In this concept, reducing the drug particle size and embedding the particles in a hydrophilic excipient increases the dissolution kinetics. Therefore, a solid crystal suspension containing submicron drug particles was produced via a modified stirred media milling process. A geometrical phase-field approach was used to model the dissolution behavior of the drug particles. A carrier material, xylitol, and the model drug substance, griseofulvin, were ground in a pearl mill. The in-vitro dissolution profile of the product was modeled to gain a deep physical understanding of the dissolution process. The used numerical tool has the potential to be a valuable approach for predicting the dissolution behavior of newly developed formulation strategies.
Collapse
Affiliation(s)
- Dominik Sleziona
- TU Dortmund, Department of Biochemical and Chemical Engineering, Laboratory of Solids Process Engineering, Emil-Figge-Str. 68, 44227 Dortmund, Germany
| | - David R Ely
- Ivy Tech Community College, 3101 S Creasy Ln, Lafayette, IN 47905, USA
| | - Markus Thommes
- TU Dortmund, Department of Biochemical and Chemical Engineering, Laboratory of Solids Process Engineering, Emil-Figge-Str. 68, 44227 Dortmund, Germany.
| |
Collapse
|
7
|
Bartos C, Motzwickler-Németh A, Kovács D, Burián K, Ambrus R. Study on the Scale-Up Possibility of a Combined Wet Grinding Technique Intended for Oral Administration of Meloxicam Nanosuspension. Pharmaceutics 2024; 16:1512. [PMID: 39771492 PMCID: PMC11680036 DOI: 10.3390/pharmaceutics16121512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/11/2024] [Accepted: 11/18/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: This article reports on the scalability of a combined wet grinding technique applying planetary ball mill and ZrO2 pearls as the grinding medium. After the determination of the parameters in a laboratory scale, the tenfold scale-up method was set. Meloxicam (MEL) was used as a nonsteroidal anti-inflammatory drug (NSAID) intended for per os delivery. During grinding, the PVA solution was used as a dispersion medium. Methods: The influence of the scaling-up on the particle size, morphology, crystallinity, and intra- and interparticulate phenomena has been studied. Formulation investigations of the milled suspensions were carried out. The dissolution test and the cytotoxicity analyses were accomplished. Results: Submicron MEL particle-containing samples were produced in both grinding scales. After the particle size determination was achieved from the suspensions, the wet milled, dried products were studied. The particle size of the dried products fell into the same range for both scales of milling (the maximum particle size was about 580 nm). There was no significant difference in drug crystallinity after the grindings; 70% of MEL remained crystalline in both cases. A remarkable interaction between the components did not develop as a result of milling. The polarity of the products increased, which resulted in a better dissolution, especially in the case of intestinal fluid (~100% in the first 5 min). The products were not found to be toxic. Conclusions: This research demonstrates that the scaling-up of combined wet grinding technique is feasible by adjusting the milling parameters and the adequate amount of excipient.
Collapse
Affiliation(s)
- Csilla Bartos
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, 6720 Szeged, Hungary; (C.B.); (A.M.-N.); (D.K.)
| | - Anett Motzwickler-Németh
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, 6720 Szeged, Hungary; (C.B.); (A.M.-N.); (D.K.)
| | - Dávid Kovács
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, 6720 Szeged, Hungary; (C.B.); (A.M.-N.); (D.K.)
| | - Katalin Burián
- Department of Medical Microbiology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary;
| | - Rita Ambrus
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, 6720 Szeged, Hungary; (C.B.); (A.M.-N.); (D.K.)
| |
Collapse
|
8
|
Lhaglham P, Jiramonai L, Liang XJ, Liu B, Li F. The development of paliperidone nanocrystals for the treatment of schizophrenia. PROGRESS IN BIOMEDICAL ENGINEERING (BRISTOL, ENGLAND) 2024; 7:012002. [PMID: 39655839 DOI: 10.1088/2516-1091/ad8fe7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/07/2024] [Indexed: 12/18/2024]
Abstract
Schizophrenia is a complex and chronic psychiatric disorder that significantly impacts patients' quality of life. Ranking 12th among 310 diseases and injuries that result in disability, the number of patients suffering from schizophrenia continues to rise, emphasizing the urgent need for developing effective treatments. Despite the availability of effective antipsychotic drugs, over 80% of patients taking oral antipsychotics experience relapses, primarily caused by non-adherence as the high dosing frequency is required. In this review, we discuss about schizophrenia, its incidence, pathological causes, influencing factors, and the challenges of the current medications. Specifically, we explore nanocrystal technology and its application to paliperidone, making it one of the most successful long-acting antipsychotic drugs introduced to the market. We highlight the clinical advantages of paliperidone nanocrystals, including improved adherence, efficacy, long-term outcomes, patient satisfaction, safety, and cost-effectiveness. Additionally, we address the physicochemical factors influencing the drug's half-life, which crucially contribute to long-acting medications. Further studies on nanocrystal-based long-acting medications are crucial for enhancing their effectiveness and reliability. The successful development of paliperidone nanocrystals holds great promise as a significant approach for drug development, with potential applications for other chronic disease management.
Collapse
Affiliation(s)
- Phattalapol Lhaglham
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 10049, People's Republic of China
- Department of Manufacturing Pharmacy, Faculty of Pharmacy, Mahidol University, Sri-ayudhya road, Bangkok 10400, Thailand
| | - Luksika Jiramonai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 10049, People's Republic of China
| | - Xing-Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 10049, People's Republic of China
| | - Bingchuan Liu
- Department of Orthopaedics, Peking University Third Hospital, Beijing 100191, People's Republic of China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing 100191, People's Republic of China
| | - Fangzhou Li
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, People's Republic of China
| |
Collapse
|
9
|
Samim Sardar M, Kashinath KP, Kumari M, Sah SK, Alam K, Gupta U, Ravichandiran V, Roy S, Kaity S. Rebamipide nanocrystal with improved physicomechanical properties and its assessment through bio-mimicking 3D intestinal permeability model. NANOSCALE 2024; 16:19786-19805. [PMID: 39370903 DOI: 10.1039/d4nr03137g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
This study investigated the formulation and characterization of rebamipide nanocrystals (REB-NCs) to enhance the solubility and permeability of rebamipide, an anti-ulcer medication known for its low aqueous solubility and permeability, classified as BCS class IV. Employing high-pressure homogenization and wet milling techniques, we successfully achieved nanonization of rebamipide, resulting in stable nanosuspensions that were subsequently freeze-dried to produce REB-NCs with an average particle size of 223 nm. Comprehensive characterization techniques, including Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), X-ray diffraction (XRD), and differential scanning calorimetry (DSC) confirmed the crystalline nature of the nanocrystals and their compatibility with the selected excipients. The saturation solubility study revealed a remarkable three-fold enhancement in PBS pH 7.4 compared to rebamipide API, indicating the effectiveness of the nanocrystal formulation in improving drug solubility. Furthermore, 3D in-vitro permeability assessments conducted on Caco-2 cell monolayers demonstrated an noticeable increase in the permeability of REB-NCs relative to the pure active pharmaceutical ingredient (API), highlighting the promise of this formulation to enhance drug absorption. The dissolution profile of the nanocrystal tablets exhibited immediate release characteristics, significantly outperforming conventional formulations in terms of the dissolution rate. This research underscores the potential of nanomilling as a scalable, environment-friendly, and less toxic approach to significantly enhance the bioavailability of rebamipide. By addressing the challenges associated with the solubility and permeability of poorly water-soluble drugs, our outcome offers insightful information into developing efficient nanomedicine strategies for enhancing therapeutic outcomes.
Collapse
Affiliation(s)
- Md Samim Sardar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, West Bengal 700054, India.
| | - Kardile Punam Kashinath
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, West Bengal 700054, India.
| | - Mamta Kumari
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, West Bengal 700054, India.
| | - Sunil Kumar Sah
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, West Bengal 700054, India.
| | - Kamare Alam
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal 700054, India.
| | - Ujjwal Gupta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, West Bengal 700054, India.
| | - Velayutham Ravichandiran
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal 700054, India
| | - Subhadeep Roy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal 700054, India.
| | - Santanu Kaity
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, West Bengal 700054, India.
| |
Collapse
|
10
|
Suarez AG, Göller AH, Beck ME, Gheta SKO, Meier K. Comparative assessment of physics-based in silico methods to calculate relative solubilities. J Comput Aided Mol Des 2024; 38:36. [PMID: 39470860 DOI: 10.1007/s10822-024-00576-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 10/11/2024] [Indexed: 11/01/2024]
Abstract
Relative solubilities, i.e. whether a given molecule is more soluble in one solvent compared to others, is a critical parameter for pharmaceutical and agricultural formulation development and chemical synthesis, material science, and environmental chemistry. In silico predictions of this crucial variable can help reducing experiments, waste of solvents and synthesis optimization. In this study, we evaluate the performance of different physics-based methods for predicting relative solubilities. Our assessment involves quantum mechanics-based COSMO-RS and molecular dynamics-based free energy methods using OPLS4, the open-source OpenFF Sage, and GAFF force fields, spanning over 200 solvent-solute combinations. Our investigation highlights the important role of compound multimerization, an effect which must be accounted for to obtain accurate relative solubility predictions. The performance landscape of these methods is varied, with significant differences in precision depending on both the method used and the solute considered, thereby offering an improved understanding of the predictive power of physics-based methods in chemical research.
Collapse
Affiliation(s)
- Adiran Garaizar Suarez
- Bayer AG, Pharmaceuticals, Structural Biology & Computational Design, Wuppertal, Germany
- Bayer AG, Crop Science, Data Science, Monheim, Germany
| | - Andreas H Göller
- Bayer AG, Pharmaceuticals, Structural Biology & Computational Design, Wuppertal, Germany
| | | | | | - Katharina Meier
- Bayer AG, Pharmaceuticals, Structural Biology & Computational Design, Wuppertal, Germany.
| |
Collapse
|
11
|
Lee S, Zhao S, Jiang W, Chen X, Zhu L, Joseph J, Agus E, Mary HB, Barooj S, Slaughter K, Cheung K, Luo JN, Shukla C, Gao J, Lee D, Balakrishnan B, Jiang C, Gorantla A, Woo S, Karp JM, Joshi N. Ultra-Long-Term Delivery of Hydrophilic Drugs Using Injectable In Situ Cross-Linked Depots. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.04.565631. [PMID: 39253509 PMCID: PMC11382995 DOI: 10.1101/2023.11.04.565631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Achieving ultra-long-term release of hydrophilic drugs over several months remains a significant challenge for existing long-acting injectables (LAIs). Existing platforms, such as in situ forming implants (ISFI), exhibit high burst release due to solvent efflux and microsphere-based approaches lead to rapid drug diffusion due to significant water exchange and large pores. Addressing these challenges, we have developed an injectable platform that, for the first time, achieves ultra-long-term release of hydrophilic drugs for over six months. This system employs a methacrylated ultra-low molecular weight pre-polymer (polycaprolactone) to create in situ cross-linked depots (ISCD). The ISCD's solvent-free design and dense mesh network, both attributed to the ultra-low molecular weight of the pre-polymer, effectively minimizes burst release and water influx/efflux. In vivo studies in rats demonstrate that ISCD outperforms ISFI by achieving lower burst release and prolonged drug release. We demonstrated the versatility of ISCD by showcasing ultra-long-term delivery of several hydrophilic drugs, including antiretrovirals (tenofovir alafenamide, emtricitabine, abacavir, and lamivudine), antibiotics (vancomycin and amoxicillin) and an opioid antagonist naltrexone. Additionally, ISCD achieved ultra-long-term release of the hydrophobic drug tacrolimus and enabled co-delivery of hydrophilic drug combinations encapsulated in a single depot. We also identified design parameters to tailor the polymer network, tuning drug release kinetics and ISCD degradation. Pharmacokinetic modeling predicted over six months of drug release in humans, significantly surpassing the one-month standard achievable for hydrophilic drugs with existing LAIs. The platform's biodegradability, retrievability, and biocompatibility further underscore its potential for improving treatment adherence in chronic conditions.
