1
|
Soppela S, Plavec Z, Gröhn S, Mustonen I, Jartti M, Oikarinen S, Laajala M, Marjomäki V, Butcher SJ, Hankaniemi MM. Immunological and structural evaluation of the intranasally administrated CVB1 whole-virus and VLP vaccines. Sci Rep 2025; 15:10198. [PMID: 40133550 PMCID: PMC11937443 DOI: 10.1038/s41598-025-94656-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 03/17/2025] [Indexed: 03/27/2025] Open
Abstract
Coxsackievirus B1 (CVB1) is a common cause of acute and chronic myocarditis, cardiomyopathy, and meningitis. CVBs replicate in mucosal membranes. Therefore, vaccines inducing robust mucosal immune responses are needed. We investigated the immunogenicity of virus-like particles (VLP) and inactivated virus vaccines for CVB1, administered to mice either subcutaneously or intranasally, formulated with and without commercial and an experimental adjuvant. In this study, epigallocatechin-3-gallate (EGCG) was used both as a potential adjuvant and as an inactivating agent. EGCG adjuvanted CVB1-VLP enhanced immunogenicity via the parenteral route, but not intranasally. EGCG-adjuvanted and non-adjuvanted CVB1-VLPs triggered an immune response after intranasal administration, although the response remained weak. Intranasal administration of formalin-inactivated virus elicited robust CVB1-specific humoral, cellular, and mucosal immune responses, but after EGCG-inactivation, the mucosal antibody response was lower than after formalin-inactivation. To identify the link between structure and mucosal immunogenicity, we solved the structures of CVB1-VLP and formalin-inactivated CVB1 virus at resolutions ranging from 2.15 to 4.1 Å. The structural difference between VLP and formalin-inactivated CVB1 was the presence of the genome and cross-linked amino acid residues in the formalin-inactivated virus. Formalin-inactivated CVB1 vaccine shows promise for mucosal immunizations and the structural data supports the development of next-generation VLP-vaccines in the future.
Collapse
MESH Headings
- Animals
- Administration, Intranasal
- Mice
- Enterovirus B, Human/immunology
- Vaccines, Virus-Like Particle/immunology
- Vaccines, Virus-Like Particle/administration & dosage
- Immunity, Mucosal
- Vaccines, Inactivated/immunology
- Vaccines, Inactivated/administration & dosage
- Antibodies, Viral/immunology
- Mice, Inbred BALB C
- Female
- Catechin/analogs & derivatives
- Catechin/administration & dosage
- Catechin/pharmacology
- Catechin/chemistry
- Viral Vaccines/immunology
- Viral Vaccines/administration & dosage
- Coxsackievirus Infections/prevention & control
- Coxsackievirus Infections/immunology
- Coxsackievirus Infections/virology
- Adjuvants, Vaccine
- Adjuvants, Immunologic/administration & dosage
Collapse
Affiliation(s)
- Saana Soppela
- Virology and Vaccine Immunology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Zlatka Plavec
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Bioscience Research Programme, & Helsinki Institute of Life Sciences-Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Stina Gröhn
- Virology and Vaccine Immunology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Iiris Mustonen
- Virology and Vaccine Immunology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Minne Jartti
- Virology and Vaccine Immunology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Sami Oikarinen
- Medical Virology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Mira Laajala
- Department of Biological and Environmental Science/Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Varpu Marjomäki
- Department of Biological and Environmental Science/Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Sarah J Butcher
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Bioscience Research Programme, & Helsinki Institute of Life Sciences-Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Minna M Hankaniemi
- Virology and Vaccine Immunology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
| |
Collapse
|
2
|
Kuijpers L, van den Braak WJP, Freydoonian A, Dekker NH, van der Pol LA. Optimization of Enterovirus-like Particle Production and Purification Using Design of Experiments. Pathogens 2025; 14:118. [PMID: 40005495 PMCID: PMC11858008 DOI: 10.3390/pathogens14020118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/18/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
Hand, foot, and mouth disease (HFMD) represents an emerging health concern whose main causative agents are Coxsackievirus A6 (CVA6) and enterovirus A71 (EV71). The lack of a CVA6 vaccine and the rise of new HFMD-causing strains due to the containment of established HFMD-causing viruses necessitates the search for alternative vaccine technologies, including virus-like particle (VLP) vaccine candidates. While studies have demonstrated that production of enterovirus-like particles in various organisms can be achieved by expression of the viral P1 structural proteins and the 3CD protease, optimization based on the interplay between the three most commonly altered infection parameters (multiplicity of infection (MOI), viable cell density at the time of infection (VCD), and the infection period) is often not investigated. To address this challenge, we have performed Design of Experiments (DoE) to optimize the production of CVA6 and EV71 VLPs. Our results indicate that CVA6 VLP production peaks at high MOI, high VCD, and long infection periods. Our subsequent downstream purification processes yielded 38 mg and 158 mg of purified CVA6 and EV71 VLPs from 1 L crude harvest, respectively. This translates into thousands of potential vaccine doses and highlights the economic potential of enterovirus-like particles for vaccine purposes.
