1
|
de Castro RCF, Buranello TW, Recchia K, de Souza AF, Pieri NCG, Bressan FF. Emerging Contributions of Pluripotent Stem Cells to Reproductive Technologies in Veterinary Medicine. J Dev Biol 2024; 12:14. [PMID: 38804434 PMCID: PMC11130827 DOI: 10.3390/jdb12020014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/10/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024] Open
Abstract
The generation of mature gametes and competent embryos in vitro from pluripotent stem cells has been successfully achieved in a few species, mainly in mice, with recent advances in humans and scarce preliminary reports in other domestic species. These biotechnologies are very attractive as they facilitate the understanding of developmental mechanisms and stages that are generally inaccessible during early embryogenesis, thus enabling advanced reproductive technologies and contributing to the generation of animals of high genetic merit in a short period. Studies on the production of in vitro embryos in pigs and cattle are currently used as study models for humans since they present more similar characteristics when compared to rodents in both the initial embryo development and adult life. This review discusses the most relevant biotechnologies used in veterinary medicine, focusing on the generation of germ-cell-like cells in vitro through the acquisition of totipotent status and the production of embryos in vitro from pluripotent stem cells, thus highlighting the main uses of pluripotent stem cells in livestock species and reproductive medicine.
Collapse
Affiliation(s)
- Raiane Cristina Fratini de Castro
- Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of Sao Paulo, São Paulo 01001-010, SP, Brazil; (R.C.F.d.C.); (T.W.B.); (K.R.)
| | - Tiago William Buranello
- Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of Sao Paulo, São Paulo 01001-010, SP, Brazil; (R.C.F.d.C.); (T.W.B.); (K.R.)
| | - Kaiana Recchia
- Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of Sao Paulo, São Paulo 01001-010, SP, Brazil; (R.C.F.d.C.); (T.W.B.); (K.R.)
| | - Aline Fernanda de Souza
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, SP, Brazil;
| | - Naira Caroline Godoy Pieri
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, SP, Brazil;
| | - Fabiana Fernandes Bressan
- Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of Sao Paulo, São Paulo 01001-010, SP, Brazil; (R.C.F.d.C.); (T.W.B.); (K.R.)
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, SP, Brazil;
| |
Collapse
|
2
|
Wu SX, Wang GW, Fang YG, Chen YW, Jin YY, Liu XT, Jia GX, Yang QE. Transcriptome analysis reveals dysregulated gene expression networks in Sertoli cells of cattle-yak hybrids. Theriogenology 2023; 203:33-42. [PMID: 36966583 DOI: 10.1016/j.theriogenology.2023.03.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 03/14/2023] [Accepted: 03/18/2023] [Indexed: 04/03/2023]
Abstract
Cattle-yak, the hybrid offspring of yak and taurine cattle, exhibits male sterility with normal female fertility. Spermatogenesis is arrested in adult cattle-yak, and apoptosis is elevated in spermatogenic cells. Currently, the mechanisms underlying these defects remain elusive. Sertoli cells are the only somatic cells that directly interact with spermatogenic cells in the seminiferous tubules and play essential roles in spermatogenesis. The present study was designed to investigate gene expression signatures and potential roles of Sertoli cells in hybrid sterility in cattle-yak. Immunohistochemical analysis showed that the 5 mC and 5hmC signals in Sertoli cells of cattle-yaks were significantly different from those of age-matched yaks (P < 0.05). Transcriptome profiling of isolated Sertoli cells identified 402 differentially expressed genes (DEGs) between cattle-yaks and yaks. Notably, niche factor glial cell derived neurotrophic factor (GDNF) was upregulated, and genes involved in retinoic acid (RA) biogenesis were changed in Sertoli cells of cattle-yak, suggesting possible impairments of spermatogonial fate decisions. Further studies showed that the numbers of proliferative gonocytes and undifferentiated spermatogonia in cattle-yak were significantly higher than those in yak (P < 0.01). Exogenous GDNF significantly promoted the proliferation of UCHL1-positive spermatogonia in yaks. Therefore, we concluded that altered GDNF expression and RA signaling impacted the fate decisions of undifferentiated spermatogonia in cattle-yak. Together, these findings highlight the role of Sertoli cells and their derived factors in hybrid sterility.