Collapse
Affiliation(s)
- Sohyung Lee
- Harvard Medical School, Boston, MA, USA
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Spencer Zhao
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Weihua Jiang
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY 14215, USA
| | - Xinyang Chen
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Lingyun Zhu
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - John Joseph
- Harvard Medical School, Boston, MA, USA
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Eli Agus
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Helna Baby Mary
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Shumaim Barooj
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Kai Slaughter
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Krisco Cheung
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - James N Luo
- Harvard Medical School, Boston, MA, USA
- Department of Surgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Chetan Shukla
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Jingjing Gao
- Harvard Medical School, Boston, MA, USA
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- College of Engineering, University of Massachusetts Amherst, MA, USA
| | - Dongtak Lee
- Harvard Medical School, Boston, MA, USA
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Biji Balakrishnan
- Somaiya Centre for Integrated Science education and research, SKSC, Somaiya Vidyavihar University, Mumbai, 400077, India
| | - Christopher Jiang
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Amogh Gorantla
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Sukyung Woo
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY 14215, USA
| | - Jeffrey M Karp
- Harvard Medical School, Boston, MA, USA
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Harvard–Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Broad Institute, Cambridge, MA 02142, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Nitin Joshi
- Harvard Medical School, Boston, MA, USA
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| |
Collapse
|
12
|
Trofimiuk M, Olechno K, Trofimiuk E, Czajkowska-Kośnik A, Ciosek-Skibińska P, Głowacz K, Lenik J, Basa A, Car H, Winnicka K. Utilization of the Drug-Polymer Solid Dispersion Obtained by Ball Milling as a Taste Masking Method in the Development of Orodispersible Minitablets with Hydrocortisone in Pediatric Doses. Pharmaceutics 2024; 16:1041. [PMID: 39204386 PMCID: PMC11359562 DOI: 10.3390/pharmaceutics16081041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
The objective of the conducted research was to design 2 mm orodispersible minitablets of pediatric doses of hydrocortisone (0.5 mg; 1.0 mg) with desirable pharmaceutical properties and eliminate the sensation of a bitter taste using preparation of solid dispersion by ball mill. Hydrocortisone was selected as the model substance, as it is widely utilized in the pediatric population. ODMTs were prepared by compression (preceded by granulation) in a traditional single-punch tablet machine and evaluated using pharmacopoeial tests, DSC, and FTIR analysis. The methods used to evaluate the effectiveness of the taste-masking effect included in vivo participation of healthy volunteers, in vitro drug dissolution and utilization of an analytical device-"electronic tongue". The research employed a preclinical animal model to preliminary investigate the bioequivalence of the designed drug dosage form in comparison to reference products. The study confirmed the possibility of manufacturing good-quality hydrocortisone ODMTs with a taste-masking effect owing to the incorporation of a solid dispersion in the tablet mass.
Collapse
Affiliation(s)
- Monika Trofimiuk
- Department of Clinical Pharmacy, Medical University of Bialystok, Mickiewicza 2a, 15-222 Bialystok, Poland
| | - Katarzyna Olechno
- Department of Pharmaceutical Technology, Medical University of Bialystok, Mickiewicza 2c, 15-222 Bialystok, Poland; (A.C.-K.); (K.W.)
| | - Emil Trofimiuk
- Department of Clinical Pharmacology, Medical University of Bialystok, Waszyngtona 15a, 15-274 Bialystok, Poland; (E.T.); (H.C.)
| | - Anna Czajkowska-Kośnik
- Department of Pharmaceutical Technology, Medical University of Bialystok, Mickiewicza 2c, 15-222 Bialystok, Poland; (A.C.-K.); (K.W.)
| | - Patrycja Ciosek-Skibińska
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (P.C.-S.); (K.G.)
| | - Klaudia Głowacz
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (P.C.-S.); (K.G.)
| | - Joanna Lenik
- Department of Analytical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie Sklodowska University, Maria Curie-Sklodowska Square 3, 20-031 Lublin, Poland;
| | - Anna Basa
- Faculty of Chemistry, University of Białystok, Ciołkowskiego 1K, 15-245 Białystok, Poland;
| | - Halina Car
- Department of Clinical Pharmacology, Medical University of Bialystok, Waszyngtona 15a, 15-274 Bialystok, Poland; (E.T.); (H.C.)
| | - Katarzyna Winnicka
- Department of Pharmaceutical Technology, Medical University of Bialystok, Mickiewicza 2c, 15-222 Bialystok, Poland; (A.C.-K.); (K.W.)
| |
Collapse
|
13
|
Seo S, Kim GY, Kim MH, Lee KW, Kim MJ, Chaudhary M, Bikram K, Kim T, Choi S, Yang H, Park JW, Kim DD, Kim KT. Nanocrystal Formulation to Enhance Oral Absorption of Silybin: Preparation, In Vitro Evaluations, and Pharmacokinetic Evaluations in Rats and Healthy Human Subjects. Pharmaceutics 2024; 16:1033. [PMID: 39204378 PMCID: PMC11359960 DOI: 10.3390/pharmaceutics16081033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Despite the various therapeutic benefits and high tolerance of orally administered silybin, poor water-solubility can be the main restrictive physicochemical feature, which results in low oral bioavailability in the absorption. A milk thistle nanocrystal formulation (HM40) was prepared using a modified wet-milling method. Comprehensive characterization was performed to determine the physical morphology, crystallinity, and physicochemical properties. The long-term stability was evaluated over 24 months. In vitro silybin release was assessed at pH 1.2 for 2 h, followed by pH 6.8 for 4 h. Finally, in vivo pharmacokinetic studies were conducted in rats and healthy human volunteers. HM40 exhibited a nanocrystal structure maintaining crystallinity and enhanced the solubility and dissolution of silybin compared to that of the raw material. The stability over 24 months revealed consistent surface morphology, particle size, silybin content, and solubility. In vitro release profiles indicated a significant increase in the silybin release from HM40. In vivo pharmacokinetic studies demonstrated that HM40 showed 2.61- and 1.51-fold higher oral bioavailability in rats and humans, respectively, than that of the reference capsule. HM40 formulation presents a stable and promising approach for the oral delivery of poorly water-soluble silybin, with the potential for use in pharmaceutical formulations containing milk thistle.
Collapse
Affiliation(s)
- SeungRee Seo
- Life Science Research Institute, Daewoong Pharmaceuticals, Yongin-si 17028, Republic of Korea
| | - Gwan-Young Kim
- Life Science Research Institute, Daewoong Pharmaceuticals, Yongin-si 17028, Republic of Korea
| | - Min-Hwan Kim
- Life Science Research Institute, Daewoong Pharmaceuticals, Yongin-si 17028, Republic of Korea
| | | | - Min-Jae Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Mansingh Chaudhary
- Department of Biomedicine, Health & Life Convergence Sciences (BK21 Four) and Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam 58554, Republic of Korea
| | - Khadka Bikram
- Department of Biomedicine, Health & Life Convergence Sciences (BK21 Four) and Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam 58554, Republic of Korea
| | - Taeheon Kim
- Life Science Research Institute, Daewoong Pharmaceuticals, Yongin-si 17028, Republic of Korea
| | - Seungmok Choi
- Life Science Research Institute, Daewoong Pharmaceuticals, Yongin-si 17028, Republic of Korea
| | - Heejin Yang
- Life Science Research Institute, Daewoong Pharmaceuticals, Yongin-si 17028, Republic of Korea
| | - Joo Won Park
- Bio-Synectics, Inc., Seoul 08826, Republic of Korea
| | - Dae-Duk Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
- Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Ki-Taek Kim
- Department of Biomedicine, Health & Life Convergence Sciences (BK21 Four) and Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam 58554, Republic of Korea
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam 58554, Republic of Korea
| |
Collapse
|
14
|
Khizar N, Abbas N, Ahmed M, Ahmad M, Mustafa Z, Jehangir M, Mohammed Al-Ahmary K, Hussain A, Bukhari NI, Ali I. Amelioration of tableting properties and dissolution rate of naproxen co-grinded with nicotinamide: preparation and characterization of co-grinded mixture. Drug Dev Ind Pharm 2024; 50:537-549. [PMID: 38771120 DOI: 10.1080/03639045.2024.2358356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 05/17/2024] [Indexed: 05/22/2024]
Abstract
OBJECTIVE AND SIGNIFICANCE Reducing the dimensions, when other additives are present, shows potential as a method to improve the dissolution and solubility of biopharmaceutical classification system class II drugs that have poor solubility. In this investigation, the process involved grinding naproxen with nicotinamide with the aim of improving solubility and the rate of dissolution. METHODS Naproxen was subjected to co-milling with urea, dimethylurea, and nicotinamide using a planetary ball mill for a duration of 90 min, maintaining a 1:1 molar ratio for the excipients (screening studies). The co-milled combinations, naproxen in its pure milled form, and a physical mixture were subjected to analysis using X-ray powder diffraction (XRPD), scanning electron microscopy (SEM), and solubility assessment. The mixture displaying the highest solubility (naproxen-nicotinamide) was chosen for further investigation, involving testing for intrinsic dissolution rate (IDR) and Fourier-transform infrared spectroscopy (FTIR) after co-milling for both 90 and 480 min. RESULTS AND CONCLUSION The co-milled combination, denoted as S-3b and consisting of the most substantial ratio of nicotinamide to naproxen at 1:3, subjected to 480 min of milling, exhibited a remarkable 45-fold increase in solubility and a 9-fold increase in IDR. XRPD analysis of the co-milled samples demonstrated no amorphization, while SEM images portrayed the aggregates of naproxen with nicotinamide. FTIR outcomes negate the presence of any chemical interactions between the components. The co-milled sample exhibiting the highest solubility and IDR was used to create a tablet, which was then subjected to comprehensive evaluation for standard attributes. The results revealed improved compressibility and dissolution properties.
Collapse
Affiliation(s)
- Nosheen Khizar
- University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | - Nasir Abbas
- University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | - Mahmood Ahmed
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Muhammad Ahmad
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Zeeshan Mustafa
- Department of Physics, Lahore Garrison University, Lahore, Pakistan
| | - Muhammad Jehangir
- Department of Chemistry, FC College (A Chartered University), Lahore, Pakistan
| | | | - Amjad Hussain
- University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | | | - Ijaz Ali
- Centre for Applied Mathematics and Bioinformatics (CAMB), Gulf University for Science and Technology, Hawally, Kuwait
| |
Collapse
|
15
|
Zhang X, Huang Y, Huang S, Xie W, Huang W, Chen Y, Li Q, Zeng F, Liu X. Antisolvent precipitation for the synergistic preparation of ultrafine particles of nobiletin under ultrasonication-homogenization and evaluation of the inhibitory effects of α-glucosidase and porcine pancreatic lipase in vitro. ULTRASONICS SONOCHEMISTRY 2024; 105:106865. [PMID: 38564909 PMCID: PMC10999467 DOI: 10.1016/j.ultsonch.2024.106865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 04/04/2024]
Abstract
To further enhance the application of nobiletin (an important active ingredient in Citrus fruits), we used ultrasonic homogenization-assisted antisolvent precipitation to create ultrafine particles of nobiletin (UPN). DMSO was used as the solvent, and deionized water was used as the antisolvent. When ultrasonication (670 W) and homogenization (16000 r/min) were synergistic, the solution concentration was 57 mg/mL, and the minimum particle size of UPN was 521.02 nm. The UPN samples outperformed the RN samples in terms of the inhibition of porcine pancreatic lipase, which was inhibited (by 500 mg/mL) by 68.41 % in the raw sample, 90.34 % in the ultrafine sample, and 83.59 % in the positive control, according to the data. Fourier transform infrared spectroscopy analysis revealed no chemical changes in the samples before or after preparation. However, the crystallinity of the processed ultrafine nobiletin particles decreased. Thus, this work offers significant relevance for applications in the realm of food chemistry and indirectly illustrates the expanded application potential of nobiletin.