Collapse
Affiliation(s)
- Louis Kuijpers
- Department of Bionanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
- Intravacc B.V., Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands
| | | | - Abbas Freydoonian
- Intravacc B.V., Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands
| | - Nynke H. Dekker
- Department of Bionanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
- Department of Physics and Kavli Institute of Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK
| | - Leo A. van der Pol
- Intravacc B.V., Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands
| |
Collapse
|
3
|
Mbani CJ, Morvan C, Nekoua MP, Debuysschere C, Alidjinou EK, Moukassa D, Hober D. Enterovirus Antibodies: Friends and Foes. Rev Med Virol 2024; 34:e70004. [PMID: 39505825 DOI: 10.1002/rmv.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/02/2024] [Accepted: 10/22/2024] [Indexed: 11/08/2024]
Abstract
Enteroviruses (EV) initiate replication by binding to their cellular receptors, leading to the uncoating and release of the viral genome into the cytosol of the host cell. Neutralising antibodies (NAbs) binding to epitopes on enteroviral capsid proteins can inhibit this infectious process through several mechanisms of neutralisation in vitro. Fc-mediated antibody effector functions such as antibody-dependent cell-mediated cytotoxicity and antibody-dependent cellular phagocytosis have also been described for some EV. However, antibody binding to virions does not always result in viral neutralisation. Non-neutralising antibodies, or sub-neutralising concentrations of antibodies, can enhance infection of viruses, leading to more severe pathologies. This phenomenon, known as antibody-dependent enhancement (ADE) of infection, has been described in vitro and/or in vivo for EV including poliovirus, coxsackievirus B and EV-A71. It has been shown that ADE of EV infection is mediated by FcγRs expressed by monocytes, macrophages, B lymphocytes and granulocytes. Antibodies play a crucial role in the diagnosis and monitoring of infections. They are valuable markers that have been used to establish a link between enteroviral infection and chronic diseases such as type 1 diabetes. Monoclonal and polyclonal antibodies targeting enteroviral proteins have been developed and shown to be effective to prevent or combat EV infections in vitro and in vivo. In addition, vaccines are under development, and clinical trials of vaccines are underway or have been completed, providing hope for the prevention of diseases due to EV. However, the ADE of the infection should be considered in the development of anti-EV antibodies or safe vaccines.
Collapse
Affiliation(s)
- Chaldam Jespère Mbani
- Laboratoire de Virologie URL3610, Univ. Lille et CHU Lille, Lille, France
- Laboratoire de Biologie Cellulaire et Moléculaire, Faculté des Sciences et Techniques, Université Marien Ngouabi, Brazzaville, Congo
| | - Corentin Morvan
- Laboratoire de Virologie URL3610, Univ. Lille et CHU Lille, Lille, France
| | | | - Cyril Debuysschere
- Laboratoire de Virologie URL3610, Univ. Lille et CHU Lille, Lille, France
| | | | - Donatien Moukassa
- Laboratoire de Biologie Cellulaire et Moléculaire, Faculté des Sciences et Techniques, Université Marien Ngouabi, Brazzaville, Congo
| | - Didier Hober
- Laboratoire de Virologie URL3610, Univ. Lille et CHU Lille, Lille, France
| |
Collapse
|
4
|
Jartti M, Flodström-Tullberg M, Hankaniemi MM. Enteroviruses: epidemic potential, challenges and opportunities with vaccines. J Biomed Sci 2024; 31:73. [PMID: 39010093 PMCID: PMC11247760 DOI: 10.1186/s12929-024-01058-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/23/2024] [Indexed: 07/17/2024] Open
Abstract
Enteroviruses (EVs) are the most prevalent viruses in humans. EVs can cause a range of acute symptoms, from mild common colds to severe systemic infections such as meningitis, myocarditis, and flaccid paralysis. They can also lead to chronic diseases such as cardiomyopathy. Although more than 280 human EV serotypes exist, only four serotypes have licenced vaccines. No antiviral drugs are available to treat EV infections, and global surveillance of EVs has not been effectively coordinated. Therefore, poliovirus still circulates, and there have been alarming epidemics of non-polio enteroviruses. Thus, there is a pressing need for coordinated preparedness efforts against EVs.This review provides a perspective on recent enterovirus outbreaks and global poliovirus eradication efforts with continuous vaccine development initiatives. It also provides insights into the challenges and opportunities in EV vaccine development. Given that traditional whole-virus vaccine technologies are not suitable for many clinically relevant EVs and considering the ongoing risk of enterovirus outbreaks and the potential for new emerging pathogenic strains, the need for new effective and adaptable enterovirus vaccines is emphasized.This review also explores the difficulties in translating promising vaccine candidates for clinical use and summarizes information from published literature and clinical trial databases focusing on existing enterovirus vaccines, ongoing clinical trials, the obstacles faced in vaccine development as well as the emergence of new vaccine technologies. Overall, this review contributes to the understanding of enterovirus vaccines, their role in public health, and their significance as a tool for future preparedness.
Collapse
Affiliation(s)
- Minne Jartti
- Virology and Vaccine Immunology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Malin Flodström-Tullberg
- Department of Medicine Huddinge and Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Minna M Hankaniemi
- Virology and Vaccine Immunology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
| |
Collapse
|
5
|
Soppela S, Plavec Z, Gröhn S, Jartti M, Oikarinen S, Laajala M, Marjomaki V, Butcher SJ, Hankaniemi MM. Comparison of structure and immunogenicity of CVB1-VLP and inactivated CVB1 vaccine candidates. RESEARCH SQUARE 2024:rs.3.rs-4545395. [PMID: 38978565 PMCID: PMC11230480 DOI: 10.21203/rs.3.rs-4545395/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Coxsackievirus B1 (CVB1) is a common cause of acute and chronic myocarditis, dilated cardiomyopathy and aseptic meningitis. However, no CVB-vaccines are available for human use. In this study, we investigated the immunogenicity of virus-like particle (VLP) and inactivated whole-virus vaccines for CVB1 when administrated to mice via either subcutaneous or intranasal routes formulated with and without commercial and experimental adjuvants. Here, the potential of utilizing epigallocatechin-3-gallate (EGCG) as a mucosal adjuvant synergistically with its ability to inactivate the virus were investigated. EGCG had promising adjuvant properties for CVB1-VLP when administered via the parenteral route but limited efficacy via intranasal administration. However, intranasal administration of the formalin-inactivated virus induced high CVB1-specific humoral, cellular, and mucosal immune responses. Also, based on CVB1-specific IgG-antibody responses, we conclude that CVB1-VLP can be taken up by immune cells when administrated intranasally and further structural engineering for the VLP may increase the mucosal immunogenicity. The preparations contained mixtures of compact and expanded A particles with 85% expanded in the formalin-inactivated virus, but only 52% in the VLP observed by cryogenic electron microscopy. To correlate the structure to immunogenicity, we solved the structures of the CVB1-VLP and the formalin-inactivated CVB1 virus at resolutions ranging from 2.15 A to 4.1 A for the expanded and compact VLP and virus particles by image reconstruction. These structures can be used in designing mutations increasing the stability and immunogenicity of CVB1-VLP in the future. Overall, our results highlight the potential of using formalin inactivated CVB1 vaccine in mucosal immunization programs and provide important information for future development of VLP-based vaccines against all enteroviruses.
