1
|
Tillquist NM, Govoni KE, Zinn SA, Reed SA. Poor maternal nutrition during gestation in sheep alters key hormonal systems involved in energy homeostasis and appetite in the offspring. Domest Anim Endocrinol 2025; 91:106907. [PMID: 39681045 DOI: 10.1016/j.domaniend.2024.106907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/27/2024] [Accepted: 12/09/2024] [Indexed: 12/18/2024]
Abstract
Disturbances in maternal nutrient availability through increased or decreased abundance of specific or total nutrients during pre-natal development can have negative impacts on offspring growth. These changes are likely mediated, at least in part, by hormonal systems that control energy homeostasis and appetite. Regulation of insulin signaling is critical to ensuring appropriate glucose homeostasis. Poor maternal nutrition during gestation impacts circulating glucose and insulin concentration in both the dam and offspring, reducing circulating insulin and glucose in offspring of restricted-fed dams and increased circulating insulin and glucose in the offspring of over-fed dams. Leptin and ghrelin are key regulators of appetite and feed intake. Offspring of over-fed ewes often exhibit leptin resistance, which may lead to changes in adiposity. Leptin responses in offspring of restricted-fed ewes are not well defined, although restricted-fed ewes themselves exhibit decreased circulating leptin concentrations. Little is known about the effects of poor maternal nutrition on offspring ghrelin. Glucocorticoids and thyroid hormones are required for appropriate fetal development. Poor maternal nutrition during gestation alters the development of the hypothalamic-pituitary-adrenal and thyroid axes in the offspring, although the effects vary according to the type, duration, timing, and severity of the nutritional insult. The relationships between insulin, leptin, ghrelin, glucocorticoids, and thyroid hormones can result in synergistic effects, exacerbating negative outcomes for the offspring. The impacts of poor maternal nutrition are multi-faceted, and the resulting alterations in body composition can continue to impact hormone regulation beyond the initial insult caused by poor maternal nutrition during gestation.
Collapse
Affiliation(s)
- Nicole M Tillquist
- University of Connecticut, Department of Animal Science, 17 Manter Road Storrs, CT, 06269, USA
| | - Kristen E Govoni
- University of Connecticut, Department of Animal Science, 17 Manter Road Storrs, CT, 06269, USA
| | - Steven A Zinn
- University of Connecticut, Department of Animal Science, 17 Manter Road Storrs, CT, 06269, USA
| | - Sarah A Reed
- University of Connecticut, Department of Animal Science, 17 Manter Road Storrs, CT, 06269, USA.
| |
Collapse
|
2
|
Velazquez MA, Idriss A, Chavatte-Palmer P, Fleming TP. The mammalian preimplantation embryo: Its role in the environmental programming of postnatal health and performance. Anim Reprod Sci 2023; 256:107321. [PMID: 37647800 DOI: 10.1016/j.anireprosci.2023.107321] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/02/2023] [Accepted: 08/17/2023] [Indexed: 09/01/2023]
Abstract
During formation of the preimplantation embryo several cellular and molecular milestones take place, making the few cells forming the early embryo vulnerable to environmental stressors than can impair epigenetic reprogramming and controls of gene expression. Although these molecular alterations can result in embryonic death, a significant developmental plasticity is present in the preimplantation embryo that promotes full-term pregnancy. Prenatal epigenetic modifications are inherited during mitosis and can perpetuate specific phenotypes during early postnatal development and adulthood. As such, the preimplantation phase is a developmental window where developmental programming can take place in response to the embryonic microenvironment present in vivo or in vitro. In this review, the relevance of the preimplantation embryo as a developmental stage where offspring health and performance can be programmed is discussed, with emphasis on malnutrition and assisted reproductive technologies; two major environmental insults with important implications for livestock production and human reproductive medicine.
Collapse
Affiliation(s)
- Miguel A Velazquez
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK.