Collapse
Affiliation(s)
- Xiaonan Zhang
- Jiaying University, Meizhou 514015, China; Conservation and Utilization Laboratory of Mountain Characteristic Resources in Guangdong Province, Meizhou 514015, China
| | - Yan Huang
- Jiaying University, Meizhou 514015, China
| | - Siyi Huang
- Jiaying University, Meizhou 514015, China
| | - Wenyi Xie
- Jiaying University, Meizhou 514015, China; Conservation and Utilization Laboratory of Mountain Characteristic Resources in Guangdong Province, Meizhou 514015, China
| | - Wenxuan Huang
- Jiaying University, Meizhou 514015, China; Conservation and Utilization Laboratory of Mountain Characteristic Resources in Guangdong Province, Meizhou 514015, China
| | - Yi Chen
- Jiaying University, Meizhou 514015, China
| | - Qiyuan Li
- Jiaying University, Meizhou 514015, China
| | - Fajian Zeng
- Jiaying University, Meizhou 514015, China; Conservation and Utilization Laboratory of Mountain Characteristic Resources in Guangdong Province, Meizhou 514015, China
| | - Xiongjun Liu
- Jiaying University, Meizhou 514015, China; Conservation and Utilization Laboratory of Mountain Characteristic Resources in Guangdong Province, Meizhou 514015, China.
| |
Collapse
|
16
|
Memarvar D, Yaqoubi S, Hamishehkar H, Lam M, Nokhodchi A. Impact of grinding balls on the size reduction of Aprepitant in wet ball milling procedure. Pharm Dev Technol 2024; 29:353-358. [PMID: 38528824 DOI: 10.1080/10837450.2024.2334754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/21/2024] [Indexed: 03/27/2024]
Abstract
One of the widely used approaches for improving the dissolution of poorly water-soluble drugs is particle size reduction. Ball milling is a mechanical, top-down technique used to reduce particle size. The effect of ball number, ball size, and milling speed on the properties of milled Aprepitant is evaluated. A full factorial design was employed to investigate the influence of affecting factors on particle size reduction. The initial suspension was made by suspending the drug in distilled water using excipients followed by milling in a planetary ball mill. Ball size, ball number, and milling speed modulated particle size distribution of Aprepitant. Increasing the number of balls from minimum to maximum for each ball size led to approximately a 28% reduction in mean particle size, a 37% decrease in D90%, and a 25% decrease in the ratio of volume mean particle diameter to numeric mean particle diameter. On average, using 10 mm balls instead of 30 mm balls reduced mean particle size by 1.689 µm. As a result, ball size, ball number, and milling speed are three effective factors in the process of ball milling. By increasing the ball number and decreasing the ball size, efficient micronization of drug particles takes place and the particle size is more uniform.
Collapse
Affiliation(s)
- Dourna Memarvar
- Drug Applied Research Center, Research Committee and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shadi Yaqoubi
- Biotechnology Research Center, and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Matthew Lam
- School of Life Sciences, University of Sussex, Brighton, UK
| | - Ali Nokhodchi
- School of Life Sciences, University of Sussex, Brighton, UK
- Lupin Inhalation Research Center, Coral Springs, FL, USA
| |
Collapse
|
17
|
Ogadah CU, Mrštná K, Matysová L, Müllertz A, Rades T, Niederquell A, Šklubalová Z, Vraníková B. Comparison of the liquisolid technique and co-milling for loading of a poorly soluble drug in inorganic porous excipients. Int J Pharm 2024; 650:123702. [PMID: 38086492 DOI: 10.1016/j.ijpharm.2023.123702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/07/2023] [Accepted: 12/09/2023] [Indexed: 12/18/2023]
Abstract
Drug loading into mesoporous carriers may help to improve the dissolution of poorly aqueous-soluble drugs. However, both preparation method and carrier properties influence loading efficiency and drug release. Accordingly, this study aimed to compare two preparation methods: formulation into liquisolid systems (LSS) and co-milling for their efficiency in loading the poorly soluble model drug cyclosporine A (CyA) into mesoporous magnesium aluminometasilicate Neusilin® US2 (NEU) or functionalized calcium carbonate (FCC). Scanning electron microscopy was used to visualize the morphology of the samples and evaluate the changes that occurred during the drug loading process. The solid-state characteristics and physical stability of the formulations, prepared at different drug concentrations, were determined using X-ray powder diffraction. In vitro release of the drug was evaluated in biorelevant media simulating intestinal fluid. The obtained results revealed improved drug release profiles of the formulations when compared to the milled (amorphous) CyA alone. The dissolution of CyA from LSS was faster in comparison to the co-milled formulations. Higher drug release was achieved from NEU than FCC formulations presumably due to the higher pore volume and larger surface area of NEU.
Collapse
Affiliation(s)
- Chiazor Ugo Ogadah
- Department of Pharmaceutical Technology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
| | - Kristýna Mrštná
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic; Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Sokolská 581, 50005 Hradec Králové, Czech Republic.
| | - Ludmila Matysová
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
| | - Anette Müllertz
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen, Denmark.
| | - Thomas Rades
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen, Denmark.
| | - Andreas Niederquell
- Department of Pharmaceutical Technology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic; Institute of Pharma Technology, University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Klingelbergstr. 50, 4056 Basel, Switzerland.
| | - Zdenka Šklubalová
- Department of Pharmaceutical Technology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
| | - Barbora Vraníková
- Department of Pharmaceutical Technology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
| |
Collapse
|
18
|
Rossetti A, Real DA, Barrientos BA, Allemandi DA, Paredes AJ, Real JP, Palma SD. Significant progress in improving Atorvastatin dissolution rate: Physicochemical characterization and stability assessment of self-dispersible Atorvastatin/Tween 80® nanocrystals formulated through wet milling and freeze-drying. Int J Pharm 2024; 650:123720. [PMID: 38110014 DOI: 10.1016/j.ijpharm.2023.123720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/27/2023] [Accepted: 12/15/2023] [Indexed: 12/20/2023]
Abstract
Atorvastatin (ATV) is a first-line drug for the treatment of hyperlipidemia. This drug presents biopharmaceutical problems, partly due to its low solubility and dissolution rate. In this work, nanocrystals of ATV stabilized with Tween 80® were designed by wet milling. A full factorial design was applied to optimize the process. Additionally, a cryoprotectant agent (maltodextrin, MTX) was identified, which allowed maintaining the properties of the nanocrystals after lyophilization. The storage stability of the nanocrystals was demonstrated for six months in different conditions. The obtained nanocrystal powder was characterized using SEM, EDXS, TEM, DSC, TGA, FT-IR, and XRD, showing the presence of irregular crystals with semi-amorphous characteristics, likely due to the particle collision process. Based on the reduction in particle size and the decrease in drug crystallinity, a significant increase in water and phosphate buffer (pH 6.8) solubility by 4 and 6 times, respectively, was observed. On the other hand, a noticeable increase in the dissolution rate was observed, with 90 % of the drug dissolved within 60 min of study, compared to 30 % of the drug dissolved within 12 h in the case of the untreated drug or the physical mixture of components. Based on these results, it can be concluded that the nano-milling of Atorvastatin stabilized with Tween 80® is a promising strategy for developing new formulations with improved biopharmaceutical properties of this widely used drug.
Collapse
Affiliation(s)
- Alan Rossetti
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET, Argentina; Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, X5000XHUA Córdoba, Argentina
| | - Daniel Andrés Real
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET, Argentina; Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, X5000XHUA Córdoba, Argentina
| | - Bruno Andrés Barrientos
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET, Argentina; Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, X5000XHUA Córdoba, Argentina
| | - Daniel Alberto Allemandi
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET, Argentina; Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, X5000XHUA Córdoba, Argentina
| | - Alejandro J Paredes
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Juan Pablo Real
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET, Argentina; Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, X5000XHUA Córdoba, Argentina.
| | - Santiago Daniel Palma
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET, Argentina; Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, X5000XHUA Córdoba, Argentina.
| |
Collapse
|
19
|
Duvnjak M, Villois A, Ramazani F. Biodegradable Long-Acting Injectables: Platform Technology and Industrial Challenges. Handb Exp Pharmacol 2024; 284:133-150. [PMID: 37059910 DOI: 10.1007/164_2023_651] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
Long-acting injectables have been used to benefit patients with chronic diseases. So far, several biodegradable long-acting platform technologies including drug-loaded polymeric microparticles, implants (preformed and in situ forming), oil-based solutions, and aqueous suspension have been established. In this chapter, we summarize all the marketed technology platforms and discuss their challenges regarding development including but not limited to controlling drug release, particle size, stability, sterilization, scale-up manufacturing, etc. Finally, we discuss important criteria to consider for the successful development of long-acting injectables.
Collapse
Affiliation(s)
- Marieta Duvnjak
- Technical Research and Development, Novartis Pharma AG, Basel, Switzerland
| | - Alessia Villois
- Technical Research and Development, Novartis Pharma AG, Basel, Switzerland
| | - Farshad Ramazani
- Technical Research and Development, Novartis Pharma AG, Basel, Switzerland.
| |
Collapse
|
20
|
Modhave D, Barrios B, Iyer J, Paudel A. Influence of Crystal Disorder on the Forced Oxidative Degradation of Vortioxetine HBr. AAPS PharmSciTech 2023; 25:10. [PMID: 38158448 DOI: 10.1208/s12249-023-02721-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024] Open
Abstract
The present study investigates the impact of the solid-state disorder of vortioxetine hydrobromide (HBr) on oxidative degradation under accelerated conditions. A range of solid-state disorders was generated via cryogenic ball milling. The solid-state properties were evaluated by calorimetry, infrared-, and Raman spectroscopies. While salt disproportionation occurred upon milling, no chemical degradation occurred by milling. The amorphous fraction remained physically intact under ambient storage conditions. Subsequently, samples with representative disordered fractions were mixed with a solid oxidative stressor (PVP-H2O2 complex) and were compressed to compacts. The compacts were exposed to 40°C/75% RH for up to 6 h. The sample was periodically withdrawn and analyzed for the physical transformations and degradation. Two oxidative degradation products (DPs) were found to be formed, for which dissimilar relations to the degree of disorder and kinetics of formation were observed. The degradation rate of the major DP formation obtained by fitting the exponential model to the experimental data was found to increase up to a certain degree of disorder and decrease with a further increase in the disordered fraction. In contrast, the minor DP formation kinetics was found to increase monotonically with the increase in the disorder content. For the similar crystallinity level, the degradation trend (rate and extent) differed between the single-phase disorder generated by milling and physically mixed two-phase systems. Overall, the study demonstrates the importance of evaluating the physical and chemical (in)stabilities of the disordered solid state of a salt form of a drug substance, generated through mechano-activation.
Collapse
Affiliation(s)
- Dattatray Modhave
- Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010, Graz, Austria
| | - Brenda Barrios
- Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010, Graz, Austria
| | - Jayant Iyer
- Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010, Graz, Austria
| | - Amrit Paudel
- Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010, Graz, Austria.
