1
|
Elieh-Ali-Komi D, Shafaghat F, Alipoor SD, Kazemi T, Atiakshin D, Pyatilova P, Maurer M. Immunomodulatory Significance of Mast Cell Exosomes (MC-EXOs) in Immune Response Coordination. Clin Rev Allergy Immunol 2025; 68:20. [PMID: 39976807 PMCID: PMC11842441 DOI: 10.1007/s12016-025-09033-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2025] [Indexed: 02/23/2025]
Abstract
Mast cells (MCs) communicate with other cells by direct cell-to-cell interaction, secreting mediators, and releasing exosomes (EXOs). MC-exosomes (MC-EXOs) contain proteins, lipids, mRNAs, and noncoding RNAs (ncRNAs), exhibit typical EXO markers such as heat shock proteins, tetraspanins, tumor susceptibility gene 101 protein (TSG101), and ALG-2-interacting protein X (ALIX), and are released constitutively or following MC degranulation. MC-EXOs also have signature MC markers like FcεRI and KIT (CD117), which allows for their identification and comparison with other EXO populations. Following their release, MC-EXOs may interact with the recipient cell(s) directly or be internalized and then release their protein and nucleic acid content. This may contribute to the regulation of immune responses and other biological processes and reprogramming of recipient cells. MC-EXO proteins may integrate and become a functional part of the recipient cell membrane. The mRNA transferred by MC-EXOs is functional and the transfer of exosomal RNA to other MCs results in the expression of donor MC proteins in the recipient MCs. Moreover, MCs may function as the recipients of EXOs that are released by other non-immune and immune cells, altering the secretome of MCs. In this review, we focus on how MC-EXOs modulate the biology of other cells and vice versa; and we highlight the role of MC-EXOs in the pathogenesis of allergic and non-allergic diseases.
Collapse
Affiliation(s)
- Daniel Elieh-Ali-Komi
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany.
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany.
| | - Farzaneh Shafaghat
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shamila D Alipoor
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Tohid Kazemi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dmitrii Atiakshin
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultra-Structural Analysis Innovative Technologies, Peoples' Friendship University of Russia, 6 Miklukho-Maklaya St, 117198, Moscow, Russia
- Research Institute of Experimental Biology and Medicine, Burdenko Voronezh State Medical University, 394036, Voronezh, Russia
| | - Polina Pyatilova
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Marcus Maurer
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| |
Collapse
|
2
|
Wang Y, Li D, Yan Z, Shi D. Immunoglobulin E, the potential accelerator of comorbid psoriasis and atherosclerosis. Biomed Pharmacother 2025; 183:117860. [PMID: 39848109 DOI: 10.1016/j.biopha.2025.117860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/12/2025] [Accepted: 01/18/2025] [Indexed: 01/25/2025] Open
Abstract
Immunoglobulin (Ig) E is a key mediator in the induction and maintenance of allergic inflammation, characterized by a Th2-dominated immune response. Recently epidemiological studies have showed that elevated serum total IgE levels or an increased abundance of mast cells (MCs) at the lesion site are observed in psoriatic patients with cardiovascular diseases (CVD), such as atherosclerosis. Although the underlying mechanisms by which IgE synergizing with MCs in promoting these chronic immune-inflammatory diseases remain unclear, the interleukin (IL)-23/IL-17 axis appears to play a crucial role in comorbidity of psoriasis and atherosclerosis. High IgE production may result from IL-17A response, further exacerbating inflammatory pathways involved in both psoriasis and atherosclerosis. This review explores the possible mechanisms of IgE in these comorbid conditions, reinforcing the rationale for IL-17A targeted biologics in the treatment of psoriasis and atherosclerosis comorbidity. Additionally, IgE is proposed as a potential therapeutic target for alleviating patients suffering from these comorbidity conditions.
Collapse
Affiliation(s)
- Yan Wang
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Dongmei Li
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington DC, United States
| | - Zhongrui Yan
- Department of Neurology, Jining No.1 People's Hospital affiliated to Shandong First Medical University, Jining, Shandong, China.
| | - Dongmei Shi
- Laboratory of Medical Mycology & Department of Dermatology, Jining No.1 People's Hospital affiliated to Shandong First Medical University, Jining, Shandong, China.
| |
Collapse
|
3
|
Elieh-Ali-Komi D, Bot I, Rodríguez-González M, Maurer M. Cellular and Molecular Mechanisms of Mast Cells in Atherosclerotic Plaque Progression and Destabilization. Clin Rev Allergy Immunol 2024; 66:30-49. [PMID: 38289515 DOI: 10.1007/s12016-024-08981-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2024] [Indexed: 03/28/2024]
Abstract
Mast cells (MCs) are commonly recognized for their crucial involvement in the pathogenesis of allergic diseases, but over time, it has come to light that they also play a role in the pathophysiology of non-allergic disorders including atherosclerosis. The involvement of MCs in the pathology of atherosclerosis is supported by their accumulation in atherosclerotic plaques upon their progression and the association of intraplaque MC numbers with acute cardiovascular events. MCs that accumulate within the atherosclerotic plaque release a cocktail of mediators through which they contribute to neovascularization, plaque progression, instability, erosion, rupture, and thrombosis. At a molecular level, MC-released proteases, especially cathepsin G, degrade low-density lipoproteins (LDL) and mediate LDL fusion and binding of LDL to proteoglycans (PGs). Through a complicated network of chemokines including CXCL1, MCs promote the recruitment of among others CXCR2+ neutrophils, therefore, aggravating the inflammation of the plaque environment. Additionally, MCs produce extracellular traps which worsen inflammation and contribute to atherothrombosis. Altogether, evidence suggests that MCs actively, via several underlying mechanisms, contribute to atherosclerotic plaque destabilization and acute cardiovascular syndromes, thus, making the study of interventions to modulate MC activation an interesting target for cardiovascular medicine.
