1
|
Huang W, Li PH, He RN, Lei YR, Huang CF, Lin YX, Lan YM, Chen ZA, Zhang ZP, Qin QW, Sun YH. The regulatory role of Epinephelus Coioides miR-21 in the infection and replication of iridovirus SGIV. Virology 2025; 603:110325. [PMID: 39681060 DOI: 10.1016/j.virol.2024.110325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 11/21/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024]
Abstract
Iridovirus SGIV is a highly pathogenic virus of fish that can cause more than 90% mortality in Epinephelus coioides, a marine farmed fish in South China. miRNAs can be involved in regulating the development of virus-induced diseases. In this study, SGIV infection could significantly inhibit the expression of E. coioides miR-21. And, overexpressing miR-21 could inhibit the expressions of viral key genes (ICP18, VP19, LITAF and MCP), SGIV-induced CPE, and viral titers. Overexpression of miR-21 promoted the promoter activity of AP-1/NF-κB, SGIV-induced apoptosis, and activities of caspase 3/9. Inhibiting miR-21 could produce the opposite results. E. Coioides PDCD4 is a targeting gene of miR-21, and we speculate that PDCD4 downregulation may, at least in part, explain the observed antiviral effects. These studies indicate that miR-21 could inhibit the infection and replication of SGIV, which might provide a molecular basis for further exploring the mechanism of SGIV invasion.
Collapse
Affiliation(s)
- Wei Huang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, 510642, Guangzhou, Guangdong Province, PR China
| | - Pin-Hong Li
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, 510642, Guangzhou, Guangdong Province, PR China
| | - Ru-Nan He
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, 510642, Guangzhou, Guangdong Province, PR China
| | - Yu-Rong Lei
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, 510642, Guangzhou, Guangdong Province, PR China
| | - Cui-Fen Huang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, 510642, Guangzhou, Guangdong Province, PR China
| | - Yun-Xiang Lin
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, 510642, Guangzhou, Guangdong Province, PR China
| | - Yin-Mei Lan
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, 510642, Guangzhou, Guangdong Province, PR China
| | - Zi-An Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, 510642, Guangzhou, Guangdong Province, PR China
| | - Ze-Peng Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, 510642, Guangzhou, Guangdong Province, PR China
| | - Qi-Wei Qin
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, 510642, Guangzhou, Guangdong Province, PR China; Nansha-South China Agricultural University Fishery Research Institute, 511450, Guangzhou, Guangdong, PR China.
| | - Yan-Hong Sun
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, 510642, Guangzhou, Guangdong Province, PR China.
| |
Collapse
|
2
|
Calderón-Peláez MA, Madroñero LJ, Castellanos JE, Velandia-Romero ML. Small extracellular vesicles from the human endothelial cell line EA.hy 926 exert a self-cell activation and modulate DENV-2 genome replication and infection in naïve endothelial cells. PLoS One 2024; 19:e0310735. [PMID: 39325758 PMCID: PMC11426460 DOI: 10.1371/journal.pone.0310735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/04/2024] [Indexed: 09/28/2024] Open
Abstract
Extracellular vesicles (EVs) play crucial roles in cell signaling and communication, transporting molecules that convey a message to target cells. During infectious diseases, EVs can also carry viral molecules that may contribute to viral spread, as previously reported for dengue virus (DENV). EVs from infected endothelial cells (EC) may harbor viral segments and various sets of molecules that could contribute to endothelial dysfunction during severe dengue. However, the effect of these EVs on non-infected EC (NIC) remain unknown. We characterized the EVs produced by the human EC line EA.hy 926 infected with DENV-2 and assessed their functional impact on polarized NIC. Results showed that infection induced an increased in the quantity of produced EVs, which differentially carried proteins mainly involved in proteosome activity, along with a peptide of the NS5 viral protein. Additionally, all types of Y-RNAs were found, accompanied by a set of differentially loaded microRNAs (miRs) that could regulate DENV genome. Pre-treatment of polarized NIC with small EVs (sEVs) from infected EC before DENV-2 infection caused EC activation, a decrease in viral genome replication, and a protective effect against barrier disruption during the first 24h post-infection, suggesting that sEVs could be important in the pathology or resolution of DENV and a promising therapeutic tool for infectious diseases.
Collapse
Affiliation(s)
| | - L. Johana Madroñero
- Virology group, Vice-chancellor of research, Universidad El Bosque, Bogotá, Colombia
| | - Jaime E. Castellanos
- Virology group, Vice-chancellor of research, Universidad El Bosque, Bogotá, Colombia
| | | |
Collapse
|
3
|
Böge FL, Ruff S, Hemandhar Kumar S, Selle M, Becker S, Jung K. Combined Analysis of Multi-Study miRNA and mRNA Expression Data Shows Overlap of Selected miRNAs Involved in West Nile Virus Infections. Genes (Basel) 2024; 15:1030. [PMID: 39202390 PMCID: PMC11353516 DOI: 10.3390/genes15081030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 09/03/2024] Open
Abstract
The emerging zoonotic West Nile virus (WNV) has serious impact on public health. Thus, understanding the molecular basis of WNV infections in mammalian hosts is important to develop improved diagnostic and treatment strategies. In this context, the role of microRNAs (miRNAs) has been analyzed by several studies under different conditions and with different outcomes. A systematic comparison is therefore necessary. Furthermore, additional information from mRNA target expression data has rarely been taken into account to understand miRNA expression profiles under WNV infections. We conducted a meta-analysis of publicly available miRNA expression data from multiple independent studies, and analyzed them in a harmonized way to increase comparability. In addition, we used gene-set tests on mRNA target expression data to further gain evidence about differentially expressed miRNAs. For this purpose, we also studied the use of target information from different databases. We detected a substantial number of miRNA that emerged as differentially expressed from several miRNA datasets, and from the mRNA target data analysis as well. When using mRNA target data, we found that the targetscan databases provided the most useful information. We demonstrated improved miRNA detection through research synthesis of multiple independent miRNA datasets coupled with mRNA target set testing, leading to the discovery of multiple miRNAs which should be taken into account for further research on the molecular mechanism of WNV infections.
Collapse
Affiliation(s)
- Franz Leonard Böge
- Institute of Animal Genomics, University of Veterinary Medicine Hannover, Bünteweg 17p, 30559 Hannover, Germany; (F.L.B.); (S.R.); (S.H.K.); (M.S.)
| | - Sergej Ruff
- Institute of Animal Genomics, University of Veterinary Medicine Hannover, Bünteweg 17p, 30559 Hannover, Germany; (F.L.B.); (S.R.); (S.H.K.); (M.S.)
| | - Shamini Hemandhar Kumar
- Institute of Animal Genomics, University of Veterinary Medicine Hannover, Bünteweg 17p, 30559 Hannover, Germany; (F.L.B.); (S.R.); (S.H.K.); (M.S.)
| | - Michael Selle
- Institute of Animal Genomics, University of Veterinary Medicine Hannover, Bünteweg 17p, 30559 Hannover, Germany; (F.L.B.); (S.R.); (S.H.K.); (M.S.)
| | - Stefanie Becker
- Institute of Parasitology, University of Veterinary Medicine Hannover, Bünteweg 17, 30539 Hannover, Germany;
| | - Klaus Jung
- Institute of Animal Genomics, University of Veterinary Medicine Hannover, Bünteweg 17p, 30559 Hannover, Germany; (F.L.B.); (S.R.); (S.H.K.); (M.S.)
| |
Collapse
|
4
|
Zhang X, Li Y, Cao Y, Wu Y, Cheng G. The Role of Noncoding RNA in the Transmission and Pathogenicity of Flaviviruses. Viruses 2024; 16:242. [PMID: 38400018 PMCID: PMC10892091 DOI: 10.3390/v16020242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/28/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
Noncoding RNAs (ncRNAs) constitute a class of RNA molecules that lack protein-coding capacity. ncRNAs frequently modulate gene expression through specific interactions with target proteins or messenger RNAs, thereby playing integral roles in a wide array of cellular processes. The Flavivirus genus comprises several significant members, such as dengue virus (DENV), Zika virus (ZIKV), and yellow fever virus (YFV), which have caused global outbreaks, resulting in high morbidity and mortality in human populations. The life cycle of arthropod-borne flaviviruses encompasses their transmission between hematophagous insect vectors and mammalian hosts. During this process, a complex three-way interplay occurs among the pathogen, vector, and host, with ncRNAs exerting a critical regulatory influence. ncRNAs not only constitute a crucial regulatory mechanism that has emerged from the coevolution of viruses and their hosts but also hold potential as antiviral targets for controlling flavivirus epidemics. This review introduces the biogenesis of flavivirus-derived ncRNAs and summarizes the regulatory roles of ncRNAs in viral replication, vector-mediated viral transmission, antiviral innate immunity, and viral pathogenicity. A profound comprehension of the interplay between ncRNAs and flaviviruses will help formulate efficacious prophylactic and therapeutic strategies against flavivirus-related diseases.
Collapse
Affiliation(s)
- Xianwen Zhang
- Shenzhen Bay Laboratory, Institute of Infectious Diseases, Shenzhen 518000, China
| | - Yuhan Li
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China; (Y.L.); (Y.C.)
| | - Yingyi Cao
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China; (Y.L.); (Y.C.)
| | - Ying Wu
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Medical School, Wuhan University, Wuhan 430072, China;
| | - Gong Cheng
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China; (Y.L.); (Y.C.)
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
- Southwest United Graduate School, Kunming 650092, China
| |
Collapse
|
5
|
Wu J, Lin X, Li J, Lv Z, Duan N, Wang Z, Wu S. Dual-color nanospheres based on aggregation-induced emission and catalytic hairpin assembly for simultaneous imaging of acrylamide and miR-21 in living cells. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132815. [PMID: 37879280 DOI: 10.1016/j.jhazmat.2023.132815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/27/2023]
Abstract
Acrylamide (AA) is a heat-processed potent food carcinogen that is widely used in industry, posing a significant risk to human health. Therefore, it is necessary to investigate the toxic effects and mechanism of AA. miR-21 is a representative biomarker during AA-induced carcinogenesis. Here, dual-color aggregation-induced emission nanoparticles (AIENPs) were developed for the detection and simultaneous imaging of AA and miR-21. AIENPs were synthesized by combining aggregation-induced emission (AIE) dyes and a poly (styrene-co-maleic anhydride) (PSMA) amphiphilic polymer modified with hairpin DNA. Upon AA intervention and aptamer recognition, cDNA was dissociated, leading to miR-21 overexpression and initiating the catalytic hairpin assembly cycle. Consequently, fluorescence quenching was observed due to FRET between AIENPs and labeled quenchers. The relative fluorescence intensities of dual-color AIENPs displayed good linear relationships with logarithmic AA and miR-21 concentrations. Moreover, there was a gradual decrease in dual-color AIENP fluorescence as the HepG2 cell concentration of AA (0-500 μM) and stimulation time (0-12 h) increased, making it possible to simultaneously image AA and AA-induced miR-21. The findings of this work are valuable for revealing the cytotoxic mechanism of AA.
