1
|
Eber C, Verrier ER. Hijacking JAKis: JAK inhibitors as potential antiviral molecules, a mini review. Antiviral Res 2025; 237:106153. [PMID: 40157651 DOI: 10.1016/j.antiviral.2025.106153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 04/01/2025]
Abstract
Janus kinases (JAKs) are key players in the innate immune response and inflammation, catalysing the phosphorylation of STAT proteins, which ultimately leads to the expression of pro-inflammatory and antimicrobial genes. In this context, specific inhibitors of JAK kinases, or JAKis, have been extensively developed, with some already in clinical use for the treatment of chronic inflammatory diseases. However, the interactions between JAK kinases and viral replication appear to be far more complex than initially expected, with some JAKis showing unexpected antiviral properties against different classes of viruses. This mini review summarizes current knowledge about the interactions between JAK proteins and viral infections and discusses the antiviral potential of JAK inhibitors in the development of innovative therapeutic strategies.
Collapse
Affiliation(s)
- Claudie Eber
- University of Strasbourg, Inserm, ITM UMR_S1110, Strasbourg, France
| | - Eloi R Verrier
- University of Strasbourg, Inserm, ITM UMR_S1110, Strasbourg, France.
| |
Collapse
|
2
|
Trevisan M, Pianezzola A, Onorati M, Apolloni L, Pistello M, Arav-Boger R, Palù G, Mercorelli B, Loregian A. Human neural progenitor cell models to study the antiviral effects and neuroprotective potential of approved and investigational human cytomegalovirus inhibitors. Antiviral Res 2024; 223:105816. [PMID: 38286212 DOI: 10.1016/j.antiviral.2024.105816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/19/2023] [Accepted: 01/18/2024] [Indexed: 01/31/2024]
Abstract
Human cytomegalovirus (HCMV) is the viral leading cause of congenital defects in newborns worldwide. Many aspects of congenital CMV (cCMV) infection, which currently lacks a specific treatment, as well as the main determinants of neuropathogenesis in the developing brain during HCMV infection are unclear. In this study, we modeled HCMV infection at different stages of neural development. Moreover, we evaluated the effects of both approved and investigational anti-HCMV drugs on viral replication and gene expression in two different neural progenitor cell lines, i.e., human embryonic stem cells-derived neural stem cells (NSCs) and fetus-derived neuroepithelial stem (NES) cells. Ganciclovir, letermovir, nitazoxanide, and the ozonide OZ418 reduced viral DNA synthesis and the production of infectious virus in both lines of neural progenitors. HCMV infection dysregulated the expression of genes that either are markers of neural progenitors, such as SOX2, NESTIN, PAX-6, or play a role in neurogenesis, such as Doublecortin. Treatment with antiviral drugs had different effects on HCMV-induced dysregulation of the genes under investigation. This study contributes to the understanding of the molecular mechanisms of cCMV neuropathogenesis and paves the way for further consideration of anti-HCMV drugs as candidate therapeutic agents for the amelioration of cCMV-associated neurological manifestations.
Collapse
Affiliation(s)
- Marta Trevisan
- Department of Molecular Medicine, University of Padua, Padua, Italy.
| | - Anna Pianezzola
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Marco Onorati
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, Pisa, 56127, Italy
| | - Lorenzo Apolloni
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Mauro Pistello
- Centro Retrovirus, Department of Translational Research, University of Pisa, Pisa, 56127, Italy
| | - Ravit Arav-Boger
- Department of Pediatrics, Division of Infectious Disease, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Giorgio Palù
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | | | - Arianna Loregian
- Department of Molecular Medicine, University of Padua, Padua, Italy.
| |
Collapse
|
3
|
McNulty J, Babu-Dokuburra C, Scattolon J, Zepeda-Velazquez C, Wesesky MA, Caldwell JK, Zheng W, Milosevic J, Kinchington PR, Bloom DC, Nimgaonkar VL, D'Aiuto L. Truncated ring-A amaryllidaceae alkaloid modulates the host cell integrated stress response, exhibiting antiviral activity to HSV-1 and SARSCoV-2. Sci Rep 2023; 13:1639. [PMID: 36717567 PMCID: PMC9885069 DOI: 10.1038/s41598-023-28691-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
The total synthesis of four novel mono-methoxy and hydroxyl substituted ring-A dihydronarciclasine derivatives enabled identification of the 7-hydroxyl derivative as a potent and selective antiviral agent targeting SARSCoV-2 and HSV-1. The concentration of this small molecule that inhibited HSV-1 infection by 50% (IC50), determined by using induced pluripotent stem cells (iPCS)-derived brain organ organoids generated from two iPCS lines, was estimated to be 0.504 µM and 0.209 µM. No significant reduction in organoid viability was observed at concentrations up to 50 mM. Genomic expression analyses revealed a significant effect on host-cell innate immunity, revealing activation of the integrated stress response via PERK kinase upregulation, phosphorylation of eukaryotic initiation factor 2α (eIF2α) and type I IFN, as factors potentiating multiple host-defense mechanisms against viral infection. Following infection of mouse eyes with HSV-1, treatment with the compound dramatically reduced HSV-1 shedding in vivo.
Collapse
Affiliation(s)
- James McNulty
- Department of Chemistry & Chemical Biology, McMaster University, Hamilton, ON, L8S 4M1, Canada.