Collapse
Affiliation(s)
- Daniel Elieh-Ali-Komi
- Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Ilze Bot
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | | | - Marcus Maurer
- Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany.
| |
Collapse
|
4
|
Dileepan KN, Raveendran VV, Sharma R, Abraham H, Barua R, Singh V, Sharma R, Sharma M. Mast cell-mediated immune regulation in health and disease. Front Med (Lausanne) 2023; 10:1213320. [PMID: 37663654 PMCID: PMC10470157 DOI: 10.3389/fmed.2023.1213320] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/17/2023] [Indexed: 09/05/2023] Open
Abstract
Mast cells are important components of the immune system, and they perform pro-inflammatory as well as anti-inflammatory roles in the complex process of immune regulation in health and disease. Because of their strategic perivascular localization, sensitivity and adaptability to the microenvironment, and ability to release a variety of preformed and newly synthesized effector molecules, mast cells perform unique functions in almost all organs. Additionally, Mast cells express a wide range of surface and cytoplasmic receptors which enable them to respond to a variety of cytokines, chemicals, and pathogens. The mast cell's role as a cellular interface between external and internal environments as well as between vasculature and tissues is critical for protection and repair. Mast cell interactions with different immune and nonimmune cells through secreted inflammatory mediators may also turn in favor of disease promoting agents. First and forefront, mast cells are well recognized for their multifaceted functions in allergic diseases. Reciprocal communication between mast cells and endothelial cells in the presence of bacterial toxins in chronic/sub-clinical infections induce persistent vascular inflammation. We have shown that mast cell proteases and histamine induce endothelial inflammatory responses that are synergistically amplified by bacterial toxins. Mast cells have been shown to exacerbate vascular changes in normal states as well as in chronic or subclinical infections, particularly among cigarette smokers. Furthermore, a potential role of mast cells in SARS-CoV-2-induced dysfunction of the capillary-alveolar interface adds to the growing understanding of mast cells in viral infections. The interaction between mast cells and microglial cells in the brain further highlights their significance in neuroinflammation. This review highlights the significant role of mast cells as the interface that acts as sensor and early responder through interactions with cells in systemic organs and the nervous system.
Collapse
Affiliation(s)
- Kottarappat N. Dileepan
- Division of Allergy, Clinical Immunology and Rheumatology, Department of Medicine, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Vineesh V. Raveendran
- Division of Allergy, Clinical Immunology and Rheumatology, Department of Medicine, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Rishi Sharma
- Department of Medicine, School of Medicine, University of Missouri, Kansas City, MO, United States
| | - Harita Abraham
- Division of Allergy, Clinical Immunology and Rheumatology, Department of Medicine, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Rajat Barua
- Cardiology Section, Kansas City Veterans Affairs Medical Center, Kansas City, MO, United States
| | - Vikas Singh
- Neurology Section, Kansas City Veterans Affairs Medical Center, Kansas City, MO, United States
| | - Ram Sharma
- Research and Development Service, Kansas City Veterans Affairs Medical Center, Kansas City, MO, United States
| | - Mukut Sharma
- Research and Development Service, Kansas City Veterans Affairs Medical Center, Kansas City, MO, United States
- Midwest Veterans’ Biomedical Research Foundation (MVBRF), Kansas City VA Medical Center, Kansas, MO, United States
| |
Collapse
|
5
|
Fernández-Gallego N, Castillo-González R, Méndez-Barbero N, López-Sanz C, Obeso D, Villaseñor A, Escribese MM, López-Melgar B, Salamanca J, Benedicto-Buendía A, Jiménez-Borreguero LJ, Ibañez B, Sastre J, Belver MT, Vega F, Blanco C, Barber D, Sánchez-Madrid F, de la Fuente H, Martín P, Esteban V, Jiménez-Saiz R. The impact of type 2 immunity and allergic diseases in atherosclerosis. Allergy 2022; 77:3249-3266. [PMID: 35781885 DOI: 10.1111/all.15426] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/22/2022] [Accepted: 06/28/2022] [Indexed: 01/28/2023]
Abstract
Allergic diseases are allergen-induced immunological disorders characterized by the development of type 2 immunity and IgE responses. The prevalence of allergic diseases has been on the rise alike cardiovascular disease (CVD), which affects arteries of different organs such as the heart, the kidney and the brain. The underlying cause of CVD is often atherosclerosis, a disease distinguished by endothelial dysfunction, fibrofatty material accumulation in the intima of the artery wall, smooth muscle cell proliferation, and Th1 inflammation. The opposed T-cell identity of allergy and atherosclerosis implies an atheroprotective role for Th2 cells by counteracting Th1 responses. Yet, the clinical association between allergic disease and CVD argues against it. Within, we review different phases of allergic pathology, basic immunological mechanisms of atherosclerosis and the clinical association between allergic diseases (particularly asthma, atopic dermatitis, allergic rhinitis and food allergy) and CVD. Then, we discuss putative atherogenic mechanisms of type 2 immunity and allergic inflammation including acute allergic reactions (IgE, IgG1, mast cells, macrophages and allergic mediators such as vasoactive components, growth factors and those derived from the complement, contact and coagulation systems) and late phase inflammation (Th2 cells, eosinophils, type 2 innate-like lymphoid cells, alarmins, IL-4, IL-5, IL-9, IL-13 and IL-17).
Collapse
Affiliation(s)
- Nieves Fernández-Gallego
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Department of Immunology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Raquel Castillo-González
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Department of Immunology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Department of Pathology, Hospital 12 de Octubre, Madrid, Spain
| | - Nerea Méndez-Barbero
- Vascular Research Laboratory, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Celia López-Sanz
- Department of Immunology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - David Obeso
- Department of Basic Medical Sciences, Faculty of Medicine, Institute of Applied Molecular Medicine Nemesio Díez (IMMA), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
- Department of Chemistry and Biochemistry, Faculty of Pharmacy, Centre for Metabolomics and Bioanalysis (CEMBIO), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Alma Villaseñor
- Department of Basic Medical Sciences, Faculty of Medicine, Institute of Applied Molecular Medicine Nemesio Díez (IMMA), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
- Department of Chemistry and Biochemistry, Faculty of Pharmacy, Centre for Metabolomics and Bioanalysis (CEMBIO), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - María M Escribese
- Department of Basic Medical Sciences, Faculty of Medicine, Institute of Applied Molecular Medicine Nemesio Díez (IMMA), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Beatriz López-Melgar
- Department of Cardiology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Madrid, Spain
| | - Jorge Salamanca
- Department of Cardiology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Madrid, Spain
| | - Amparo Benedicto-Buendía
- Department of Cardiology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Madrid, Spain
| | - Luis Jesús Jiménez-Borreguero
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
- Department of Cardiology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Madrid, Spain
| | - Borja Ibañez
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
- Myocardial Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Department of Cardiology, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Joaquín Sastre
- Department of Allergy and Immunology, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - María Teresa Belver
- Department of Allergy, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Madrid, Spain
| | - Francisco Vega
- Department of Allergy, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Madrid, Spain
| | - Carlos Blanco
- Department of Allergy, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Madrid, Spain
| | - Domingo Barber
- Department of Basic Medical Sciences, Faculty of Medicine, Institute of Applied Molecular Medicine Nemesio Díez (IMMA), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Francisco Sánchez-Madrid
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Department of Immunology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Hortensia de la Fuente
- Department of Immunology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Pilar Martín
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Vanesa Esteban
- Department of Allergy and Immunology, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Faculty of Medicine and Biomedicine, Universidad Alfonso X El Sabio, Madrid, Spain
| | - Rodrigo Jiménez-Saiz
- Department of Immunology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB)-CSIC, Madrid, Spain
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria (UFV), Madrid, Spain
- Department of Medicine, McMaster Immunology Research Centre (MIRC), McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
6
|
Oliveira MS, da Silva Torquato BG, Tsuji SY, Aguiar LS, Juliano GR, da Silveira LAM, Miranda Corrêa RR, Rocha LB, da Fonseca Ferraz ML. Morphological and Histopathological Study of Autopsied Patients with Atherosclerosis and HIV. Curr HIV Res 2021; 19:121-127. [PMID: 33135614 DOI: 10.2174/1570162x18999201029123356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/18/2020] [Accepted: 10/02/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Chronic infection by HIV evolves with a vascular inflammatory action causing endothelial dysfunction. The action of the virus, as well as the side effects of antiretroviral drugs, contribute to the progression of cardiovascular diseases. The present study aimed to evaluate the percentage of collagen fibers and the density of mast cells, chymase and tryptase, in aortas of patients with and without HIV, and also patients with and without atherosclerosis. METHODS Aortic fragments were obtained from autopsied patients aged 22-69 years and selected regardless of the cause of death or underlying disease. The samples were divided into four groups, (1) Group with HIV and with atherosclerosis; (2) Group with HIV and without atherosclerosis; (3) Group without HIV and with atherosclerosis; (4) Group without HIV and without atherosclerosis (Control). The percentage of collagen fibers was analyzed in the intima-media layer and the density of mast cells was analyzed in all aortic layers. Graphpad Prism 5.0® software was used for statistical analysis. RESULTS There were more collagen fibers in HIV patients, with or without atherosclerosis. The group with HIV and atherosclerosis presented a higher density of chymase and tryptase mast cells. The correlation between collagen fibers and age was negative in the non-HIV group and with atherosclerosis. CONCLUSION The inflammatory process resulting from HIV infection may be relevant in the alteration of aortic collagen fibers and in triggering or accelerating atherosclerosis. The study is important because HIV patients have increased risks for the development of cardiovascular diseases, and follow-up is necessary to prevent such diseases.