Collapse
|
6
|
Lampinen V, Gröhn S, Lehmler N, Jartti M, Hytönen VP, Schubert M, Hankaniemi MM. Production of norovirus-, rotavirus-, and enterovirus-like particles in insect cells is simplified by plasmid-based expression. Sci Rep 2024; 14:14874. [PMID: 38937523 PMCID: PMC11211442 DOI: 10.1038/s41598-024-65316-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024] Open
Abstract
Insect cells have long been the main expression host of many virus-like particles (VLP). VLPs resemble the respective viruses but are non-infectious. They are important in vaccine development and serve as safe model systems in virus research. Commonly, baculovirus expression vector system (BEVS) is used for VLP production. Here, we present an alternative, plasmid-based system for VLP expression, which offers distinct advantages: in contrast to BEVS, it avoids contamination by baculoviral particles and proteins, can maintain cell viability over the whole process, production of alphanodaviral particles will not be induced, and optimization of expression vectors and their ratios is simple. We compared the production of noro-, rota- and entero-VLP in the plasmid-based system to the standard process in BEVS. For noro- and entero-VLPs, similar yields could be achieved, whereas production of rota-VLP requires some further optimization. Nevertheless, in all cases, particles were formed, the expression process was simplified compared to BEVS and potential for the plasmid-based system was validated. This study demonstrates that plasmid-based transfection offers a viable option for production of noro-, rota- and entero-VLPs in insect cells.
Collapse
Affiliation(s)
- Vili Lampinen
- Virology and Vaccine Immunology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Protein Dynamics, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Stina Gröhn
- Virology and Vaccine Immunology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Nina Lehmler
- Department of Biotechnology, Institute for Biochemistry, Biotechnology and Bioinformatics, TU Braunschweig, Braunschweig, Germany
| | - Minne Jartti
- Virology and Vaccine Immunology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Vesa P Hytönen
- Protein Dynamics, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Fimlab Laboratories, Tampere, Finland
| | - Maren Schubert
- Department of Biotechnology, Institute for Biochemistry, Biotechnology and Bioinformatics, TU Braunschweig, Braunschweig, Germany.
| | - Minna M Hankaniemi
- Virology and Vaccine Immunology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
| |
Collapse
|
7
|
Root-Bernstein R. T-Cell Receptor Sequences Identify Combined Coxsackievirus- Streptococci Infections as Triggers for Autoimmune Myocarditis and Coxsackievirus- Clostridia Infections for Type 1 Diabetes. Int J Mol Sci 2024; 25:1797. [PMID: 38339075 PMCID: PMC10855694 DOI: 10.3390/ijms25031797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/19/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Recent research suggests that T-cell receptor (TCR) sequences expanded during human immunodeficiency virus and SARS-CoV-2 infections unexpectedly mimic these viruses. The hypothesis tested here is that TCR sequences expanded in patients with type 1 diabetes mellitus (T1DM) and autoimmune myocarditis (AM) mimic the infectious triggers of these diseases. Indeed, TCR sequences mimicking coxsackieviruses, which are implicated as triggers of both diseases, are statistically significantly increased in both T1DM and AM patients. However, TCRs mimicking Clostridia antigens are significantly expanded in T1DM, whereas TCRs mimicking Streptococcal antigens are expanded in AM. Notably, Clostridia antigens mimic T1DM autoantigens, such as insulin and glutamic acid decarboxylase, whereas Streptococcal antigens mimic cardiac autoantigens, such as myosin and laminins. Thus, T1DM may be triggered by combined infections of coxsackieviruses with Clostridia bacteria, while AM may be triggered by coxsackieviruses with Streptococci. These TCR results are consistent with both epidemiological and clinical data and recent experimental studies of cross-reactivities of coxsackievirus, Clostridial, and Streptococcal antibodies with T1DM and AM antigens. These data provide the basis for developing novel animal models of AM and T1DM and may provide a generalizable method for revealing the etiologies of other autoimmune diseases. Theories to explain these results are explored.
Collapse
|
8
|
Zhang M, Xu D, Liu Y, Wang X, Xu L, Gao N, Feng C, Guo W, Ma S. Screening of a new candidate coxsackievirus B1 vaccine strain based on its biological characteristics. Front Microbiol 2023; 14:1172349. [PMID: 37502400 PMCID: PMC10369069 DOI: 10.3389/fmicb.2023.1172349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/19/2023] [Indexed: 07/29/2023] Open
Abstract
Coxsackievirus B1 (CVB1) is one of the significant pathogens causing viral myocarditis, hand, foot, and mouth disease (HFMD), and aseptic meningitis, and it has been associated with type 1 diabetes (T1DM). No effective antiviral drugs against CVB1 infection or preventive vaccines are available. Due to the success of two inactivated vaccines against enterovirus 71 and poliovirus, an inactivated Vero cell-based CVB1 vaccine could be developed. In this study, we isolated a high-growth CVB1 virus strain KM7 in Vero cells and developed a Vero-adapted vaccine candidate strain KM7-X29 via three rounds of plaque purification and serial passages. The KM7-X29 strain was grouped into the GII sub-genotype, which belonged to the Chinese epidemic strain and grew to a titer of more than 107 CCID50/ml in Vero cells. The inactivated CVB1 vaccine produced by the KM7-X29 strain induced an effective neutralizing antibody response in BALB/c mice, and maternal antibodies were able to provide a 100% protective effect against lethal challenges with a CVB1 strain in suckling BALB/c mice. Thus, the KM7-X29 strain might be used as a new candidate coxsackievirus B1 vaccine strain. The neonatal murine model of CVB1 infection will contribute to the development of the CVB1 vaccine.