Collapse
Affiliation(s)
- Jiajun Wu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xianfeng Lin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jin Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Ziyu Lv
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Nuo Duan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Shijia Wu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
6
|
Ramphan S, Chumchanchira C, Sornjai W, Chailangkarn T, Jongkaewwattana A, Assavalapsakul W, Smith DR. Strain Variation Can Significantly Modulate the miRNA Response to Zika Virus Infection. Int J Mol Sci 2023; 24:16216. [PMID: 38003407 PMCID: PMC10671159 DOI: 10.3390/ijms242216216] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/01/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Zika virus (ZIKV) is a mosquito-transmitted virus that has emerged as a major public health concern due to its association with neurological disorders in humans, including microcephaly in fetuses. ZIKV infection has been shown to alter the miRNA profile in host cells, and these changes can contain elements that are proviral, while others can be antiviral in action. In this study, the expression of 22 miRNAs in human A549 cells infected with two different ZIKV isolates was investigated. All of the investigated miRNAs showed significant changes in expression at at least one time point examined. Markedly, 18 of the miRNAs examined showed statistically significant differences in expression between the two strains examined. Four miRNAs (miR-21, miR-34a, miR-128 and miR-155) were subsequently selected for further investigation. These four miRNAs were shown to modulate antiviral effects against ZIKV, as downregulation of their expression through anti-miRNA oligonucleotides resulted in increased virus production, whereas their overexpression through miRNA mimics reduced virus production. However, statistically significant changes were again seen when comparing the two strains investigated. Lastly, candidate targets of the miRNAs miR-34a and miR-128 were examined at the level of the mRNA and protein. HSP70 was identified as a target of miR-34a, but, again, the effects were strain type-specific. The two ZIKV strains used in this study differ by only nine amino acids, and the results highlight that consideration must be given to strain type variation when examining the roles of miRNAs in ZIKV, and probably other virus infections.
Collapse
Affiliation(s)
- Suwipa Ramphan
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand; (S.R.); (W.S.)
| | - Chanida Chumchanchira
- Department of Biology, Faculty of Sciences, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Wannapa Sornjai
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand; (S.R.); (W.S.)
| | - Thanathom Chailangkarn
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok 12120, Thailand; (T.C.); (A.J.)
| | - Anan Jongkaewwattana
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok 12120, Thailand; (T.C.); (A.J.)
| | - Wanchai Assavalapsakul
- Department of Microbiology, Faculty of Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Duncan R. Smith
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand; (S.R.); (W.S.)
| |
Collapse
|
7
|
Meng X, Eslami Y, Derafsh E, Saihood A, Emtiazi N, Yasamineh S, Gholizadeh O, Pecho RDC. The roles of different microRNAs in the regulation of cholesterol in viral hepatitis. Cell Commun Signal 2023; 21:231. [PMID: 37710249 PMCID: PMC10500852 DOI: 10.1186/s12964-023-01250-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/30/2023] [Indexed: 09/16/2023] Open
Abstract
Cholesterol plays a significant role in stabilizing lipid or membrane rafts, which are specific cellular membrane structures. Cholesterol is involved in numerous cellular processes, including regulating virus entry into the host cell. Multiple viruses have been shown to rely on cholesterol for virus entry and/or morphogenesis. Research indicates that reprogramming of the host's lipid metabolism is associated with hepatitis B virus (HBV) and hepatitis C virus (HCV) infections in the progression to severe liver disease for viruses that cause chronic hepatitis. Moreover, knowing the precise mode of viral interaction with target cells sheds light on viral pathogenesis and aids in the development of vaccines and therapeutic targets. As a result, the area of cholesterol-lowering therapy is quickly evolving and has many novel antiviral targets and medications. It has been shown that microRNAs (miRNAs) either directly or indirectly target the viral genome, preventing viral replication. Moreover, miRNAs have recently been shown to be strong post-transcriptional regulators of the genes involved in lipid metabolism, particularly those involved in cholesterol homeostasis. As important regulators of lipid homeostasis in several viral infections, miRNAs have recently come to light. In addition, multiple studies demonstrated that during viral infection, miRNAs modulate several enzymes in the mevalonate/cholesterol pathway. As cholesterol metabolism is essential to the life cycle of viral hepatitis and other viruses, a sophisticated understanding of miRNA regulation may contribute to the development of a novel anti-HCV treatment. The mechanisms underlying the effectiveness of miRNAs as cholesterol regulators against viral hepatitis are explored in this review. Video Abstract.
Collapse
Affiliation(s)
- Xuan Meng
- Hepatobiliary Surgery Department, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical College, Xuzhou, Jiangsu 221002 China
| | - Yeganeh Eslami
- Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ehsan Derafsh
- Windsor University, School of Medicine, St. Kitts, Canada
| | - Anwar Saihood
- Department of Microbiology, college of medicine, University of Al-Qadisiyah, Baqubah, Iraq
| | - Nikoo Emtiazi
- Department of Pathology, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Saman Yasamineh
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Omid Gholizadeh
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
8
|
Bhattacharjee S, Ghosh D, Saha R, Sarkar R, Kumar S, Khokhar M, Pandey RK. Mechanism of Immune Evasion in Mosquito-Borne Diseases. Pathogens 2023; 12:635. [PMID: 37242305 PMCID: PMC10222277 DOI: 10.3390/pathogens12050635] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
In recent decades, mosquito-borne illnesses have emerged as a major health burden in many tropical regions. These diseases, such as malaria, dengue fever, chikungunya, yellow fever, Zika virus infection, Rift Valley fever, Japanese encephalitis, and West Nile virus infection, are transmitted through the bite of infected mosquitoes. These pathogens have been shown to interfere with the host's immune system through adaptive and innate immune mechanisms, as well as the human circulatory system. Crucial immune checkpoints such as antigen presentation, T cell activation, differentiation, and proinflammatory response play a vital role in the host cell's response to pathogenic infection. Furthermore, these immune evasions have the potential to stimulate the human immune system, resulting in other associated non-communicable diseases. This review aims to advance our understanding of mosquito-borne diseases and the immune evasion mechanisms by associated pathogens. Moreover, it highlights the adverse outcomes of mosquito-borne disease.
Collapse
Affiliation(s)
| | - Debanjan Ghosh
- Department of Biotechnology, Pondicherry University, Puducherry 605014, India
| | - Rounak Saha
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry 605014, India
| | - Rima Sarkar
- DBT Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, India
| | - Saurav Kumar
- DBT Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, India
| | - Manoj Khokhar
- Department of Biochemistry, AIIMS, Jodhpur 342005, India
| | - Rajan Kumar Pandey
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, 171 77 Solna, Sweden
| |
Collapse
|
9
|
Alshahrani SH, Alameri AA, Kahar F, Alexis Ramírez-Coronel A, Fadhel Obaid R, Alsaikhan F, Zabibah RS, Qasim QA, Altalbawy FMA, Fakri Mustafa Y, Mirzaei R, Karampoor S. Overview of the role and action mechanism of microRNA-128 in viral infections. Microb Pathog 2023; 176:106020. [PMID: 36746316 DOI: 10.1016/j.micpath.2023.106020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/21/2023] [Accepted: 01/31/2023] [Indexed: 02/07/2023]
Abstract
Recently in vivo and in vitro studies have provided evidence establishing the significance of microRNAs (miRNAs) in both physiological and pathological conditions. In this regard, the role of miRNA-128 (miR-128) in health and diseases has been found, and its critical regulatory role in the context of some viral diseases has been recently identified. For instance, it has been found that miR-128 can serve as an antiviral mediator and significantly limit the replication and dissemination of human immunodeficiency virus type 1 (HIV-1). Besides, it has been noted that poliovirus receptor-related 4 (PVRL4) is post-transcriptionally regulated by miR-128, representing possible miRNA targets that can modulate measles virus infection. Of note, the downregulation of seminal exosomes eca-miR-128 is associated with the long-term persistence of Equine arteritis virus (EAV) in the reproductive tract, and this particular miRNA is a putative regulator of chemokine ligand 16 (C-X-C motif) as determined by target prediction analysis. In this review, the latest information on the role and action mechanism of miR-128 in viral infections will be summarized and discussed in detail.
Collapse
Affiliation(s)
- Shadia Hamoud Alshahrani
- Medical Surgical Nursing Department, King Khalid University, Almahala, Khamis Mushate, Saudi Arabia
| | - Ameer A Alameri
- Department of Chemistry, University of Babylon, Babylon, Iraq
| | - Fitriani Kahar
- Medic Technology Laboratory, Poltekkes Kemenkes Semarang, Indonesia
| | - Andrés Alexis Ramírez-Coronel
- National University of Education, Azogues, Ecuador; Catholic University of Cuenca, Azogues Campus, Ecuador; University of Palermo, Buenos Aires, Argentina; CES University, Colombia, Azogues, Ecuador
| | - Rasha Fadhel Obaid
- Department of Biomedical Engineering, Al-Mustaqbal University College, Babylon, Iraq
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Kingdom of Saudi Arabia
| | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | | | - Farag M A Altalbawy
- National Institute of Laser Enhanced Sciences (NILES), Cairo University, Giza 12613, Egypt; Department of Chemistry, University College of Duba, Tabuk University, Duba 71911, Saudi Arabia
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Madhry D, Malvankar S, Phadnis S, Srivastava RK, Bhattacharyya S, Verma B. Synergistic correlation between host angiogenin and dengue virus replication. RNA Biol 2023; 20:805-816. [PMID: 37796112 PMCID: PMC10557563 DOI: 10.1080/15476286.2023.2264003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2023] [Indexed: 10/06/2023] Open
Abstract
DENV infection poses a major health concern globally and the pathophysiology relies heavily on host-cellular machinery. Although virus replication relies heavily on the host, the mechanistic details of DENV-host interaction is not fully characterized yet. Here, we are focusing on characterizing the mechanistic basis of virus-induced stress on the host cell. Specifically, we aim to characterize the role of the stress modulator ribonuclease Angiogenin during DENV infection. Our results suggested that the levels of Angiogenin are up-regulated in DENV-infected cells and the levels increase proportionately with DENV replication. Our efforts to knockdown Angiogenin using siRNA were unsuccessful in DENV-infected cells but not in mock-infected control. To further investigate the modulation between DENV replication and Angiogenin, we treated Huh7 cells with Ivermectin prior to DENV infection. Our results suggest a significant reduction in DENV replication specifically at the later stages as a consequence of Ivermectin treatment. Interestingly, Angiogenin levels were also found to be decreased proportionately. Our results suggest that Angiogenin modulation during DENV infection is important for DENV replication and pathogenesis.
