1
|
Chahat, Kumar B, Gupta S, Wahajuddin M, Joshi G. Reconnecting the roots of hydrogen sulfide (H 2S) with medicinal chemistry: Lessons accomplished and challenges so far. Bioorg Chem 2025; 161:108569. [PMID: 40359841 DOI: 10.1016/j.bioorg.2025.108569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 04/14/2025] [Accepted: 05/06/2025] [Indexed: 05/15/2025]
Abstract
Previously known for its unpleasant odour and mortality in elevated concentrations, hydrogen sulfide (H2S) is currently considered a complex molecule having significant physiological advantages. After nitric oxide (NO) and carbon monoxide (CO), H2S is regarded as the third endogenous gasotransmitter, performing many biological functions in the human body. The essential functions include but are not limited to regulating inflammation, maintaining the redox potential, cellular signalling, and metabolic processes. Moreover, an imbalance in its expression or dysfunction of its precursors and associated enzymes in its biosynthesis leads to multiple pathological conditions, including cancer, diabetes, neurodegenerative disorders, COVID-19, etc. Nonetheless, its upregulation is also reported to dysregulate normal physiological conditions and precipitate different diseases and cancer, thus acting as a "Double-edged sword." Despite this, H2S is still being widely explored for its therapeutic potential in various disease states. The present review is put forth to focus on hydrogen sulfide's dichotomous properties, emphasising its critical functions and therapeutic applications. This compilation provides a state-of-the-art analysis of the broad application of H2S donors in developing therapeutic interventions, release mechanisms, and their use in numerous diseases and disorders. Furthermore, various analytical techniques for detecting and quantifying the H2S release in biological samples via the hybrid donors are also discussed. We herein expect that an in-depth comprehension of the multiple activities of H2S can aid in discovering novel therapeutic interventions critical for holistic disease management measures in the future.
Collapse
Affiliation(s)
- Chahat
- Department of Pharmaceutical Science, Hemvati Nandan Bahuguna Garhwal (A Central) University, Srinagar 246174,Dist Garhwal, (Uttarakhand), India
| | - Bhupinder Kumar
- Department of Pharmaceutical Science, Hemvati Nandan Bahuguna Garhwal (A Central) University, Srinagar 246174,Dist Garhwal, (Uttarakhand), India
| | - Shankar Gupta
- Department of Pharmaceutical Science, Hemvati Nandan Bahuguna Garhwal (A Central) University, Srinagar 246174,Dist Garhwal, (Uttarakhand), India
| | - Muhammad Wahajuddin
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, University of Bradford, United Kingdom.
| | - Gaurav Joshi
- Department of Pharmaceutical Science, Hemvati Nandan Bahuguna Garhwal (A Central) University, Srinagar 246174,Dist Garhwal, (Uttarakhand), India; Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, University of Bradford, United Kingdom.
| |
Collapse
|
2
|
Hou Y, Lv B, Du J, Ye M, Jin H, Yi Y, Huang Y. Sulfide regulation and catabolism in health and disease. Signal Transduct Target Ther 2025; 10:174. [PMID: 40442106 PMCID: PMC12122839 DOI: 10.1038/s41392-025-02231-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/03/2025] [Accepted: 03/21/2025] [Indexed: 06/02/2025] Open
Abstract
The metabolic pathway of sulfur-containing amino acids in organisms begins with methionine, which is metabolized to produce important sulfur-containing biomolecules such as adenosylmethionine, adenosylhomocysteine, homocysteine, cystine, and hydrogen sulfide (H2S). These sulfur-containing biomolecules play a wide range of physiological roles in the body, including anti-inflammation, antioxidant stress, DNA methylation, protein synthesis, etc., which are essential for maintaining cellular function and overall health. In contrast, dysregulation of the metabolic pathway of sulfur-containing amino acids leads to abnormal levels of sulfur-containing biomolecules, which produce a range of pathological consequences in multiple systems of the body, such as neurodegenerative diseases, cardiovascular diseases, and cancer. This review traces the milestones in the development of these sulfur-containing biomolecules from their initial discovery to their clinical applications and describes in detail the structure, physiochemical properties, metabolism, sulfide signaling pathway, physiopathological functions, and assays of sulfur-containing biomolecules. In addition, the paper also explores the regulatory role and mechanism of sulfur-containing biomolecules on cardiovascular diseases, liver diseases, neurological diseases, metabolic diseases and tumors. The focus is placed on donors of sulfur-containing biological macromolecule metabolites, small-molecule drug screening targeting H2S-producing enzymes, and the latest advancements in preclinical and clinical research related to hydrogen sulfide, including clinical trials and FDA-approved drugs. Additionally, an overview of future research directions in this field is provided. The aim is to enhance the understanding of the complex physiological and pathological roles of sulfur-containing biomolecules and to offer insights into developing effective therapeutic strategies for diseases associated with dysregulated sulfur-containing amino acid metabolism.
Collapse
Affiliation(s)
- Yuanyuan Hou
- Department of Pediatrics, Children's Medical Center, Peking University First Hospital, Beijing, 100034, China
| | - Boyang Lv
- Department of Pediatrics, Children's Medical Center, Peking University First Hospital, Beijing, 100034, China
| | - Junbao Du
- Department of Pediatrics, Children's Medical Center, Peking University First Hospital, Beijing, 100034, China
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
- Yunnan Baiyao International Medical Research Center, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Hongfang Jin
- Department of Pediatrics, Children's Medical Center, Peking University First Hospital, Beijing, 100034, China.
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China.
| | - Yang Yi
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
- Yunnan Baiyao International Medical Research Center, Peking University, 38 Xueyuan Road, Beijing, 100191, China.
| | - Yaqian Huang
- Department of Pediatrics, Children's Medical Center, Peking University First Hospital, Beijing, 100034, China.
| |
Collapse
|
3
|
Liu Y, Xu J, Wang S, Li Y, Ji L, Xie D, Zhou J. Convenient Biochemical Testing Technologies for Oral Disease Risk Warning: Opportunities and Challenges. BIOSENSORS 2025; 15:327. [PMID: 40422066 DOI: 10.3390/bios15050327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 05/09/2025] [Accepted: 05/11/2025] [Indexed: 05/28/2025]
Abstract
In recent years, attention toward oral health issues has increased with economic development and improvements in quality of life. Biochemical testing technologies offer an efficient method for identifying insidious pathological changes in the oral cavity. Frequent home-based self-screening can enable early identification of dental disease risks, thus facilitating timely interventions. Convenient home-based biochemical testing methods must be user-friendly, cost-effective, and operable without specialized equipment or extensive training. This review summarizes recent advances in convenient biochemical testing methods for the detection and diagnosis of oral diseases, focusing on their reliability, user compliance, and practicality for home-based applications. This review highlights the significance of biomarker distribution imaging for simultaneously identifying multiple lesions and provides perspectives on future research directions. By promoting interdisciplinary collaboration in biochemical diagnostics, this review outlines pathways toward personalized oral healthcare, precision dentistry, and enhanced overall health outcomes.
Collapse
Affiliation(s)
- Ying Liu
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
- Guangdong Biomaterials Engineering Technology Research Center, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - Jincheng Xu
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Siyuan Wang
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Yuanfang Li
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Li Ji
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Dong Xie
- Guangdong Biomaterials Engineering Technology Research Center, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - Jianhua Zhou
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
4
|
Lu Z, Liu X, Fu L, Du L, Shi X, Wang D, Xue K, Zhang P, Lv L, Cui G. Ag/Cu2O nanoarray sensors for rapid detection of Bio-H2S in human blood. J Chem Phys 2025; 162:174706. [PMID: 40314278 DOI: 10.1063/5.0269480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Accepted: 04/17/2025] [Indexed: 05/03/2025] Open
Abstract
The concentration of hydrogen sulfide (H2S) in human blood is closely associated with various chronic diseases. Therefore, it is imperative to design a sensor that can conveniently, rapidly, and accurately detect H2S in human blood at room temperature. In this work, we developed an Ag/Cu2O-based sensor using a two-dimensional electrodeposition in situ assembly method for detecting biological hydrogen sulfide (bio-H2S). The morphological and structural properties indicate that a distinct contact interface has been established between Ag and Cu2O. The sensor exhibits high selectivity, good stability, and a strong linear response within the range of 50-250 μM (R2 = 0.999 58). At room temperature, the sensor displayed a remarkable response of up to 12 704.35% when exposed to 250 μM bio-H2S in blood, with a response time of just 40 s. The great sensing ability of Ag/Cu2O nanoarray for bio-H2S detection is mainly attributed to Schottky barrier modulation of Ag/Cu2O, catalytic sensitization of Ag nanowires, and vulcanization reaction of Cu2O. These results provide significant perspectives for the early diagnosis of chronic diseases and the real-time monitoring of blood-related diseases.
Collapse
Affiliation(s)
- Zheng Lu
- School of Physics and Electrical Engineering, Linyi University, Linyi 276000, China
| | - Xiaona Liu
- School of Physics and Electrical Engineering, Linyi University, Linyi 276000, China
| | - Luan Fu
- School of Physics and Electrical Engineering, Linyi University, Linyi 276000, China
| | - Lulu Du
- School of Physics and Electrical Engineering, Linyi University, Linyi 276000, China
| | - Xiaohui Shi
- School of Physics and Electrical Engineering, Linyi University, Linyi 276000, China
| | - Dongchao Wang
- School of Physics and Electrical Engineering, Linyi University, Linyi 276000, China
| | - Kaifeng Xue
- School of Physics and Electrical Engineering, Linyi University, Linyi 276000, China
| | - Pinhua Zhang
- School of Physics and Electrical Engineering, Linyi University, Linyi 276000, China
| | - Li Lv
- School of Physics and Electrical Engineering, Linyi University, Linyi 276000, China
| | - Guangliang Cui
- School of Physics and Electrical Engineering, Linyi University, Linyi 276000, China
| |
Collapse
|
5
|
Zhang W, Chen B, Zhao C, Yang D, Shima M, Fan W, Yoda Y, Li S, Guo C, Chen Y, Guo X, Deng F. Personal exposure to PM 2.5 and O 3 induced heterogeneous inflammatory responses and modifying effects of smoking: A prospective panel study in COPD patients. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138471. [PMID: 40378747 DOI: 10.1016/j.jhazmat.2025.138471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 04/01/2025] [Accepted: 05/01/2025] [Indexed: 05/19/2025]
Abstract
Air pollution and smoking are major contributors to chronic obstructive pulmonary disease (COPD), primarily through inflammatory responses. We performed this prospective panel study among 107 COPD patients (372 repeated measurements) with personal monitoring of fine particulate matter (PM2.5) and ozone (O3), two primary pollutants contributing to the COPD disease burden, to investigate the interactive effects of air pollutants and smoking on inflammatory profiles. Exhaled nitric oxide and hydrogen sulfide were detected to assess airway eosinophilic and neutrophilic inflammation, respectively. Fasting blood was collected to count inflammatory cells and detect type-1, type-2, type-17, and regulatory T (Treg) cytokines. We found PM2.5 mainly induced neutrophilic inflammation, manifesting as stronger airway inflammation in non-smokers and greater increases in blood neutrophils in current smokers (P-interaction<0.05), particularly those with neutrophilic phenotype. Conversely, O3 primarily induced nasal and circulating eosinophilic inflammation, with non-smokers showing heightened susceptibility. These effects were modified by type-1/type-2 and type-17/Treg immune imbalances in both non-smokers and current smokers. Specifically, type-1 and type-17-skewed immunity exacerbated the neutrophilic effects of PM2.5, while type-2 and Treg-skewed immunity aggravated the eosinophilic responses to O3. This study emphasizes the need for personalized prevention strategies to protect COPD patients from the detrimental impacts of air pollution and smoking.