Collapse
Affiliation(s)
- Shi-Xin Wu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810000, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guo-Wen Wang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810000, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - You-Gui Fang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810000, China; Agricultural Service Center of Maduo County, Qinghai, 813500, China
| | - Yong-Wei Chen
- Qinghai Headquarter of Animal Husbandry Extension Station, Xining, 810008, China
| | - Yan-Ying Jin
- Center for Animal Disease Control and Prevention of Gangcha County, Qinghai, 812399, China
| | - Xue-Tong Liu
- Shaanxi General Animal Husbandry Station, Xian, Shaanxi, 710010, China
| | - Gong-Xue Jia
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810000, China; Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810001, China
| | - Qi-En Yang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810000, China; Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810001, China.
| |
Collapse
|
3
|
Yu K, Zhang Y, Zhang BL, Wu HY, Jiang WQ, Wang ST, Han DP, Liu YX, Lian ZX, Deng SL. In-vitro differentiation of early pig spermatogenic cells to haploid germ cells. Mol Hum Reprod 2020; 25:507-518. [PMID: 31328782 DOI: 10.1093/molehr/gaz043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/26/2019] [Indexed: 01/06/2023] Open
Abstract
Spermatogonial stem cells (SSCs) self-renew and contribute genetic information to the next generation. Pig is wildly used as a model animal for understanding reproduction mechanisms of human being. Inducing directional differentiation of porcine SSCs may be an important strategy in exploring the mechanisms of spermatogenesis and developing better treatment methods for male infertility. Here, we established an in-vitro culture model for porcine small seminiferous tubule segments, to induce SSCs to differentiate into single-tail haploid spermatozoa. The culture model subsequently enabled spermatozoa to express the sperm-specific protein acrosin and oocytes to develop to blastocyst stage after round spermatid injection. The addition of retinoic acid (RA) to the differentiation media promoted the efficiency of haploid differentiation. RT-PCR analysis indicated that RA stimulated the expression of Stra8 but reduced the expression of NANOS2 in spermatogonia. Genes involved in post-meiotic development, transition protein 1 (Tnp1) and protamine 1 (Prm1) were upregulated in the presence of RA. The addition of an RA receptor (RAR) inhibitor, BMS439, showed that RA enhanced the expression of cAMP responsive-element binding protein through RAR and promoted the formation of round spermatids. We established an efficient culture system for in-vitro differentiation of pig SSCs. Our study represents a model for human testis disease and toxicology screening. Molecular regulators of SSC differentiation revealed in this study might provide a therapeutic strategy for male infertility.
Collapse
Affiliation(s)
- Kun Yu
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Haidian District, Beijing, People's Republic of China
| | - Yi Zhang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Chaoyang District, Beijing, People's Republic of China.,Department of Medicine, Panzhihua University, Sichuan, Sichuan, People's Republic of China
| | - Bao-Lu Zhang
- Marine Consulting Center of MNR, Oceanic Counseling Center, Ministry of Natural Resources of the People's Republic of China, Feng-tai District, Beijing, People's Republic of China
| | - Han-Yu Wu
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Haidian District, Beijing, People's Republic of China
| | - Wu-Qi Jiang
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Haidian District, Beijing, People's Republic of China
| | - Su-Tian Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Xiangfang District, People's Republic of China
| | - De-Ping Han
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Haidian District, Beijing, People's Republic of China
| | - Yi-Xun Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, People's Republic of China
| | - Zheng-Xing Lian
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Haidian District, Beijing, People's Republic of China
| | - Shou-Long Deng
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Chaoyang District, Beijing, People's Republic of China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, People's Republic of China
| |
Collapse
|
4
|
Li H, Bian YL, Schreurs N, Zhang XG, Raza SHA, Fang Q, Wang LQ, Hu JH. Effects of five cryoprotectants on proliferation and differentiation-related gene expression of frozen-thawed bovine calf testicular tissue. Reprod Domest Anim 2018; 53:1211-1218. [DOI: 10.1111/rda.13228] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 04/24/2018] [Accepted: 05/03/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Hao Li
- College of Animal Science and Technology; Northwest A&F University; Yangling Shaanxi China