Collapse
Affiliation(s)
- Deeksha Madhry
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, India
| | - Shivani Malvankar
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, India
| | - Sushant Phadnis
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, India
| | - Rupesh K. Srivastava
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, India
| | - Sankar Bhattacharyya
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Bhupendra Verma
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, India
| |
Collapse
|
11
|
Micro-Players of Great Significance-Host microRNA Signature in Viral Infections in Humans and Animals. Int J Mol Sci 2022; 23:ijms231810536. [PMID: 36142450 PMCID: PMC9504570 DOI: 10.3390/ijms231810536] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/04/2022] [Accepted: 09/08/2022] [Indexed: 11/22/2022] Open
Abstract
Over time, more and more is becoming known about micro-players of great significance. This is particularly the case for microRNAs (miRNAs; miR), which have been found to participate in the regulation of many physiological and pathological processes in both humans and animals. One such process is viral infection in humans and animals, in which the host miRNAs—alone or in conjunction with the virus—interact on two levels: viruses may regulate the host’s miRNAs to evade its immune system, while the host miRNAs can play anti- or pro-viral roles. The purpose of this comprehensive review is to present the key miRNAs involved in viral infections in humans and animals. We summarize the data in the available literature, indicating that the signature miRNAs in human viral infections mainly include 12 miRNAs (i.e., miR-155, miR-223, miR-146a, miR-122, miR-125b, miR-132, miR-34a, miR -21, miR-16, miR-181 family, let-7 family, and miR-10a), while 10 miRNAs are commonly found in animals (i.e., miR-155, miR-223, miR-146a, miR-145, miR-21, miR-15a/miR-16 cluster, miR-181 family, let-7 family, and miR-122) in this context. Knowledge of which miRNAs are involved in different viral infections and the biological functions that they play can help in understanding the pathogenesis of viral diseases, facilitating the future development of therapeutic agents for both humans and animals.
Collapse
|
12
|
Polonio CM, da Silva P, Russo FB, Hyppolito BRN, Zanluqui NG, Benazzato C, Beltrão-Braga PCB, Muxel SM, Peron JPS. microRNAs Control Antiviral Immune Response, Cell Death and Chemotaxis Pathways in Human Neuronal Precursor Cells (NPCs) during Zika Virus Infection. Int J Mol Sci 2022; 23:ijms231810282. [PMID: 36142200 PMCID: PMC9499039 DOI: 10.3390/ijms231810282] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Viral infections have always been a serious burden to public health, increasing morbidity and mortality rates worldwide. Zika virus (ZIKV) is a flavivirus transmitted by the Aedes aegypti vector and the causative agent of severe fetal neuropathogenesis and microcephaly. The virus crosses the placenta and reaches the fetal brain, mainly causing the death of neuronal precursor cells (NPCs), glial inflammation, and subsequent tissue damage. Genetic differences, mainly related to the antiviral immune response and cell death pathways greatly influence the susceptibility to infection. These components are modulated by many factors, including microRNAs (miRNAs). MiRNAs are small noncoding RNAs that regulate post-transcriptionally the overall gene expression, including genes for the neurodevelopment and the formation of neural circuits. In this context, we investigated the pathways and target genes of miRNAs modulated in NPCs infected with ZIKV. We observed downregulation of miR-302b, miR-302c and miR-194, whereas miR-30c was upregulated in ZIKV infected human NPCs in vitro. The analysis of a public dataset of ZIKV-infected human NPCs evidenced 262 upregulated and 3 downregulated genes, of which 142 were the target of the aforementioned miRNAs. Further, we confirmed a correlation between miRNA and target genes affecting pathways related to antiviral immune response, cell death and immune cells chemotaxis, all of which could contribute to the establishment of microcephaly and brain lesions. Here, we suggest that miRNAs target gene expression in infected NPCs, directly contributing to the pathogenesis of fetal microcephaly.
Collapse
Affiliation(s)
- Carolina M. Polonio
- Neuroimmune Interactions Laboratory, Department of Immunology, University of São Paulo, São Paulo 05508-000, Brazil
- Scientific Platform Pasteur-USP (SPPU), University of São Paulo, São Paulo 05508-000, Brazil
| | - Patrick da Silva
- Neuroimmune Interactions Laboratory, Department of Immunology, University of São Paulo, São Paulo 05508-000, Brazil
- Scientific Platform Pasteur-USP (SPPU), University of São Paulo, São Paulo 05508-000, Brazil
| | - Fabiele B. Russo
- Scientific Platform Pasteur-USP (SPPU), University of São Paulo, São Paulo 05508-000, Brazil
- Disease Modeling Laboratory at Department of Microbiology, Institute of Biomedical Sciences, São Paulo 05508-000, Brazil
| | - Brendo R. N. Hyppolito
- Neuroimmune Interactions Laboratory, Department of Immunology, University of São Paulo, São Paulo 05508-000, Brazil
- Immunopathology and Allergy Post Graduate Program, School of Medicine, University of São Paulo, São Paulo 05508-000, Brazil
| | - Nagela G. Zanluqui
- Neuroimmune Interactions Laboratory, Department of Immunology, University of São Paulo, São Paulo 05508-000, Brazil
- Scientific Platform Pasteur-USP (SPPU), University of São Paulo, São Paulo 05508-000, Brazil
- Immunopathology and Allergy Post Graduate Program, School of Medicine, University of São Paulo, São Paulo 05508-000, Brazil
| | - Cecília Benazzato
- Disease Modeling Laboratory at Department of Microbiology, Institute of Biomedical Sciences, São Paulo 05508-000, Brazil
| | - Patrícia C. B. Beltrão-Braga
- Scientific Platform Pasteur-USP (SPPU), University of São Paulo, São Paulo 05508-000, Brazil
- Disease Modeling Laboratory at Department of Microbiology, Institute of Biomedical Sciences, São Paulo 05508-000, Brazil
| | - Sandra M. Muxel
- Neuroimmune Interactions Laboratory, Department of Immunology, University of São Paulo, São Paulo 05508-000, Brazil
- Scientific Platform Pasteur-USP (SPPU), University of São Paulo, São Paulo 05508-000, Brazil
- Correspondence: (S.M.M.); (J.P.S.P.)
| | - Jean Pierre S. Peron
- Neuroimmune Interactions Laboratory, Department of Immunology, University of São Paulo, São Paulo 05508-000, Brazil
- Scientific Platform Pasteur-USP (SPPU), University of São Paulo, São Paulo 05508-000, Brazil
- Immunopathology and Allergy Post Graduate Program, School of Medicine, University of São Paulo, São Paulo 05508-000, Brazil
- Correspondence: (S.M.M.); (J.P.S.P.)
| |
Collapse
|
13
|
Abstract
Flaviviruses are a spectrum of vector-borne RNA viruses that cause potentially severe diseases in humans including encephalitis, acute-flaccid paralysis, cognitive disorders and foetal abnormalities. Japanese encephalitis virus (JEV), Zika virus (ZIKV), West Nile virus (WNV) and Dengue virus (DENV) are globally emerging pathogens that lead to epidemics and outbreaks with continued transmission to newer geographical areas over time. In the past decade, studies have focussed on understanding the pathogenic mechanisms of these viruses in a bid to alleviate their disease burden. MicroRNAs (miRNAs) are short single-stranded RNAs that have emerged as master-regulators of cellular gene expression. The dynamics of miRNAs within a cell have the capacity to modulate hundreds of genes and, consequently, their physiological manifestation. Increasing evidence suggests their role in host response to disease and infection including cell survival, intracellular viral replication and immune activation. In this review, we aim to comprehensively update published evidence on the role of miRNAs in host cells infected with the common neurotropic flaviviruses, with an increased focus on neuropathogenic mechanisms. In addition, we briefly cover therapeutic advancements made in the context of miRNA-based antiviral strategies.
Collapse
|
14
|
Krishnamoorthy P, Raj AS, Kumar P, Das N, Kumar H. Host and viral non-coding RNAs in dengue pathogenesis. Rev Med Virol 2022; 32:e2360. [PMID: 35510480 DOI: 10.1002/rmv.2360] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/15/2022] [Accepted: 04/20/2022] [Indexed: 11/10/2022]
Abstract
Dengue virus (DENV) is a mosquito-borne flavivirus that causes frequent outbreaks in tropical countries. Due to the four different serotypes and ever-mutating RNA genome, it is challenging to develop efficient therapeutics. Early diagnosis is crucial to prevent the severe form of dengue, leading to mortality. In the past decade, rapid advancement in the high throughput sequencing technologies has shed light on the crucial regulating role of non-coding RNAs (ncRNAs), also known as the "dark matter" of the genome, in various pathological processes. In addition to the human host ncRNAs like microRNAs and circular RNAs, DENV also produces ncRNAs such as subgenomic flaviviral RNAs that can modulate the virus life cycle and regulate disease outcomes. This review outlines the advances in understanding the interplay between the human host and DENV ncRNAs, their regulation of the innate immune system of the host, and the prospects of the ncRNAs in clinical applications such as dengue diagnosis and promising therapeutics.
Collapse
Affiliation(s)
- Pandikannan Krishnamoorthy
- Department of Biological Sciences, Laboratory of Immunology and Infectious Disease Biology, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, Madhya Pradesh, India
| | - Athira S Raj
- Department of Biological Sciences, Laboratory of Immunology and Infectious Disease Biology, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, Madhya Pradesh, India
| | - Pramod Kumar
- Department of Biological Sciences, Laboratory of Immunology and Infectious Disease Biology, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, Madhya Pradesh, India
| | - Nilanjana Das
- Department of Biological Sciences, Laboratory of Immunology and Infectious Disease Biology, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, Madhya Pradesh, India
| | - Himanshu Kumar
- Department of Biological Sciences, Laboratory of Immunology and Infectious Disease Biology, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, Madhya Pradesh, India.,Laboratory of Host Defense, WPI Immunology, Frontier Research Centre, Osaka University, Osaka, Japan
| |
Collapse
|
15
|
Cai W, Pan Y, Cheng A, Wang M, Yin Z, Jia R. Regulatory Role of Host MicroRNAs in Flaviviruses Infection. Front Microbiol 2022; 13:869441. [PMID: 35479613 PMCID: PMC9036177 DOI: 10.3389/fmicb.2022.869441] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/16/2022] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNA that affect mRNA abundance or translation efficiency by binding to the 3′UTR of the mRNA of the target gene, thereby participating in multiple biological processes, including viral infection. Flavivirus genus consists of small, positive-stranded, single-stranded RNA viruses transmitted by arthropods, especially mosquitoes and ticks. The genus contains several globally significant human/animal pathogens, such as Dengue virus, Japanese encephalitis virus, West Nile virus, Zika virus, Yellow fever virus, Tick-borne encephalitis virus, and Tembusu virus. After flavivirus invades, the expression of host miRNA changes, exerting the immune escape mechanism to create an environment conducive to its survival, and the altered miRNA in turn affects the life cycle of the virus. Accumulated evidence suggests that host miRNAs influence flavivirus replication and host–virus interactions through direct binding of viral genomes or through virus-mediated host transcriptome changes. Furthermore, miRNA can also interweave with other non-coding RNAs, such as long non-coding RNA and circular RNA, to form an interaction network to regulate viral replication. A variety of non-coding RNAs produced by the virus itself exert similar function by interacting with cellular RNA and viral RNA. Understanding the interaction sites between non-coding RNA, especially miRNA, and virus/host genes will help us to find targets for antiviral drugs and viral therapy.
