1
|
Pu Y, Xu F, He A, Li R, Wang X, Zhou L, Sun H, Zhang Y, Xia Y. Repurposing chlorpromazine for the treatment of triple-negative breast cancer growth and metastasis based on modulation of mitochondria-mediated apoptosis and autophagy/mitophagy. Br J Cancer 2025; 132:997-1009. [PMID: 40217096 PMCID: PMC12119927 DOI: 10.1038/s41416-025-02992-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/23/2025] [Accepted: 03/18/2025] [Indexed: 06/01/2025] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) presents significant challenges due to its aggressive nature and high propensity for brain metastasis, often exhibiting resistance to standard treatments. In this study, we conducted a preliminary screening of potential therapeutic agents and identified chlorpromazine (CPZ) as a promising candidate for treating TNBC and its brain metastases. METHODS The inhibitory activities of CPZ and its combination with several standard treatment drugs were evaluated in preclinical TNBC models. The mechanism of CPZ on TNBC was elucidated using TMT-labeled quantitative proteomics analysis. RESULTS In vivo experiments demonstrated that CPZ robustly suppressed tumor growth and metastasis, particularly in lung and brain models. Importantly, CPZ enhanced the efficacy of standard therapeutic agents such as vinorelbine (NVB) and anti-PD-1 antibody. Mechanistically, CPZ induced G2/M phase arrest and triggered mitochondria-mediated intrinsic apoptosis in TNBC cells. Furthermore, CPZ triggered incomplete autophagy and activated PINK1-Parkin-mediated mitophagy. Inhibiting autophagy/mitophagy augmented CPZ's anticancer effects, indicating these processes may have cell protective roles. CONCLUSIONS Our study highlights the dual function of CPZ in suppressing TNBC growth and metastasis, positioning it as a promising candidate for treating this aggressive cancer. Additionally, targeting autophagy/mitophagy may serve as an effective strategy to enhance anticancer therapies against TNBC.
Collapse
Affiliation(s)
- Yamin Pu
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fuyan Xu
- Joint Lab of Reproductive Medicine of SCU-CUHK, Lab of Reproductive Genetics and Epigenetics, Department of Obstetrics/Gynecology, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, West China Second University Hospital, Sichuan University, 610041, Chengdu, China
| | - Anqi He
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ru Li
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Xiangxiu Wang
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Liang Zhou
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hongbao Sun
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yiwen Zhang
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Yong Xia
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
2
|
Lu T, Wang Q, Xin Y, Wu X, Wang Y, Xia Y, Xun L, Liu H. Knockout of the sulfide: quinone oxidoreductase SQR reduces growth of HCT116 tumor xenograft. Redox Biol 2025; 83:103650. [PMID: 40305883 DOI: 10.1016/j.redox.2025.103650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 04/22/2025] [Accepted: 04/23/2025] [Indexed: 05/02/2025] Open
Abstract
Colorectal cancer (CRC) exhibits significant diversity and heterogeneity, posing a requirement for novel therapeutic targets. Polysulfides are associated with CRC progression and immune evasion, but the underlying mechanisms are not fully understood. Sulfide: quinone oxidoreductase (SQR), a mitochondrial flavoprotein, catalyzes hydrogen sulfide (H2S) oxidation and polysulfides production. Herein, we explored its role in CRC pathogenesis and its potential as a therapeutic target. Our findings revealed that SQR knockout disrupted polysulfides homeostasis, diminished mitochondrial function, impaired cell proliferation, and triggered early apoptosis in HCT116 CRC cells. Moreover, the SQR knockout led to markedly reduced tumor sizes in mice models of colon xenografts. Although the transcription of glycolytic genes remained largely unchanged, metabolomic analysis demonstrated a reprogramming of glycolysis at the fructose-1,6-bisphosphate degradation step, catalyzed by aldolase A (ALDOA). Both Western blot analysis and enzymatic assays confirmed the decrease in ALDOA levels and activity. In conclusion, the study establishes the critical role of SQR in mitochondrial function and metabolic regulation in CRC, with its knockout leading to metabolic reprogramming and diminished tumor growth in HCT116 tumor xenografts. These insights lay a foundation for the development of SQR-targeted therapies for CRC.
Collapse
Affiliation(s)
- Ting Lu
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences Qingdao Hospital (Qingdao Municipal Hospital), University of Health and Rehabilitation Sciences, Qingdao, 266071, People's Republic of China
| | - Qingda Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266200, People's Republic of China
| | - Yuping Xin
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266200, People's Republic of China
| | - Xiaohua Wu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266200, People's Republic of China
| | - Yang Wang
- Origin Biotechnology Private Limited, 2 Venture Drive, 608526, Singapore
| | - Yongzhen Xia
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266200, People's Republic of China
| | - Luying Xun
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266200, People's Republic of China; School of Molecular Biosciences, Washington State University, Pullman, WA, 991647520, USA
| | - Huaiwei Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266200, People's Republic of China.
| |
Collapse
|
3
|
Zhang X, Kang H, Li B, Xiong Y, Zheng S, Zhang D, Liu Y, Li S, Liu Y, Liu H, Gao Y, Ma L. Structural Optimization of 1,3-Diaryl-1,2,4-triazole-Capped Histone Deacetylase 6 Inhibitors to Obtain Novel Antiesophageal Cancer Candidates. J Med Chem 2025. [PMID: 40382720 DOI: 10.1021/acs.jmedchem.4c03231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
Esophageal cancer, a leading global cancer, lacks effective therapies. Inhibition of histone deacetylase 6 (HDAC6) is a promising antitumor strategy, yet its role in esophageal cancer remains underexplored. Through structural optimization of our previously developed 1,3-diaryl-1,2,4-triazole-capped HDAC6 inhibitors, we identified compound 38k, exhibiting remarkably enhanced HDAC6 inhibition (IC50 = 3.12 nM) and 352-fold selectivity over HDAC1. Molecular docking analysis, CETSA, and BLI confirmed its strong HDAC6 binding. Moreover, 38k displayed robust in vitro and in vivo antiesophageal cancer efficacy, along with an advantageous pharmacokinetic and safety profile. Notably, combining 38k with a PI3K inhibitor synergistically enhanced the efficacy (75.02% tumor growth inhibition vs 50.94% monotherapy), likely by counteracting HDAC6 inhibition-induced PI3K/AKT activation. These findings validate HDAC6 as a therapeutic target and highlight 38k as a promising candidate for esophageal cancer treatment, particularly in combination regimens.
Collapse
Affiliation(s)
- Xinhui Zhang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
- School of Biological Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
- Newland Pharmaceutical Co., Ltd., Xuchang, Henan 461500, China
| | - Huiqin Kang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Bingqian Li
- State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Yuhan Xiong
- State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Shuxian Zheng
- State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Di Zhang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Yuanfan Liu
- School of Biological Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Shiyu Li
- School of Biological Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Ying Liu
- The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhengzhou, Henan 450001, China
| | - Hongmin Liu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Ya Gao
- State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Liying Ma
- State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
- Key Laboratory of Cardio-cerebrovascular Drug, China Meheco Topfond Pharmaceutical Co., Zhumadian 463000, China
| |
Collapse
|
4
|
Compton JA, Patrick WM. The more we learn, the more diverse it gets: structures, functions and evolution in the Phosphofructokinase Superfamily. Biochem J 2025; 482:467-483. [PMID: 40329473 DOI: 10.1042/bcj20253024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 04/14/2025] [Indexed: 05/08/2025]
Abstract
The enzyme 6-phosphofructokinase (PFK) phosphorylates d-fructose 6-phosphate, producing d-fructose 1,6-bisphosphate. The canonical version-discovered almost 90 years ago-is ATP-dependent, allosterically regulated and catalyses the first committed step in glycolysis. However, beyond this textbook enzyme, there is fascinating functional and structural variety among PFKs across the tree of life. While PFKs are found in two non-homologous superfamilies, here, we review the universally distributed enzymes in one, the Phosphofructokinase Superfamily. We focus on summarising the diversity within this superfamily. A key partition regards the identity of the phosphate donor, which can be ATP or inorganic pyrophosphate (PPi). Considerable insights into functional and evolutionary aspects of the ATP- and PPi-dependent PFKs have come through structural biology, with 45 structures now available in the Protein Data Bank. One recent highlight was the use of cryoEM and molecular dynamics simulations to illuminate the structural basis of allosteric regulation in human liver PFK. Others were to explore interactions of drug-like small molecules with the PFKs from Trypanosoma brucei and human liver, revealing new routes to antibiotics and immune modulators, respectively. In contrast with the ATP-dependent enzymes, PPi-dependent PFKs are typically non-allosteric and catalyse a readily reversible reaction. Some also play an additional physiological role by phosphorylating d-sedoheptulose 7-phosphate. We discuss why these properties are plausibly ancestral. Finally, we also emphasise how much remains to be discovered. For example, the 45 experimentally determined structures are from only 14 species. Nine decades in, it is still a great time to be studying PFK.
Collapse
Affiliation(s)
- Jordan A Compton
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
| | - Wayne M Patrick
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
| |
Collapse
|
5
|
Chen M, Wang Y, Chen L, Chen M, Li X, Wang G. Epiberberine ameliorates ulcerative colitis by regulating bile acids hepatoenteral circulation through intestinal FXR. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 143:156831. [PMID: 40334429 DOI: 10.1016/j.phymed.2025.156831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 04/23/2025] [Accepted: 05/04/2025] [Indexed: 05/09/2025]
Abstract
BACKGROUND Ulcerative colitis (UC) is a chronic inflammatory bowel disease, the development of which is accompanied by dysregulation of bile acid metabolism. Abnormal bile acid accumulation in the intestine further exacerbates intestinal inflammation in patients with UC. Coptidis Rhizoma has potential therapeutic activity against UC; however, its capacity to modulate bile acids in UC remains poorly explored. PURPOSE The objective of this study was to determine the therapeutic effects of epiberberine, one of the main alkaloids in Coptidis Rhizoma, on UC and elucidate its role in modulating bile acid homeostasis through intestinal FXR in alleviating UC. METHODS The anti-inflammatory activity of epiberberine and its ability to activate intestinal FXR were validated in UC mouse and in vitro cell models. Binding interactions between epiberberine and FXR protein were determined using various techniques (CETSA, SIP, DARTS, IP-MS, and ITC). Molecular docking and site-directed mutagenesis analyzed key amino acid residues involved in epiberberine binding to FXR. Wild-type and Fxr-/- mice were employed to further validate the epiberberine target in vivo. RESULTS Epiberberine activated intestinal FXR, enhancing the expressions of bile acid transporters (OSTα, OSTβ, IBABP) and FGF15 secretion, a signaling molecule. This promoted the intestinal reabsorption of bile acids and inhibited their synthesis in UC mice, thus alleviating intestinal bile acid accumulation and the expression of inflammatory proteins (NF-κB, IL-1β, IL-10, IL-6). Epiberberine could directly bind to FXR protein (KD=2.04 μmol/l), with MET265 and ARG331 identified as key binding sites between epiberberine and FXR protein. In Fxr-deficient mice, the regulatory effect of epiberberine on bile acids was abolished, which, in turn, reduced the ameliorative effect on UC. CONCLUSION These findings indicate that UC is characterized by FXR inhibition and abnormal bile acid accumulation. Epiberberine ameliorates UC by activating ileal FXR to regulate bile acid enterohepatic circulation and alleviate bile acid accumulation in the intestines. Additionally, this study provides a new perspective for investigating mechanisms through which Coptidis Rhizoma alkaloids activate intestinal FXR to regulate bile acid homeostasis during UC therapy.
Collapse
Affiliation(s)
- Mingyun Chen
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China; Engineering Research Center of Coptis Development and Utilization (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing, China; Chongqing Key Laboratory of New Drug Screening from Traditional Chinese Medicine, College of Pharmaceutical Sciences, Southwest University, Chongqing, China; Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China
| | - Yifan Wang
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Lin Chen
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Min Chen
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China; Chongqing Key Laboratory of New Drug Screening from Traditional Chinese Medicine, College of Pharmaceutical Sciences, Southwest University, Chongqing, China.
| | - Xuegang Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China; Engineering Research Center of Coptis Development and Utilization (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Guowei Wang
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China.
| |
Collapse
|
6
|
Yu M, Xu M, Wang G, Feng J, Zhang M. Effect of cecal microbiota transplantation on peripheral 5-hydroxytryptamine and breast muscle glucose metabolism in long-photoperiod broilers. Poult Sci 2025; 104:105225. [PMID: 40398302 DOI: 10.1016/j.psj.2025.105225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/24/2025] [Accepted: 04/28/2025] [Indexed: 05/23/2025] Open
Abstract
Prolonged light periods resulted in up-regulation of cecal 5-hydroxytryptamine (5-HT) synthesis and secretion, disorders of breast muscle glucose metabolism and alteration in gut microbiota composition. The present study was conducted to investigate the effects of cecal microbiota on peripheral 5-HT metabolism and breast muscle glucose metabolism in broiler chickens underlying prolonged light periods. A total of 144 5-day-old male Arbor Acres (AA) broiler chickens were randomly divided into four treatment groups i.e., 12 hours light: 12 hours dark (12L:12D) photoperiod group, 18 hours light: 6 hours dark (18L:6D) photoperiod group, 18L:6D photoperiod with phosphate buffered saline (PBS) solution administration group (18L:6D+PBS) and 18L:6D photoperiod with cecal microbiota transplantation (CMT) group (18L:6D+CMT) for 14 days. The results demonstrated that the 18L:6D photoperiod increased breast muscle rate (P < 0.05) but induced the morphological damage of breast muscle, dysregulation of breast muscle glucose metabolism and higher peripheral 5-HT synthesis (P < 0.05). In contrast, CMT significantly improved breast muscle weight and breast muscle ratio while reducing the breast muscle injury. Furthermore, CMT alleviated glucose metabolism dysregulation, as evidenced by significant reductions in serum glucose (P < 0.05), insulin (INS) (P < 0.05), homeostasis model assessment of insulin resistance (HOMA-IR) (P < 0.05), and the lactic acid-to-pyruvate ratio (L/P) (P < 0.05), as well as an increase in muscle glycogen concentrations (P < 0.05). Additionally, the expression of glycogen synthase (GS), pyruvate dehydrogenase (PDH) and glucose transporter-4 (GLUT4) up-regulated, while the expression of glycogen phosphorylase L (PYGL), hexokinase (HK), 6-phosphofructokinase (PFK), pyruvate kinase (PK) and lactate dehydrogenase (LDH) down-regulated (P < 0.05) in breast muscle of CMT-treated broiler chickens. Notably, both peripheral 5-HT concentrations and cecal 5-HT synthesis was significantly reduced (P < 0.05) in the 18L:6D+CMT group. In summary, these findings indicate that CMT promotes breast muscle rate, reduces breast muscle injury, alleviates breast muscle glucose metabolism disorder in broiler chickens exposed to prolonged light periods. Moreover, peripheral 5-HT metabolism may serve as a key pathway through which cecal microbiota regulates skeletal muscle glucose metabolism.