Collapse
Affiliation(s)
- Wenlou Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China; Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Baiqi Chen
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Chen Zhao
- Community Health Service Center, Huayuan Road, Haidian District, Beijing 100088, China
| | - Di Yang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Masayuki Shima
- Department of Public Health, School of Medicine, Hyogo Medical University, Nishinomiya, Hyogo 663-8501, Japan
| | - Weiwei Fan
- Shijiazhuang Centers for Disease Control and Prevention, Hebei 050011, China
| | - Yoshiko Yoda
- Kansai University of Welfare Sciences, Kashiwara, Osaka 582-0026, Japan
| | - Shurun Li
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Chenxia Guo
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Yahong Chen
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China.
| | - Xinbiao Guo
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Furong Deng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China; Center for Environment and Health, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.
| |
Collapse
|
6
|
Guo J, Baek JW, Kang Y, Kim D, Park C, Woo J, Zou T, Shin E, Wang Q, Noh YY, Park S, Kim J, Li Y, Kim ID, Kang K. Molecular Sensitizer-Loaded Monolayer Organic Semiconductors for High-Performance H 2S Sensors. ACS NANO 2025; 19:16175-16187. [PMID: 40240312 DOI: 10.1021/acsnano.5c04783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Monolayer organic semiconductors offer high gas sensitivity due to their exposed active channels and absence of grain boundaries, allowing them to interact directly with the analytes. However, such single-component organic sensors are typically lacking in selective adsorption sites, leading to practical hindrances such as limited chemical selectivity and slow recovery. In this study, we demonstrate a highly crystalline monolayer C10-DNTT semiconductor film sensitized with F4-TCNQ (F4-TCNQ/C10-DNTT), fabricated using a one-step solution-shearing codeposition method, which overcomes the aforementioned challenges to serve as a high-performance chemical gas sensor. Compared to pristine C10-DNTT, the monolayer F4-TCNQ/C10-DNTT films showed an enhanced response to hydrogen sulfide (H2S), an industrial pollutant and an important biomarker for respiratory disorders, as the sensitizer molecules promoted electronic interactions at the gas-organic semiconductor interface. Specifically, this resulted in a 5.3-fold increase in sensitivity to 5 ppm of H2S, with high selectivity and improved recovery compared to pristine C10-DNTT sensors. The precisely defined two-dimensional (2D) structure of the F4-TCNQ/C10-DNTT films enabled the investigation of layer-dependent sensing characteristics, reinforcing the significance of the monolayer configuration for achieving highly sensitive and selective H2S sensing. This research provides an effective strategy for designing high-performance organic sensing devices and highlights the importance of layer precision in sensor response, contributing to the development of more efficient and reliable organic chemical sensors in the future.
Collapse
Affiliation(s)
- Jianhang Guo
- National Laboratory of Solid-State Microstructures, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jong Won Baek
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Yeonghun Kang
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Dongyoung Kim
- Graduate School of Semiconductor Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Chungseong Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Junhee Woo
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Taoyu Zou
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Euichul Shin
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Qijing Wang
- School of Integrated Circuits, Nanjing University, Suzhou 215163, P. R. China
| | - Yong-Young Noh
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Steve Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jihan Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Yun Li
- National Laboratory of Solid-State Microstructures, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China
| | - Il-Doo Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Kibum Kang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Graduate School of Semiconductor Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
7
|
Zhu X, Chen Q, Sun J, Zhang L, Huang Z, Xu J, Hu H, He Y, Chen Z, Ye X, Chen X, Guo A, Lu S, Shen T, Wu J, He Z. Early Screening and Subtype Identification of High-Risk Lung Nodules via Breathprint by Graphene eNose Platform: A Large Cohort Study. ACS Sens 2025; 10:3101-3111. [PMID: 40193324 DOI: 10.1021/acssensors.5c00314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Early screening of individuals with high-risk lung nodules can significantly improve the prognosis of lung cancer patients, and accurate identification of lung nodule subtypes can provide guidance for medical treatment. Exhaled breath (EB) analysis via eNoses offers a quick and noninvasive approach, but current eNose technology lacks quality control and solid validation in large population studies. Herein, an eNose platform integrated with a metal ion-decorated graphene sensor array and a breath sampling accessory was established. EB samples from 427 healthy subjects and 2586 subjects with lung nodules, including various benign and malignant subtypes, were collected through the breath sampling accessory for quality control. The large-cohort clinical EB samples were analyzed by the eNose platform to acquire the cross-reactive resistance response. Breathprint analysis for high-risk lung nodules using SVM and age-matched training sets yielded strong and robust performance. Combined with baseline data, the model achieved an AUC of 0.93 (95% CI, 0.89-0.96) on the external test set, with 97% sensitivity and 73% specificity. Moreover, dimensionality reduction analysis of breathprints demonstrated separability across different lung nodule subtypes. This study demonstrates the reliability of the graphene eNose platform to identify high-risk lung nodules and classify lung nodule subtypes in a noninvasive and rapid method.
Collapse
Affiliation(s)
- Xingyu Zhu
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, PR China
| | - Qiaofen Chen
- Lab of Nanomedicine and Omics-based Diagnosis, Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, PR China
- Will-think Sensing Technology Co., LTD., Hangzhou 310058, PR China
| | - Jiajing Sun
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, PR China
| | - Lichen Zhang
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, PR China
| | - Zhengwei Huang
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, PR China
| | - Jingwei Xu
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, PR China
| | - Haichuan Hu
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, PR China
| | - Yuqi He
- Monash School of Medicine, Monash University, Clayton 3800, Australia
| | - Zhao Chen
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, PR China
| | - Xiaogang Ye
- Will-think Sensing Technology Co., LTD., Hangzhou 310058, PR China
| | - Xueyin Chen
- Will-think Sensing Technology Co., LTD., Hangzhou 310058, PR China
| | - Aotian Guo
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, PR China
| | - Sheng Lu
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, PR China
| | - Tao Shen
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, PR China
| | - Jianmin Wu
- Lab of Nanomedicine and Omics-based Diagnosis, Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, PR China
| | - Zhengfu He
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, PR China
| |
Collapse
|
8
|
Scognamiglio A, Cerqua I, Citi V, Martelli A, Spezzini J, Calderone V, Rimoli MG, Sodano F, Caliendo G, Santagada V, Fiorino F, Frecentese F, Perissutti E, Magli E, Simonelli M, Corvino A, Roviezzo F, Severino B. Isothiocyanate-Corticosteroid Conjugates against asthma: Unity makes strength. Eur J Med Chem 2024; 275:116636. [PMID: 38944936 DOI: 10.1016/j.ejmech.2024.116636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
Asthma is a major noncommunicable disease, affecting both children and adults, and represents one of the major causes leading to high health care costs due to the need for chronic pharmacological treatments. The standard gold therapy of inflammation in asthmatic patients involves the use of glucocorticoids even if their chronic use is often related to serious adverse effects. Growing evidence suggests the biological relevance of hydrogen sulfide (H2S) in the pathogenesis of airway diseases. Hence, aiming to associate the beneficial effects of steroidal anti-inflammatory drugs (SAIDs) to H2S biological activity, we designed and synthesized novel multi-target molecules by chemically combining a group of glucocorticoids, usually employed in asthma treatment, with an isothiocyanate moiety, well-known for its H2S releasing properties. Firstly, the synthesized compounds have been screened for their H2S-releasing profile using an amperometric approach and for their in vitro effects on the degranulation process, using RBL-2H3 cell line. The physicochemical profile, in terms of solubility, chemical and enzymatic stability of the newly hybrid molecules, has been assessed at different physiological pH values and in esterase-rich medium (bovine serum albumin, BSA). The selected compound 5c, through both its corticosteroid and H2S releasing component, has been evaluated in vivo in experimental model of asthma. The compound 5c inhibited in vivo all asthma features with a significative effect on the restoration of pulmonary structure and reduction of lung inflammation.
Collapse
Affiliation(s)
- Antonia Scognamiglio
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via D. Montesano, 49, 80131, Napoli, Italy
| | - Ida Cerqua
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via D. Montesano, 49, 80131, Napoli, Italy
| | - Valentina Citi
- Department of Pharmacy, University of Pisa, Via Bonanno, 6, I-56126 Pisa, Italy
| | - Alma Martelli
- Department of Pharmacy, University of Pisa, Via Bonanno, 6, I-56126 Pisa, Italy
| | - Jacopo Spezzini
- Department of Pharmacy, University of Pisa, Via Bonanno, 6, I-56126 Pisa, Italy
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, Via Bonanno, 6, I-56126 Pisa, Italy
| | - Maria Grazia Rimoli
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via D. Montesano, 49, 80131, Napoli, Italy
| | - Federica Sodano
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via D. Montesano, 49, 80131, Napoli, Italy
| | - Giuseppe Caliendo
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via D. Montesano, 49, 80131, Napoli, Italy
| | - Vincenzo Santagada
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via D. Montesano, 49, 80131, Napoli, Italy
| | - Ferdinando Fiorino
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via D. Montesano, 49, 80131, Napoli, Italy
| | - Francesco Frecentese
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via D. Montesano, 49, 80131, Napoli, Italy
| | - Elisa Perissutti
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via D. Montesano, 49, 80131, Napoli, Italy
| | - Elisa Magli
- Department of Public Health, School of Medicine, University of Naples Federico II, Via Panzini, 5, 80131, Napoli, Italy
| | - Martina Simonelli
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via D. Montesano, 49, 80131, Napoli, Italy
| | - Angela Corvino
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via D. Montesano, 49, 80131, Napoli, Italy.
| | - Fiorentina Roviezzo
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via D. Montesano, 49, 80131, Napoli, Italy
| | - Beatrice Severino
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via D. Montesano, 49, 80131, Napoli, Italy.
| |
Collapse
|
9
|
Kim KB, Sohn MS, Min S, Yoon JW, Park JS, Li J, Moon YK, Kang YC. Highly Selective and Reversible Detection of Simulated Breath Hydrogen Sulfide Using Fe-Doped CuO Hollow Spheres: Enhanced Surface Redox Reaction by Multi-Valent Catalysts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308963. [PMID: 38461524 DOI: 10.1002/smll.202308963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/19/2024] [Indexed: 03/12/2024]
Abstract
The precise and reversible detection of hydrogen sulfide (H2S) at high humidity condition, a malodorous and harmful volatile sulfur compound, is essential for the self-assessment of oral diseases, halitosis, and asthma. However, the selective and reversible detection of trace concentrations of H2S (≈0.1 ppm) in high humidity conditions (exhaled breath) is challenging because of irreversible H2S adsorption/desorption at the surface of chemiresistors. The study reports the synthesis of Fe-doped CuO hollow spheres as H2S gas-sensing materials via spray pyrolysis. 4 at.% of Fe-doped CuO hollow spheres exhibit high selectivity (response ratio ≥ 34.4) over interference gas (ethanol, 1 ppm) and reversible sensing characteristics (100% recovery) to 0.1 ppm of H2S under high humidity (relative humidity 80%) at 175 °C. The effect of multi-valent transition metal ion doping into CuO on sensor reversibility is confirmed through the enhancement of recovery kinetics by doping 4 at.% of Ti- or Nb ions into CuO sensors. Mechanistic details of these excellent H2S sensing characteristics are also investigated by analyzing the redox reactions and the catalytic activity change of the Fe-doped CuO sensing materials. The selective and reversible detection of H2S using the Fe-doped CuO sensor suggested in this work opens a new possibility for halitosis self-monitoring.
Collapse
Affiliation(s)
- Ki Beom Kim
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Myung Sung Sohn
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Sunhong Min
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Ji-Wook Yoon
- Department of Information Materials Engineering, Division of Advanced Materials Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Jin-Sung Park
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Ju Li
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Young Kook Moon
- Department of Functional Ceramics, Ceramic Materials Division, Korea Institute of Materials Science (KIMS), Changwon, 51508, Republic of Korea
| | - Yun Chan Kang
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
10
|
Jiang S, Chen H, Shen P, Zhou Y, Li Q, Zhang J, Chen Y. Gasotransmitter Research Advances in Respiratory Diseases. Antioxid Redox Signal 2024; 40:168-185. [PMID: 37917094 DOI: 10.1089/ars.2023.0410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Significance: Gasotransmitters are small gas molecules that are endogenously generated and have well-defined physiological functions. The most well-defined gasotransmitters currently are nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S), while other potent gasotransmitters include ammonia, methane, cyanide, hydrogen gas, and sulfur dioxide. Gasotransmitters play a role in various respiratory diseases such as asthma, chronic obstructive pulmonary disease, obstructive sleep apnea, lung infection, bronchiectasis, cystic fibrosis, primary ciliary dyskinesia, and COVID-19. Recent Advances: Gasotransmitters can act as biomarkers that facilitate disease diagnosis, indicate disease severity, predict disease exacerbation, and evaluate disease outcomes. They also have cell-protective properties, and many studies have been conducted to explore their pharmacological applications. Innovative drug donors and drug delivery methods have been invented to amplify their therapeutic effects. Critical Issues: In this article, we briefly reviewed the physiological and pathophysiological functions of some gasotransmitters in the respiratory system, the progress in detecting exhaled gasotransmitters, as well as innovative drugs derived from these molecules. Future Directions: The current challenge for gasotransmitter research includes further exploring their physiological and pathological functions, clarifying their complicated interactions, exploring suitable drug donors and delivery devices, and characterizing new members of gasotransmitters. Antioxid. Redox Signal. 40, 168-185.