| | - Chanti Babu-Dokuburra
- Department of Chemistry & Chemical Biology, McMaster University, Hamilton, ON, L8S 4M1, Canada
| | - Jon Scattolon
- Department of Chemistry & Chemical Biology, McMaster University, Hamilton, ON, L8S 4M1, Canada
| | - Carlos Zepeda-Velazquez
- Department of Chemistry & Chemical Biology, McMaster University, Hamilton, ON, L8S 4M1, Canada
| | - Maribeth A Wesesky
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Jill K Caldwell
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Wenxiao Zheng
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
- Second Xiangya Hospital, Xiangya School of Medicine, Central South University, Changsha, China
| | - Jadranka Milosevic
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
- Captis Diagnostics Inc, Pittsburgh, PA, USA
| | - Paul R Kinchington
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Molecular Microbiology and Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - David C Bloom
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Vishwajit L Nimgaonkar
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
- Veterans Administration Pittsburgh Healthcare System, 4100 Allequippa St (University Drive C), Pittsburgh, PA, 15240, USA
| | - Leonardo D'Aiuto
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
4
|
Zheng W, Benner EM, Bloom DC, Muralidaran V, Caldwell JK, Prabhudesai A, Piazza PA, Wood J, Kinchington PR, Nimgaonkar VL, D'Aiuto L. Variations in Aspects of Neural Precursor Cell Neurogenesis in a Human Model of HSV-1 Infection. Organogenesis 2022; 18:2055354. [PMID: 35384798 PMCID: PMC8993067 DOI: 10.1080/15476278.2022.2055354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Encephalitis, the most significant of the central nervous system (CNS) diseases caused by Herpes simplex virus 1 (HSV-1), may have long-term sequelae in survivors treated with acyclovir, the cause of which is unclear. HSV-1 exhibits a tropism toward neurogenic niches in CNS enriched with neural precursor cells (NPCs), which play a pivotal role in neurogenesis. NPCs are susceptible to HSV-1. There is a paucity of information regarding the influence of HSV-1 on neurogenesis in humans. We investigated HSV-1 infection of NPCs from two individuals. Our results show (i) HSV-1 impairs, to different extents, the proliferation, self-renewing, and, to an even greater extent, migration of NPCs from these two subjects; (ii) The protective effect of the gold-standard antiherpetic drug acyclovir (ACV) varies with viral dose and is incomplete. It is also subject to differences in terms of efficacy of the NPCs derived from these two individuals. These results suggest that the effects of HSV-1 may have on aspects of NPC neurogenesis may vary among individuals, even in the presence of acyclovir, and this may contribute to the heterogeneity of cognitive sequelae across encephalitis survivors. Further analysis of NPC cell lines from a larger number of individuals is warranted.
Collapse
Affiliation(s)
- Wenxiao Zheng
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Second Xiangya Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Emily M Benner
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - David C Bloom
- Department of Molecular Genetics & Microbiology, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Vaishali Muralidaran
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jill K Caldwell
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Anuya Prabhudesai
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Paolo A Piazza
- Department of Infectious Diseases and Microbiology, Pitt Graduate School Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Joel Wood
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Paul R Kinchington
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Department of Molecular Microbiology and Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Vishwajit L Nimgaonkar
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Leonardo D'Aiuto
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
5
|
Strickland JB, Davis-Anderson K, Micheva-Viteva S, Twary S, Iyer R, Harris JF, Solomon EA. Optimization of Application-Driven Development of In Vitro Neuromuscular Junction Models. TISSUE ENGINEERING. PART B, REVIEWS 2022; 28:1180-1191. [PMID: 35018825 PMCID: PMC9805869 DOI: 10.1089/ten.teb.2021.0204] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Neuromuscular junctions (NMJs) are specialized synapses responsible for signal transduction between motor neurons (MNs) and skeletal muscle tissue. Malfunction at this site can result from developmental disorders, toxic environmental exposures, and neurodegenerative diseases leading to severe neurological dysfunction. Exploring these conditions in human or animal subjects is restricted by ethical concerns and confounding environmental factors. Therefore, in vitro NMJ models provide exciting opportunities for advancements in tissue engineering. In the last two decades, multiple NMJ prototypes and platforms have been reported, and each model system design is strongly tied to a specific application: exploring developmental physiology, disease modeling, or high-throughput screening. Directing the differentiation of stem cells into mature MNs and/or skeletal muscle for NMJ modeling has provided critical cues to recapitulate early-stage development. Patient-derived inducible pluripotent stem cells provide a personalized approach to investigating NMJ disease, especially when disease etiology cannot be resolved down to a specific gene mutation. Having reproducible NMJ culture replicates is useful for high-throughput screening to evaluate drug toxicity and determine the impact of environmental threat exposures. Cutting-edge bioengineering techniques have propelled this field forward with innovative microfabrication and design approaches allowing both two-dimensional and three-dimensional NMJ culture models. Many of these NMJ systems require further validation for broader application by regulatory agencies, pharmaceutical companies, and the general research community. In this summary, we present a comprehensive review on the current state-of-art research in NMJ models and discuss their ability to provide valuable insight into cell and tissue interactions. Impact statement In vitro neuromuscular junction (NMJ) models reveal the specialized mechanisms of communication between neurons and muscle tissue. This site can be disrupted by developmental disorders, toxic environmental exposures, or neurodegenerative diseases, which often lead to fatal outcomes and is therefore of critical importance to the medical community. Many bioengineering approaches for in vitro NMJ modeling have been designed to mimic development and disease; other approaches include in vitro NMJ models for high-throughput toxicology screening, providing a platform to limit or replace animal testing. This review describes various NMJ applications and the bioengineering advancements allowing for human NMJ characteristics to be more accurately recapitulated. While the extensive range of NMJ device structures has hindered standardization attempts, there is still a need to harmonize these devices for broader application and to continue advancing the field of NMJ modeling.