| | - Yi-Lin Bian
- College of Animal Science and Technology; Northwest A&F University; Yangling Shaanxi China
| | - Nicola Schreurs
- Institute of Veterinary, Animal and Biomedical Sciences; Massey University; Palmerston North New Zealand
| | - Xiao-Gang Zhang
- College of Animal Science and Technology; Northwest A&F University; Yangling Shaanxi China
| | | | - Qian Fang
- College of Animal Science and Technology; Northwest A&F University; Yangling Shaanxi China
| | - Li-Qiang Wang
- College of Animal Science and Technology; Northwest A&F University; Yangling Shaanxi China
| | - Jian-Hong Hu
- College of Animal Science and Technology; Northwest A&F University; Yangling Shaanxi China
| |
Collapse
|
5
|
Li B, Zhuang M, Wu C, Niu B, Zhang Z, Li X, Wei Z, Li G, Hua J. Bovine male germline stem-like cells cultured in serum- and feeder-free medium. Cytotechnology 2016; 68:2145-2157. [PMID: 26883918 PMCID: PMC5023554 DOI: 10.1007/s10616-015-9933-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/14/2015] [Indexed: 12/19/2022] Open
Abstract
Male germline stem cells (mGSCs) presented in male testis are responsible for spermatogenesis during their whole life. However, little information can be found on the culture of bovine mGSCs, and the current culture system needs to be improved. In this study, we compared the effects of several commercial serum-free media and different extra-cellular matrix on the enrichment and cultivation of mGSCs. To find out the best culture condition, the biological characteristics of the cultured cells were evaluated by morphological observation, RT-PCR and immunofluorescent staining. According to the cells' condition in different experiment groups, we found out an efficient cultivation system for bovine mGSCs derived from neonate testis. In this serum- and feeder-free medium, the cultured cells maintained the typical morphology, and expressed specific surface markers of both pluripotent ES cells and mGSCs, including SSEA-1, CD49f, C-MYC, PLZF, GFRα1, LIN28, NANOG, Oct4 and SOX2 in commercial human ESCs medium PeproGrow-hESC + BIO (6-bromoindirubin-3'-oxime). Embryoid bodies, derived from the bovine mGSCs, and were formed by ganging drop culture. The retinoic acid induced bovine mGSCs were positive for Stra8, SCP3, DZAL, EMA1 and VASA, and resembled spermatid cells morphologically. Thus, we found an efficient bovine mGSCs-cultivation system, which is lack in serum and feeder.
Collapse
Affiliation(s)
- Bo Li
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Mengru Zhuang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chongyang Wu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Bowen Niu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhou Zhang
- Department of Reproduction Centre, Shaanxi Provine Women and Children Hospital, Xi'an, 710000, Shaanxi Province, China
| | - Xin Li
- Department of Clinic Medicine, Bengbu Medicine University, Bengbu, Anhui, China
| | - Zhuying Wei
- Key Laboratory for Mammalian Reproductive Biology and Biotechnology, Ministry of Education, Inner Mongolia University, Hohhot, 010021, China
| | - Guangpeng Li
- Key Laboratory for Mammalian Reproductive Biology and Biotechnology, Ministry of Education, Inner Mongolia University, Hohhot, 010021, China.
| | - Jinlian Hua
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
6
|
Deng SL, Chen SR, Wang ZP, Zhang Y, Tang JX, Li J, Wang XX, Cheng JM, Jin C, Li XY, Zhang BL, Yu K, Lian ZX, Liu GS, Liu YX. Melatonin promotes development of haploid germ cells from early developing spermatogenic cells of Suffolk sheep under in vitro condition. J Pineal Res 2016; 60:435-47. [PMID: 26993286 DOI: 10.1111/jpi.12327] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 03/15/2016] [Indexed: 01/03/2023]
Abstract
Promotion of spermatogonial stem cell (SSC) differentiation into functional sperms under in vitro conditions is a great challenge for reproductive physiologists. In this study, we observed that melatonin (10(-7) M) supplementation significantly enhanced the cultured SSCs differentiation into haploid germ cells. This was confirmed by the expression of sperm special protein, acrosin. The rate of SSCs differentiation into sperm with melatonin supplementation was 11.85 ± 0.93% which was twofold higher than that in the control. The level of testosterone, the transcriptions of luteinizing hormone receptor (LHR), and the steroidogenic acute regulatory protein (StAR) were upregulated with melatonin treatment. At the early stage of SSCs culture, melatonin suppressed the level of cAMP, while at the later stage, it promoted cAMP production. The similar pattern was observed in testosterone content. Expressions for marker genes of meiosis anaphase, Dnmt3a, and Bcl-2 were upregulated by melatonin. In contrast, Bax expression was downregulated. Importantly, the in vitro-generated sperms were functional and they were capable to fertilize oocytes. These fertilized oocytes have successfully developed to the blastula stage.