Collapse
Affiliation(s)
- Mariana Silva Oliveira
- General Pathology Department, Triângulo Mineiro Federal University, St: Frei Paulino, 30. Zip Code: 38025-180, Uberaba, Minas Gerais, Brazil
| | - Bianca Gonçalves da Silva Torquato
- General Pathology Department, Triângulo Mineiro Federal University, St: Frei Paulino, 30. Zip Code: 38025-180, Uberaba, Minas Gerais, Brazil
| | - Simone Yumi Tsuji
- General Pathology Department, Triângulo Mineiro Federal University, St: Frei Paulino, 30. Zip Code: 38025-180, Uberaba, Minas Gerais, Brazil
| | - Laura Sanches Aguiar
- General Pathology Department, Triângulo Mineiro Federal University, St: Frei Paulino, 30. Zip Code: 38025-180, Uberaba, Minas Gerais, Brazil
| | - Guilherme Ribeiro Juliano
- General Pathology Department, Triângulo Mineiro Federal University, St: Frei Paulino, 30. Zip Code: 38025-180, Uberaba, Minas Gerais, Brazil
| | - Luciano Alves Matias da Silveira
- General Pathology Department, Triângulo Mineiro Federal University, St: Frei Paulino, 30. Zip Code: 38025-180, Uberaba, Minas Gerais, Brazil
| | - Rosana Rosa Miranda Corrêa
- General Pathology Department, Triângulo Mineiro Federal University, St: Frei Paulino, 30. Zip Code: 38025-180, Uberaba, Minas Gerais, Brazil
| | - Lenaldo Branco Rocha
- General Pathology Department, Triângulo Mineiro Federal University, St: Frei Paulino, 30. Zip Code: 38025-180, Uberaba, Minas Gerais, Brazil
| | - Mara Lúcia da Fonseca Ferraz
- General Pathology Department, Triângulo Mineiro Federal University, St: Frei Paulino, 30. Zip Code: 38025-180, Uberaba, Minas Gerais, Brazil
| |
Collapse
|
7
|
Juliano GR, Skaf MF, Ramalho LS, Juliano GR, Torquato BGS, Oliveira MS, Oliveira FA, Espíndula AP, Cavellani CL, Teixeira VDPA, Ferraz MLDF. Analysis of mast cells and myocardial fibrosis in autopsied patients with hypertensive heart disease. Rev Port Cardiol 2020; 39:89-96. [PMID: 32205013 DOI: 10.1016/j.repc.2019.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 10/07/2019] [Accepted: 11/02/2019] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE To analyze the percentage of collagen fibers and mast cell density in the left ventricular myocardium of autopsied patients with and without hypertensive heart disease. METHODS Thirty fragments of left ventricular myocardium were obtained from individuals autopsied at the Clinical Hospital of the Federal University of Triângulo Mineiro (UFTM) in the period from 1987 to 2017. Individuals were divided into two groups: those with hypertensive heart disease (HD) and those with no heart disease (ND). Subjects were also assessed according to age, gender and race (white and non-white). Collagen fibers were quantified by computed morphometry and mast cell density was assessed by immunohistochemical methods. RESULTS There were significantly more collagen fibers in the left ventricle in the HD group than in the ND group (p<0.001). Mast cell density was significantly higher in the left ventricle of individuals with HD immunolabeled with anti-chymase and anti-tryptase antibodies (p=0.02) and also of those immunolabeled only with anti-tryptase antibodies (p=0.03). Analyzing the HD group, there was a significant positive correlation between the percentage of collagen fibers in the left ventricle and mast cell density immunolabeled by anti-chymase and anti-tryptase antibodies (p=0.04) and also mast cell density immunolabeled only with anti-tryptase antibodies (p=0.02). CONCLUSIONS Mast cells are involved in the development of hypertensive heart disease, contributing to the remodeling of collagen fibers in this disease.
Collapse
Affiliation(s)
- Guilherme Ribeiro Juliano
- General Pathology Department, Biological and Natural Sciences Institute (ICBN), Federal University of Triângulo Mineiro (UFTM), Uberaba, MG, Brazil.