Collapse
Affiliation(s)
- Julie B. Strickland
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Katie Davis-Anderson
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | | | - Scott Twary
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Rashi Iyer
- Information System and Modeling, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | | | - Emilia A. Solomon
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA.,Address correspondence to: Emilia A. Solomon, PhD, Bioscience Division, Los Alamos National Laboratory, PO Box 1663 MS M888, Los Alamos, NM 87545, USA
| |
Collapse
|
6
|
LaNoce E, Dumeng-Rodriguez J, Christian KM. Using 2D and 3D pluripotent stem cell models to study neurotropic viruses. FRONTIERS IN VIROLOGY (LAUSANNE, SWITZERLAND) 2022; 2:869657. [PMID: 36325520 PMCID: PMC9624474 DOI: 10.3389/fviro.2022.869657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Understanding the impact of viral pathogens on the human central nervous system (CNS) has been challenging due to the lack of viable human CNS models for controlled experiments to determine the causal factors underlying pathogenesis. Human embryonic stem cells (ESCs) and, more recently, cellular reprogramming of adult somatic cells to generate human induced pluripotent stem cells (iPSCs) provide opportunities for directed differentiation to neural cells that can be used to evaluate the impact of known and emerging viruses on neural cell types. Pluripotent stem cells (PSCs) can be induced to neural lineages in either two- (2D) or three-dimensional (3D) cultures, each bearing distinct advantages and limitations for modeling viral pathogenesis and evaluating effective therapeutics. Here we review the current state of technology in stem cell-based modeling of the CNS and how these models can be used to determine viral tropism and identify cellular phenotypes to investigate virus-host interactions and facilitate drug screening. We focus on several viruses (e.g., human immunodeficiency virus (HIV), herpes simplex virus (HSV), Zika virus (ZIKV), human cytomegalovirus (HCMV), SARS-CoV-2, West Nile virus (WNV)) to illustrate key advantages, as well as challenges, of PSC-based models. We also discuss how human PSC-based models can be used to evaluate the safety and efficacy of therapeutic drugs by generating data that are complementary to existing preclinical models. Ultimately, these efforts could facilitate the movement towards personalized medicine and provide patients and physicians with an additional source of information to consider when evaluating available treatment strategies.
Collapse
Affiliation(s)
- Emma LaNoce
- Mahoney Institute for Neurosciences, Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Jeriel Dumeng-Rodriguez
- Developmental, Stem Cell and Regenerative Biology Program, Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Kimberly M. Christian
- Mahoney Institute for Neurosciences, Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
7
|
Ezeonwumelu IJ, Garcia-Vidal E, Ballana E. JAK-STAT Pathway: A Novel Target to Tackle Viral Infections. Viruses 2021; 13:v13122379. [PMID: 34960648 PMCID: PMC8704679 DOI: 10.3390/v13122379] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/15/2022] Open
Abstract
Modulation of the antiviral innate immune response has been proposed as a putative cellular target for the development of novel pan-viral therapeutic strategies. The Janus kinase–signal transducer and activator of transcription (JAK-STAT) pathway is especially relevant due to its essential role in the regulation of local and systemic inflammation in response to viral infections, being, therefore, a putative therapeutic target. Here, we review the extraordinary diversity of strategies that viruses have evolved to interfere with JAK-STAT signaling, stressing the relevance of this pathway as a putative antiviral target. Moreover, due to the recent remarkable progress on the development of novel JAK inhibitors (JAKi), the current knowledge on its efficacy against distinct viral infections is also discussed. JAKi have a proven efficacy against a broad spectrum of disorders and exhibit safety profiles comparable to biologics, therefore representing good candidates for drug repurposing strategies, including viral infections.
Collapse
|
8
|
Is the ZIKV Congenital Syndrome and Microcephaly Due to Syndemism with Latent Virus Coinfection? Viruses 2021; 13:v13040669. [PMID: 33924398 PMCID: PMC8069280 DOI: 10.3390/v13040669] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/02/2021] [Accepted: 04/10/2021] [Indexed: 01/04/2023] Open
Abstract
The emergence of the Zika virus (ZIKV) mirrors its evolutionary nature and, thus, its ability to grow in diversity or complexity (i.e., related to genome, host response, environment changes, tropism, and pathogenicity), leading to it recently joining the circle of closed congenital pathogens. The causal relation of ZIKV to microcephaly is still a much-debated issue. The identification of outbreak foci being in certain endemic urban areas characterized by a high-density population emphasizes that mixed infections might spearhead the recent appearance of a wide range of diseases that were initially attributed to ZIKV. Globally, such coinfections may have both positive and negative effects on viral replication, tropism, host response, and the viral genome. In other words, the possibility of coinfection may necessitate revisiting what is considered to be known regarding the pathogenesis and epidemiology of ZIKV diseases. ZIKV viral coinfections are already being reported with other arboviruses (e.g., chikungunya virus (CHIKV) and dengue virus (DENV)) as well as congenital pathogens (e.g., human immunodeficiency virus (HIV) and cytomegalovirus (HCMV)). However, descriptions of human latent viruses and their impacts on ZIKV disease outcomes in hosts are currently lacking. This review proposes to select some interesting human latent viruses (i.e., herpes simplex virus 2 (HSV-2), Epstein-Barr virus (EBV), human herpesvirus 6 (HHV-6), human parvovirus B19 (B19V), and human papillomavirus (HPV)), whose virological features and co-exposition with ZIKV may provide evidence of the syndemism process, shedding some light on the emergence of the ZIKV-induced global congenital syndrome in South America.
Collapse
|
9
|
Raghuvanshi R, Bharate SB. Recent Developments in the Use of Kinase Inhibitors for Management of Viral Infections. J Med Chem 2021; 65:893-921. [PMID: 33539089 DOI: 10.1021/acs.jmedchem.0c01467] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Kinases are a group of therapeutic targets involved in the progression of numerous diseases, including cancer, rheumatoid arthritis, Alzheimer's disease, and viral infections. The majority of approved antiviral agents are inhibitors of virus-specific targets that are encoded by individual viruses. These inhibitors are narrow-spectrum agents that can cause resistance development. Viruses are dependent on host cellular proteins, including kinases, for progression of their life-cycle. Thus, targeting kinases is an important therapeutic approach to discovering broad-spectrum antiviral agents. As there are a large number of FDA approved kinase inhibitors for various indications, their repurposing for viral infections is an attractive and time-sparing strategy. Many kinase inhibitors, including baricitinib, ruxolitinib, imatinib, tofacitinib, pacritinib, zanubrutinib, and ibrutinib, are under clinical investigation for COVID-19. Herein, we discuss FDA approved kinase inhibitors, along with a repertoire of clinical/preclinical stage kinase inhibitors that possess antiviral activity or are useful in the management of viral infections.
