1
|
Hu X, Meier M, Pruessner J. Challenges and opportunities of diagnostic markers of Alzheimer's disease based on structural magnetic resonance imaging. Brain Behav 2023; 13:e2925. [PMID: 36795041 PMCID: PMC10013953 DOI: 10.1002/brb3.2925] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 02/04/2023] [Indexed: 02/17/2023] Open
Abstract
OBJECTIVES This article aimed to carry out a narrative literature review of early diagnostic markers of Alzheimer's disease (AD) based on both micro and macro levels of pathology, indicating the shortcomings of current biomarkers and proposing a novel biomarker of structural integrity that associates the hippocampus and adjacent ventricle together. This could help to reduce the influence of individual variety and improve the accuracy and validity of structural biomarker. METHODS This review was based on presenting comprehensive background of early diagnostic markers of AD. We have compiled those markers into micro level and macro level, and discussed the advantages and disadvantages of them. Eventually the ratio of gray matter volume to ventricle volume was put forward. RESULTS The costly methodologies and related high patient burden of "micro" biomarkers (cerebrospinal fluid biomarkers) hinder the implementation in routine clinical examination. In terms of "macro" biomarkers- hippocampal volume (HV), there is a large variation of it among population, which undermines its validity Considering the gray matter atrophies while the adjacent ventricular volume enlarges, we assume the hippocampal to ventricle ratio (HVR) is a more reliable marker than HV alone the emerging evidence showed hippocampal to ventricle ratio predicts memory functions better than HV alone in elderly sample. CONCLUSIONS The ratio between gray matter structures and adjacent ventricular volumes counts as a promising superior diagnostic marker of early neurodegeneration.
Collapse
Affiliation(s)
- Xiang Hu
- Department of Psychology, University of Konstanz, Konstanz, Germany
| | - Maria Meier
- Department of Psychology, University of Konstanz, Konstanz, Germany
| | - Jens Pruessner
- Department of Psychology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
2
|
Zhan B, Zhu Y, Xia J, Li W, Tang Y, Beesetty A, Ye JH, Fu R. Comorbidity of Post-Traumatic Stress Disorder and Alcohol Use Disorder: Animal Models and Associated Neurocircuitry. Int J Mol Sci 2022; 24:ijms24010388. [PMID: 36613829 PMCID: PMC9820348 DOI: 10.3390/ijms24010388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/12/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) and alcohol use disorder (AUD) are prevalent neuropsychiatric disorders and frequently co-occur concomitantly. Individuals suffering from this dual diagnosis often exhibit increased symptom severity and poorer treatment outcomes than those with only one of these diseases. Lacking standard preclinical models limited the exploration of neurobiological mechanisms underlying PTSD and AUD comorbidity. In this review, we summarize well-accepted preclinical model paradigms and criteria for developing successful models of comorbidity. We also outline how PTSD and AUD affect each other bidirectionally in the nervous nuclei have been heatedly discussed recently. We hope to provide potential recommendations for future research.
Collapse
Affiliation(s)
- Bo Zhan
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Yingxin Zhu
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Jianxun Xia
- Department of Basic Medical Sciences, Yunkang School of Medicine and Health, Nanfang College, Guangzhou 510970, China
| | - Wenfu Li
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Ying Tang
- Department of Biology, School of Life Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Anju Beesetty
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, New Jersey Medical School, The State University of New Jersey, Newark, NJ 07103, USA
| | - Jiang-Hong Ye
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, New Jersey Medical School, The State University of New Jersey, Newark, NJ 07103, USA
- Correspondence: (J.-H.Y.); (R.F.)
| | - Rao Fu
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
- Correspondence: (J.-H.Y.); (R.F.)
| |
Collapse
|
3
|
Risbud R, Breit KR, Thomas JD. Early developmental alcohol exposure alters behavioral outcomes following adolescent re-exposure in a rat model. Alcohol Clin Exp Res 2022; 46:1993-2009. [PMID: 36117379 PMCID: PMC9722643 DOI: 10.1111/acer.14950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND Prenatal alcohol exposure alters brain development, affecting cognitive, motor, and emotional domains, and potentially leading to greater alcohol intake during adolescence. The present study investigated whether early alcohol exposure modifies vulnerability to behavioral alterations associated with adolescent alcohol exposure in a rodent model. METHODS Sprague-Dawley rats received ethanol or sham intubations during two developmental periods: (1) the third trimester equivalent of brain development in humans (postnatal days [PD] 4-9) and (2) adolescence (PD 28-42). Both exposures resulted in blood alcohol concentrations around 200 mg/dl. Subjects were tested in the open field (PD 45-48) and on hippocampal and prefrontal cortical (PFC) dependent tasks: the Morris water maze (PD 52-58) and trace fear conditioning (PD 63-64). RESULTS Neonatal alcohol exposure reduced forebrain and cerebellar weight, increased open-field activity, and slowed acquisition of trace fear conditioning. Adolescent alcohol exposure did not disrupt learning or significantly induce gross brain pathology, suggesting that 200 mg/dl/day of ethanol disrupts cognitive development during the 3rd trimester equivalent, but not during adolescence. Interestingly, females exposed to alcohol only during adolescence exhibited an increased conditioned fear response and more rapid habituation of locomotor activity in the open field, suggesting alterations in emotional responding. Moreover, subjects exposed to a combination of neonatal and adolescent alcohol exposure spent significantly more time in the center of the open field chamber than other groups. Similarly, males exposed to the combination exhibited less thigmotaxis in the Morris water maze. CONCLUSIONS These results indicate that combined exposure to alcohol during these two critical periods reduces anxiety-related behaviors and/or increases risk taking in a sex-dependent manner, suggesting that prenatal alcohol exposure may affect risk for emotional consequences of adolescent alcohol exposure.
Collapse
Affiliation(s)
- R.D. Risbud
- Center for Behavioral Teratology, San Diego State University
| | - K. R. Breit
- Center for Behavioral Teratology, San Diego State University
| | - J. D. Thomas
- Center for Behavioral Teratology, San Diego State University
| |
Collapse
|
4
|
Chandler CM, Shaykin JD, Peng H, Pauly JR, Nixon K, Bardo MT. Effects of voluntary adolescent intermittent alcohol exposure and social isolation on adult alcohol intake in male rats. Alcohol 2022; 104:13-21. [PMID: 35981637 PMCID: PMC10806401 DOI: 10.1016/j.alcohol.2022.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/15/2022] [Accepted: 07/30/2022] [Indexed: 01/26/2023]
Abstract
Initiating alcohol use in adolescence significantly increases the likelihood of developing adult alcohol use disorder (AUD). However, it has been difficult to replicate adolescent alcohol exposure leading to increased adult alcohol intake across differing preclinical models. In the present study, differentially housed male rats (group vs. single cages) were used to determine the effects of voluntary intermittent exposure of saccharin-sweetened ethanol during adolescence on adult intake of unsweetened 20% ethanol. Adolescent male rats were assigned to group- or isolated-housing conditions and underwent an intermittent 2-bottle choice in adolescence (water only or water vs. 0.2% saccharin/20% ethanol), and again in adulthood (water vs. 20% ethanol). Intermittent 2-bottle choice sessions lasted for 24 h, and occurred three days per week, for five weeks. Rats were moved from group or isolated housing to single-housing cages for 2-bottle choice tests and returned to their original housing condition on off days. During adolescence, rats raised in isolated-housing conditions consumed significantly more sweetened ethanol than rats raised in group-housing conditions, an effect that was enhanced across repeated exposures. In adulthood, rats raised in isolated-housing conditions and exposed to sweetened ethanol during adolescence also consumed significantly higher levels of unsweetened 20% ethanol compared to group-housed rats. The effect was most pronounced over the first five re-exposure sessions. Housing conditions alone had little effect on adult ethanol intake. These preclinical results suggest that social isolation stress, combined with adolescent ethanol exposure, may play a key role in adult AUD risk.
Collapse
Affiliation(s)
- Cassie M Chandler
- Department of Psychology, University of Kentucky, Lexington, KY 40536, United States.
| | - Jakob D Shaykin
- Department of Psychology, University of Kentucky, Lexington, KY 40536, United States.
| | - Hui Peng
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, United States.
| | - James R Pauly
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, United States.
| | - Kimberly Nixon
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, United States.
| | - Michael T Bardo
- Department of Psychology, University of Kentucky, Lexington, KY 40536, United States.
| |
Collapse
|
5
|
Avchalumov Y, Mandyam CD. Plasticity in the Hippocampus, Neurogenesis and Drugs of Abuse. Brain Sci 2021; 11:404. [PMID: 33810204 PMCID: PMC8004884 DOI: 10.3390/brainsci11030404] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/05/2021] [Accepted: 03/11/2021] [Indexed: 02/07/2023] Open
Abstract
Synaptic plasticity in the hippocampus assists with consolidation and storage of long-lasting memories. Decades of research has provided substantial information on the cellular and molecular mechanisms underlying synaptic plasticity in the hippocampus, and this review discusses these mechanisms in brief. Addiction is a chronic relapsing disorder with loss of control over drug taking and drug seeking that is caused by long-lasting memories of drug experience. Relapse to drug use is caused by exposure to context and cues associated with the drug experience, and is a major clinical problem that contributes to the persistence of addiction. This review also briefly discusses some evidence that drugs of abuse alter plasticity in the hippocampus, and that development of novel treatment strategies that reverse or prevent drug-induced synaptic alterations in the hippocampus may reduce relapse behaviors associated with addiction.
Collapse
Affiliation(s)
| | - Chitra D. Mandyam
- VA San Diego Healthcare System, San Diego, CA 92161, USA;
- Department of Anesthesiology, University of California San Diego, San Diego, CA 92161, USA
| |
Collapse
|
6
|
Peyton L, Oliveros A, Choi DS, Jang MH. Hippocampal regenerative medicine: neurogenic implications for addiction and mental disorders. Exp Mol Med 2021; 53:358-368. [PMID: 33785869 PMCID: PMC8080570 DOI: 10.1038/s12276-021-00587-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/28/2021] [Accepted: 02/16/2021] [Indexed: 12/13/2022] Open
Abstract
Psychiatric illness is a prevalent and highly debilitating disorder, and more than 50% of the general population in both middle- and high-income countries experience at least one psychiatric disorder at some point in their lives. As we continue to learn how pervasive psychiatric episodes are in society, we must acknowledge that psychiatric disorders are not solely relegated to a small group of predisposed individuals but rather occur in significant portions of all societal groups. Several distinct brain regions have been implicated in neuropsychiatric disease. These brain regions include corticolimbic structures, which regulate executive function and decision making (e.g., the prefrontal cortex), as well as striatal subregions known to control motivated behavior under normal and stressful conditions. Importantly, the corticolimbic neural circuitry includes the hippocampus, a critical brain structure that sends projections to both the cortex and striatum to coordinate learning, memory, and mood. In this review, we will discuss past and recent discoveries of how neurobiological processes in the hippocampus and corticolimbic structures work in concert to control executive function, memory, and mood in the context of mental disorders.
Collapse
Affiliation(s)
- Lee Peyton
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Alfredo Oliveros
- Department of Neurologic Surgery, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Doo-Sup Choi
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN, USA.
- Department of Psychiatry & Psychology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA.
| | - Mi-Hyeon Jang
- Department of Neurologic Surgery, Mayo Clinic College of Medicine and Science, Rochester, MN, USA.