| | - Abdullah Idriss
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK; Pathology and laboratory medicine, King Faisal Specialist Hospital and Research Centre, P.O. Box 40047, MBC J-10, Jeddah 21499, Kingdom of Saudi Arabia
| | - Pascale Chavatte-Palmer
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350 Jouy-en-Josas, France; Ecole Nationale Vétérinaire d'Alfort, BREED, 94700 Maisons-Alfort, France
| | - Tom P Fleming
- Biological Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
3
|
Sandoval C, Askelson K, Lambo CA, Dunlap KA, Satterfield MC. Effect of maternal nutrient restriction on expression of glucose transporters (SLC2A4 and SLC2A1) and insulin signaling in skeletal muscle of SGA and Non-SGA sheep fetuses. Domest Anim Endocrinol 2021; 74:106556. [PMID: 33120168 DOI: 10.1016/j.domaniend.2020.106556] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 02/08/2023]
Abstract
Maternal nutrient restriction (NR) causes small for gestational age (SGA) offspring, which are at higher risk for accelerated postnatal growth and developing insulin resistance in adulthood. Skeletal muscle is essential for whole-body glucose metabolism, as 80% of insulin-mediated glucose uptake occurs in this tissue. Maternal NR can alter fetal skeletal muscle mass, expression of glucose transporters, insulin signaling, and myofiber type composition. It also leads to accumulation of intramuscular triglycerides (IMTG), which correlates to insulin resistance. Using a 50% NR treatment from gestational day (GD) 35 to GD 135 in sheep, we routinely observe a spectral phenotype of fetal weights within the NR group. Thus, we classified those fetuses into NR(Non-SGA; n = 11) and NR(SGA; n = 11). The control group (n = 12) received 100% of nutrient requirements throughout pregnancy. At GD 135, fetal plasma and gastrocnemius and soleus muscles were collected. In fetal plasma, total insulin was lower in NR(SGA) fetuses compared NR(Non-SGA) and control fetuses (P < 0.01), whereas total IGF-1 was lower in NR(SGA) fetuses compared with control fetuses (P < 0.05). Within gastrocnemius, protein expression of insulin receptor (INSRB; P < 0.05) and the glucose transporters, solute carrier family 2 member 1 and solute carrier family 2 member 4, was higher (P < 0.05) in NR(SGA) fetuses compared with NR(Non-SGA) fetuses; IGF-1 receptor protein was increased (P < 0.01) in NR(SGA) fetuses compared with control fetuses, and a lower (P < 0.01) proportion of type I myofibers (insulin sensitive and oxidative) was observed in SGA fetuses. For gastrocnemius muscle, the expression of lipoprotein lipase (LPL) messenger RNA (mRNA) was upregulated (P < 0.05) in both NR(SGA) and NR(Non-SGA) fetuses compared with control fetuses, whereas carnitine palmitoyltransferase 1B (CPT1B) mRNA was higher (P < 0.05) in NR(Non-SGA) fetuses compared with control fetuses, but there were no differences (P > 0.05) for protein levels of LPL or CPT1B. Within soleus, there were no differences (P > 0.05) for any characteristic except for the proportion of type I myofibers, which was lower (P < 0.05) in NR(SGA) fetuses compared with control fetuses. Accumulation of IMTG did not differ (P > 0.05) in gastrocnemius or soleus muscles. Collectively, the results indicate molecular differences between SGA and Non-SGA fetuses for most characteristics, suggesting that maternal NR induces a spectral phenotype for the metabolic programming of those fetuses.
Collapse
Affiliation(s)
- C Sandoval
- Department of Animal Science, Texas A&M University, College Station, TX 77845, USA; Instituto de Investigaciones Agropecuarias, Región de Magallanes y la Antártica Chilena, Punta Arenas 6212707, Chile
| | - K Askelson
- Department of Animal Science, Texas A&M University, College Station, TX 77845, USA
| | - C A Lambo
- Department of Veterinary Physiology & Pharmacology, Texas A&M University, College Station, TX 77843, USA
| | - K A Dunlap
- Department of Animal Science, Texas A&M University, College Station, TX 77845, USA
| | - M C Satterfield
- Department of Animal Science, Texas A&M University, College Station, TX 77845, USA.
| |
Collapse
|
4
|
Effects of maternal periconceptional undernutrition in sheep on offspring glucose-insulin axis function into adulthood. J Dev Orig Health Dis 2020; 12:714-720. [PMID: 33213602 DOI: 10.1017/s2040174420001063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Maternal periconceptional undernutrition (PCUN) affected fetal pancreatic maturation in late gestation lambs and impaired glucose tolerance in 10-month-old sheep. To examine the importance of the timing of maternal undernutrition around conception, a further cohort was born to PCUN ewes [undernourished for 61 d before conception (PreC), 30 d after conception (PostC), or 61 d before until 30 d after conception (PrePostC)], or normally fed ewes (Control) (n = 15-20/group). We compared glucose tolerance, insulin secretion, and sensitivity at 36 months of age. We also examined protein expression of insulin signalling proteins in muscle from these animals and in muscle from a fetal cohort (132 d of gestation; n = 7-10/group). Adult PostC and PrePostC sheep had higher glucose area under the curve than Controls (P = 0.07 and P = 0.02, respectively), whereas PreC sheep were similar to Controls (P = 0.97). PostC and PrePostC had reduced first-phase insulin secretion compared with Control (P = 0.03 and P = 0.02, respectively). PreC was similar to Control (P = 0.12). Skeletal muscle SLC2A4 protein expression in PostC and PrePostC was increased 19%-58% in fetuses (P = 0.004), but decreased 39%-43% in adult sheep (P = 0.003) compared with Controls. Consistent with this, protein kinase C zeta (PKCζ) protein expression tended to be increased in fetal (P = 0.09) and reduced in adult (P = 0.07) offspring of all PCUN ewes compared with Controls. Maternal PCUN alters several aspects of offspring glucose homeostasis into adulthood. These findings suggest that maternal periconceptional nutrition has a lasting impact on metabolic homeostasis of the offspring.