Collapse
Affiliation(s)
- Miao Yu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Mengjie Xu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Guangju Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Adaptation Physiology Group, Wageningen University and Research, Wageningen, the Netherlands
| | - Jinghai Feng
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Minhong Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
7
|
Wang Z, Xu C, Wang Q, Wang Y. Repurposing of nervous system drugs for cancer treatment: recent advances, challenges, and future perspectives. Discov Oncol 2025; 16:396. [PMID: 40133751 PMCID: PMC11936871 DOI: 10.1007/s12672-025-02067-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 03/05/2025] [Indexed: 03/27/2025] Open
Abstract
The nervous system plays a critical role in developmental biology and oncology, influencing processes from ontogeny to the complex dynamics of cancer progression. Interactions between the nervous system and cancer significantly affect oncogenesis, tumor growth, invasion, metastasis, treatment resistance, inflammation that promotes tumors, and the immune response. A comprehensive understanding of the signal transduction pathways involved in cancer biology is essential for devising effective anti-cancer strategies and overcoming resistance to existing therapies. Recent advances in cancer neuroscience promise to establish a new cornerstone of cancer therapy. Repurposing drugs originally developed for modulating nerve signal transduction represent a promising approach to target oncogenic signaling pathways in cancer treatment. This review endeavors to investigate the potential of repurposing neurological drugs, which target neurotransmitters and neural pathways, for oncological applications. In this context, it aims to bridge the interdisciplinary gap between neurology, psychiatry, internal medicine, and oncology. By leveraging already approved drugs, researchers can utilize existing extensive safety and efficacy data, thereby reducing both the time and financial resources necessary for the development of new cancer therapies. This strategy not only promises to enhance patient outcomes but also to expand the array of available treatments, thereby enriching the therapeutic landscape in oncology.
Collapse
Affiliation(s)
- Zixun Wang
- Nanshan School, Guangzhou Medical University, Jingxiu Road, Panyu District, Guangzhou, 511436, China
| | - Chen Xu
- Department of Gynecologic Oncology, the International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Municipal Key Clinical Specialty, Female Tumor Reproductive Specialty, Shanghai Key Laboratory of Embryo Original Disease, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Qi Wang
- Department of Gynecologic Oncology, the International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Municipal Key Clinical Specialty, Female Tumor Reproductive Specialty, Shanghai Key Laboratory of Embryo Original Disease, Shanghai Jiao Tong University, Shanghai, 200025, China.
| | - Yudong Wang
- Department of Gynecologic Oncology, the International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Municipal Key Clinical Specialty, Female Tumor Reproductive Specialty, Shanghai Key Laboratory of Embryo Original Disease, Shanghai Jiao Tong University, Shanghai, 200025, China.
| |
Collapse
|
8
|
Lin PI, Lee YC, Chen IH, Chung HH. Pharmacological Modulation of Mutant TP53 with Oncotargets Against Esophageal Cancer and Therapy Resistance. Biomedicines 2025; 13:450. [PMID: 40002862 PMCID: PMC11852872 DOI: 10.3390/biomedicines13020450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 01/25/2025] [Accepted: 01/29/2025] [Indexed: 02/27/2025] Open
Abstract
The prevalence and deaths from esophageal cancer (EC) have recently increased. Although therapeutic strategies depend on the EC stage and recurrence, such as surgical intervention, chemotherapy, radiation therapy, chemoradiation therapy, targeted therapy, and immunotherapy, a more effective and novel treatment for EC is still required. This review briefly describes and summarizes some insightful oncotargets involved in the metabolic modulation of EC, including (1) cancer stem cells (CSCs) for EC progression, poor prognosis, tumor recurrence, and therapy resistance; (2) retinoic acid receptors (RARs) for esophageal carcinogenesis and regeneration; (3) phosphofructokinase (PFK) for EC-reprogrammed glycolysis; (4) lactate dehydrogenase (LDH) as an EC peripheral blood biomarker; and (5) hypoxia-inducible factor-1 alpha (HIF-1α) for the tumor microenvironment under hypoxic conditions. Moreover, the aforementioned oncotargets can be modulated by mutant TP53 and have their own features in the carcinogenesis, differentiation, proliferation, and metastasis of EC. Thus, the clarification of pharmacological mechanisms regarding the interaction between mutant TP53 and the abovementioned oncotargets could provide precise and perspective opinions for minimizing prediction errors, reducing therapy resistance, and developing novel drugs against EC.
Collapse
Affiliation(s)
- Pei-I Lin
- Department of Nursing, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung City 833401, Taiwan;
| | - Yu-Cheng Lee
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei City 110301, Taiwan;
| | - I-Hung Chen
- Division of Urology, Department of Surgery, National Cheng Kung University Hospital Douliu Branch, Yunlin County 640003, Taiwan;
| | - Hsien-Hui Chung
- Department of Pharmacy & Clinical Trial Pharmacy, Kaohsiung Veterans General Hospital, Kaohsiung City 813414, Taiwan
- St. Edmund Hall, University of Oxford, Oxford OX1 4AR, UK
- Preventive Medicine Program, Center for General Education, Chung Yuan Christian University, Taoyuan City 320314, Taiwan
- Department of Pharmacy and Master Program, College of Pharmacy and Health Care, Tajen University, Pingtung County 907101, Taiwan
| |
Collapse
|
9
|
Dong XM, Chen L, Xu YX, Wu P, Xie T, Liu ZQ. Exploring metabolic reprogramming in esophageal cancer: the role of key enzymes in glucose, amino acid, and nucleotide pathways and targeted therapies. Cancer Gene Ther 2025; 32:165-183. [PMID: 39794467 DOI: 10.1038/s41417-024-00858-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/08/2024] [Accepted: 11/14/2024] [Indexed: 01/13/2025]
Abstract
Esophageal cancer (EC) is one of the most common malignancies worldwide with the character of poor prognosis and high mortality. Despite significant advancements have been achieved in elucidating the molecular mechanisms of EC, for example, in the discovery of new biomarkers and metabolic pathways, effective treatment options for patients with advanced EC are still limited. Metabolic heterogeneity in EC is a critical factor contributing to poor clinical outcomes. This heterogeneity arises from the complex interplay between the tumor microenvironment and genetic factors of tumor cells, which drives significant metabolic alterations in EC, a process known as metabolic reprogramming. Understanding the mechanisms of metabolic reprogramming is essential for developing new antitumor therapies and improving treatment outcomes. Targeting the distinct metabolic alterations in EC could enable more precise and effective therapies. In this review, we explore the complex metabolic changes in glucose, amino acid, and nucleotide metabolism during the progression of EC, and how these changes drive unique nutritional demands in cancer cells. We also evaluate potential therapies targeting key metabolic enzymes and their clinical applicability. Our work will contribute to enhancing knowledge of metabolic reprogramming in EC and provide new insights and approaches for the clinical treatment of EC.
Collapse
Affiliation(s)
- Xue-Man Dong
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
| | - Lin Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
| | - Yu-Xin Xu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
| | - Pu Wu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.
| | - Zhao-Qian Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China.
| |
Collapse
|
10
|
Song L, Wu H, Sun X, Liu X, Ling X, Ni W, Li L, Liu B, Wei J, Li X, Li J, Wang Y, Mao F. Penfluridol targets septin7 to suppress endometrial cancer by septin7-Orai/IP3R-Ca 2+-PIK3CA pathway. iScience 2025; 28:111640. [PMID: 39850355 PMCID: PMC11754080 DOI: 10.1016/j.isci.2024.111640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/31/2024] [Accepted: 12/17/2024] [Indexed: 01/25/2025] Open
Abstract
Phenotypic screening of existing drugs is a good strategy to discover new drugs. Herein, 33 psychotherapeutic drugs in our drug library were screened by phenotypic screening and penfluridol (PFD) was found to exhibit excellent anti-endometrial cancer (EC) activity both in vitro and in vivo. Furthermore, the molecular target of PFD was identified as septin7, a tumor suppressor in EC. In septin7-deficient EC cells and xenograft mouse models, PFD exhibited weaker anti-cancer properties, indicating that septin7 was essential for the tumor inhibitory activity. Notably, PFD could induce cell apoptosis by regulating the septin7-Orai/IP3R-Ca2+-PIK3CA pathway. In addition, PFD attenuates the interaction of septin7-tubulin, thereby inhibiting microtubule polymerization. In summary, this study revealed a target and mechanistic insights into EC therapeutic strategies and identified a potential candidate agent for the treatment of EC.
Collapse
Affiliation(s)
- Lingyi Song
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Huiwen Wu
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xiao Sun
- Department of Gynecologic Oncology, the International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xiaohu Liu
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xianwu Ling
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Wei Ni
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Lijuan Li
- Department of Gynecologic Oncology, the International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Beibei Liu
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jinlian Wei
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaokang Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jian Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832003, China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, College of Pharmacy, Hainan University, Haikou 570228, China
| | - Yudong Wang
- Department of Gynecologic Oncology, the International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
- Shanghai Municipal Key Clinical Specialty, Female Tumor Reproductive Specialty, Shanghai 200030, China
| | - Fei Mao
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
11
|
Zhang Q, Huang Q, Cheng Z, Xue W, Liu S, Liao Y, Li X, Chen X, Han Y, Zhu D, Su Z, Yang X, Luo Z, Guo H. Exploring the mechanism of Xiaoaiping Injection inhibiting autophagy in prostate cancer based on proteomics. Chin J Nat Med 2025; 23:64-76. [PMID: 39855832 DOI: 10.1016/s1875-5364(25)60804-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/07/2024] [Accepted: 05/28/2024] [Indexed: 01/27/2025]
Abstract
Xiaoaiping (XAP) Injection demonstrates the anti-prostate cancer (PCa) effects, yet the underlying mechanism remains unclear. This study aims to investigate the impact of XAP on PCa and elucidate its mechanism of action. PCa cell proliferation was evaluated using a cell counting kit-8 (CCK-8) assay. Cell apoptosis was assessed through Hoechst staining and Western blotting assays. Proteomics technology was employed to identify key molecules and significant signaling pathways modulated by XAP in PCa cells. To further validate potential key genes and important pathways, a series of assays were conducted, including acridine orange (AO) staining, transmission electron microscopy, and immunofluorescence assays. The molecular mechanism of XAP against PCa in vivo was examined using a PC3 xenograft mouse model. Results demonstrated that XAP significantly inhibited cell proliferation in multiple PCa cell lines. In C4-2 and prostate cancer cell line-3 (PC3) cells, XAP induced cellular apoptosis, evidenced by reduced B-cell lymphoma 2 (Bcl-2) levels and elevated Bcl-2-associated X (Bax) levels. Proteomic, immunofluorescence, and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) investigations revealed a strong correlation between forkhead box O3a (FoxO3a) autophagic degradation and the anti-PCa action of XAP. XAP hindered autophagy by reducing the expression levels of autophagy-related protein 5 (Atg5)/autophagy-related protein 12 (Atg12) and enhancing FoxO3a expression and nuclear translocation. Furthermore, XAP exhibited potent anti-PCa action in PC3 xenograft mice and triggered FoxO3a nuclear translocation in tumor tissue. These findings suggest that XAP induces PCa apoptosis via inhibition of FoxO3a autophagic degradation, potentially offering a novel perspective on XAP injection as an effective anticancer therapy for PCa.
Collapse
Affiliation(s)
- Qiuping Zhang
- Department of Traditional Chinese Medicine, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & College of Pharmacy, Guangxi Medical University, Nanning 530021, China; Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, Guangxi Medical University, Nanning 530021, China
| | - Qiuju Huang
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & College of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Zhiping Cheng
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & College of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Wei Xue
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & College of Pharmacy, Guangxi Medical University, Nanning 530021, China; Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, Guangxi Medical University, Nanning 530021, China
| | - Shoushi Liu
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & College of Pharmacy, Guangxi Medical University, Nanning 530021, China; Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, Guangxi Medical University, Nanning 530021, China
| | - Yunnuo Liao
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & College of Pharmacy, Guangxi Medical University, Nanning 530021, China; Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, Guangxi Medical University, Nanning 530021, China
| | - Xiaolan Li
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & College of Pharmacy, Guangxi Medical University, Nanning 530021, China; Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, Guangxi Medical University, Nanning 530021, China
| | - Xin Chen
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & College of Pharmacy, Guangxi Medical University, Nanning 530021, China; Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, Guangxi Medical University, Nanning 530021, China
| | - Yaoyao Han
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & College of Pharmacy, Guangxi Medical University, Nanning 530021, China; Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, Guangxi Medical University, Nanning 530021, China
| | - Dan Zhu
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & College of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Zhiheng Su
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & College of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Xin Yang
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, Guangxi Medical University, Nanning 530021, China.
| | - Zhuo Luo
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & College of Pharmacy, Guangxi Medical University, Nanning 530021, China.
| | - Hongwei Guo
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & College of Pharmacy, Guangxi Medical University, Nanning 530021, China; Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, Guangxi Medical University, Nanning 530021, China.
| |
Collapse
|
12
|
Ali Ibrahim Mze A, Abdul Rahman A. Repurposing the antipsychotic drug penfluridol for cancer treatment (Review). Oncol Rep 2024; 52:174. [PMID: 39513619 PMCID: PMC11541647 DOI: 10.3892/or.2024.8833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/10/2024] [Indexed: 11/15/2024] Open
Abstract
Cancer is one of the most prevalent diseases and the leading cause of death worldwide. Despite the improved survival rates of cancer in recent years, the current available treatments often face resistance and side effects. Drug repurposing represents a cost‑effective and efficient alternative to cancer treatment. Recent studies revealed that penfluridol (PF), an antipsychotic drug, is a promising anticancer agent. In the present study, a scoping review was conducted to ascertain the anticancer properties of PF. For this, a literature search was performed using the Scopus, PubMed and Web of Science databases with the search string 'penfluridol' AND 'cancer'. A total of 23 original articles with in vivo and/or in vitro studies on the effect of PF on cancer were included in the scoping review. The outcome of the analysis demonstrated the anticancer potential of PF. PF significantly inhibited cell proliferation, metastasis and invasion while inducing apoptosis and autophagy in vivo and across a spectrum of cancer cell lines, including breast, lung, pancreatic, glioblastoma, gallbladder, bladder, oesophageal, leukaemia and renal cancers. However, research on PF derivatives with high anticancer activities and reduced neurological side effects may be necessary.