| | - Mariana Fleury Skaf
- General Pathology Department, Biological and Natural Sciences Institute (ICBN), Federal University of Triângulo Mineiro (UFTM), Uberaba, MG, Brazil
| | - Luciana Santos Ramalho
- General Pathology Department, Biological and Natural Sciences Institute (ICBN), Federal University of Triângulo Mineiro (UFTM), Uberaba, MG, Brazil
| | - Gabriela Ribeiro Juliano
- General Pathology Department, Biological and Natural Sciences Institute (ICBN), Federal University of Triângulo Mineiro (UFTM), Uberaba, MG, Brazil
| | - Bianca Gonçalves Silva Torquato
- General Pathology Department, Biological and Natural Sciences Institute (ICBN), Federal University of Triângulo Mineiro (UFTM), Uberaba, MG, Brazil
| | - Mariana Silva Oliveira
- General Pathology Department, Biological and Natural Sciences Institute (ICBN), Federal University of Triângulo Mineiro (UFTM), Uberaba, MG, Brazil
| | - Flávia Aparecida Oliveira
- Institute of Tropical Pathology and Public Health (IPTSP), Federal University of Goiás (UFG), Goiânia, GO, Brazil
| | - Ana Paula Espíndula
- General Pathology Department, Biological and Natural Sciences Institute (ICBN), Federal University of Triângulo Mineiro (UFTM), Uberaba, MG, Brazil
| | - Camila Lourencini Cavellani
- General Pathology Department, Biological and Natural Sciences Institute (ICBN), Federal University of Triângulo Mineiro (UFTM), Uberaba, MG, Brazil
| | - Vicente de Paula Antunes Teixeira
- General Pathology Department, Biological and Natural Sciences Institute (ICBN), Federal University of Triângulo Mineiro (UFTM), Uberaba, MG, Brazil
| | - Mara Lúcia da Fonseca Ferraz
- General Pathology Department, Biological and Natural Sciences Institute (ICBN), Federal University of Triângulo Mineiro (UFTM), Uberaba, MG, Brazil
| |
Collapse
|
8
|
Juliano GR, Skaf MF, Ramalho LS, Juliano GR, Torquato BGS, Oliveira MS, Oliveira FA, Espíndula AP, Cavellani CL, Teixeira VDPA, Ferraz MLDF. Analysis of mast cells and myocardial fibrosis in autopsied patients with hypertensive heart disease. REVISTA PORTUGUESA DE CARDIOLOGIA (ENGLISH EDITION) 2020. [DOI: 10.1016/j.repce.2020.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
9
|
Olivera A, Rivera J. Paradigm Shifts in Mast Cell and Basophil Biology and Function: An Emerging View of Immune Regulation in Health and Disease. Methods Mol Biol 2020; 2163:3-31. [PMID: 32766962 DOI: 10.1007/978-1-0716-0696-4_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The physiological role of the mast cell and basophil has for many years remained enigmatic. In this chapter, we briefly summarize some of the more recent studies that shed new light on the role of mast cells and basophils in health and disease. What we gain from these studies is a new appreciation for mast cells and basophils as sentinels in host defense and a further understanding that dysregulation of mast cell and basophil function can be a component of various diseases other than allergies. Perhaps the most important insight reaped from this work is the increasing awareness that mast cells and basophils can function as immunoregulatory cells that modulate the immune response in health and disease. Collectively, the recent knowledge provides new challenges and opportunities toward the development of novel therapeutic strategies to augment host protection and modify disease through manipulation of mast cell and basophil function.
Collapse
Affiliation(s)
- Ana Olivera
- Molecular Immunology Section, Laboratory of Molecular Immunogenetics, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA.
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD, USA.
| | - Juan Rivera
- Molecular Immunology Section, Laboratory of Molecular Immunogenetics, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
10
|
Abstract
Inflammation is an important player both for the initiation and progression of coronary artery disease and for coronary plaque instability. Moreover, inflammation contributes to stent thrombosis and in-stent restenosis after percutaneous coronary intervention. In the past several decades, most studies evaluated the involvement of cellular effectors of classic inflammatory responses, such as monocytes/macrophages, neutrophils, and T cells. Yet, besides classic inflammation, mounting evidence derived from both experimental and clinical studies suggests an important, often unrecognized, role for effector cells of allergic inflammation in both the pathogenesis of coronary artery disease and adverse events following stent implantation. In this review, we discuss the role of effector cells of allergic inflammation in the setting of coronary artery disease progression and instability, and in the occurrence of adverse events following stent implantation, as well. Moreover, we discuss possible therapeutic approaches targeting different specific pathways of allergic inflammatory activation.
Collapse
Affiliation(s)
- Giampaolo Niccoli
- Giampaolo Niccoli and Filippo Crea: Dipartimento di Scienze Cardiovascolari eToraciche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italia (G.N., F.C.).,Università Cattolica del Sacro Cuore, Roma, Italia (G.N., F.C.)
| | - Rocco A Montone
- Department of Cardiovascular and Thoracic Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University of the Sacred Heart, Rome, Italy (R.A.M.)
| | - Vito Sabato
- Immunology-Allergology-Rheumatology, University of Antwerp and Antwerp University Hospital, Belgium (V.S.)
| | - Filippo Crea
- Giampaolo Niccoli and Filippo Crea: Dipartimento di Scienze Cardiovascolari eToraciche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italia (G.N., F.C.).,Università Cattolica del Sacro Cuore, Roma, Italia (G.N., F.C.)
| |
Collapse
|
11
|
Mohajeri M, Kovanen PT, Bianconi V, Pirro M, Cicero AFG, Sahebkar A. Mast cell tryptase - Marker and maker of cardiovascular diseases. Pharmacol Ther 2019; 199:91-110. [PMID: 30877022 DOI: 10.1016/j.pharmthera.2019.03.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/01/2019] [Indexed: 12/14/2022]
Abstract
Mast cells are tissue-resident cells, which have been proposed to participate in various inflammatory diseases, among them the cardiovascular diseases (CVDs). For mast cells to be able to contribute to an inflammatory process, they need to be activated to exocytose their cytoplasmic secretory granules. The granules contain a vast array of highly bioactive effector molecules, the neutral protease tryptase being the most abundant protein among them. The released tryptase may act locally in the inflamed cardiac or vascular tissue, so contributing directly to the pathogenesis of CVDs. Moreover, a fraction of the released tryptase reaches the systemic circulation, thereby serving as a biomarker of mast cell activation. Actually, increased levels of circulating tryptase have been found to associate with CVDs. Here we review the biological relevance of the circulating tryptase as a biomarker of mast cell activity in CVDs, with special emphasis on the relationship between activation of mast cells in their tissue microenvironments and the pathophysiological pathways of CVDs. Based on the available in vitro and in vivo studies, we highlight the potential molecular mechanisms by which tryptase may contribute to the pathogenesis of CVDs. Finally, the synthetic and natural inhibitors of tryptase are reviewed for their potential utility as therapeutic agents in CVDs.