Collapse
Affiliation(s)
- Rinky Raghuvanshi
- Medicinal Chemistry Division,CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India.,Academy of Scientific & Innovative Research, Ghaziabad 201002, India
| | - Sandip B Bharate
- Medicinal Chemistry Division,CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India.,Academy of Scientific & Innovative Research, Ghaziabad 201002, India
| |
Collapse
|
10
|
Synthesis of non-nucleoside anti-viral cyclopropylcarboxacyl hydrazones and initial anti-HSV-1 structure-activity relationship studies. Bioorg Med Chem Lett 2020; 30:127559. [PMID: 32961320 DOI: 10.1016/j.bmcl.2020.127559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/12/2020] [Accepted: 09/13/2020] [Indexed: 10/23/2022]
Abstract
The synthesis of a lead anti-viral cyclopropyl carboxy acyl hydrazone 4F17 (5) and three sequential arrays of structural analogues along with the initial assessment and optimization of the antiviral pharmacophore against the herpes simplex virus type 1 (HSV-1) are reported.
Collapse
|
11
|
Nolasco P, Borsoi J, Moraes CB, Freitas-Junior LH, Pereira LV. Human induced pluripotent stem cells as a tool for disease modeling and drug screening for COVID-19. Genet Mol Biol 2020; 44:e20200198. [PMID: 33275129 PMCID: PMC7737100 DOI: 10.1590/1678-4685-gmb-2020-0198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/25/2020] [Indexed: 01/10/2023] Open
Abstract
The emergence of the new corona virus (SARS-CoV-2) and the resulting COVID-19 pandemic requires fast development of novel prevention and therapeutic strategies. These rely on understanding the biology of the virus and its interaction with the host, and on agnostic phenotypic screening for compounds that prevent viral infection. In vitro screenings of compounds are usually performed in human or animal-derived tumor or immortalized cell lines due to their ease of culturing. However, these platforms may not represent the tissues affected by the disease in vivo, and therefore better models are needed to validate and expedite drug development, especially in face of the COVID-19 pandemic. In this scenario, human induced pluripotent stem cells (hiPSCs) are a powerful research tool due to their ability to generate normal differentiated cell types relevant for the disease. Here we discuss the different ways hiPSCs can contribute to COVID-19 related research, including modeling the disease in vitro and serving as a platform for drug screening.
Collapse
Affiliation(s)
- Patricia Nolasco
- Universidade de São Paulo, Instituto de Biociências, Departamento de Genética e Biologia Evolutiva, Laboratório Nacional de Células-tronco Embrionárias (LaNCE), São Paulo, SP, Brazil
| | - Juliana Borsoi
- Universidade de São Paulo, Instituto de Biociências, Departamento de Genética e Biologia Evolutiva, Laboratório Nacional de Células-tronco Embrionárias (LaNCE), São Paulo, SP, Brazil
| | - Carolina Borsoi Moraes
- Universidade Federal de São Paulo, Departamento de Ciências Farmacêuticas, Diadema, SP, Brazil
| | - Lucio H. Freitas-Junior
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, Phenotypic Screening Platform, São Paulo, SP, Brazil
| | - Lygia Veiga Pereira
- Universidade de São Paulo, Instituto de Biociências, Departamento de Genética e Biologia Evolutiva, Laboratório Nacional de Células-tronco Embrionárias (LaNCE), São Paulo, SP, Brazil
| |
Collapse
|
12
|
Patterns of Herpes Simplex Virus 1 Infection in Neural Progenitor Cells. J Virol 2020; 94:JVI.00994-20. [PMID: 32493817 PMCID: PMC7394888 DOI: 10.1128/jvi.00994-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 12/13/2022] Open
Abstract
This study employed human induced pluripotent stem cells (hiPSCs) to model the interaction of HSV-1 with NPCs, which reside in the neurogenic niches of the CNS and play a fundamental role in adult neurogenesis. Herein, we provide evidence that in NPCs infected at an MOI as low as 0.001, HSV-1 can establish a latent state, suggesting that (i) a variant of classical HSV-1 latency can be established during earlier stages of neuronal differentiation and (ii) neurogenic niches in the brain may constitute additional sites of viral reactivation. Lytic HSV-1 infections impaired NPC migration, which represents a critical step in neurogenesis. A difference in susceptibility to HSV-1 infection between two-dimensional (2D) and three-dimensional (3D) NPC cultures was observed, highlighting the potential value of 3D cultures for modeling host-pathogen interactions. Together, our results are relevant in light of observations relating HSV-1 infection to postencephalitic cognitive dysfunction. Herpes simplex virus 1 (HSV-1) can induce damage in brain regions that include the hippocampus and associated limbic structures. These neurogenic niches are important because they are associated with memory formation and are highly enriched with neural progenitor cells (NPCs). The susceptibility and fate of HSV-1-infected NPCs are largely unexplored. We differentiated human induced pluripotent stem cells (hiPSCs) into NPCs to generate two-dimensional (2D) and three-dimensional (3D) culture models to examine the interaction of HSV-1 with NPCs. Here, we show that (i) NPCs can be efficiently infected by HSV-1, but infection does not result in cell death of most NPCs, even at high multiplicities of infection (MOIs); (ii) limited HSV-1 replication and gene expression can be detected in the infected NPCs; (iii) a viral silencing mechanism is established in NPCs exposed to the antivirals (E)-5-(2-bromovinyl)-2′-deoxyuridine (5BVdU) and alpha interferon (IFN-α) and when the antivirals are removed, spontaneous reactivation can occur at low frequency; (iv) HSV-1 impairs the ability of NPCs to migrate in a dose-dependent fashion in the presence of 5BVdU plus IFN-α; and (v) 3D cultures of NPCs are less susceptible to HSV-1 infection than 2D cultures. These results suggest that NPC pools could be sites of HSV-1 reactivation in the central nervous system (CNS). Finally, our results highlight the potential value of hiPSC-derived 3D cultures to model HSV-1–NPC interaction. IMPORTANCE This study employed human induced pluripotent stem cells (hiPSCs) to model the interaction of HSV-1 with NPCs, which reside in the neurogenic niches of the CNS and play a fundamental role in adult neurogenesis. Herein, we provide evidence that in NPCs infected at an MOI as low as 0.001, HSV-1 can establish a latent state, suggesting that (i) a variant of classical HSV-1 latency can be established during earlier stages of neuronal differentiation and (ii) neurogenic niches in the brain may constitute additional sites of viral reactivation. Lytic HSV-1 infections impaired NPC migration, which represents a critical step in neurogenesis. A difference in susceptibility to HSV-1 infection between two-dimensional (2D) and three-dimensional (3D) NPC cultures was observed, highlighting the potential value of 3D cultures for modeling host-pathogen interactions. Together, our results are relevant in light of observations relating HSV-1 infection to postencephalitic cognitive dysfunction.