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA.
| |
Collapse
|
7
|
Asiedu B, Nyakudya TT, Lembede BW, Chivandi E. Early-life exposure to alcohol and the risk of alcohol-induced liver disease in adulthood. Birth Defects Res 2021; 113:451-468. [PMID: 33577143 DOI: 10.1002/bdr2.1881] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 01/13/2021] [Accepted: 01/19/2021] [Indexed: 11/10/2022]
Abstract
Alcohol consumption remains prevalent among pregnant and nursing mothers despite the well-documented adverse effects this may have on the offspring. Moderate-to-high levels of alcohol consumption in pregnancy result in fetal alcohol syndrome (FAS) disorders, with brain defects being chief among the abnormalities. Recent findings indicate that while light-to-moderate levels may not cause FAS, it may contribute to epigenetic changes that make the offspring prone to adverse health outcomes including metabolic disorders and an increased propensity in the adolescent-onset of drinking alcohol. On the one hand, prenatal alcohol exposure (PAE) causes epigenetic changes that affect lipid and glucose transcript regulating genes resulting in metabolic abnormalities. On the other hand, it can program offspring for increased alcohol intake, enhance its palatability, and increase acceptance of alcohol's flavor through associative learning, making alcohol a plausible second hit for the development of alcohol-induced liver disease. Adolescent drinking results in alcohol dependence and abuse in adulthood. Adolescent drinking results in alcohol dependence and abuse in adulthood. Alterations on the opioid system, particularly, the mu-opioid system, has been implicated in the mechanism that induces increased alcohol consumption and acceptance. This review proposes a mechanism that links PAE to the development of alcoholism and eventually to alcoholic liver disease (ALD), which results from prolonged alcohol consumption. While PAE may not lead to ALD development in childhood, there are chances that it may lead to ALD in adulthood.
Collapse
Affiliation(s)
- Bernice Asiedu
- Faculty of Health Sciences, School of Physiology, University of the Witwatersrand, Johannesburg, South Africa
| | - Trevor Tapiwa Nyakudya
- Department of Physiology, Faculty of Health Sciences, School of Medicine, University of Pretoria, Gezina, South Africa
| | - Busisani Wiseman Lembede
- Faculty of Health Sciences, School of Physiology, University of the Witwatersrand, Johannesburg, South Africa
| | - Eliton Chivandi
- Faculty of Health Sciences, School of Physiology, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
8
|
Salmanzadeh H, Ahmadi-Soleimani SM, Pachenari N, Azadi M, Halliwell RF, Rubino T, Azizi H. Adolescent drug exposure: A review of evidence for the development of persistent changes in brain function. Brain Res Bull 2020; 156:105-117. [PMID: 31926303 DOI: 10.1016/j.brainresbull.2020.01.007] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/28/2019] [Accepted: 01/06/2020] [Indexed: 12/24/2022]
Abstract
Over the past decade, many studies have indicated that adolescence is a critical period of brain development and maturation. The refinement and maturation of the central nervous system over this prolonged period, however, makes the adolescent brain highly susceptible to perturbations from acute and chronic drug exposure. Here we review the preclinical literature addressing the long-term consequences of adolescent exposure to common recreational drugs and drugs-of-abuse. These studies on adolescent exposure to alcohol, nicotine, opioids, cannabinoids and psychostimulant drugs, such as cocaine and amphetamine, reveal a variety of long-lasting behavioral and neurobiological consequences. These agents can affect development of the prefrontal cortex and mesolimbic dopamine pathways and modify the reward systems, socio-emotional processing and cognition. Other consequences include disruption in working memory, anxiety disorders and an increased risk of subsequent drug abuse in adult life. Although preventive and control policies are a valuable approach to reduce the detrimental effects of drugs-of-abuse on the adolescent brain, a more profound understanding of their neurobiological impact can lead to improved strategies for the treatment and attenuation of the detrimental neuropsychiatric sequelae.
Collapse
Affiliation(s)
- Hamed Salmanzadeh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; TJ Long School of Pharmacy & Health Sciences, University of the Pacific, Stockton, CA, USA
| | | | - Narges Pachenari
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maryam Azadi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Robert F Halliwell
- TJ Long School of Pharmacy & Health Sciences, University of the Pacific, Stockton, CA, USA
| | - Tiziana Rubino
- Department of Biotechnology and Life Sciences, University of Insubria, Busto Arsizio, VA, Italy
| | - Hossein Azizi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
9
|
Hicks SD, Miller MW. Ethanol-induced DNA repair in neural stem cells is transforming growth factor β1-dependent. Exp Neurol 2019; 317:214-225. [PMID: 30853389 DOI: 10.1016/j.expneurol.2019.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/13/2018] [Accepted: 02/07/2019] [Indexed: 12/18/2022]
Abstract
Following neurotoxic damage, cells repair their DNA, and survive or undergo apoptosis. This study tests the hypothesis that ethanol induces a DNA damage response (DDR) in neural stem cells (NSCs) that promotes excision repair (ER) and this repair is influenced by the growth factor environment. Non-immortalized NSCs treated with fibroblast growth factor 2 or transforming growth factor (TGF) β1 were exposed to ethanol. Ethanol increased total DNA damage, reactive oxygen species, and oxidized DNA bases. TGFβ1 potentiated these toxic effects. Transcriptional analyses of cultured NSCs revealed ethanol-induced increases in transcripts related to the DDR (e.g., Hus1 and p53), base ER (e.g., Mutyh and Nthl1), and nucleotide ER (e.g., Xpc), particularly in the presence of TGFβ1. Expression and activity of ER proteins were affected by ethanol. Similar changes occurred in proliferating cells of ethanol-treated mouse fetuses. Ethanol-induced DNA repair in NSCs depends on the ambient growth factors. Gene products for DNA repair in stem cells are among the first biomarkers identifying fetal alcohol-induced damage.
Collapse
Affiliation(s)
- Steven D Hicks
- Department of Neuroscience and Physiology, State University of New York - Upstate Medical University, Syracuse, NY 13210, USA; Developmental Exposure Alcohol Research Center, Binghamton NY 13902, Cortland NY 13045, and Syracuse, NY 13210, USA
| | - Michael W Miller
- Department of Neuroscience and Physiology, State University of New York - Upstate Medical University, Syracuse, NY 13210, USA; Developmental Exposure Alcohol Research Center, Binghamton NY 13902, Cortland NY 13045, and Syracuse, NY 13210, USA; Department of Anatomy, Touro College of Osteopathic Medicine, Middletown, NY 10940, USA; Research Service, Veterans Affairs Medical Center, Syracuse, NY 13210, USA.
| |
Collapse
|
10
|
Patzlaff NE, Shen M, Zhao X. Regulation of Adult Neurogenesis by the Fragile X Family of RNA Binding Proteins. Brain Plast 2018; 3:205-223. [PMID: 30151344 PMCID: PMC6091053 DOI: 10.3233/bpl-170061] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The fragile X mental retardation protein (FMRP) has an important role in neural development. Functional loss of FMRP in humans leads to fragile X syndrome, and it is the most common monogenetic contributor to intellectual disability and autism. FMRP is part of a larger family of RNA-binding proteins known as FXRs, which also includes fragile X related protein 1 (FXR1P) and fragile X related protein 2 (FXR2P). Despite the similarities of the family members, the functions of FXR1P and FXR2P in human diseases remain unclear. Although most studies focus on FMRP's role in mature neurons, all three FXRs regulate adult neurogenesis. Extensive studies have demonstrated important roles of adult neurogenesis in neuroplasticity, learning, and cognition. Impaired adult neurogenesis is implicated in neuropsychiatric disorders, neurodegenerative diseases, and neurodevelopmental disorders. Interventions aimed at regulating adult neurogenesis are thus being evaluated as potential therapeutic strategies. Here, we review and discuss the functions of FXRs in adult neurogenesis and their known similarities and differences. Understanding the overlapping regulatory functions of FXRs in adult neurogenesis can give us insights into the adult brain and fragile X syndrome.
Collapse
Affiliation(s)
- Natalie E. Patzlaff
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
- Molecular and Cellular Pharmacology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Minjie Shen
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Xinyu Zhao
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
- Molecular and Cellular Pharmacology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
11
|
Carbia C, López-Caneda E, Corral M, Cadaveira F. A systematic review of neuropsychological studies involving young binge drinkers. Neurosci Biobehav Rev 2018; 90:332-349. [DOI: 10.1016/j.neubiorev.2018.04.013] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 04/13/2018] [Accepted: 04/13/2018] [Indexed: 12/27/2022]
|
12
|
Common Biological Mechanisms of Alcohol Use Disorder and Post-Traumatic Stress Disorder. Alcohol Res 2018; 39:131-145. [PMID: 31198653 PMCID: PMC6561401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) and alcohol use disorder (AUD) are highly comorbid. Although recent clinical studies provide some understanding of biological and subsequent behavioral changes that define each of these disorders, the neurobiological basis of interactions between PTSD and AUD has not been well-understood. In this review, we summarize the relevant animal models that parallel the human conditions, as well as the clinical findings in these disorders, to delineate key gaps in our knowledge and to provide potential clinical strategies for alleviating the comorbid conditions.
Collapse
|
13
|
Carbia C, Cadaveira F, Caamaño-Isorna F, Rodríguez-Holguín S, Corral M. Binge drinking during adolescence and young adulthood is associated with deficits in verbal episodic memory. PLoS One 2017; 12:e0171393. [PMID: 28152062 PMCID: PMC5289570 DOI: 10.1371/journal.pone.0171393] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 01/19/2017] [Indexed: 12/13/2022] Open
Abstract
Binge drinking (BD), a harmful pattern of alcohol consumption, is common during adolescence. Young adults with alcohol use disorders exhibit hippocampal alterations and episodic memory deficits. However, it is not known how these difficulties progress in community BD adolescents. Our objective was to analyze the relationship between BD trajectory and verbal episodic memory during the developmental period spanning from adolescence and to early adulthood. An initial sample of 155 male and female first-year university students with no other risk factors were followed over six years. Participants were classified as stable non-BDs, stable BDs and ex-BDs according to the third AUDIT item. At baseline, participants comprised 36 ♂/ 40 ♀ non-BDs (18.58 years), 40 ♂/ 39 ♀ BDs (18.87 years), and at the third follow-up, they comprised 8 ♂/ 8 ♀ stable non-BDs (25.49 years), 2 ♂/ 2 ♀ stable BDs (25.40) and 8 ♂/ 12 ♀ ex-BDs (24.97 years). Episodic memory was assessed four times with the Logical Memory subtest (WMS-III) and the Rey Auditory Verbal Learning Test (RAVLT). Generalized linear mixed models were applied. The results showed that, relative to non-BDs, stable BDs presented difficulties in immediate and delayed recall in the Logical Memory subtest. These difficulties remained stable over time. The short-term ex-BDs continued to display difficulties in immediate and delayed recall in the Logical Memory subtest, but long-term ex-BDs did not. The effects were not influenced by age of alcohol onset, frequency of cannabis use, tobacco use or psychopathological distress. In conclusion, BD during adolescence and young adulthood is associated with episodic memory deficits. Abandoning the BD pattern may lead to partial recovery. These findings are consistent with the vulnerability of the adolescent hippocampus to the neurotoxic effects of alcohol.