Collapse
Affiliation(s)
- Asma Ali Ibrahim Mze
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universiti Teknologi MARA (UiTM), Cawangan Selangor, Kampus Sungai Buloh, Sungai Buloh, Selangor 47000, Malaysia
- Institute of Medical Molecular Biotechnology, Faculty of Medicine, Universiti Teknologi MARA (UiTM) Cawangan Selangor, Kampus Sungai Buloh, Sungai Buloh, Selangor 47000, Malaysia
| | - Amirah Abdul Rahman
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universiti Teknologi MARA (UiTM), Cawangan Selangor, Kampus Sungai Buloh, Sungai Buloh, Selangor 47000, Malaysia
- Institute of Medical Molecular Biotechnology, Faculty of Medicine, Universiti Teknologi MARA (UiTM) Cawangan Selangor, Kampus Sungai Buloh, Sungai Buloh, Selangor 47000, Malaysia
| |
Collapse
|
13
|
Nguyen MT, Lee GJ, Kim B, Kim HJ, Tak J, Park MK, Kim EJ, Kang GJ, Rho SB, Lee H, Lee K, Kim SG, Lee CH. Penfluridol suppresses MYC-driven ANLN expression and liver cancer progression by disrupting the KEAP1-NRF2 interaction. Pharmacol Res 2024; 210:107512. [PMID: 39643070 DOI: 10.1016/j.phrs.2024.107512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 11/05/2024] [Accepted: 11/16/2024] [Indexed: 12/09/2024]
Abstract
Hepatocellular carcinoma (HCC) comprises the majority of primary liver cancers and possesses a low 5-year survival rate when in the advanced stages. Anillin (ANLN), a key player in cell growth and cytokinesis, is implicated in HCC development. Currently, no treatment agents are known to suppress ANLN. Analysis of The Cancer Genome Atlas data showed that high ANLN expression is associated with poor prognosis and survival in HCC patients. ANLN knockdown was shown to inhibit proliferation, cell cycle progression, and PD-L1 expression in liver cancer cells. The antipsychotic drug penfluridol was identified to suppress ANLN expression in the Connectivity Map analysis. Penfluridol downregulated ANLN at both the mRNA and protein levels, leading to G2/M cell cycle arrest and reduced colony formation in liver cancer cells. Mechanistically, penfluridol inhibited the transcription factor MYC from binding to an E-box motif in the ANLN promoter. This process was mediated by penfluridol-induced upregulation of NRF2, which competitively bound and sequestered MYC away from the ANLN promoter. Penfluridol inhibited the interaction between NRF2 and KEAP1, increasing NRF2. In a syngeneic mouse model, penfluridol suppressed liver tumour growth accompanied by increased NRF2 and decreased MYC and ANLN expression. These findings suggest penfluridol can be applied as the first ANLN blocker to modulate the MYC/NRF2/KEAP1 axis.
Collapse
Affiliation(s)
- Minh Tuan Nguyen
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Gi Jeong Lee
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Boram Kim
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Hyun Ji Kim
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Jihoon Tak
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Mi Kyung Park
- Department of Bio-Healthcare, Hwasung Medi-Science University, Hwaseong-si 18274, Republic of Korea
| | - Eun Ji Kim
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Gyeoung Jin Kang
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Seung Bae Rho
- National Cancer Center, Goyang 10408, Republic of Korea
| | - Ho Lee
- National Cancer Center, Goyang 10408, Republic of Korea
| | - Kyung Lee
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Sang Geon Kim
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Chang Hoon Lee
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea.
| |
Collapse
|
14
|
Miao H, Xu C, Gao W, Zhong L, Li H, Wen Z, Ren Q, Chen Y. PYGB targeted by androgen receptor contributes to tumor progression and metabolic reprogramming in esophageal squamous carcinoma. Cell Signal 2024; 124:111481. [PMID: 39442902 DOI: 10.1016/j.cellsig.2024.111481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/07/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND The incidence and mortality rates of esophageal squamous cell carcinoma (ESCC) are conspicuously augmented in men in contrast to women. The androgen receptor (AR), prevalently associated with the manifestation of male characteristics, is regarded as a pivotal determinant in tumor progression. Nevertheless, its exact role in ESCC remains insufficiently delineated. METHODS In this study, we probed the expression levels of AR and glucose metabolism enzymes in ESCC tissues by means of immunohistochemistry. We exploited chromatin immunoprecipitation and dual luciferase reporter assays to delve into the transcriptional regulatory interrelationships between AR and these enzymes. A gamut of molecular techniques-including multi-omics sequencing, colony formation assays, cell counting kit 8 (CCK8), 5-Ethynyl-2'-deoxyuridine (EdU) incorporation assays, wound-healing assays, transwell migration assays, extracellular acidification rate (ECAR) measurements, lipid droplet fluorescence imaging, and xenograft models-were enlisted to illuminate the functions of these enzymes within ESCC cells. RESULTS Our discoveries manifested that AR expression was strikingly higher in male ESCC tissues than in their female counterparts. Significantly, we discerned that glycogen phosphorylase B (PYGB), a cardinal enzyme implicated in glucose metabolism, demonstrated not only a positive correlation with AR expression but also an association with adverse prognostic outcomes for ESCC patients. Moreover, AR directly binds to the promoter region of the PYGB gene, thereby potentiating its transcriptional activity. This upregulation of PYGB was ascertained to facilitate proliferation, invasion, and metastasis among ESCC cells while intensifying glycolysis and modifying lipid metabolism pathways within these cells. In animal models employing nude mice, elevated PYGB levels were witnessed to expedite subcutaneous tumor growth as well as lung metastasis. CONCLUSIONS Collectively, our study establishes PYGB as a direct target of AR that assumes an indispensable role in both tumor progression and metabolic reprogramming affiliated with ESCC, thus paving novel avenues for therapeutic strategies centered on metabolic intercessions.
Collapse
Affiliation(s)
- Huikai Miao
- Institute of Pharmaceutical Research, Shandong Key Laboratory of Digital Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China; Department of Thoracic Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China; Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Chunmei Xu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Wuyou Gao
- Department of Thoracic Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Leqi Zhong
- Department of Thoracic Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hongmu Li
- Department of Thoracic Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhesheng Wen
- Department of Thoracic Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qiannan Ren
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Youfang Chen
- Department of Thoracic Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
15
|
Zeng X, Chen W, Yu N, Li Z, Li H, Chen Y, Gong F, Jiang X, Ji G. Trifluoperazine exerts anti-osteosarcoma effect by inducing mitochondria-dependent apoptosis via AKT/TXNIP signaling pathway. Toxicol Appl Pharmacol 2024; 492:117080. [PMID: 39216834 DOI: 10.1016/j.taap.2024.117080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/18/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
The survival rates for patients with osteosarcoma (OS) have stagnated over the past few decades. It is essential to find new therapies and drugs. A licensed antipsychotic medication called trifluoperazine (TFP) significantly reduces the growth of several cancers. However, the exact molecular pathways of TFP in OS remain to be discovered. Our research revealed that TFP greatly reduced OS cell migration and growth and caused the arrest of G0/G1 cell cycle. Combined with RNA-Seq data and further research, we confirmed that TFP promoted reactive oxygen species (ROS) production by elevating thioredoxin binding protein (TXNIP) expression to induce mitochondria-dependent apoptosis. Interestingly, we first demonstrated that AKT was an upstream regulatory target of TXNIP in OS cells. Dephosphorylation of AKT led to an increase in TXNIP expression, further elucidating the anticancer mechanism of TFP. In vivo, TFP inhibited subcutaneous OS cell proliferation and induced OS cell apoptosis without noticeable side effects. In conclusion, our findings imply that TFP is a potential treatment for OS.
Collapse
Affiliation(s)
| | - Wenkai Chen
- School of Medicine, Xiamen University, Xiamen, China
| | - Naichun Yu
- Department of Orthopedic Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Zongguang Li
- Department of Orthopedic Surgery, Xiamen Hospital of Traditional Chinese Medicine, Xiamen, China
| | - Hongyu Li
- School of Medicine, Xiamen University, Xiamen, China
| | - Yongjie Chen
- Department of Orthopedic Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Fengqing Gong
- Department of Orthopedic Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Xing Jiang
- Department of Neurosurgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Guangrong Ji
- Department of Orthopedic Surgery, Xiamen Hospital of Traditional Chinese Medicine, Xiamen, China.
| |
Collapse
|
16
|
Wang P, Ye Y, Chen Z, Li R, Hou G, Liu Z. PFKL promotes cell viability and glycolysis and inhibits cisplatin chemosensitivity of laryngeal squamous cell carcinoma. Biochem Biophys Res Commun 2024; 730:150366. [PMID: 38991254 DOI: 10.1016/j.bbrc.2024.150366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/27/2024] [Accepted: 07/04/2024] [Indexed: 07/13/2024]
Abstract
Laryngeal squamous cell carcinoma (LSCC) with a high incidence and mortality rate, has a serious impact worldwide. Phosphofructokinase-1 liver type (PFKL) is a major enzyme in glycolysis progress, but its role in modulating tumorigenesis and cisplatin (DDP) chemosensitivity of LSCC was still unclear. The mRNA and protein levels of PFKL were detected by qRT-PCR and immunohistochemical assay. Cell Counting Kit-8 assay and flow cytometry were carried out to observe cell viability, as well as apoptosis and mitochondrial reactive oxygen species (mito-ROS). Extracellular acidification rate and lactate content were measured using extracellular flux analysis and lactate assay kit. Immunofluorescent staining was used to evaluate the expression of γ-H2AX foci. DNA damage was detected via single-cell gel electrophoresis. Western blotting was introduced to evaluate the protein level of PFKL, LDHA, γ-H2AX, cleaved PARP, H3K27ac, and H3K9ac. Mice xenograft model of LSCC was built for in vivo validation. The PFKL expression was significantly increased in LSCC and associated with poor survival of LSCC patients. Knockdown of PFKL in LSCC cells significantly inhibited cell viability, ECAR, lactate content, and LDHA expression, but promoted mito-ROS level. Furthermore, knockdown of PFKL enhanced response of LSCC cells to DDP by increasing DDP-induced apoptosis, promoting DDP-induced mito-ROS level, γ-H2AX foci, tail DNA, and the expression of γ-H2AX and cleaved PARP. However, the overexpression of PFKL in LSCC cells had opposite experimental results. Nude mice tumor formation experiment proved that downregulation of PFKL significantly enhanced response of cells to DDP, demonstrated by reduced tumor volume, weight and increased TUNEL-positive cells. Suppression of CBP/EP300-mediated PFKL transcription inhibited cell viability and glycolysis and promoted mito-ROS in LSCC. PFKL promotes cell viability and DNA damage repair in DDP-treated LSCC through regulation of glycolysis pathway.
Collapse
Affiliation(s)
- Peng Wang
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China; Xiamen Clinical Research Center for Cancer Therapy, Xiamen, 361000, China.
| | - Yixian Ye
- Department of Otorhinolaryngology, Zhongshan Hospital Xiamen Branch, Fudan University, Xiamen, 361000, China; Xiamen Clinical Research Center for Cancer Therapy, Xiamen, 361000, China
| | - Zhaoyue Chen
- Department of Otorhinolaryngology, Zhongshan Hospital Xiamen Branch, Fudan University, Xiamen, 361000, China; Xiamen Clinical Research Center for Cancer Therapy, Xiamen, 361000, China
| | - Ruilong Li
- Department of Otorhinolaryngology, Zhongshan Hospital Xiamen Branch, Fudan University, Xiamen, 361000, China; Xiamen Clinical Research Center for Cancer Therapy, Xiamen, 361000, China
| | - Guanghui Hou
- Department of Otorhinolaryngology, Zhongshan Hospital Xiamen Branch, Fudan University, Xiamen, 361000, China; Xiamen Clinical Research Center for Cancer Therapy, Xiamen, 361000, China
| | - Zheng Liu
- Department of Otorhinolaryngology, Zhongshan Hospital Xiamen Branch, Fudan University, Xiamen, 361000, China; Xiamen Clinical Research Center for Cancer Therapy, Xiamen, 361000, China
| |
Collapse
|
17
|
Xu F, Li J, Ai M, Zhang T, Ming Y, Li C, Pu W, Yang Y, Li Z, Qi Y, Xu X, Sun Q, Yuan Z, Xia Y, Peng Y. Penfluridol inhibits melanoma growth and metastasis through enhancing von Hippel‒Lindau tumor suppressor-mediated cancerous inhibitor of protein phosphatase 2A (CIP2A) degradation. MedComm (Beijing) 2024; 5:e758. [PMID: 39399646 PMCID: PMC11470999 DOI: 10.1002/mco2.758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/25/2024] [Accepted: 08/28/2024] [Indexed: 10/15/2024] Open
Abstract
Melanoma's high metastatic potential, especially to the brain, poses significant challenges to patient survival. The blood‒brain barrier (BBB) is a major obstacle to the effective treatment of melanoma brain metastases. We screened antipsychotic drugs capable of crossing the BBB and identified penfluridol (PF) as the most active candidate. PF reduced melanoma cell viability and induced apoptosis. In animal models, PF effectively inhibited melanoma growth and metastasis to the lung and brain. Using immunoprecipitation combined with high-resolution mass spectrometry, and other techniques such as drug affinity responsive target stability, we identified CIP2A as a direct binding protein of PF. CIP2A is highly expressed in melanoma and its metastases, and is linked to poor prognosis. PF can restore Protein Phosphatase 2A activity by promoting CIP2A degradation, thereby inhibiting several key oncogenic pathways, including AKT and c-Myc. Additionally, von Hippel‒Lindau (VHL) is the endogenous E3 ligase for CIP2A, and PF enhances the interaction between VHL and CIP2A, promoting the ubiquitin‒proteasome degradation of CIP2A, thereby inhibiting melanoma growth and metastasis. Overall, this study not only suggests PF's potential in treating melanoma and its brain metastases but also highlights CIP2A degradation as a therapeutic strategy for melanoma.