Collapse
Affiliation(s)
- Simin Jiang
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Haijie Chen
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Pu Shen
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Yumou Zhou
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Qiaoyu Li
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Jing Zhang
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Yahong Chen
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| |
Collapse
|
11
|
Prabhu N, Shivamurthy B, Anandhan S, Rajendra BV, Basanna JC, Srivathsa M. An Investigation on the Acetone and Ethanol Vapor-Sensing Behavior of Sol-Gel Electrospun ZnO Nanofibers Using an Indigenous Setup. ACS OMEGA 2023; 8:49057-49066. [PMID: 38162738 PMCID: PMC10753564 DOI: 10.1021/acsomega.3c06744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/23/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024]
Abstract
The calibration is essential for accuracy, repeatability, and continuous trouble-free operation of gas sensors with safety. Most gas sensors are fabricated using metal oxide nanomaterials in different structures such as films, coating, or nanofibers. Therefore, a device in the sensor manufacturing industry is necessary to test, calibrate, and optimize metal oxide structures. In this point of view, a simple device is developed to test and estimate the sensing response, response time, and recovery time of nanostructures. The sol-gel method was used to produce nanofibers through electrospinning. An average fiber diameter of 245 nm was obtained after pyrolysis at 600 °C. The structure and composition of ZnO nanofibers are confirmed by X-ray diffraction, scanning electron microscopy, and Brunauer-Emmett-Teller. The trials were taken using ZnO nanofibers in the presence of acetone and ethanol vapor, and the results were reported. High response (31.74), rapid response (40 s), and recovery (30 s) times have been achieved for ethanol gas to 50 ppm concentration test gas at an optimal temperature of 260 °C. The results obtained from the trials are compared with the literature results, which are in line with the values presented by the various researchers. Due to the low cost, easy maintenance, and accuracy, this device is recommended in metal oxide sensor development industries and laboratories.
Collapse
Affiliation(s)
- Niranjan
N Prabhu
- Department
of Mechanical & Industrial Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India
| | - Basavannadevaru Shivamurthy
- Department
of Mechanical & Industrial Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India
| | - Srinivasan Anandhan
- Department
of Metallurgical and Materials Engineering, National Institute of Technology-Karnataka, Srinivas Nagar, Mangalore 575025, India
| | | | - Jagadeesh Chandra
Regati Basanna
- Department
of Electronics and Communication Engineering, Manipal Institute of
Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Manu Srivathsa
- Department
of Physics, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| |
Collapse
|
12
|
Gupta SK, Mochan S, Arora P, Rani N, Luthra K, Dwivedi S, Bhatla N, Kshetrapal P, Dhingra R. Hydrogen sulfide promotes migration of trophoblast cells by a Rho GTPase mediated actin cytoskeleton reorganization. Placenta 2023; 142:135-146. [PMID: 37774537 DOI: 10.1016/j.placenta.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/24/2023] [Accepted: 09/07/2023] [Indexed: 10/01/2023]
Abstract
INTRODUCTION Preeclampsia (PE) arises due to defective spiral artery remodelling which may be due to deficient migration of trophoblast cells. Migration of human endothelial cells has been shown to be promoted via Hydrogen sulphide(H2S)/Rho GTPase Rac1 axis. This novel role of H2S and its downstream processes have not yet been studied in the development and function of the placental trophoblast cells. METHODS Placental tissues were obtained post-delivery from consented preeclamptic and normotensive mothers (n = 60). The protein expression levels of cystathionine-gamma-lyase (CSE) and cystathionine-beta-synthase (CBS) along with its downstream migratory molecules were compared in both the arms. The pro-migratory role of H2S was investigated in a first trimester placental cell line. RESULTS H2S promoted the migration of trophoblast cells in a Rho GTPase dependent manner mediated by actin cytoskeleton reorganization. The reduced levels of H2S producing enzymes in the PE placentae along with decreased levels of Rho GTPases (Rac1 and Rho A) corroborate the results of PAG and AOAA treatment in down regulating the Rho GTPases in the in vitro grown placental cultures. Reduction of the migratory potential of trophoblastic cells caused due to hypoxia/reoxygenation was rescued by upregulating the H2S expression with the use of NaHS as a H2S donor. DISCUSSION Exogenous H2S increases the migratory potential of the placental cells in culture conditions and also post hypoxia/reoxygenation injury. H2S as a gaso-transmitter holds a great potential as a therapeutic agent. Its long-term effects need to be investigated using model systems (rat/mouse) of PE following it up with clinical regulatory trials.
Collapse
Affiliation(s)
- Sunil Kumar Gupta
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Sankat Mochan
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Pallavi Arora
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Neerja Rani
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Kalpana Luthra
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Sadanand Dwivedi
- Department of Biostatistics, All India Institute of Medical Sciences, New Delhi, India
| | - Neerja Bhatla
- Department of Obstetrics and Gynaecology, All India Institute of Medical Sciences, New Delhi, India
| | - Pallavi Kshetrapal
- Maternal & Child Health, Translational Health Science and Technology Institute, Faridabad, Haryana, India.
| | - Renu Dhingra
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
13
|
Ozbek EN, Istanbullu H, Kızrak U, Alan Albayrak E, Sevin G, Yetik-Anacak G. The Effects of Novel Triazolopyrimidine Derivatives on H2S Production in Lung and Vascular Tonus in Aorta. Pharmacology 2023; 108:530-539. [PMID: 37696255 DOI: 10.1159/000533419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 07/31/2023] [Indexed: 09/13/2023]
Abstract
INTRODUCTION Hydrogen sulfide (H2S), known as a third gasotransmitter, is a signaling molecule that plays a regulatory role in physiological and pathophysiological processes. Decreased H2S levels were reported in inflammatory respiratory diseases such as asthma, chronic obstructive pulmonary disease, and pulmonary hypertension. H2S donors or drugs that increase H2S have emerged as novel treatments for inflammatory respiratory diseases. We previously showed that resveratrol (RVT) causes vascular relaxation and antioxidant effects by inducing H2S production. In the current study, we synthesized a new molecule Cpd2, as an RVT analog. We examined the effect of Cpd2 and its precursor chalcone compound (Cpd1) on H2S formation under both healthy and oxidative stress conditions in the lung, as well as vascular relaxation in the aorta. METHODS Cpd2 synthesized from Cpd1 with microwaved in basic conditions. H2S formation was measured by H2S biosensor in the mice lungs under both healthy and pyrogallol-induced oxidative stress conditions in the presence/absence of H2S synthesis inhibitor aminooxyacetic acid (AOAA). The effect of compounds on vascular tonus is investigated in mice aorta by DMT myograph. RESULTS RVT and Cpd2 significantly increased l-cysteine (l-cys) induced-H2S formation in the lung homogenates of healthy mice, but Cpd1 did not. Superoxide anion generator pyrogallol caused a decrease in H2S levels in mice lungs and Cpd2 restored it. Inhibition of Cpd2-induced H2S formation by AOAA confirmed that Cpd2 increases endogenous H2S formation in both healthy and oxidative stress conditions. Furthermore, we found that both Cpd1 and Cpd2 (10-8-10-4 M) caused vascular relaxation in mice aorta. DISCUSSION AND CONCLUSION We found that Cpd2, a newly synthesized RVT analog, is an H2S-inducing molecule and vasorelaxant similar to RVT. Since H2S has antioxidant and anti-inflammatory effects, Cpd2 has a potential for the treatment of respiratory diseases where oxidative stress and decreased H2S levels are present.
Collapse
Affiliation(s)
- Emine Nur Ozbek
- Department of Pharmacology, Faculty of Pharmacy, Ege University, Izmir, Turkey
| | - Huseyin Istanbullu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Izmir Katip Celebi University, Izmir, Turkey
| | - Umran Kızrak
- Department of Pharmacology, Faculty of Pharmacy, Ege University, Izmir, Turkey
| | - Elif Alan Albayrak
- Department of Pharmacology, Faculty of Pharmacy, Ege University, Izmir, Turkey
| | - Gülnur Sevin
- Department of Pharmacology, Faculty of Pharmacy, Ege University, Izmir, Turkey
| | - Gunay Yetik-Anacak
- Department of Pharmacology, Faculty of Pharmacy, Ege University, Izmir, Turkey
- Department of Pharmacology, Faculty of Pharmacy, Acıbadem Mehmet ali Aydınlar University, Istanbul, Turkey
| |
Collapse
|
14
|
Peng H, Zhou Q, Liu J, Wang Y, Mu K, Zhang L. Endoplasmic reticulum stress: a vital process and potential therapeutic target in chronic obstructive pulmonary disease. Inflamm Res 2023; 72:1761-1772. [PMID: 37695356 DOI: 10.1007/s00011-023-01786-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 09/12/2023] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD), a chronic and progressive disease characterized by persistent respiratory symptoms and progressive airflow obstruction, has attracted extensive attention due to its high morbidity and mortality. Although the understanding of the pathogenesis of COPD has gradually increased because of increasing evidence, many questions regarding the mechanisms involved in COPD progression and its deleterious effects remain unanswered. Recent advances have shown the potential functions of endoplasmic reticulum (ER) stress in causing airway inflammation, emphasizing the vital role of unfolded protein response (UPR) pathways in the development of COPD. METHODS A comprehensive search of major databases including PubMed, Scopus, and Web of Science was conducted to retrieve original research articles and reviews related to ER stress, UPR, and COPD. RESULTS The common causes of COPD, namely cigarette smoke (CS) and air pollutants, induce ER stress through the generation of reactive oxygen species (ROS). UPR promotes mucus secretion and further plays a dual role in the cell apoptosis-autophagy axis in the development of COPD. Existing drug research has indicated the potential of UPR as a therapeutic target for COPD. CONCLUSIONS ER stress and UPR activation play significant roles in the etiology, pathogenesis, and treatment of COPD and discuss whether related genes can be used as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Hao Peng
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Qing Zhou
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Jing Liu
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Yi Wang
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Ketao Mu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jie Fang Avenue 1095, Wuhan, 430030, China.
| | - Lei Zhang
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China.
| |
Collapse
|
15
|
Słowiński D, Świerczyńska M, Romański J, Podsiadły R. Sensitive Detection of Various Forms of Hydrogen Sulfide via Highly Selective Naphthalimide-Based Fluorescent Probe. Molecules 2023; 28:6299. [PMID: 37687131 PMCID: PMC10488666 DOI: 10.3390/molecules28176299] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Hydrogen sulfide (H2S) is an important gasotransmitter, but only a few methods are available for real-time detection. Fluorescent probes are attractive tools for biological applications because of their high sensitivity, convenience, rapid implementation, noninvasive monitoring capability, and simplicity in fluorescent imaging of living cells and tissues. Herein, we report on a pro-fluorescent probe, NAP-Py-N3 based on naphthalimide derivative, which was found to show high selectivity toward H2S over various other analytes, including biothiols, making it feasible to detect H2S. After reaction with H2S, this probe showed rapid and significant turn-on green fluorescent enhancement at 553 nm (about 54-fold, k2 = 9.62 M-1s-1), high sensitivity (LOD: 15.5 nM), significant Stokes shift (118 nm), and it was found that the fluorescence quantum yield of fluorescence product can reach 0.36. Moreover, the probe has also been successfully applied to detect the gaseous H2S and to confirm the presence of H2S released from modern organic donors, which in recent years have been commonly used to investigate the role of H2S in biological systems. All the results indicate that this probe is excellent and highly valuable.
Collapse
Affiliation(s)
- Daniel Słowiński
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, 90-537 Lodz, Poland; (D.S.); (M.Ś.)
| | - Małgorzata Świerczyńska
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, 90-537 Lodz, Poland; (D.S.); (M.Ś.)
| | - Jarosław Romański
- Department of Organic and Applied Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91-403 Lodz, Poland;
| | - Radosław Podsiadły
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, 90-537 Lodz, Poland; (D.S.); (M.Ś.)
| |
Collapse
|
16
|
Sinha S, Kumar S, Narwaria M, Singh A, Haque M. Severe Acute Bronchial Asthma with Sepsis: Determining the Status of Biomarkers in the Diagnosis of the Disease. Diagnostics (Basel) 2023; 13:2691. [PMID: 37627950 PMCID: PMC10453001 DOI: 10.3390/diagnostics13162691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/04/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Bronchial asthma is a widely prevalent illness that substantially impacts an individual's health standard worldwide and has a significant financial impact on society. Global guidelines for managing asthma do not recommend the routine use of antimicrobial agents because most episodes of the condition are linked to viral respiratory tract infections (RTI), and bacterial infection appears to have an insignificant impact. However, antibiotics are recommended when there is a high-grade fever, a consolidation on the chest radiograph, and purulent sputum that contains polymorphs rather than eosinophils. Managing acute bronchial asthma with sepsis, specifically the choice of whether or not to initiate antimicrobial treatment, remains difficult since there are currently no practical clinical or radiological markers that allow for a simple distinction between viral and bacterial infections. Researchers found that serum procalcitonin (PCT) values can efficiently and safely minimize antibiotic usage in individuals with severe acute asthma. Again, the clinical manifestations of acute asthma and bacterial RTI are similar, as are frequently used test values, like C-reactive protein (CRP) and white blood cell (WBC) count, making it harder for doctors to differentiate between viral and bacterial infections in asthma patients. The role and scope of each biomarker have not been precisely defined yet, although they have all been established to aid healthcare professionals in their diagnostics and treatment strategies.