Collapse
Affiliation(s)
- Carina Carbia
- Department of Clinical Psychology and Psychobiology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- * E-mail:
| | - Fernando Cadaveira
- Department of Clinical Psychology and Psychobiology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Francisco Caamaño-Isorna
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Department of Preventive Medicine, Universidade of Santiago de Compostela, Santiago de Compostela, Spain
| | - Socorro Rodríguez-Holguín
- Department of Clinical Psychology and Psychobiology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Montse Corral
- Department of Clinical Psychology and Psychobiology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
14
|
Kang E, Wen Z, Song H, Christian KM, Ming GL. Adult Neurogenesis and Psychiatric Disorders. Cold Spring Harb Perspect Biol 2016; 8:cshperspect.a019026. [PMID: 26801682 DOI: 10.1101/cshperspect.a019026] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Psychiatric disorders continue to be among the most challenging disorders to diagnose and treat because there is no single genetic or anatomical locus that is causative for the disease. Current treatments are often blunt tools used to ameliorate the most severe symptoms, at the risk of disrupting functional neural systems. There is a critical need to develop new therapeutic strategies that can target circumscribed functional or anatomical domains of pathology. Adult hippocampal neurogenesis may be one such domain. Here, we review the evidence suggesting that adult hippocampal neurogenesis plays a role in emotional regulation and forms of learning and memory that include temporal and spatial memory encoding and context discrimination, and that its dysregulation is associated with psychiatric disorders, such as affective disorders, schizophrenia, and drug addiction. Further, adult neurogenesis has proven to be an effective model to investigate basic processes of neuronal development and converging evidence suggests that aberrant neural development may be an etiological factor, even in late-onset diseases. Constitutive neurogenesis in the hippocampus of the mature brain reflects large-scale plasticity unique to this region and could be a potential hub for modulation of a subset of cognitive and affective behaviors that are affected by multiple psychiatric disorders.
Collapse
Affiliation(s)
- Eunchai Kang
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Zhexing Wen
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Hongjun Song
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Kimberly M Christian
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Guo-Li Ming
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
15
|
Fan C, Wu Q, Ye X, Luo H, Yan D, Xiong Y, Zhu H, Diao Y, Zhang W, Wan J. Role of miR-211 in Neuronal Differentiation and Viability: Implications to Pathogenesis of Alzheimer's Disease. Front Aging Neurosci 2016; 8:166. [PMID: 27458373 PMCID: PMC4937029 DOI: 10.3389/fnagi.2016.00166] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 06/22/2016] [Indexed: 11/13/2022] Open
Abstract
Alzheimer's disease (AD) is an age-related irreversible neurodegenerative disorder characterized by extracellular β Amyloid(Aβ) deposition, intracellular neurofibrillary tangles and neuronal loss. The dysfunction of neurogenesis and increased degeneration of neurons contribute to the pathogenesis of AD. We now report that miR-211-5p, a small non-coding RNA, can impair neurite differentiation by directly targeting NUAK1, decrease neuronal viability and accelerate the progression of Aβ-induced pathologies. In this study, we observed that during embryonic development, the expression levels of miR-211-5p were down-regulated in the normal cerebral cortexes of mice. However, in APPswe/PS1ΔE9 double transgenic adult mice, it was up-regulated from 9 months of age compared to that of the age-matched wild type mice. Studies in primary cortical neuron cultures demonstrated that miR-211-5p can inhibit neurite growth and branching via NUAK1 repression and decrease mature neuron viability. The impairments were more obvious under the action of Aβ. Our data showed that miR-211-5p could inhibit cortical neuron differentiation and survival, which may contribute to the synaptic failure, neuronal loss and cognitive dysfunction in AD.
Collapse
Affiliation(s)
- Chunying Fan
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen-Peking University-The Hong Kong University of Science and Technology Medical Center Shenzhen, China
| | - Qi Wu
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen-Peking University-The Hong Kong University of Science and Technology Medical Center Shenzhen, China
| | - Xiaoyang Ye
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen-Peking University-The Hong Kong University of Science and Technology Medical Center Shenzhen, China
| | - Hongxue Luo
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen-Peking University-The Hong Kong University of Science and Technology Medical Center Shenzhen, China
| | - Dongdong Yan
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen-Peking University-The Hong Kong University of Science and Technology Medical Center Shenzhen, China
| | - Yi Xiong
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen-Peking University-The Hong Kong University of Science and Technology Medical Center Shenzhen, China
| | - Haili Zhu
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen-Peking University-The Hong Kong University of Science and Technology Medical Center Shenzhen, China
| | - Yarui Diao
- Ludwig Institute for Cancer Research, La Jolla CA, USA
| | - Wei Zhang
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen-Peking University-The Hong Kong University of Science and Technology Medical Center Shenzhen, China
| | - Jun Wan
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen-Peking University-The Hong Kong University of Science and Technology Medical CenterShenzhen, China; Division of Life Science, The Hong Kong University of Science and TechnologyHong Kong, China
| |
Collapse
|
16
|
Consequences of Adolescent Ethanol Consumption on Risk Preference and Orbitofrontal Cortex Encoding of Reward. Neuropsychopharmacology 2016; 41:1366-75. [PMID: 26370327 PMCID: PMC4793121 DOI: 10.1038/npp.2015.288] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 07/17/2015] [Accepted: 08/08/2015] [Indexed: 01/24/2023]
Abstract
Critical development of the prefrontal cortex occurs during adolescence, a period of increased independence marked by decision making that often includes engagement in risky behaviors, such as substance use. Consumption of alcohol during adolescence has been associated with increased impulsivity that persists across the lifespan, an effect which may be caused by long-term disruptions in cortical processing of rewards. To determine if alcohol consumption alters cortical encoding of rewards of different sizes and probabilities, we gave rats limited access to alcohol in gelatin during adolescence only. In adulthood, we recorded the electrophysiological activity of individual neurons of the orbitofrontal cortex while rats performed a risk task that varied the level of risk from day-to-day. Rats that had consumed higher levels of alcohol showed increased risk preference in the task compared with control and low alcohol-consuming rats. Patterns of neuronal responses were identified using principal component analysis. Of the multiple patterns observed, only one was modulated by adolescent alcohol consumption and showed strongest modulation after reward receipt. This subpopulation of neurons showed blunted firing rates following rewards in alcohol-consuming rats, suggesting a mechanism through which adolescent alcohol exposure may have lasting effects on reward processing in the context of decision making. The differences in OFC responses between high alcohol consumers and control animals not given access to alcohol support the idea that, regardless of potential variability in innate alcohol preferences, voluntary consumption of alcohol during adolescence biases choice patterns longitudinally through alterations in cortical function.
Collapse
|
17
|
RNA Sequencing Reveals the Alteration of the Expression of Novel Genes in Ethanol-Treated Embryoid Bodies. PLoS One 2016; 11:e0149976. [PMID: 26930486 PMCID: PMC4773011 DOI: 10.1371/journal.pone.0149976] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 02/08/2016] [Indexed: 12/11/2022] Open
Abstract
Fetal alcohol spectrum disorder is a collective term representing fetal abnormalities associated with maternal alcohol consumption. Prenatal alcohol exposure and related anomalies are well characterized, but the molecular mechanism behind this phenomenon is not well characterized. In this present study, our aim is to profile important genes that regulate cellular development during fetal development. Human embryonic carcinoma cells (NCCIT) are cultured to form embryoid bodies and then treated in the presence and absence of ethanol (50 mM). We employed RNA sequencing to profile differentially expressed genes in the ethanol-treated embryoid bodies from NCCIT vs. EB, NCCIT vs. EB+EtOH and EB vs. EB+EtOH data sets. A total of 632, 205 and 517 differentially expressed genes were identified from NCCIT vs. EB, NCCIT vs. EB+EtOH and EB vs. EB+EtOH, respectively. Functional annotation using bioinformatics tools reveal significant enrichment of differential cellular development and developmental disorders. Furthermore, a group of 42, 15 and 35 transcription factor-encoding genes are screened from all of the differentially expressed genes obtained from NCCIT vs. EB, NCCIT vs. EB+EtOH and EB vs. EB+EtOH, respectively. We validated relative gene expression levels of several transcription factors from these lists by quantitative real-time PCR. We hope that our study substantially contributes to the understanding of the molecular mechanism underlying the pathology of alcohol-mediated anomalies and ease further research.
Collapse
|
18
|
Time-Course Analysis of Brain Regional Expression Network Responses to Chronic Intermittent Ethanol and Withdrawal: Implications for Mechanisms Underlying Excessive Ethanol Consumption. PLoS One 2016; 11:e0146257. [PMID: 26730594 PMCID: PMC4701666 DOI: 10.1371/journal.pone.0146257] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 12/15/2015] [Indexed: 01/17/2023] Open
Abstract
Long lasting abusive consumption, dependence, and withdrawal are characteristic features of alcohol use disorders (AUD). Mechanistically, persistent changes in gene expression are hypothesized to contribute to brain adaptations leading to ethanol toxicity and AUD. We employed repeated chronic intermittent ethanol (CIE) exposure by vapor chamber as a mouse model to simulate the cycles of ethanol exposure and withdrawal commonly seen with AUD. This model has been shown to induce progressive ethanol consumption in rodents. Brain CIE-responsive expression networks were identified by microarray analysis across five regions of the mesolimbic dopamine system and extended amygdala with tissue harvested from 0-hours to 7-days following CIE. Weighted Gene Correlated Network Analysis (WGCNA) was used to identify gene networks over-represented for CIE-induced temporal expression changes across brain regions. Differential gene expression analysis showed that long-lasting gene regulation occurred 7-days after the final cycle of ethanol exposure only in prefrontal cortex (PFC) and hippocampus. Across all brain regions, however, ethanol-responsive expression changes occurred mainly within the first 8-hours after removal from ethanol. Bioinformatics analysis showed that neuroinflammatory responses were seen across multiple brain regions at early time-points, whereas co-expression modules related to neuroplasticity, chromatin remodeling, and neurodevelopment were seen at later time-points and in specific brain regions (PFC or HPC). In PFC a module containing Bdnf was identified as highly CIE responsive in a biphasic manner, with peak changes at 0 hours and 5 days following CIE, suggesting a possible role in mechanisms underlying long-term molecular and behavioral response to CIE. Bioinformatics analysis of this network and several other modules identified Let-7 family microRNAs as potential regulators of gene expression changes induced by CIE. Our results suggest a complex temporal and regional pattern of widespread gene network responses involving neuroinflammatory and neuroplasticity related genes as contributing to physiological and behavioral responses to chronic ethanol.
Collapse
|
19
|
Staples MC, Mandyam CD. Thinking after Drinking: Impaired Hippocampal-Dependent Cognition in Human Alcoholics and Animal Models of Alcohol Dependence. Front Psychiatry 2016; 7:162. [PMID: 27746746 PMCID: PMC5043052 DOI: 10.3389/fpsyt.2016.00162] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 09/13/2016] [Indexed: 12/05/2022] Open
Abstract
Alcohol use disorder currently affects approximately 18 million Americans, with at least half of these individuals having significant cognitive impairments subsequent to their chronic alcohol use. This is most widely apparent as frontal cortex-dependent cognitive dysfunction, where executive function and decision-making are severely compromised, as well as hippocampus-dependent cognitive dysfunction, where contextual and temporal reasoning are negatively impacted. This review discusses the relevant clinical literature to support the theory that cognitive recovery in tasks dependent on the prefrontal cortex and hippocampus is temporally different across extended periods of abstinence from alcohol. Additional studies from preclinical models are discussed to support clinical findings. Finally, the unique cellular composition of the hippocampus and cognitive impairment dependent on the hippocampus is highlighted in the context of alcohol dependence.