Collapse
Affiliation(s)
- Fuyan Xu
- Laboratory of Molecular OncologyFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Jiao Li
- Laboratory of Molecular OncologyFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Min Ai
- Laboratory of Molecular OncologyFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Tingting Zhang
- Laboratory of Molecular OncologyFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Yue Ming
- Laboratory of Molecular OncologyFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Cong Li
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Wenchen Pu
- Laboratory of Molecular OncologyFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Yang Yang
- Laboratory of Molecular OncologyFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Zhang Li
- Laboratory of Molecular OncologyFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Yucheng Qi
- Laboratory of Molecular OncologyFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Xiaomin Xu
- Laboratory of Molecular OncologyFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Qingxiang Sun
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Zhu Yuan
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Yong Xia
- Rehabilitation Medicine CenterState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Yong Peng
- Laboratory of Molecular OncologyFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
- Frontier Medical CenterTianfu Jincheng LaboratoryChengduChina
| |
Collapse
|
18
|
Zhang J, Wu Q, Xie Y, Li F, Wei H, Jiang Y, Qiao Y, Li Y, Sun Y, Huang H, Ge M, Zhao D, Dong Z, Liu K. Ribonucleotide reductase small subunit M2 promotes the proliferation of esophageal squamous cell carcinoma cells via HuR-mediated mRNA stabilization. Acta Pharm Sin B 2024; 14:4329-4344. [PMID: 39525580 PMCID: PMC11544187 DOI: 10.1016/j.apsb.2024.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/11/2024] [Accepted: 07/23/2024] [Indexed: 11/16/2024] Open
Abstract
Esophageal squamous cell carcinoma (ESCC), a malignancy of the digestive system, is highly prevalent and the primary cause of cancer-related deaths worldwide due to the lack of early diagnostic biomarkers and effective therapeutic targets. Dysregulated ribonucleotide reductase (RNR) expression has been confirmed to be causally linked to tumorigenesis. This study demonstrated that ribonucleotide reductase small subunit M2 (RRM2) is significantly upregulated in ESCC tissue and that its expression is negatively correlated with clinical outcomes. Mechanistically, HuR promotes RRM2 mRNA stabilization by binding to the adenine/uridine (AU)-rich elements (AREs) within the 3'UTR, resulting in persistent overexpression of RRM2. Furthermore, bifonazole is identified as an inhibitor of HuR via computational screening and molecular docking analysis. Bifonazole disrupts HuR-ARE interactions by competitively binding to HuR at F65, R97, I103, and R153 residues, resulting in reduced RRM2 expression. Furthermore, bifonazole exhibited antitumor effects on ESCC patient-derived xenograft (PDX) models by decreasing RRM2 expression and the dNTP pool. In summary, this study reveals the interaction network among HuR, RRM2, and bifonazole and demonstrated that bifonazole is a potential therapeutic compound for ESCC through inhibition of the HuR/RRM2 axis.
Collapse
Affiliation(s)
- Jing Zhang
- Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450000, China
| | - Qiong Wu
- Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450000, China
| | - Yifei Xie
- Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450000, China
- Tianjian Laboratory for Advanced Biomedical Sciences, Zhengzhou 450052, China
| | - Feng Li
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Huifang Wei
- Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450000, China
| | - Yanan Jiang
- Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450000, China
| | - Yan Qiao
- Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China
| | - Yinhua Li
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Yanan Sun
- Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450000, China
| | - Han Huang
- Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450000, China
| | - Mengmeng Ge
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450000, China
| | - Dengyun Zhao
- Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450000, China
| | - Zigang Dong
- Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450000, China
- Tianjian Laboratory for Advanced Biomedical Sciences, Zhengzhou 450052, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou 450000, China
- Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou 450000, China
| | - Kangdong Liu
- Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450000, China
- Tianjian Laboratory for Advanced Biomedical Sciences, Zhengzhou 450052, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou 450000, China
- Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou 450000, China
| |
Collapse
|
19
|
Zhang L, Wang Y, Zheng C, Zhou Z, Chen Z. Cellular thermal shift assay: an approach to identify and assess protein target engagement. Expert Rev Proteomics 2024; 21:387-400. [PMID: 39317941 DOI: 10.1080/14789450.2024.2406785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/04/2024] [Accepted: 09/10/2024] [Indexed: 09/26/2024]
Abstract
INTRODUCTION A comprehensive and global knowledge of protein target engagement is of vital importance for mechanistic studies and in drug development. Since its initial introduction, the cellular thermal shift assay (CETSA) has proven to be a reliable and flexible technique that can be widely applied to multiple contexts and has profound applications in facilitating the identification and assessment of protein target engagement. AREAS COVERED This review introduces the principle of CETSA, elaborates on western blot-based CETSA and MS-based thermal proteome profiling (TPP) as well as the major applications and prospects of these approaches. EXPERT OPINION CETSA primarily evaluates a given ligand binding to a particular target protein in cells and tissues with the protein thermal stabilities analyzed by western blot. When coupling mass spectrometry with CETSA, thermal proteome profiling allows simultaneous proteome-wide experiment that greatly increased the efficiency of target engagement evaluation, and serves as a promising strategy to identify protein targets and off-targets as well as protein-protein interactions to uncover the biological effects. The CETSA approaches have broad applications and potentials in drug development and clinical research.
Collapse
Affiliation(s)
- Liying Zhang
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Yuchuan Wang
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Chang Zheng
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Zihan Zhou
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Zhe Chen
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| |
Collapse
|
20
|
Tang Q, Wu S, Zhao B, Li Z, Zhou Q, Yu Y, Yang X, Wang R, Wang X, Wu W, Wang S. Reprogramming of glucose metabolism: The hallmark of malignant transformation and target for advanced diagnostics and treatments. Biomed Pharmacother 2024; 178:117257. [PMID: 39137648 DOI: 10.1016/j.biopha.2024.117257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/15/2024] Open
Abstract
Reprogramming of cancer metabolism has become increasingly concerned over the last decade, particularly the reprogramming of glucose metabolism, also known as the "Warburg effect". The reprogramming of glucose metabolism is considered a novel hallmark of human cancers. A growing number of studies have shown that reprogramming of glucose metabolism can regulate many biological processes of cancers, including carcinogenesis, progression, metastasis, and drug resistance. In this review, we summarize the major biological functions, clinical significance, potential targets and signaling pathways of glucose metabolic reprogramming in human cancers. Moreover, the applications of natural products and small molecule inhibitors targeting glucose metabolic reprogramming are analyzed, some clinical agents targeting glucose metabolic reprogramming and trial statuses are summarized, as well as the pros and cons of targeting glucose metabolic reprogramming for cancer therapy are analyzed. Overall, the reprogramming of glucose metabolism plays an important role in the prediction, prevention, diagnosis and treatment of human cancers. Glucose metabolic reprogramming-related targets have great potential to serve as biomarkers for improving individual outcomes and prognosis in cancer patients. The clinical innovations related to targeting the reprogramming of glucose metabolism will be a hotspot for cancer therapy research in the future. We suggest that more high-quality clinical trials with more abundant drug formulations and toxicology experiments would be beneficial for the development and clinical application of drugs targeting reprogramming of glucose metabolism.This review will provide the researchers with the broader perspective and comprehensive understanding about the important significance of glucose metabolic reprogramming in human cancers.
Collapse
Affiliation(s)
- Qing Tang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Guangdong Provincial Hospital of Chinese Medicine; State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, P. R. China; The Second Clinical Medical College, The Second Affiliated Hospital, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, P. R. China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, 510120, P. R. China; Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510120, P. R. China.
| | - Siqi Wu
- The First Clinical School of Guangzhou University of Chinese Medicine;Department of Oncology, the First Affiliated Hospital of Guangzhou University of Chinese Medicine,Guangzhou 510000, China; Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan 528400, China
| | - Baiming Zhao
- The Second Clinical Medical College, The Second Affiliated Hospital, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, P. R. China; Department of Traditional Chinese Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Zhanyang Li
- School of Biosciences and Biopharmaceutics, Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Qichun Zhou
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Guangdong Provincial Hospital of Chinese Medicine; State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, P. R. China; The Second Clinical Medical College, The Second Affiliated Hospital, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, P. R. China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, 510120, P. R. China; Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510120, P. R. China
| | - Yaya Yu
- The Second Clinical Medical College, The Second Affiliated Hospital, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, P. R. China
| | - Xiaobing Yang
- The Second Clinical Medical College, The Second Affiliated Hospital, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, P. R. China; Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510120, P. R. China
| | - Rui Wang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Guangdong Provincial Hospital of Chinese Medicine; State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, P. R. China; The Second Clinical Medical College, The Second Affiliated Hospital, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, P. R. China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, 510120, P. R. China; Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510120, P. R. China
| | - Xi Wang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Guangdong Provincial Hospital of Chinese Medicine; State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, P. R. China; The Second Clinical Medical College, The Second Affiliated Hospital, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, P. R. China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, 510120, P. R. China; Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510120, P. R. China
| | - Wanyin Wu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Guangdong Provincial Hospital of Chinese Medicine; State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, P. R. China; The Second Clinical Medical College, The Second Affiliated Hospital, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, P. R. China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, 510120, P. R. China; Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510120, P. R. China.
| | - Sumei Wang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Guangdong Provincial Hospital of Chinese Medicine; State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, P. R. China; The Second Clinical Medical College, The Second Affiliated Hospital, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, P. R. China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, 510120, P. R. China; Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510120, P. R. China.
| |
Collapse
|
21
|
Zeng X, Lin GX, Zeng X, Zheng J, Ren C, Luo Z, Xiao K, Sun N, Zhang L, Rui G, Chen X. Penfluridol regulates p62 / Keap1 / Nrf2 signaling pathway to induce ferroptosis in osteosarcoma cells. Biomed Pharmacother 2024; 177:117094. [PMID: 38996707 DOI: 10.1016/j.biopha.2024.117094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/24/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024] Open
Abstract
The cure rate for patients with osteosarcoma (OS) has stagnated over the past few decades. Penfluridol, a first-generation antipsychotic, has demonstrated to prevent lung and esophageal malignancies from proliferation and metastasis. However, the effect of penfluridol on OS and its underlying molecular mechanism remains unclear. This study revealed that penfluridol effectively inhibited cell proliferation and migration, and induced G2/M phase arrest in OS cells. In addition, penfluridol treatment was found to increased reactive oxygen species (ROS) levels in OS cells. Combined with the RNA-Seq results, the anti-OS effect of penfluridol was hypothesized to be attributed to the induction of ferroptosis. Western blot results showed that penfluridol promoted intracellular Fe2+ concentration, membrane lipid peroxidation, and decreased intracellular GSH level to induce ferroptosis. Further studies showed that p62/Keap1/Nrf2 signaling pathway was implicated in penfluridol-induced ferroptosis in OS cells. Overexpression of p62 effectively reversed penfluridol-induced ferroptosis. In vivo, penfluridol effectively inhibited proliferation and prolonged survival in xenograft tumor model. Therefore, penfluridol is a promising drug targeting OS in the future.
Collapse
Affiliation(s)
- Xiangchen Zeng
- Department of Orthopedic Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361001, China; School of Medicine, Xiamen University, Xiamen 361102, China
| | - Guang-Xun Lin
- Department of Orthopedic Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361001, China; School of Medicine, Xiamen University, Xiamen 361102, China
| | - Xianhui Zeng
- Department of Infectious Diseases, Hainan Women and Children's Medical Center, Hainan Medical University, Haikou 570206, China
| | - Jiyuan Zheng
- The First Affiliated Hospital of Hainan Medical University, Haikou 570102, China
| | - Chong Ren
- School of Medicine, Xiamen University, Xiamen 361102, China
| | - Zhong Luo
- School of Medicine, Xiamen University, Xiamen 361102, China
| | - Keyi Xiao
- Department of Orthopedic Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361001, China; School of Medicine, Xiamen University, Xiamen 361102, China
| | - Naikun Sun
- Department of Orthopedic Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361001, China; School of Medicine, Xiamen University, Xiamen 361102, China
| | - Long Zhang
- Department of Pain, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou 310014, China.
| | - Gang Rui
- Department of Orthopedic Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361001, China; School of Medicine, Xiamen University, Xiamen 361102, China.
| | - Xiaohui Chen
- Department of Orthopedic Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361001, China; School of Medicine, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
22
|
Li Q, Lin G, Zhang K, Liu X, Li Z, Bing X, Nie Z, Jin S, Guo J, Min X. Hypoxia exposure induces lactylation of Axin1 protein to promote glycolysis of esophageal carcinoma cells. Biochem Pharmacol 2024; 226:116415. [PMID: 38972426 DOI: 10.1016/j.bcp.2024.116415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
The hypoxic microenvironment in esophageal carcinoma is an important factor promoting the rapid progression of malignant tumor. This study was to investigate the lactylation of Axin1 on glycolysis in esophageal carcinoma cells under hypoxia exposure. Hypoxia treatment increases pan lysine lactylation (pan-kla) levels of both TE1 and EC109 cells. Meanwhile, ECAR, glucose consumption and lactate production were also upregulated in both TE1 and EC109 cells. The expression of embryonic stem cell transcription factors NANOG and SOX2 were enhanced in the hypoxia-treated cells. Axin1 overexpression partly reverses the induction effects of hypoxia treatment in TE1 and EC109 cells. Moreover, lactylation of Axin1 protein at K147 induced by hypoxia treatment promotes ubiquitination modification of Axin1 protein to promote glycolysis and cell stemness of TE1 and EC109 cells. Mutant Axin1 can inhibit ECAR, glucose uptake, lactate secretion, and cell stemness in TE1 and EC109 cells under normal or hypoxia conditions. Meanwhile, mutant Axin1 further enhanced the effects of 2-DG on inhibiting glycolysis and cell stemness. Overexpression of Axin1 also inhibited tumor growth in vivo, and was related to suppressing glycolysis. In conclusion, hypoxia treatment promoted the glycolysis and cell stemness of esophageal carcinoma cells, and increased the lactylation of Axin1 protein. Overexpression of Axin1 functioned as a glycolysis inhibitor, and suppressed the effects of hypoxia exposure in vitro and inhibited tumor growth in vivo. Mechanically, hypoxia induces the lactylation of Axin1 protein and promotes the ubiquitination of Axin1 to degrade the protein, thereby exercising its anti-glycolytic function.