Collapse
Affiliation(s)
- Susmita Sinha
- Department of Physiology, Khulna City Medical College and Hospital, 33 KDA Avenue, Hotel Royal Crossing, Khulna Sadar, Khulna 9100, Bangladesh
| | - Santosh Kumar
- Department of Periodontology, Karnavati School of Dentistry, Karnavati University, Gandhinagar 382422, Gujarat, India
| | - Mahendra Narwaria
- Asian Bariatrics Plus Hospital, V Wing-Mondeal Business Park, SG Highways, Ahmedabad 380054, Gujarat, India
| | - Arya Singh
- Asian Bariatrics Plus Hospital, V Wing-Mondeal Business Park, SG Highways, Ahmedabad 380054, Gujarat, India
| | - Mainul Haque
- The Unit of Pharmacology, Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia, Kuala Lumpur 57000, Malaysia
- Department of Scientific Research Center (KSRC), Karnavati School of Dentistry, Karnavati University, Gandhinagar 382422, Gujarat, India
| |
Collapse
|
17
|
Abdallah Abd El Megied M, Motey MAFA, Amen AS. Serum hydrogen sulphide levels in acute asthmatic children: a case control study. EGYPTIAN PEDIATRIC ASSOCIATION GAZETTE 2023; 71:31. [DOI: 10.1186/s43054-023-00177-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/16/2023] [Indexed: 09/02/2023] Open
Abstract
Abstract
Background
It’s thought that respiratory epithelium-produced reduced hydrogen sulphide (H2S) plays a role in the pathophysiology of acute asthma. In this case–control research, blood H2S levels were examined between matched acutely asthmatic children and non-asthmatic controls. The grade of acute asthma, vital signs and absolute eosinophilic count in the asthmatic children were likewise associated with the blood H2S level.
Methods
Forty Egyptian asthmatic children had visited the emergency room and forty age- and sex-matched non-asthmatic controls had their blood H2S levels measured using enzyme-linked immunosorbent assay (ELISA).
Results
The serum H2S in the two groups did not differ statistically significantly. Serum H2S and respiratory rate showed a moderately significant inverse connection (r = -0.325, p = 0.041). However, serum H2S and other clinical or laboratory variables exhibited no meaningful relationships. Patients' absolute and percentage eosinophil counts were considerably higher than healthy controls. Serum H2S exhibited a sensitivity of 50% and a specificity of 32.5% for identifying children with acute asthma from non-asthmatic children.
Conclusion
Children with asthma and those without asthma had similar serum H2S levels. It has a lousy relationship with respiratory rate. It is indicated that it is an inadequate screening and diagnostic tool since it has low sensitivity (50%) and specificity (32.5%) in differentiating acute asthmatic children.
Collapse
|
18
|
Zhang L, Rao J, Liu X, Wang X, Wang C, Fu S, Xiao J. Attenuation of Sepsis-Induced Acute Kidney Injury by Exogenous H 2S via Inhibition of Ferroptosis. Molecules 2023; 28:4770. [PMID: 37375325 DOI: 10.3390/molecules28124770] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Sepsis-associated acute kidney injury (SA-AKI) results in significant morbidity and mortality, and ferroptosis may play a role in its pathogenesis. Our aim was to examine the effect of exogenous H2S (GYY4137) on ferroptosis and AKI in in vivo and in vitro models of sepsis and explore the possible mechanism involved. Sepsis was induced by cecal ligation and puncture (CLP) in male C57BL/6 mice, which were randomly divided into the sham, CLP, and CLP + GYY4137 group. The indicators of SA-AKI were most prominent at 24 h after CLP, and analysis of the protein expression of ferroptosis indicators showed that ferroptosis was also exacerbated at 24 h after CLP. Moreover, the level of the endogenous H2S synthase CSE (Cystathionine-γ-lyase) and endogenous H2S significantly decreased after CLP. Treatment with GYY4137 reversed or attenuated all these changes. In the in vitro experiments, LPS was used to simulate SA-AKI in mouse renal glomerular endothelial cells (MRGECs). Measurement of ferroptosis-related markers and products of mitochondrial oxidative stress showed that GYY4137 could attenuate ferroptosis and regulate mitochondrial oxidative stress. These findings imply that GYY4137 alleviates SA-AKI by inhibiting ferroptosis triggered by excessive mitochondrial oxidative stress. Thus, GYY4137 may be an effective drug for the clinical treatment of SA-AKI.
Collapse
Affiliation(s)
- Li Zhang
- School of Medicine, Guangxi University, Nanning 530004, China
| | - Jin Rao
- Department of Cardiothoracic Surgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Xuwen Liu
- School of Medicine, Guangxi University, Nanning 530004, China
| | - Xuefu Wang
- School of Health Sciences and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Changnan Wang
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Shangxi Fu
- Department of Urology, Kidney Transplantation Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Jian Xiao
- School of Medicine, Guangxi University, Nanning 530004, China
- Department of Cardiothoracic Surgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| |
Collapse
|
19
|
Lajin B, Obermayer-Pietsch B, Somma R, Goessler W. A time-course investigation of the human urinary excretion of the hydrogen sulfide biomarker trimethylsulfonium. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 100:104162. [PMID: 37245608 DOI: 10.1016/j.etap.2023.104162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 05/30/2023]
Abstract
Hydrogen sulfide is a toxic gas but also recognized as an endogenously produced metabolite in humans playing key roles. We previously identified trimethylsulfonium, which can be a methylation product of hydrogen sulfide but the stability in the production of trimethylsulfonium has not been investigated. In the present work, the intra- and inter-individual variability in the excretion of trimethylsulfonium over 2 months in a group of healthy volunteers was investigated. Urinary levels of trimethylsulfonium (mean: 56 nM, 95% CI: 48-68 nM) were > 100-fold lower than the conventional hydrogen sulfide biomarker thiosulfate (13 µM, 12-15 µM) and the precursor for endogenous hydrogen sulfide production cystine (47 µM, 44-50 µM). There was no correlation between urinary trimethylsulfonium and thiosulfate. Higher intra-individual variability in the excretion of trimethylsulfonium (generally 2-8 fold) than that for cystine (generally 2-3 fold) was found. Trimethylsulfonium displayed significant inter-individual variability with two concentration clusters at 117 nM (97-141) and 27 nM (22-34). In conclusion, the observed inter- and intra-individual variability must be considered when using urinary trimethylsulfonium as a biomarker.
Collapse
Affiliation(s)
- Bassam Lajin
- Institute of Chemistry, Analytical Chemistry for the Health and Environment, University of Graz, Universitaetsplatz 1, 8010 Graz, Austria; Institute of Chemistry, ChromICP, University of Graz, Universitaetsplatz 1, 8010 Graz, Austria.
| | - Barbara Obermayer-Pietsch
- Division of Endocrinology and Diabetology, Endocrinology Lab Platform, Department of Internal Medicine and Gynecology and Obstetrics, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria
| | - Renato Somma
- Istituto Nazionale di Geofisica e Vulcanologia Sezione di Napoli Osservatorio Vesuviano, 80124 Napoli, Italy; Consiglio Nazionale delle Ricerche ISMAR Istituto di Scienze Marine Napoli Calata Porta Di Massa, Porto Di Napoli 80, 80133 Napoli, Italy; Consiglio Nazionale delle Ricerche IRISS Istituto di Ricerca su Innovazione e Servizi per lo Sviluppo, Via Guglielmo Sanfelice, 8, 80134 Napoli, Italy
| | - Walter Goessler
- Institute of Chemistry, Analytical Chemistry for the Health and Environment, University of Graz, Universitaetsplatz 1, 8010 Graz, Austria
| |
Collapse
|
20
|
Zhang W, Wang J, Chen B, Ji X, Zhao C, Chen M, Liao S, Jiang S, Pan Z, Wang W, Li L, Chen Y, Guo X, Deng F. Association of multiple air pollutants with oxygen saturation during sleep in COPD patients: Effect modification by smoking status and airway inflammatory phenotypes. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131550. [PMID: 37148791 DOI: 10.1016/j.jhazmat.2023.131550] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/11/2023] [Accepted: 04/30/2023] [Indexed: 05/08/2023]
Abstract
Air pollution contributes substantially to the development of chronic obstructive pulmonary disease (COPD). To date, the effect of air pollution on oxygen saturation (SpO2) during sleep and potential susceptibility factors remain unknown. In this longitudinal panel study, real-time SpO2 was monitored in 132 COPD patients, with 270 nights (1615 h) of sleep SpO2 recorded. Exhaled nitric oxide (NO), hydrogen sulfide (H2S) and carbon monoxide (CO) were measured to assess airway inflammatory characteristics. Exposure levels of air pollutants were estimated by infiltration factor method. Generalized estimating equation was used to investigate the effect of air pollutants on sleep SpO2. Ozone, even at low levels (<60 μg/m3), was significantly associated with decreased SpO2 and extended time of oxygen desaturation (SpO2 < 90%), especially in the warm season. The associations of other pollutants with SpO2 were weak, but significant adverse effects of PM10 and SO2 were observed in the cold season. Notably, stronger effects of ozone were observed in current smokers. Consistently, smoking-related airway inflammation, characterized by higher levels of exhaled CO and H2S but lower NO, significantly augmented the effect of ozone on SpO2 during sleep. This study highlights the importance of ozone control in protecting sleep health in COPD patients.
Collapse
Affiliation(s)
- Wenlou Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China; Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Junyi Wang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China; Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Baiqi Chen
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Xuezhao Ji
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Chen Zhao
- Community Health Service Center, Huayuan Road, Haidian District, Beijing 100088, China
| | - Maike Chen
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Sha Liao
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Simin Jiang
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Zihan Pan
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Wanzhou Wang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Luyi Li
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Yahong Chen
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China.
| | - Xinbiao Guo
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Furong Deng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China; Center for Environment and Health, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.
| |
Collapse
|
21
|
Smartphone-controlled biosensor for viral respiratory infectious diseases: Screening and response. Talanta 2023; 254:124167. [PMID: 36493567 PMCID: PMC9721129 DOI: 10.1016/j.talanta.2022.124167] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/03/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Outbreaks of emerging viral respiratory infectious diseases (VRIDs) including coronavirus disease 2019 (COVID-19) seriously endanger people's health. However, the traditional nucleic acid detection required professionals and larger instruments and antigen-antibody detection suffered a long window period of target generation. To facilitate the VRIDs detection in time for common populations, a smartphone-controlled biosensor, which integrated sample preparation (electromembrane extraction), biomarker detection (red-green-blue model) and remote response technology (a built-in APP), was developed in this work. With the intelligent biosensor, VRIDs could be recognized in the early stage by using endogenous hydrogen sulfide as the biomarker. Importantly, it only took 15 min to accomplish the whole process of screening and response to VRIDs. Moreover, the experimental data showed that this smartphone-controlled biosensor was suitable for ordinary residents and could successfully differentiate non-communicable respiratory diseases from VRIDs. To the best of our knowledge, this is the first time that a smartphone-controlled biosensor for screening and response to VRIDs was reported. We believe that the present biosensor will help ordinary residents jointly deal with the challenges brought by COVID-19 or other VRIDs in the future.
Collapse
|
22
|
Kiss H, Örlős Z, Gellért Á, Megyesfalvi Z, Mikáczó A, Sárközi A, Vaskó A, Miklós Z, Horváth I. Exhaled Biomarkers for Point-of-Care Diagnosis: Recent Advances and New Challenges in Breathomics. MICROMACHINES 2023; 14:391. [PMID: 36838091 PMCID: PMC9964519 DOI: 10.3390/mi14020391] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/29/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Cancers, chronic diseases and respiratory infections are major causes of mortality and present diagnostic and therapeutic challenges for health care. There is an unmet medical need for non-invasive, easy-to-use biomarkers for the early diagnosis, phenotyping, predicting and monitoring of the therapeutic responses of these disorders. Exhaled breath sampling is an attractive choice that has gained attention in recent years. Exhaled nitric oxide measurement used as a predictive biomarker of the response to anti-eosinophil therapy in severe asthma has paved the way for other exhaled breath biomarkers. Advances in laser and nanosensor technologies and spectrometry together with widespread use of algorithms and artificial intelligence have facilitated research on volatile organic compounds and artificial olfaction systems to develop new exhaled biomarkers. We aim to provide an overview of the recent advances in and challenges of exhaled biomarker measurements with an emphasis on the applicability of their measurement as a non-invasive, point-of-care diagnostic and monitoring tool.