Collapse
Affiliation(s)
- Miranda C Staples
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute , La Jolla, CA , USA
| | - Chitra D Mandyam
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute , La Jolla, CA , USA
| |
Collapse
|
20
|
Golub HM, Zhou QG, Zucker H, McMullen MR, Kokiko-Cochran ON, Ro EJ, Nagy LE, Suh H. Chronic Alcohol Exposure is Associated with Decreased Neurogenesis, Aberrant Integration of Newborn Neurons, and Cognitive Dysfunction in Female Mice. Alcohol Clin Exp Res 2015; 39:1967-77. [PMID: 26365148 DOI: 10.1111/acer.12843] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 07/12/2015] [Indexed: 11/30/2022]
Abstract
BACKGROUND Neurological deficits of alcohol use disorder (AUD) have been attributed to dysfunctions of specific brain structures. Studies of alcoholic patients and chronic alcohol exposure animal models consistently identify reduced hippocampal mass and cogntive dysfunctions as a key alcohol-induced brain adaptation. However, the precise substrate of chronic alcohol exposure that leads to structural and functional impairments of the hippocampus is largely unknown. METHODS Using a calorie-matched alcohol feeding method, we tested whether chronic alcohol exposure targets neural stem cells and neurogenesis in the adult hippocampus. The effect of alcohol on proliferation of neural stem cells as well as cell fate determination and survival of newborn cells was evaluated via bromodeoxyuridine pulse and chase methods. A retrovirus-mediated single-cell labeling method was used to determine the effect of alcohol on the morphological development and circuitry incorporation of individual hippocampal newborn neurons. Finally, novel object recognition (NOR) and Y-maze tests were performed to examine whether disrupted neurogenesis is associated with hippocampus-dependent functional deficits in alcohol-fed mice. RESULTS Chronic alcohol exposure reduced proliferation of neural stem cells and survival rate of newborn neurons; however, the fate determination of newborn cells remained unaltered. Moreover, the dendritic spine density of newborn neurons significantly decreased in alcohol-fed mice. Impaired spine formation indicates that alcohol interfered the synaptic connectivity of newborn neurons with excitatory neurons originating from various areas of the brain. In the NOR test, alcohol-fed mice displayed deficits in the ability to discriminate the novel object. CONCLUSIONS Our study revealed that chronic alcohol exposure disrupted multiple steps of neurogenesis, including the production and development of newborn neurons. In addition, chronic alcohol exposure altered connectivity of newborn neurons with other input neurons. Decreased neurogenesis and aberrant integration of newborn neurons into hippocampal networks are closely associated with deficits in hippocampus-dependent cognitive functions of alcohol-fed mice.
Collapse
Affiliation(s)
- Haleigh M Golub
- Department of Stem Cells and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Qi-Gang Zhou
- Department of Stem Cells and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Hannah Zucker
- Neuroscience Program, Hamilton College, Clinton, New York
| | - Megan R McMullen
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | | | - Eun Jeoung Ro
- Department of Stem Cells and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Laura E Nagy
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Hoonkyo Suh
- Department of Stem Cells and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
21
|
Ethanol-induced epigenetic regulations at the Bdnf gene in C57BL/6J mice. Mol Psychiatry 2015; 20:405-12. [PMID: 24776738 DOI: 10.1038/mp.2014.38] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 02/12/2014] [Accepted: 03/17/2014] [Indexed: 02/06/2023]
Abstract
High ethanol intake is well known to induce both anxiolytic and anxiogenic effects, in correlation with chromatin remodeling in the amygdaloid brain region and deficits in cell proliferation and survival in the hippocampus of rodents. Whether only moderate but chronic ethanol intake in C57BL/6J mice could also have an impact on chromatin remodeling and neuroplasticity was addressed here. Chronic ethanol consumption in a free choice paradigm was found to induce marked changes in the expression of genes implicated in neural development and histone post-translational modifications in the mouse hippocampus. Transcripts encoding neural bHLH activators and those from Bdnf exons II, III and VI were upregulated, whereas those from Bdnf exon VIII and Hdacs were downregulated by ethanol compared with water consumption. These ethanol-induced changes were associated with enrichment in both acetylated H3 at Bdnf promoter PVI and trimethylated H3 at PII and PIII. Conversely, acetylated H3 at PIII and PVIII and trimethylated H3 at PVIII were decreased in ethanol-exposed mice. In parallel, hippocampal brain-derived neurotrophic factor (BDNF) levels and TrkB-mediated neurogenesis in the dentate gyrus were significantly enhanced by ethanol consumption. These results suggest that, in C57BL/6J mice, chronic and moderate ethanol intake produces marked epigenetic changes underlying BDNF overexpression and downstream hippocampal neurogenesis.
Collapse
|
22
|
Iyengar SS, LaFrancois JJ, Friedman D, Drew LJ, Denny CA, Burghardt NS, Wu MV, Hsieh J, Hen R, Scharfman HE. Suppression of adult neurogenesis increases the acute effects of kainic acid. Exp Neurol 2015; 264:135-49. [PMID: 25476494 PMCID: PMC4800819 DOI: 10.1016/j.expneurol.2014.11.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 11/10/2014] [Accepted: 11/20/2014] [Indexed: 01/17/2023]
Abstract
Adult neurogenesis, the generation of new neurons in the adult brain, occurs in the hippocampal dentate gyrus (DG) and the olfactory bulb (OB) of all mammals, but the functions of these new neurons are not entirely clear. Originally, adult-born neurons were considered to have excitatory effects on the DG network, but recent studies suggest a net inhibitory effect. Therefore, we hypothesized that selective removal of newborn neurons would lead to increased susceptibility to the effects of a convulsant. This hypothesis was tested by evaluating the response to the chemoconvulsant kainic acid (KA) in mice with reduced adult neurogenesis, produced either by focal X-irradiation of the DG, or by pharmacogenetic deletion of dividing radial glial precursors. In the first 4 hrs after KA administration, when mice have the most robust seizures, mice with reduced adult neurogenesis had more severe convulsive seizures, exhibited either as a decreased latency to the first convulsive seizure, greater number of convulsive seizures, or longer convulsive seizures. Nonconvulsive seizures did not appear to change or they decreased. Four-21 hrs after KA injection, mice with reduced adult neurogenesis showed more interictal spikes (IIS) and delayed seizures than controls. Effects were greater when the anticonvulsant ethosuximide was injected 30 min prior to KA administration; ethosuximide allows forebrain seizure activity to be more easily examined in mice by suppressing seizures dominated by the brainstem. These data support the hypothesis that reduction of adult-born neurons increases the susceptibility of the brain to effects of KA.
Collapse
Affiliation(s)
- Sloka S Iyengar
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962
| | - John J LaFrancois
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962
| | - Daniel Friedman
- Department of Neurology, New York University Langone Medical Center, New York, NY 10016
| | - Liam J Drew
- WIBR, University College of London, London, UK WC1E 6BT
| | - Christine A Denny
- Department of Psychiatry, Columbia University, College of Physicians and Surgeons, New York, NY 10032
| | - Nesha S Burghardt
- Department of Psychology, Hunter College, City University of New York, New York, NY 10065
| | - Melody V Wu
- Department of Psychiatry, Columbia University, College of Physicians and Surgeons, New York, NY 10032
| | - Jenny Hsieh
- Department of Molecular Neurobiology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - René Hen
- Department of Psychiatry, Columbia University, College of Physicians and Surgeons, New York, NY 10032; Department of Molecular Neurobiology, University of Texas Southwestern Medical Center, Dallas, TX 75390; New York State Psychiatric Institute, New York, NY 10032
| | - Helen E Scharfman
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962; Departments of Child & Adolescent Psychiatry, Physiology & Neuroscience, and Psychiatry, New York University Langone Medical Center, New York, NY 10016.
| |
Collapse
|
23
|
Geil CR, Hayes DM, McClain JA, Liput DJ, Marshall SA, Chen KY, Nixon K. Alcohol and adult hippocampal neurogenesis: promiscuous drug, wanton effects. Prog Neuropsychopharmacol Biol Psychiatry 2014; 54:103-13. [PMID: 24842804 PMCID: PMC4134968 DOI: 10.1016/j.pnpbp.2014.05.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 05/01/2014] [Accepted: 05/08/2014] [Indexed: 01/29/2023]
Abstract
Adult neurogenesis is now widely accepted as an important contributor to hippocampal integrity and function but also dysfunction when adult neurogenesis is affected in neuropsychiatric diseases such as alcohol use disorders. Excessive alcohol consumption, the defining characteristic of alcohol use disorders, results in a variety of cognitive and behavioral impairments related wholly or in part to hippocampal structure and function. Recent preclinical work has shown that adult neurogenesis may be one route by which alcohol produces hippocampal neuropathology. Alcohol is a pharmacologically promiscuous drug capable of interfering with adult neurogenesis through multiple mechanisms. This review will discuss the primary mechanisms underlying alcohol-induced changes in adult hippocampal neurogenesis including alcohol's effects on neurotransmitters, CREB and its downstream effectors, and the neurogenic niche.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Kimberly Nixon
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, United States.
| |
Collapse
|
24
|
McClain JA, Morris SA, Marshall SA, Nixon K. Ectopic hippocampal neurogenesis in adolescent male rats following alcohol dependence. Addict Biol 2014; 19:687-99. [PMID: 23844726 DOI: 10.1111/adb.12075] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The adolescent hippocampus is highly vulnerable to alcohol-induced damage, which could contribute to their increased susceptibility to alcohol use disorder. Altered adult hippocampal neurogenesis represents one potential mechanism by which alcohol (ethanol) affects hippocampal function. Based on the vulnerability of the adolescent hippocampus to alcohol-induced damage, and prior reports of long-term alcohol-induced effects on adult neurogenesis, we predicted adverse effects on adult neurogenesis in the adolescent brain following abstinence from alcohol dependence. Thus, we examined neurogenesis in adolescent male rats during abstinence following a 4-day binge model of alcohol dependence. Bromodeoxyuridine and Ki67 immunohistochemistry revealed a 2.2-fold increase in subgranular zone cell proliferation after 7 days of abstinence. Increased proliferation was followed by a 75% increase in doublecortin expression and a 56% increase in surviving bromodeoxyuridine-labeled cells 14 and 35 days post-ethanol exposure, respectively. The majority of newborn cells in ethanol and control groups co-localized with NeuN, indicating a neuronal phenotype and therefore a 1.6-fold increase in hippocampal neurogenesis during abstinence. Although these results mirror the magnitude of reactive neurogenesis described in adult rat studies, ectopic bromodeoxyuridine and doublecortin positive cells were detected in the molecular layer and hilus of adolescent rats displaying severe withdrawal symptoms, an effect that has not been described in adults. The presence of ectopic neuroblasts suggests that a potential defect exists in the functional incorporation of new neurons into the existing hippocampal circuitry for a subset of rats. Age-related differences in functional incorporation could contribute to the increased vulnerability of the adolescent hippocampus to ethanol.