Collapse
Affiliation(s)
- Mohammad Mohajeri
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Vanessa Bianconi
- Unit of Internal Medicine, Department of Medicine, University of Perugia, Perugia, Italy
| | - Matteo Pirro
- Unit of Internal Medicine, Department of Medicine, University of Perugia, Perugia, Italy
| | - Arrigo F G Cicero
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
12
|
Flow Cytometry-Based Characterization of Mast Cells in Human Atherosclerosis. Cells 2019; 8:cells8040334. [PMID: 30970663 PMCID: PMC6523866 DOI: 10.3390/cells8040334] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/04/2019] [Accepted: 04/05/2019] [Indexed: 12/16/2022] Open
Abstract
The presence of mast cells in human atherosclerotic plaques has been associated with adverse cardiovascular events. Mast cell activation, through the classical antigen sensitized-IgE binding to their characteristic Fcε-receptor, causes the release of their cytoplasmic granules. These granules are filled with neutral proteases such as tryptase, but also with histamine and pro-inflammatory mediators. Mast cells accumulate in high numbers within human atherosclerotic tissue, particularly in the shoulder region of the plaque. These findings are largely based on immunohistochemistry, which does not allow for the extensive characterization of these mast cells and of the local mast cell activation mechanisms. In this study, we thus aimed to develop a new flow-cytometry based methodology in order to analyze mast cells in human atherosclerosis. We enzymatically digested 22 human plaque samples, collected after femoral and carotid endarterectomy surgery, after which we prepared a single cell suspension for flow cytometry. We were able to identify a specific mast cell population expressing both CD117 and the FcεR, and observed that most of the intraplaque mast cells were activated based on their CD63 protein expression. Furthermore, most of the activated mast cells had IgE fragments bound on their surface, while another fraction showed IgE-independent activation. In conclusion, we are able to distinguish a clear mast cell population in human atherosclerotic plaques, and this study establishes a strong relationship between the presence of IgE and the activation of mast cells in advanced atherosclerosis. Our data pave the way for potential therapeutic intervention through targeting IgE-mediated actions in human atherosclerosis.
Collapse
|
13
|
Kritikou E, van der Heijden T, Swart M, van Duijn J, Slütter B, Wezel A, Smeets HJ, Maffia P, Kuiper J, Bot I. Hypercholesterolemia Induces a Mast Cell-CD4 + T Cell Interaction in Atherosclerosis. THE JOURNAL OF IMMUNOLOGY 2019; 202:1531-1539. [PMID: 30683705 DOI: 10.4049/jimmunol.1800648] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 12/20/2018] [Indexed: 11/19/2022]
Abstract
Mast cells (MCs) are potent innate immune cells that aggravate atherosclerosis through the release of proinflammatory mediators inside atherosclerotic plaques. Similarly, CD4+ T cells are constituents of the adaptive immune response and accumulate within the plaques following lipid-specific activation by APCs. Recently it has been proposed that these two cell types can interact in a direct manner. However, no indication of such an interaction has been investigated in the context of atherosclerosis. In our study, we aimed to examine whether MCs can act as APCs in atherosclerosis, thereby modulating CD4+ T cell responses. We observed that MCs increased their MHC class II expression under hyperlipidemic conditions both in vivo and in vitro. Furthermore, we showed that MCs can present Ags in vivo via MHC class II molecules. Serum from high-fat diet-fed mice also enhanced the expression of the costimulatory molecule CD86 on cultured MCs, whereas OVA peptide-loaded MCs increased OT-II CD4+ T cell proliferation in vitro. The aortic CD4+ and TH1 cell content of atherosclerotic mice that lack MCs was reduced as compared with their wild-type counterparts. Importantly, we identified MCs that express HLA-DR in advanced human atheromata, indicating that these cells are capable of Ag presentation within human atherosclerotic plaques. Therefore, in this artice, we show that MCs may directly modulate adaptive immunity by acting as APCs in atherosclerosis.
Collapse
Affiliation(s)
- Eva Kritikou
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, 2300 RA Leiden, the Netherlands;
| | - Thomas van der Heijden
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, 2300 RA Leiden, the Netherlands
| | - Maarten Swart
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, 2300 RA Leiden, the Netherlands
| | - Janine van Duijn
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, 2300 RA Leiden, the Netherlands
| | - Bram Slütter
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, 2300 RA Leiden, the Netherlands
| | - Anouk Wezel
- Department of Surgery, Haaglanden Medical Center Westeinde, 2501 CK The Hague, the Netherlands
| | - Harm J Smeets
- Department of Surgery, Haaglanden Medical Center Westeinde, 2501 CK The Hague, the Netherlands
| | - Pasquale Maffia
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom.,Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom; and.,Department of Pharmacy, University of Naples Federico II, 80138 Naples, Italy
| | - Johan Kuiper
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, 2300 RA Leiden, the Netherlands
| | - Ilze Bot
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, 2300 RA Leiden, the Netherlands
| |
Collapse
|
14
|
Parton A, McGilligan V, Chemaly M, O’Kane M, Watterson S. New models of atherosclerosis and multi-drug therapeutic interventions. Bioinformatics 2018; 35:2449-2457. [DOI: 10.1093/bioinformatics/bty980] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 11/05/2018] [Accepted: 12/05/2018] [Indexed: 12/16/2022] Open
Abstract
Abstract
Motivation
Atherosclerosis is amongst the leading causes of death globally. However, it is challenging to study in vivo or in vitro and no detailed, openly-available computational models exist. Clinical studies hint that pharmaceutical therapy may be possible. Here, we develop the first detailed, computational model of atherosclerosis and use it to develop multi-drug therapeutic hypotheses.
Results
We assembled a network describing atheroma development from the literature. Maps and mathematical models were produced using the Systems Biology Graphical Notation and Systems Biology Markup Language, respectively. The model was constrained against clinical and laboratory data. We identified five drugs that together potentially reverse advanced atheroma formation.
Availability and implementation
The map is available in the Supplementary Material in SBGN-ML format. The model is available in the Supplementary Material and from BioModels, a repository of SBML models, containing CellDesigner markup.
Supplementary information
Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Andrew Parton
- Northern Ireland Centre for Stratified Medicine, School of Biomedical Sciences, Ulster University, Altnagelvin Hospital Campus, Derry, Co Londonderry, UK
| | - Victoria McGilligan
- Northern Ireland Centre for Stratified Medicine, School of Biomedical Sciences, Ulster University, Altnagelvin Hospital Campus, Derry, Co Londonderry, UK
| | - Melody Chemaly
- Northern Ireland Centre for Stratified Medicine, School of Biomedical Sciences, Ulster University, Altnagelvin Hospital Campus, Derry, Co Londonderry, UK
| | - Maurice O’Kane
- Western Health and Social Care Trust, Altnagelvin Hospital, Derry, Co Londonderry, UK
| | - Steven Watterson
- Northern Ireland Centre for Stratified Medicine, School of Biomedical Sciences, Ulster University, Altnagelvin Hospital Campus, Derry, Co Londonderry, UK
| |
Collapse
|
15
|
Soares MH, Oliveira MS, da Silva ACS, Torquato BGS, Juliano GR, Juliano GR, de Araújo MF, Cavellani CL, Oliveira LF, Ferraz MLF, de Paula Antunes Teixeira V. Study of atherosclerosis in abdominal aortic aneurysms of autopsied patients. Artery Res 2018. [DOI: 10.1016/j.artres.2018.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
16
|
Mast cell activation disease and the modern epidemic of chronic inflammatory disease. Transl Res 2016; 174:33-59. [PMID: 26850903 DOI: 10.1016/j.trsl.2016.01.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 01/07/2016] [Accepted: 01/08/2016] [Indexed: 12/18/2022]
Abstract
A large and growing portion of the human population, especially in developed countries, suffers 1 or more chronic, often quite burdensome ailments which either are overtly inflammatory in nature or are suspected to be of inflammatory origin, but for which investigations to date have failed to identify specific causes, let alone unifying mechanisms underlying the multiple such ailments that often afflict such patients. Relatively recently described as a non-neoplastic cousin of the rare hematologic disease mastocytosis, mast cell (MC) activation syndrome-suspected to be of greatly heterogeneous, complex acquired clonality in many cases-is a potential underlying/unifying explanation for a diverse assortment of inflammatory ailments. A brief review of MC biology and how aberrant primary MC activation might lead to such a vast range of illness is presented.