- Institute of Process and Particle Engineering, Graz University of Technology, Graz, Austria.
| |
Collapse
|
21
|
Markowicz-Piasecka M, Kubisiak M, Asendrych-Wicik K, Kołodziejczyk M, Grzelińska J, Fabijańska M, Pietrzak T. Long-Acting Injectable Antipsychotics-A Review on Formulation and In Vitro Dissolution. Pharmaceutics 2023; 16:28. [PMID: 38258037 PMCID: PMC10820045 DOI: 10.3390/pharmaceutics16010028] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/08/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Long-acting injectable (LAI) neuroleptics constitute an effective therapeutical alternative for individuals suffering from persistent mental illness. These injectable pharmaceuticals help patients manage their condition better and improve long-term outcomes by preventing relapses and improving compliance. This review aims to analyse the current formulation aspects of LAI neuroleptics, with particular emphasis on analysis of drug release profiles as a critical test to guarantee drug quality and relevant therapeutical activity. While there is no officially approved procedure for depot parenteral drug formulations, various dissolution tests which were developed by LAI manufacturers are described. In vitro dissolution tests also possess a critical function in the estimation of the in vivo performance of a drug formulation. For that reason, thorough inspection of the in vitro-in vivo correlation (IVIVC) is also discussed.
Collapse
Affiliation(s)
| | - Marcin Kubisiak
- Liquid Dosage Form Laboratory, Research and Development Department, Polfa Warszawa S.A., Karolkowa 22/24, 01-207 Warsaw, Poland; (M.K.); (K.A.-W.); (J.G.); (T.P.)
| | - Katarzyna Asendrych-Wicik
- Liquid Dosage Form Laboratory, Research and Development Department, Polfa Warszawa S.A., Karolkowa 22/24, 01-207 Warsaw, Poland; (M.K.); (K.A.-W.); (J.G.); (T.P.)
- Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Medical University of Lodz, ul. Muszynskiego 1, 90-151 Lodz, Poland
| | - Michał Kołodziejczyk
- Department of Drug Form Technology, Medical University of Lodz, ul. Muszynskiego 1, 90-151 Lodz, Poland;
| | - Joanna Grzelińska
- Liquid Dosage Form Laboratory, Research and Development Department, Polfa Warszawa S.A., Karolkowa 22/24, 01-207 Warsaw, Poland; (M.K.); (K.A.-W.); (J.G.); (T.P.)
| | - Małgorzata Fabijańska
- Department of Bioinorganic Chemistry, Medical University of Lodz, ul. Muszynskiego 1, 90-151 Lodz, Poland;
| | - Tomasz Pietrzak
- Liquid Dosage Form Laboratory, Research and Development Department, Polfa Warszawa S.A., Karolkowa 22/24, 01-207 Warsaw, Poland; (M.K.); (K.A.-W.); (J.G.); (T.P.)
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| |
Collapse
|
22
|
Attia L, Chen L, Doyle PS. Orthogonal Gelations to Synthesize Core-Shell Hydrogels Loaded with Nanoemulsion-Templated Drug Nanoparticles for Versatile Oral Drug Delivery. Adv Healthc Mater 2023; 12:e2301667. [PMID: 37507108 PMCID: PMC11469203 DOI: 10.1002/adhm.202301667] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/24/2023] [Indexed: 07/30/2023]
Abstract
Hydrophobic active pharmaceutical ingredients (APIs) are ubiquitous in the drug development pipeline, but their poor bioavailability often prevents their translation into drug products. Industrial processes to formulate hydrophobic APIs are expensive, difficult to optimize, and not flexible enough to incorporate customizable drug release profiles into drug products. Here, a novel, dual-responsive gelation process that exploits orthogonal thermo-responsive and ion-responsive gelations is introduced. This one-step "dual gelation" synthesizes core-shell (methylcellulose-alginate) hydrogel particles and encapsulates drug-laden nanoemulsions in the hydrogel matrices. In situ crystallization templates drug nanocrystals inside the polymeric core, while a kinetically stable amorphous solid dispersion is templated in the shell. Drug release is explored as a function of particle geometry, and programmable release is demonstrated for various therapeutic applications including delayed pulsatile release and sequential release of a model fixed-dose combination drug product of ibuprofen and fenofibrate. Independent control over drug loading between the shell and the core is demonstrated. This formulation approach is shown to be a flexible process to develop drug products with biocompatible materials, facile synthesis, and precise drug release performance. This work suggests and applies a novel method to leverage orthogonal gel chemistries to generate functional core-shell hydrogel particles.
Collapse
Affiliation(s)
- Lucas Attia
- Department of Chemical EngineeringMassachusetts Institute of Technology77 Massachusetts AvenueCambridgeMA02139USA
| | - Liang‐Hsun Chen
- Department of Chemical EngineeringMassachusetts Institute of Technology77 Massachusetts AvenueCambridgeMA02139USA
| | - Patrick S. Doyle
- Department of Chemical EngineeringMassachusetts Institute of Technology77 Massachusetts AvenueCambridgeMA02139USA
- Campus for Research Excellence and Technological EnterpriseSingapore138602Singapore
| |
Collapse
|
23
|
Negi A, Nimbkar S, Moses JA. Engineering Inhalable Therapeutic Particles: Conventional and Emerging Approaches. Pharmaceutics 2023; 15:2706. [PMID: 38140047 PMCID: PMC10748168 DOI: 10.3390/pharmaceutics15122706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Respirable particles are integral to effective inhalable therapeutic ingredient delivery, demanding precise engineering for optimal lung deposition and therapeutic efficacy. This review describes different physicochemical properties and their role in determining the aerodynamic performance and therapeutic efficacy of dry powder formulations. Furthermore, advances in top-down and bottom-up techniques in particle preparation, highlighting their roles in tailoring particle properties and optimizing therapeutic outcomes, are also presented. Practices adopted for particle engineering during the past 100 years indicate a significant transition in research and commercial interest in the strategies used, with several innovative concepts coming into play in the past decade. Accordingly, this article highlights futuristic particle engineering approaches such as electrospraying, inkjet printing, thin film freeze drying, and supercritical processes, including their prospects and associated challenges. With such technologies, it is possible to reshape inhaled therapeutic ingredient delivery, optimizing therapeutic benefits and improving the quality of life for patients with respiratory diseases and beyond.
Collapse
Affiliation(s)
- Aditi Negi
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology, Entrepreneurship and Management—Thanjavur, Ministry of Food Processing Industries, Government of India, Thanjavur 613005, Tamil Nadu, India
| | - Shubham Nimbkar
- Food Processing Business Incubation Centre, National Institute of Food Technology, Entrepreneurship and Management—Thanjavur, Ministry of Food Processing Industries, Government of India, Thanjavur 613005, Tamil Nadu, India
| | - Jeyan Arthur Moses
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology, Entrepreneurship and Management—Thanjavur, Ministry of Food Processing Industries, Government of India, Thanjavur 613005, Tamil Nadu, India
| |
Collapse
|
24
|
Shen Y, Xiao Y, Edkins RM, Youngs TGA, Hughes TL, Tellam J, Edkins K. Elucidating the hydrotropism behaviour of aqueous caffeine and sodium benzoate solution through NMR and neutron total scattering analysis. Int J Pharm 2023; 647:123520. [PMID: 37858637 DOI: 10.1016/j.ijpharm.2023.123520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
Hydrotropism is a convenient way to increase the solubility of drugs by up to several orders of magnitude, and even though it has been researched for decades with both experimental and simulation methods, its mechanism is still unknown. Here, we use caffeine/sodium benzoate (CAF-SB) as model system to explore the behaviour of caffeine solubility enhancement in water through NMR spectroscopy and neutron total scattering. 1H NMR shows strong interaction between caffeine and sodium benzoate in water. Neutron total scattering combined with empirical potential structure refinement, a systematic method to study the solution structure, reveals π-stacking between caffeine and the benzoate anion as well as Coulombic interactions with the sodium cation. The strongest hydrogen bond interaction in the system is between benzoate and water, which help dissolve CAF-SB complex and increase the solubility of CAF in water. Besides, the stronger interaction between CAF and water and the distortion of water structure are further mechanisms of the CAF solubility enhancement. It is likely that the variety of mechanisms for hydrotropism shown in this system can be found for other hydrotropes, and NMR spectroscopy and neutron total scattering can be used as complementary techniques to generate a holistic picture of hydrotropic solutions.
Collapse
Affiliation(s)
- Yichun Shen
- School of Health Sciences, University of Manchester, Stopford Building, Oxford Road, Manchester M13 9PT, UK
| | - Yitian Xiao
- School of Health Sciences, University of Manchester, Stopford Building, Oxford Road, Manchester M13 9PT, UK
| | - Robert M Edkins
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295, Cathedral Street, Glasgow, G1 1XL, UK
| | - Tristan G A Youngs
- ISIS Pulsed Neutron and Muon Source, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, OX11 0QX, UK
| | - Terri-Louise Hughes
- ISIS Pulsed Neutron and Muon Source, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, OX11 0QX, UK
| | - James Tellam
- ISIS Deuteration Facility, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, OX11 0QX, UK
| | - Katharina Edkins
- School of Health Sciences, University of Manchester, Stopford Building, Oxford Road, Manchester M13 9PT, UK.
| |
Collapse
|
25
|
Saha P, Rafe MR. Cyclodextrin: A prospective nanocarrier for the delivery of antibacterial agents against bacteria that are resistant to antibiotics. Heliyon 2023; 9:e19287. [PMID: 37662769 PMCID: PMC10472013 DOI: 10.1016/j.heliyon.2023.e19287] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/02/2023] [Accepted: 08/17/2023] [Indexed: 09/05/2023] Open
Abstract
Supramolecular chemistry introduces us to the macrocyclic host cyclodextrin, which has a hydrophobic cavity. The hydrophobic cavity has a higher affinity for hydrophobic guest molecules and forms host-guest complexation with non-covalent interaction. Three significant cyclodextrin kinds are α-cyclodextrin, β-cyclodextrin, and γ-cyclodextrin. The most often utilized is β-cyclodextrin (β-CD). An effective weapon against bacteria that are resistant to antibiotics is cyclodextrin. Several different kinds of cyclodextrin nanocarriers (β-CD, HP-β-CD, Meth-β-CD, cationic CD, sugar-grafted CD) are utilized to enhance the solubility, stability, dissolution, absorption, bioavailability, and permeability of the antibiotics. Cyclodextrin also improves the effectiveness of antibiotics, antimicrobial peptides, metallic nanoparticles, and photodynamic therapy (PDT). Again, cyclodextrin nanocarriers offer slow-release properties for sustained-release formulations where steady-state plasma antibiotic concentration is needed for an extended time. A novel strategy to combat bacterial resistance is a stimulus (pH, ROS)-responsive antibiotics released from cyclodextrin carrier. Once again, cyclodextrin traps autoinducer (AI), a crucial part of bacterial quorum sensing, and reduces virulence factors, including biofilm formation. Cyclodextrin helps to minimize MIC in particular bacterial strains, keep antibiotic concentrations above MIC in the infection site and minimize the possibility of antibiotic and biofilm resistance. Sessile bacteria trapped in biofilms are more resistant to antibiotic therapy than bacteria in a planktonic form. Cyclodextrin also involves delivering antibiotics to biofilm and resistant bacteria to combat bacterial resistance.