Collapse
Affiliation(s)
- Justin A. McClain
- Department of Pharmaceutical Sciences; College of Pharmacy; University of Kentucky; Lexington KY USA
| | - Stephanie A. Morris
- Department of Pharmaceutical Sciences; College of Pharmacy; University of Kentucky; Lexington KY USA
| | - S. Alexander Marshall
- Department of Pharmaceutical Sciences; College of Pharmacy; University of Kentucky; Lexington KY USA
| | - Kimberly Nixon
- Department of Pharmaceutical Sciences; College of Pharmacy; University of Kentucky; Lexington KY USA
| |
Collapse
|
25
|
Broadwater MA, Liu W, Crews FT, Spear LP. Persistent loss of hippocampal neurogenesis and increased cell death following adolescent, but not adult, chronic ethanol exposure. Dev Neurosci 2014; 36:297-305. [PMID: 24993092 DOI: 10.1159/000362874] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 04/14/2014] [Indexed: 11/19/2022] Open
Abstract
Although adolescence is a common age to initiate alcohol consumption, the long-term consequences of exposure to alcohol at this time of considerable brain maturation are largely unknown. In studies utilizing rodents, behavioral evidence is beginning to emerge suggesting that the hippocampus may be persistently affected by repeated ethanol exposure during adolescence, but not by comparable alcohol exposure in adulthood. The purpose of this series of experiments was to explore a potential mechanism of hippocampal dysfunction in adults exposed to ethanol during adolescence. Given that disruption in adult neurogenesis has been reported to impair performance on tasks thought to be hippocampally related, we used immunohistochemistry to assess levels of doublecortin (DCX), an endogenous marker of immature neurons, in the dentate gyrus (DG) of the hippocampus 3-4 weeks after adolescent (postnatal day, PD28-48) or adult (PD70-90) intermittent ethanol exposure to 4 g/kg ethanol administered intragastrically. We also investigated another neurogenic niche, the subventricular zone (SVZ), to determine if the effects of ethanol exposure were region specific. Levels of cell proliferation and cell death were also examined in the DG via assessing Ki67 and cleaved caspase-3 immunoreactivity, respectively. Significantly less DCX was observed in the DG of adolescent (but not adult) ethanol-exposed animals about 4 weeks after exposure when these animals were compared to control age-mates. The effects of adolescent ethanol on DCX immunoreactivity were specific to the hippocampus, with no significant exposure effects emerging in the SVZ. In both the DG and the SVZ there was a significant age-related decline in neurogenesis as indexed by DCX. The persistent effect of adolescent ethanol exposure on reduced DCX in the DG appears to be related to significant increases in cell death, with significantly more cleaved caspase-3-positive immunoreactivity observed in the adolescent ethanol group compared to controls, but no alterations in cell proliferation when indexed by Ki67. These results suggest that a history of adolescent ethanol exposure results in lowered levels of differentiating neurons, probably due at least in part to increased cell death of immature neurons. These effects were evident in adulthood, weeks following termination of the chronic exposure, and may contribute to previously reported behavioral deficits on hippocampal-related tasks after chronic ethanol exposure in adolescence.
Collapse
Affiliation(s)
- Margaret A Broadwater
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, N.C., USA
| | | | | | | |
Collapse
|
26
|
Khalid O, Kim JJ, Kim HS, Hoang M, Tu TG, Elie O, Lee C, Vu C, Horvath S, Spigelman I, Kim Y. Gene expression signatures affected by alcohol-induced DNA methylomic deregulation in human embryonic stem cells. Stem Cell Res 2014; 12:791-806. [PMID: 24751885 DOI: 10.1016/j.scr.2014.03.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 03/27/2014] [Accepted: 03/31/2014] [Indexed: 12/17/2022] Open
Abstract
Stem cells, especially human embryonic stem cells (hESCs), are useful models to study molecular mechanisms of human disorders that originate during gestation. Alcohol (ethanol, EtOH) consumption during pregnancy causes a variety of prenatal and postnatal disorders collectively referred to as fetal alcohol spectrum disorders (FASDs). To better understand the molecular events leading to FASDs, we performed a genome-wide analysis of EtOH's effects on the maintenance and differentiation of hESCs in culture. Gene Co-expression Network Analysis showed significant alterations in gene profiles of EtOH-treated differentiated or undifferentiated hESCs, particularly those associated with molecular pathways for metabolic processes, oxidative stress, and neuronal properties of stem cells. A genome-wide DNA methylome analysis revealed widespread EtOH-induced alterations with significant hypermethylation of many regions of chromosomes. Undifferentiated hESCs were more vulnerable to EtOH's effect than their differentiated counterparts, with methylation on the promoter regions of chromosomes 2, 16 and 18 in undifferentiated hESCs most affected by EtOH exposure. Combined transcriptomic and DNA methylomic analysis produced a list of differentiation-related genes dysregulated by EtOH-induced DNA methylation changes, which likely play a role in EtOH-induced decreases in hESC pluripotency. DNA sequence motif analysis of genes epigenetically altered by EtOH identified major motifs representing potential binding sites for transcription factors. These findings should help in deciphering the precise mechanisms of alcohol-induced teratogenesis.
Collapse
Affiliation(s)
- Omar Khalid
- Laboratory of Stem Cell & Cancer Epigenetic Research, School of Dentistry, University of California, Los Angeles, 10833 Le Conte Avenue, 73-041 CHS, Los Angeles, CA 90095, USA
| | - Jeffrey J Kim
- Laboratory of Stem Cell & Cancer Epigenetic Research, School of Dentistry, University of California, Los Angeles, 10833 Le Conte Avenue, 73-041 CHS, Los Angeles, CA 90095, USA
| | - Hyun-Sung Kim
- Laboratory of Stem Cell & Cancer Epigenetic Research, School of Dentistry, University of California, Los Angeles, 10833 Le Conte Avenue, 73-041 CHS, Los Angeles, CA 90095, USA
| | - Michael Hoang
- Laboratory of Stem Cell & Cancer Epigenetic Research, School of Dentistry, University of California, Los Angeles, 10833 Le Conte Avenue, 73-041 CHS, Los Angeles, CA 90095, USA
| | - Thanh G Tu
- Laboratory of Stem Cell & Cancer Epigenetic Research, School of Dentistry, University of California, Los Angeles, 10833 Le Conte Avenue, 73-041 CHS, Los Angeles, CA 90095, USA
| | - Omid Elie
- Laboratory of Stem Cell & Cancer Epigenetic Research, School of Dentistry, University of California, Los Angeles, 10833 Le Conte Avenue, 73-041 CHS, Los Angeles, CA 90095, USA
| | - Connie Lee
- Laboratory of Stem Cell & Cancer Epigenetic Research, School of Dentistry, University of California, Los Angeles, 10833 Le Conte Avenue, 73-041 CHS, Los Angeles, CA 90095, USA
| | - Catherine Vu
- Laboratory of Stem Cell & Cancer Epigenetic Research, School of Dentistry, University of California, Los Angeles, 10833 Le Conte Avenue, 73-041 CHS, Los Angeles, CA 90095, USA
| | - Steve Horvath
- Department of Human Genetics and Biostatistics, UCLA David Geffen School of Medicine, Box 957088, 4357A Gonda Center, Los Angeles, CA 90095, USA
| | - Igor Spigelman
- Division of Oral Biology & Medicine, UCLA School of Dentistry, 10833 Le Conte Avenue, 63-078 CHS, Los Angeles, CA 90095, USA
| | - Yong Kim
- Laboratory of Stem Cell & Cancer Epigenetic Research, School of Dentistry, University of California, Los Angeles, 10833 Le Conte Avenue, 73-041 CHS, Los Angeles, CA 90095, USA.,Division of Oral Biology & Medicine, UCLA School of Dentistry, 10833 Le Conte Avenue, 73-022 CHS, Los Angeles, CA 90095, USA.,UCLA's Jonsson Comprehensive Cancer Center, 8-684 Factor Building, Box 951781, Los Angeles, CA 90095, USA
| |
Collapse
|
27
|
Wu B, Yu Z, You S, Zheng Y, Liu J, Gao Y, Lin H, Lian Q. Physiological disturbance may contribute to neurodegeneration induced by isoflurane or sevoflurane in 14 day old rats. PLoS One 2014; 9:e84622. [PMID: 24400105 PMCID: PMC3882250 DOI: 10.1371/journal.pone.0084622] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 11/25/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Volatile anesthetics are widely used in pediatric anesthesia but their potential neurotoxicity raise significant concerns regarding sequelae after anesthesia. However, whether physiological disturbance during anesthetic exposure contributes to such side effects remains unknown. The aim of the current study is to compare the neurotoxic effects of isoflurane and sevoflurane in 14 day old rat pups under spontaneous breathing or ventilated conditions. METHODS Postnatal 14 day rats were assigned to one of five groups: 1) spontaneous breathing (SB) + room air (control, n = 17); 2) SB + isoflurane (n = 35); 3) SB + sevoflurane (n = 37); 4) mechanical ventilation (MV) + isoflurane (n = 29); 5) MV + sevoflurane (n = 32). Anesthetized animal received either 1.7% isoflurane or 2.4% seveoflurane for 4 hours. Arterial blood gases and blood pressure were monitored in the anesthetized groups. Neurodegeneration in the CA3 region of hippocampus was assessed with terminal deoxynucleotidyl transferase-mediated DNA nick-end labeling immediately after exposure. Spatial learning and memory were evaluated with the Morris water maze in other cohorts 14 days after experiments. RESULTS Most rats in the SB groups developed physiological disturbance whereas ventilated rats did not but become hyperglycemic. Mortality from anesthesia in the SB groups was significantly higher than that in the MV groups. Cell death in the SB but not MV groups was significantly higher than controls. SB + anesthesia groups performed worse on the Morris water maze behavioral test, but no deficits were found in the MV group compared with the controls. CONCLUSIONS These findings could suggest that physiological disturbance induced by isoflurane or sevoflurane anesthesia may also contribute to their neurotoxicity.
Collapse
Affiliation(s)
- Binbin Wu
- Department of Anesthesiology, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Zipu Yu
- Department of Anesthesiology, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Shan You
- Department of Anesthesiology, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yihu Zheng
- Department of General surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jin Liu
- Department of Anesthesiology, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yajing Gao
- Department of Anesthesiology, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Han Lin
- Department of Anesthesiology, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Qingquan Lian
- Department of Anesthesiology, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
28
|
de la Monte SM, Kril JJ. Human alcohol-related neuropathology. Acta Neuropathol 2014; 127:71-90. [PMID: 24370929 DOI: 10.1007/s00401-013-1233-3] [Citation(s) in RCA: 262] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 12/12/2013] [Accepted: 12/13/2013] [Indexed: 02/08/2023]
Abstract
Alcohol-related diseases of the nervous system are caused by excessive exposures to alcohol, with or without co-existing nutritional or vitamin deficiencies. Toxic and metabolic effects of alcohol (ethanol) vary with brain region, age/developmental stage, dose, and duration of exposures. In the mature brain, heavy chronic or binge alcohol exposures can cause severe debilitating diseases of the central and peripheral nervous systems, and skeletal muscle. Most commonly, long-standing heavy alcohol abuse leads to disproportionate loss of cerebral white matter and impairments in executive function. The cerebellum (especially the vermis), cortical-limbic circuits, skeletal muscle, and peripheral nerves are also important targets of chronic alcohol-related metabolic injury and degeneration. Although all cell types within the nervous system are vulnerable to the toxic, metabolic, and degenerative effects of alcohol, astrocytes, oligodendrocytes, and synaptic terminals are major targets, accounting for the white matter atrophy, neural inflammation and toxicity, and impairments in synaptogenesis. Besides chronic degenerative neuropathology, alcoholics are predisposed to develop severe potentially life-threatening acute or subacute symmetrical hemorrhagic injury in the diencephalon and brainstem due to thiamine deficiency, which exerts toxic/metabolic effects on glia, myelin, and the microvasculature. Alcohol also has devastating neurotoxic and teratogenic effects on the developing brain in association with fetal alcohol spectrum disorder/fetal alcohol syndrome. Alcohol impairs function of neurons and glia, disrupting a broad array of functions including neuronal survival, cell migration, and glial cell (astrocytes and oligodendrocytes) differentiation. Further progress is needed to better understand the pathophysiology of this exposure-related constellation of nervous system diseases and better correlate the underlying pathology with in vivo imaging and biochemical lesions.