Collapse
Affiliation(s)
- Wenjun Cai
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Yuhong Pan
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Anchun Cheng
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- *Correspondence: Anchun Cheng,
| | - Mingshu Wang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Zhongqiong Yin
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Renyong Jia
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- Renyong Jia,
| |
Collapse
|
16
|
miR-573 rescues endothelial dysfunction during dengue infection under PPARγ regulation. J Virol 2022; 96:e0199621. [PMID: 35108097 DOI: 10.1128/jvi.01996-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Early prognosis of abnormal vasculopathy is essential for effective clinical management of severe dengue patients. An exaggerated interferon (IFN) response and release of vasoactive factors from endothelial cells cause vasculopathy. This study shows that dengue 2 (DENV2) infection of human umbilical vein endothelial cells (HUVEC) results in differentially regulated miRNAs important for endothelial function. miR-573 was significantly down-regulated in DENV2-infected HUVEC due to decreased Peroxisome Proliferator Activator Receptor Gamma (PPARγ) activity. Restoring miR-573 expression decreased endothelial permeability by suppressing the expression of vasoactive angiopoietin 2 (ANGPT2). We also found that miR-573 suppressed the proinflammatory IFN response through direct downregulation of toll like receptor 2 (TLR2) expression. Our study provides a novel insight into miR-573 mediated regulation of endothelial function during DENV2 infection which can be further translated into a potential therapeutic and prognostic agent for severe dengue patients. IMPORTANCE: We need to identify molecular factors which can predict the onset of endothelial dysfunction in dengue patients. Increase in endothelial permeability during severe dengue infections is poorly understood. In this study we focus on factors which regulate endothelial function and are dysregulated during DENV2 infection. We show that miR-573 rescues endothelial permeability and is downregulated during DENV2 infection in endothelial cells. This finding can have diagnostic as well as therapeutic applications.
Collapse
|
17
|
Majumdar A, Basu A. Involvement of host microRNAs in flavivirus-induced neuropathology: An update. J Biosci 2022; 47:54. [PMID: 36222134 PMCID: PMC9425815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 04/17/2022] [Indexed: 09/07/2024]
Abstract
Flaviviruses are a spectrum of vector-borne RNA viruses that cause potentially severe diseases in humans including encephalitis, acute-flaccid paralysis, cognitive disorders and foetal abnormalities. Japanese encephalitis virus (JEV), Zika virus (ZIKV), West Nile virus (WNV) and Dengue virus (DENV) are globally emerging pathogens that lead to epidemics and outbreaks with continued transmission to newer geographical areas over time. In the past decade, studies have focussed on understanding the pathogenic mechanisms of these viruses in a bid to alleviate their disease burden. MicroRNAs (miRNAs) are short single-stranded RNAs that have emerged as master-regulators of cellular gene expression. The dynamics of miRNAs within a cell have the capacity to modulate hundreds of genes and, consequently, their physiological manifestation. Increasing evidence suggests their role in host response to disease and infection including cell survival, intracellular viral replication and immune activation. In this review, we aim to comprehensively update published evidence on the role of miRNAs in host cells infected with the common neurotropic flaviviruses, with an increased focus on neuropathogenic mechanisms. In addition, we briefly cover therapeutic advancements made in the context of miRNA-based antiviral strategies.
Collapse
Affiliation(s)
- Atreye Majumdar
- National Brain Research Centre, Manesar, Gurugram 122 052 India
| | - Anirban Basu
- National Brain Research Centre, Manesar, Gurugram 122 052 India
| |
Collapse
|
18
|
Baig MS, Krishnan A. A bioinformatics approach to investigate serum and hematopoietic cell-specific therapeutic microRNAs targeting the 3' UTRs of all four Dengue virus serotypes. Pathog Dis 2021; 79:6381691. [PMID: 34610125 DOI: 10.1093/femspd/ftab050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 10/01/2021] [Indexed: 01/20/2023] Open
Abstract
Hyperendemic circulation of all four Dengue virus (DENV) serotypes is a severe global public health problem, so any vaccine or therapeutics should be able to target all four of them. Cells of hemopoietic origin are believed to be primary sites of DENV replication. This study aimed to identify potential host miRNAs that target 3' UTR of all four DENV serotypes, thereby directly regulating viral gene expression or indirectly modulating the host system at different virus infection steps. We used four prediction algorithms viz. miRanda, RNA22, RNAhybrid and StarMir for predicting miRNA, targeting 3'UTR of all four DENV serotypes. Statistically, the most significant miRNA targets were screened based on their Log10 P-value (> 0.0001) of Gene Ontology (GO) term and Kyoto Encyclopaedia of Gene and Genome (KEGG) pathway enrichment analysis. The intersection test of at least three prediction tools identified a total of 30 miRNAs, which could bind to 3'UTR of all four DENV serotypes. Of the 30, eight miRNAs were of hematopoietic cell origin. GO term enrichment and KEGG analysis showed four hemopoietic origin miRNAs target genes of the biological processes mainly involved in the innate immune response, mRNA 3'-end processing, antigen processing and presentation and nuclear-transcribed mRNA catabolic process.
Collapse
Affiliation(s)
- Mirza Sarwar Baig
- Department of Molecular Medicine, School of Interdisciplinary Sciences & Technology, Jamia Hamdard, Hamdard Nagar, New Delhi-110062, India
| | - Anuja Krishnan
- Department of Molecular Medicine, School of Interdisciplinary Sciences & Technology, Jamia Hamdard, Hamdard Nagar, New Delhi-110062, India
| |
Collapse
|
19
|
Polonio CM, Peron JPS. ZIKV Infection and miRNA Network in Pathogenesis and Immune Response. Viruses 2021; 13:v13101992. [PMID: 34696422 PMCID: PMC8541119 DOI: 10.3390/v13101992] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/14/2021] [Accepted: 09/28/2021] [Indexed: 01/01/2023] Open
Abstract
Over the years, viral infections have caused severe illness in humans. Zika Virus (ZIKV) is a flavivirus transmitted by mosquito vectors that leads to notable neurological impairment, whose most dramatic impact is the Congenital ZIKV Syndrome (CZS). ZIKV targets neuronal precursor cells leading to apoptosis and further impairment of neuronal development, causing microcephaly, lissencephaly, ventriculomegaly, and calcifications. Several regulators of biological processes are involved in CZS development, and in this context, microRNAs (miRNAs) seem to have a fundamental role. miRNAs are important regulators of protein translation, as they form the RISC silencing complex and interact with complementary mRNA target sequences to further post-transcriptional repression. In this context, little is known about their participation in the pathogenesis of viral infections. In this review, we discuss how miRNAs could relate to ZIKV and other flavivirus infections.
Collapse
Affiliation(s)
- Carolina Manganeli Polonio
- Neuroimmune Interactions Laboratory, Department of Immunology, University of São Paulo, São Paulo 05508-000, Brazil;
- Laboratory of Neuroimmunology of Arboviruses, Scientific Platform Pasteur-USP (SPPU), University of São Paulo, São Paulo 05508-020, Brazil
| | - Jean Pierre Schatzmann Peron
- Neuroimmune Interactions Laboratory, Department of Immunology, University of São Paulo, São Paulo 05508-000, Brazil;
- Laboratory of Neuroimmunology of Arboviruses, Scientific Platform Pasteur-USP (SPPU), University of São Paulo, São Paulo 05508-020, Brazil
- Immunopathology and Allergy Post Graduate Program, School of Medicine, University of São Paulo, São Paulo 01246-000, Brazil
- Correspondence:
| |
Collapse
|
20
|
Su Y, Lin T, Liu C, Cheng C, Han X, Jiang X. microRNAs, the Link Between Dengue Virus and the Host Genome. Front Microbiol 2021; 12:714409. [PMID: 34456895 PMCID: PMC8385664 DOI: 10.3389/fmicb.2021.714409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/16/2021] [Indexed: 12/22/2022] Open
Abstract
Dengue virus (DENV) is a small envelope virus of Flaviviridae that is mainly transmitted by Aedes aegypti and Aedes albopictus. It can cause dengue fever with mild clinical symptoms or even life-threatening dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). At present, there are no specific drugs or mature vaccine products to treat DENV. microRNAs (miRNAs) are a class of important non-coding small molecular RNAs that regulate gene expression at the post-transcriptional level. It is involved in and regulates a series of important life processes, such as growth and development, cell differentiation, cell apoptosis, anti-virus, and anti-tumor. miRNAs also play important roles in interactions between host and viral genome transcriptomes. Host miRNAs can directly target the genome of the virus or regulate host factors to promote or inhibit virus replication. Understanding the expression and function of miRNAs during infection with DENV and the related signal molecules of the miRNA-mediated regulatory network will provide new insights for the development of miRNA-based therapies.
Collapse
Affiliation(s)
- Yinghua Su
- College of Biological Science and Engineering, Fuzhou University, Fujian, China
| | - Ting Lin
- College of Biological Science and Engineering, Fuzhou University, Fujian, China
| | - Chun Liu
- College of Biological Science and Engineering, Fuzhou University, Fujian, China
| | - Cui Cheng
- College of Biological Science and Engineering, Fuzhou University, Fujian, China
| | - Xiao Han
- College of Biological Science and Engineering, Fuzhou University, Fujian, China
| | - Xiwen Jiang
- DAAN Gene Co., Ltd. of Sun Yat-sen University, Guangdong, China
| |
Collapse
|
21
|
Pandey N, Rastogi M, Singh SK. Chandipura virus dysregulates the expression of hsa-miR-21-5p to activate NF-κB in human microglial cells. J Biomed Sci 2021; 28:52. [PMID: 34233673 PMCID: PMC8265105 DOI: 10.1186/s12929-021-00748-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/30/2021] [Indexed: 12/18/2022] Open
Abstract
Background Chandipura virus (CHPV) is a negative single-stranded RNA virus of the Rhabdoviridae family. CHPV infection has been reported in Central and Western India. CHPV causes acute encephalitis with a case fatality rate of 70 % and mostly affects children below 15 years of age. CHPV infection in brain leads to neuronal apoptosis and activation of the microglial cells. The microRNAs (miRNAs) are small endogenous non-coding RNA that regulate the gene expression. Viral infections perturb the expression pattern of cellular miRNAs, which may in turn affect the expression pattern of downstream genes. This study aims to investigate hsa-miR-21-5p mediated regulation of PTEN, AKT, NF-ĸBp65, IL-6, TNF-α, and IL-1β, in human microglial cells during CHPV infection. Methods To understand the role of hsa-miR-21-5p in CHPV infection, the human microglial cells were infected with CHPV (MOI-0.1). Real-time PCR, western blotting, Luciferase assay, over-expression and knockdown techniques were used to understand the role of hsa-miR-21-5p in the regulation of PTEN, AKT and, NF-ĸBp65, IL-6, TNF-α, and IL-1β in this study. Results The hsa-miR-21-5p was found to be upregulated during CHPV infection in human microglial cells. This led to the downregulation of PTEN which promoted the phosphorylation of AKT and NF-ĸBp65. Over-expression of hsa-miR-21-5p led to the decreased expression of PTEN and promoted further phosphorylation of AKT and NF-ĸBp65 in human microglial cells. However, the inhibition of hsa-miR-21-5p using hsa-miR-21-5p inhibitor restored the expression. Conclusions This study supports the role of hsa-miR-21-5p in the regulation of pro-inflammatory genes in CHPV infected human microglial cells. Supplementary Information The online version contains supplementary material available at 10.1186/s12929-021-00748-0.