Collapse
Affiliation(s)
- Pranoy Saha
- Department of Pharmacy, Jagannath University, Dhaka, 1100, Bangladesh
| | - Md Rajdoula Rafe
- Department of Pharmacy, Jagannath University, Dhaka, 1100, Bangladesh
| |
Collapse
|
26
|
Tubtimkuna S, Danilov DL, Sawangphruk M, Notten PHL. Review of the Scalable Core-Shell Synthesis Methods: The Improvements of Li-Ion Battery Electrochemistry and Cycling Stability. SMALL METHODS 2023; 7:e2300345. [PMID: 37231555 DOI: 10.1002/smtd.202300345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/03/2023] [Indexed: 05/27/2023]
Abstract
The demand for lithium-ion batteries has significantly increased due to the increasing adoption of electric vehicles (EVs). However, these batteries have a limited lifespan, which needs to be improved for the long-term use needs of EVs expected to be in service for 20 years or more. In addition, the capacity of lithium-ion batteries is often insufficient for long-range travel, posing challenges for EV drivers. One approach that has gained attention is using core-shell structured cathode and anode materials. That approach can provide several benefits, such as extending the battery lifespan and improving capacity performance. This paper reviews various challenges and solutions by the core-shell strategy adopted for both cathodes and anodes. The highlight is scalable synthesis techniques, including solid phase reactions like the mechanofusion process, ball-milling, and spray-drying process, which are essential for pilot plant production. Due to continuous operation with a high production rate, compatibility with inexpensive precursors, energy and cost savings, and an environmentally friendly approach that can be carried out at atmospheric pressure and ambient temperatures. Future developments in this field may focus on optimizing core-shell materials and synthesis techniques for improved Li-ion battery performance and stability.
Collapse
Affiliation(s)
- Suchakree Tubtimkuna
- Fundamental Electrochemistry (IEK-9) Forschungszentrum Jülich, D-52425, Jülich, Germany
- Department of Chemical and Biomolecular Engineering School of Energy Science and Engineering Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
| | - Dmitri L Danilov
- Fundamental Electrochemistry (IEK-9) Forschungszentrum Jülich, D-52425, Jülich, Germany
- Eindhoven University of Technology Eindhoven, Eindhoven, MB, 5600, The Netherlands
| | - Montree Sawangphruk
- Department of Chemical and Biomolecular Engineering School of Energy Science and Engineering Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
| | - Peter H L Notten
- Fundamental Electrochemistry (IEK-9) Forschungszentrum Jülich, D-52425, Jülich, Germany
- Eindhoven University of Technology Eindhoven, Eindhoven, MB, 5600, The Netherlands
- University of Technology Sydney Broadway, Sydney, NS, 2007, Australia
| |
Collapse
|
27
|
Alsenz J, Haenel E. Precellys® Evolution Homogenizer - a versatile instrument for milling, mixing, and amorphization of drugs in preformulation. Eur J Pharm Biopharm 2023; 189:1-14. [PMID: 37245695 DOI: 10.1016/j.ejpb.2023.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/14/2023] [Accepted: 05/02/2023] [Indexed: 05/30/2023]
Abstract
The aim of this work was the evaluation and introduction of the Bertin Precellys® Evolution homogenizer with Cryolys® as a valuable and versatile tool for the improvement of workflows in the preformulation phase of drug development. The presented pilot experiments indicate that the instrument can be applied for (1) screening of appropriate vehicles for the generation of micro- and nano suspensions, (2) small-scale manufacturing of suspension formulations for preclinical animal studies, (3) drug amorphization and identification of appropriate excipients for amorphous systems, and (4) preparation of homogenous powder blends. The instrument allows the rapid, parallel, and compound-sparing screening of formulation approaches and small-scale formulation manufacturing, in particular for low solubility compounds. For the characterization of generated formulations, miniaturized methods are introduced such as a screening tool for suspension sedimentation and redispersion and a non-sink dissolution model in biorelevant media in microtiter plates. This work summarizes exploratory, proof-of-concept studies and opens up new opportunities for more extended studies with this instrument in various application areas.
Collapse
Affiliation(s)
- Jochem Alsenz
- Roche Pharmaceutical Research & Early Development, Pre-Clinical CMC, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland.
| | - Elisabeth Haenel
- Roche Pharmaceutical Research & Early Development, Pre-Clinical CMC, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland.
| |
Collapse
|
28
|
Bauer A, Berben P, Chakravarthi SS, Chattorraj S, Garg A, Gourdon B, Heimbach T, Huang Y, Morrison C, Mundhra D, Palaparthy R, Saha P, Siemons M, Shaik NA, Shi Y, Shum S, Thakral NK, Urva S, Vargo R, Koganti VR, Barrett SE. Current State and Opportunities with Long-acting Injectables: Industry Perspectives from the Innovation and Quality Consortium "Long-Acting Injectables" Working Group. Pharm Res 2023; 40:1601-1631. [PMID: 36811809 DOI: 10.1007/s11095-022-03391-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/06/2022] [Indexed: 02/24/2023]
Abstract
Long-acting injectable (LAI) formulations can provide several advantages over the more traditional oral formulation as drug product opportunities. LAI formulations can achieve sustained drug release for extended periods of time, which results in less frequent dosing requirements leading to higher patient adherence and more optimal therapeutic outcomes. This review article will provide an industry perspective on the development and associated challenges of long-acting injectable formulations. The LAIs described herein include polymer-based formulations, oil-based formulations, and crystalline drug suspensions. The review discusses manufacturing processes, including quality controls, considerations of the Active Pharmaceutical Ingredient (API), biopharmaceutical properties and clinical requirements pertaining to LAI technology selection, and characterization of LAIs through in vitro, in vivo and in silico approaches. Lastly, the article includes a discussion around the current lack of suitable compendial and biorelevant in vitro models for the evaluation of LAIs and its subsequent impact on LAI product development and approval.
Collapse
Affiliation(s)
- Andrea Bauer
- Sunovion Pharmaceuticals, Marlborough, MA, 01752, USA
| | | | | | | | - Ashish Garg
- Eli Lilly and Company, Indianapolis, IN, USA
| | | | | | - Ye Huang
- AbbVie Inc., North Chicago, IL, 60064, USA
| | | | | | | | - Pratik Saha
- GlaxoSmithKline, Collegeville, PA, 19426, USA
| | - Maxime Siemons
- Janssen R&D, a Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | | | - Yi Shi
- AbbVie Inc., North Chicago, IL, 60064, USA
| | - Sara Shum
- Takeda Development Center Americas, Inc., Cambridge, MA, 02139, USA
| | | | - Shweta Urva
- Eli Lilly and Company, Indianapolis, IN, USA
| | - Ryan Vargo
- Merck & Co., Inc., Rahway, NJ, 07065, USA
| | | | | |
Collapse
|
29
|
Nagy E, Kopniczky J, Smausz T, Náfrádi M, Alapi T, Bohus J, Pajer V, Szabó-Révész P, Ambrus R, Hopp B. A comparative study of femtosecond pulsed laser ablation of meloxicam in distilled water and in air. Sci Rep 2023; 13:10242. [PMID: 37353524 DOI: 10.1038/s41598-023-36922-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 06/12/2023] [Indexed: 06/25/2023] Open
Abstract
The increasing prevalence of water insoluble or poorly soluble drugs calls for the development of new formulation methods. Common approaches include the reduction of particle size and degree of crystallinity. Pulsed laser ablation is a clean technique for producing sub-micrometre sized drug particles and has the potential to induce amorphization. We studied the effect of femtosecond pulsed laser ablation (ELI ALPS THz pump laser system: λc = 781 nm, τ = 135 fs) on meloxicam in distilled water and in air. The ablated particles were characterized chemically, morphologically and in terms of crystallinity. We demonstrated that femtosecond laser ablation can induce partial amorphization of the particles in addition to a reduction in particle size. In the case of femtosecond pulsed laser ablation in air, the formation of pure meloxicam spheres showed that this technique can produce amorphous meloxicam without the use of excipients, which is a unique result. We also aimed to describe the ablation processes in both investigated media.
Collapse
Affiliation(s)
- Eszter Nagy
- Department of Optics and Quantum Electronics, University of Szeged, Dóm tér 9, Szeged, 6720, Hungary
| | - Judit Kopniczky
- Department of Optics and Quantum Electronics, University of Szeged, Dóm tér 9, Szeged, 6720, Hungary
| | - Tamás Smausz
- Department of Optics and Quantum Electronics, University of Szeged, Dóm tér 9, Szeged, 6720, Hungary
| | - Máté Náfrádi
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, Szeged, 6720, Hungary
| | - Tünde Alapi
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, Szeged, 6720, Hungary
| | - János Bohus
- ELI ALPS, ELI-HU Non-Profit Ltd., Wolfgang Sandner utca 3, Szeged, 6728, Hungary
| | - Viktor Pajer
- ELI ALPS, ELI-HU Non-Profit Ltd., Wolfgang Sandner utca 3, Szeged, 6728, Hungary
| | - Piroska Szabó-Révész
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös utca 6, Szeged, 6720, Hungary
| | - Rita Ambrus
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös utca 6, Szeged, 6720, Hungary
| | - Béla Hopp
- Department of Optics and Quantum Electronics, University of Szeged, Dóm tér 9, Szeged, 6720, Hungary.
| |
Collapse
|
30
|
Shah DS, Moravkar KK, Jha DK, Lonkar V, Amin PD, Chalikwar SS. A concise summary of powder processing methodologies for flow enhancement. Heliyon 2023; 9:e16498. [PMID: 37292344 PMCID: PMC10245010 DOI: 10.1016/j.heliyon.2023.e16498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/03/2023] [Accepted: 05/18/2023] [Indexed: 06/10/2023] Open
Abstract
The knowledge of powder properties has been highlighted since the 19th century since most formulations focus on solid dosage forms, and powder flow is essential for various manufacturing operations. A poor powder flow may generate problems in the manufacturing processes and cause the plant's malfunction. Hence these problems should be studied and rectified beforehand by various powder flow techniques to improve and enhance powder flowability. The powder's physical properties can be determined using compendial and non-compendial methods. The non-compendial practices generally describe the powder response under the stress and shear experienced during their processing. The primary interest of the current report is to summarize the flow problems and enlist the techniques to eliminate the issues associated with the powder's flow properties, thereby increasing plant output and minimizing the production process inconvenience with excellent efficiency. In this review, we discuss powder flow and its measurement techniques and mainly focus on various approaches to improve the cohesive powder flow property.
Collapse
Affiliation(s)
- Devanshi S. Shah
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| | - Kailas K. Moravkar
- Department of Industrial Pharmacy and Quality Assurance, R. C. Patel Institute of Pharmaceutical Education and Research, Karwand Naka, Shirpur, Dhule 425405, India
- Regeron INC 103 BIO-2, Chuncheon BioTown, Chuncheon, South Korea
| | - Durgesh K. Jha
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
- DelNova Healthcare, An Innovation Center of ViRACS Healthcare, Thane, India
| | - Vijay Lonkar
- Department of Industrial Pharmacy and Quality Assurance, R. C. Patel Institute of Pharmaceutical Education and Research, Karwand Naka, Shirpur, Dhule 425405, India
| | - Purnima D. Amin
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| | - Shailesh S. Chalikwar
- Department of Industrial Pharmacy and Quality Assurance, R. C. Patel Institute of Pharmaceutical Education and Research, Karwand Naka, Shirpur, Dhule 425405, India
| |
Collapse
|
31
|
Stanciauskaite M, Poskute M, Kurapkiene V, Marksa M, Jakstas V, Ivanauskas L, Kersiene M, Leskauskaite D, Ramanauskiene K. Optimization of Delivery and Bioavailability of Encapsulated Caffeic Acid. Foods 2023; 12:foods12101993. [PMID: 37238812 DOI: 10.3390/foods12101993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/29/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
Caffeic acid is a widely distributed phenolic acid. It is described in the scientific literature that caffeic acid has poor solubility. The aim of this study was to improve the solubility of caffeic acid for better dissolution kinetics when administered orally. During the study, oral capsules of different compositions were modeled. The results of the disintegration test revealed that the excipients affected the disintegration time of the capsules. The excipient hypromellose prolonged the disintegration time and dissolution time of caffeic acid. The dissolution kinetics of caffeic acid from capsules depend on the chosen excipients. P407 was more effective compared to other excipients and positively affected the dissolution kinetics of caffeic acid compared to other excipients. When the capsule contained 25 mg of β-cyclodextrin, 85% of the caffeic acid was released after 60 min. When the capsule contained 25-50 mg poloxamer 407, more than 85.0% of the caffeic acid was released from capsules after 30 min. The research results showed that in order to improve the dissolution kinetics of caffeic acid, one of the important steps is to improve its solubility.