Collapse
|
29
|
Abstract
Alcohol-related diseases of the nervous system are caused by excessive exposures to alcohol, with or without co-existing nutritional or vitamin deficiencies. Toxic and metabolic effects of alcohol (ethanol) vary with brain region, age/developmental stage, dose, and duration of exposures. In the mature brain, heavy chronic or binge alcohol exposures can cause severe debilitating diseases of the central and peripheral nervous systems, and skeletal muscle. Most commonly, long-standing heavy alcohol abuse leads to disproportionate loss of cerebral white matter and impairments in executive function. The cerebellum (especially the vermis), cortical-limbic circuits, skeletal muscle, and peripheral nerves are also important targets of chronic alcohol-related metabolic injury and degeneration. Although all cell types within the nervous system are vulnerable to the toxic, metabolic, and degenerative effects of alcohol, astrocytes, oligodendrocytes, and synaptic terminals are major targets, accounting for the white matter atrophy, neural inflammation and toxicity, and impairments in synaptogenesis. Besides chronic degenerative neuropathology, alcoholics are predisposed to develop severe potentially life-threatening acute or subacute symmetrical hemorrhagic injury in the diencephalon and brainstem due to thiamine deficiency, which exerts toxic/metabolic effects on glia, myelin, and the microvasculature. Alcohol also has devastating neurotoxic and teratogenic effects on the developing brain in association with fetal alcohol spectrum disorder/fetal alcohol syndrome. Alcohol impairs function of neurons and glia, disrupting a broad array of functions including neuronal survival, cell migration, and glial cell (astrocytes and oligodendrocytes) differentiation. Further progress is needed to better understand the pathophysiology of this exposure-related constellation of nervous system diseases and better correlate the underlying pathology with in vivo imaging and biochemical lesions.
Collapse
|
30
|
Cole GJ, Zhang C, Ojiaku P, Bell V, Devkota S, Mukhopadhyay S. Effects of ethanol exposure on nervous system development in zebrafish. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 299:255-315. [PMID: 22959306 DOI: 10.1016/b978-0-12-394310-1.00007-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Alcohol (ethanol) is a teratogen that adversely affects nervous system development in a wide range of animal species. In humans numerous congenital abnormalities arise as a result of fetal alcohol exposure, leading to a spectrum of disorders referred to as fetal alcohol spectrum disorder (FASD). These abnormalities include craniofacial defects as well as neurological defects that affect a variety of behaviors. These human FASD phenotypes are reproduced in the rodent central nervous system (CNS) following prenatal ethanol exposure. While the study of ethanol effects on zebrafish development has been more limited, several studies have shown that different strains of zebrafish exhibit differential susceptibility to ethanol-induced cyclopia, as well as behavioral deficits. Molecular mechanisms underlying the effects of ethanol on CNS development also appear to be shared between rodent and zebrafish. Thus, zebrafish appear to recapitulate the observed effects of ethanol on human and mouse CNS development, indicating that zebrafish can serve as a complimentary developmental model system to study the molecular basis of FASD. Recent studies examining the effect of ethanol exposure on zebrafish nervous system development are reviewed, with an emphasis on attempts to elucidate possible molecular pathways that may be impacted by developmental ethanol exposure. Recent work from our laboratories supports a role for perturbed extracellular matrix function in the pathology of ethanol exposure during zebrafish CNS development. The use of the zebrafish model to assess the effects of ethanol exposure on adult nervous system function as manifested by changes in zebrafish behavior is also discussed.
Collapse
Affiliation(s)
- Gregory J Cole
- Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, NC, USA
| | | | | | | | | | | |
Collapse
|
31
|
Kane CJM, Phelan KD, Douglas JC, Wagoner G, Johnson JW, Xu J, Phelan PS, Drew PD. Effects of ethanol on immune response in the brain: region-specific changes in adolescent versus adult mice. Alcohol Clin Exp Res 2013; 38:384-91. [PMID: 24033454 DOI: 10.1111/acer.12244] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 06/18/2013] [Indexed: 01/12/2023]
Abstract
BACKGROUND Alcohol use occurs across the life span beginning in adolescence and continuing through adulthood. Ethanol (EtOH)-induced pathology varies with age and includes changes in neurogenesis, neurodegeneration, and glial cell activation. EtOH-induced changes in glial activation and immune activity are believed to contribute to EtOH-induced neuropathology. Recent studies indicate an emerging role of glial-derived neuroimmune molecules in alcohol abuse and addiction. METHODS Adolescent and adult C57BL/6 mice were treated via gavage with 6 g/kg EtOH for 10 days, and tissue was harvested 1 day post treatment. We compared the effects of EtOH on chemokine and cytokine expression and astrocyte glial fibrillary acidic protein (GFAP) immunostaining and morphology in the hippocampus, cerebellum, and cerebral cortex. RESULTS EtOH increased mRNA levels of the chemokine CCL2/MCP-1 in all 3 regions of adult mice relative to controls. The cytokine interleukin-6 (IL-6) was selectively increased only in the adult cerebellum. EtOH did not affect mRNA levels of the cytokine tumor necrosis factor-alpha (TNF-α) in any of these brain regions in adult animals. Interestingly, CCL2, IL-6, and TNF-α mRNA levels were not increased in the hippocampus, cerebellum, or cortex of adolescent mice. EtOH treatment of adult and adolescent mice resulted in increased GFAP immunostaining. CONCLUSIONS Collectively, these data indicate an age- and region-specific susceptibility to EtOH regulation of neuroinflammatory and addiction-related molecules as well as astrocyte phenotype. These studies may have important implications concerning differential alcohol-induced neuropathology and alcohol addiction across the life span.
Collapse
Affiliation(s)
- Cynthia J M Kane
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Wormington SV, Anderson KG, Tomlinson KL, Brown SA. Alcohol and Other Drug Use in Middle School: The Interplay of Gender, Peer Victimization, and Supportive Social Relationships. THE JOURNAL OF EARLY ADOLESCENCE 2013; 33:610-634. [PMID: 26294803 PMCID: PMC4539963 DOI: 10.1177/0272431612453650] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The current study examined the impact of supportive social relationships (i.e., teacher support, adult support, school relatedness) and peer victimization on middle school students' substance use. Over 3,000 middle school students reported on alcohol, cigarette, and marijuana use, supportive social relationships, and instances in which they were the victim of aggressive behavior. Mixed-effects logit regression analyses revealed complementary patterns of results across types of substances. Students who perceived high levels of social support were less likely to report alcohol and drug use initiation, particularly at low levels of peer victimization. Gender moderated the negative effect of peer victimization, with highly victimized boys most likely to report alcohol, cigarette, and marijuana use. Results indicated a complex interplay of social influences and moderating variables in predicting early onset alcohol and other drug use, one that researchers should consider when studying adolescents' decisions to use alcohol and other drugs.
Collapse
Affiliation(s)
- Stephanie V. Wormington
- Department of Psychology, Reed College, Portland, OR, USA
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | | | - Kristin L. Tomlinson
- Department of Psychology and Psychiatry, University of California, San Diego, CA, USA
| | - Sandra A. Brown
- Department of Psychology and Psychiatry, University of California, San Diego, CA, USA
| |
Collapse
|
33
|
Sneider JT, Cohen-Gilbert JE, Crowley DJ, Paul MD, Silveri MM. Differential effects of binge drinking on learning and memory in emerging adults. JOURNAL OF ADDICTION RESEARCH & THERAPY 2013; Suppl 7:10.4172/2155-6105.S7-006. [PMID: 24404407 PMCID: PMC3881421 DOI: 10.4172/2155-6105.s7-006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Alterations in memory function due to alcohol exposure have been observed in both animal models and human populations. The human literature on neurocognitive consequences of binge alcohol use in emerging adults has not systematically investigated its potential negative impacts on visuospatial memory. For instance, these impacts have not yet been assessed using a human analogue of the Morris Water Maze Task (WMT), a key memory measure in the animal literature. Accordingly, this study compared performance between emerging adult binge drinkers (BD, n=22) and age- and sex-matched light drinkers (LD, n=29) using the Morris WMT, as well as verbal memory using the California Verbal Learning Test (CVLT). Emerging adult BD demonstrated worse performance on verbal learning and memory relative to LD. However, no significant group differences were observed on spatial learning and memory. Furthermore, no sex differences or interactions with drinking status were observed on either memory domain. These data suggest that in emerging adults who are at a heightened risk for alcohol abuse disorders, but who do not yet meet diagnostic criteria, verbal learning is uniquely impacted by the neurotoxic effects of binge drinking, whereas spatial learning is relatively spared between bouts of intoxication.
Collapse
Affiliation(s)
- Jennifer T. Sneider
- Neurodevelopmental Laboratory on Addictions and Mental Health, McLean Imaging Center, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Julia E. Cohen-Gilbert
- Neurodevelopmental Laboratory on Addictions and Mental Health, McLean Imaging Center, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - David J. Crowley
- Neurodevelopmental Laboratory on Addictions and Mental Health, McLean Imaging Center, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Margot D. Paul
- Department of Psychology, Tulane University, New Orleans, LA
| | - Marisa M. Silveri
- Neurodevelopmental Laboratory on Addictions and Mental Health, McLean Imaging Center, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
34
|
Ehlers CL, Oguz I, Budin F, Wills DN, Crews FT. Peri-adolescent ethanol vapor exposure produces reductions in hippocampal volume that are correlated with deficits in prepulse inhibition of the startle. Alcohol Clin Exp Res 2013; 37:1466-75. [PMID: 23578102 DOI: 10.1111/acer.12125] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 01/26/2013] [Indexed: 01/14/2023]
Abstract
BACKGROUND Epidemiological studies suggest that excessive alcohol consumption is prevalent among adolescents and may have lasting neurobehavioral consequences. The use of animal models allows for the separation of the effects of adolescent ethanol (EtOH) exposure from genetic background and other environmental insults. In this study, the effects of moderate EtOH vapor exposure, during adolescence, on structural diffusion tensor imaging (DTI) and behavioral measures were evaluated in adulthood. METHODS A total of 53 Wistar rats were received at postnatal day (PD) 21 and were randomly assigned to EtOH vapor (14 hours on/10 hours off/day) or air exposure for 35 days from PD 23 to 58 (average blood ethanol concentration: 169 mg%). Animals were received in 2 groups that were subsequently sacrificed at 2 time points following withdrawal from EtOH vapor: (i) at 72 days of age, 2 weeks following withdrawal or (ii) at day 128, 10 weeks following withdrawal. In the second group, behavior in the light/dark box and prepulse inhibition (PPI) of the startle was also evaluated. Fifteen animals in each group were scanned, postmortem, for structural DTI. RESULTS There were no significant differences in body weight between EtOH and control animals. Volumetric data demonstrated that total brain, hippocampal, corpus callosum but not ventricular volume were significantly larger in the 128-day-sacrificed animals as compared to the 72 day animals. The hippocampus was smaller and the ventricles larger at 128 days as compared to 72 days, in the EtOH-exposed animals, leading to a significant group × time effect. EtOH-exposed animals sacrificed at 128 days also had diminished PPI, and more rears in the light box were significantly correlated with hippocampal size. CONCLUSIONS These studies demonstrate that DTI volumetric measures of hippocampus are significantly impacted by age and peri-adolescent EtOH exposure and withdrawal in Wistar rats.