Collapse
|
13
|
Treml J, Gazdová M, Šmejkal K, Šudomová M, Kubatka P, Hassan STS. Natural Products-Derived Chemicals: Breaking Barriers to Novel Anti-HSV Drug Development. Viruses 2020; 12:E154. [PMID: 32013134 PMCID: PMC7077281 DOI: 10.3390/v12020154] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/20/2020] [Accepted: 01/23/2020] [Indexed: 01/06/2023] Open
Abstract
Recently, the problem of viral infection, particularly the infection with herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2), has dramatically increased and caused a significant challenge to public health due to the rising problem of drug resistance. The antiherpetic drug resistance crisis has been attributed to the overuse of these medications, as well as the lack of new drug development by the pharmaceutical industry due to reduced economic inducements and challenging regulatory requirements. Therefore, the development of novel antiviral drugs against HSV infections would be a step forward in improving global combat against these infections. The incorporation of biologically active natural products into anti-HSV drug development at the clinical level has gained limited attention to date. Thus, the search for new drugs from natural products that could enter clinical practice with lessened resistance, less undesirable effects, and various mechanisms of action is greatly needed to break the barriers to novel antiherpetic drug development, which, in turn, will pave the road towards the efficient and safe treatment of HSV infections. In this review, we aim to provide an up-to-date overview of the recent advances in natural antiherpetic agents. Additionally, this paper covers a large scale of phenolic compounds, alkaloids, terpenoids, polysaccharides, peptides, and other miscellaneous compounds derived from various sources of natural origin (plants, marine organisms, microbial sources, lichen species, insects, and mushrooms) with promising activities against HSV infections; these are in vitro and in vivo studies. This work also highlights bioactive natural products that could be used as templates for the further development of anti-HSV drugs at both animal and clinical levels, along with the potential mechanisms by which these compounds induce anti-HSV properties. Future insights into the development of these molecules as safe and effective natural anti-HSV drugs are also debated.
Collapse
Affiliation(s)
- Jakub Treml
- Department of Molecular Biology and Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackého tř. 1946/1, 612 42 Brno, Czech Republic;
| | - Markéta Gazdová
- Department of Natural Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackého tř. 1946/1, 612 42 Brno, Czech Republic; (M.G.); (K.Š.)
| | - Karel Šmejkal
- Department of Natural Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackého tř. 1946/1, 612 42 Brno, Czech Republic; (M.G.); (K.Š.)
| | - Miroslava Šudomová
- Museum of Literature in Moravia, Klášter 1, 664 61 Rajhrad, Czech Republic;
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia;
- Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Sherif T. S. Hassan
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 6-Suchdol, 165 21 Prague, Czech Republic
| |
Collapse
|
14
|
Mello CP, Quirico-Santos T, Amorim LF, Silva VG, Fragel LM, Bloom DC, Paixão IP. Perillyl alcohol and perillic acid exert efficient action upon HSV-1 maturation and release of infective virus. Antivir Ther 2019; 25:1-11. [PMID: 31099756 DOI: 10.3851/imp3315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND Infection by herpes simplex type-1 virus (HSV-1) causes several pathological processes, including cutaneous, oral and genital infections, fatal encephalitis and cognitive dysfunction due to grey matter loss. Acyclovir is the reference compound used as HSV-1 antiviral therapy. However, with the emergence of HSV-resistant strains to current antiviral drugs, development of new antiviral agents with distinct modes of action is urgently needed. METHODS In this study, we examined the mechanism of action of monoterpenes perillyl alcohol (POH) and perillic acid (PA) upon in vitro replication of HSV-1 KOS wild-type and the syn-mutant 17+ strain on Vero cells by plaque assay. RESULTS The cytotoxicity of POH and PA was measured by MTT assay and indicated that both compounds had high anti-HSV-1 activities in a concentration range that was not toxic for Vero cells. In addition, PCR analysis showed that POH and PA did not inhibit viral genome replication, but rather the release of infective virion particles from Vero cells. CONCLUSIONS Such findings suggest that POH and PA exert action upon late stages of HSV-1 maturation, therefore, indicating a promising perspective to its application in clinical investigation as effective anti-HSV-1 therapy preventing intermittent reactivation and progressive grey matter loss.