Collapse
Affiliation(s)
- Qian Li
- Department of Thoracic Surgery, China Aerospace Science and Industry Corporation 731 Hospital, Beijing, China; Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Guihu Lin
- Department of Thoracic Surgery, China Aerospace Science and Industry Corporation 731 Hospital, Beijing, China
| | - Kaihua Zhang
- Department of Thoracic Surgery, China Aerospace Science and Industry Corporation 731 Hospital, Beijing, China
| | - Xinbo Liu
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhantao Li
- Department of Thoracic Surgery, China Aerospace Science and Industry Corporation 731 Hospital, Beijing, China
| | - Xiaohan Bing
- Department of Thoracic Surgery, China Aerospace Science and Industry Corporation 731 Hospital, Beijing, China
| | - Zhenkai Nie
- Department of Thoracic Surgery, China Aerospace Science and Industry Corporation 731 Hospital, Beijing, China
| | - Shan Jin
- Department of Thoracic Surgery, China Aerospace Science and Industry Corporation 731 Hospital, Beijing, China
| | - Jin Guo
- School of Medical Technology, Beijing Institute of Technology, Beijing, China.
| | - Xianjun Min
- Department of Thoracic Surgery, China Aerospace Science and Industry Corporation 731 Hospital, Beijing, China.
| |
Collapse
|
23
|
Li J, Li J, Ullah A, Shi X, Zhang X, Cui Z, Lyu Q, Kou G. Tangeretin Enhances Muscle Endurance and Aerobic Metabolism in Mice via Targeting AdipoR1 to Increase Oxidative Myofibers. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:16687-16699. [PMID: 38990695 DOI: 10.1021/acs.jafc.3c09386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Slow oxidative myofibers play an important role in improving muscle endurance performance and maintaining body energy homeostasis. However, the targets and means to regulate slow oxidative myofibers proportion remain unknown. Here, we show that tangeretin (TG), a natural polymethoxylated flavone, significantly activates slow oxidative myofibers-related gene expression and increases type I myofibers proportion, resulting in improved endurance performance and aerobic metabolism in mice. Proteomics, molecular dynamics, cellular thermal shift assay (CETSA) and drug affinity responsive target stability (DARTS) investigations revealed that TG can directly bind to adiponectin receptor 1 (AdipoR1). Using AdipoR1-knockdown C2C12 cells and muscle-specific AdipoR1-knockout mice, we found that the positive effect of TG on regulating slow oxidative myofiber related markers expression is mediated by AdipoR1 and its downstream AMPK/PGC-1α pathway. Together, our data uncover TG as a natural compound that regulates the identity of slow oxidative myofibers via targeting the AdipoR1 signaling pathway. These findings further unveil the new function of TG in increasing the proportion of slow oxidative myofibers and enhancing skeletal muscle performance.
Collapse
Affiliation(s)
- Jinjie Li
- Centre for Nutritional Ecology and Centre for Sport Nutrition and Health, Zhengzhou University, Zhengzhou 450001, China
| | - Jiangtao Li
- Centre for Nutritional Ecology and Centre for Sport Nutrition and Health, Zhengzhou University, Zhengzhou 450001, China
| | - Amin Ullah
- Department of Nutrition and Food Hygiene, School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaoyang Shi
- Centre for Nutritional Ecology and Centre for Sport Nutrition and Health, Zhengzhou University, Zhengzhou 450001, China
| | - Xinyuan Zhang
- Centre for Nutritional Ecology and Centre for Sport Nutrition and Health, Zhengzhou University, Zhengzhou 450001, China
| | - Zhenwei Cui
- Centre for Nutritional Ecology and Centre for Sport Nutrition and Health, Zhengzhou University, Zhengzhou 450001, China
| | - Quanjun Lyu
- Department of Nutrition and Food Hygiene, School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Guangning Kou
- Centre for Nutritional Ecology and Centre for Sport Nutrition and Health, Zhengzhou University, Zhengzhou 450001, China
- Department of Nutrition and Food Hygiene, School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
24
|
Wang G, Zou X, Chen Q, Nong W, Miao W, Luo H, Qu S. The relationship and clinical significance of lactylation modification in digestive system tumors. Cancer Cell Int 2024; 24:246. [PMID: 39010066 PMCID: PMC11251390 DOI: 10.1186/s12935-024-03429-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/02/2024] [Indexed: 07/17/2024] Open
Abstract
Lactylation, an emerging post-translational modification, plays a pivotal role in the initiation and progression of digestive system tumors. This study presents a comprehensive review of lactylation in digestive system tumors, underscoring its critical involvement in tumor development and progression. By focusing on metabolic reprogramming, modulation of the tumor microenvironment, and the molecular mechanisms regulating tumor progression, the potential of targeting lactylation as a therapeutic strategy is highlighted. The research reveals that lactylation participates in gene expression regulation and cell signaling by affecting the post-translational states of histones and non-histone proteins, thereby influencing metabolic pathways and immune evasion mechanisms in tumor cells. Furthermore, this study assesses the feasibility of lactylation as a therapeutic target, providing insights for clinical treatment of gastrointestinal cancers. Future research should concentrate on elucidating the mechanisms of lactylation, developing efficient lactylation inhibitors, and validating their therapeutic efficacy in clinical trials, which could transform current cancer treatment and immunotherapy approaches. In summary, this review emphasizes the crucial role of lactylation in tumorigenesis and progression through a detailed analysis of its molecular mechanisms and clinical significance.
Collapse
Affiliation(s)
- Gang Wang
- Institute of Oncology, Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China
| | - Xiaosu Zou
- Institute of Oncology, Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China
| | - Qicong Chen
- Institute of Oncology, Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China
| | - Wenqian Nong
- Institute of Oncology, Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China
| | - Weiwei Miao
- Institute of Oncology, Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China
| | - Honglin Luo
- Institute of Oncology, Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China.
| | - Shenhong Qu
- Institute of Oncology, Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China.
- Department of Otolaryngology & Head and Neck, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, China.
| |
Collapse
|
25
|
Kamal MM, Teeya ST, Rahman MM, Talukder MEK, Sarmin S, Wani TA, Hasan MM. Prediction and assessment of deleterious and disease causing nonsynonymous single nucleotide polymorphisms (nsSNPs) in human FOXP4 gene: An in - silico study. Heliyon 2024; 10:e32791. [PMID: 38994097 PMCID: PMC11237951 DOI: 10.1016/j.heliyon.2024.e32791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/10/2024] [Indexed: 07/13/2024] Open
Abstract
In humans, FOXP gene family is involved in embryonic development and cancer progression. The FOXP4 (Forkhead box protein P4) gene belongs to this FOXP gene family. FOXP4 gene plays a crucial role in oncogenesis. Single nucleotide polymorphisms are biological markers and common determinants of human diseases. Mutations can largely affect the function of the corresponding protein. Therefore, the molecular mechanism of nsSNPs in the FOXP4 gene needs to be elucidated. Initially, the SNPs of the FOXP4 gene were extracted from the dbSNP database and a total of 23124 SNPs was found, where 555 nonsynonymous, 20525 intronic, 1114 noncoding transcript, 334 synonymous were obtained and the rest were unspecified. Then, a series of bioinformatics tools (SIFT, PolyPhen2, SNAP2, PhD SNP, PANTHER, I-Mutant2.0, MUpro, GOR IV, ConSurf, NetSurfP 2.0, HOPE, DynaMut2, GeneMANIA, STRING and Schrodinger) were used to explore the effect of nsSNPs on FOXP4 protein function and structural stability. First, 555 nsSNPs were analyzed using SIFT, of which 57 were found as deleterious. Following, PolyPhen2, SNAP2, PhD SNP and PANTHER analyses, 10 nsSNPs (rs372762294, rs141899153, rs142575732, rs376938850, rs367607523, rs112517943, rs140387832, rs373949416, rs373949416 and rs376160648) were common and observed as deleterious, damaging and diseases associated. Following that, using I-Mutant2.0 and MUpro servers, 7 nsSNPs were found to be the most unstable. GOR IV predicted that these seven nsSNPs affect protein structure by altering the protein contents of alpha helixes, extended strands, and random coils. Following DynaMut2, 5 nsSNPs showed a decrease in the ΔΔG value compared with the wild-type and were found to be responsible for destabilizing the corresponding protein. GeneMANIA and STRING network revealed interaction of FOXP4 with other genes. Finally, molecular dynamics simulation analysis revealed consistent fluctuation in RMSD and RMSF values, Rg and hydrogen bonds in the mutant proteins compared with WT, which might alter the functional and structural stability of the corresponding protein. As a result, the aforementioned integrated comprehensive bioinformatic analyses provide insight into how various nsSNPs of the FOXP4 gene change the structural and functional properties of the corresponding protein, potentially proceeding with the pathophysiology of human diseases.
Collapse
Affiliation(s)
- Md Mostafa Kamal
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
- Laboratory of Computational Biology, Biological Solution Centre, Jashore, 7408, Bangladesh
| | - Shamiha Tabassum Teeya
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Md Mahfuzur Rahman
- Department of Genetic Engineering & Biotechnology, Bangabandhu Sheikh Mujibur Rahman Maritime University, Dhaka, 1216, Bangladesh
| | - Md Enamul Kabir Talukder
- Department of Genetic Engineering & Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
- Laboratory of Computational Biology, Biological Solution Centre, Jashore, 7408, Bangladesh
| | - Sonia Sarmin
- BIRTAN-Bangladesh Institute of Research and Training on Applied Nutrition, Jhenaidah, 7300, Bangladesh
| | - Tanveer A Wani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Md Mahmudul Hasan
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| |
Collapse
|
26
|
Wang Z, Sun X, Li Z, Yu H, Li W, Xu Y. Metabolic reprogramming in esophageal squamous cell carcinoma. Front Pharmacol 2024; 15:1423629. [PMID: 38989149 PMCID: PMC11233760 DOI: 10.3389/fphar.2024.1423629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/06/2024] [Indexed: 07/12/2024] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a malignancy with high incidence in China. Due to the lack of effective molecular targets, the prognosis of ESCC patients is poor. It is urgent to explore the pathogenesis of ESCC to identify promising therapeutic targets. Metabolic reprogramming is an emerging hallmark of ESCC, providing a novel perspective for revealing the biological features of ESCC. In the hypoxic and nutrient-limited tumor microenvironment, ESCC cells have to reprogram their metabolic phenotypes to fulfill the demands of bioenergetics, biosynthesis and redox homostasis of ESCC cells. In this review, we summarized the metabolic reprogramming of ESCC cells that involves glucose metabolism, lipid metabolism, and amino acid metabolism and explore how reprogrammed metabolism provokes novel opportunities for biomarkers and potential therapeutic targets of ESCC.
Collapse
Affiliation(s)
- Ziyi Wang
- Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, Shenyang, Liaoning, China
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Thoracic Surgery, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiangyu Sun
- Department of Breast Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zehui Li
- Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Huidong Yu
- Department of Thoracic Surgery, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Wenya Li
- Department of Thoracic Surgery, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yan Xu
- Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
27
|
Zhao YX, Zhao HP, Zhao MY, Yu Y, Qi X, Wang JH, Lv J. Latest insights into the global epidemiological features, screening, early diagnosis and prognosis prediction of esophageal squamous cell carcinoma. World J Gastroenterol 2024; 30:2638-2656. [PMID: 38855150 PMCID: PMC11154680 DOI: 10.3748/wjg.v30.i20.2638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/26/2024] [Accepted: 05/13/2024] [Indexed: 05/27/2024] Open
Abstract
As a highly invasive carcinoma, esophageal cancer (EC) was the eighth most prevalent malignancy and the sixth leading cause of cancer-related death worldwide in 2020. Esophageal squamous cell carcinoma (ESCC) is the major histological subtype of EC, and its incidence and mortality rates are decreasing globally. Due to the lack of specific early symptoms, ESCC patients are usually diagnosed with advanced-stage disease with a poor prognosis, and the incidence and mortality rates are still high in many countries, especially in China. Therefore, enormous challenges still exist in the management of ESCC, and novel strategies are urgently needed to further decrease the incidence and mortality rates of ESCC. Although the key molecular mechanisms underlying ESCC pathogenesis have not been fully elucidated, certain promising biomarkers are being investigated to facilitate clinical decision-making. With the advent and advancement of high-throughput technologies, such as genomics, proteomics and metabolomics, valuable biomarkers with high sensitivity, specificity and stability could be identified for ESCC. Herein, we aimed to determine the epidemiological features of ESCC in different regions of the world, especially in China, and focused on novel molecular biomarkers associated with ESCC screening, early diagnosis and prognosis prediction.