Collapse
Affiliation(s)
- Shou-Long Deng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Su-Ren Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhi-Peng Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yan Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Ji-Xin Tang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jian Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xiu-Xia Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jin-Mei Cheng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Cheng Jin
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xiao-Yu Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Bao-Lu Zhang
- National key Lab of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, P.R. China
| | - Kun Yu
- National key Lab of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, P.R. China
| | - Zheng-Xing Lian
- Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, P.R. China
| | - Guo-Shi Liu
- Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, P.R. China
| | - Yi-Xun Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Baptissart M, Vega A, Martinot E, Volle DH. Male fertility: Is spermiogenesis the critical step for answering biomedical issues? SPERMATOGENESIS 2014; 3:e24114. [PMID: 23885302 PMCID: PMC3710220 DOI: 10.4161/spmg.24114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 02/13/2013] [Accepted: 02/25/2013] [Indexed: 12/22/2022]
Abstract
Regarding male fertility, biomedical issues have opposite goals to treat infertility or develop contraceptive drugs. Recently, the identification of the molecular mechanisms involved in germ cell differentiation suggest that spermiogenesis has to be put at the crossroad to reach these goals. Concerning fertility issues, citizens in our modern world are schizophrenic. On one side, couples have the possibility to control conception; and on the other side, more and more couples suffer from the misfortune of being infertile. These two societal problems lead to intensive research and conflicting government policies. However, these opposing goals rely on a better understanding of germ cell differentiation.
Collapse
Affiliation(s)
- Marine Baptissart
- Inserm U 1103; Génétique Reproduction et Développement (GReD); F-63177 AUBIERE, France ; Clermont Université; Université Blaise Pascal; GReD, BP 10448; F-63000 CLERMONT-FERRAND, France ; CNRS; UMR 6293; GReD; F-63177 AUBIERE, France ; Centre de Recherche en Nutrition Humaine d'Auvergne; F-63000 CLERMONT-FERRAND, France
| | | | | | | |
Collapse
|
8
|
Su H, Luo F, Bao J, Wu S, Zhang X, Zhang Y, Duo S, Wu Y. Long-term culture and analysis of cashmere goat Sertoli cells. In Vitro Cell Dev Biol Anim 2014; 50:918-25. [PMID: 25164184 DOI: 10.1007/s11626-013-9648-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 06/07/2013] [Indexed: 01/28/2023]
Abstract
Sertoli cells have important functions in the testis for spermatogenesis. Thus, Sertoli cell culture systems have been established in many animals, such as rat, mouse, human, dog, cow, and pig, but a goat culture has not been reported. This study describes the isolation and culture of Sertoli cells from 3- to 4-month-old cashmere goat (Capra hircus) testes. These proliferative cells were expanded for 20 passages and repeatedly cryopreserved in vitro, in contrast to previous study in human, of which maintain steady growth for up to seven passages and only passages 1 to 5 could be refrozen. The microstructure and ultrastructure of the culture were typical of Sertoli cells, bearing irregular nuclei and a cytoplasm that was rich in smooth and rough endoplasmic reticulum, mitochondria, Golgi, lysosomes, lipid drops, and glycogenosomes. By immunofluorescence analysis, the all cells expressed SRY-related HMG box gene 9 (Sox9). Growth curves and 5-bromo-2'-deoxyuridine (BrdU) incorporation were used to analyze the proliferation of the cultured cells. With increasing passage times, the proliferation of the Sertoli cells declined, but the transcription of glial cell-derived neurotrophic factor (GDNF), stem cell factor (SCF), and β1-integrin was constant. By flow cytometry, the cells retained the ability to proliferate after 5 yr of cryopreservation. Thus, cashmere goat Sertoli cells have significant proliferative potential in vitro, expressing germ cell regulatory factors and have important applications in studying Sertoli cell-germ cell interactions, spermatogenesis, reproductive toxicology, and male infertility.