Collapse
Affiliation(s)
- Camilly Pires Mello
- Department of Cellular and Molecular Biology, Institute of Biology, Fluminense Federal University, Niteroi, RJ, Brazil.,Department of Microbiology and Molecular Genetics, College of Medicine, University of Florida, Gainesville, FL, USA.,Present address: NanoScience Technology Center, University of Central Florida, Orlando, FL, USA
| | - Thereza Quirico-Santos
- Department of Cellular and Molecular Biology, Institute of Biology, Fluminense Federal University, Niteroi, RJ, Brazil
| | - Lídia Fonte Amorim
- Department of Cellular and Molecular Biology, Institute of Biology, Fluminense Federal University, Niteroi, RJ, Brazil
| | - Viveca Giongo Silva
- Department of Cellular and Molecular Biology, Institute of Biology, Fluminense Federal University, Niteroi, RJ, Brazil
| | - Lucianne Madeira Fragel
- Department of Cellular and Molecular Biology, Institute of Biology, Fluminense Federal University, Niteroi, RJ, Brazil
| | - David C Bloom
- Department of Microbiology and Molecular Genetics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Izabel Palmer Paixão
- Department of Cellular and Molecular Biology, Institute of Biology, Fluminense Federal University, Niteroi, RJ, Brazil.,Department of Microbiology and Molecular Genetics, College of Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
15
|
D'Aiuto L, Bloom DC, Naciri JN, Smith A, Edwards TG, McClain L, Callio JA, Jessup M, Wood J, Chowdari K, Demers M, Abrahamson EE, Ikonomovic MD, Viggiano L, De Zio R, Watkins S, Kinchington PR, Nimgaonkar VL. Modeling Herpes Simplex Virus 1 Infections in Human Central Nervous System Neuronal Cells Using Two- and Three-Dimensional Cultures Derived from Induced Pluripotent Stem Cells. J Virol 2019; 93:e00111-19. [PMID: 30787148 PMCID: PMC6475775 DOI: 10.1128/jvi.00111-19] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 02/05/2019] [Indexed: 12/12/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) establishes latency in both peripheral nerve ganglia and the central nervous system (CNS). The outcomes of acute and latent infections in these different anatomic sites appear to be distinct. It is becoming clear that many of the existing culture models using animal primary neurons to investigate HSV-1 infection of the CNS are limited and not ideal, and most do not recapitulate features of CNS neurons. Human induced pluripotent stem cells (hiPSCs) and neurons derived from them are documented as tools to study aspects of neuropathogenesis, but few have focused on modeling infections of the CNS. Here, we characterize functional two-dimensional (2D) CNS-like neuron cultures and three-dimensional (3D) brain organoids made from hiPSCs to model HSV-1-human-CNS interactions. Our results show that (i) hiPSC-derived CNS neurons are permissive for HSV-1 infection; (ii) a quiescent state exhibiting key landmarks of HSV-1 latency described in animal models can be established in hiPSC-derived CNS neurons; (iii) the complex laminar structure of the organoids can be efficiently infected with HSV, with virus being transported from the periphery to the central layers of the organoid; and (iv) the organoids support reactivation of HSV-1, albeit less efficiently than 2D cultures. Collectively, our results indicate that hiPSC-derived neuronal platforms, especially 3D organoids, offer an extraordinary opportunity for modeling the interaction of HSV-1 with the complex cellular and architectural structure of the human CNS.IMPORTANCE This study employed human induced pluripotent stem cells (hiPSCs) to model acute and latent HSV-1 infections in two-dimensional (2D) and three-dimensional (3D) CNS neuronal cultures. We successfully established acute HSV-1 infections and infections showing features of latency. HSV-1 infection of the 3D organoids was able to spread from the outer surface of the organoid and was transported to the interior lamina, providing a model to study HSV-1 trafficking through complex neuronal tissue structures. HSV-1 could be reactivated in both culture systems; though, in contrast to 2D cultures, it appeared to be more difficult to reactivate HSV-1 in 3D cultures, potentially paralleling the low efficiency of HSV-1 reactivation in the CNS of animal models. The reactivation events were accompanied by dramatic neuronal morphological changes and cell-cell fusion. Together, our results provide substantive evidence of the suitability of hiPSC-based neuronal platforms to model HSV-1-CNS interactions in a human context.
Collapse
Affiliation(s)
- Leonardo D'Aiuto
- Department of Psychiatry, University of Pittsburgh School of Medicine Western Psychiatric Institute and Clinic, Pittsburgh, Pennsylvania, USA
| | - David C Bloom
- Department of Molecular Genetics & Microbiology, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Jennifer N Naciri
- Department of Psychiatry, University of Pittsburgh School of Medicine Western Psychiatric Institute and Clinic, Pittsburgh, Pennsylvania, USA
| | - Adam Smith
- Department of Psychiatry, University of Pittsburgh School of Medicine Western Psychiatric Institute and Clinic, Pittsburgh, Pennsylvania, USA
| | - Terri G Edwards
- Department of Molecular Genetics & Microbiology, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Lora McClain
- Magee-Women's Research Institute, Pittsburgh, Pennsylvania, USA
| | - Jason A Callio
- Department of Pathology, Division of Neuropathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Morgan Jessup
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Joel Wood
- Department of Psychiatry, University of Pittsburgh School of Medicine Western Psychiatric Institute and Clinic, Pittsburgh, Pennsylvania, USA
| | - Kodavali Chowdari
- Department of Psychiatry, University of Pittsburgh School of Medicine Western Psychiatric Institute and Clinic, Pittsburgh, Pennsylvania, USA
| | - Matthew Demers
- Department of Psychiatry, University of Pittsburgh School of Medicine Western Psychiatric Institute and Clinic, Pittsburgh, Pennsylvania, USA
| | - Eric E Abrahamson
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Milos D Ikonomovic
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Luigi Viggiano
- Department of Biology, University of Bari Aldo Moro, Bari, Italy
| | - Roberta De Zio
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari, Bari, Italy
| | - Simon Watkins
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Paul R Kinchington
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Vishwajit L Nimgaonkar
- Department of Psychiatry, University of Pittsburgh School of Medicine Western Psychiatric Institute and Clinic, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
16
|
Lund Human Mesencephalic (LUHMES) Neuronal Cell Line Supports Herpes Simplex Virus 1 Latency In Vitro. J Virol 2019; 93:JVI.02210-18. [PMID: 30602607 DOI: 10.1128/jvi.02210-18] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 12/18/2018] [Indexed: 02/06/2023] Open
Abstract
Lund human mesencephalic (LUHMES) cells are human embryonic neuronal precursor cells that can be maintained as proliferating cells due to the expression of a tetracycline-regulatable (Tet-off) v-myc transgene. They can be differentiated to postmitotic neurons by the addition of tetracycline, glial cell-derived neurotrophic factor (GDNF), and dibutyryl cAMP. We demonstrate that these cells can be infected with herpes simplex virus 1 (HSV-1) at a multiplicity of infection (MOI) of 3 with the majority of cells surviving. By 6 days postinfection, there is a loss of lytic gene transcription and an increase in the numbers of neurons that express the latency-associated transcripts (LATs). Importantly, the virus can then be reactivated by the addition of a phosphoinositide 3-kinase inhibitor, which has previously been shown to reactivate HSV-1 in rat neuron cultures. While rodent primary culture neuron systems have been described, these are limited by their lack of scalability, as it is difficult to obtain more than 500,000 neurons to employ for a given experiment. Several recent papers have described a human dorsal root ganglion (DRG) neuron culture model and human induced pleuripotent stem cell (iPSC) neuron culture models that are scalable, but they require that the presence of an antiviral suppression be maintained following HSV-1 infection. The human LUHMES cell model of HSV-1 infection described here may be especially useful for studying HSV-1 latency and reactivation on account of its scalability, its amenability to maintenance of latency without the continual use of antiviral inhibitors, and its latent gene expression profile which mirrors many properties observed in vivo, importantly, the heterogeneity of cells expressing the LATs.IMPORTANCE Herpes simplex virus (HSV) is responsible for significant morbidity in humans due to its ability to cause oral and genital lesions, ocular disease, and encephalitis. While antivirals can attenuate the severity and frequency of disease, there is no vaccine or cure. Understanding the molecular details of HSV latency and reactivation is key to the development of new therapies. One of the difficulties in studying HSV latency has been the need to rely on establishment of latent infections in animal models. While rodent primary neuron culture models have shown promise, they yield relatively small numbers of latently infected neurons for biochemical and molecular analyses. Here we present the use of a human central nervous system (CNS)-derived conditionally proliferating cell line that can be differentiated into mature neurons and latently infected with HSV-1. This model shows promise as a scalable tool to study molecular and biochemical aspects of HSV-1 latency and reactivation in human neurons.