Collapse
Affiliation(s)
- Yi-Xin Zhao
- Department of Clinical Laboratory, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, Shaanxi Province, China
| | - He-Ping Zhao
- Department of Clinical Laboratory, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, Shaanxi Province, China
| | - Meng-Yao Zhao
- Department of Clinical Laboratory, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, Shaanxi Province, China
| | - Yan Yu
- Department of Clinical Laboratory, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, Shaanxi Province, China
| | - Xi Qi
- Department of Clinical Laboratory, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, Shaanxi Province, China
| | - Ji-Han Wang
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, Shaanxi Province, China
| | - Jing Lv
- Department of Clinical Laboratory, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, Shaanxi Province, China
| |
Collapse
|
28
|
Teng Y, Xu J, Wang Y, Wen N, Ye H, Li B. Combining a glycolysis‑related prognostic model based on scRNA‑Seq with experimental verification identifies ZFP41 as a potential prognostic biomarker for HCC. Mol Med Rep 2024; 29:78. [PMID: 38516783 PMCID: PMC10975023 DOI: 10.3892/mmr.2024.13203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/27/2024] [Indexed: 03/23/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a common malignancy with a poor prognosis, and its heterogeneity affects the response to clinical treatments. Glycolysis is highly associated with HCC therapy and prognosis. The present study aimed to identify a novel biomarker for HCC by exploring the heterogeneity of glycolysis in HCC. The intersection of both marker genes of glycolysis‑related cell clusters from single‑cell RNA sequencing analysis and mRNA data of liver HCC from The Cancer Genome Atlas were used to construct a prognostic model through Cox proportional hazard regression and the least absolute shrinkage and selection operator Cox regression. Data from the International Cancer Genome Consortium were used to validate the results of the analysis. Immune status analysis was then conducted. A significant gene in the prognostic model was identified as a potential biomarker and was verified through in vitro experiments. The results revealed that the glycolysis‑related prognostic model divided patients with HCC into high‑ and low‑risk groups. A nomogram combining the model and clinical features exhibited accurate predictive ability, with an area under the curve of 0.763 at 3 years. The high‑risk group exhibited a higher expression of checkpoint genes and lower tumor immune dysfunction and exclusion scores, suggesting that this group may be more likely to benefit from immunotherapy. The tumor tissues had a higher zinc finger protein (ZFP)41 mRNA and protein expression compared with the adjacent tissues. In vitro analyses revealed that ZFP41 played a crucial role in cell viability, proliferation, migration, invasion and glycolysis. On the whole, the present study demonstrates that the glycolysis‑related prognostic gene, ZFP41, is a potential prognostic biomarker and therapeutic target, and may play a crucial role in glycolysis and malignancy in HCC.
Collapse
Affiliation(s)
- Yu Teng
- West China School of Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Jianrong Xu
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yaoqun Wang
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
- Division of Biliary Tract Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ningyuan Wen
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
- Division of Biliary Tract Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Hui Ye
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
- Division of Biliary Tract Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Bei Li
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
- Division of Biliary Tract Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
29
|
Du R, Xiao N, Han L, Guo K, Li K, Chen Z, Zhang H, Zhou Z, Huang Y, Zhao X, Bian H. Dexrazoxane inhibits the growth of esophageal squamous cell carcinoma by attenuating SDCBP/MDA-9/syntenin-mediated EGFR-PI3K-Akt pathway activation. Sci Rep 2024; 14:9167. [PMID: 38649770 PMCID: PMC11035576 DOI: 10.1038/s41598-024-59665-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/12/2024] [Indexed: 04/25/2024] Open
Abstract
Syndecan-binding protein (SDCBP) was reported to stimulate the advancement of esophageal squamous cell carcinoma (ESCC) and could potentially be a target for ESCC treatment. There is a growing corpus of research on the anti-tumor effects of iron chelators; however, very few studies have addressed the involvement of dexrazoxane in cancer. In this study, structure-based virtual screening was employed to select drugs targeting SDCBP from the Food and Drug Administration (FDA)-approved drug databases. The sepharose 4B beads pull-down assay revealed that dexrazoxane targeted SDCBP by interacting with its PDZ1 domain. Additionally, dexrazoxane inhibited ESCC cell proliferation and anchorage-independent colony formation via SDCBP. ESCC cell apoptosis and G2 phase arrest were induced as measured by the flow cytometry assay. Subsequent research revealed that dexrazoxane attenuated the binding ability between SDCBP and EGFR in an immunoprecipitation assay. Furthermore, dexrazoxane impaired EGFR membrane localization and inactivated the EGFR/PI3K/Akt pathway. In vivo, xenograft mouse experiments indicated that dexrazoxane suppressed ESCC tumor growth. These data indicate that dexrazoxane might be established as a potential anti-cancer agent in ESCC by targeting SDCBP.
Collapse
Affiliation(s)
- Ruijuan Du
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, 473004, Henan, People's Republic of China.
- Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, No. 80, Changjiang Road, Nanyang, 473004, Henan, People's Republic of China.
| | - Nan Xiao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
| | - Li Han
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, 473004, Henan, People's Republic of China
- Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, No. 80, Changjiang Road, Nanyang, 473004, Henan, People's Republic of China
| | - KeLei Guo
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, 473004, Henan, People's Republic of China
- Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, No. 80, Changjiang Road, Nanyang, 473004, Henan, People's Republic of China
| | - Kai Li
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, 473004, Henan, People's Republic of China
- Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, No. 80, Changjiang Road, Nanyang, 473004, Henan, People's Republic of China
| | - Zhiguo Chen
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, 473004, Henan, People's Republic of China
| | - Hui Zhang
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, 473004, Henan, People's Republic of China
- Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, No. 80, Changjiang Road, Nanyang, 473004, Henan, People's Republic of China
| | - Zijun Zhou
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, 473004, Henan, People's Republic of China
| | - Yunlong Huang
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, 473004, Henan, People's Republic of China
| | - Xulin Zhao
- Oncology Department, Nanyang First People's Hospital, Nan Yang, 473004, Henan, People's Republic of China
| | - Hua Bian
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, 473004, Henan, People's Republic of China.
- Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, No. 80, Changjiang Road, Nanyang, 473004, Henan, People's Republic of China.
| |
Collapse
|
30
|
Xu M, Zhao Y, Gong M, He Z, Wang W, Li Y, Zhai W, Yu Z. Dehydroevodiamine ameliorates neurological dysfunction after traumatic brain injury in mice via regulating the SIRT1/FOXO3a/Bim pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 125:155321. [PMID: 38237514 DOI: 10.1016/j.phymed.2023.155321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/07/2023] [Accepted: 12/25/2023] [Indexed: 02/13/2024]
Abstract
BACKGROUND Traumatic Brain Injury (TBI) poses a considerable public health challenge, resulting in mortality, disability, and economic strain. Dehydroevodiamine (DEDM) is a natural compound derived from a traditional Chinese herbal medicine. Prior studies have substantiated the neuroprotective attributes of this compound in the context of TBI. Nevertheless, a comprehensive comprehension of the exact mechanisms responsible for its neuroprotective effects remains elusive. It is imperative to elucidate the precise intrinsic mechanisms underlying the neuroprotective actions of DEDM. PURPOSE The aim of this investigation was to elucidate the mechanism underlying DEDM treatment in TBI utilizing both in vivo and in vitro models. Specifically, our focus was on comprehending the impact of DEDM on the Sirtuin1 (SIRT1) / Forkhead box O3 (FOXO3a) / Bcl-2-like protein 11 (Bim) pathway, a pivotal player in TBI-induced cell death attributed to oxidative stress. STUDY DESIGN AND METHODS We established a TBI mouse model via the weight drop method. Following continuous intraperitoneal administration, we assessed the neurological dysfunction using the Modified Neurological Severity Score (mNSS) and behavioral assay, followed by sample collection. Secondary brain damage in mice was evaluated through Nissl staining, brain water content measurement, Evans blue detection, and Western blot assays. We scrutinized the expression levels of oxidative stress-related indicators and key proteins for apoptosis. The intricate mechanism of DEDM in TBI was further explored through immunofluorescence, Co-immunoprecipitation (Co-IP) assays, real-time quantitative PCR (RT-qPCR), dual-luciferase assays and western blotting. Additionally, we further investigated the specific therapeutic mechanism of DEDM in an oxidative stress cell model. RESULTS The results indicated that DEDM effectively ameliorated oxidative stress and apoptosis post-TBI, mitigating neurological dysfunction and brain injury in mice. DEDM facilitated the deacetylation of FOXO3a by up-regulating the expression of the deacetylase SIRT1, consequently suppressing Bim expression. This mechanism contributed to the alleviation of neurological injury and symptom improvement in TBI-afflicted mice. Remarkably, SIRT1 emerged as a central mediator in the overall treatment mechanism. CONCLUSIONS DEDM exerted significant neuroprotective effects on TBI mice by modulating the SIRT1/FOXO3a/Bim pathway. Our innovative research provides a basis for further exploration of the clinical therapeutic potential of DEDM in the context of TBI.
Collapse
Affiliation(s)
- Min Xu
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| | - Yalin Zhao
- School of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine in Nanjing University of Chinese Medicine, No. 138, Xianlin Road, Qixia District, Nanjing City, Jiangsu 210023, China
| | - Mingjie Gong
- Department of Neurosurgery, Changshu No.2 People's Hospital, The Affiliated Changshu Hospital of Nantong University, Changshu 215500, Jiangsu Province, China
| | - Ziyang He
- Department of Neurosurgery, Kunshan Hospital of Traditional Chinese Medicine, Kunshan Affiliated Hospital of Nanjing University of Chinese Medicine, Kunshan 215300, Jiangsu Province, China
| | - Wenhua Wang
- Department of Neurosurgery, Kunshan Hospital of Traditional Chinese Medicine, Kunshan Affiliated Hospital of Nanjing University of Chinese Medicine, Kunshan 215300, Jiangsu Province, China
| | - Yunjuan Li
- School of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine in Nanjing University of Chinese Medicine, No. 138, Xianlin Road, Qixia District, Nanjing City, Jiangsu 210023, China
| | - Weiwei Zhai
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| | - Zhengquan Yu
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China.
| |
Collapse
|
31
|
Jiang X, Yang L, Chen G, Feng X, Liu Y, Gao Q, Mai M, Chen CYC, Ye S, Yang Z. Discovery of Kinetin in inhibiting colorectal cancer progression via enhancing PSMB1-mediated RAB34 degradation. Cancer Lett 2024; 584:216600. [PMID: 38159835 DOI: 10.1016/j.canlet.2023.216600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/29/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024]
Abstract
Colorectal cancer (CRC) is one of the most prevalent malignancies worldwide. Understanding the underlying mechanism driving CRC progression and identifying potential therapeutic drug targets are of utmost urgency. We previously utilized LC-MS-based proteomic profiling to identify proteins associated with postoperative progression in stage II/III CRC. Here, we revealed that proteasome subunit beta type-1 (PSMB1) is an independent predictor for postoperative progression in stage II/III CRC. Mechanistically, PSMB1 binds directly to onco-protein RAB34 and promotes its proteasome-dependent degradation, potentially leading to the inactivation of the MEK/ERK signaling pathway and inhibition of CRC progression. To further identify potential anticancer drugs, we screened a library of 2509 FDA-approved drugs using computer-aided drug design (CADD) and identified Kinetin as a potentiating agent for PSMB1. Functional assays confirmed that Kinetin enhanced the interaction between PSMB1 and RAB34, hence facilitated the degradation of RAB34 protein and decreased the MEK/ERK phosphorylation. Kinetin suppresses CRC progression in patient-derived xenograft (PDX) and liver metastasis models. Conclusively, our study identifies PSMB1 as a potential biomarker and therapeutic target for CRC, and Kinetin as an anticancer drug by enhancing proteasome-dependent onco-protein degradation.
Collapse
Affiliation(s)
- Xuefei Jiang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510655, China
| | - Lanlan Yang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510655, China
| | - Guanxing Chen
- Artificial Intelligence Medical Research Center, School of Intelligent Systems Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 510275, China
| | - Xingzhi Feng
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510655, China; Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China
| | - Yiting Liu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510655, China; Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China
| | - Qianling Gao
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China
| | - Mingru Mai
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China
| | - Calvin Yu-Chian Chen
- Department of AI for Science, School of Electronic and Computer Engineering, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, 518055, China
| | - Shubiao Ye
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510655, China; Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China
| | - Zihuan Yang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510655, China; Department of Clinical Laboratory, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510655, China.
| |
Collapse
|
32
|
Chen X, Niu X, Li L, Chen K, Song D, Chen B, Yang S, Wu Z. Design, Synthesis, and Target Identification of Novel Phenylalanine Derivatives by Drug Affinity Responsive Target Stability (DARTS) in Xanthomonas oryzae pv Oryzae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3436-3444. [PMID: 38320759 DOI: 10.1021/acs.jafc.3c09267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
The increasing resistance displayed by plant phytopathogenic bacteria to conventional pesticides has heightened the urgency for the exploration of novel antibacterial agents possessing distinct modes of action (MOAs). In this study, a series of novel phenylalanine derivatives with the unique structure of acylhydrazone dithioether have been designed and synthesized. Bioassay results demonstrated that most target compounds exhibited excellent in vitro antibacterial activity against Xanthomonas oryzae pv oryzae (Xoo) and Xanthomonas axonopodis pv citri (Xac). Among them, the EC50 values of L3, L4, L6, L21, and L22 against Xoo were 7.4, 9.3, 6.7, 8.9, and 5.1 μg/mL, respectively, superior to that of bismerthiazol (BT) and thiodiazole copper (TC) (41.5 and >100 μg/mL); the EC50 values of L3, L4, L5, L6, L7, L8, L20, L21, and L22 against Xac were 5.6, 2.5, 6.2, 4.1, 4.2, 6.4, 6.3, 3.6, and 5.2 μg/mL, respectively, superior to that of BT and TC (43.3 and >100 μg/mL). An unmodified drug affinity responsive target stability (DARTS) technology was used to investigate the antibacterial MOAs of active compound L22, and the 50S ribosomal protein L2 (RL2) as an unprecedented target protein in Xoo cells was first discovered. The target protein RL2 was then expressed and purified. Furthermore, the in vitro interactions by microscale thermophoresis (Kd = 0.050 μM) and fluorescence titration (Ka = 1.4 × 105 M-1) experiments also demonstrated a strong binding force between compound L22 and RL2. Overall, these results not only facilitate the development of novel antibacterial agents but also establish a reliable method for exploring the targets of bactericides.