Collapse
Affiliation(s)
- Neha Pandey
- Molecular Biology Unit, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University, 221005, Varanasi, India
| | - Meghana Rastogi
- Molecular Biology Unit, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University, 221005, Varanasi, India
| | - Sunit K Singh
- Molecular Biology Unit, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University, 221005, Varanasi, India.
| |
Collapse
|
22
|
He G, Ding J, Zhang Y, Cai M, Yang J, Cho WC, Zheng Y. microRNA-21: a key modulator in oncogenic viral infections. RNA Biol 2021; 18:809-817. [PMID: 33499700 DOI: 10.1080/15476286.2021.1880756] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Oncogenic viruses are associated with approximately 15% of human cancers. In viral infections, microRNAs play an important role in host-pathogen interactions. miR-21 is a highly conserved non-coding RNA that not only regulates the development of oncogenic viral diseases, but also responds to the regulation of intracellular signal pathways. Oncogenic viruses, including HBV, HCV, HPV, and EBV, co-evolve with their hosts and cause persistent infections. The upregulation of host miR-21 manipulates key cellular pathways to evade host immune responses and then promote viral replication. Thus, a better understanding of the role of miR-21 in viral infections may help us to develop effective genetically-engineered oncolytic virus-based therapies against cancer.
Collapse
Affiliation(s)
- Guitian He
- State Key Laboratory of Veterinary Etiological Biology' and 'Key Laboratory of Veterinary Parasitology of Gansu Province, CAAS, Lanzhou, China
| | - Juntao Ding
- College of Life Science and Technology, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Yong'e Zhang
- State Key Laboratory of Veterinary Etiological Biology' and 'Key Laboratory of Veterinary Parasitology of Gansu Province, CAAS, Lanzhou, China
| | - Mengting Cai
- State Key Laboratory of Veterinary Etiological Biology' and 'Key Laboratory of Veterinary Parasitology of Gansu Province, CAAS, Lanzhou, China
| | - Jing Yang
- State Key Laboratory of Veterinary Etiological Biology' and 'Key Laboratory of Veterinary Parasitology of Gansu Province, CAAS, Lanzhou, China
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, China
| | - Yadong Zheng
- State Key Laboratory of Veterinary Etiological Biology' and 'Key Laboratory of Veterinary Parasitology of Gansu Province, CAAS, Lanzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou China
| |
Collapse
|
23
|
de Oliveira LF, de Andrade AAS, Pagliari C, de Carvalho LV, Silveira TS, Cardoso JF, Silva ALTE, de Vasconcelos JM, Moreira-Nunes CA, Burbano RMR, Nunes MRT, Dos Santos EJM, Júnior JLDSGV. Differential expression analysis and profiling of hepatic miRNA and isomiRNA in dengue hemorrhagic fever. Sci Rep 2021; 11:5554. [PMID: 33692368 PMCID: PMC7946910 DOI: 10.1038/s41598-020-72892-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 09/03/2020] [Indexed: 12/13/2022] Open
Abstract
Dengue virus causes dengue hemorrhagic fever (DHF) and has been associated to fatal cases worldwide. The liver is one of the most important target tissues in severe cases, due to its intense viral replication and metabolic role. microRNAs role during infection is crucial to understand the regulatory mechanisms of DENV infection and can help in diagnostic and anti-viral therapies development. We sequenced the miRNome of six fatal cases and compared to five controls, to characterize the human microRNAs expression profile in the liver tissue during DHF. Eight microRNAs were differentially expressed, including miR-126-5p, a regulatory molecule of endothelial cells, miR-122-5p, a liver specific homeostasis regulator, and miR-146a-5p, an interferon-regulator. Enrichment analysis with predicted target genes of microRNAs revealed regulatory pathways of apoptosis, involving MAPK, RAS, CDK and FAS. Immune response pathways were related to NF- kB, CC and CX families, IL and TLR. This is the first description of the human microRNA and isomicroRNA profile in liver tissues from DHF cases. The results demonstrated the association of miR-126-5p, miR-122-5p and miR-146a-5p with DHF liver pathogenesis, involving endothelial repair and vascular permeability regulation, control of homeostasis and expression of inflammatory cytokines.
Collapse
Affiliation(s)
- Layanna Freitas de Oliveira
- Center for Technological Innovation, Instituto Evandro Chagas, Ananindeua, PA, Brazil. .,Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil.
| | | | - Carla Pagliari
- Departamento de Patologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | | | - Taiana S Silveira
- Faculdade de Medicina de São José Do Rio Preto, São Paulo, SP, Brazil
| | | | | | | | - Caroline Aquino Moreira-Nunes
- Laboratory of Pharmacogenetics, Drug Research and Development Center (NPDM), Universidade Federal Do Ceará, Fortaleza, CE, Brazil
| | | | | | | | | |
Collapse
|
24
|
Rajput R, Sharma J, Nair MT, Khanna M, Arora P, Sood V. Regulation of Host Innate Immunity by Non-Coding RNAs During Dengue Virus Infection. Front Cell Infect Microbiol 2020; 10:588168. [PMID: 33330133 PMCID: PMC7734804 DOI: 10.3389/fcimb.2020.588168] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/27/2020] [Indexed: 12/15/2022] Open
Abstract
An estimated 3.9 billion individuals in 128 nations (about 40% of global population) are at risk of acquiring dengue virus infection. About 390 million cases of dengue are reported each year with higher prevalence in the developing world. A recent modeling-based report suggested that half of the population across the globe is at risk of dengue virus infection. In any given dengue outbreak, a percentage of infected population develops severe clinical manifestations, and this remains one of the “unsolved conundrums in dengue pathogenesis”. Although, host immunity and virus serotypes are known to modulate the infection, there are still certain underlying factors that play important roles in modulating dengue pathogenesis. Advanced genomics-based technologies have led to identification of regulatory roles of non-coding RNAs. Accumulating evidence strongly suggests that viruses and their hosts employ non-coding RNAs to modulate the outcome of infection in their own favor. The foremost ones seem to be the cellular microRNAs (miRNAs). Being the post-transcriptional regulators, miRNAs can be regarded as direct switches capable of turning “on” or “off” the viral replication process. Recently, role of long non-coding RNAs (lncRNAs) in modulating viral infections via interferon dependent or independent signaling has been recognized. Hence, we attempt to identify the “under-dog”, the non-coding RNA regulators of dengue virus infection. Such essential knowledge will enhance the understanding of dengue virus infection in holistic manner, by exposing the specific molecular targets for development of novel prophylactic, therapeutic or diagnostic strategies.
Collapse
Affiliation(s)
- Roopali Rajput
- Department of Microbiology (Virology Unit), Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India.,Department of Molecular Medicine, National Institute of Tuberculosis and Respiratory Diseases, New Delhi, India
| | - Jitender Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Bathinda, India
| | - Mahima T Nair
- Department of Zoology, Hansraj College, University of Delhi, Delhi, India
| | - Madhu Khanna
- Department of Microbiology (Virology Unit), Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Pooja Arora
- Department of Zoology, Hansraj College, University of Delhi, Delhi, India
| | - Vikas Sood
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| |
Collapse
|
25
|
Avila-Bonilla RG, Yocupicio-Monroy M, Marchat LA, Pérez-Ishiwara DG, Cerecedo-Mercado DA, Del Ángel RM, Salas-Benito JS. miR-927 has pro-viral effects during acute and persistent infection with dengue virus type 2 in C6/36 mosquito cells. J Gen Virol 2020; 101:825-839. [PMID: 32478656 DOI: 10.1099/jgv.0.001441] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Dengue virus (DENV) is an important flavivirus that is transmitted to humans by Aedes mosquitoes, where it can establish a persistent infection underlying vertical and horizontal transmission. However, the exact mechanism of persistent DENV infection is not well understood. Recently miR-927 was found to be upregulated in C6/36-HT cells at 57 weeks of persistent infection (C6-L57), suggesting its participation during this type of infection. The aim of this study was to determine the role of miR-927 during infection with DENV type 2. The results indicate an overexpression of miR-927 in C6-L57 cells and acutely infected cells according to the time of infection and the m.o.i. used. The downregulation of miR-927 in C6-L57 cells results in a reduction of both viral titre and viral genome copy number. The overexpression of miR-927 in C6-L40 and C6/36 cells infected at an m.o.i. of 0.1 causes an increase in both viral titre and viral genome copy number, suggesting a pro-viral activity of miR-927. In silico prediction analysis reveals target mRNAs for miR-927 are implicated in post-translational modifications (SUMO), translation factors (eIF-2B), the innate immune system (NKIRAS), exocytosis (EXOC-2), endocytosis (APM1) and the cytoskeleton (FLN). The expression levels of FLN were the most affected by both miR-927 overexpression and inhibition, and FLN was determined to be a direct target of miR-927 by a dual-luciferase gene reporter assay. FLN has been associated with the regulation of the Toll pathway and either overexpression or downregulation of miR-927 resulted in expression changes of antimicrobial peptides (Cecropins A and G, and Defensin D) involved in the Toll pathway response.
Collapse
Affiliation(s)
- Rodolfo Gamaliel Avila-Bonilla
- Programa de Doctorado en Ciencias en Biotecnología, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Guillermo Massieu Helguera 249, La Escalera-Ticomán, Mexico City CP 07320, Mexico
| | - Martha Yocupicio-Monroy
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, San Lorenzo 290, Del Valle, Mexico City CP 03100, Mexico
| | - Laurence A Marchat
- Programa Institucional de Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Guillermo Massieu Helguera 249, La Escalera-Ticomán, Mexico City CP 07320, Mexico.,Programa de Doctorado en Ciencias en Biotecnología, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Guillermo Massieu Helguera 249, La Escalera-Ticomán, Mexico City CP 07320, Mexico
| | - David Guillermo Pérez-Ishiwara
- Programa Institucional de Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Guillermo Massieu Helguera 249, La Escalera-Ticomán, Mexico City CP 07320, Mexico.,Programa de Doctorado en Ciencias en Biotecnología, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Guillermo Massieu Helguera 249, La Escalera-Ticomán, Mexico City CP 07320, Mexico
| | - Doris Atenea Cerecedo-Mercado
- Programa Institucional de Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Guillermo Massieu Helguera 249, La Escalera-Ticomán, Mexico City CP 07320, Mexico.,Programa de Doctorado en Ciencias en Biotecnología, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Guillermo Massieu Helguera 249, La Escalera-Ticomán, Mexico City CP 07320, Mexico
| | - Rosa María Del Ángel
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional, Avenida Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Mexico City CP 07360, Mexico
| | - Juan Santiago Salas-Benito
- Programa Institucional de Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Guillermo Massieu Helguera 249, La Escalera-Ticomán, Mexico City CP 07320, Mexico.,Programa de Doctorado en Ciencias en Biotecnología, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Guillermo Massieu Helguera 249, La Escalera-Ticomán, Mexico City CP 07320, Mexico
| |
Collapse
|
26
|
Li J, Zheng SJ. Role of MicroRNAs in Host Defense against Infectious Bursal Disease Virus (IBDV) Infection: A Hidden Front Line. Viruses 2020; 12:E543. [PMID: 32423052 PMCID: PMC7291112 DOI: 10.3390/v12050543] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 02/07/2023] Open
Abstract
Infectious bursal disease (IBD) is an acute, highly contagious and immunosuppressive avian disease caused by infectious bursal disease virus (IBDV). In recent years, remarkable progress has been made in the understanding of the pathogenesis of IBDV infection and the host response, including apoptosis, autophagy and the inhibition of innate immunity. Not only a number of host proteins interacting with or targeted by viral proteins participate in these processes, but microRNAs (miRNAs) are also involved in the host response to IBDV infection. If an IBDV-host interaction at the protein level is taken imaginatively as the front line of the battle between invaders (pathogens) and defenders (host cells), their fight at the RNA level resembles the hidden front line. miRNAs are a class of non-coding single-stranded endogenous RNA molecules with a length of approximately 22 nucleotides (nt) that play important roles in regulating gene expression at the post-transcriptional level. Insights into the roles of viral proteins and miRNAs in host response will add to the understanding of the pathogenesis of IBDV infection. The interaction of viral proteins with cellular targets during IBDV infection were previously well-reviewed. This review focuses mainly on the current knowledge of the host response to IBDV infection at the RNA level, in particular, of the nine well-characterized miRNAs that affect cell apoptosis, the innate immune response and viral replication.