Collapse
Affiliation(s)
- Ming Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, China
- Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, China
| | - Danhan Xu
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, China
- Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, China
| | - Yuhan Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, China
- Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, China
| | - Xiaohui Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, China
- Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, China
| | - Lilan Xu
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, China
- Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, China
| | - Na Gao
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, China
- Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, China
| | - Changzeng Feng
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, China
- Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, China
| | - Wei Guo
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, China
- Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, China
| | - Shaohui Ma
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, China
- Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, China
| |
Collapse
|
9
|
Kyaw T, Drummond G, Bobik A, Peter K. Myocarditis: causes, mechanisms, and evolving therapies. Expert Opin Ther Targets 2023; 27:225-238. [PMID: 36946552 DOI: 10.1080/14728222.2023.2193330] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
INTRODUCTION Myocarditis is a severe lymphocyte-mediated inflammatory disorder of the heart, mostly caused by viruses and immune checkpoint inhibitors (ICIs). Recently, myocarditis as a rare adverse event of mRNA vaccines for SARS-CoV-2 has caused global attention. The clinical consequences of myocarditis can be very severe, but specific treatment options are lacking or not yet clinically proven. AREAS COVERED This paper offers a brief overview of the biology of viruses that frequently cause myocarditis, focusing on mechanisms important for viral entry and replication following host infection. Current and new potential therapeutic targets/strategies especially for viral myocarditis are reviewed systematically. In particular, the immune system in myocarditis is dissected with respect to infective viral and non-infective, ICI-induced myocarditis. EXPERT OPINION Vaccination is an excellent emerging preventative strategy for viral myocarditis, but most vaccines still require further development. Anti-viral treatments that inhibit viral replication need to be considered following viral infection in host myocardium, as lower viral load reduces inflammation severity. Understanding how the immune system continues to damage the heart even after viral clearance will define novel therapeutic targets/strategies. We propose that viral myocarditis can be best treated using a combination of antiviral agents and immunotherapies that control cytotoxic T cell activity.
Collapse
Affiliation(s)
- Tin Kyaw
- Inflammation and Cardiovascular Disease Laboratory, Baker Heart and Diabetes Institute
- Centre for Inflammatory Diseases, Monash Medical Centre, Monash University, Melbourne, Australia
- Department of Cardiometabolic Health, University of Melbourne Melbourne Australia
| | - Grant Drummond
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University Melbourne Australia
- Centre for Cardiovascular Biology and Disease Research, La Trobe University, Melbourne, Australia
| | - Alex Bobik
- Inflammation and Cardiovascular Disease Laboratory, Baker Heart and Diabetes Institute
- Centre for Inflammatory Diseases, Monash Medical Centre, Monash University, Melbourne, Australia
- Department of Cardiometabolic Health, University of Melbourne Melbourne Australia
- Centre for Cardiovascular Biology and Disease Research, La Trobe University, Melbourne, Australia
- Heart Centre, Alfred Hospital, Melbourne, Australia
| | - Karlheinz Peter
- Inflammation and Cardiovascular Disease Laboratory, Baker Heart and Diabetes Institute
- Department of Cardiometabolic Health, University of Melbourne Melbourne Australia
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University Melbourne Australia
- Heart Centre, Alfred Hospital, Melbourne, Australia
- Department of Immunology, Monash University Melbourne Australia
| |
Collapse
|
10
|
Mone K, Lasrado N, Sur M, Reddy J. Vaccines against Group B Coxsackieviruses and Their Importance. Vaccines (Basel) 2023; 11:vaccines11020274. [PMID: 36851152 PMCID: PMC9961666 DOI: 10.3390/vaccines11020274] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
The group B coxsackieviruses (CVBs) exist in six serotypes (CVB1 to CVB6). Disease associations have been reported for most serotypes, and multiple serotypes can cause similar diseases. For example, CVB1, CVB3, and CVB5 are generally implicated in the causation of myocarditis, whereas CVB1 and CVB4 could accelerate the development of type 1 diabetes (T1D). Yet, no vaccines against these viruses are currently available. In this review, we have analyzed the attributes of experimentally tested vaccines and discussed their merits and demerits or limitations, as well as their impact in preventing infections, most importantly myocarditis and T1D.
Collapse
Affiliation(s)
- Kiruthiga Mone
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Ninaad Lasrado
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Meghna Sur
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Jay Reddy
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
- Correspondence: ; Tel.: +1-(402)-472-8541
| |
Collapse
|
11
|
Alhazmi A, Nekoua MP, Mercier A, Vergez I, Sane F, Alidjinou EK, Hober D. Combating coxsackievirus B infections. Rev Med Virol 2023; 33:e2406. [PMID: 36371612 DOI: 10.1002/rmv.2406] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/11/2022] [Accepted: 10/27/2022] [Indexed: 11/15/2022]
Abstract
Coxsackieviruses B (CVB) are small, non-enveloped, single-stranded RNA viruses belonging to the Enterovirus genus of the Picornaviridae family. They are common worldwide and cause a wide variety of human diseases ranging from those having relatively mild symptoms to severe acute and chronic pathologies such as cardiomyopathy and type 1 diabetes. The development of safe and effective strategies to combat these viruses remains a challenge. The present review outlines current approaches to control CVB infections and associated diseases. Various drugs targeting viral or host proteins involved in viral replication as well as vaccines have been developed and shown potential to prevent or combat CVB infections in vitro and in vivo in animal models. Repurposed drugs and alternative strategies targeting miRNAs or based on plant extracts and probiotics and their derivatives have also shown antiviral effects against CVB. In addition, clinical trials with vaccines and drugs are underway and offer hope for the prevention or treatment of CVB-induced diseases.