Collapse
Affiliation(s)
- Huimin Su
- Key Laboratory of Education Ministry of China for Mammalian Reproductive Biology and Biotechnology, Inner Mongolia University, Hohhot, 010021, China,
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Effects of vitamin A on in vitro maturation of pre-pubertal mouse spermatogonial stem cells. PLoS One 2013; 8:e82819. [PMID: 24349372 PMCID: PMC3857286 DOI: 10.1371/journal.pone.0082819] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 11/06/2013] [Indexed: 11/19/2022] Open
Abstract
Testicular tissue cryopreservation is the only potential option for fertility preservation in pre-pubertal boys exposed to gonadotoxic treatment. Completion of spermatogenesis after in vitro maturation is one of the future uses of harvested testicular tissue. The purpose of the current study was to evaluate the effects of vitamin A on in vitro maturation of fresh and frozen-thawed mouse pre-pubertal spermatogonial stem cells in an organ culture system. Pre-pubertal CD1 mouse fresh testes were cultured for 7 (D7), 9 (D9) and 11 (D11) days using an organ culture system. Basal medium was supplemented with different concentrations of retinol (Re) or retinoic acid (RA) alone or in combination. Seminiferous tubule morphology (tubule diameter, intra-tubular cell type), intra-tubular cell death and proliferation (PCNA antibody) and testosterone level were assessed at D7, D9 and D11. Pre-pubertal mouse testicular tissue were frozen after a soaking temperature performed at -7°C, -8°C or -9°C and after thawing, were cultured for 9 days, using the culture medium preserving the best fresh tissue functionality. Retinoic acid at 10-6M and retinol at 3.3.10-7M, as well as retinol 10-6M are favourable for seminiferous tubule growth, maintenance of intra-tubular cell proliferation and germ cell differentiation of fresh pre-pubertal mouse spermatogonia. Structural and functional integrity of frozen-thawed testicular tissue appeared to be well-preserved after soaking temperature at -8°C, after 9 days of organotypic culture using 10-6M retinol. RA and Re can control in vitro germ cell proliferation and differentiation. Re at a concentration of 10-6M maintains intra-tubular cell proliferation and the ability of spermatogonia to initiate spermatogenesis in fresh and frozen pre-pubertal mouse testicular tissue using a soaking temperature at -8°C. Our data suggested a possible human application for in vitro maturation of cryopreserved pre-pubertal testicular tissue.
Collapse
|
10
|
Differentiation of spermatogonial stem cell-like cells from murine testicular tissue into haploid male germ cells in vitro. Cytotechnology 2013; 66:365-72. [PMID: 23728854 DOI: 10.1007/s10616-013-9584-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 05/08/2013] [Indexed: 10/26/2022] Open
Abstract
In vitro differentiation of spermatogonial stem cells (SSCs) promotes the understanding of the mechanism of spermatogenesis. The purpose of this study was to isolate spermatogonial stem cell-like cells from murine testicular tissue, which then were induced into haploid germ cells by retinoic acid (RA). The spermatogonial stem cell-like cells were purified and enriched by a two-step plating method based on different adherence velocities of SSCs and somatic cells. Cell colonies were present after culture in M1-medium for 3 days. Through alkaline phosphatase, RT-PCR and indirect immunofluorescence cell analysis, cell colonies were shown to be SSCs. Subsequently, cell colonies of SSCs were cultured in M2-medium containing RA for 2 days. Then the cell colonies of SSCs were again cultured in M1-medium for 6-8 days, RT-PCR and indirect immunofluorescence cell analysis were chosen to detect haploid male germ cells. It could be demonstrated that 10(-7) mol l(-1) of RA effectively induced the SSCs into haploid male germ cells in vitro.
Collapse
|
11
|
Aponte PM, Schlatt S, Franca LRD. Biotechnological approaches to the treatment of aspermatogenic men. Clinics (Sao Paulo) 2013; 68 Suppl 1:157-67. [PMID: 23503966 PMCID: PMC3583150 DOI: 10.6061/clinics/2013(sup01)18] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 08/30/2012] [Indexed: 01/15/2023] Open
Abstract
Aspermatogenesis is a severe impairment of spermatogenesis in which germ cells are completely lacking or present in an immature form, which results in sterility in approximately 25% of patients. Because assisted reproduction techniques require mature germ cells, biotechnology is a valuable tool for rescuing fertility while maintaining biological fatherhood. However, this process involves, for instance, the differentiation of preexisting immature germ cells or the production/derivation of sperm from somatic cells. This review critically addresses four potential techniques: sperm derivation in vitro, germ stem cell transplantation, xenologous systems, and haploidization. Sperm derivation in vitro is already feasible in fish and mammals through organ culture or 3D systems, and it is very useful in conditions of germ cell arrest or in type II Sertoli-cell-only syndrome. Patients afflicted by type I Sertoli-cell-only syndrome could also benefit from gamete derivation from induced pluripotent stem cells of somatic origin, and human haploid-like cells have already been obtained by using this novel methodology. In the absence of alternative strategies to generate sperm in vitro, in germ cells transplantation fertility is restored by placing donor cells in the recipient germ-cell-free seminiferous epithelium, which has proven effective in conditions of spermatogonial arrest. Grafting also provides an approach for ex-vivo generation of mature sperm, particularly using prepubertal testis tissue. Although less feasible, haploidization is an option for creating gametes based on biological cloning technology. In conclusion, the aforementioned promising techniques remain largely experimental and still require extensive research, which should address, among other concerns, ethical and biosafety issues, such as gamete epigenetic status, ploidy, and chromatin integrity.