Collapse
|
17
|
Keskar K, Zepeda-Velazquez C, Dokuburra CB, Jenkins HA, McNulty J. The synthesis of densely functionalised α-acyloxy enaminals and enaminones via a novel homogeneous silver(i) catalysed rearrangement. Chem Commun (Camb) 2019; 55:10868-10871. [DOI: 10.1039/c9cc05614a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A synthesis of densely functionalised α-acyloxy enaminals and enaminones via a novel homogeneous silver(i) catalyzed rearrangement of 1-acyloxy-3-azido ketones is reported.
Collapse
Affiliation(s)
- Kunal Keskar
- Department of Chemistry & Chemical Biology
- McMaster University
- Hamilton
- Canada
| | | | | | - Hilary A. Jenkins
- Department of Chemistry & Chemical Biology
- McMaster University
- Hamilton
- Canada
| | - James McNulty
- Department of Chemistry & Chemical Biology
- McMaster University
- Hamilton
- Canada
| |
Collapse
|
18
|
Abstract
Acyclovir (ACV) is an effective antiviral agent for treating lytic Herpes Simplex virus, type 1 (HSV-1) infections, and it has dramatically reduced the mortality rate of herpes simplex encephalitis. However, HSV-1 resistance to ACV and its derivatives is being increasingly documented, particularly among immunocompromised individuals. The burgeoning drug resistance compels the search for a new generation of more efficacious anti-herpetic drugs. We have previously shown that trans-dihydrolycoricidine (R430), a lycorane-type alkaloid derivative, effectively inhibits HSV-1 infections in cultured cells. We now report that R430 also inhibits ACV-resistant HSV-1 strains, accompanied by global inhibition of viral gene transcription and enrichment of H3K27me3 methylation on viral gene promoters. Furthermore, we demonstrate that R430 prevents HSV-1 reactivation from latency in an ex vivo rodent model. Finally, among a panel of DNA viruses and RNA viruses, R430 inhibited Zika virus with high therapeutic index. Its therapeutic index is comparable to standard antiviral drugs, though it has greater toxicity in non-neuronal cells than in neuronal cells. Synthesis of additional derivatives could enable more efficacious antivirals and the identification of active pharmacophores.
Collapse
|
19
|
Brown C, Kong T, Britten JF, Werstiuk NH, McNulty J, D’Aiuto L, Demers M, Nimgaonkar VL. Asymmetric Entry into 10 b-aza-Analogues of Amaryllidaceae Alkaloids Reveals a Pronounced Electronic Effect on Antiviral Activity. ACS OMEGA 2018; 3:11469-11476. [PMID: 30320263 PMCID: PMC6173499 DOI: 10.1021/acsomega.8b01987] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 09/06/2018] [Indexed: 06/08/2023]
Abstract
Development of a chiral pool-based synthesis of 10b-aza-analogues of biologically active Amaryllidaceae alkaloids is described, involving a concise reductive amination and condensation sequence, leading to ring-B/C-modified, fully functionalized ring-C derivatives. Differentiated anticancer and antiviral activities of these analogues are presented. Despite complete conformational and functional group overlap, the 10b-aza-analogues have diminished anticancer activity and no antiviral activity. These unprecedented electronic effects suggest a possible role for π-type secondary orbital interactions with the biological target.