Collapse
Affiliation(s)
- Helga Kiss
- National Koranyi Institute for Pulmonology, Koranyi F Street 1, 1121 Budapest, Hungary
| | - Zoltán Örlős
- National Koranyi Institute for Pulmonology, Koranyi F Street 1, 1121 Budapest, Hungary
| | - Áron Gellért
- National Koranyi Institute for Pulmonology, Koranyi F Street 1, 1121 Budapest, Hungary
| | - Zsolt Megyesfalvi
- National Koranyi Institute for Pulmonology, Koranyi F Street 1, 1121 Budapest, Hungary
| | - Angéla Mikáczó
- Department of Pulmonology, University of Debrecen, Nagyerdei krt 98, 4032 Debrecen, Hungary
| | - Anna Sárközi
- Department of Pulmonology, University of Debrecen, Nagyerdei krt 98, 4032 Debrecen, Hungary
| | - Attila Vaskó
- Department of Pulmonology, University of Debrecen, Nagyerdei krt 98, 4032 Debrecen, Hungary
| | - Zsuzsanna Miklós
- National Koranyi Institute for Pulmonology, Koranyi F Street 1, 1121 Budapest, Hungary
| | - Ildikó Horváth
- National Koranyi Institute for Pulmonology, Koranyi F Street 1, 1121 Budapest, Hungary
- Department of Pulmonology, University of Debrecen, Nagyerdei krt 98, 4032 Debrecen, Hungary
| |
Collapse
|
23
|
Trace determination of the hydrogen sulfide biomarker thiosulfate in human urine by HPLC coupled with element selective ICPMS/MS detection. Anal Chim Acta 2022; 1237:340583. [DOI: 10.1016/j.aca.2022.340583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/10/2022] [Accepted: 10/31/2022] [Indexed: 11/08/2022]
|
24
|
Zhu Z, Lian X, Bhatia M. Hydrogen Sulfide: A Gaseous Mediator and Its Key Role in Programmed Cell Death, Oxidative Stress, Inflammation and Pulmonary Disease. Antioxidants (Basel) 2022; 11:2162. [PMID: 36358533 PMCID: PMC9687070 DOI: 10.3390/antiox11112162] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/21/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022] Open
Abstract
Hydrogen sulfide (H2S) has been acknowledged as a novel gaseous mediator. The metabolism of H2S in mammals is tightly controlled and is mainly achieved by many physiological reactions catalyzed by a suite of enzymes. Although the precise actions of H2S in regulating programmed cell death, oxidative stress and inflammation are yet to be fully understood, it is becoming increasingly clear that H2S is extensively involved in these crucial processes. Since programmed cell death, oxidative stress and inflammation have been demonstrated as three important mechanisms participating in the pathogenesis of various pulmonary diseases, it can be inferred that aberrant H2S metabolism also functions as a critical contributor to pulmonary diseases, which has also been extensively investigated. In the meantime, substantial attention has been paid to developing therapeutic approaches targeting H2S for pulmonary diseases. In this review, we summarize the cutting-edge knowledge on the metabolism of H2S and the relevance of H2S to programmed cell death, oxidative stress and inflammation. We also provide an update on the crucial roles played by H2S in the pathogenesis of several pulmonary diseases. Finally, we discuss the perspective on targeting H2S metabolism in the treatment of pulmonary diseases.
Collapse
Affiliation(s)
- Zhixing Zhu
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand
- Department of Internal Medicine (Pulmonary and Critical Care Medicine), The Second Clinical Medical School of Fujian Medical University, Quanzhou 362002, China
| | - Xihua Lian
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand
- Department of Internal Medicine (Pulmonary and Critical Care Medicine), The Second Clinical Medical School of Fujian Medical University, Quanzhou 362002, China
| | - Madhav Bhatia
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand
| |
Collapse
|
25
|
Wang S, Ding Y, Jiang W. CSE/H2S ameliorates colitis in mice via protection of enteric glial cells and inhibition of the RhoA/ROCK pathway. Front Immunol 2022; 13:966881. [PMID: 36189321 PMCID: PMC9520914 DOI: 10.3389/fimmu.2022.966881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 08/26/2022] [Indexed: 11/19/2022] Open
Abstract
The enteric glial cells (EGCs) participate in the homeostasis of the gastrointestinal tract, and RhoA/ROCK signaling pathway plays a vital role in colonic tight junctions. Hydrogen sulfide (H2S) has been reported to alleviate colitis. However, the effect and mechanism of endogenous H2S on colitis remain unclear. This study established a Cystathionine-γ-lyase (CSE) knockout mouse model, a significant source of H2S production in the gut. The role of CSE-produced H2S on EGCs and the RhoA/ROCK signaling pathway was investigated in experimental colitis using CSE knockout (KO) and wild-type (WT) mice. CSE gene knockout animals presented with disease progression, more deteriorated clinical scores, colon shortening, and histological damage. EGCs dysfunction, characterized by decreased expression of the glial fibrillary acidic protein (GFAP), C3, and S100A10, was observed in the colon of WT and KO mice, especially in KO mice. RhoA/ROCK pathway was significantly upregulated in colon of colitis mice, which was more evident in KO mice. Pretreatment with NaHS, an exogenous H2S donor, significantly ameliorated mucosal injury and inhibited the expression of proinflammatory factors. Furthermore, we found that NaHS promoted the transformation of EGCs from “A1” to “A2” type, with decreased expression of C3 and increased expression of S100A10. These findings suggest that CSE/H2S protects mice from colon inflammation, which may be associated with preserving EGCs function by promoting EGCs transformation and inhibiting the RhoA/ROCK pathway.
Collapse
Affiliation(s)
- Song Wang
- Department of Gastroenterology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yanyu Ding
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Wenjun Jiang
- Department of Gastroenterology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- *Correspondence: Wenjun Jiang,
| |
Collapse
|
26
|
Reactive sulfur species and their significance in health and disease. Biosci Rep 2022; 42:231692. [PMID: 36039860 PMCID: PMC9484011 DOI: 10.1042/bsr20221006] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/23/2022] Open
Abstract
Reactive sulfur species (RSS) have been recognized in the last two decades as very important molecules in redox regulation. They are involved in metabolic processes and, in this way, they are responsible for maintenance of health. This review summarizes current information about the essential biological RSS, including H2S, low molecular weight persulfides, protein persulfides as well as organic and inorganic polysulfides, their synthesis, catabolism and chemical reactivity. Moreover, the role of RSS disturbances in various pathologies including vascular diseases, chronic kidney diseases, diabetes mellitus Type 2, neurological diseases, obesity, chronic obstructive pulmonary disease and in the most current problem of COVID-19 is presented. The significance of RSS in aging is also mentioned. Finally, the possibilities of using the precursors of various forms of RSS for therapeutic purposes are discussed.
Collapse
|
27
|
Jing Q, Gong C, Bian W, Tian Q, Zhang Y, Chen N, Xu C, Sun N, Wang X, Li C, Dou H, An Y, Liu S, Yu J, Wang L, Li P, Han S, Qian D, Liu B. Ultrasensitive Chemiresistive Gas Sensor Can Diagnose Asthma and Monitor Its Severity by Analyzing Its Biomarker H 2S: An Experimental, Clinical, and Theoretical Study. ACS Sens 2022; 7:2243-2252. [PMID: 35868028 DOI: 10.1021/acssensors.2c00737] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Asthma is a chronic disease characterized by recurrent attacks of breathlessness and wheezing, which vary in severity and frequency from person to person. H2S is considered as the biomarker of asthma. Here, an ultrasensitive chemiresistive H2S gas sensor based on a γ-Bi2MoO6-CuO heterostructure with a detection limit of 5 ppb has been fabricated. It can distinguish asthmatic patients from healthy people roughly by analyzing the exhaled breaths of 28 asthmatic patients and 28 healthy people, suggesting that the sensor can be used to assist physicians in the diagnosis of asthma. Pathologically, it is discovered by this sensor that with the relief of asthma, the concentration of H2S in one's exhaled breath gradually increases. This subtle concentration variation of H2S can be accurately detected, indicating that this sensor can be used in the asthma severity monitoring too. Physical models have been built by first-principles calculation to reveal the causes of the sensor's ultrasensitivity. The stable adsorption of H2S on the surface of CuO results in massive charge transferring and the appearance of the defect states, which play the major role in the ultrasensitivity of the sensor. Upon integrating this sensor with circuits, the cheap, smart, and portable H2S sensing device can be obtained, which can make asthmatic patients' access to this device easy and make the severity monitoring of asthma convenient, especially for children and the aged.
Collapse
Affiliation(s)
- Qiang Jing
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China.,Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chengyi Gong
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China
| | - Wengang Bian
- School of Materials Science and Engineering, Shandong University of Technology, 266 Xincun Xi Road, Zibo 255000, China
| | - Qingyin Tian
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China
| | - Yucai Zhang
- School of Materials Science and Engineering, Shandong University of Technology, 266 Xincun Xi Road, Zibo 255000, China
| | - Ning Chen
- Electrical and Electronic Engineering College, Shandong University of Technology, Zibo 255000, China
| | - Caixue Xu
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China
| | - Na Sun
- School of Materials Science and Engineering, Shandong University of Technology, 266 Xincun Xi Road, Zibo 255000, China
| | - Xin Wang
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China
| | - Chunjie Li
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China
| | - Hongrui Dou
- School of Materials Science and Engineering, Shandong University of Technology, 266 Xincun Xi Road, Zibo 255000, China
| | - Yunzhu An
- Electrical and Electronic Engineering College, Shandong University of Technology, Zibo 255000, China
| | - Shasha Liu
- Key Laboratory of Advanced Electronic Materials and Devices, School of Physics and Mathematics, Anhui Jianzhu University, Hefei 230601, China
| | - Jiangying Yu
- Key Laboratory of Advanced Electronic Materials and Devices, School of Physics and Mathematics, Anhui Jianzhu University, Hefei 230601, China
| | - Lipeng Wang
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou 256600, China
| | - Ping Li
- Key Laboratory of Advanced Electronic Materials and Devices, School of Physics and Mathematics, Anhui Jianzhu University, Hefei 230601, China
| | - Shasha Han
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou 256600, China
| | - Dong Qian
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bo Liu
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China
| |
Collapse
|
28
|
Marques-da-Silva D, Videira PA, Lagoa R. Registered human trials addressing environmental and occupational toxicant exposures: Scoping review of immunological markers and protective strategies. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 93:103886. [PMID: 35598754 DOI: 10.1016/j.etap.2022.103886] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/11/2022] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
Exposure to pollution is a worldwide societal challenge participating in the etiology and progression of different diseases. However, the scarce information hinders our understanding of the actual level of human exposure and its specific effects. Inadequate and excessive immune responses underlie diverse chronic diseases. Yet, it is unclear which and how toxicant exposures affect the immune system functions. There is a multiplicity of immunological outcomes and biomarkers being studied in human trials related to exposure to different toxicants but still without clear evidence of their value as biomarkers of exposure or effect. The main aim of this study was to collect scientific evidence and identify relevant immunological biomarkers used at the clinical level for toxicant exposures. We used the platform clinical trials.gov as a database tool. First, we performed a search combining research items related to toxicants and immunological parameters. The resulting117 clinical trials were examined for immune-related outcomes and specific biomarkers evaluated in subjects exposed to occupational and environmental toxicants. After categorization, relevant immunological outcomes and biomarkers were identified related to systemic and airway inflammation, modulation of immune cells, allergy and autoimmunity. In general, the immune markers related to inflammation are more frequently investigated for exposure to pollutants, namely IL-6, C-reactive protein (CRP) and nitric oxide (NO). Nevertheless, the data also indicated that prospective biomarkers of effect are gaining ground and a guiding representation of the established and novel biomarkers is suggested for upcoming trials. Finally, potential protective strategies to mitigate the adverse effects of specific toxicants are underlined for future studies.
Collapse
Affiliation(s)
- Dorinda Marques-da-Silva
- School of Technology and Management, Polytechnic Institute of Leiria, Morro do Lena, Alto do Vieiro, 2411-901 Leiria, Portugal; LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials, Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Leiria, 2411-901 Leiria, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| | - Paula Alexandra Videira
- UCIBIO - Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal
| | - Ricardo Lagoa
- School of Technology and Management, Polytechnic Institute of Leiria, Morro do Lena, Alto do Vieiro, 2411-901 Leiria, Portugal; UCIBIO - Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal
| |
Collapse
|
29
|
Shahzad AA, Mushtaq S, Waris A, Gilani SO, Alnuwaiser MA, Jameel M, Khan NB. A Low-Cost Device for Measurement of Exhaled Breath for the Detection of Obstructive Lung Disease. BIOSENSORS 2022; 12:409. [PMID: 35735555 PMCID: PMC9221323 DOI: 10.3390/bios12060409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 05/12/2023]
Abstract
Breath sensor technology can be used in medical diagnostics. This study aimed to build a device to measure the level of hydrogen sulfide, ammonia, acetone and alcohol in exhaled breath of patients as well as healthy individuals. The purpose was to determine the efficacy of these gases for detection of obstructive lung disease. This study was conducted on a total of 105 subjects, where 60 subjects were patients of obstructive lung disease and 45 subjects were healthy individuals. Patients were screened by means of the Pulmonary Function Test (PFT) by a pulmonologist. The gases present in the exhaled breath of all subjects were measured. The level of ammonia (32.29 ± 20.83 ppb), (68.83 ± 35.25 ppb), hydrogen sulfide (0.50 ± 0.26 ppm), (62.71 ± 22.20 ppb), and acetone (103.49 ± 35.01 ppb), (0.66 ± 0.31 ppm) in exhaled breath were significantly different (p < 0.05) between obstructive lung disease patients and healthy individuals, except alcohol, with a p-value greater than 0.05. Positive correlation was found between ammonia w.r.t Forced Expiratory Volume in 1 s (FEV1) (r = 0.74), Forced Vital Capacity (FVC) (r = 0.61) and Forced Expiratory Flow (FEF) (r = 0.63) and hydrogen sulfide w.r.t FEV1 (r = 0.54), FVC (r = 0.41) and FEF (r = 0.37). Whereas, weak correlation was found for acetone and alcohol w.r.t FEV1, FVC and PEF. Therefore, the level of ammonia and hydrogen sulfide are useful breath markers for detection of obstructive lung disease.