Collapse
|
17
|
Liu CL, Zhang JY, Shi GP. Interaction between allergic asthma and atherosclerosis. Transl Res 2016; 174:5-22. [PMID: 26608212 PMCID: PMC4826642 DOI: 10.1016/j.trsl.2015.09.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 09/25/2015] [Accepted: 09/29/2015] [Indexed: 12/15/2022]
Abstract
Prior studies have established an essential role of mast cells in allergic asthma and atherosclerosis. Mast cell deficiency or inactivation protects mice from allergen-induced airway hyper-responsiveness and diet-induced atherosclerosis, suggesting that mast cells share pathologic activities in both diseases. Allergic asthma and atherosclerosis are inflammatory diseases that contain similar sets of elevated numbers of inflammatory cells in addition to mast cells in the airway and arterial wall, such as macrophages, monocytes, T cells, eosinophils, and smooth muscle cells. Emerging evidence from experimental models and human studies points to a potential interaction between the 2 seemingly unrelated diseases. Patients or mice with allergic asthma have a high risk of developing atherosclerosis or vice versa, despite the fact that asthma is a T-helper (Th)2-oriented disease, whereas Th1 immunity promotes atherosclerosis. In addition to the preferred Th1/Th2 responses that may differentiate the 2 diseases, mast cells and many other inflammatory cells also contribute to their pathogenesis by more than just T cell immunity. Here, we summarize the different roles of airway and arterial wall inflammatory cells and vascular cells in asthma and atherosclerosis and propose an interaction between the 2 diseases, although limited investigations are available to delineate the molecular and cellular mechanisms by which 1 disease increases the risk of the other. Results from mouse allergic asthma and atherosclerosis models and from human population studies lead to the hypothesis that patients with atherosclerosis may benefit from antiasthmatic medications or that the therapeutic regimens targeting atherosclerosis may also alleviate allergic asthma.
Collapse
Affiliation(s)
- Cong-Lin Liu
- Department of Cardiology, Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass
| | - Jin-Ying Zhang
- Department of Cardiology, Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guo-Ping Shi
- Department of Cardiology, Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass.
| |
Collapse
|
18
|
Kolck UW, Haenisch B, Molderings GJ. Cardiovascular symptoms in patients with systemic mast cell activation disease. Transl Res 2016; 174:23-32.e1. [PMID: 26775802 DOI: 10.1016/j.trsl.2015.12.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/11/2015] [Accepted: 12/18/2015] [Indexed: 12/23/2022]
Abstract
Traditionally, mast cell activation disease (MCAD) has been considered as just one rare (neoplastic) disease, mastocytosis, focused on the mast cell (MC) mediators tryptase and histamine and the suggestive, blatant symptoms of flushing and anaphylaxis. Recently another form of MCAD, the MC activation syndrome, has been recognized featuring inappropriate MC activation with little to no neoplasia and likely much more heterogeneously clonal and far more prevalent than mastocytosis. Increasing expertise and appreciation has been established for the truly very large menagerie of MC mediators and their complex patterns of release, engendering complex, nebulous presentations of chronic and acute illness best characterized as multisystem polymorbidity of generally inflammatory ± allergic theme. We describe the pathogenesis of MCAD with a particular focus on clinical cardiovascular symptoms and the therapeutic options for MC mediator-induced cardiovascular symptoms.
Collapse
Affiliation(s)
- Ulrich W Kolck
- Johanniter-Kliniken Bonn, Waldkrankenhaus, Innere Medizin II, Bonn, Germany
| | - Britta Haenisch
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | | |
Collapse
|
19
|
|
20
|
Kritikou E, Kuiper J, Kovanen PT, Bot I. The impact of mast cells on cardiovascular diseases. Eur J Pharmacol 2015; 778:103-15. [PMID: 25959384 DOI: 10.1016/j.ejphar.2015.04.050] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 04/10/2015] [Accepted: 04/21/2015] [Indexed: 12/30/2022]
Abstract
Mast cells comprise an innate immune cell population, which accumulates in tissues proximal to the outside environment and, upon activation, augments the progression of immunological reactions through the release and diffusion of either pre-formed or newly generated mediators. The released products of mast cells include histamine, proteases, as well as a variety of cytokines, chemokines and growth factors, which act on the surrounding microenvironment thereby shaping the immune responses triggered in various diseased states. Mast cells have also been detected in the arterial wall and are implicated in the onset and progression of numerous cardiovascular diseases. Notably, modulation of distinct mast cell actions using genetic and pharmacological approaches highlights the crucial role of this cell type in cardiovascular syndromes. The acquired evidence renders mast cells and their mediators as potential prognostic markers and therapeutic targets in a broad spectrum of pathophysiological conditions related to cardiovascular diseases.
Collapse
Affiliation(s)
- Eva Kritikou
- Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Johan Kuiper
- Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | | | - Ilze Bot
- Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
21
|
Paradigm shifts in mast cell and basophil biology and function: an emerging view of immune regulation in health and disease. Methods Mol Biol 2015; 1192:3-31. [PMID: 25149480 DOI: 10.1007/978-1-4939-1173-8_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The physiological role of the mast cell and basophil has for many years remained enigmatic. In this chapter we briefly summarize some of the more recent studies that shed new light on the role of mast cells and basophils in health and disease. What we gain from these studies is a new appreciation for mast cells and basophils as sentinels in host defense and a further understanding that dysregulation of mast cell and basophil function can be a component of various diseases other than allergies. Perhaps, the most important insight reaped from this work is the increasing awareness that mast cells and basophils can function as immunoregulatory cells that modulate the immune response in health and disease. Collectively, the recent knowledge provides new challenges and opportunities towards the development of novel therapeutic strategies to augment host protection and modify disease through manipulation of mast cell and basophil function.