Collapse
Affiliation(s)
- Monika Stanciauskaite
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Lithuanian University of Health Sciences, Sukileliai Avenue 13, LT-50162 Kaunas, Lithuania
- Department of Drug Chemistry, Faculty of Pharmacy, Lithuanian University of Health Sciences, Sukileliai Avenue 13, LT-50162 Kaunas, Lithuania
| | - Monika Poskute
- Department of Clinical Pharmacy, Faculty of Pharmacy, Lithuanian University of Health Sciences, Sukileliai Avenue 13, LT-50162 Kaunas, Lithuania
| | - Vaida Kurapkiene
- Department of Clinical Pharmacy, Faculty of Pharmacy, Lithuanian University of Health Sciences, Sukileliai Avenue 13, LT-50162 Kaunas, Lithuania
| | - Mindaugas Marksa
- Department Analytical & Toxicological Chemistry, Faculty of Pharmacy, Lithuanian University of Health Sciences, Sukileliai Avenue 13, LT-50162 Kaunas, Lithuania
| | - Valdas Jakstas
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Lithuanian University of Health Sciences, Sukileliai Avenue 13, LT-50162 Kaunas, Lithuania
| | - Liudas Ivanauskas
- Department Analytical & Toxicological Chemistry, Faculty of Pharmacy, Lithuanian University of Health Sciences, Sukileliai Avenue 13, LT-50162 Kaunas, Lithuania
| | - Milda Kersiene
- Department of Food Science and Technology, Kaunas University of Technology, Radvilenu pl. 19, LT-50254 Kaunas, Lithuania
| | - Daiva Leskauskaite
- Department of Food Science and Technology, Kaunas University of Technology, Radvilenu pl. 19, LT-50254 Kaunas, Lithuania
| | - Kristina Ramanauskiene
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Lithuanian University of Health Sciences, Sukileliai Avenue 13, LT-50162 Kaunas, Lithuania
| |
Collapse
|
32
|
Han X, Li D, Reyes-Ortega F, Schneider-Futschik EK. Dry Powder Inhalation for Lung Delivery in Cystic Fibrosis. Pharmaceutics 2023; 15:1488. [PMID: 37242730 PMCID: PMC10223735 DOI: 10.3390/pharmaceutics15051488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/30/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Pulmonary drug delivery has long been used for local and systemic administration of different medications used in acute and chronic respiratory diseases. Certain lung diseases, such as cystic fibrosis, rely heavily on chronic treatments, including targeted lung delivery. Pulmonary drug delivery possesses various physiological advantages compared to other delivery methods and is also convenient for the patient to use. However, the formulation of dry powder for pulmonary delivery proves challenging due to aerodynamic restrictions and the lower tolerance of the lung. The aim of this review is to provide an overview of the respiratory tract structure in patients with cystic fibrosis, including during acute and chronic lung infections and exacerbations. Furthermore, this review discusses the advantages of targeted lung delivery, including the physicochemical properties of dry powder and factors affecting clinical efficacy. Current inhalable drug treatments and drugs currently under development will also be discussed.
Collapse
Affiliation(s)
| | | | | | - Elena K. Schneider-Futschik
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
33
|
Yeo S, Lee TH, Kim MJ, Shim YK, Yoon I, Song YK, Lee WK. Improved anticancer efficacy of methyl pyropheophorbide-a-incorporated solid lipid nanoparticles in photodynamic therapy. Sci Rep 2023; 13:7391. [PMID: 37149617 PMCID: PMC10164167 DOI: 10.1038/s41598-023-34265-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/26/2023] [Indexed: 05/08/2023] Open
Abstract
Photodynamic therapy (PDT) is a promising anticancer treatment because it is patient-friendly and non-invasive. Methyl pyropheophorbide-a (MPPa), one of the chlorin class photosensitizers, is a drug with poor aqueous solubility. The purpose of this study was to synthesize MPPa and develop MPPa-loaded solid lipid nanoparticles (SLNs) with improved solubility and PDT efficacy. The synthesized MPPa was confirmed 1H nuclear magnetic resonance (1H-NMR) spectroscopy and UV-Vis spectroscopy. MPPa was encapsulated in SLN via a hot homogenization with sonication. Particle characterization was performed using particle size and zeta potential measurements. The pharmacological effect of MPPa was evaluated using the 1,3-diphenylisobenzofuran (DPBF) assay and anti-cancer effect against HeLa and A549 cell lines. The particle size and zeta potential ranged from 231.37 to 424.07 nm and - 17.37 to - 24.20 mV, respectively. MPPa showed sustained release from MPPa-loaded SLNs. All formulations improved the photostability of MPPa. The DPBF assay showed that SLNs enhanced the 1O2 generation from MPPa. In the photocytotoxicity analysis, MPPa-loaded SLNs demonstrated cytotoxicity upon photoirradiation but not in the dark. The PDT efficacy of MPPa improved following its entrapment in SLNs. This observation suggests that MPPa-loaded SLNs are suitable for the enhanced permeability and retention effect. Together, these results demonstrate that the developed MPPa-loaded SLNs are promising candidates for cancer treatment using PDT.
Collapse
Grants
- No.5199991614715 Fostering Outstanding Universities for Research
- NRF-2020R1I1A1A01060632 National Research Foundation of Korea
- S3248094 Collabo R&D between Industry, University, and Research Institute funded by Korea Ministry of SMEs and Startups
- S3248094 Collabo R&D between Industry, University, and Research Institute funded by Korea Ministry of SMEs and Startups
- S3248094 Collabo R&D between Industry, University, and Research Institute funded by Korea Ministry of SMEs and Startups
- S3248094 Collabo R&D between Industry, University, and Research Institute funded by Korea Ministry of SMEs and Startups
- S3248094 Collabo R&D between Industry, University, and Research Institute funded by Korea Ministry of SMEs and Startups
- S3248094 Collabo R&D between Industry, University, and Research Institute funded by Korea Ministry of SMEs and Startups
- S3248094 Collabo R&D between Industry, University, and Research Institute funded by Korea Ministry of SMEs and Startups
Collapse
Affiliation(s)
- Sooho Yeo
- Center for Nano Manufacturing and Department of Nanoscience and Engineering, Inje University, Gimhae, 50834, South Korea.
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Seoul, South Korea.
| | - Tae Heon Lee
- Research Center of Dr. I&B Co., DaeJeon, Republic of Korea
| | - Min Je Kim
- Center for Nano Manufacturing and Department of Nanoscience and Engineering, Inje University, Gimhae, 50834, South Korea
| | - Young Key Shim
- Research Center of Dr. I&B Co., DaeJeon, Republic of Korea
| | - Il Yoon
- Center for Nano Manufacturing and Department of Nanoscience and Engineering, Inje University, Gimhae, 50834, South Korea
| | - Young Kyu Song
- Research Center of Dr. I&B Co., DaeJeon, Republic of Korea.
| | - Woo Kyoung Lee
- Center for Nano Manufacturing and Department of Nanoscience and Engineering, Inje University, Gimhae, 50834, South Korea.
| |
Collapse
|
34
|
Moore JV, Wylie MP, Andrews GP, McCoy CP. Photosensitiser-incorporated microparticles for photodynamic inactivation of bacteria. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 241:112671. [PMID: 36870247 DOI: 10.1016/j.jphotobiol.2023.112671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/27/2023] [Accepted: 02/17/2023] [Indexed: 03/06/2023]
Abstract
Antimicrobial resistance is an ever-growing global concern, making the development of alternative antimicrobial agents and techniques an urgent priority to protect public health. Antimicrobial photodynamic therapy (aPDT) is one such promising alternative, which harnesses the cytotoxic action of reactive oxygen species (ROS) generated upon irradiation of photosensitisers (PSs) with visible light to destroy microorganisms. In this study we report a convenient and facile method to produce highly photoactive antimicrobial microparticles, exhibiting minimal PS leaching, and examine the effect of particle size on antimicrobial activity. A ball milling technique produced a range of sizes of anionic p(HEMA-co-MAA) microparticles, providing large surface areas available for electrostatic attachment of the cationic PS, Toluidine Blue O (TBO). The TBO-incorporated microparticles showed a size-dependent effect on antimicrobial activity, with a decrease in microparticle size resulting in an increase in the bacterial reductions achieved when irradiated with red light. The >6 log10Pseudomonas aeruginosa and Staphylococcus aureus reductions (>99.9999%) achieved within 30 and 60 min, respectively, by TBO-incorporated >90 μm microparticles were attributed to the cytotoxic action of the ROS generated by TBO molecules bound to the microparticles, with no PS leaching from these particles detected over this timeframe. TBO-incorporated microparticles capable of significantly reducing the bioburden of solutions with short durations of low intensity red light irradiation and minimal leaching present an attractive platform for various antimicrobial applications.
Collapse
Affiliation(s)
- Jessica V Moore
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Matthew P Wylie
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Gavin P Andrews
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Colin P McCoy
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
35
|
Liu X, Zhao L, Wu B, Chen F. Improving solubility of poorly water-soluble drugs by protein-based strategy: A review. Int J Pharm 2023; 634:122704. [PMID: 36758883 DOI: 10.1016/j.ijpharm.2023.122704] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/30/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023]
Abstract
Poorly water-soluble drugs are frequently encountered and present a most challengeable difficulty in pharmaceutical development. Poor solubility of drugs can lead to suboptimal bioavailability and therapeutic efficiency. Increasing efforts have been contributed to improve the solubility of poorly water-soluble drugs for better pharmacokinetics and pharmacodynamics. Among various solubility enhancement technologies, protein-based strategy to address poorly water-soluble drugs issues has special interests for natural advantages including versatile interactions between proteins and hydrophobic drugs, biocompatibility, biodegradation, and metabolization of proteins. The protein-drug formulations could be formed by covalent conjugations or noncovalent interactions to facilitate solubility of poorly water-soluble drugs. This review is to summarize the advances using proteins including plant proteins, mammalian proteins, and recombinant proteins, to enhance water solubility of poorly water-soluble drugs.