Collapse
Affiliation(s)
- Xiaocui Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Xue Niu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Longju Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Kuai Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Dandan Song
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Biao Chen
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Song Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Zhibing Wu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| |
Collapse
|
33
|
Pan M, Luo M, Liu L, Chen Y, Cheng Z, Wang K, Huang L, Tang N, Qiu J, Huang A, Xia J. EGR1 suppresses HCC growth and aerobic glycolysis by transcriptionally downregulating PFKL. J Exp Clin Cancer Res 2024; 43:35. [PMID: 38287371 PMCID: PMC10823730 DOI: 10.1186/s13046-024-02957-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/14/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Hepatocellular Carcinoma (HCC) is a matter of great global public health importance; however, its current therapeutic effectiveness is deemed inadequate, and the range of therapeutic targets is limited. The aim of this study was to identify early growth response 1 (EGR1) as a transcription factor target in HCC and to explore its role and assess the potential of gene therapy utilizing EGR1 for the management of HCC. METHODS In this study, both in vitro and in vivo assays were employed to examine the impact of EGR1 on the growth of HCC. The mouse HCC model and human organoid assay were utilized to assess the potential of EGR1 as a gene therapy for HCC. Additionally, the molecular mechanism underlying the regulation of gene expression and the suppression of HCC growth by EGR1 was investigated. RESULTS The results of our investigation revealed a notable decrease in the expression of EGR1 in HCC. The decrease in EGR1 expression promoted the multiplication of HCC cells and the growth of xenografted tumors. On the other hand, the excessive expression of EGR1 hindered the proliferation of HCC cells and repressed the development of xenografted tumors. Furthermore, the efficacy of EGR1 gene therapy was validated using in vivo mouse HCC models and in vitro human hepatoma organoid models, thereby providing additional substantiation for the anti-cancer role of EGR1 in HCC. The mechanistic analysis demonstrated that EGR1 interacted with the promoter region of phosphofructokinase-1, liver type (PFKL), leading to the repression of PFKL gene expression and consequent inhibition of PFKL-mediated aerobic glycolysis. Moreover, the sensitivity of HCC cells and xenografted tumors to sorafenib was found to be increased by EGR1. CONCLUSION Our findings suggest that EGR1 possesses therapeutic potential as a tumor suppressor gene in HCC, and that EGR1 gene therapy may offer benefits for HCC patients.
Collapse
Affiliation(s)
- Mingang Pan
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University, Chongqing, 400016, China
| | - Muyu Luo
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University, Chongqing, 400016, China
| | - Lele Liu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University, Chongqing, 400016, China
| | - Yunmeng Chen
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University, Chongqing, 400016, China
| | - Ziyi Cheng
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University, Chongqing, 400016, China
| | - Kai Wang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University, Chongqing, 400016, China
| | - Luyi Huang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University, Chongqing, 400016, China
| | - Ni Tang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University, Chongqing, 400016, China
| | - Jianguo Qiu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China.
| | - Ailong Huang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University, Chongqing, 400016, China.
| | - Jie Xia
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
34
|
Yu B, Luo J, Yang Y, Zhen K, Shen B. Novel molecular insights into pyroptosis in triple-negative breast cancer prognosis and immunotherapy. J Gene Med 2024; 26:e3645. [PMID: 38041540 DOI: 10.1002/jgm.3645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/31/2023] [Accepted: 11/13/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND Patients with triple-negative breast cancer (TNBC) often have a poor prognostic outcome. Current treatment strategies cannot benefit all TNBC patients. Previous findings suggested pyroptosis as a novel target for suppressing cancer development, although the relationship between TNBC and pyroptosis-related genes (PRGs) was still unclear. METHODS Gene expression data and clinical follow-up of TNBC patients were collected from the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) and Gene Expression Omnibus (GEO). PRGs were screened using weighted gene co-expression network analysis. Cox regression analysis and the least absolute shrinkage and selection operator (i.e. LASSO) technique were applied to construct a pyroptosis-related prognostic risk score (PPRS) model, which was further combined with the clinicopathological characteristics of TNBC patients to develop a survival decision tree and a nomogram. The model was used to calculate the PPRS, and then the overall survival, immune infiltration, immunotherapy response and drug sensitivity of TNBC patients were analyzed based on the PPRS. RESULTS The PPRS model was closely related to clinicopathological features and can independently and accurately predict the prognosis of TNBC. According to normalized PPRS, patients in different cohorts were divided into two groups. Compared with the high-PPRS group, the low-PPRS group had significantly higher ESTIMATE (i.e. Estimation of STromal and Immune cells in MAlignantTumours using Expression data) score, immune score and stromal score, and it also had overexpressed immune checkpoints and significantly reduced Tumor Immune Dysfunction and Exclusion (TIDE) score, as well as higher sensitivity to paclitaxel, veliparib, olaparib and talazoparib. A decision tree and nomogram based on PPRS and clinical characteristics can improve the prognosis stratification and survival prediction for TNBC patients. CONCLUSIONS A PPRS model was developed to predict TNBC patients' immune characteristics and response to immunotherapy, chemotherapy and targeted therapy, as well as their survival outcomes.
Collapse
Affiliation(s)
- Bin Yu
- Linping Campus, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Junjie Luo
- Linping Campus, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yifei Yang
- Linping Campus, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ke Zhen
- Linping Campus, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Binjie Shen
- Linping Campus, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
35
|
Hashemi M, Razzazan M, Bagheri M, Asadi S, Jamali B, Khalafi M, Azimi A, Rad S, Behroozaghdam M, Nabavi N, Rashidi M, Dehkhoda F, Taheriazam A, Entezari M. Versatile function of AMPK signaling in osteosarcoma: An old player with new emerging carcinogenic functions. Pathol Res Pract 2023; 251:154849. [PMID: 37837858 DOI: 10.1016/j.prp.2023.154849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/01/2023] [Accepted: 10/02/2023] [Indexed: 10/16/2023]
Abstract
AMP-activated protein kinase (AMPK) signaling has a versatile role in Osteosarcoma (OS), an aggressive bone malignancy with a poor prognosis, particularly in cases that have metastasized or recurred. This review explores the regulatory mechanisms, functional roles, and therapeutic applications of AMPK signaling in OS. It focuses on the molecular activation of AMPK and its interactions with cellular processes like proliferation, apoptosis, and metabolism. The uncertain role of AMPK in cancer is also discussed, highlighting its potential as both a tumor suppressor and a contributor to carcinogenesis. The therapeutic potential of targeting AMPK signaling in OS treatment is examined, including direct and indirect activators like metformin, A-769662, resveratrol, and salicylate. Further research is needed to determine dosing, toxicities, and molecular mechanisms responsible for the anti-osteosarcoma effects of these compounds. This review underscores the complex involvement of AMPK signaling in OS and emphasizes the need for a comprehensive understanding of its molecular mechanisms. By elucidating the role of AMPK in OS, the aim is to pave the way for innovative therapeutic approaches that target this pathway, ultimately improving the prognosis and quality of life for OS patients.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrnaz Razzazan
- Medical Student, Student Research Committee, Golestan University of Medical Sciences, Gorgan, Iran
| | - Maryam Bagheri
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saba Asadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Behdokht Jamali
- Department of Microbiology and Genetics, Kherad Institute of Higher Education, Bushehr, lran
| | - Maryam Khalafi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics,Faculty of Medicine, Islamic Azad University, Kish International Branch, Kish, Iran
| | - Abolfazl Azimi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics,Faculty of Medicine, Islamic Azad University, Kish International Branch, Kish, Iran
| | - Sepideh Rad
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics,Faculty of Medicine, Islamic Azad University, Kish International Branch, Kish, Iran
| | - Mitra Behroozaghdam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H3Z6, Canada
| | - Mohsen Rashidi
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran; Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Farshid Dehkhoda
- Department of Orthopedics, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
36
|
Alkhathami AG, Sahib AS, Al Fayi MS, Fadhil AA, Jawad MA, Shafik SA, Sultan SJ, Almulla AF, Shen M. Glycolysis in human cancers: Emphasis circRNA/glycolysis axis and nanoparticles in glycolysis regulation in cancer therapy. ENVIRONMENTAL RESEARCH 2023; 234:116007. [PMID: 37119844 DOI: 10.1016/j.envres.2023.116007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 06/19/2023]
Abstract
The metabolism of cancer has been an interesting hallmark and metabolic reprogramming, especially the change from oxidative phosphorylation in mitochondria to glucose metabolism known as glycolysis occurs in cancer. The molecular profile of glycolysis, related molecular pathways and enzymes involved in this mechanism such as hexokinase have been fully understood. The glycolysis inhibition can significantly decrease tumorigenesis. On the other hand, circRNAs are new emerging non-coding RNA (ncRNA) molecules with potential biological functions and aberrant expression in cancer cells which have received high attention in recent years. CircRNAs have a unique covalently closed loop structure which makes them highly stable and reliable biomarkers in cancer. CircRNAs are regulators of molecular mechanisms including glycolysis. The enzymes involved in the glycolysis mechanism such as hexokinase are regulated by circRNAs to modulate tumor progression. Induction of glycolysis by circRNAs can significantly increase proliferation rate of cancer cells given access to energy and enhance metastasis. CircRNAs regulating glycolysis can influence drug resistance in cancers because of theirimpact on malignancy of tumor cells upon glycolysis induction. TRIM44, CDCA3, SKA2 and ROCK1 are among the downstream targets of circRNAs in regulating glycolysis in cancer. Additionally, microRNAs are key regulators of glycolysis mechanism in cancer cells and can affect related molecular pathways and enzymes. CircRNAs sponge miRNAs to regulate glycolysis as a main upstream mediator. Moreover, nanoparticles have been emerged as new tools in tumorigenesis suppression and in addition to drug and gene delivery, then mediate cancer immunotherapy and can be used for vaccine development. The nanoparticles can delivery circRNAs in cancer therapy and they are promising candidates in regulation of glycolysis, its suppression and inhibition of related pathways such as HIF-1α. The stimuli-responsive nanoparticles and ligand-functionalized ones have been developed for selective targeting of glycolysis and cancer cells, and mediating carcinogenesis inhibition.
Collapse
Affiliation(s)
- Ali G Alkhathami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.
| | - Ameer S Sahib
- Department of Pharmacy, Al- Mustaqbal University College, 51001 Hilla, Iraq
| | - Majed Saad Al Fayi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | | | - Mohammed Abed Jawad
- Department of Medical Laboratories Technology, Al-Nisour University College, Iraq
| | - Sahar Ahmad Shafik
- Professor of Community Health Nursing, Faculty of Nursing, Fayum University, Egypt; College of Nursing, National University of Science and Technology, Iraq
| | | | - Abbas F Almulla
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Min Shen
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, China.
| |
Collapse
|
37
|
Zheng C, Yu X, Xu T, Liu Z, Jiang Z, Xu J, Yang J, Zhang G, He Y, Yang H, Shi X, Li Z, Liu J, Xu WW. KCTD4 interacts with CLIC1 to disrupt calcium homeostasis and promote metastasis in esophageal cancer. Acta Pharm Sin B 2023; 13:4217-4233. [PMID: 37799381 PMCID: PMC10547965 DOI: 10.1016/j.apsb.2023.07.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/12/2023] [Accepted: 07/10/2023] [Indexed: 10/07/2023] Open
Abstract
Increasing evidences suggest the important role of calcium homeostasis in hallmarks of cancer, but its function and regulatory network in metastasis remain unclear. A comprehensive investigation of key regulators in cancer metastasis is urgently needed. Transcriptome sequencing (RNA-seq) of primary esophageal squamous cell carcinoma (ESCC) and matched metastatic tissues and a series of gain/loss-of-function experiments identified potassium channel tetramerization domain containing 4 (KCTD4) as a driver of cancer metastasis. KCTD4 expression was found upregulated in metastatic ESCC. High KCTD4 expression is associated with poor prognosis in patients with ESCC and contributes to cancer metastasis in vitro and in vivo. Mechanistically, KCTD4 binds to CLIC1 and disrupts its dimerization, thus increasing intracellular Ca2+ level to enhance NFATc1-dependent fibronectin transcription. KCTD4-induced fibronectin secretion activates fibroblasts in a paracrine manner, which in turn promotes cancer cell invasion via MMP24 signaling as positive feedback. Furthermore, a lead compound K279-0738 significantly suppresses cancer metastasis by targeting the KCTD4‒CLIC1 interaction, providing a potential therapeutic strategy. Taken together, our study not only uncovers KCTD4 as a regulator of calcium homeostasis, but also reveals KCTD4/CLIC1-Ca2+-NFATc1-fibronectin signaling as a novel mechanism of cancer metastasis. These findings validate KCTD4 as a potential prognostic biomarker and therapeutic target for ESCC.
Collapse
Affiliation(s)
- Cancan Zheng
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510230, China
| | - Xiaomei Yu
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510230, China
| | - Taoyang Xu
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510230, China
| | - Zhichao Liu
- Department of Thoracic Surgery, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Zhili Jiang
- Department of Radiation Oncology, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510230, China
| | - Jiaojiao Xu
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510230, China
| | - Jing Yang
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510230, China
| | - Guogeng Zhang
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510230, China
| | - Yan He
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510230, China
| | - Han Yang
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xingyuan Shi
- Department of Radiation Oncology, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510230, China
| | - Zhigang Li
- Department of Thoracic Surgery, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jinbao Liu
- Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, and School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511495, China
| | - Wen Wen Xu
- Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, and School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511495, China
| |
Collapse
|
38
|
Xi Y, Shen Y, Chen L, Tan L, Shen W, Niu X. Exosome-mediated metabolic reprogramming: Implications in esophageal carcinoma progression and tumor microenvironment remodeling. Cytokine Growth Factor Rev 2023; 73:78-92. [PMID: 37696716 DOI: 10.1016/j.cytogfr.2023.08.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 09/13/2023]
Abstract
Esophageal carcinoma is among the most fatal malignancies with increasing incidence globally. Tumor onset and progression can be driven by metabolic reprogramming, especially during esophageal carcinoma development. Exosomes, a subset of extracellular vesicles, display an average size of ∼100 nanometers, containing multifarious components (nucleic acids, proteins, lipids, etc.). An increasing number of studies have shown that exosomes are capable of transferring molecules with biological functions into recipient cells, which play crucial roles in esophageal carcinoma progression and tumor microenvironment that is a highly heterogeneous ecosystem through rewriting the metabolic processes in tumor cells and environmental stromal cells. The review introduces the reprogramming of glucose, lipid, amino acid, mitochondrial metabolism in esophageal carcinoma, and summarize current pharmaceutical agents targeting such aberrant metabolism rewiring. We also comprehensively overview the biogenesis and release of exosomes, and recent advances of exosomal cargoes and functions in esophageal carcinoma and their promising clinical application. Moreover, we discuss how exosomes trigger tumor growth, metastasis, drug resistance, and immunosuppression as well as tumor microenvironment remodeling through focusing on their capacity to transfer materials between cells or between cells and tissues and modulate metabolic reprogramming, thus providing a theoretical reference for the design potential pharmaceutical agents targeting these mechanisms. Altogether, our review attempts to fully understand the significance of exosome-based metabolic rewriting in esophageal carcinoma progression and remodeling of the tumor microenvironment, bringing novel insights into the prevention and treatment of esophageal carcinoma in the future.