Collapse
Affiliation(s)
- Abdulaziz Alhazmi
- Laboratoire de Virologie ULR3610, Université de Lille et CHU de Lille, Lille, France.,Microbiology and Parasitology Department, Faculty of Medicine, Jazan University, Jazan, Saudi Arabia
| | | | - Ambroise Mercier
- Laboratoire de Virologie ULR3610, Université de Lille et CHU de Lille, Lille, France
| | - Ines Vergez
- Laboratoire de Virologie ULR3610, Université de Lille et CHU de Lille, Lille, France
| | - Famara Sane
- Laboratoire de Virologie ULR3610, Université de Lille et CHU de Lille, Lille, France
| | | | - Didier Hober
- Laboratoire de Virologie ULR3610, Université de Lille et CHU de Lille, Lille, France
| |
Collapse
|
12
|
Nekoua MP, Alidjinou EK, Hober D. Persistent coxsackievirus B infection and pathogenesis of type 1 diabetes mellitus. Nat Rev Endocrinol 2022; 18:503-516. [PMID: 35650334 PMCID: PMC9157043 DOI: 10.1038/s41574-022-00688-1] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/28/2022] [Indexed: 12/15/2022]
Abstract
Enteroviruses are believed to trigger or accelerate islet autoimmunity in genetically susceptible individuals, thereby resulting in loss of functional insulin-producing β-cells and type 1 diabetes mellitus (T1DM). Although enteroviruses are primarily involved in acute and lytic infections in vitro and in vivo, they can also establish a persistent infection. Prospective epidemiological studies have strongly associated the persistence of enteroviruses, especially coxsackievirus B (CVB), with the appearance of islet autoantibodies and an increased risk of T1DM. CVB can persist in pancreatic ductal and β-cells, which leads to structural or functional alterations of these cells, and to a chronic inflammatory response that promotes recruitment and activation of pre-existing autoreactive T cells and β-cell autoimmune destruction. CVB persistence in other sites, such as the intestine, blood cells and thymus, has been described; these sites could serve as a reservoir for infection or reinfection of the pancreas, and this persistence could have a role in the disturbance of tolerance to β-cells. This Review addresses the involvement of persistent enterovirus infection in triggering islet autoimmunity and T1DM, as well as current strategies to control enterovirus infections for preventing or reducing the risk of T1DM onset.
Collapse
Affiliation(s)
| | | | - Didier Hober
- Laboratoire de Virologie ULR3610, Université de Lille, CHU Lille, Lille, France.
| |
Collapse
|
13
|
Rapid high-throughput compatible label-free virus particle quantification method based on time-resolved luminescence. Anal Bioanal Chem 2022; 414:4509-4518. [PMID: 35581427 PMCID: PMC9113738 DOI: 10.1007/s00216-022-04104-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/14/2022] [Accepted: 04/27/2022] [Indexed: 11/17/2022]
Abstract
Viruses play a major role in modern society and create risks from global pandemics and bioterrorism to challenges in agriculture. Virus infectivity assays and genome copy number determination methods are often used to obtain information on virus preparations used in diagnostics and vaccine development. However, these methods do not provide information on virus particle count. Current methods to measure the number of viral particles are often cumbersome and require highly purified virus preparations and expensive instrumentation. To tackle these problems, we developed a simple and cost-effective time-resolved luminescence-based method for virus particle quantification. This mix-and-measure technique is based on the recognition of the virus particles by an external Eu3+-peptide probe, providing results on virus count in minutes. The method enables the detection of non-enveloped and enveloped viruses, having over tenfold higher detectability for enveloped, dynamic range from 5E6 to 3E10 vp/mL, than non-enveloped viruses. Multiple non-enveloped and enveloped viruses were used to demonstrate the functionality and robustness of the Protein-Probe method.
Collapse
|
14
|
Nekoua MP, Mercier A, Alhazmi A, Sane F, Alidjinou EK, Hober D. Fighting Enteroviral Infections to Prevent Type 1 Diabetes. Microorganisms 2022; 10:microorganisms10040768. [PMID: 35456818 PMCID: PMC9031364 DOI: 10.3390/microorganisms10040768] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/24/2022] [Accepted: 03/30/2022] [Indexed: 12/16/2022] Open
Abstract
Enteroviruses (EVs), especially coxsackieviruses B (CVB), are believed to trigger or accelerate islet autoimmunity in genetically susceptible individuals that results in type 1 diabetes (T1D). Therefore, strategies are needed to fight against EV infections. There are no approved antiviral drugs currently available, but various antiviral drugs targeting viral or host cell proteins and vaccines have recently shown potential to combat CVB infections and may be used as new therapeutic strategies to prevent or reduce the risk of T1D and/or preserve β-cell function among patients with islet autoantibodies or T1D.
Collapse
Affiliation(s)
- Magloire Pandoua Nekoua
- Laboratoire de Virologie ULR3610, Université de Lille, CHU Lille, 59000 Lille, France; (M.P.N.); (A.M.); (A.A.); (F.S.); (E.K.A.)
| | - Ambroise Mercier
- Laboratoire de Virologie ULR3610, Université de Lille, CHU Lille, 59000 Lille, France; (M.P.N.); (A.M.); (A.A.); (F.S.); (E.K.A.)
| | - Abdulaziz Alhazmi
- Laboratoire de Virologie ULR3610, Université de Lille, CHU Lille, 59000 Lille, France; (M.P.N.); (A.M.); (A.A.); (F.S.); (E.K.A.)
- Microbiology and Parasitology Department, College of Medicine, Jazan University, Jazan 82911, Saudi Arabia
| | - Famara Sane
- Laboratoire de Virologie ULR3610, Université de Lille, CHU Lille, 59000 Lille, France; (M.P.N.); (A.M.); (A.A.); (F.S.); (E.K.A.)
| | - Enagnon Kazali Alidjinou
- Laboratoire de Virologie ULR3610, Université de Lille, CHU Lille, 59000 Lille, France; (M.P.N.); (A.M.); (A.A.); (F.S.); (E.K.A.)
| | - Didier Hober
- Laboratoire de Virologie ULR3610, Université de Lille, CHU Lille, 59000 Lille, France; (M.P.N.); (A.M.); (A.A.); (F.S.); (E.K.A.)