Collapse
|
22
|
Mangge H, Almer G, Stelzer I, Reininghaus E, Prassl R. Laboratory medicine for molecular imaging of atherosclerosis. Clin Chim Acta 2014; 437:19-24. [DOI: 10.1016/j.cca.2014.06.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 06/24/2014] [Accepted: 06/30/2014] [Indexed: 12/30/2022]
|
23
|
Chen S, Mu D, Cui M, Ren C, Zhang S, Guo L, Gao W. Dynamic changes and clinical significance of serum tryptase levels in STEMI patients treated with primary PCI. Biomarkers 2014; 19:620-4. [DOI: 10.3109/1354750x.2014.960452] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Shaomin Chen
- Department of Cardiology, Key Laboratory of Cardiovascular Molecular Biology and Regulatory peptides, Ministry of Health, Peking University Third Hospital
BeijingChina
| | - Di Mu
- Department of Cardiology, Key Laboratory of Cardiovascular Molecular Biology and Regulatory peptides, Ministry of Health, Peking University Third Hospital
BeijingChina
| | - Ming Cui
- Department of Cardiology, Key Laboratory of Cardiovascular Molecular Biology and Regulatory peptides, Ministry of Health, Peking University Third Hospital
BeijingChina
| | - Chuan Ren
- Department of Cardiology, Key Laboratory of Cardiovascular Molecular Biology and Regulatory peptides, Ministry of Health, Peking University Third Hospital
BeijingChina
| | - Shu Zhang
- Department of Cardiology, Key Laboratory of Cardiovascular Molecular Biology and Regulatory peptides, Ministry of Health, Peking University Third Hospital
BeijingChina
| | - Lijun Guo
- Department of Cardiology, Key Laboratory of Cardiovascular Molecular Biology and Regulatory peptides, Ministry of Health, Peking University Third Hospital
BeijingChina
| | - Wei Gao
- Department of Cardiology, Key Laboratory of Cardiovascular Molecular Biology and Regulatory peptides, Ministry of Health, Peking University Third Hospital
BeijingChina
| |
Collapse
|
24
|
de Araújo MS, Alves PM, de Lima LMB, da Silva MF, de Lima Pereira SA, Rodrigues V, Rodrigues DBR. Evaluation of in situ expression of effector and regulatory cytokines, TLR, galectins and matrix metalloproteinases in oral manifestations of paracoccidioidomycosis. Immunobiology 2014; 220:154-63. [PMID: 25204704 DOI: 10.1016/j.imbio.2014.08.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 08/06/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND Although the pathophysiology of paracoccidioidomycosis (PCM) is not completely understood, the study of immune response against fungus has provided insight into understanding the natural course of the disease and its clinical manifestations, hence contributing to the development of preventive measures and treatment proposals. The aim of this study was to evaluate the histopathological and immunological aspects involved in the role of different effector and regulatory responses, as well as the correlation between the TLRs, Galectins, Matrix Metalloproteinases and cytoplasmic proteases of mast cells in this infection. METHODS Sixteen biopsy specimens with oral lesions of chronic PCM, as well as 13 sections of normal oral mucosa were analyzed. Histopathological and immunological aspects involved in the role of different effector and regulatory responses were evaluated. Indirect immunohistochemistry was performed for IL-17, IL-10, IL-4, TGF-β, FoxP3, Gal-1, Gal-3, Gal-9, TLR-2, TLR-4, MMP-3 and MMP-9, as well as for chymase and tryptase for mast cells identification. Fibrosis was quantified using Picrosirius. RESULTS There was a significant increase in the area of fibrosis and in the number of cells expressing IL-10, IL-4, IL-17, FoxP3, Gal-3, TLR-2, MMP3 and MMP9 in patients with PCM in comparison with patients in the group control. There was no difference in the expression of TGF-β, TLR-4, Gal-1 or Gal-9. Mast cells number was found to be significantly lower in oral chronic PCM when compared to control samples after quantification of mast cells and expression of chymase and tryptase. PCM granulomas were classified to the morphological aspects in organized ou non-organized. Expression of IL-4 in non-organized granulomas was significantly higher. CONCLUSION The proteins studied herein appear to play an important role in the development and maintenance of oral lesions of PCM, as well as in the processes of development and progression of lesions caused by the fungus and by the immune response associated with the infection.
Collapse
Affiliation(s)
- Marcelo Sivieri de Araújo
- Laboratory of Biopathology and Molecular Biology, University of Uberaba (UNIUBE), Uberaba, MG, Brazil; Federal University of Triângulo Mineiro (UFTM), Uberaba, MG, Brazil
| | | | | | | | - Sanívia Aparecida de Lima Pereira
- Laboratory of Biopathology and Molecular Biology, University of Uberaba (UNIUBE), Uberaba, MG, Brazil; Federal University of Triângulo Mineiro (UFTM), Uberaba, MG, Brazil
| | | | - Denise Bertulucci Rocha Rodrigues
- Laboratory of Biopathology and Molecular Biology, University of Uberaba (UNIUBE), Uberaba, MG, Brazil; Federal University of Triângulo Mineiro (UFTM), Uberaba, MG, Brazil.
| |
Collapse
|
25
|
Bot I, Shi GP, Kovanen PT. Mast cells as effectors in atherosclerosis. Arterioscler Thromb Vasc Biol 2014; 35:265-71. [PMID: 25104798 DOI: 10.1161/atvbaha.114.303570] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The mast cell is a potent immune cell known for its functions in host defense responses and diseases, such as asthma and allergies. In the past years, accumulating evidence established the contribution of the mast cell to cardiovascular diseases as well, in particular, by its effects on atherosclerotic plaque progression and destabilization. Through its release not only of mediators, such as the mast cell-specific proteases chymase and tryptase, but also of growth factors, histamine, and chemokines, activated mast cells can have detrimental effects on its immediate surroundings in the vessel wall. This results in matrix degradation, apoptosis, and enhanced recruitment of inflammatory cells, thereby actively contributing to cardiovascular diseases. In this review, we will discuss the current knowledge on mast cell function in cardiovascular diseases and speculate on potential novel therapeutic strategies to prevent acute cardiovascular syndromes via targeting of mast cells.