Collapse
Affiliation(s)
- Carla
E. Brown
- Department
of Chemistry & Chemical Biology, McMaster
University, 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| | - Tiffany Kong
- Department
of Chemistry & Chemical Biology, McMaster
University, 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| | - James F. Britten
- Department
of Chemistry & Chemical Biology, McMaster
University, 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| | - Nick H. Werstiuk
- Department
of Chemistry & Chemical Biology, McMaster
University, 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| | - James McNulty
- Department
of Chemistry & Chemical Biology, McMaster
University, 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| | - Leonardo D’Aiuto
- Department
of Psychiatry, University of Pittsburgh
School of Medicine, 3811
O’Hara Street, Pittsburgh, Pennsylvania 15213, United States
| | - Matthew Demers
- Department
of Psychiatry, University of Pittsburgh
School of Medicine, 3811
O’Hara Street, Pittsburgh, Pennsylvania 15213, United States
| | - Vishwajit L. Nimgaonkar
- Department
of Psychiatry, University of Pittsburgh
School of Medicine, 3811
O’Hara Street, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
20
|
D'Aiuto L, Naciri J, Radio N, Tekur S, Clayton D, Apodaca G, Di Maio R, Zhi Y, Dimitrion P, Piazza P, Demers M, Wood J, Chu C, Callio J, McClain L, Yolken R, McNulty J, Kinchington P, Bloom D, Nimgaonkar V. Generation of three-dimensional human neuronal cultures: application to modeling CNS viral infections. Stem Cell Res Ther 2018; 9:134. [PMID: 29751846 PMCID: PMC5948884 DOI: 10.1186/s13287-018-0881-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 04/10/2018] [Accepted: 04/19/2018] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND A variety of neurological disorders including neurodegenerative diseases and infection by neurotropic viruses can cause structural and functional changes in the central nervous system (CNS), resulting in long-term neurological sequelae. An improved understanding of the pathogenesis of these disorders is important for developing efficacious interventions. Human induced pluripotent stem cells (hiPSCs) offer an extraordinary window for modeling pathogen-CNS interactions, and other cellular interactions, in three-dimensional (3D) neuronal cultures that can recapitulate several aspects of in vivo brain tissue. METHODS Herein, we describe a prototype of scaffold-free hiPSC-based adherent 3D (A-3D) human neuronal cultures in 96-well plates. To test their suitability for drug screening, A-3D neuronal cultures were infected with herpes simplex virus type 1 (HSV-1) with or without acyclovir. RESULTS The half maximal inhibitory concentration (IC50) of acyclovir was 3.14 μM and 3.12 μM determined using flow cytometry and the CX7 High Content Screening platform, respectively. CONCLUSIONS Our A-3D neuronal cultures provide an unprecedented opportunity for high-content drug screening programs to treat human CNS infections.
Collapse
Affiliation(s)
- Leonardo D'Aiuto
- Department of Psychiatry, University of Pittsburgh School of Medicine, Western Psychiatric Institute and Clinic, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA.
| | - Jennifer Naciri
- Department of Psychiatry, University of Pittsburgh School of Medicine, Western Psychiatric Institute and Clinic, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
| | - Nicholas Radio
- Thermo Fisher Scientific, Cellular Imaging and Analysis, 100 Technology Drive, Pittsburgh, PA, 15219, USA
| | - Sesha Tekur
- Thermo Fisher Scientific, Cellular Imaging and Analysis, 100 Technology Drive, Pittsburgh, PA, 15219, USA
| | - Dennis Clayton
- Department of Medicine Renal-Electrolyte Division and Department of Cell Biology, University of Pittsburgh School of Medicine, 3550 Terrace Street, Pittsburgh, PA, 15261, USA
| | - Gerard Apodaca
- Department of Medicine Renal-Electrolyte Division and Department of Cell Biology, University of Pittsburgh School of Medicine, 3550 Terrace Street, Pittsburgh, PA, 15261, USA
| | - Roberto Di Maio
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, 3501 Fifth Avenue, BST3-7035, Pittsburgh, PA, 15260, USA
| | - Yun Zhi
- Department of Pharmacology and Pharmaceutical Sciences, School of Medicine, Tsinghua University, 30 Shuangqing Rd, Haidian Qu, Beijing Shi, China
| | - Peter Dimitrion
- Division of Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Blalock 1105, Baltimore, MD, 21287, USA
| | - Paolo Piazza
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, 130 De Soto Street, Pittsburgh, PA, 15261, USA
| | - Matthew Demers
- Department of Psychiatry, University of Pittsburgh School of Medicine, Western Psychiatric Institute and Clinic, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
| | - Joel Wood
- Department of Psychiatry, University of Pittsburgh School of Medicine, Western Psychiatric Institute and Clinic, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
| | - Charleen Chu
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, 3501 Fifth Avenue, BST3-7035, Pittsburgh, PA, 15260, USA.,Department of Ophthalmology, University of Pittsburgh School of Medicine, Suite 820, Eye & Ear Building, 203 Lothrop Street, Pittsburgh, PA, 15213, USA.,Department of Pathology, Division of Neuropathology, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA, 15213, USA
| | - Jason Callio
- Department of Pathology, Division of Neuropathology, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA, 15213, USA
| | - Lora McClain
- Magee Women's Research Institute, 204 Craft Ave, Pittsburgh, PA, 15213, USA
| | - Robert Yolken
- Division of Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Blalock 1105, Baltimore, MD, 21287, USA
| | - James McNulty
- Department of Chemistry and Chemical-Biology, McMaster University, 1280 Main Street West, Hamilton, ON, L8S4L8, Canada
| | - Paul Kinchington
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Suite 820, Eye & Ear Building, 203 Lothrop Street, Pittsburgh, PA, 15213, USA
| | - David Bloom
- Department of Molecular Genetics & Microbiology, University of Florida College of Medicine, Gainesville, FL, 32611, USA
| | - Vishwajit Nimgaonkar
- Department of Psychiatry, University of Pittsburgh School of Medicine, Western Psychiatric Institute and Clinic, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA.,Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, 130 De Soto Street, Pittsburgh, PA, 15261, USA
| |
Collapse
|
21
|
Discovery of potent antiviral (HSV-1) quinazolinones and initial structure-activity relationship studies. Bioorg Med Chem Lett 2017; 27:4601-4605. [DOI: 10.1016/j.bmcl.2017.09.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/11/2017] [Accepted: 09/12/2017] [Indexed: 11/19/2022]
|
22
|
Thellman NM, Triezenberg SJ. Herpes Simplex Virus Establishment, Maintenance, and Reactivation: In Vitro Modeling of Latency. Pathogens 2017. [PMID: 28644417 PMCID: PMC5617985 DOI: 10.3390/pathogens6030028] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
All herpes viruses establish lifelong infections (latency) in their host, and herpes simplex viruses (HSVs) are highly prevalent worldwide. Recurrence of HSV infections contributes to significant disease burden in people and on rare occasion can be fatal. Cell culture models that recapitulate latent infection provide valuable insight on the host processes regulating viral establishment and maintenance of latency. More robust and rapid than infections in live animal studies, advancements in neuronal culture techniques have made the systematic analysis of viral reactivation mechanisms feasible. Only recently have human neuronal cell lines been available, but models in the natural host cell are a critical addition to the currently available models.
Collapse
|