Collapse
|
5
|
Chadio S, Kotsampasi B, Taka S, Liandris E, Papadopoulos N, Plakokefalos E. Epigenetic changes of hepatic glucocorticoid receptor in sheep male offspring undernourished in utero. Reprod Fertil Dev 2018; 29:1995-2004. [PMID: 28076749 DOI: 10.1071/rd16276] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 12/01/2016] [Indexed: 12/30/2022] Open
Abstract
The aim of this study was to characterise the effects of maternal undernutrition during gestation on hepatic gluconeogenic enzyme gene expression and to determine whether such effects are mediated through epigenetic changes in the glucocorticoid receptor (GR). Pregnant ewes were fed a 50% nutrient-restricted diet from Day 0 to 30 (R1) or from Day 31 to 100 of gestation (R2) or a 100% diet throughout gestation (Control). After parturition lambs were fed to appetite. At 10 months of age offspring were euthanised and livers were removed. Maternal undernutrition did not affect offspring bodyweight at birth or at 10 months of age. However, liver weight of males of the R2 group was lower (P<0.05) in relation to other groups. A significant (P<0.05) hypomethylation of the hepatic GR promoter was revealed in males of the R2 group and a tendency towards the same in the R1 group, along with increased (P<0.001) GR gene expression in both restricted groups. A significant increase (P<0.05) in hepatic phosphoenolpyruvate carboxykinase (PEPCK) gene expression was found in male lambs of both undernourished groups, accompanied by increased (P<0.01) protein levels, while no differences were detected for glucose-6-phosphatase (G6Pase) mRNA abundance and protein levels. In female lambs, no differences between groups were observed for any parameter studied. These data represent potential mechanisms by which insults in early life may lead to persistent physiological changes in the offspring.
Collapse
Affiliation(s)
- Stella Chadio
- Department of Anatomy and Physiology of Farm Animals, Faculty of Animal Science and Aquaculture, Agricultural University of Athens, 75 Iera Odos, PO Box 11855, Athens, Greece
| | - Basiliki Kotsampasi
- Research Institute of Animal Science, Directorate General of Agricultural Research, Hellenic Agricultural Organisation 'DEMETER', Paralimni, PO Box 58100, Giannitsa, Greece
| | - Stylliani Taka
- Allergy Department, Second Paediatric Clinic, University of Athens, 41 Fidippidou, PO Box 11527, Athens, Greece
| | - Emmanouil Liandris
- Department of Anatomy and Physiology of Farm Animals, Faculty of Animal Science and Aquaculture, Agricultural University of Athens, 75 Iera Odos, PO Box 11855, Athens, Greece
| | - Nikolaos Papadopoulos
- Allergy Department, Second Paediatric Clinic, University of Athens, 41 Fidippidou, PO Box 11527, Athens, Greece
| | - Elias Plakokefalos
- Department of Anatomy and Physiology of Farm Animals, Faculty of Animal Science and Aquaculture, Agricultural University of Athens, 75 Iera Odos, PO Box 11855, Athens, Greece
| |
Collapse
|
6
|
Roca Fraga FJ, Lagisz M, Nakagawa S, Lopez-Villalobos N, Blair HT, Kenyon PR. Meta-analysis of lamb birth weight as influenced by pregnancy nutrition of multiparous ewes. J Anim Sci 2018; 96:1962-1977. [PMID: 29506123 PMCID: PMC6140851 DOI: 10.1093/jas/sky072] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 02/26/2018] [Indexed: 12/14/2022] Open
Abstract
Across the literature, there is large variation in lamb birth weight responses to changes in the ewe pregnancy nutrition. Much of this heterogeneity has been attributed to several factors inherent to each experiment; however, the relative contribution of these experimental factors has not yet been quantified. This meta-analysis aimed to systematically review the variation in lamb birth weight responses across nutritional studies involving adult multiparous ewes. Effect-sizes for individual studies were estimated using the unbiased estimator Hedges' g, whereby positive and negative values indicate heavier and lighter treatment lambs vs. controls, respectively. Heterogeneity varied between early-, mid- and late-pregnancy undernutrition studies (I2total [early pregnancy] = 19.90%, I2total [midpregnancy] = 52.10%, I2total [late pregnancy] = 68.70%). The small average effects for early- (0.04, highest posterior density [HPD] interval = -0.22, 0.28) and mid-pregnancy undernutrition (-0.15, HPD interval = -0.35, 0.05) suggest that if farmers anticipate a potential feed shortage, ewes can be allowed to lose weight providing nutrition is resumed to adequate levels later in pregnancy. On the contrary, late-pregnancy undernutrition was associated with a significant decrease in lamb birth weight (-0.72, HPD interval = -0.86, -0.55). Thus, management practices should focus on ensuring adequate nutrition in late pregnancy. Increasing lamb birth weight could be possible by feeding ewes above their pregnancy maintenance requirement (0.23, HPD interval = 0.002, 0.48), though the number of studies is limited and further research is needed.