Collapse
Affiliation(s)
- Cindy L Ehlers
- Department of Molecular and Cellular Neurosciences , The Scripps Research Institute, La Jolla, California
| | | | | | | | | |
Collapse
|
35
|
Periadolescent ethanol vapor exposure persistently reduces measures of hippocampal neurogenesis that are associated with behavioral outcomes in adulthood. Neuroscience 2013; 244:1-15. [PMID: 23567812 DOI: 10.1016/j.neuroscience.2013.03.058] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 03/25/2013] [Accepted: 03/26/2013] [Indexed: 01/23/2023]
Abstract
Excessive alcohol consumption is prevalent among adolescents and may result in lasting neurobehavioral consequences. The use of animal models to study adolescent alcohol exposure has the advantage of allowing for the control necessary in order to evaluate the effects of ethanol on the brain and separate such effects from genetic background and other environmental insults. In the present study the effects of moderate ethanol vapor exposure, during adolescence, on measures of neurogenesis and behavioral measures were evaluated at two different times following ethanol withdrawal, in adulthood. The two groups of Wistar rats were both exposed to intermittent ethanol vapor (14 h on/10h off/day) for 35-36 days from PD 23 to PD 58 (average blood ethanol concentration: 163 mg%). In the first group, after rats were withdrawn from vapor they were subsequently assessed for locomotor activity, conflict behavior in the open field, and behaviors in the forced swim test (FST) and then sacrificed at 72 days of age. The second group of rats were withdrawn from vapor and injected for 5 days with Bromo-deoxy-Uridine (BrdU). Over the next 8 weeks they were also assessed for locomotor activity, conflict behavior in the open field, and behaviors in the FST and then sacrificed at 113/114 days of age. All rats were perfused for histochemical analyses. Ethanol vapor-exposed rats displayed hypoactivity in tests of locomotion and less anxiety-like and/or more "disinhibitory" behavior in the open field conflict. Quantitative analyses of immunoreactivity revealed a significant reduction in measures of neurogenesis, progenitor proliferation, as indexed by doublecortin (DCX), Ki67, and increased markers of cell death as indexed by cleaved caspase-3, and Fluoro-Jade at 72 days, and decreases in DCX, and increases in cleaved caspase-3 at 114 days in the ethanol vapor-exposed rats. Progenitor survival, as assessed by BrdU+, was reduced in the vapor-exposed animals that were sacrificed at 114 days. The reduction seen in DCX labeled in cell counts was significantly correlated with hypoactivity at 24h after withdrawal as well as less anxiety-like and/or more "disinhibitory" behavior in the open field conflict test at 2 and 8 weeks following termination of vapor exposure. These studies demonstrate that behavioral measures of disinhibitory behavior correlated with decreases in neurogenesis are all significantly and persistently impacted by periadolescent ethanol exposure and withdrawal in Wistar rats.
Collapse
|
36
|
Sari Y, Franklin KM, Alazizi A, Rao PSS, Bell RL. Effects of ceftriaxone on the acquisition and maintenance of ethanol drinking in peri-adolescent and adult female alcohol-preferring (P) rats. Neuroscience 2013; 241:229-38. [PMID: 23537837 DOI: 10.1016/j.neuroscience.2013.03.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Revised: 02/15/2013] [Accepted: 03/07/2013] [Indexed: 10/27/2022]
Abstract
Increased glutamatergic neurotransmission appears to mediate the reinforcing properties of drugs of abuse, including ethanol (EtOH). We recently reported that the administration of ceftriaxone (CEF), a β-lactam antibiotic known to upregulate glutamate transporter 1 (GLT1) levels/activity, decreased the maintenance of EtOH intake in adult male alcohol-preferring (P) rats. In the present study, we tested whether CEF administration would reduce the acquisition and maintenance of EtOH drinking in adolescent and adult female P rats. The rats were treated with saline or 200mg/kg ceftriaxone for 7 days (starting at 35 or 75 days old, respectively) followed by the EtOH acquisition test. Five weeks later the effects of CEF were examined regarding the maintenance of EtOH intake. For the maintenance test, half of the animals that received CEF during acquisition received CEF for 7 days and the other half received saline for 7 days. Saline-treated acquisition animals were treated similarly. The results indicated that pretreatment with ceftriaxone reduced the maintenance of EtOH intake in both animals that started as adolescents and those that started as adults. However, the beneficial effect of CEF was more pronounced in rats pretreated with CEF as adults compared with rats pretreated as adolescents. Reductions in EtOH intake by ceftriaxone were paralleled by an upregulation of GLT1 protein levels in both the nucleus accumbens (∼25% in rats starting at both ages) and prefrontal cortex (∼50% in rats starting as peri-adolescents and ∼65% in those starting as adults). These findings provide further support for GLT1-associated mechanisms in high alcohol-consuming behavior, and hold promise for the development of effective treatments targeting alcohol abuse and dependence.
Collapse
Affiliation(s)
- Y Sari
- University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology, Toledo, OH 43614, USA.
| | | | | | | | | |
Collapse
|
37
|
Functional role of adult hippocampal neurogenesis as a therapeutic strategy for mental disorders. Neural Plast 2012; 2012:854285. [PMID: 23346419 PMCID: PMC3549353 DOI: 10.1155/2012/854285] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Revised: 11/30/2012] [Accepted: 11/30/2012] [Indexed: 02/07/2023] Open
Abstract
Adult neurogenesis, the process of generating new neurons from neural stem cells, plays significant roles in synaptic plasticity, memory, and mood regulation. In the mammalian brain, it continues to occur well into adulthood in discrete regions, namely, the hippocampus and olfactory bulb. During the past decade, significant progress has been made in understanding the mechanisms regulating adult hippocampal neurogenesis and its role in the etiology of mental disorders. In addition, adult hippocampal neurogenesis is highly correlated with the remission of the antidepressant effect. In this paper, we discuss three major psychiatric disorders, depression, schizophrenia, and drug addiction, in light of preclinical evidence used in establishing the neurobiological significance of adult neurogenesis. We interpret the significance of these results and pose questions that remain unanswered. Potential treatments which include electroconvulsive therapy, deep brain stimulation, chemical antidepressants, and exercise therapy are discussed. While consensus lacks on specific mechanisms, we highlight evidence which indicates that these treatments may function via an increase in neural progenitor proliferation and changes to the hippocampal circuitry. Establishing a significant role of adult neurogenesis in the pathogenicity of psychiatric disorders may hold the key to potential strategies toward effective treatment.
Collapse
|
38
|
Huang C, Titus JA, Bell RL, Kapros T, Chen J, Huang R. A mouse model for adolescent alcohol abuse: stunted growth and effects in brain. Alcohol Clin Exp Res 2012; 36:1728-37. [PMID: 22433022 PMCID: PMC7723750 DOI: 10.1111/j.1530-0277.2012.01759.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2011] [Accepted: 01/14/2012] [Indexed: 12/26/2022]
Abstract
BACKGROUND Adolescent alcohol abuse remains a serious public health concern, with nearly a third of high school seniors reporting heavy drinking in the previous month. METHODS Using the high ethanol-consuming C57BL/6J mouse strain, we examined the effects of ethanol (3.75 g/kg, IP, daily for 45 days) on body weight and brain region mass (cerebral cortex, cerebellum, corpus callosum) during peri-adolescence (postnatal day [P]25 to 70) or adulthood (P180 to 225) of both males and females. RESULTS In control peri-adolescent animals, body weight gain was greater in males compared with females. In the peri-adolescent exposure group, ethanol significantly reduced body weight gain to a similar extent in both male and female mice (82 and 84% of controls, respectively). In adult animals, body weight gain was much less than that of the peri-adolescent mice, with ethanol having a small but significant effect in males but not females. Between the control peri-adolescent and adult cohorts (measurements taken at P70 and 225, respectively), there were no significant differences in the mass of the cerebral cortex or the cerebellum from either male or female mice, although the rostro-caudal length of the corpus callosum increased slightly but significantly (6.1%) between these time points. CONCLUSIONS Ethanol treatment significantly reduced the mass of the cerebral cortex in peri-adolescent (-3.1%), but not adult, treated mice. By contrast, ethanol significantly reduced the length of the corpus callosum in adult (-5.4%), but not peri-adolescent, treated mice. Future studies at the histological level may yield additional details concerning ethanol and the peri-adolescent brain.
Collapse
Affiliation(s)
- Chiming Huang
- School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO 64110, USA.
| | | | | | | | | | | |
Collapse
|
39
|
Ehrlich D, Pirchl M, Humpel C. Ethanol transiently suppresses choline-acetyltransferase in basal nucleus of Meynert slices. Brain Res 2012; 1459:35-42. [PMID: 22560095 PMCID: PMC3370645 DOI: 10.1016/j.brainres.2012.04.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 04/02/2012] [Accepted: 04/11/2012] [Indexed: 12/29/2022]
Abstract
The cholinergic system plays a major role in learning and cognition and cholinergic neurons appear to be particularly vulnerable to ethanol (EtOH) exposure. There are conflicting results if EtOH directly damages cholinergic neurons. Thus, the aims of the present study were (1) to investigate the effect of different EtOH concentrations on cholinergic neurons in organotypic brain slices of the nucleus basalis of Meynert (nbM) and (2) to study if the most potent cholinotrophic substance nerve growth factor (NGF) or inhibitors of mitogen activated kinase (MAPK) p38- and nitric-oxide synthase (NOS)-pathways may counteract any EtOH effect. Two-week old organotypic rat brain slices of the nbM were exposed to 1–100 mM EtOH for 7 days with or without drugs and the number of choline-acetyltransferase (ChAT)-positive neurons was counted. Our data show that EtOH significantly reduced the number of ChAT-positive neurons with the most potent effect at a concentration of 50 mM EtOH (54 ± 5 neurons per slice, p < 0.001), compared to control slices (120 ± 13 neurons per slice). Inhibition of MAPK p38 (SB 203580, 10 μM) and NOS (L-thiocitrulline, 10 μM) counteracted the EtOH-induced decline of cholinergic neurons and NGF protected cholinergic neurons against the EtOH-induced effect. Withdrawal of EtOH resulted in a reversal of cholinergic neurons to nearly controls. In conclusion, EtOH caused a transient decline of cholinergic neurons, possibly involving MAPK p38- and NOS-pathways suggesting that EtOH does not induce direct cell death, but causes a transient downregulation of the cholinergic key enzyme, possibly reflecting a form of EtOH-associated plasticity.