Collapse
Affiliation(s)
- Adil Ahmad Shahzad
- National University of Sciences and Technology (NUST), Islamabad, Pakistan; (A.A.S.); (A.W.); (S.O.G.)
| | - Shafaq Mushtaq
- Accidents and Emergency Department, Pakistan Institute of Medical Sciences, Islamabad 44000, Pakistan;
| | - Asim Waris
- National University of Sciences and Technology (NUST), Islamabad, Pakistan; (A.A.S.); (A.W.); (S.O.G.)
| | - Syed Omer Gilani
- National University of Sciences and Technology (NUST), Islamabad, Pakistan; (A.A.S.); (A.W.); (S.O.G.)
| | - Maha Abdallah Alnuwaiser
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Mohammed Jameel
- Department of Civil Engineering, College of Engineering, King Khalid University, Asir Abha, Saudi Arabia, P.O. Box: 960 - Postal Code: 61421;
| | - Niaz Bahadur Khan
- National University of Sciences and Technology (NUST), Islamabad, Pakistan; (A.A.S.); (A.W.); (S.O.G.)
| |
Collapse
|
30
|
A Whiff of Sulfur: One Wind a Day Keeps the Doctor Away. Antioxidants (Basel) 2022; 11:antiox11061036. [PMID: 35739933 PMCID: PMC9219989 DOI: 10.3390/antiox11061036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/12/2022] [Accepted: 05/18/2022] [Indexed: 12/30/2022] Open
Abstract
Reactive Sulfur Species (RSS), such as allicin from garlic or sulforaphane from broccoli, are fre-quently associated with biological activities and possible health benefits in animals and humans. Among these Organic Sulfur Compounds (OSCs) found in many plants and fungi, the Volatile Sulfur Compounds (VSCs) feature prominently, not only because of their often-pungent smell, but also because they are able to access places which solids and solutions cannot reach that easily. Indeed, inorganic RSS such as hydrogen sulfide (H2S) and sulfur dioxide (SO2) can be used to lit-erally fumigate entire rooms and areas. Similarly, metabolites of garlic, such as allyl methyl sulfide (AMS), are formed metabolically in humans in lower concentrations and reach the airways from inside the body as part of one’s breath. Curiously, H2S is also formed in the gastrointestinal tract by gut bacteria, and the question of if and for which purpose this gas then crosses the barriers and enters the body is indeed a delicate matter for equally delicate studies. In any case, nature is surprisingly rich in such VSCs, as fruits (for instance, the infamous durian) demonstrate, and therefore these VSCs represent a promising group of compounds for further studies.
Collapse
|
31
|
Ivashkin VT, Medvedev OS, Poluektova EA, Kudryavtseva AV, Bakhtogarimov IR, Karchevskaya AE. Direct and Indirect Methods for Studying Human Gut Microbiota. RUSSIAN JOURNAL OF GASTROENTEROLOGY, HEPATOLOGY, COLOPROCTOLOGY 2022; 32:19-34. [DOI: 10.22416/1382-4376-2022-32-2-19-34] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Aim: To review the main methods of intestinal microbiota studying.Key points. Currently, molecular genetic methods are used mainly for basic research and do not have a unified protocol for data analysis, which makes it difficult to implement them in clinical practice. Measurement of short chain fatty acids (SCFA) concentrations in plasma provides the data, which can serve as an indirect biomarker of the colonic microbiota composition. However, currently available evidence is insufficient to relate the obtained values (SCFA levels and ratio) to a particular disease with a high degree of certainty. Trimethylamine N-oxide (TMAO) levels in the blood plasma and urine can also reflect the presence of specific bacterial clusters containing genes Cut, CntA/CntB and YeaW/YeaX. Therefore, further studies are required to reveal possible correlations between certain disorders and such parameters as the composition of gut microbiota, dietary patterns and TMAO concentration. Gas biomarkers, i.e. hydrogen, methane and hydrogen sulphide, have been studied in more detail and are better understood as compared to other biomarkers of the gut microbiome composition and functionality. The main advantage of gas biomarkers is that they can be measured multiple times using non-invasive techniques. These measurements provide information on the relative proportion of hydrogenic (i.e. hydrogen producing) and hydrogenotrophic (i.e. methanogenic and sulfate-reducing) microorganisms. In its turn, this opens up the possibility of developing new approaches to correction of individual microbiota components.Conclusions. Integration of the data obtained by gut microbiota studies at the genome, transcriptome and metabolome levels would allow a comprehensive analysis of microbial community function and its interaction with the human organism. This approach may increase our understanding of the pathogenesis of various diseases as well open up new opportunities for prevention and treatment.
Collapse
Affiliation(s)
- V. T. Ivashkin
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - O. S. Medvedev
- M.V. Lomonosov Moscow State University; National Medical Research Center of Cardiology
| | - E. A. Poluektova
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | | | | | - A. E. Karchevskaya
- I.M. Sechenov First Moscow State Medical University (Sechenov University); N.N. Burdenko National Medical Research Center of Neurosurgery; Institute of Higher Nervous Activity and Neurophysiology
| |
Collapse
|
32
|
Neutrophils and Asthma. Diagnostics (Basel) 2022; 12:diagnostics12051175. [PMID: 35626330 PMCID: PMC9140072 DOI: 10.3390/diagnostics12051175] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 02/04/2023] Open
Abstract
Although eosinophilic inflammation is characteristic of asthma pathogenesis, neutrophilic inflammation is also marked, and eosinophils and neutrophils can coexist in some cases. Based on the proportion of sputum cell differentiation, asthma is classified into eosinophilic asthma, neutrophilic asthma, neutrophilic and eosinophilic asthma, and paucigranulocytic asthma. Classification by bronchoalveolar lavage is also performed. Eosinophilic asthma accounts for most severe asthma cases, but neutrophilic asthma or a mixture of the two types can also present a severe phenotype. Biomarkers for the diagnosis of neutrophilic asthma include sputum neutrophils, blood neutrophils, chitinase-3-like protein, and hydrogen sulfide in sputum and serum. Thymic stromal lymphoprotein (TSLP)/T-helper 17 pathways, bacterial colonization/microbiome, neutrophil extracellular traps, and activation of nucleotide-binding oligomerization domain-like receptor family, pyrin domain-containing 3 pathways are involved in the pathophysiology of neutrophilic asthma and coexistence of obesity, gastroesophageal reflux disease, and habitual cigarette smoking have been associated with its pathogenesis. Thus, targeting neutrophilic asthma is important. Smoking cessation, neutrophil-targeting treatments, and biologics have been tested as treatments for severe asthma, but most clinical studies have not focused on neutrophilic asthma. Phosphodiesterase inhibitors, anti-TSLP antibodies, azithromycin, and anti-cholinergic agents are promising drugs for neutrophilic asthma. However, clinical research targeting neutrophilic inflammation is required to elucidate the optimal treatment.
Collapse
|
33
|
Ascenção K, Szabo C. Emerging roles of cystathionine β-synthase in various forms of cancer. Redox Biol 2022; 53:102331. [PMID: 35618601 PMCID: PMC9168780 DOI: 10.1016/j.redox.2022.102331] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 12/12/2022] Open
Abstract
The expression of the reverse transsulfuration enzyme cystathionine-β-synthase (CBS) is markedly increased in many forms of cancer, including colorectal, ovarian, lung, breast and kidney, while in other cancers (liver cancer and glioma) it becomes downregulated. According to the clinical database data in high-CBS-expressor cancers (e.g. colon or ovarian cancer), high CBS expression typically predicts lower survival, while in the low-CBS-expressor cancers (e.g. liver cancer), low CBS expression is associated with lower survival. In the high-CBS expressing tumor cells, CBS, and its product hydrogen sulfide (H2S) serves as a bioenergetic, proliferative, cytoprotective and stemness factor; it also supports angiogenesis and epithelial-to-mesenchymal transition in the cancer microenvironment. The current article reviews the various tumor-cell-supporting roles of the CBS/H2S axis in high-CBS expressor cancers and overviews the anticancer effects of CBS silencing and pharmacological CBS inhibition in various cancer models in vitro and in vivo; it also outlines potential approaches for biomarker identification, to support future targeted cancer therapies based on pharmacological CBS inhibition.
Collapse
|
34
|
Cirino G, Szabo C, Papapetropoulos A. Physiological roles of hydrogen sulfide in mammalian cells, tissues and organs. Physiol Rev 2022; 103:31-276. [DOI: 10.1152/physrev.00028.2021] [Citation(s) in RCA: 237] [Impact Index Per Article: 79.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
H2S belongs to the class of molecules known as gasotransmitters, which also includes nitric oxide (NO) and carbon monoxide (CO). Three enzymes are recognized as endogenous sources of H2S in various cells and tissues: cystathionine g-lyase (CSE), cystathionine β-synthase (CBS) and 3-mercaptopyruvate sulfurtransferase (3-MST). The current article reviews the regulation of these enzymes as well as the pathways of their enzymatic and non-enzymatic degradation and elimination. The multiple interactions of H2S with other labile endogenous molecules (e.g. NO) and reactive oxygen species are also outlined. The various biological targets and signaling pathways are discussed, with special reference to H2S and oxidative posttranscriptional modification of proteins, the effect of H2S on channels and intracellular second messenger pathways, the regulation of gene transcription and translation and the regulation of cellular bioenergetics and metabolism. The pharmacological and molecular tools currently available to study H2S physiology are also reviewed, including their utility and limitations. In subsequent sections, the role of H2S in the regulation of various physiological and cellular functions is reviewed. The physiological role of H2S in various cell types and organ systems are overviewed. Finally, the role of H2S in the regulation of various organ functions is discussed as well as the characteristic bell-shaped biphasic effects of H2S. In addition, key pathophysiological aspects, debated areas, and future research and translational areas are identified A wide array of significant roles of H2S in the physiological regulation of all organ functions emerges from this review.
Collapse
Affiliation(s)
- Giuseppe Cirino
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Csaba Szabo
- Chair of Pharmacology, Section of Medicine, University of Fribourg, Switzerland
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece & Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Greece
| |
Collapse
|
35
|
Lin F, Liao C, Zhang J, Sun Y, Lu W, Bai Y, Liao Y, Li M, Qi Y, Chen Y. Hydrogen Sulfide Inhibits Bronchial Epithelial Cell Epithelial Mesenchymal Transition Through Regulating Endoplasm Reticulum Stress. Front Mol Biosci 2022; 9:828766. [PMID: 35495633 PMCID: PMC9039047 DOI: 10.3389/fmolb.2022.828766] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/14/2022] [Indexed: 02/02/2023] Open
Abstract
Epithelial mesenchymal transition (EMT) is a contributing factor in remodeling events of chronic obstructive pulmonary disease (COPD). Hydrogen sulfide (H2S) has been implicated in the pathogenesis of COPD, but the effect of H2S in regulating EMT and the underlying mechanisms is not clear. In this study, we assessed endoplasmic reticulum (ER) stress markers, EMT markers and associated signal molecules in rat lungs, bronchial epithelial cells, and human peripheral lung tissues to investigate the effect of H2S in regulating EMT and the underlying mechanisms. We found that EMT and ER stress occurred in lung epithelial cells, especially in the bronchial epithelial cells of smokers and COPD patients. In cigarette smoke (CS)-exposed rats, intraperitoneal injection of NaHS significantly alleviated CS-induced lung tissue damage, small airway fibrosis, ER stress, and EMT, while intraperitoneal injection of propargylglycine (cystathionine-gamma-lyase inhibitor) aggravated these effects induced by CS. In the nicotine-exposed 16HBE cells, an appropriate concentration of H2S donor not only inhibited nicotine-induced ER stress, but also inhibited nicotine-induced enhancement of cell migration ability and EMT. ER stress nonspecific inhibitors taurine and 4-phenyl butyric acid also inhibited nicotine-induced enhancement of cell migration ability and EMT. Both H2S and inositol-requiring enzyme 1 (IRE1) activation inhibitor 4μ8C inhibited nicotine-induced activation of IRE1, Smad2/3 and EMT. These results suggest that H2S inhibits CS- or nicotine-induced ER stress and EMT in bronchial epithelial cells and alleviates CS-induced lung tissue damage and small airway fibrosis. The IRE1 signal pathway and Smad2/3 may be responsible for the inhibitory effect of H2S.