Collapse
Affiliation(s)
| | - Malgorzata Lagisz
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Shinichi Nakagawa
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
| | | | - Hugh T Blair
- School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | - Paul R Kenyon
- School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| |
Collapse
|
7
|
Khanal P, Nielsen MO. Impacts of prenatal nutrition on animal production and performance: a focus on growth and metabolic and endocrine function in sheep. J Anim Sci Biotechnol 2017; 8:75. [PMID: 28919976 PMCID: PMC5594587 DOI: 10.1186/s40104-017-0205-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 08/17/2017] [Indexed: 11/10/2022] Open
Abstract
The concept of foetal programming (FP) originated from human epidemiological studies, where foetal life nutrition was linked to health and disease status later in life. Since the proposal of this phenomenon, it has been evaluated in various animal models to gain further insights into the mechanisms underlying the foetal origins of health and disease in humans. In FP research, the sheep has been quite extensively used as a model for humans. In this paper we will review findings mainly from our Copenhagen sheep model, on the implications of late gestation malnutrition for growth, development, and metabolic and endocrine functions later in life, and discuss how these implications may depend on the diet fed to the animal in early postnatal life. Our results have indicated that negative implications of foetal malnutrition, both as a result of overnutrition and, particularly, late gestation undernutrition, can impair a wide range of endocrine functions regulating growth and presumably also reproductive traits. These implications are not readily observable early in postnatal life, but are increasingly manifested as the animal approaches adulthood. No intervention or cure is known that can reverse this programming in postnatal life. Our findings suggest that close to normal growth and slaughter results can be obtained at least until puberty in animals which have undergone adverse programming in foetal life, but manifestation of programming effects becomes increasingly evident in adult animals. Due to the risk of transfer of the adverse programming effects to future generations, it is therefore recommended that animals that are suspected to have undergone adverse FP are not used for reproduction. Unfortunately, no reliable biomarkers have as yet been identified that allow accurate identification of adversely programmed offspring at birth, except for very low or high birth weights, and, in pigs, characteristic changes in head shape (dolphin head). Future efforts should be therefore dedicated to identify reliable biomarkers and evaluate their effectiveness for alleviation/reversal of the adverse programming in postnatal life. Our sheep studies have shown that the adverse impacts of an extreme, high-fat diet in early postnatal life, but not prenatal undernutrition, can be largely reversed by dietary correction later in life. Thus, birth (at term) appears to be a critical set point for permanent programming in animals born precocial, such as sheep. Appropriate attention to the nutrition of the late pregnant dam should therefore be a priority in animal production systems.
Collapse
Affiliation(s)
- Prabhat Khanal
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 3, 1st floor, DK-1870 Frederiksberg C, Denmark.,Current address: Department of Nutrition, Faculty of Medicine, Transgenic Animal and Lipid Storage, Norwegian Transgenic Centre (NTS), University of Oslo, Oslo, Norway
| | - Mette Olaf Nielsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 3, 1st floor, DK-1870 Frederiksberg C, Denmark
| |
Collapse
|
8
|
Macías-Cruz U, Vicente-Pérez R, Mellado M, Correa-Calderón A, Meza-Herrera CA, Avendaño-Reyes L. Maternal undernutrition during the pre- and post-conception periods in twin-bearing hairsheep ewes: effects on fetal and placental development at mid-gestation. Trop Anim Health Prod 2017; 49:1393-1400. [PMID: 28669063 DOI: 10.1007/s11250-017-1339-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 06/22/2017] [Indexed: 11/30/2022]
Abstract
To evaluate the effects of pre- and post-conception undernutrition (UN) on fetal and placental development at mid-gestation, 28 Katahdin × Pelibuey multiparous ewes were blocked by weight and assigned to the following four dietary treatments (n = 7 each): ewes fed 100% (control) or 60% of their nutritional requirements 30 days before mating (UNPre), 50 days after mating (UNPost) or during both periods (UNB). Four twin-bearing ewes were selected per treatment at day 50 post-conception and then slaughtered at day 75 of gestation to analyze their fetuses. Control fetuses were heavier (P < 0.05) than UNPost and UNB fetuses in 14.6 and 9.4%, respectively. Organ weights as percentage of the fetal weight (except for liver) and morphometric measurements (except for abdominal girth) were similar between control and UN fetuses (UNPre, UNPost, and UNB). Placental mass was heavier (P < 0.05) in control ewes than UNB ewes, but not relative to ewes of other treatments. The number of placentomes per ewe and placental efficiency were unaffected by UN treatments. Compared to control, only UNB ewes exhibited variations (P < 0.05) in the proportion of placentomes, specifically for type A (+13.8%) and B (-12.6%). Placentomes of type A and B had lower weight, length, and width of placentas in UNPost and UNB ewes than placentas of control ewes (P < 0.05). Overall results indicate that fetal and placental development of ewes carrying twins is mainly altered when nutritional restriction occurs simultaneously before conception and during the first third of pregnancy.