Collapse
Affiliation(s)
- Jiaxin Li
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China;
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Shijun J. Zheng
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China;
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
27
|
Fahmy NT, Osman A, Badr MS, Morcos N, Diclaro JW, Abd-ElSamie EM. Deciphering pyrethroid resistance in Cx. pipiens (L): Implications of cytochrome P450; expression profiling and regulatory microRNA. Mol Cell Probes 2020; 52:101579. [PMID: 32339604 DOI: 10.1016/j.mcp.2020.101579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 04/17/2020] [Indexed: 11/25/2022]
Abstract
Over the past decades, the extensive use of pyrethroids insecticides for vector control has resulted in the development of insecticide resistance. Cytochrome P450 has been recognized to play a critical role in the metabolic detoxification of insecticides. In the current study, Culex pipiens mosquitoes were collected from Giza Governorate in Egypt and tested for insecticide susceptibility against deltamethrin. First detection of Knockdown resistance gene (Kdr) mutations in field collected mosquitoes was performed. Activities of cytochrome oxidase P450 detoxification enzyme that synchronized with the resistance development, was assessed. Expression profiles of cytochrome P450s and their putative corresponding regulating miRNAs, which was previously reported in Cx. pipiens pallens were evaluated in pyrethroid resistant field-collected Cx. pipiens using RT-qPCR and stem-loop RT-qPCR, respectively. Specific stem-loop reverse transcription primers and forward primers were designed for miRNAs profiling. Our results elucidated the pyrethroid resistance development and revealed its relation to the metabolic and target site modification mechanisms with a first report of L1014F-kdr mutation detection. RT-qPCR results have showed an up-regulation in the expression of the studied P450 transcripts. Negative correlations were found between the expression of P450s and their regulatory miRNAs except for CYP9J35, where positive correlation was found with its corresponding miR-13. Interestingly, our data was the first to detect negative correlation between miR-285 and its putative CYP6Cp1 target gene. These findings highlighted the significance of identifying P450 gene along with regulatory miRNAs as a key mechanism implicated in pyrethroid resistance in field Culex vector population. The elucidation of this mechanism would shed light on the development of insecticide resistance and would help in shaping strategies to combat such vectors.
Collapse
Affiliation(s)
| | - Ahmed Osman
- Faculty of Science, Ain Shams University, Cairo, Egypt; Egypt Japan University of Science Technology, Alexandria, Egypt.
| | - Mohamed S Badr
- Medical Research Center, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | - Nadia Morcos
- Faculty of Science, Ain Shams University, Cairo, Egypt.
| | | | - Emtithal M Abd-ElSamie
- Faculty of Science, Cairo University, Giza, Egypt; Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo, Egypt.
| |
Collapse
|
28
|
Vila-Sanjurjo A, Juarez D, Loyola S, Torres M, Leguia M. Minority Gene Expression Profiling: Probing the Genetic Signatures of Pathogenesis Using Ribosome Profiling. J Infect Dis 2020; 221:S341-S357. [PMID: 32221545 DOI: 10.1093/infdis/jiz565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Minority Gene Expression Profiling (MGEP) refers to a scenario where the expression profiles of specific genes of interest are concentrated in a small cellular pool that is embedded within a larger, non-expressive pool. An example of this is the analysis of disease-related genes within sub-populations of blood or biopsied tissues. These systems are characterized by low signal-to-noise ratios that make it difficult, if not impossible, to uncover the desired signatures of pathogenesis in the absence of lengthy, and often problematic, technical manipulations. We have adapted ribosome profiling (RP) workflows from the Illumina to the Ion Proton platform and used them to analyze signatures of pathogenesis in an MGEP model system consisting of human cells eliciting <3% productive dengue infection. We find that RP is powerful enough to identify relevant responses of differentially expressed genes, even in the presence of significant noise. We discuss how to deal with sources of unwanted variation, and propose ways to further improve this powerful approach to the study of pathogenic signatures within MGEP systems.
Collapse
Affiliation(s)
- Antón Vila-Sanjurjo
- Grupo GIBE, Departamento de Bioloxía and Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña (UDC), A Coruña, Spain
| | - Diana Juarez
- Genomics Laboratory, Pontificia Universidad Católica del Perú (PUCP), Lima, Peru.,Virology & Emerging Infections Department, U.S. Naval Medical Research Unit No. 6, Lima, Peru
| | - Steev Loyola
- Virology & Emerging Infections Department, U.S. Naval Medical Research Unit No. 6, Lima, Peru
| | - Michael Torres
- Virology & Emerging Infections Department, U.S. Naval Medical Research Unit No. 6, Lima, Peru
| | - Mariana Leguia
- Genomics Laboratory, Pontificia Universidad Católica del Perú (PUCP), Lima, Peru.,Virology & Emerging Infections Department, U.S. Naval Medical Research Unit No. 6, Lima, Peru
| |
Collapse
|
29
|
Wong RR, Abd-Aziz N, Affendi S, Poh CL. Role of microRNAs in antiviral responses to dengue infection. J Biomed Sci 2020; 27:4. [PMID: 31898495 PMCID: PMC6941309 DOI: 10.1186/s12929-019-0614-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 12/29/2019] [Indexed: 12/13/2022] Open
Abstract
Dengue virus (DENV) is the etiological agent of dengue fever. Severe dengue could be fatal and there is currently no effective antiviral agent or vaccine. The only licensed vaccine, Dengvaxia, has low efficacy against serotypes 1 and 2. Cellular miRNAs are post-transcriptional regulators that could play a role in direct regulation of viral genes. Host miRNA expressions could either promote or repress viral replications. Induction of some cellular miRNAs could help the virus to evade the host immune response by suppressing the IFN-α/β signaling pathway while others could upregulate IFN-α/β production and inhibit the viral infection. Understanding miRNA expressions and functions during dengue infections would provide insights into the development of miRNA-based therapeutics which could be strategized to act either as miRNA antagonists or miRNA mimics. The known mechanisms of how miRNAs impact DENV replication are diverse. They could suppress DENV multiplication by directly binding to the viral genome, resulting in translational repression. Other miRNA actions include modulation of host factors. In addition, miRNAs that could modulate immunopathogenesis are discussed. Major hurdles lie in the development of chemical modifications and delivery systems for in vivo delivery. Nevertheless, advancement in miRNA formulations and delivery systems hold great promise for the therapeutic potential of miRNA-based therapy, as supported by Miravirsen for treatment of Hepatitis C infection which has successfully completed phase II clinical trial.
Collapse
Affiliation(s)
- Rui Rui Wong
- Centre for Virus and Vaccine Research (CVVR), Sunway University, 47500, Subang Jaya, Selangor, Malaysia
| | - Noraini Abd-Aziz
- Centre for Virus and Vaccine Research (CVVR), Sunway University, 47500, Subang Jaya, Selangor, Malaysia
| | - Sarah Affendi
- Centre for Virus and Vaccine Research (CVVR), Sunway University, 47500, Subang Jaya, Selangor, Malaysia
| | - Chit Laa Poh
- Centre for Virus and Vaccine Research (CVVR), Sunway University, 47500, Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
30
|
Yang Y, Qin X, Meng X, Zhu X, Zhang X, Li Y, Zhang Z. MicroRNA Expression Profile in Peripheral Blood Lymphocytes of Sheep Vaccinated with Nigeria 75/1 Peste Des Petits Ruminants Virus. Viruses 2019; 11:v11111025. [PMID: 31694166 PMCID: PMC6893480 DOI: 10.3390/v11111025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 10/25/2019] [Accepted: 10/31/2019] [Indexed: 12/15/2022] Open
Abstract
Peste des petits ruminants (PPR) is one of the highly contagious transboundary viral diseases of small ruminants. Host microRNA (miRNA) expression patterns may change in response to virus infection, and it mainly works as a post-transcriptional moderator in gene expression and affects viral pathogenesis and replication. In this study, the change of miRNA expression profile in peripheral blood lymphocyte (PBMC) from sheep inoculated with PPR vaccine virus in vivo as well as primary sheep testicular (ST) cells inoculated with PPR vaccine virus in vitro were determined via deep sequencing technology. In PBMC cells, 373 and 115 differentially expressed miRNAs (DEmiRNAs) were identified 3 days and 5 days post inoculated (dpi), respectively. While, 575 DEmiRNAs were identified when comparing miRNA profiles on 5 dpi with 3 dpi. Some of the DEmiRNAs were found to change significantly via time-course during PPR vaccine virus inoculated. Similarly, in ST cells, 136 DEmiRNAs were identified at 3 dpi in comparison with mock-inoculation. A total of 12 DEmiRNAs were validated by real-time quantitative PCR (RT-qPCR). The oar-miR-150, oar-miR-370-3p and oar-miR-411b-3p were found common differentially expressed in both PPR vaccine virus-inoculated PBMC cells and ST cells. Targets prediction and functional analysis of the DEmiRNAs uncovered mainly gathering in antigen processing and presentation pathways, protein processing in endoplasmic reticulum pathways and cell adhesion molecules pathways. Our study supplies information about the DEmiRNAs in PPR vaccine virus-inoculated PBMC cells and ST cells, and provides clues for further understanding the function of miRNAs in PPR vaccine virus replication.
Collapse
Affiliation(s)
| | | | | | | | | | - Yanmin Li
- Correspondence: ; Tel.: +86-0931-8374622
| | | |
Collapse
|
31
|
He G, Wu J, Kong H, Zhang Y, Li Y, Cai M, Shaduhan G, Yan Y, Zheng Y, Ding J. Comparative analysis of miRNAs in exosomes released by sheeppox virus-infected ovine testicular cells. Comp Immunol Microbiol Infect Dis 2019; 67:101363. [PMID: 31600681 DOI: 10.1016/j.cimid.2019.101363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/25/2019] [Indexed: 12/14/2022]
Abstract
Exosomes, secreted by various cells, are nanometer-scale vesicles with the functions in intercellular communication. To understand a role of exosomal miRNAs in the sheeppox virus infection, exosomes were isolated from sheeppox virus-infected sheep testicular cells 0 h, 24 h and 72 h post infection. The results of transmission electron microscopy and size distribution showed that all three exosome samples were spherical particles with negatively-stained membrane, ranging from 39 nm to 127 nm in diameter. A total of 106 known and 279 novel miRNAs were identified, and 78 known and 54 novel miRNAs were commonly detected in three exosome samples. Compared with the exosomes by the uninfected controls, a total of 34 known miRNAs were aberrantly expressed in the exosomes from infected cells. In agreement with the sequencing data, the expression of oar-miR-21 and oar-miR-10b was shown to be the highest in exosomes at 24 h after SPPV-infected, and the expression of oar-let-7f was the highest in exosomes at 72 h. Conversely, the expression of oar-let-7b and oar-miR-221 was significantly decreased 24 h and 72 h post infection compared with 0 h. The analysis results also revealed that differentially expressed miRNAs were mostly involved in an immune system process and stimulus response. These results provide rich data to further investigate a role of exosomal miRNAs in SPPV-host interactions.