Collapse
Affiliation(s)
- Xiaowen Liu
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, China; Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs, 220 Handan Road, Shanghai 200433, China.
| | - Limin Zhao
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, China; Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs, 220 Handan Road, Shanghai 200433, China
| | - Baojian Wu
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Fener Chen
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, China; Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs, 220 Handan Road, Shanghai 200433, China.
| |
Collapse
|
36
|
Pramanik S, Venkatraman S, Karthik P, Vaidyanathan VK. A systematic review on selection characterization and implementation of probiotics in human health. Food Sci Biotechnol 2023; 32:423-440. [PMID: 36911328 PMCID: PMC9992678 DOI: 10.1007/s10068-022-01210-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/29/2022] [Accepted: 11/14/2022] [Indexed: 01/12/2023] Open
Abstract
Probiotics are live bacteria found in food that assist the body's defence mechanisms against pathogens by reconciling the gut microbiota. Probiotics are believed to aid with gut health, the immune system, and brain function, among other factors. They've furthermore been shown to help with constipation, high blood pressure, and skin issues. The global probiotics market has been incrementally growing in recent years, as consumers' demand for healthy diets and wellness has continued to increase. This has prompted the food industry to develop new probiotic-containing food products, as well as researchers to explore their specific characteristics and impacts on human health. Although most probiotics are fastidious microorganisms that are nutritionally demanding and sensitive to environmental conditions, they become less viable as they are processed and stored. In this review we studied the current literature on the fundamental idea of probiotic bacteria, their medical benefits, and their selection, characterization, and implementations. Graphical Abstract
Collapse
Affiliation(s)
- Shreyasi Pramanik
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology (SRM IST), 603 203, Kattankulathur, India
| | - Swethaa Venkatraman
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology (SRM IST), 603 203, Kattankulathur, India
| | - Pothiyappan Karthik
- Department of Food Biotechnology, Karpagam Academic of Higher Education, Coimbatore, India
| | - Vinoth Kumar Vaidyanathan
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology (SRM IST), 603 203, Kattankulathur, India
| |
Collapse
|
37
|
pH-dependent solubility prediction for optimized drug absorption and compound uptake by plants. J Comput Aided Mol Des 2023; 37:129-145. [PMID: 36797399 DOI: 10.1007/s10822-023-00496-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/31/2023] [Indexed: 02/18/2023]
Abstract
Aqueous solubility is the most important physicochemical property for agrochemical and drug candidates and a prerequisite for uptake, distribution, transport, and finally the bioavailability in living species. We here present the first-ever direct machine learning models for pH-dependent solubility in water. For this, we combined almost 300000 data points from 11 solubility assays performed over 24 years and over one million data points from lipophilicity and melting point experiments. Data were split into three pH-classes - acidic, neutral and basic - , representing the conditions of stomach and intestinal tract for animals and humans, and phloem and xylem for plants. We find that multi-task neural networks using ECFP-6 fingerprints outperform baseline random forests and single-task neural networks on the individual tasks. Our final model with three solubility tasks using the pH-class combined data from different assays and five helper tasks results in root mean square errors of 0.56 log units overall (acidic 0.61; neutral 0.52; basic 0.54) and Spearman rank correlations of 0.83 (acidic 0.78; neutral 0.86; basic 0.86), making it a valuable tool for profiling of compounds in pharmaceutical and agrochemical research. The model allows for the prediction of compound pH profiles with mean and median RMSE per molecule of 0.62 and 0.56 log units.
Collapse
|
38
|
Iyer J, Brunsteiner M, Modhave D, Paudel A. Role of Crystal Disorder and Mechanoactivation in Solid-State Stability of Pharmaceuticals. J Pharm Sci 2023; 112:1539-1565. [PMID: 36842482 DOI: 10.1016/j.xphs.2023.02.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/20/2023] [Accepted: 02/20/2023] [Indexed: 02/28/2023]
Abstract
Common energy-intensive processes applied in oral solid dosage development, such as milling, sieving, blending, compaction, etc. generate particles with surface and bulk crystal disorder. An intriguing aspect of the generated crystal disorder is its evolution and repercussion on the physical- and chemical stabilities of drugs. In this review, we firstly examine the existing literature on crystal disorder and its implications on solid-state stability of pharmaceuticals. Secondly, we discuss the key aspects related to the generation and evolution of crystal disorder, dynamics of the disordered/amorphous phase, analytical techniques to measure/quantify them, and approaches to model the disordering propensity from first principles. The main objective of this compilation is to provide special impetus to predict or model the chemical degradation(s) resulting from processing-induced manifestation in bulk solid manufacturing. Finally, a generic workflow is proposed that can be useful to investigate the relevance of crystal disorder on the degradation of pharmaceuticals during stability studies. The present review will cater to the requirements for developing physically- and chemically stable drugs, thereby enabling early and rational decision-making during candidate screening and in assessing degradation risks associated with formulations and processing.
Collapse
Affiliation(s)
- Jayant Iyer
- Research Center Pharmaceutical Engineering GmbH (RCPE), Graz, Austria
| | | | - Dattatray Modhave
- Research Center Pharmaceutical Engineering GmbH (RCPE), Graz, Austria
| | - Amrit Paudel
- Research Center Pharmaceutical Engineering GmbH (RCPE), Graz, Austria; Graz University of Technology, Institute of Process and Particle Engineering, Graz Austria.
| |
Collapse
|
39
|
Iyer J, Barbosa M, Saraf I, Pinto JF, Paudel A. Mechanoactivation as a Tool to Assess the Autoxidation Propensity of Amorphous Drugs. Mol Pharm 2023; 20:1112-1128. [PMID: 36651656 DOI: 10.1021/acs.molpharmaceut.2c00841] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Mechanoactivation has attracted considerable attention in the pharmaceutical sciences due to its ability to generate amorphous materials and solid-state synthetic products without the use of solvent. Although some studies have reported drug degradation during milling, no studies have systematically investigated the use of mechanoactivation in predicting drug degradation in the solid state. Thus, this work explores the autoxidation of drugs in the solid state by comilling amorphous mifepristone (MFP):polyvinylpyrrolidone vinyl acetate (PVPVA) and amorphous olanzapine (OLA):PVPVA. MFP was amorphized by ball milling and OLA by quench cooling techniques. Subsequently, comilling the amorphous drugs in the presence of a 10-fold weight ratio of PVPVA (the excipient containing reactive free radicals) was performed at several milling frequencies to identify the kinetics of mechano-autoxidation over milling durations. Overall, milling led to the degradation of up to 5% drug in the solid state. The autoxidation mechanism was confirmed by performing a stress study in the solution at 50 °C for 5 h, by using a 10 mM azo-bis(isobutyronitrile) (AIBN) as a stressing agent. By deconvoluting the effect of milling frequency and the energy on the extent and kinetics of milling-induced autoxidation of amorphous drugs, it was possible to fit an extended Arrhenius model that allowed extrapolation of mechanoactivated degradation rates (Km) to zero milling frequencies. Further, the autoxidation rates of drugs stored at high temperatures were observed to follow an Arrhenius behavior. A good degree of agreement was observed between the model predictions obtained by mechanoactivation (Km) to the reaction rates observed under accelerated temperatures. Additionally, the impact of adding an antioxidant (e.g., butylated hydroxytoluene) to the mixture during comilling was also examined. This study can be helpful in evaluating the stability of amorphous solids stored in accelerated (non-hermetic) conditions, in screening solid-state autoxidation propensity of drugs, and for the rational selection of antioxidants.
Collapse
Affiliation(s)
- Jayant Iyer
- Research Center Pharmaceutical Engineering GmbH (RCPE), Graz 8010, Austria
| | - Matilde Barbosa
- iMed.ULisboa, Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisboa P-1649-003, Portugal
| | - Isha Saraf
- Research Center Pharmaceutical Engineering GmbH (RCPE), Graz 8010, Austria
| | - João F Pinto
- iMed.ULisboa, Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisboa P-1649-003, Portugal
| | - Amrit Paudel
- Research Center Pharmaceutical Engineering GmbH (RCPE), Graz 8010, Austria.,Graz University of Technology, Institute of Process and Particle Engineering, Graz 8010, Austria
| |
Collapse
|
40
|
Koutentaki G, Krýsa P, Trunov D, Pekárek T, Pišlová M, Šoóš M. 3D Raman mapping as an analytical tool for investigating the coatings of coated drug particles. J Pharm Anal 2023; 13:276-286. [PMID: 37102110 PMCID: PMC10124118 DOI: 10.1016/j.jpha.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
The properties of dry-coated paracetamol particles (fast-dissolving model drug) with carnauba wax particles as the coating agent (dissolution retardant) were investigated. Raman mapping technique was used to non-destructively examine the thickness and homogeneity of coated particles. The results showed that the wax existed in two forms on the surface of the paracetamol particles, forming a porous coating layer: i) whole wax particles on the surface of paracetamol and glued together with other wax surface particles, and ii) deformed wax particles spread on the surface. Regardless of the final particle size fraction (between 100 and 800 μm), the coating thickness had high variability, with average thickness of 5.9 ± 4.2 μm. The ability of carnauba wax to decrease the dissolution rate of paracetamol was confirmed by dissolution of powder and tablet formulations. The dissolution was slower for larger coated particles. Tableting further reduced the dissolution rate, clearly indicating the impact of subsequent formulation processes on the final quality of the product.
Collapse
|
41
|
Nyavanandi D, Narala S, Mandati P, Alzahrani A, Kolimi P, Almotairy A, Repka MA. Twin Screw Melt Granulation: Alternative Approach for Improving Solubility and Permeability of a Non-steroidal Anti-inflammatory Drug Ibuprofen. AAPS PharmSciTech 2023; 24:47. [PMID: 36703024 DOI: 10.1208/s12249-023-02512-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/11/2023] [Indexed: 01/27/2023] Open
Abstract
The current research is focused on investigating the suitability of the twin screw melt granulation (TSMG) approach for improving the solubility of a non-steroidal anti-inflammatory (NSAIDs) drug (ibuprofen), by developing granules using lipid surfactants. The solubility of the drug within the solid lipid excipients (Gelucire® 48/16 and Gelucire® 50/13) was determined by differential scanning calorimetry (DSC). The formulations were developed for drug and lipid ratios of 1:1.5, 1:3, and 1:4.5 using Neusilin® US2 as a solid adsorbent carrier. The solid-state properties of the drug investigated using differential scanning calorimetry (DSC) have revealed the conversion of the drug to an amorphous form for 1:3 and 1:4.5 ratios of formulations confirmed by powder x-ray diffraction analysis (PXRD). Drug-excipient compatibility and formation of no interactions were characterized using Fourier transform infrared spectroscopy (FTIR). The granules with a 1:3 and 1:4.5 ratios of drug and lipid have improved drug dissolution and permeation, attributing to the formation of micellar emulsions. The stability of formulation with a 1:3 ratio of drug and lipid surfactant was preserved when stored in accelerated conditions. However, the formulation with a 1:4.5 ratio of drug and lipid failed to retain the amorphous state evidenced by the recrystallization of the drug. This shows the suitability of TSMG as a single-step continuous manufacturing process for developing melt granules to improve the solubility of poorly water-soluble drug substances.