Collapse
Affiliation(s)
- Ulises Macías-Cruz
- Instituto de Ciencias Agrícolas, Universidad Autónoma de Baja California, 21705, Valle de Mexicali, Baja California, Mexico
| | - Ricardo Vicente-Pérez
- Instituto de Ciencias Agrícolas, Universidad Autónoma de Baja California, 21705, Valle de Mexicali, Baja California, Mexico
| | - Miguel Mellado
- Departamento de Nutrición Animal, Universidad Autónoma Agraria Antonio Narro, 25315, Saltillo, Coahuila, Mexico
| | - Abelardo Correa-Calderón
- Instituto de Ciencias Agrícolas, Universidad Autónoma de Baja California, 21705, Valle de Mexicali, Baja California, Mexico
| | - Cesar A Meza-Herrera
- Unidad Regional Universitaria de Zonas Áridas, Universidad Autónoma Chapingo, 35230, Bermejillo, Durango, Mexico
| | - Leonel Avendaño-Reyes
- Instituto de Ciencias Agrícolas, Universidad Autónoma de Baja California, 21705, Valle de Mexicali, Baja California, Mexico.
| |
Collapse
|
9
|
Haffaf S, Benallou B. Changes in energetic profile of pregnant ewes in relation with the composition of the fetal fluids. Asian Pac J Trop Biomed 2016. [DOI: 10.1016/j.apjtb.2015.11.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
10
|
Yair R, Shahar R, Uni Z. In ovo feeding with minerals and vitamin D3 improves bone properties in hatchlings and mature broilers. Poult Sci 2016; 94:2695-707. [PMID: 26500269 DOI: 10.3382/ps/pev252] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The objective of this study was to examine the effect of in ovo feeding (IOF) with inorganic minerals or organic minerals and vitamin D3 on bone properties and mineral consumption. Eggs were incubated and divided into 4 groups: IOF with organic minerals, phosphate, and vitamin D3 (IOF-OMD); IOF with inorganic minerals and phosphate (IOF-IM); sham; and non-treated controls (NTC). IOF was performed on embryonic day (E) 17; tibiae and yolk samples were taken on E19 and E21. Post-hatch, only chicks from the IOF-OMD, sham, and NTC were raised, and tibiae were taken on d 10 and 38. Yolk mineral content was examined by inductively coupled plasma spectroscopy. Tibiae were tested for their whole-bone mechanical properties, and mid-diaphysis bone sections were indented in a micro-indenter to determine bone material stiffness (Young's modulus). Micro-computed tomography (μCT) was used to examine cortical and trabecular bone structure. Ash content analysis was used to examine bone mineralization. A latency-to-lie (LTL) test was used to measure standing ability of the d 38 broilers. The results showed that embryos from both IOF-OMD and IOF-IM treatments had elevated Cu, Mn, and Zn amounts in the yolk on E19 and E21 and consumed more of these minerals (between E19 and E21) in comparison to the sham and NTC. On E21, these hatchlings had higher whole-bone stiffness in comparison to the NTC. On d 38, the IOF-OMD had higher ash content, elevated whole-bone stiffness, and elevated Young's modulus (in males) in comparison to the sham and NTC; however, no differences in standing ability were found. Very few structural differences were seen during the whole experiment. This study demonstrates that mineral supplementation by in ovo feeding is sufficient to induce higher mineral consumption from the yolk, regardless of its chemical form or the presence of vitamin D3. Additionally, IOF with organic minerals and vitamin D3 can increase bone ash content, as well as stiffness of the whole bone and bone material in the mature broiler, but does not lead to longer LTL.
Collapse
Affiliation(s)
- R Yair
- The Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot, Israel Department of Animal Science, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot, Israel
| | - R Shahar
- The Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot, Israel
| | - Z Uni
- Department of Animal Science, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot, Israel
| |
Collapse
|
11
|
Nicholas LM, Morrison JL, Rattanatray L, Zhang S, Ozanne SE, McMillen IC. The early origins of obesity and insulin resistance: timing, programming and mechanisms. Int J Obes (Lond) 2016; 40:229-38. [PMID: 26367335 DOI: 10.1038/ijo.2015.178] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 08/06/2015] [Accepted: 08/13/2015] [Indexed: 02/07/2023]
Abstract
Maternal obesity is associated with an increased risk of developing gestational diabetes mellitus and it also results in an increased risk of giving birth to a large baby with increased fat mass. Furthermore, it is also contributes to an increased risk of obesity and insulin resistance in the offspring in childhood, adolescence and adult life. It has been proposed that exposure to maternal obesity may therefore result in an 'intergenerational cycle' of obesity and insulin resistance. There is significant interest in whether exposure to maternal obesity around the time of conception alone contributes directly to poor metabolic outcomes in the offspring and whether dieting in the obese mother before pregnancy or around the time of conception has metabolic benefits for the offspring. This review focusses on experimental and clinical studies that have investigated the specific impact of exposure to maternal obesity during the periconceptional period alone or extending beyond conception on adipogenesis, lipogenesis and on insulin signalling pathways in the fat, liver and muscle of the offspring. Findings from these studies highlight the need for a better evidence base for the development of dietary interventions in obese women before pregnancy and around the time of conception to maximize the metabolic benefits and minimize the metabolic costs for the next generation.