- Correspondence: ; Tel.: +33-(0)-3-2044-6688
| |
Collapse
|
15
|
Tariq H, Batool S, Asif S, Ali M, Abbasi BH. Virus-Like Particles: Revolutionary Platforms for Developing Vaccines Against Emerging Infectious Diseases. Front Microbiol 2022; 12:790121. [PMID: 35046918 PMCID: PMC8761975 DOI: 10.3389/fmicb.2021.790121] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/10/2021] [Indexed: 02/06/2023] Open
Abstract
Virus-like particles (VLPs) are nanostructures that possess diverse applications in therapeutics, immunization, and diagnostics. With the recent advancements in biomedical engineering technologies, commercially available VLP-based vaccines are being extensively used to combat infectious diseases, whereas many more are in different stages of development in clinical studies. Because of their desired characteristics in terms of efficacy, safety, and diversity, VLP-based approaches might become more recurrent in the years to come. However, some production and fabrication challenges must be addressed before VLP-based approaches can be widely used in therapeutics. This review offers insight into the recent VLP-based vaccines development, with an emphasis on their characteristics, expression systems, and potential applicability as ideal candidates to combat emerging virulent pathogens. Finally, the potential of VLP-based vaccine as viable and efficient immunizing agents to induce immunity against virulent infectious agents, including, SARS-CoV-2 and protein nanoparticle-based vaccines has been elaborated. Thus, VLP vaccines may serve as an effective alternative to conventional vaccine strategies in combating emerging infectious diseases.
Collapse
Affiliation(s)
- Hasnat Tariq
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Sannia Batool
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Saaim Asif
- Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Mohammad Ali
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | | |
Collapse
|
16
|
Mt10-CVB3 Vaccine Virus Protects against CVB4 Infection by Inducing Cross-Reactive, Antigen-Specific Immune Responses. Microorganisms 2021; 9:microorganisms9112323. [PMID: 34835449 PMCID: PMC8622534 DOI: 10.3390/microorganisms9112323] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 12/29/2022] Open
Abstract
Group B coxsackieviruses (CVB) containing six serotypes, B1–B6, affect various organs, and multiple serotypes can induce similar diseases such as myocarditis and pancreatitis. Yet, no vaccines are currently available to prevent these infections. Translationally, the derivation of vaccines that offer protection against multiple serotypes is highly desired. In that direction, we recently reported the generation of an attenuated strain of CVB3, termed Mt10, which completely protects against both myocarditis and pancreatitis induced by the homologous wild-type CVB3 strain. Here, we report that the Mt10 vaccine can induce cross-protection against multiple CVB serotypes as demonstrated with CVB4. We note that the Mt10 vaccine could induce cross-reactive neutralizing antibodies (nABs) against both CVB1 and CVB4. In challenge studies with CVB4, the efficacy of the Mt10 vaccine was found to be 92%, as determined by histological evaluation of the heart and pancreas. Antibody responses induced in Mt10/CVB4 challenged animals indicated the persistence of cross-reactive nABs against CVB1, CVB3, and CVB4. Evaluation of antigen-specific immune responses revealed viral protein 1 (VP1)-reactive antibodies, predominantly IgG2a, IgG2b, IgG3, and IgG1. Similarly, by using major histocompatibility complex class II tetramers, we noted induction of VP1-specific CD4 T cells capable of producing multiple T cell cytokines, with interferon-γ being predominant. Finally, none of the vaccine recipients challenged with CVB4 revealed the presence of viral nucleic acid in the heart or pancreas. Taken together, our data suggest that the Mt10 vaccine can prevent infections caused by multiple CVB serotypes, paving the way for the development of monovalent CVB vaccines to prevent heart and pancreatic diseases of enteroviral origin.
Collapse
|
17
|
Yin Z, Wu Y, Zhu R, Xu L, Lin Y, Yang H, Fu W, Huang Q, Zhang D, Wang J, Wang W, Wang Y, Cheng T, Xia N. Development of A Neonatal Mouse Model for Coxsackievirus B1 Antiviral Evaluation. Virol Sin 2021; 36:1575-1584. [PMID: 34581960 PMCID: PMC8476979 DOI: 10.1007/s12250-021-00444-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 08/04/2021] [Indexed: 12/22/2022] Open
Abstract
Coxsackievirus B1 (CVB1) is a leading causative agent of severe infectious diseases in humans and has been reported to be associated with outbreaks of aseptic meningitis, myocarditis, and the development of chronic diseases such as type 1 diabetes mellitus (T1DM). There is no approved vaccine or effective antiviral therapy to treat CBV1 infection. And animal models to assess the effects of antiviral agents and vaccine remain limited. In this study, we established a neonatal mouse model of CVB1 using a clinically isolated strain to characterize the pathological manifestations of virus infection and to promote the development of vaccines and antiviral drugs against CVB1. One-day-old BALB/c mice were susceptible to CVB1 infection by intraperitoneal injection. Mice challenged with CVB1 at a low dose [10 median tissue culture infective dose (TCID50)] exhibited a series of clinical symptoms, such as inactivity, emaciation, limb weakness, hair thinning, hunching and even death. Pathological examination and tissue viral load analysis showed that positive signals of CVB1 were detected in the heart, spinal cord, limb muscle and kidney without pathological damage. Particularly, CVB1 had a strong tropism towards the pancreas, causing severe cellular necrosis with inflammatory infiltration, and was spread by viraemia. Notably, the monoclonal antibody (mAb) 6H5 and antisera elicited from CVB1-vaccinated mice effectively protected the mice from CVB1 infection in the mouse model. In summary, the established neonatal mouse model is an effective tool for evaluating the efficacy of CVB1 antiviral reagents and vaccines.
Collapse
Affiliation(s)
- Zhichao Yin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Yuanyuan Wu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Rui Zhu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Longfa Xu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Yu Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Hongwei Yang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Wenkun Fu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Qiongzi Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Dongqing Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Jue Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Wei Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Yingbin Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102, China.
| | - Tong Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102, China.