Collapse
Affiliation(s)
- Fan Lin
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China
- Geriatric Medicine Center, Department of Pulmonary and Critical Care Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Chengcheng Liao
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Jinsheng Zhang
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing, China
| | - Yun Sun
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Weiwei Lu
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing, China
| | - Yu Bai
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Yixuan Liao
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Minxia Li
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Yongfen Qi
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing, China
- *Correspondence: Yahong Chen, ; Yongfen Qi,
| | - Yahong Chen
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China
- *Correspondence: Yahong Chen, ; Yongfen Qi,
| |
Collapse
|
36
|
Velusamy P, Su CH, Ramasamy P, Arun V, Rajnish N, Raman P, Baskaralingam V, Senthil Kumar SM, Gopinath SCB. Volatile Organic Compounds as Potential Biomarkers for Noninvasive Disease Detection by Nanosensors: A Comprehensive Review. Crit Rev Anal Chem 2022; 53:1828-1839. [PMID: 35201946 DOI: 10.1080/10408347.2022.2043145] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Biomarkers are biological molecules associated with physiological changes of the body and aids in the detecting the onset of disease in patients. There is an urgent need for self-monitoring and early detection of cardiovascular and other health complications. Several blood-based biomarkers have been well established in diagnosis and monitoring the onset of diseases. However, the detection level of biomarkers in bed-side analysis is difficult and complications arise due to the endothelial dysfunction. Currently single volatile organic compounds (VOCs) based sensors are available for the detection of human diseases and no dedicated nanosensor is available for the elderly. Moreover, accuracy of the sensors based on a single analyte is limited. Hence, breath analysis has received enormous attention in healthcare due to its relatively inexpensive, rapid, and noninvasive methods for detecting diseases. This review gives a detailed analysis of how biomarker imprinted nanosensor can be used as a noninvasive method for detecting VOC to health issues early using exhaled breath analysis.
Collapse
Affiliation(s)
- Palaniyandi Velusamy
- Research and Development Wing, Sree Balaji Medical College and Hospital (SBMCH), Bharath Institute of Higher Education and Research (BIHER), Chennai, Tamil Nadu, India
| | - Chia-Hung Su
- Department of Chemical Engineering, Ming Chi University of Technology, Taishan, Taipei, Taiwan
| | - Palaniappan Ramasamy
- Research and Development Wing, Sree Balaji Medical College and Hospital (SBMCH), Bharath Institute of Higher Education and Research (BIHER), Chennai, Tamil Nadu, India
| | - Viswanathan Arun
- Department of Biotechnology SRFBMST, Sri Ramachandra Institute of Higher Education & Research, Chennai, Tamil Nadu, India
| | - Narayanan Rajnish
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Pachaiappan Raman
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Vaseeharan Baskaralingam
- Nanobiosciences and Nanopharmacology Division, Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Sakkarapalayam Murugesan Senthil Kumar
- Electroorganic and Materials Electrochemistry Division, CSIR-Central Electrochemical Research Institute, Karaikudi, Tamil Nadu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Subash C B Gopinath
- Faculty of Chemical Engineering Technology and Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, Arau, Perlis, Malaysia
- Centre of Excellence for Nanobiotechnology and Nanomedicine (CoExNano), Faculty of Applied Sciences, AIMST University, Semeling, Kedah, Malaysia
| |
Collapse
|
37
|
Onose G, Anghelescu A, Blendea D, Ciobanu V, Daia C, Firan FC, Oprea M, Spinu A, Popescu C, Ionescu A, Busnatu Ș, Munteanu C. Cellular and Molecular Targets for Non-Invasive, Non-Pharmacological Therapeutic/Rehabilitative Interventions in Acute Ischemic Stroke. Int J Mol Sci 2022; 23:907. [PMID: 35055089 PMCID: PMC8846361 DOI: 10.3390/ijms23020907] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Cerebral circulation delivers the blood flow to the brain through a dedicated network of sanguine vessels. A healthy human brain can regulate cerebral blood flow (CBF) according to any physiological or pathological challenges. The brain is protected by its self-regulatory mechanisms, which are dependent on neuronal and support cellular populations, including endothelial ones, as well as metabolic, and even myogenic factors. OBJECTIVES Accumulating data suggest that "non-pharmacological" approaches might provide new opportunities for stroke therapy, such as electro-/acupuncture, hyperbaric oxygen therapy, hypothermia/cooling, photobiomodulation, therapeutic gases, transcranial direct current stimulations, or transcranial magnetic stimulations. We reviewed the recent data on the mechanisms and clinical implications of these non-pharmaceutical treatments. METHODS To present the state-of-the-art for currently available non-invasive, non-pharmacological-related interventions in acute ischemic stroke, we accomplished this synthetic and systematic literature review based on the Preferred Reporting Items for Systematic Principles Reviews and Meta-Analyses (PRISMA). RESULTS The initial number of obtained articles was 313. After fulfilling the five steps in the filtering/selection methodology, 54 fully eligible papers were selected for synthetic review. We enhanced our documentation with other bibliographic resources connected to our subject, identified in the literature within a non-standardized search, to fill the knowledge gaps. Fifteen clinical trials were also identified. DISCUSSION Non-invasive, non-pharmacological therapeutic/rehabilitative interventions for acute ischemic stroke are mainly holistic therapies. Therefore, most of them are not yet routinely used in clinical practice, despite some possible beneficial effects, which have yet to be supplementarily proven in more related studies. Moreover, few of the identified clinical trials are already completed and most do not have final results. CONCLUSIONS This review synthesizes the current findings on acute ischemic stroke therapeutic/rehabilitative interventions, described as non-invasive and non-pharmacological.
Collapse
Affiliation(s)
- Gelu Onose
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (C.D.); (M.O.); (A.S.); (A.I.); (Ș.B.)
- Neuromuscular Rehabilitation Clinic Division, Teaching Emergency Hospital” Bagdasar-Arseni”, 041915 Bucharest, Romania; (A.A.); (C.P.)
| | - Aurelian Anghelescu
- Neuromuscular Rehabilitation Clinic Division, Teaching Emergency Hospital” Bagdasar-Arseni”, 041915 Bucharest, Romania; (A.A.); (C.P.)
- Faculty of Midwives and Nursing, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania
| | - Dan Blendea
- Faculty of Medicine, University ”Titu Maiorescu”, 0400511 Bucharest, Romania;
- Physical and Rehabilitation Medicine & Balneology Clinic Division, Teaching Emergency Hospital of the Ilfov County, 022113 Bucharest, Romania;
| | - Vlad Ciobanu
- Computer Science Department, Politehnica University of Bucharest, 060042 Bucharest, Romania;
| | - Cristina Daia
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (C.D.); (M.O.); (A.S.); (A.I.); (Ș.B.)
- Neuromuscular Rehabilitation Clinic Division, Teaching Emergency Hospital” Bagdasar-Arseni”, 041915 Bucharest, Romania; (A.A.); (C.P.)
| | - Florentina Carmen Firan
- Physical and Rehabilitation Medicine & Balneology Clinic Division, Teaching Emergency Hospital of the Ilfov County, 022113 Bucharest, Romania;
| | - Mihaela Oprea
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (C.D.); (M.O.); (A.S.); (A.I.); (Ș.B.)
- Neuromuscular Rehabilitation Clinic Division, Teaching Emergency Hospital” Bagdasar-Arseni”, 041915 Bucharest, Romania; (A.A.); (C.P.)
| | - Aura Spinu
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (C.D.); (M.O.); (A.S.); (A.I.); (Ș.B.)
- Neuromuscular Rehabilitation Clinic Division, Teaching Emergency Hospital” Bagdasar-Arseni”, 041915 Bucharest, Romania; (A.A.); (C.P.)
| | - Cristina Popescu
- Neuromuscular Rehabilitation Clinic Division, Teaching Emergency Hospital” Bagdasar-Arseni”, 041915 Bucharest, Romania; (A.A.); (C.P.)
| | - Anca Ionescu
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (C.D.); (M.O.); (A.S.); (A.I.); (Ș.B.)
| | - Ștefan Busnatu
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (C.D.); (M.O.); (A.S.); (A.I.); (Ș.B.)
| | - Constantin Munteanu
- Neuromuscular Rehabilitation Clinic Division, Teaching Emergency Hospital” Bagdasar-Arseni”, 041915 Bucharest, Romania; (A.A.); (C.P.)
- Faculty of Medical Bioengineering, University of Medicine and Pharmacy” Grigore T. Popa”, 700115 Iași, Romania
| |
Collapse
|
38
|
Zhou J, Bagheri M, Järvinen T, Pravda Bartus C, Kukovecz A, Komsa HP, Kordas K. C 60Br 24/SWCNT: A Highly Sensitive Medium to Detect H 2S via Inhomogeneous Carrier Doping. ACS APPLIED MATERIALS & INTERFACES 2021; 13:59067-59075. [PMID: 34870971 PMCID: PMC8678982 DOI: 10.1021/acsami.1c16807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/26/2021] [Indexed: 06/01/2023]
Abstract
H2S is a toxic and corrosive gas, whose accurate detection at sub-ppm concentrations is of high practical importance in environmental, industrial, and health safety applications. Herein, we propose a chemiresistive sensor device that applies a composite of single-walled carbon nanotubes (SWCNTs) and brominated fullerene (C60Br24) as a sensing component, which is capable of detecting 50 ppb H2S even at room temperature with an excellent response of 1.75% in a selective manner. In contrast, a poor gas response of pristine C60-based composites was found in control measurements. The experimental results are complemented by density functional theory calculations showing that C60Br24 in contact with SWCNTs induces localized hole doping in the nanotubes, which is increased further when H2S adsorbs on C60Br24 but decreases in the regions, where direct adsorption of H2S on the nanotubes takes place due to electron doping from the analyte. Accordingly, the heterogeneous chemical environment in the composite results in spatial fluctuations of hole density upon gas adsorption, hence influencing carrier transport and thus giving rise to chemiresistive sensing.
Collapse
Affiliation(s)
- Jin Zhou
- Country
Microelectronics Research Unit, Faculty of Information Technology
and Electrical Engineering, University of
Oulu, P.O. Box 4500, FIN-90014 Oulu, Finland
| | - Mohammad Bagheri
- Country
Microelectronics Research Unit, Faculty of Information Technology
and Electrical Engineering, University of
Oulu, P.O. Box 4500, FIN-90014 Oulu, Finland
| | - Topias Järvinen
- Country
Microelectronics Research Unit, Faculty of Information Technology
and Electrical Engineering, University of
Oulu, P.O. Box 4500, FIN-90014 Oulu, Finland
| | - Cora Pravda Bartus
- Interdisciplinary
Excellence Centre, Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Bélatér 1, H-6720 Szeged, Hungary
| | - Akos Kukovecz
- Interdisciplinary
Excellence Centre, Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Bélatér 1, H-6720 Szeged, Hungary
| | - Hannu-Pekka Komsa
- Country
Microelectronics Research Unit, Faculty of Information Technology
and Electrical Engineering, University of
Oulu, P.O. Box 4500, FIN-90014 Oulu, Finland
| | - Krisztian Kordas
- Country
Microelectronics Research Unit, Faculty of Information Technology
and Electrical Engineering, University of
Oulu, P.O. Box 4500, FIN-90014 Oulu, Finland
| |
Collapse
|
39
|
Freeman A, Cellura D, Minnion M, Fernandez BO, Spalluto CM, Levett D, Bates A, Wallis T, Watson A, Jack S, Staples KJ, Grocott MPW, Feelisch M, Wilkinson TMA. Exercise Training Induces a Shift in Extracellular Redox Status with Alterations in the Pulmonary and Systemic Redox Landscape in Asthma. Antioxidants (Basel) 2021; 10:antiox10121926. [PMID: 34943027 PMCID: PMC8750917 DOI: 10.3390/antiox10121926] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 12/25/2022] Open
Abstract
Redox dysregulation and oxidative stress have been implicated in asthma pathogenesis. Exercise interventions improve symptoms and reduce inflammation in asthma patients, but the underlying mechanisms remain unclear. We hypothesized that a personalised exercise intervention would improve asthma control by reducing lung inflammation through modulation of local and systemic reactive species interactions, thereby increasing antioxidant capacity. We combined deep redox metabolomic profiling with clinical assessment in an exploratory cohort of six female patients with symptomatic asthma and studied their responses to a metabolically targeted exercise intervention over 12 weeks. Plasma antioxidant capacity and circulating nitrite levels increased following the intervention (p = 0.028) and lowered the ratio of reduced to oxidised glutathione (p = 0.029); this was accompanied by improvements in physical fitness (p = 0.046), symptoms scores (p = 0.020), quality of life (p = 0.046), lung function (p = 0.028), airway hyperreactivity (p = 0.043), and eosinophilic inflammation (p = 0.007). Increased physical fitness correlated with improved plasma antioxidant capacity (p = 0.019), peak oxygen uptake and nitrite changes (p = 0.005), the latter also associated with reductions in peripheral blood eosinophil counts (p = 0.038). Thus, increases in “redox resilience” may underpin the clinical benefits of exercise in asthma. An improved understanding of exercise-induced alterations in redox regulation offers opportunities for greater treatment personalisation and identification of new treatment targets.
Collapse
Affiliation(s)
- Anna Freeman
- Clinical and Experimental Sciences and Southampton Centre for Biomedical Research, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (D.C.); (M.M.); (B.O.F.); (C.M.S.); (D.L.); (A.B.); (T.W.); (A.W.); (S.J.); (K.J.S.); (M.P.W.G.); (M.F.); (T.M.A.W.)