Collapse
Affiliation(s)
- L M Nicholas
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
| | - J L Morrison
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
| | - L Rattanatray
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia.,Discipline of Physiology, School of Molecular and Life Sciences, University of Adelaide, Adelaide, SA, Australia
| | - S Zhang
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
| | - S E Ozanne
- Department of Clinical Biochemistry, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - I C McMillen
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia.,The Chancellery, University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
12
|
Velazquez MA. Impact of maternal malnutrition during the periconceptional period on mammalian preimplantation embryo development. Domest Anim Endocrinol 2015; 51:27-45. [PMID: 25498236 DOI: 10.1016/j.domaniend.2014.10.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 10/27/2014] [Accepted: 10/28/2014] [Indexed: 02/07/2023]
Abstract
During episodes of undernutrition and overnutrition the mammalian preimplantation embryo undergoes molecular and metabolic adaptations to cope with nutrient deficits or excesses. Maternal adaptations also take place to keep a nutritional microenvironment favorable for oocyte development and embryo formation. This maternal-embryo communication takes place via several nutritional mediators. Although adaptive responses to malnutrition by both the mother and the embryo may ensure blastocyst formation, the resultant quality of the embryo can be compromised, leading to early pregnancy failure. Still, studies have shown that, although early embryonic mortality can be induced during malnutrition, the preimplantation embryo possesses an enormous plasticity that allows it to implant and achieve a full-term pregnancy under nutritional stress, even in extreme cases of malnutrition. This developmental strategy, however, may come with a price, as shown by the adverse developmental programming induced by even subtle nutritional challenges exerted exclusively during folliculogenesis and the preimplantation period, resulting in offspring with a higher risk of developing deleterious phenotypes in adulthood. Overall, current evidence indicates that malnutrition during the periconceptional period can induce cellular and molecular alterations in preimplantation embryos with repercussions for fertility and postnatal health.
Collapse
Affiliation(s)
- M A Velazquez
- Centre for Biological Sciences, University of Southampton, Southampton General Hospital, Southampton, UK.
| |
Collapse
|
13
|
|
14
|
Matusiak K, Barrett HL, Callaway LK, Nitert MD. Periconception weight loss: common sense for mothers, but what about for babies? J Obes 2014; 2014:204295. [PMID: 24804085 PMCID: PMC3996361 DOI: 10.1155/2014/204295] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 03/03/2014] [Indexed: 01/21/2023] Open
Abstract
Obesity in the childbearing population is increasingly common. Obesity is associated with increased risk for a number of maternal and neonatal pregnancy complications. Some of these complications, such as gestational diabetes, are risk factors for long-term disease in both mother and baby. While clinical practice guidelines advocate for healthy weight prior to pregnancy, there is not a clear directive for achieving healthy weight before conception. There are known benefits to even moderate weight loss prior to pregnancy, but there are potential adverse effects of restricted nutrition during the periconceptional period. Epidemiological and animal studies point to differences in offspring conceived during a time of maternal nutritional restriction. These include changes in hypothalamic-pituitary-adrenal axis function, body composition, glucose metabolism, and cardiovascular function. The periconceptional period is therefore believed to play an important role in programming offspring physiological function and is sensitive to nutritional insult. This review summarizes the evidence to date for offspring programming as a result of maternal periconception weight loss. Further research is needed in humans to clearly identify benefits and potential risks of losing weight in the months before conceiving. This may then inform us of clinical practice guidelines for optimal approaches to achieving a healthy weight before pregnancy.