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
18
|
Isaacs SR, Foskett DB, Maxwell AJ, Ward EJ, Faulkner CL, Luo JYX, Rawlinson WD, Craig ME, Kim KW. Viruses and Type 1 Diabetes: From Enteroviruses to the Virome. Microorganisms 2021; 9:microorganisms9071519. [PMID: 34361954 PMCID: PMC8306446 DOI: 10.3390/microorganisms9071519] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 12/15/2022] Open
Abstract
For over a century, viruses have left a long trail of evidence implicating them as frequent suspects in the development of type 1 diabetes. Through vigorous interrogation of viral infections in individuals with islet autoimmunity and type 1 diabetes using serological and molecular virus detection methods, as well as mechanistic studies of virus-infected human pancreatic β-cells, the prime suspects have been narrowed down to predominantly human enteroviruses. Here, we provide a comprehensive overview of evidence supporting the hypothesised role of enteroviruses in the development of islet autoimmunity and type 1 diabetes. We also discuss concerns over the historical focus and investigation bias toward enteroviruses and summarise current unbiased efforts aimed at characterising the complete population of viruses (the “virome”) contributing early in life to the development of islet autoimmunity and type 1 diabetes. Finally, we review the range of vaccine and antiviral drug candidates currently being evaluated in clinical trials for the prevention and potential treatment of type 1 diabetes.
Collapse
Affiliation(s)
- Sonia R. Isaacs
- Faculty of Medicine and Health, School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW 2031, Australia; (S.R.I.); (D.B.F.); (A.J.M.); (E.J.W.); (C.L.F.); (J.Y.X.L.); (W.D.R.); (M.E.C.)
- Virology Research Laboratory, Serology and Virology Division, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
| | - Dylan B. Foskett
- Faculty of Medicine and Health, School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW 2031, Australia; (S.R.I.); (D.B.F.); (A.J.M.); (E.J.W.); (C.L.F.); (J.Y.X.L.); (W.D.R.); (M.E.C.)
- Virology Research Laboratory, Serology and Virology Division, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
| | - Anna J. Maxwell
- Faculty of Medicine and Health, School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW 2031, Australia; (S.R.I.); (D.B.F.); (A.J.M.); (E.J.W.); (C.L.F.); (J.Y.X.L.); (W.D.R.); (M.E.C.)
- Virology Research Laboratory, Serology and Virology Division, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
| | - Emily J. Ward
- Faculty of Medicine and Health, School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW 2031, Australia; (S.R.I.); (D.B.F.); (A.J.M.); (E.J.W.); (C.L.F.); (J.Y.X.L.); (W.D.R.); (M.E.C.)
- Faculty of Medicine and Health, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Clare L. Faulkner
- Faculty of Medicine and Health, School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW 2031, Australia; (S.R.I.); (D.B.F.); (A.J.M.); (E.J.W.); (C.L.F.); (J.Y.X.L.); (W.D.R.); (M.E.C.)
- Virology Research Laboratory, Serology and Virology Division, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
| | - Jessica Y. X. Luo
- Faculty of Medicine and Health, School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW 2031, Australia; (S.R.I.); (D.B.F.); (A.J.M.); (E.J.W.); (C.L.F.); (J.Y.X.L.); (W.D.R.); (M.E.C.)
- Virology Research Laboratory, Serology and Virology Division, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
| | - William D. Rawlinson
- Faculty of Medicine and Health, School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW 2031, Australia; (S.R.I.); (D.B.F.); (A.J.M.); (E.J.W.); (C.L.F.); (J.Y.X.L.); (W.D.R.); (M.E.C.)
- Virology Research Laboratory, Serology and Virology Division, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
- Faculty of Medicine and Health, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
- Faculty of Science, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Maria E. Craig
- Faculty of Medicine and Health, School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW 2031, Australia; (S.R.I.); (D.B.F.); (A.J.M.); (E.J.W.); (C.L.F.); (J.Y.X.L.); (W.D.R.); (M.E.C.)
- Virology Research Laboratory, Serology and Virology Division, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
- Institute of Endocrinology and Diabetes, Children’s Hospital at Westmead, Sydney, NSW 2145, Australia
- Faculty of Medicine and Health, Discipline of Child and Adolescent Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Ki Wook Kim
- Faculty of Medicine and Health, School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW 2031, Australia; (S.R.I.); (D.B.F.); (A.J.M.); (E.J.W.); (C.L.F.); (J.Y.X.L.); (W.D.R.); (M.E.C.)
- Virology Research Laboratory, Serology and Virology Division, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
- Correspondence: ; Tel.: +61-2-9382-9096
| |
Collapse
|
19
|
Modular vaccine platform based on the norovirus-like particle. J Nanobiotechnology 2021; 19:25. [PMID: 33468139 PMCID: PMC7815183 DOI: 10.1186/s12951-021-00772-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 01/08/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Virus-like particle (VLP) vaccines have recently emerged as a safe and effective alternative to conventional vaccine technologies. The strong immunogenic effects of VLPs can be harnessed for making vaccines against any pathogen by decorating VLPs with antigens from the pathogen. Producing the antigenic pathogen fragments and the VLP platform separately makes vaccine development rapid and convenient. Here we decorated the norovirus-like particle with two conserved influenza antigens and tested for the immunogenicity of the vaccine candidates in BALB/c mice. RESULTS SpyTagged noro-VLP was expressed with high efficiency in insect cells and purified using industrially scalable methods. Like the native noro-VLP, SpyTagged noro-VLP is stable for months when refrigerated in a physiological buffer. The conserved influenza antigens were produced separately as SpyCatcher fusions in E. coli before covalent conjugation on the surface of noro-VLP. The noro-VLP had a high adjuvant effect, inducing high titers of antibody production against the antigens presented on its surface. CONCLUSIONS The modular noro-VLP vaccine platform presented here offers a rapid, convenient and safe method to present various soluble protein antigens to the immune system for vaccination and antibody production purposes.