- NIHR Southampton Biomedical Research Centre, University Hospitals Southampton NHS Foundation Trust, Tremona Road, Southampton SO16 6YD, UK
- Correspondence:
| | - Doriana Cellura
- Clinical and Experimental Sciences and Southampton Centre for Biomedical Research, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (D.C.); (M.M.); (B.O.F.); (C.M.S.); (D.L.); (A.B.); (T.W.); (A.W.); (S.J.); (K.J.S.); (M.P.W.G.); (M.F.); (T.M.A.W.)
| | - Magdalena Minnion
- Clinical and Experimental Sciences and Southampton Centre for Biomedical Research, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (D.C.); (M.M.); (B.O.F.); (C.M.S.); (D.L.); (A.B.); (T.W.); (A.W.); (S.J.); (K.J.S.); (M.P.W.G.); (M.F.); (T.M.A.W.)
| | - Bernadette O. Fernandez
- Clinical and Experimental Sciences and Southampton Centre for Biomedical Research, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (D.C.); (M.M.); (B.O.F.); (C.M.S.); (D.L.); (A.B.); (T.W.); (A.W.); (S.J.); (K.J.S.); (M.P.W.G.); (M.F.); (T.M.A.W.)
| | - Cosma Mirella Spalluto
- Clinical and Experimental Sciences and Southampton Centre for Biomedical Research, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (D.C.); (M.M.); (B.O.F.); (C.M.S.); (D.L.); (A.B.); (T.W.); (A.W.); (S.J.); (K.J.S.); (M.P.W.G.); (M.F.); (T.M.A.W.)
| | - Denny Levett
- Clinical and Experimental Sciences and Southampton Centre for Biomedical Research, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (D.C.); (M.M.); (B.O.F.); (C.M.S.); (D.L.); (A.B.); (T.W.); (A.W.); (S.J.); (K.J.S.); (M.P.W.G.); (M.F.); (T.M.A.W.)
- NIHR Southampton Biomedical Research Centre, University Hospitals Southampton NHS Foundation Trust, Tremona Road, Southampton SO16 6YD, UK
| | - Andrew Bates
- Clinical and Experimental Sciences and Southampton Centre for Biomedical Research, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (D.C.); (M.M.); (B.O.F.); (C.M.S.); (D.L.); (A.B.); (T.W.); (A.W.); (S.J.); (K.J.S.); (M.P.W.G.); (M.F.); (T.M.A.W.)
- NIHR Southampton Biomedical Research Centre, University Hospitals Southampton NHS Foundation Trust, Tremona Road, Southampton SO16 6YD, UK
| | - Timothy Wallis
- Clinical and Experimental Sciences and Southampton Centre for Biomedical Research, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (D.C.); (M.M.); (B.O.F.); (C.M.S.); (D.L.); (A.B.); (T.W.); (A.W.); (S.J.); (K.J.S.); (M.P.W.G.); (M.F.); (T.M.A.W.)
- NIHR Southampton Biomedical Research Centre, University Hospitals Southampton NHS Foundation Trust, Tremona Road, Southampton SO16 6YD, UK
| | - Alastair Watson
- Clinical and Experimental Sciences and Southampton Centre for Biomedical Research, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (D.C.); (M.M.); (B.O.F.); (C.M.S.); (D.L.); (A.B.); (T.W.); (A.W.); (S.J.); (K.J.S.); (M.P.W.G.); (M.F.); (T.M.A.W.)
| | - Sandy Jack
- Clinical and Experimental Sciences and Southampton Centre for Biomedical Research, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (D.C.); (M.M.); (B.O.F.); (C.M.S.); (D.L.); (A.B.); (T.W.); (A.W.); (S.J.); (K.J.S.); (M.P.W.G.); (M.F.); (T.M.A.W.)
- NIHR Southampton Biomedical Research Centre, University Hospitals Southampton NHS Foundation Trust, Tremona Road, Southampton SO16 6YD, UK
| | - Karl J. Staples
- Clinical and Experimental Sciences and Southampton Centre for Biomedical Research, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (D.C.); (M.M.); (B.O.F.); (C.M.S.); (D.L.); (A.B.); (T.W.); (A.W.); (S.J.); (K.J.S.); (M.P.W.G.); (M.F.); (T.M.A.W.)
- NIHR Southampton Biomedical Research Centre, University Hospitals Southampton NHS Foundation Trust, Tremona Road, Southampton SO16 6YD, UK
| | - Michael P. W. Grocott
- Clinical and Experimental Sciences and Southampton Centre for Biomedical Research, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (D.C.); (M.M.); (B.O.F.); (C.M.S.); (D.L.); (A.B.); (T.W.); (A.W.); (S.J.); (K.J.S.); (M.P.W.G.); (M.F.); (T.M.A.W.)
- NIHR Southampton Biomedical Research Centre, University Hospitals Southampton NHS Foundation Trust, Tremona Road, Southampton SO16 6YD, UK
| | - Martin Feelisch
- Clinical and Experimental Sciences and Southampton Centre for Biomedical Research, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (D.C.); (M.M.); (B.O.F.); (C.M.S.); (D.L.); (A.B.); (T.W.); (A.W.); (S.J.); (K.J.S.); (M.P.W.G.); (M.F.); (T.M.A.W.)
| | - Tom M. A. Wilkinson
- Clinical and Experimental Sciences and Southampton Centre for Biomedical Research, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (D.C.); (M.M.); (B.O.F.); (C.M.S.); (D.L.); (A.B.); (T.W.); (A.W.); (S.J.); (K.J.S.); (M.P.W.G.); (M.F.); (T.M.A.W.)
- NIHR Southampton Biomedical Research Centre, University Hospitals Southampton NHS Foundation Trust, Tremona Road, Southampton SO16 6YD, UK
| |
Collapse
|
40
|
Zhu J, Yang G. H 2S signaling and extracellular matrix remodeling in cardiovascular diseases: A tale of tense relationship. Nitric Oxide 2021; 116:14-26. [PMID: 34428564 DOI: 10.1016/j.niox.2021.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 12/12/2022]
Abstract
Extracellular matrix (ECM) is a non-cellular three-dimensional macromolecular network that not only provides mechanical support but also transduces essential molecular signals in organ functions. ECM is constantly remodeled to control tissue homeostasis, responsible for cell adhesion, cell migration, cell-to-cell communication, and cell differentiation, etc. The dysregulation of ECM components contributes to various diseases, including cardiovascular diseases, fibrosis, cancer, and neurodegenerative diseases, etc. Aberrant ECM remodeling is initiated by various stress, such as oxidative stress, inflammation, ischemia, and mechanical stress, etc. Hydrogen sulfide (H2S) is a gasotransmitter that exhibits a wide variety of cytoprotective and physiological functions through its anti-oxidative and anti-inflammatory actions. Amounting research shows that H2S can attenuate aberrant ECM remodeling. In this review, we discussed the implications and mechanisms of H2S in the regulation of ECM remodeling in cardiovascular diseases, and highlighted the potential of H2S in the prevention and treatment of cardiovascular diseases through attenuating adverse ECM remodeling.
Collapse
Affiliation(s)
- Jiechun Zhu
- School of Biological, Chemical & Forensic Sciences, Laurentian University, Sudbury, Canada; Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada
| | - Guangdong Yang
- School of Biological, Chemical & Forensic Sciences, Laurentian University, Sudbury, Canada; Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada.
| |
Collapse
|
41
|
Omidkhah N, Ghodsi R. NO-HDAC dual inhibitors. Eur J Med Chem 2021; 227:113934. [PMID: 34700268 DOI: 10.1016/j.ejmech.2021.113934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/08/2021] [Accepted: 10/17/2021] [Indexed: 12/11/2022]
Abstract
HDAC inhibitors and NO donors have both demonstrated independently broad therapeutic potential in a variety of diseases. Borretto et al. presented the topic of NO-HDAC dual inhibitors for the first time in 2013 as an attractive new topic. Here we collected the general structure of all synthesized NO-HDAC dual inhibitors, lead compounds, synthesis methods and biological features of the most potent dual NO-HDAC inhibitor in each category with the intention of assisting in the synthesis and optimization of new drug-like compounds for diverse diseases. Based on studies done so far, NO-HDAC dual inhibitors have displayed satisfactory results against wound healing (3), heart hypertrophy (3), inflammatory, cardiovascular, neuromuscular illnesses (11a-11e) and cancer (6a-6o, 9a-9d, 10a-10d, 16 and 17). NO-HDAC dual inhibitors can have high therapeutic potential for various diseases due to their new properties, NO properties, HDAC inhibitor properties and also due to the effects of NO on HDAC enzymes.
Collapse
Affiliation(s)
- Negar Omidkhah
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Razieh Ghodsi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
42
|
Zhu J, Ligi S, Yang G. An evolutionary perspective on the interplays between hydrogen sulfide and oxygen in cellular functions. Arch Biochem Biophys 2021; 707:108920. [PMID: 34019852 DOI: 10.1016/j.abb.2021.108920] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/09/2021] [Accepted: 05/11/2021] [Indexed: 02/06/2023]
Abstract
The physiological effects of the endogenously generated hydrogen sulfide (H2S) have been extensively studied in recent years. This review summarized the role of H2S in the origin of life and H2S metabolism in organisms from bacteria to vertebrates, examined the relationship between H2S and oxygen from an evolutionary perspective and emphasized the oxygen-dependent manner of H2S signaling in various physiological and pathological processes. H2S and oxygen are inextricably linked in various cellular functions. H2S is involved in aerobic respiration and stimulates oxidative phosphorylation and ATP production within the cell. Besides, H2S has protective effects on ischemia and reperfusion injury in several organs by acting as an oxygen sensor. Also, emerging evidence suggests the role of H2S is in an oxygen-dependent manner. All these findings indicate the subtle relationship between H2S and oxygen and further explain why H2S, a toxic molecule thriving in an anoxia environment several billion years ago, still affects homeostasis today despite the very low content in the body.
Collapse
Affiliation(s)
- Jiechun Zhu
- Department of Biology, Laurentian University, Sudbury, Canada; Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada
| | - Samantha Ligi
- Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada; Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Canada
| | - Guangdong Yang
- Department of Biology, Laurentian University, Sudbury, Canada; Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada; Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Canada.
| |
Collapse
|
43
|
Roubenne L, Marthan R, Le Grand B, Guibert C. Hydrogen Sulfide Metabolism and Pulmonary Hypertension. Cells 2021; 10:cells10061477. [PMID: 34204699 PMCID: PMC8231487 DOI: 10.3390/cells10061477] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/31/2021] [Accepted: 06/09/2021] [Indexed: 02/07/2023] Open
Abstract
Pulmonary hypertension (PH) is a severe and multifactorial disease characterized by a progressive elevation of pulmonary arterial resistance and pressure due to remodeling, inflammation, oxidative stress, and vasoreactive alterations of pulmonary arteries (PAs). Currently, the etiology of these pathological features is not clearly understood and, therefore, no curative treatment is available. Since the 1990s, hydrogen sulfide (H2S) has been described as the third gasotransmitter with plethoric regulatory functions in cardiovascular tissues, especially in pulmonary circulation. Alteration in H2S biogenesis has been associated with the hallmarks of PH. H2S is also involved in pulmonary vascular cell homeostasis via the regulation of hypoxia response and mitochondrial bioenergetics, which are critical phenomena affected during the development of PH. In addition, H2S modulates ATP-sensitive K+ channel (KATP) activity, and is associated with PA relaxation. In vitro or in vivo H2S supplementation exerts antioxidative and anti-inflammatory properties, and reduces PA remodeling. Altogether, current findings suggest that H2S promotes protective effects against PH, and could be a relevant target for a new therapeutic strategy, using attractive H2S-releasing molecules. Thus, the present review discusses the involvement and dysregulation of H2S metabolism in pulmonary circulation pathophysiology.
Collapse
Affiliation(s)
- Lukas Roubenne
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Avenue du Haut-Lévêque, F-33604 Pessac, France; (L.R.); (R.M.)
- Centre de Recherche Cardio-Thoracique de Bordeaux, Univ Bordeaux, U1045, 146 Rue Léo Saignat, F-33000 Bordeaux, France
- OP2 Drugs, Avenue du Haut Lévêque, F-33604 Pessac, France;
| | - Roger Marthan
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Avenue du Haut-Lévêque, F-33604 Pessac, France; (L.R.); (R.M.)
- Centre de Recherche Cardio-Thoracique de Bordeaux, Univ Bordeaux, U1045, 146 Rue Léo Saignat, F-33000 Bordeaux, France
- CHU de Bordeaux, Avenue du Haut Lévêque, F-33604 Pessac, France
| | - Bruno Le Grand
- OP2 Drugs, Avenue du Haut Lévêque, F-33604 Pessac, France;
| | - Christelle Guibert
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Avenue du Haut-Lévêque, F-33604 Pessac, France; (L.R.); (R.M.)
- Centre de Recherche Cardio-Thoracique de Bordeaux, Univ Bordeaux, U1045, 146 Rue Léo Saignat, F-33000 Bordeaux, France
- Correspondence:
| |
Collapse
|