Collapse
Affiliation(s)
- Pedro Manuel Aponte
- Department of Morphology, Federal University of Minas Gerais, Minas Gerais, Brazil
| | | | | |
Collapse
|
12
|
Zhang S, Sun J, Pan S, Zhu H, Wang L, Hu Y, Wang J, Wang F, Cao H, Yan X, Hua J. Retinol (vitamin A) maintains self-renewal of pluripotent male germline stem cells (mGSCs) from adult mouse testis. J Cell Biochem 2011; 112:1009-21. [PMID: 21308744 DOI: 10.1002/jcb.23029] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Studies have shown that male germline stem cells (mGSCs), which are responsible for maintaining spermatogenesis in the male, could be obtained from mouse and human testis. However, the traditional cultural methods were mostly dependent on serum and feeder, and the initial mGSCs were either obtained from neonatal mice or the detailed description of its potency and origin was not provided. Here we reported a novel (retinol (RE) serum-free and feeder-free) system for the successful culture of adult germline stem cells from adult Kunming mice (8-24 weeks) testis. The isolated mGSCs cultured in RE serum-free and feeder-free medium maintained the typical morphology of undifferentiated embryonic stem cells (ESCs), and they proliferated well in RE medium analyzed by proliferation assay, RT-PCR, microarray, and Western blotting. These cells also showed typical properties of ESCs (alkaline phosphatase (AP) positive, expressions of Oct4, Sox2, Nanog, and SSEA1, with the capacity to form teratomas and differentiate into various types of cells within three germ layers). Taken together, we conclude that RE promotes the self-renewal of mGSCs and maintains the pluripotency of mGSCs, the RE serum-free and feeder-free system may be useful for the culture of pluripotent stem cell lines from adult testis tissues, which provides a new resource for tissue engineering and therapy for infertility.
Collapse
Affiliation(s)
- Shanshan Zhang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Key Lab for Reproductive Physiology & Embryo Biotechnology of Agriculture Ministry of China, Northwest A&F University, Yangling, Shaanxi 712100, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Hua J, Zhu H, Pan S, Liu C, Sun J, Ma X, Dong W, Liu W, Li W. Pluripotent male germline stem cells from goat fetal testis and their survival in mouse testis. Cell Reprogram 2011; 13:133-144. [PMID: 21473690 DOI: 10.1089/cell.2010.0047] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Male germline stem cells (mGSCs) are stem cells present in male testis responsible for spermatogenesis during their whole life. Studies have shown that mGSCs can be derived in vitro and resemble embryonic stem cells (ESCs) properties both in the mouse and humans. However, little is know about these cells in domestic animals. Here we report the first successful establishment of goat GSCs derived from 2-5-month fetal testis, and developmental potential assay of these cells both in vitro and in vivo. These cells express pluripotent markers such as Oct4, Sox2, C-myc, and Tert when cultured as human ESCs conditions. Embryoid bodies (EBs) formed by goat mGSCs were induced with 2 × 10(-6) M retinoic acid (RA). Immunofluorescence analysis showed that some cells inside of the EBs were positive for meiosis marker-SCP3, STRA8, and germ cell marker-VASA, and haploid marker-FE-J1, PRM1, indicating their germ cell lineage differentiation. Some cells become elongated sperm-like cells after induction. Approximately 34.88% (30/86) embryos showed cleavage and four embryos were cultured on murine fibroblast feeder and formed small embryonic stem like colonies. However, most stalled at four-cell stage after intracytoplasmic sperm injection (ICSI) of these cells. Transplantation of DAPI labeled mGSCs into the seminiferous tubules of busulfan-treated mice, and showed that mGSCs can colonize, self-renew, and differentiate into germ cells. Thus, we have established a goat GSC cell line and these cells could be differentiated into sperm-like cells in vivo and sperms in vitro, providing a promising platform for generation of transgenic goat for production of specific humanized proteins.
Collapse
Affiliation(s)
- Jinlian Hua
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Key Lab for Reproductive Physiology & Embryo Biotechnology-Agriculture Ministry of China, Northwest A&F University, Yangling, Shaanxi, People's Republic of China.
| | | | | | | | | | | | | | | | | |
Collapse
|