Collapse
Affiliation(s)
- Kristine Matusiak
- School of Medicine, The University of Queensland, 288 Herston Road, Herston, QLD 4006, Australia
| | - Helen L. Barrett
- School of Medicine, The University of Queensland, 288 Herston Road, Herston, QLD 4006, Australia
- The UQ Centre for Clinical Research, The University of Queensland, RBWH Campus, Butterfield Street, Herston, QLD 4029, Australia
- The Royal Brisbane and Women's Hospital, Butterfield Street, Herston, QLD 4029, Australia
| | - Leonie K. Callaway
- School of Medicine, The University of Queensland, 288 Herston Road, Herston, QLD 4006, Australia
- The Royal Brisbane and Women's Hospital, Butterfield Street, Herston, QLD 4029, Australia
| | - Marloes Dekker Nitert
- School of Medicine, The University of Queensland, 288 Herston Road, Herston, QLD 4006, Australia
- The UQ Centre for Clinical Research, The University of Queensland, RBWH Campus, Butterfield Street, Herston, QLD 4029, Australia
| |
Collapse
|
15
|
Nicholas LM, Morrison JL, Rattanatray L, Ozanne SE, Kleemann DO, Walker SK, MacLaughlin SM, Zhang S, Martin-Gronert MS, McMillen IC. Differential effects of exposure to maternal obesity or maternal weight loss during the periconceptional period in the sheep on insulin signalling molecules in skeletal muscle of the offspring at 4 months of age. PLoS One 2013; 8:e84594. [PMID: 24386400 PMCID: PMC3873457 DOI: 10.1371/journal.pone.0084594] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Accepted: 11/25/2013] [Indexed: 11/19/2022] Open
Abstract
Exposure to maternal obesity before and/or throughout pregnancy may increase the risk of obesity and insulin resistance in the offspring in childhood and adult life, therefore, resulting in its transmission into subsequent generations. We have previously shown that exposure to maternal obesity around the time of conception alone resulted in increased adiposity in female lambs. Changes in the abundance of insulin signalling molecules in skeletal muscle and adipose tissue precede the development of insulin resistance and type 2 diabetes. It is not clear, however, whether exposure to maternal obesity results in insulin resistance in her offspring as a consequence of the impact of increased adiposity on skeletal muscle or as a consequence of the programming of specific changes in the abundance of insulin signalling molecules in this tissue. We have used an embryo transfer model in the sheep to investigate the effects of exposure to either maternal obesity or to weight loss in normal and obese mothers preceding and for one week after conception on the expression and abundance of insulin signalling molecules in muscle in the offspring. We found that exposure to maternal obesity resulted in lower muscle GLUT-4 and Ser 9 phospho-GSK3α and higher muscle GSK3α abundance in lambs when compared to lambs conceived in normally nourished ewes. Exposure to maternal weight loss in normal or obese mothers, however, resulted in lower muscle IRS1, PI3K, p110β, aPKCζ, Thr 642 phospho-AS160 and GLUT-4 abundance in the offspring. In conclusion, maternal obesity or weight loss around conception have each programmed specific changes on subsets of molecules in the insulin signalling, glucose transport and glycogen synthesis pathways in offspring. There is a need for a stronger evidence base to ensure that weight loss regimes in obese women seeking to become pregnant minimize the metabolic costs for the next generation.
Collapse
Affiliation(s)
- Lisa M. Nicholas
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Janna L. Morrison
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Leewen Rattanatray
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
- Discipline of Physiology, School of Molecular and Life Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Susan E. Ozanne
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Dave O. Kleemann
- Turretfield Research Centre, South Australian Research and Development Institute, Rosedale, South Australia, Australia
| | - Simon K. Walker
- Turretfield Research Centre, South Australian Research and Development Institute, Rosedale, South Australia, Australia
| | - Severence M. MacLaughlin
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Song Zhang
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Malgorzata S. Martin-Gronert
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Isabella C. McMillen
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
- *
| |
Collapse
|
16
|
Nicholas LM, Rattanatray L, MacLaughlin SM, Ozanne SE, Kleemann DO, Walker SK, Morrison JL, Zhang S, Muhlhäusler BS, Martin-Gronert MS, McMillen IC. Differential effects of maternal obesity and weight loss in the periconceptional period on the epigenetic regulation of hepatic insulin-signaling pathways in the offspring. FASEB J 2013; 27:3786-96. [PMID: 23729590 DOI: 10.1096/fj.13-227918] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Our aim was to determine the effect of exposure to maternal obesity or to maternal weight loss around conception on the programming of hepatic insulin signaling in the offspring. We used an embryo transfer model in sheep to investigate the effects of exposure to either maternal obesity or to weight loss in normal and obese mothers preceding and for 1 wk after conception on the expression of hepatic insulin-signaling and gluconeogenic factors and key miRNAs involved in insulin signaling in the offspring. We found that exposure to maternal obesity resulted in increased hepatic miR-29b (P<0.05), miR-103 (P<0.01), and miR-107 (P<0.05) expression, a decrease in IR (P<0.05), phopsho-Akt (P<0.01), and phospho-FoxO1 (P<0.01) abundance, and a paradoxical decrease in 11βHSD1 (P<0.05), PEPCK-C (P<0.01), and PEPCK-M (P<0.05) expression in lambs. These changes were ablated by a period of moderate dietary restriction imposed during the periconceptional period. Maternal dietary restriction alone also resulted in decreased abundance of a separate subset of hepatic insulin-signaling molecules, namely, IRS1 (P<0.05), PDK1 (P<0.01), phospho-PDK1 (P<0.05), and aPKCζ (P<0.05) and in decreased PEPCK-C (P<0.01) and G6Pase (P<0.01) expression in the lamb. Our findings highlight the sensitivity of the epigenome to maternal nutrition around conception and the need for dietary interventions that maximize metabolic benefits and minimize metabolic costs for the next generation.