Collapse
|
20
|
Hankaniemi MM, Baikoghli MA, Stone VM, Xing L, Väätäinen O, Soppela S, Sioofy-Khojine A, Saarinen NVV, Ou T, Anson B, Hyöty H, Marjomäki V, Flodström-Tullberg M, Cheng RH, Hytönen VP, Laitinen OH. Structural Insight into CVB3-VLP Non-Adjuvanted Vaccine. Microorganisms 2020; 8:microorganisms8091287. [PMID: 32846899 PMCID: PMC7565060 DOI: 10.3390/microorganisms8091287] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 07/23/2020] [Accepted: 07/23/2020] [Indexed: 12/23/2022] Open
Abstract
Coxsackievirus B (CVB) enteroviruses are common pathogens that can cause acute and chronic myocarditis, dilated cardiomyopathy, aseptic meningitis, and they are hypothesized to be a causal factor in type 1 diabetes. The licensed enterovirus vaccines and those currently in clinical development are traditional inactivated or live attenuated vaccines. Even though these vaccines work well in the prevention of enterovirus diseases, new vaccine technologies, like virus-like particles (VLPs), can offer important advantages in the manufacturing and epitope engineering. We have previously produced VLPs for CVB3 and CVB1 in insect cells. Here, we describe the production of CVB3-VLPs with enhanced production yield and purity using an improved purification method consisting of tangential flow filtration and ion exchange chromatography, which is compatible with industrial scale production. We also resolved the CVB3-VLP structure by Cryo-Electron Microscopy imaging and single particle reconstruction. The VLP diameter is 30.9 nm on average, and it is similar to Coxsackievirus A VLPs and the expanded enterovirus cell-entry intermediate (the 135s particle), which is ~2 nm larger than the mature virion. High neutralizing and total IgG antibody levels, the latter being a predominantly Th2 type (IgG1) phenotype, were detected in C57BL/6J mice immunized with non-adjuvanted CVB3-VLP vaccine. The structural and immunogenic data presented here indicate the potential of this improved methodology to produce highly immunogenic enterovirus VLP-vaccines in the future.
Collapse
Affiliation(s)
- Minna M. Hankaniemi
- Faculty of Medicine and Life Sciences, Tampere University, FI-33014 Tampere, Finland; (O.V.); (S.S.); (A.S.-K.); (N.V.V.S.); (H.H.); (O.H.L.)
- Correspondence: (M.M.H.); (V.P.H.); Tel.: +358-504176882 (M.M.H.); +358-401901517 (V.P.H.)
| | - Mo A. Baikoghli
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA; (M.A.B.); (L.X.); (T.O.); (B.A.); (R.H.C.)
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, P.O. Box 20, University of Helsinki, 00014 Helsinki, Finland
| | - Virginia M. Stone
- The Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 52 Stockholm, Sweden; (V.M.S.); (M.F.-T.)
| | - Li Xing
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA; (M.A.B.); (L.X.); (T.O.); (B.A.); (R.H.C.)
| | - Outi Väätäinen
- Faculty of Medicine and Life Sciences, Tampere University, FI-33014 Tampere, Finland; (O.V.); (S.S.); (A.S.-K.); (N.V.V.S.); (H.H.); (O.H.L.)
| | - Saana Soppela
- Faculty of Medicine and Life Sciences, Tampere University, FI-33014 Tampere, Finland; (O.V.); (S.S.); (A.S.-K.); (N.V.V.S.); (H.H.); (O.H.L.)
| | - Amirbabak Sioofy-Khojine
- Faculty of Medicine and Life Sciences, Tampere University, FI-33014 Tampere, Finland; (O.V.); (S.S.); (A.S.-K.); (N.V.V.S.); (H.H.); (O.H.L.)
| | - Niila V. V. Saarinen
- Faculty of Medicine and Life Sciences, Tampere University, FI-33014 Tampere, Finland; (O.V.); (S.S.); (A.S.-K.); (N.V.V.S.); (H.H.); (O.H.L.)
| | - Tingwei Ou
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA; (M.A.B.); (L.X.); (T.O.); (B.A.); (R.H.C.)
| | - Brandon Anson
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA; (M.A.B.); (L.X.); (T.O.); (B.A.); (R.H.C.)
| | - Heikki Hyöty
- Faculty of Medicine and Life Sciences, Tampere University, FI-33014 Tampere, Finland; (O.V.); (S.S.); (A.S.-K.); (N.V.V.S.); (H.H.); (O.H.L.)
- Fimlab Laboratories, FI-33520 Tampere, Finland
| | - Varpu Marjomäki
- Department of Biological and Environmental Science/Nanoscience Center, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland;
| | - Malin Flodström-Tullberg
- The Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 52 Stockholm, Sweden; (V.M.S.); (M.F.-T.)
| | - R. Holland Cheng
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA; (M.A.B.); (L.X.); (T.O.); (B.A.); (R.H.C.)
| | - Vesa P. Hytönen
- Faculty of Medicine and Life Sciences, Tampere University, FI-33014 Tampere, Finland; (O.V.); (S.S.); (A.S.-K.); (N.V.V.S.); (H.H.); (O.H.L.)
- Fimlab Laboratories, FI-33520 Tampere, Finland
- Correspondence: (M.M.H.); (V.P.H.); Tel.: +358-504176882 (M.M.H.); +358-401901517 (V.P.H.)
| | - Olli H. Laitinen
- Faculty of Medicine and Life Sciences, Tampere University, FI-33014 Tampere, Finland; (O.V.); (S.S.); (A.S.-K.); (N.V.V.S.); (H.H.); (O.H.L.)
| |
Collapse
|
21
|
Heinimäki S, Hankaniemi MM, Sioofy-Khojine AB, Laitinen OH, Hyöty H, Hytönen VP, Vesikari T, Blazevic V. Combination of three virus-derived nanoparticles as a vaccine against enteric pathogens; enterovirus, norovirus and rotavirus. Vaccine 2019; 37:7509-7518. [DOI: 10.1016/j.vaccine.2019.09.072] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 08/23/2019] [Accepted: 09/20/2019] [Indexed: 12/21/2022]
|