Collapse
Affiliation(s)
- Dinesh Nyavanandi
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Jackson, MS, 38677, USA
| | - Sagar Narala
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Jackson, MS, 38677, USA
| | - Preethi Mandati
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Jackson, MS, 38677, USA
| | - Abdullah Alzahrani
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Jackson, MS, 38677, USA
| | - Praveen Kolimi
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Jackson, MS, 38677, USA
| | - Ahmed Almotairy
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Jackson, MS, 38677, USA.,Pharmaceutics and Pharmaceutical Technology Department, College of Pharmacy, Taibah University, AlMunawarah, Al Madinah, 30001, Saudi Arabia
| | - Michael A Repka
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Jackson, MS, 38677, USA. .,Pii Center for Pharmaceutical Technology, The University of Mississippi, University, Jackson, MS, 38677, USA.
| |
Collapse
|
42
|
Celecoxib Nanoformulations with Enhanced Solubility, Dissolution Rate, and Oral Bioavailability: Experimental Approaches over In Vitro/In Vivo Evaluation. Pharmaceutics 2023; 15:pharmaceutics15020363. [PMID: 36839685 PMCID: PMC9964073 DOI: 10.3390/pharmaceutics15020363] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
Celecoxib (CXB) is a Biopharmaceutical Classification System (BCS) Class II molecule with high permeability that is practically insoluble in water. Because of the poor water solubility, there is a wide range of absorption and limited bioavailability following oral administration. These unfavorable properties can be improved using dry co-milling technology, which is an industrial applicable technology. The purpose of this study was to develop and optimize CXB nanoformulations prepared by dry co-milling technology, with a quality by design approach to maintain enhanced solubility, dissolution rate, and oral bioavailability. The resulting co-milled CXB composition using povidone (PVP), mannitol (MAN) and sodium lauryl sulfate (SLS) showed the maximum solubility and dissolution rate in physiologically relevant media. Potential risk factors were determined with an Ishikawa diagram, important risk factors were selected with Plackett-Burman experimental design, and CXB compositions were optimized with Central Composite design (CCD) and Bayesian optimization (BO). Physical characterization, intrinsic dissolution rate, solubility, and stability experiments were used to evaluate the optimized co-milled CXB compositions. Dissolution and permeability studies were carried out for the resulting CXB nanoformulation. Oral pharmacokinetic studies of the CXB nanoformulation and reference product were performed in rats. The results of in vitro and in vivo studies show that the CXB nanoformulations have enhanced solubility (over 4.8-fold (8.6 ± 1.06 µg/mL vs. 1.8 ± 0.33 µg/mL) in water when compared with celecoxib pure powder), and dissolution rate (at least 85% of celecoxib is dissolved in 20 min), and improved oral pharmacokinetic profile (the relative bioavailability was 145.2%, compared to that of Celebrex®, and faster tmax 3.80 ± 2.28 h vs. 6.00 ± 3.67 h, indicating a more rapid absorption rate).
Collapse
|
43
|
Moawad M, Nasr GM, Osman AS, Shaker ES. Curcumin nanocapsules effect in apoptotic processes, gene expression, and cell cycle on Hep-G2 cell lines. Int J Immunopathol Pharmacol 2023; 37:3946320231176396. [PMID: 37190979 DOI: 10.1177/03946320231176396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
OBJECTIVES Curcumin has antioxidant and antiproliferative properties, and its therapeutic effect must be considered. Nanocurcumin capsules showed a potential increase against in vitro biological cancer. This study sought to determine how curcumin nanoparticles and nanocapsules affected the expression of p53, Bcl-2, Bax, and Bax in a liver cancer cell line (Hep-G2). Mechanisms of apoptosis were also examined in this cell line. METHODS This study used quantitative real-time polymerase chain reaction (qRT-PCR) to analyze the p53, Bcl-2, Bax, and Caspase-3 gene pathways and to evaluate the molecular mechanisms responsible for the efficacy of curcumin nanoparticles (CNPs) and curcumin nanocapsules (CNCs) against liver cell lines. Flow cytometry was used to check for signs of apoptosis and the cell cycle. RESULTS Curcumin nanocapsules produced by the ball milling process at 90 min significantly boosted the populations of apoptotic cells in a dose- and time-dependent manner. The mRNA expression analysis revealed that the proapoptotic Bax, Caspase-3, and the tumor suppressor gene p53 were upregulated throughout the process started by curcumin nanocapsules and decreased in the Bcl-2/Bax ratio. CONCLUSION This research provides a fresh understanding of the molecular mechanisms behind the liver cancer-fighting abilities of curcumin nanoparticles. Curcumin nanocapsules produced through a unique mechanical technique can be used as an anticancer agent.
Collapse
Affiliation(s)
- Mahmoud Moawad
- Department of Pathology, National Cancer Institute, Cairo Univ. Egypt
| | - Ghada M Nasr
- Genetic Engineering and Biotechnology Research Institute, Department of Molecular Diagnostics & therapeutics, University of Sadat City, Egypt
| | - Afaf S Osman
- Department of Medical Pharmacology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Emad S Shaker
- Department of Agricultural Biochemistry, Minia University, Egypt
| |
Collapse
|
44
|
Elsebay MT, Eissa NG, Balata GF, Kamal MA, Elnahas HM. Nanosuspension: A Formulation Technology for Tackling the Poor Aqueous Solubility and Bioavailability of Poorly Soluble Drugs. Curr Pharm Des 2023; 29:2297-2312. [PMID: 37694786 DOI: 10.2174/1381612829666230911105922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/03/2023] [Accepted: 07/20/2023] [Indexed: 09/12/2023]
Abstract
The poor water solubility of numerous novel drug candidates presents significant challenges, particularly in terms of oral administration. This limitation can result in various undesirable clinical implications, such as inter-patient variability, poor bioavailability, difficulties in achieving a safe therapeutic index, increased costs, and potential risks of toxicity or inefficacy. Biopharmaceutics Classification System (BCS) class II drugs face particular hurdles due to their limited solubility in the aqueous media of the gastrointestinal tract. In such cases, parenteral administration is often employed as an alternative strategy. To address these challenges, nanosuspension techniques offer a promising solution for enhancing drug solubility and overcoming oral delivery obstacles. This technique has the potential to bridge the gap between drug discovery and preclinical use by resolving problematic solubility. This literature review has delved into contemporary nanosuspension preparation technologies and the incorporation of stabilizing ingredients within the formulation. Furthermore, the manuscript explores nanosuspension strategies for both oral and parenteral/other delivery routes, and separate discussions have been presented to establish a suitable flow that addresses the challenges and strategies relevant to each administration method.
Collapse
Affiliation(s)
- Mohamed T Elsebay
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Galala University, Suez, Egypt
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Noura G Eissa
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
- School of Biotechnology and Science Academy, Badr University in Cairo, Badr City, Cairo, 11829, Egypt
| | - Gehan F Balata
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
- Department of Pharmacy Practice, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | - Mohammad Amjad Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Birulia, Bangladesh
- Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770, Australia
- Novel Global Community Educational Foundation, Hebersham, NSW 2770, Australia
| | - Hanan M Elnahas
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
45
|
Delyagina E, Garibyan A, Agafonov M, Terekhova I. Regularities of Encapsulation of Tolfenamic Acid and Some Other Non-Steroidal Anti-Inflammatory Drugs in Metal-Organic Framework Based on γ-Cyclodextrin. Pharmaceutics 2022; 15:pharmaceutics15010071. [PMID: 36678700 PMCID: PMC9867401 DOI: 10.3390/pharmaceutics15010071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
Metal-organic frameworks based on cyclodextrins (CDs) have been proposed as promising drug delivery systems due to their large surface area, variable pore size, and biocompatibility. In the current work, we investigated an incorporation of tolfenamic acid (TA), a representative of non-steroidal anti-inflammatory drugs (NSAIDs), in a metal-organic framework based on γ-cyclodextrin and potassium cations (γCD-MOF). Composites γCD-MOF/TA obtained by absorption and co-crystallization methods were characterized using powder X-ray diffraction, low temperature nitrogen adsorption/desorption, scanning electron microscopy, and FTIR spectroscopy. It was demonstrated that TA loaded in γCD-MOF has an improved dissolution profile. However, the inclusion of TA in γ-CD reduces the membrane permeability of the drug. A comparative analysis of the encapsulation of different NSAIDs in γCD-MOF was performed. The impact of NSAID structure on the loading capacity was considered for the first time. It was revealed that the presence of heterocycles in the structure and drug lipophilicity influence the loading efficiency of NSAIDs in γCD-MOF.
Collapse
Affiliation(s)
- Ekaterina Delyagina
- Institute of Mathematics, Information Technology and Natural Sciences, Ivanovo State University, 153025 Ivanovo, Russia
- Correspondence:
| | - Anna Garibyan
- G.A. Krestov Institute of Solution Chemistry of RAS, 153045 Ivanovo, Russia
| | - Mikhail Agafonov
- G.A. Krestov Institute of Solution Chemistry of RAS, 153045 Ivanovo, Russia
| | - Irina Terekhova
- G.A. Krestov Institute of Solution Chemistry of RAS, 153045 Ivanovo, Russia
| |
Collapse
|
46
|
Rashed M, Dadashzadeh S, Bolourchian N. The Impact of Process and Formulation Parameters on the Fabrication of Efavirenz Nanosuspension to Improve Drug Solubility and Dissolution. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2022; 21:e129409. [PMID: 36942076 PMCID: PMC10024318 DOI: 10.5812/ijpr-129409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/24/2022] [Accepted: 08/28/2022] [Indexed: 11/16/2022]
Abstract
Background Efavirenz nanosuspensions (EZ-NSs) were developed by the wet milling method as the most promising top-down nanosizing technique. Different process and formulation parameters were studied and optimized to produce appropriate EZ-NS in suitable conditions to enhance drug dissolution. Methods In the preliminary studies, various polymeric stabilizers, including Pluronic F68, sodium carboxymethylcellulose (CMC), hydroxypropyl methylcellulose (HPMC), and polyvinyl alcohol (PVA), as well as different sizes and weight of milling beads were used to prepare NSs. The effect of sodium lauryl sulfate (SLS) concentration on the NS properties was also evaluated. The influence of other formulation and process parameters, including polymer concentration, milling speed, and milling time, on the particle size and distribution of NSs were investigated using Box-Behnken design. The optimized freeze-dried nanosuspension was characterized by redispersibility, physicochemical properties, and stability. Results A combination of PVA and SLS was selected as steric and electrostatic stabilizers. The optimum EZ-NS displayed a uniform size distribution with a mean particle size and zeta potential of 254.4 nm and 21.1 mV, respectively. The solidified nanosuspension was well redispersed to the original nanoparticles. Significantly enhanced aqueous solubility (about 11-fold) and accelerated dissolution rate were observed for the optimized formulation. This could be attributed to the reduced particle size and partial amorphization of EZ during the preparation process, studied by X-ray diffraction. Accelerated studies confirmed the stability of the optimum freeze-dried formulation over the examined period of three months. Conclusions Optimization of different variables led to the formation of EZ-NSs with desired properties through wet milling in a very short time compared to the previous study and therefore reduced production costs. This formulation seems to be a suitable approach for solubility and dissolution enhancement of EZ and may have a great potential to improve the drug's oral bioavailability.
Collapse
Affiliation(s)
- Mahtab Rashed
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Simin Dadashzadeh
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Noushin Bolourchian
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Corresponding Author: Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
47
|
Milling of pharmaceutical powder carrier excipients: Application of central composite design. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2022.103881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
48
|
Grassi M, Colombo I, Manca D, Biasin A, Grassi L, Grassi G, Abrami M. Multiscale mathematical modelling of drug activation by co-grinding. Chem Eng Sci 2022; 263:118073. [DOI: 10.1016/j.ces.2022.118073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
49
|
Agrawal YO, Patil KD, More KR, Mohd Siddique MU, Alkahtani S, Aljarba NH, Hasnain MS. Amelioration of bioavailability through formulating and optimizing Azilsartan Entrapped nanostructured lipid carriers and its pharmacokinetic assessment. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
50
|
Ikuse M, Tagami T, Ogawa K, Ozeki T. Contamination-Free Milling of Ketoprofen Nanoparticles Using Mannitol Medium and Hoover Automatic Muller: Optimization of Effective Design of Experiment. Biol Pharm Bull 2022; 45:1706-1715. [DOI: 10.1248/bpb.b22-00561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Marin Ikuse
- Drug Delivery and Nano Pharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University
| | - Tatsuaki Tagami
- Drug Delivery and Nano Pharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University
| | - Koki Ogawa
- Drug Delivery and Nano Pharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University
| | - Tetsuya Ozeki
- Drug Delivery and Nano Pharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University
| |
Collapse
|