Collapse
Affiliation(s)
- Lisa M Nicholas
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Dowling D, McAuliffe FM. The molecular mechanisms of offspring effects from obese pregnancy. Obes Facts 2013; 6:134-45. [PMID: 23571656 PMCID: PMC5644678 DOI: 10.1159/000350706] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 06/29/2012] [Indexed: 11/19/2022] Open
Abstract
The incidence of obesity, increased weight gain and the popularity of high-fat / high-sugar diets are seriously impacting upon the global population. Billions of individuals are affected, and although diet and lifestyle are of paramount importance to the development of adult obesity, compelling evidence is emerging which suggests that maternal obesity and related disorders may be passed on to the next generation by non-genetic means. The processes acting within the uteri of obese mothers may permanently predispose offspring to a diverse plethora of diseases ranging from obesity and diabetes to psychiatric disorders. This review aims to summarise some of the molecular mechanisms and active processes currently known about maternal obesity and its effect on foetal and neonatal physiology and metabolism. Complex and multifactorial networks of molecules are intertwined and culminate in a pathologically synergistic manner to cause disruption and disorganisation of foetal physiology. This altered phenotype may potentiate the cycle of intergenerational transmission of obesity and related disorders.
Collapse
Affiliation(s)
| | - Fionnuala M. McAuliffe
- *Prof. Dr. Fionnuala M. McAuliffe, UCD Obstetrics & Gynaecology, School of Medicine and Medical Science, University College Dublin, National Maternity Hospital, Dublin 2 (Ireland),
| |
Collapse
|
18
|
Abstract
The oocyte is at the center of the equation that results in female fertility. Many factors influence oocyte quality, including external factors such as maternal nutrition, stress, and environmental exposures, as well as ovarian factors such as steroids, intercellular communication, antral follicle count, and follicular fluid composition. These influences are interconnected; changes in the external environment of the female translate into ovarian changes that affect the oocyte. The lengthy period during which the oocyte remains arrested in the ovary provides ample time and opportunity for environmental factors to take their toll. An appropriate environment for growth and maturation of the oocyte, in vivo and in vitro, is critical to ensure optimal oocyte quality, which determines the success of fertilization and preimplantation embryo development, and has long-term implications for implantation, fetal growth, and offspring health.
Collapse
Affiliation(s)
- Rebecca L Krisher
- National Foundation for Fertility Research, Lone Tree, Colorado 80124;
| |
Collapse
|
19
|
Periconceptional undernutrition in sheep affects adult phenotype only in males. J Nutr Metab 2012; 2012:123610. [PMID: 23091706 PMCID: PMC3468125 DOI: 10.1155/2012/123610] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 08/27/2012] [Indexed: 11/18/2022] Open
Abstract
Periconceptional undernutrition (PCUN) in sheep alters fetal growth and metabolism and postnatal growth regulation, but effects on adult body composition are unknown. We investigated the effects of PCUN on adult phenotype. Singleton lambs of ewes fed normally (N, n = 17) or undernourished before (UN-61-0 d, n = 23), before and after (UN-61-30 d, n = 19), or after (UN-2-30d, n = 17) mating (d0) were weighed at birth, 12 weeks, and intermittently to adulthood. At the age of 3-4 years, body composition was assessed by dual-emission X-ray absorptiometry followed by postmortem examination. Compared with N animals, male, but not female, offspring of all UN groups had greater % fat mass (all UN versus N: 9 ± 1 versus 2 ± 1%, P < 0.001) and perirenal fat (544 ± 36 versus 222 ± 44 g, P = 0.002), and proportionately smaller hearts (4.5 ± 0.1 versus 5.2 ± 0.2 g·kg(-1)), lungs (9.1 ± 0.2 versus 10.6 ± 0.5 g·kg(-1)), and adrenals (0.06 ± 0.002 versus 0.08 ± 0.003 g·kg(-1)). UN males also had larger testes (726 ± 21 versus 545 ± 32 g, P = 0.007), but UN females had smaller ovaries (2.7 ± 0.08 versus 3.4 ± 0.4 g, P = 0.01). Changes were independent of birth weight or postnatal growth velocity. Brief PCUN has sex-specific effects on adult phenotype, predominantly affecting males, which may contribute to adverse metabolic outcomes.
Collapse
|
20
|
Maternal nutrient intakes and levels of energy underreporting during early pregnancy. Eur J Clin Nutr 2012; 66:906-13. [DOI: 10.1038/ejcn.2012.15] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|