Collapse
Affiliation(s)
- Ilze Bot
- From the Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands (I.B.); Department of Medicine, Brigham and Woman's Hospital and Harvard Medical School, Boston, MA (G.-P.S.); and Wihuri Research Institute, Helsinki, Finland (P.T.K.).
| | - Guo-Ping Shi
- From the Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands (I.B.); Department of Medicine, Brigham and Woman's Hospital and Harvard Medical School, Boston, MA (G.-P.S.); and Wihuri Research Institute, Helsinki, Finland (P.T.K.)
| | - Petri T Kovanen
- From the Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands (I.B.); Department of Medicine, Brigham and Woman's Hospital and Harvard Medical School, Boston, MA (G.-P.S.); and Wihuri Research Institute, Helsinki, Finland (P.T.K.)
| |
Collapse
|
26
|
Moreno M, Puig J, Serrano M, Moreno-Navarrete JM, Ortega F, Ricart W, Fernandez-Real JM. Circulating tryptase as a marker for subclinical atherosclerosis in obese subjects. PLoS One 2014; 9:e97014. [PMID: 24830464 PMCID: PMC4022630 DOI: 10.1371/journal.pone.0097014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 04/14/2014] [Indexed: 01/04/2023] Open
Abstract
Introduction Mast cells participate in atherogenesis by releasing cytokines to induce vascular cell protease expression. Tryptase is expressed highly in human atherosclerotic lesions and the inhibition of tryptase activity hampers its capacity to maintain cholesterol inside macrophague foam cells. We aimed to investigate the association between circulating tryptase levels and subclinical atherosclerosis through estimation of carotid intima-media thickness (c-IMT) as surrogate marker for increased cardiovascular risk in obese and non-obese subjects. Methods Circulating tryptase levels (ELISA) and metabolic parameters were analyzed in 228 subjects. Atherosclerosis (c-IMT>0.9 mm) was evaluated ultrasonographically. Results Significant positive associations were evident between circulating tryptase levels and BMI, fat mass, glycated haemoglobin, fasting insulin, HOMAIR, fasting triglycerides and ultrasensitive PCR (p<0.05 from linear-trend ANOVA). The positive association between tryptase levels and insulin resistance parameters, suggested a glucose homeostasis impairment in individuals with higher tryptase levels. The negative asociation between tryptase levels and HDL-cholesterol supports the proatherogenic role of this protease (p<0.0001). Circulating tryptase levels were strongly associated with c-IMT measurements (p<0.0001 from linear-trend ANOVA), and were higher in subjects with presence of carotid plaque (p<0.0001). Tryptase levels (beta = 0.015, p = 0.001) contributed independently to subclinical atherosclerosis variance after controlling for cardiovascular risk factors (BMI, blood pressure, LDL-cholesterol). Conclusions Circulating tryptase level is associated to obesity related parameters and has a close relation with various metabolic risk factors. Moreover, serum tryptase level was independently associated with c-IMT, suggesting its potential use as a surrogate marker for subclinical atherosclerosis in obese subjects.
Collapse
Affiliation(s)
- María Moreno
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), Girona, Spain
| | - Josep Puig
- Department of Radiology, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), Girona, Spain
| | - Marta Serrano
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), Girona, Spain
| | - José María Moreno-Navarrete
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), Girona, Spain
| | - Francisco Ortega
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), Girona, Spain
| | - Wifredo Ricart
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), Girona, Spain
| | - Jose Manuel Fernandez-Real
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), Girona, Spain
- * E-mail:
| |
Collapse
|
27
|
Abstract
S100A8, S100A9 and S100A12 are considered proinflammatory mediators of atherosclerosis. Known as calgranulins, they are major components of neutrophils and are upregulated in macrophages and foam cells. They influence leukocyte recruitment, and may propagate inflammation by binding TLR4 and/or receptor for advanced glycation endproducts (RAGE). However, the receptors for calgranulins remain an enigma; we have no evidence for TLR4 or RAGE activation by S100A8 or S100A12. Moreover, gene regulation studies suggest antiinflammatory functions for S100A8 and emerging reports indicate pleiotropic roles. Unlike S100A9, S100A8 effectively scavenges oxidants generated by the myeloperoxidase system in vivo, forming novel thiol modifications. S100A8 is also readily S-nitrosylated, stabilizing nitric oxide and transporting it to hemoglobin. S100A8-SNO reduces leukocyte transmigration in the vasculature. S-glutathionylation of S100A9 modifies its effects on leukocyte adhesion. Both S100A8 forms inhibit mast cell activation, at least partially by scavenging reactive oxygen species required for signaling. Conversely, S100A12 activates and sequesters mast cells. However S100A12 suppresses proinflammatory cytokine induction by SAA-activated monocytes and macrophages, and inhibits matrix metalloprotease activity. We propose that the abundance and types of cells expressing calgranulins in particular microenvironments, their relative concentrations and post-translational modifications may have distinct functional outcomes, including those that are protective, at different stages of atherogenesis.
Collapse
Affiliation(s)
- Carolyn L Geczy
- Inflammation and Infection Research Centre, School of Medical Sciences, University of New South Wales
| | | | | |
Collapse
|
28
|
Kan L, Mutso AA, McGuire TL, Apkarian AV, Kessler JA. Opioid signaling in mast cells regulates injury responses associated with heterotopic ossification. Inflamm Res 2013; 63:207-15. [PMID: 24327087 DOI: 10.1007/s00011-013-0690-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 11/18/2013] [Accepted: 11/20/2013] [Indexed: 10/25/2022] Open
Abstract
INTRODUCTION Previous studies found that neuron specific enolase promoter (Nse-BMP4) transgenic mice have increased expression of the nociceptive mediator, substance P and exaggerated local injury responses associated with heterotopic ossification (HO). It is of interest great to know the pain responses in these mice and how the opioid signaling is involved in the downstream events such as mast cell (MC) activation. MATERIALS AND METHODS This study utilized a transgenic mouse model of HO in which BMP4 is expressed under the control of the Nse-BMP4. The tactile sensitivity and the cold sensitivity of the mice were measured in a classic inflammatory pain model (carrageenan solution injected into the plantar surface of the left hind paw). The MC activation and the expression profiles of different components in the opioid signaling were demonstrated through routine histology and immunohistochemistry and Western blotting, in the superficial and deep muscle injury models. RESULTS We found that the pain responses in these mice were paradoxically attenuated or unchanged, and we also found increased expression of both Methionine Enkephalin (Met-Enk), and the μ-opioid receptor (MOR). Met-Enk and MOR both co-localized within activated MCs in limb tissues. Further, Nse-BMP4;MOR(-/-) double mutant mice showed attenuated MC activation and had a significant reduction in HO formation in response to injuries. CONCLUSIONS These observations suggest that opioid signaling may play a key role in MC activation and the downstream inflammatory responses associated with HO. In addition to providing insight into the role of MC activation and associated injury responses in HO, these findings suggest opioid signaling as a potential therapeutic target in HO and possibly others disorders involving MC activation.
Collapse
Affiliation(s)
- Lixin Kan
- Department of Neurology, Northwestern University, Ward Building 10-233, 303 East Chicago Avenue, Chicago, IL, 60611-3008, USA,
| | | | | | | | | |
Collapse
|
29
|
Abstract
Mast cells are increasingly being recognized as effector cells in many cardiovascular conditions. Many mast-cell-derived products such as tryptase and chymase can, through their enzymic action, have detrimental effects on blood vessel structure while mast cell-derived mediators such as cytokines and chemokines can perpetuate vascular inflammation. Mice lacking mast cells have been developed and these are providing an insight into how mast cells are involved in cardiovascular diseases and, as knowledge increase, mast cells may become a viable therapeutic target to slow progression of cardiovascular disease.
Collapse
|