Collapse
Affiliation(s)
- Daniela Ehrlich
- Laboratory of Psychiatry and Exp. Alzheimer's Research, Department of Psychiatry and Psychotherapy, Anichstr.35, 6020 Innsbruck, Austria
| | | | | |
Collapse
|
40
|
Fotuhi M, Do D, Jack C. Modifiable factors that alter the size of the hippocampus with ageing. Nat Rev Neurol 2012; 8:189-202. [PMID: 22410582 DOI: 10.1038/nrneurol.2012.27] [Citation(s) in RCA: 230] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The hippocampus is particularly vulnerable to the neurotoxic effects of obesity, diabetes mellitus, hypertension, hypoxic brain injury, obstructive sleep apnoea, bipolar disorder, clinical depression and head trauma. Patients with these conditions often have smaller hippocampi and experience a greater degree of cognitive decline than individuals without these comorbidities. Moreover, hippocampal atrophy is an established indicator for conversion from the normal ageing process to developing mild cognitive impairment and dementia. As such, an important aim is to ascertain which modifiable factors can have a positive effect on the size of the hippocampus throughout life. Observational studies and preliminary clinical trials have raised the possibility that physical exercise, cognitive stimulation and treatment of general medical conditions can reverse age-related atrophy in the hippocampus, or even expand its size. An emerging concept--the dynamic polygon hypothesis--suggests that treatment of modifiable risk factors can increase the volume or prevent atrophy of the hippocampus. According to this hypothesis, a multidisciplinary approach, which involves strategies to both reduce neurotoxicity and increase neurogenesis, is likely to be successful in delaying the onset of cognitive impairment with ageing. Further research on the constellation of interventions that could be most effective is needed before recommendations can be made for implementing preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Majid Fotuhi
- Neurology Institute for Brain Health and Fitness, 1205 York Road, Suite 18, Lutherville, MD 21093, USA.
| | | | | |
Collapse
|
41
|
McClain JA, Hayes DM, Morris SA, Nixon K. Adolescent binge alcohol exposure alters hippocampal progenitor cell proliferation in rats: effects on cell cycle kinetics. J Comp Neurol 2011; 519:2697-710. [PMID: 21484803 DOI: 10.1002/cne.22647] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Binge alcohol exposure in adolescent rats potently inhibits adult hippocampal neurogenesis by altering neural progenitor cell (NPC) proliferation and survival; however, it is not clear whether alcohol results in an increase or decrease in net proliferation. Thus, the effects of alcohol on hippocampal NPC cell cycle phase distribution and kinetics were assessed in an adolescent rat model of an alcohol use disorder. Cell cycle distribution was measured using a combination of markers (Ki-67, bromodeoxyuridine incorporation, and phosphohistone H3) to determine the proportion of NPCs within G1, S, and G2/M phases of the cell cycle. Cell cycle kinetics were calculated using a cumulative bromodeoxyuridine injection protocol to determine the effect of alcohol on cell cycle length and S-phase duration. Binge alcohol exposure reduced the proportion of NPCs in S-phase, but had no effect on G1 or G2/M phases, indicating that alcohol specifically targets S-phase of the cell cycle. Cell cycle kinetics studies revealed that alcohol reduced NPC cell cycle duration by 36% and shortened S-phase by 62%, suggesting that binge alcohol exposure accelerates progression through the cell cycle. This effect would be expected to increase NPC proliferation, which was supported by a slight, but significant increase in the number of Sox-2+ NPCs residing in the hippocampal subgranular zone following binge alcohol exposure. These studies suggest the mechanism of alcohol inhibition of neurogenesis and also reveal the earliest evidence of the compensatory neurogenesis reaction that has been observed a week after binge alcohol exposure.
Collapse
Affiliation(s)
- Justin A McClain
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, USA
| | | | | | | |
Collapse
|
42
|
Guttmannova K, Bailey JA, Hill KG, Lee JO, Hawkins JD, Woods ML, Catalano RF. Sensitive periods for adolescent alcohol use initiation: predicting the lifetime occurrence and chronicity of alcohol problems in adulthood. J Stud Alcohol Drugs 2011; 72:221-31. [PMID: 21388595 DOI: 10.15288/jsad.2011.72.221] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE This study examined the association between age at alcohol use onset and adult alcohol misuse and dependence by testing the sensitive-period hypothesis that early adolescence (11-14) is a vulnerable period of development during which initiating alcohol use is particularly harmful. METHOD Data came from a longitudinal panel of 808 participants recruited in 1981. Participants were followed through age 33 in 2008 with 92% retention. RESULTS Onset of alcohol use before age 11 (late childhood), when compared with initiation during early adolescence, was related to an increased chronicity of adult alcohol dependence, even after accounting for sociodemographic controls and other substance use in adolescence. The present study finds no evidence that early adolescence is a particularly sensitive period for the onset of alcohol use. Findings related to the onset of regular alcohol use and the chronicity of alcohol dependence suggest that the onset of regular drinking before age 21 is problematic, but no one adolescent period is more sensitive than others. Specifically, although all age groups that started drinking regularly before age 21 had a greater rate of alcohol dependence in adulthood, initiation of regular use of alcohol at or before age 14 was not related to greater chronicity of alcohol dependence than the initiation of regular use of alcohol in middle or late adolescence. CONCLUSIONS The findings suggest the importance of delaying the onset of alcohol use through prevention efforts as early as the elementary grades. In addition, prevention efforts should focus on preventing the onset of regular drinking before age 21.
Collapse
Affiliation(s)
- Katarina Guttmannova
- Social Development Research Group, School of Social Work, University of Washington, 9725 3rd Avenue N.E., Seattle, WA 98115, USA.
| | | | | | | | | | | | | |
Collapse
|
43
|
Felfly H, Xue J, Zambon AC, Muotri A, Zhou D, Haddad GG. Identification of a neuronal gene expression signature: role of cell cycle arrest in murine neuronal differentiation in vitro. Am J Physiol Regul Integr Comp Physiol 2011; 301:R727-45. [PMID: 21677276 PMCID: PMC3174756 DOI: 10.1152/ajpregu.00217.2011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 06/08/2011] [Indexed: 12/11/2022]
Abstract
Stem cells are a potential key strategy for treating neurodegenerative diseases in which the generation of new neurons is critical. A better understanding of the characteristics and molecular properties of neural stem cells (NSCs) and differentiated neurons can help with assessing neuronal maturity and, possibly, in devising better therapeutic strategies. We have performed an in-depth gene expression profiling study of murine NSCs and primary neurons derived from embryonic mouse brains. Microarray analysis revealed a neuron-specific gene expression signature that distinguishes primary neurons from NSCs, with elevated levels of transcripts involved in neuronal functions, such as neurite development and axon guidance in primary neurons and decreased levels of multiple cytokine transcripts. Among the differentially expressed genes, we found a statistically significant enrichment of genes in the ephrin, neurotrophin, CDK5, and actin pathways, which control multiple neuronal-specific functions. We then artificially blocked the cell cycle of NSCs with mitomycin C (MMC) and examined cellular morphology and gene expression signatures. Although these MMC-treated NSCs displayed a neuronal morphology and expressed some neuronal differentiation marker genes, their gene expression patterns were very different from primary neurons. We conclude that 1) fully differentiated mouse primary neurons display a specific neuronal gene expression signature; 2) cell cycle block at the S phase in NSCs with MMC does not induce the formation of fully differentiated neurons; 3) cytokines change their expression pattern during differentiation of NSCs into neurons; and 4) signaling pathways of ephrin, neurotrophin, CDK5, and actin, related to major neuronal features, are dynamically enriched in genes showing changes in expression level.
Collapse
Affiliation(s)
- Hady Felfly
- Department of Pediatrics, School of Medicine, University of California San Diego, CA, USA
| | | | | | | | | | | |
Collapse
|
44
|
Roitbak T, Thomas K, Martin A, Allan A, Cunningham LA. Moderate fetal alcohol exposure impairs neurogenic capacity of murine neural stem cells isolated from the adult subventricular zone. Exp Neurol 2011; 229:522-5. [PMID: 21419122 DOI: 10.1016/j.expneurol.2011.03.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 02/11/2011] [Accepted: 03/04/2011] [Indexed: 12/31/2022]
Abstract
Gestational alcohol exposure leads to a spectrum of neurological symptoms which range from severe mental retardation caused by high dose exposure, to subtle cognitive and neuropsychiatric symptoms caused by low-to-moderate doses. We and other investigators have demonstrated that exposure to moderate levels of alcohol throughout gestation leads to impaired neurogenesis in the adult hippocampus, although the mechanisms by which this occurs are not known. To begin to distinguish cell-intrinsic from microenvironmental contributions to impaired adult neurogenesis, we isolated neural stem progenitor cells (NSPCs) from the adult SVZ of mice exposed to moderate levels of alcohol throughout gestation. We found that NSPCs isolated from fetal alcohol exposed (FAE) mice displayed reduced neurosphere formation in culture, as assessed by a serial passage neurosphere assay, and reduced neuronal differentiation upon growth factor withdrawal. These studies suggest that gestational alcohol exposure leads to long-lasting NSPC-intrinsic dysregulation, which may underlie in vivo neurogenic deficits.
Collapse
Affiliation(s)
- Tamara Roitbak
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM 87131–0001, USA
| | | | | | | | | |
Collapse
|
45
|
Long-lasting reduction in hippocampal neurogenesis by alcohol consumption in adolescent nonhuman primates. Proc Natl Acad Sci U S A 2010; 107:11104-9. [PMID: 20534463 DOI: 10.1073/pnas.0912810107] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Binge alcohol consumption in adolescents is increasing, and studies in animal models show that adolescence is a period of high vulnerability to brain insults. The purpose of the present study was to determine the deleterious effects of binge alcohol on hippocampal neurogenesis in adolescent nonhuman primates. Heavy binge alcohol consumption over 11 mo dramatically and persistently decreased hippocampal proliferation and neurogenesis. Combinatorial analysis revealed distinct, actively dividing hippocampal neural progenitor cell types in the subgranular zone of the dentate gyrus that were in transition from stem-like radial glia-like cells (type 1) to immature transiently amplifying neuroblasts (type 2a, type 2b, and type 3), suggesting the evolutionary conservation of milestones of neuronal development in macaque monkeys. Alcohol significantly decreased the number of actively dividing type 1, 2a, and 2b cell types without significantly altering the early neuronal type 3 cells, suggesting that alcohol interferes with the division and migration of hippocampal preneuronal progenitors. Furthermore, the lasting alcohol-induced reduction in hippocampal neurogenesis paralleled an increase in neural degeneration mediated by nonapoptotic pathways. Altogether, these results demonstrate that the hippocampal neurogenic niche during adolescence is highly vulnerable to alcohol and that alcohol decreases neuronal turnover in adolescent nonhuman primate hippocampus by altering the ongoing process of neuronal development. This lasting effect, observed 2 mo after alcohol discontinuation, may underlie the deficits in hippocampus-associated cognitive tasks that are observed in alcoholics.
Collapse
|
46
|
Abstract
PURPOSE OF REVIEW Alcohol consumption during adolescence greatly increases the likelihood that an alcohol use disorder will develop later in life. Elucidating how alcohol impacts the adolescent brain is paramount to understanding how alcohol use disorders arise. This review focuses on recent work addressing alcohol's unique effect on the adolescent brain. RECENT FINDINGS The unique and dynamic state of the developing adolescent brain is discussed with an emphasis on the developmentally distinct effect of alcohol on the dopaminergic reward system and corticolimbic structure and function. Reward neurocircuitry undergoes significant developmental shifts during adolescence, making it particularly sensitive to alcohol in ways that could promote excessive consumption. In addition, developing corticolimbic systems, including the prefrontal cortex and hippocampus, exhibit enhanced vulnerability to alcohol-induced damage. Disruption of white matter integrity, neurotoxicity and inhibition of adult neurogenesis may underlie alcohol-mediated cognitive dysfunction and lead to decreased behavioral control over consumption. SUMMARY In adolescents, alcohol interacts extensively with reward neurocircuitry and corticolimbic structure and function in ways that promote maladaptive behaviors that lead to addiction. Future work is needed to further understand the mechanisms involved in these interactions. Therapeutic strategies that restore proper reward neurochemistry or reverse alcohol-induced neurodegeneration could prove useful in preventing emergence of alcohol use disorders.
Collapse
|