Collapse
Affiliation(s)
- Guitian He
- College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Jin'en Wu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou, 730046, China
| | - Helei Kong
- College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Yong'e Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou, 730046, China
| | - Yating Li
- College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Mengting Cai
- College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Gulinazi Shaduhan
- College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Yuting Yan
- College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Yadong Zheng
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou, 730046, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| | - Juntao Ding
- College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China.
| |
Collapse
|
32
|
de Aguiar GPCG, Leite CMGDS, Dias B, Vasconcelos SMM, de Moraes RA, de Moraes MEA, Vallinoto ACR, Macedo DS, Cavalcanti LPDG, Miyajima F. Evidence for Host Epigenetic Signatures Arising From Arbovirus Infections: A Systematic Review. Front Immunol 2019; 10:1207. [PMID: 31214179 PMCID: PMC6554415 DOI: 10.3389/fimmu.2019.01207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 05/13/2019] [Indexed: 12/29/2022] Open
Abstract
Background: Arbovirus infections have steadily become a major pandemic threat. This study aimed at investigating the existence of host epigenetic markers arising from the principal arboviruses infections impacting on human health. We set to systematically review all published evidence describing any epigenetic modifications associated with infections from arboviruses, including, but not limited to, microRNAs, DNA methylation, and histone modifications. Methods: A comprehensive search was conducted using the electronic databases PubMed, Science Direct and Cochrane Library from inception to January 4th, 2018. We included reports describing original in vivo or in vitro studies investigating epigenetic changes related to arbovirus infections in either clinical subjects or human cell lines. Studies investigating epigenetic modifications related to the virus or the arthropod vector were excluded. A narrative synthesis of the findings was conducted, contextualizing comparative evidence from in vitro and in vivo studies. Results: A total of 853 unique references were identified and screened by two independent researchers. Thirty-two studies met the inclusion criteria and were reviewed. The evidence was centered mainly on microRNA and DNA methylation signatures implicated with secondary Dengue fever. Evidence for recent epidemic threats, such as the infections by Zika or Chikungunya viruses is still scant. Conclusions: Major epigenetic alterations found on arboviruses infections were miR-146, miR-30e and the Dicer complex. However, existing studies frequently tested distinct hypotheses resulting in a heterogeneity of methodological approaches. Whilst epigenetic signatures associated with arbovirus infections have been reported, existing studies have largely focused on a small number of diseases, particularly dengue. Validation of epigenetic signatures have an untapped potential, but concerted investigations are certainly required to deliver robust candidates of clinical utility for diagnosis, staging and prognosis of specific arboviral diseases.
Collapse
Affiliation(s)
| | | | - Beatriz Dias
- Faculty of Medicine, Unichristus University Center, Fortaleza, Brazil
| | - Silvania Maria Mendes Vasconcelos
- Postgraduate Programme in Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil.,Center for Drug Research and Development (NPDM), Faculty of Medicine, Federal University of Ceara, Fortaleza, Brazil
| | - Renata Amaral de Moraes
- Faculty of Medicine, Unichristus University Center, Fortaleza, Brazil.,Center for Drug Research and Development (NPDM), Faculty of Medicine, Federal University of Ceara, Fortaleza, Brazil.,Sao Jose Hospital of Infectious Diseases, Fortaleza, Brazil
| | - Maria Elisabete Amaral de Moraes
- Postgraduate Programme in Medical and Surgical Sciences, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil.,Postgraduate Programme in Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil.,Center for Drug Research and Development (NPDM), Faculty of Medicine, Federal University of Ceara, Fortaleza, Brazil
| | | | - Danielle Silveira Macedo
- Postgraduate Programme in Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil.,Center for Drug Research and Development (NPDM), Faculty of Medicine, Federal University of Ceara, Fortaleza, Brazil
| | - Luciano Pamplona de Goes Cavalcanti
- Faculty of Medicine, Unichristus University Center, Fortaleza, Brazil.,Department of Community Health, Faculty of Medicine, Federal University of Ceara, Fortaleza, Brazil
| | - Fabio Miyajima
- Postgraduate Programme in Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil.,Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom.,Postgraduate Programme in Medical Sciences, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil.,Oswaldo Cruz Foundation (Fiocruz), Branch Ceara, Eusebio, Brazil
| |
Collapse
|
33
|
Mishra R, Sood V, Banerjea AC. Dengue NS5 modulates expression of miR-590 to regulate ubiquitin-specific peptidase 42 in human microglia. FASEB Bioadv 2019; 1:265-278. [PMID: 32123831 PMCID: PMC6996368 DOI: 10.1096/fba.2018-00047] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/04/2019] [Accepted: 01/11/2019] [Indexed: 12/19/2022] Open
Abstract
Dengue virus (DENV), a member of Flaviviridae family, has become neurovirulent in humans after rapid geographical expansion. Host proteasomal machinery contains both ubiquitin ligases as well as deubiquitinases (DUBs), known to influence key cellular and biological functions. MicroRNA-mediated modulations of DUBs in case of DENV infections have not been explored yet. DENV propagation, MiRNA overexpression, miRNA knockdown, transfection, RT-PCR, luciferase assay, and western blotting have been used in this study to establish the interaction of miR-590 and USP42. DENV infection in human microglial cells resulted in downregulation of host DUB-USP42 in a dose-dependent manner and DENV-NS5 gene alone was found to be sufficient for this downregulation. miR-590 was upregulated upon NS5 overexpression in a dose-dependent manner. Downregulation of USP42 was observed with miR-590 overexpression. The specificity of this regulation was confirmed by miR-590 mimic and anti-miR transfections in microglial cells. miR-590 overexpression and knockdown affected the expression level of TRAF6 in indirect manner in microglial cells. The luciferase assay demonstrated the direct regulatory interaction between miR-590 and 3'UTR of USP42. These findings establish that DENV-NS5 protein can potentially modulate the host deubiquitinase protein USP42 expression via altering cellular miR-590 levels in human microglial cells.
Collapse
Affiliation(s)
- Ritu Mishra
- Laboratory of VirologyNational Institute of ImmunologyNew DelhiIndia
| | - Vikas Sood
- Jamia Hamdard, deemed UniversityNew DelhiIndia
| | - Akhil C. Banerjea
- Laboratory of VirologyNational Institute of ImmunologyNew DelhiIndia
| |
Collapse
|
34
|
Mukhopadhyay U, Chanda S, Patra U, Mukherjee A, Rana S, Mukherjee A, Chawla-Sarkar M. Synchronized Orchestration of miR-99b and let-7g Positively Regulates Rotavirus Infection by Modulating Autophagy. Sci Rep 2019; 9:1318. [PMID: 30718795 PMCID: PMC6362297 DOI: 10.1038/s41598-018-38473-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 12/27/2018] [Indexed: 12/18/2022] Open
Abstract
Rotavirus (RV), the major etiological agent of viral gastroenteritis in young children, kills over 200 thousand infants each year. In spite of available vaccines, rotaviral diarrhoea is still a major problem in developing countries of Asia and Africa. Therefore, the studies on RV infection and host antiviral responses are warranted. The active correlation between virus infection and activation of autophagy machinery and positive influence of autophagy on RV replication have been documented recently. Previous study from our group showed dysregulation of several cellular miRNAs during RV infection, though their significance remained largely unknown. Since cellular microRNAs (miRNAs) have been implicated in the control of several fundamental biological processes including stress response and autophagy, we focused on two miRNAs, miR-99b and let-7g, and analyzed their function to gain insight into the miRNA-autophagy crosstalk during RV infection. This study shows that RV suppresses let-7g expression but enhances miR-99b that in turn augment major autophagy regulators. Ectopic expression of let-7g and knockdown of miR-99b resulted in inhibition of autophagy, hence, reduction of RV replication. Overall, our study highlights new mechanistic insights for understanding the role of miRNAs in modulating RV infection and possibility of using RNA interference as an antiviral therapeutic target.
Collapse
Affiliation(s)
- Urbi Mukhopadhyay
- Division of Virology, National Institute of Cholera and Enteric Diseases, Kolkata, WB, India
| | - Shampa Chanda
- Division of Virology, National Institute of Cholera and Enteric Diseases, Kolkata, WB, India
| | - Upayan Patra
- Division of Virology, National Institute of Cholera and Enteric Diseases, Kolkata, WB, India
| | - Arpita Mukherjee
- Division of Virology, National Institute of Cholera and Enteric Diseases, Kolkata, WB, India
| | - Santanu Rana
- Department of Zoology, University of Calcutta, Kolkata, WB, India
| | - Anupam Mukherjee
- Division of Virology, National Institute of Cholera and Enteric Diseases, Kolkata, WB, India.
| | - Mamta Chawla-Sarkar
- Division of Virology, National Institute of Cholera and Enteric Diseases, Kolkata, WB, India.
| |
Collapse
|
35
|
Bilbao-Arribas M, Abendaño N, Varela-Martínez E, Reina R, de Andrés D, Jugo BM. Expression analysis of lung miRNAs responding to ovine VM virus infection by RNA-seq. BMC Genomics 2019; 20:62. [PMID: 30658565 PMCID: PMC6339376 DOI: 10.1186/s12864-018-5416-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 12/26/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are short endogenous, single-stranded, noncoding small RNA molecules of approximately 22 nucleotides in length. They regulate gene expression posttranscriptionally by silencing mRNA expression, thus orchestrating many physiological processes. The Small Ruminant Lentiviruses (SRLV) group includes the Visna Maedi Virus (VMV) and Caprine Arthritis Encephalitis (CAEV) viruses, which cause a disease in sheep and goats characterized by pneumonia, mastitis, arthritis and encephalitis. Their main target cells are from the monocyte/macrophage lineage. To date, there are no studies on the role of miRNAs in this viral disease. RESULTS Using RNA-seq technology and bioinformatics analysis, the expression levels of miRNAs during different clinical stages of infection were studied. A total of 212 miRNAs were identified, of which 46 were conserved sequences in other species but found for the first time in sheep, and 12 were completely novel. Differential expression analysis comparing the uninfected and seropositive groups showed changes in several miRNAs; however, no significant differences were detected between seropositive asymptomatic and diseased sheep. The robust increase in the expression level of oar-miR-21 is consistent with its increased expression in other viral diseases. Furthermore, the target prediction of the dysregulated miRNAs revealed that they control genes involved in proliferation-related signalling pathways, such as the PI3K-Akt, AMPK and ErbB pathways. CONCLUSIONS To the best of our knowledge, this is the first study reporting miRNA profiling in sheep in response to SRLV infection. The known functions of oar-miR-21 as a regulator of inflammation and proliferation appear to be a possible cause of the lesions caused in the sheep's lungs. This miRNA could be an indicator for the severity of the lung lesions, or a putative target for therapeutic intervention.
Collapse
Affiliation(s)
- Martin Bilbao-Arribas
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country UPV/EHU, 48080, Bilbao, Spain
| | - Naiara Abendaño
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country UPV/EHU, 48080, Bilbao, Spain
| | - Endika Varela-Martínez
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country UPV/EHU, 48080, Bilbao, Spain
| | - Ramsés Reina
- Institute of Agrobiotechnology (CSIC-UPNA-Government of Navarra), Avenida de Pamplona 123, 31192 Mutilva, Navarra, Spain
| | - Damián de Andrés
- Institute of Agrobiotechnology (CSIC-UPNA-Government of Navarra), Avenida de Pamplona 123, 31192 Mutilva, Navarra, Spain
| | - Begoña M Jugo
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country UPV/EHU, 48080, Bilbao, Spain.
| |
Collapse
|
36
|
Kanokudom S, Mahony TJ, Smith DR, Assavalapsakul W. Modulation of bovine herpesvirus 1 infection by virally encoded microRNAs. Virus Res 2018; 257:1-6. [PMID: 30193942 DOI: 10.1016/j.virusres.2018.08.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/24/2018] [Accepted: 08/31/2018] [Indexed: 12/27/2022]
Abstract
Bovine herpesvirus 1 (BoHV-1), is a member of the subfamily Alphaherpesvirinae in the order Herpesviridae and is a ubiquitous pathogen of cattle responsible for significant economic loss worldwide. The BoHV-1 genome encodes at least 10 BoHV-1 microRNA (miRNA) genes, whose functions remain poorly understood. This study sought to understand the role of three BoHV-1 miRNA genes, Bhv1-miR-B6, Bhv1-miR-B8 and Bhv1-miR-B9, which are located proximal to the BoHV-1 origins of replication (OriS). Therefore, plasmids expressing the precursor miRNA hairpins for the Bhv1-miR-B6, Bhv1-miR-B8, and Bhv1-miR-B9 genes were constructed and transfected into Madin-Darby bovine kidney cells prior to BoHV-1 infection. Interestingly, transient expression of either Bhv1-miR-B8 or Bhv1-miR-B9 in Madin-Darby bovine kidney cells prior to infection resulted in partial suppression of BoHV-1 replication, quantified through estimating levels of glycoprotein C mRNA and protein levels. Putative interactions between the mature miRNA bhv1-miR-B8-3p and bhv1-miR-B9 and BoHV-1 transcripts were identified providing plausible pathways for these molecules to affect virus replication. Therefore, these two miRNAs are implicated in the post-transcriptional regulation of BoHV-1 transcripts important for virus replication and could be used to limit BoHV-1 replication.
Collapse
Affiliation(s)
- Sitthichai Kanokudom
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Timothy J Mahony
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Duncan R Smith
- Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakornpathom, 73170, Thailand
| | - Wanchai Assavalapsakul
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
37
|
A novel miRNA, miR-13664, targets CpCYP314A1 to regulate deltamethrin resistance in Culex pipiens pallens. Parasitology 2018; 146:197-205. [PMID: 29966536 DOI: 10.1017/s0031182018001002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Extensive insecticide use has led to the resistance of mosquitoes to these insecticides, posing a major barrier to mosquito control. Previous Solexa high-throughput sequencing of Culex pipiens pallens in the laboratory has revealed that the abundance of a novel microRNA (miRNA), miR-13664, was higher in a deltamethrin-sensitive (DS) strain than a deltamethrin-resistant (DR) strain. Real-time quantitative PCR revealed that the miR-13664 transcript level was lower in the DR strain than in the DS strain. MiR-13664 oversupply in the DR strain increased the susceptibility of these mosquitoes to deltamethrin, whereas inhibition of miR-13664 made the DS strain more resistant to deltamethrin. Results of bioinformatic analysis, quantitative reverse-transcriptase polymerase chain reaction, luciferase assay and miR mimic/inhibitor microinjection revealed CpCYP314A1 to be a target of miR-13664. In addition, downregulation of CpCYP314A1 expression in the DR strain reduced the resistance of mosquitoes to deltamethrin. Taken together, our results indicate that miR-13664 could regulate deltamethrin resistance by interacting with CpCYP314A1, providing new insights into mosquito resistance mechanisms.
Collapse
|
38
|
Zhang C, Feng S, Zhang W, Chen N, Hegazy AM, Chen W, Liu X, Zhao L, Li J, Lin L, Tu J. MicroRNA miR-214 Inhibits Snakehead Vesiculovirus Replication by Promoting IFN-α Expression via Targeting Host Adenosine 5'-Monophosphate-Activated Protein Kinase. Front Immunol 2017; 8:1775. [PMID: 29312306 PMCID: PMC5732478 DOI: 10.3389/fimmu.2017.01775] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 11/28/2017] [Indexed: 12/16/2022] Open
Abstract
Background Snakehead vesiculovirus (SHVV), a new rhabdovirus isolated from diseased hybrid snakehead, has emerged as an important pathogen during the past few years in China with great economical losses in snakehead fish cultures. However, little is known about the mechanism of its pathogenicity. MicroRNAs are small noncoding RNAs that posttranscriptionally modulate gene expression and have been indicated to regulate almost all cellular processes. Our previous study has revealed that miR-214 was downregulated upon SHVV infection. Results The overexpression of miR-214 in striped snakehead (SSN-1) cells inhibited SHVV replication and promoted IFN-α expression, while miR-214 inhibitor facilitated SHVV replication and reduced IFN-α expression. These findings suggested that miR-214 negatively regulated SHVV replication probably through positively regulating IFN-α expression. Further investigation revealed that adenosine 5′-monophosphate-activated protein kinase (AMPK) was a target gene of miR-214. Knockdown of AMPK by siRNA inhibited SHVV replication and promoted IFN-α expression, suggesting that cellular AMPK positively regulated SHVV replication and negatively regulated IFN-α expression. Moreover, we found that siAMPK-mediated inhibition of SHVV replication could be partially restored by miR-214 inhibitor, indicating that miR-214 inhibited SHVV replication at least partially via targeting AMPK. Conclusion The findings of this study complemented our early study, and provide insights for the mechanism of SHVV pathogenicity. SHVV infection downregulated miR-214, and in turn, the downregulated miR-214 increased the expression of its target gene AMPK, which promoted SHVV replication via reducing IFN-α expression. It can therefore assume that cellular circumstance with low level of miR-214 is beneficial for SHVV replication and that SHVV evades host antiviral innate immunity through decreasing IFN-α expression via regulating cellular miR-214 expression.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Shuangshuang Feng
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Wenting Zhang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Nan Chen
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Abeer M Hegazy
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Central Laboratory for Environmental Quality Monitoring (CLEQM), National Water Research Center (NWRC), Cairo, Egypt
| | - Wenjie Chen
- Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Xueqin Liu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Lijuan Zhao
- Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Jun Li
- Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China.,School of Biological Sciences, Lake Superior State University, Sault Ste. Marie, MI, United States.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Li Lin
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jiagang Tu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
39
|
Pansuwan H, Ditmangklo B, Vilaivan C, Jiangchareon B, Pan-In P, Wanichwecharungruang S, Palaga T, Nuanyai T, Suparpprom C, Vilaivan T. Hydrophilic and Cell-Penetrable Pyrrolidinyl Peptide Nucleic Acid via Post-synthetic Modification with Hydrophilic Side Chains. Bioconjug Chem 2017; 28:2284-2292. [PMID: 28704609 DOI: 10.1021/acs.bioconjchem.7b00308] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Peptide nucleic acid (PNA) is a nucleic acid mimic in which the deoxyribose-phosphate was replaced by a peptide-like backbone. The absence of negative charge in the PNA backbone leads to several unique behaviors including a stronger binding and salt independency of the PNA-DNA duplex stability. However, PNA possesses poor aqueous solubility and cannot directly penetrate cell membranes. These are major obstacles that limit in vivo applications of PNA. In previous strategies, the PNA can be conjugated to macromolecular carriers or modified with positively charged side chains such as guanidinium groups to improve the aqueous solubility and cell permeability. In general, a preformed modified PNA monomer was required. In this study, a new approach for post-synthetic modification of PNA backbone with one or more hydrophilic groups was proposed. The PNA used in this study was the conformationally constrained pyrrolidinyl PNA with prolyl-2-aminocyclopentanecarboxylic acid dipeptide backbone (acpcPNA) that shows several advantages over the conventional PNA. The aldehyde modifiers carrying different linkers (alkylene and oligo(ethylene glycol)) and end groups (-OH, -NH2, and guanidinium) were synthesized and attached to the backbone of modified acpcPNA by reductive alkylation. The hybrids between the modified acpcPNAs and DNA exhibited comparable or superior thermal stability with base-pairing specificity similar to those of unmodified acpcPNA. Moreover, the modified apcPNAs also showed the improvement of aqueous solubility (10-20 folds compared to unmodified PNA) and readily penetrate cell membranes without requiring any special delivery agents. This study not only demonstrates the practicality of the proposed post-synthetic modification approach for PNA modification, which could be readily applied to other systems, but also opens up opportunities for using pyrrolidinyl PNA in various applications such as intracellular RNA sensing, specific gene detection, and antisense and antigene therapy.
Collapse
Affiliation(s)
- Haruthai Pansuwan
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Naresuan University , Ta-Po District, Muang, Phitsanulok 65000, Thailand
| | | | | | | | | | | | | | - Thanesuan Nuanyai
- Rajamankala University of Technology Rattanakosin , Wang Klai Kangwon Campus, Huahin, Prachuap Khiri Khan 77110, Thailand
| | - Chaturong Suparpprom
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Naresuan University , Ta-Po District, Muang, Phitsanulok 65000, Thailand
| | | |
Collapse
|
40
|
Zhang C, Yi L, Feng S, Liu X, Su J, Lin L, Tu J. MicroRNA miR-214 inhibits snakehead vesiculovirus replication by targeting the coding regions of viral N and P. J Gen Virol 2017; 98:1611-1619. [PMID: 28699870 DOI: 10.1099/jgv.0.000854] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Snakeheadvesiculovirus (SHVV), a new member of the family Rhabdoviridae, has caused enormous economic losses in snakehead fish culture during the past years in China; however, little is known about the molecular mechanisms of its pathogenicity. MicroRNAs (miRNAs) are small non-coding RNAs that play important roles in virus infection. In this study, we identified that SHVV infection downregulated miR-214 in striped snakehead (SSN-1) cells in a time- and dose-dependent manner. Notably, transfecting SSN-1 cells with miR-214 mimic significantly inhibitedSHVV replication, whereas miR-214 inhibitor promoted it, suggesting that miR-214 acted as a negative regulator of SHVV replication. Our study further demonstrated that N and P of SHVV were the target genes of miR-214. Over-expression of P, but not N, inhibited IFN-α production in SHVV-infected cells, which could be restored by over-expression of miR-214. Taken together, these results suggest that miR-214 is downregulated during SHVV infection, and the downregulated miR-214 in turn increased N and P expression and decreased IFN-α production, thus facilitating SHVV replication. This study provides a better understanding of the molecular mechanisms on the pathogenesis of SHVV and a potential antiviral strategy against SHVV infection.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Lizhu Yi
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Shuangshuang Feng
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Xueqin Liu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Jianguo Su
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Li Lin
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China.,College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, PR China
| | - Jiagang Tu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| |
Collapse
|