Collapse
Affiliation(s)
- Yong Xi
- Department of Thoracic Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo 315040, Zhejiang, China; Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Yaxing Shen
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Lijie Chen
- School of Medicine, Xiamen University, Xiamen 361102, Fujian, China; China Medical University, Shenyang 110122, Liaoning, China
| | - Lijie Tan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Weiyu Shen
- Department of Thoracic Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo 315040, Zhejiang, China.
| | - Xing Niu
- China Medical University, Shenyang 110122, Liaoning, China.
| |
Collapse
|
39
|
Prokakis E, Jansari S, Boshnakovska A, Wiese M, Kusch K, Kramm C, Dullin C, Rehling P, Glatzel M, Pantel K, Wikman H, Johnsen SA, Gallwas J, Wegwitz F. RNF40 epigenetically modulates glycolysis to support the aggressiveness of basal-like breast cancer. Cell Death Dis 2023; 14:641. [PMID: 37770435 PMCID: PMC10539310 DOI: 10.1038/s41419-023-06157-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 09/06/2023] [Accepted: 09/15/2023] [Indexed: 09/30/2023]
Abstract
Triple-negative breast cancer (TNBC) is the most difficult breast cancer subtype to treat due to the lack of targeted therapies. Cancer stem cells (CSCs) are strongly enriched in TNBC lesions and are responsible for the rapid development of chemotherapy resistance and metastasis. Ubiquitin-based epigenetic circuits are heavily exploited by CSCs to regulate gene transcription and ultimately sustain their aggressive behavior. Therefore, therapeutic targeting of these ubiquitin-driven dependencies may reprogram the transcription of CSC and render them more sensitive to standard therapies. In this work, we identified the Ring Finger Protein 40 (RNF40) monoubiquitinating histone 2B at lysine 120 (H2Bub1) as an indispensable E3 ligase for sustaining the stem-cell-like features of the growing mammary gland. In addition, we found that the RNF40/H2Bub1-axis promotes the CSC properties and drug-tolerant state by supporting the glycolytic program and promoting pro-tumorigenic YAP1-signaling in TNBC. Collectively, this study unveils a novel tumor-supportive role of RNF40 and underpins its high therapeutic value to combat the malignant behavior of TNBC.
Collapse
Affiliation(s)
- Evangelos Prokakis
- Department of Gynecology and Obstetrics, University Medical Center Göttingen, Göttingen, Germany.
- Department of General, Visceral & Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany.
| | - Shaishavi Jansari
- Department of Gynecology and Obstetrics, University Medical Center Göttingen, Göttingen, Germany
| | - Angela Boshnakovska
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Maria Wiese
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Kathrin Kusch
- Institute for Auditory Neuroscience, Functional Auditory Genomics Group, University Medical Center Göttingen, Göttingen, Germany
| | - Christof Kramm
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Christian Dullin
- Institute for Diagnostic and Interventional Radiology, University Medical Center Göttingen, Göttingen, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Peter Rehling
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Klaus Pantel
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Harriet Wikman
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Steven A Johnsen
- Department of General, Visceral & Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
- The Robert Bosch Center for Tumor Diseases, Stuttgart, Germany
| | - Julia Gallwas
- Department of Gynecology and Obstetrics, University Medical Center Göttingen, Göttingen, Germany
| | - Florian Wegwitz
- Department of Gynecology and Obstetrics, University Medical Center Göttingen, Göttingen, Germany.
- Department of General, Visceral & Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany.
| |
Collapse
|
40
|
Sneha NP, Dharshini SAP, Taguchi YH, Gromiha MM. Investigating Neuron Degeneration in Huntington's Disease Using RNA-Seq Based Transcriptome Study. Genes (Basel) 2023; 14:1801. [PMID: 37761940 PMCID: PMC10530489 DOI: 10.3390/genes14091801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/02/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Huntington's disease (HD) is a progressive neurodegenerative disorder caused due to a CAG repeat expansion in the huntingtin (HTT) gene. The primary symptoms of HD include motor dysfunction such as chorea, dystonia, and involuntary movements. The primary motor cortex (BA4) is the key brain region responsible for executing motor/movement activities. Investigating patient and control samples from the BA4 region will provide a deeper understanding of the genes responsible for neuron degeneration and help to identify potential markers. Previous studies have focused on overall differential gene expression and associated biological functions. In this study, we illustrate the relationship between variants and differentially expressed genes/transcripts. We identified variants and their associated genes along with the quantification of genes and transcripts. We also predicted the effect of variants on various regulatory activities and found that many variants are regulating gene expression. Variants affecting miRNA and its targets are also highlighted in our study. Co-expression network studies revealed the role of novel genes. Function interaction network analysis unveiled the importance of genes involved in vesicle-mediated transport. From this unified approach, we propose that genes expressed in immune cells are crucial for reducing neuron death in HD.
Collapse
Affiliation(s)
- Nela Pragathi Sneha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India; (N.P.S.); (S.A.P.D.)
| | - S. Akila Parvathy Dharshini
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India; (N.P.S.); (S.A.P.D.)
| | - Y.-h. Taguchi
- Department of Physics, Chuo University, Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan;
| | - M. Michael Gromiha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India; (N.P.S.); (S.A.P.D.)
| |
Collapse
|
41
|
Kashyap A, Umar SM, Dev J R A, Mathur SR, Gogia A, Batra A, Deo SVS, Prasad CP. Combination of 3PO analog PFK15 and siPFKL efficiently suppresses the migration, colony formation ability, and PFK-1 activity of triple-negative breast cancers by reducing the glycolysis. J Cell Biochem 2023; 124:1259-1272. [PMID: 37450687 DOI: 10.1002/jcb.30443] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 04/14/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
Among all the subtypes of breast cancer, triple-negative breast cancer (TNBC) has been associated with the worst prognosis. Recently, for many solid tumors (including breast cancer) metabolic reprogramming has appeared as a cancer cell hallmark, and the elevated glycolytic pathway has been linked to their aggressive phenotype. In the present study, we evaluated the prognostic and therapeutic relevance of PFKFB3 (6-phosphofructo-2- kinase/fructose-2,6-bisphosphatase) in TNBCs. Prognostic significance of PFKFB3 expression was evaluated in overall breast cancers as well as in TNBCs. PFKFB3 inhibitor (3PO potent analogue i.e., PFK15) cytotoxicity in TNBC cell lines (MDA-MB-231 and MDA-MB-468) was analyzed using an MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. Cancer cell physiological characteristics like clonogenicity and migration were also investigated after PFK15 treatment. As fructose-2,6-bisphosphate (F-2,6-BP), has been associated with increased PFK-1 activity, the effect of PFKFB3 inhibition by PFK15 was investigated on two major isoforms of phosphofructokinase-1 (PFK-1) in breast cancer, that is, phosphofructokinase-platelet type (PFKP) and phosphofructokinase-liver type (PFKL) (relevant to breast cancer). For PFKL inhibition, the siRNA approach was used. PFKFB3 expression was significantly correlated with inferior overall survival in breast cancer patients including TNBCs. PFK15 treatment in TNBC cells (i.e., MDA-MB-231 and MDA-MB-468) resulted in a decreased PFKP expression, thereby leading to reduced colony formation ability, migration rate, and extracellular lactate levels. However, to our surprise PFK15 treatment in both TNBC cells also resulted in elevated PFKL levels. Our results demonstrated that the combinatorial inhibition of PFK15 with siPFKL was more effective in TNBC cells, as it led to a decrease in colony formation ability, migration rate, extracellular lactate levels, and PFK-1 activity when compared with individual treatments. Using bona fide PFKFB3 inhibitor, that is, AZ67, we further show that AZ67 treatment to TNBC cells has no effect either on the expression of PFKP and PFKL, or on the lactate production. In summary, our present in vitro study demonstrated that 3PO derived PFK15 mechanism of action is totally different from AZ67 in TNBC cells. However, we advocate that the PFK15-mediated inhibition (along with PFKL) on the TNBCs migration, colony formation, and PFK-1 activity can be further explored for the therapeutic advantage of TNBC patients.
Collapse
Affiliation(s)
- Akanksha Kashyap
- Department of Medical Oncology (Laboratory), Dr. BRA IRCH, AIIMS, New Delhi, India
| | - Sheikh Mohammad Umar
- Department of Medical Oncology (Laboratory), Dr. BRA IRCH, AIIMS, New Delhi, India
| | - Arundhathi Dev J R
- Department of Medical Oncology (Laboratory), Dr. BRA IRCH, AIIMS, New Delhi, India
| | | | - Ajay Gogia
- Department of Medical Oncology, Dr. BRA IRCH, AIIMS, New Delhi, India
| | - Atul Batra
- Department of Medical Oncology, Dr. BRA IRCH, AIIMS, New Delhi, India
| | - S V S Deo
- Department of Surgical Oncology, Dr. BRA IRCH, AIIMS, New Delhi, India
| | | |
Collapse
|
42
|
Chun J. Isoalantolactone Suppresses Glycolysis and Resensitizes Cisplatin-Based Chemotherapy in Cisplatin-Resistant Ovarian Cancer Cells. Int J Mol Sci 2023; 24:12397. [PMID: 37569773 PMCID: PMC10419319 DOI: 10.3390/ijms241512397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/28/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
Cisplatin is a potent chemotherapeutic drug for ovarian cancer (OC) treatment. However, its efficacy is significantly limited due to the development of cisplatin resistance. Although the acquisition of cisplatin resistance is a complex process involving various molecular alterations within cancer cells, the increased reliance of cisplatin-resistant cells on glycolysis has gained increasing attention. Isoalantolactone, a sesquiterpene lactone isolated from Inula helenium L., possesses various pharmacological properties, including anticancer activity. In this study, isoalantolactone was investigated as a potential glycolysis inhibitor to overcome cisplatin resistance in OC. Isoalantolactone effectively targeted key glycolytic enzymes (e.g., lactate dehydrogenase A, phosphofructokinase liver type, and hexokinase 2), reducing glucose consumption and lactate production in cisplatin-resistant OC cells (specifically A2780 and SNU-8). Importantly, it also sensitized these cells to cisplatin-induced apoptosis. Isoalantolactone-cisplatin treatment regulated mitogen-activated protein kinase and AKT pathways more effectively in cisplatin-resistant cells than individual treatments. In vivo studies using cisplatin-sensitive and resistant OC xenograft models revealed that isoalantolactone, either alone or in combination with cisplatin, significantly suppressed tumor growth in cisplatin-resistant tumors. These findings highlight the potential of isoalantolactone as a novel glycolysis inhibitor for treating cisplatin-resistant OC. By targeting the dysregulated glycolytic pathway, isoalantolactone offers a promising approach to overcoming drug resistance and enhancing the efficacy of cisplatin-based therapies.
Collapse
Affiliation(s)
- Jaemoo Chun
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| |
Collapse
|
43
|
Liu H, Huang Q, Fan Y, Li B, Liu X, Hu C. Dissecting the novel abilities of aripiprazole: The generation of anti-colorectal cancer effects by targeting G αq via HTR2B. Acta Pharm Sin B 2023; 13:3400-3413. [PMID: 37655314 PMCID: PMC10465950 DOI: 10.1016/j.apsb.2023.05.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/17/2023] [Accepted: 04/03/2023] [Indexed: 09/02/2023] Open
Abstract
Colorectal cancer (CRC) is a type of malignant tumor that seriously threatens human health and life, and its treatment has always been a difficulty and hotspot in research. Herein, this study for the first time reports that antipsychotic aripiprazole (Ari) against the proliferation of CRC cells both in vitro and in vivo, but with less damage in normal colon cells. Mechanistically, the results showed that 5-hydroxytryptamine 2B receptor (HTR2B) and its coupling protein G protein subunit alpha q (Gαq) were highly distributed in CRC cells. Ari had a strong affinity with HTR2B and inhibited HTR2B downstream signaling. Blockade of HTR2B signaling suppressed the growth of CRC cells, but HTR2B was not found to have independent anticancer activity. Interestingly, the binding of Gαq to HTR2B was decreased after Ari treatment. Knockdown of Gαq not only restricted CRC cell growth, but also directly affected the anti-CRC efficacy of Ari. Moreover, an interaction between Ari and Gαq was found in that the mutation at amino acid 190 of Gαq reduced the efficacy of Ari. Thus, these results confirm that Gαq coupled to HTR2B was a potential target of Ari in mediating CRC proliferation. Collectively, this study provides a novel effective strategy for CRC therapy and favorable evidence for promoting Ari as an anticancer agent.
Collapse
Affiliation(s)
- Haowei Liu
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Qiuming Huang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Yunqi Fan
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Bo Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Xuemei Liu
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
- NMPA Key Laboratory for Quality Monitoring of Narcotic Drugs and Psychotropic Substances, Chongqing Institute for Food and Drug Control, Chongqing 401121, China
| | - Changhua Hu
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
- NMPA Key Laboratory for Quality Monitoring of Narcotic Drugs and Psychotropic Substances, Chongqing Institute for Food and Drug Control, Chongqing 401121, China
| |
Collapse
|
44
|
He Y, Zheng CC, Yang J, Li SJ, Xu TY, Wei X, Chen WY, Jiang ZL, Xu JJ, Zhang GG, Cheng C, Chen KS, Shi XY, Qin DJ, Liu JB, Li B. Lysine butyrylation of HSP90 regulated by KAT8 and HDAC11 confers chemoresistance. Cell Discov 2023; 9:74. [PMID: 37460462 DOI: 10.1038/s41421-023-00570-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/24/2023] [Indexed: 07/20/2023] Open
Abstract
Posttranslational modification dramatically enhances protein complexity, but the function and precise mechanism of novel lysine acylation modifications remain unknown. Chemoresistance remains a daunting challenge to successful treatment. We found that lysine butyrylation (Kbu) is specifically upregulated in chemoresistant tumor cells and tissues. By integrating butyrylome profiling and gain/loss-of-function experiments, lysine 754 in HSP90 (HSP90 K754) was identified as a substrate for Kbu. Kbu modification leads to overexpression of HSP90 in esophageal squamous cell carcinoma (ESCC) and its further increase in relapse samples. Upregulation of HSP90 contributes to 5-FU resistance and can predict poor prognosis in cancer patients. Mechanistically, HSP90 K754 is regulated by the cooperation of KAT8 and HDAC11 as the writer and eraser, respectively; SDCBP increases the Kbu level and stability of HSP90 by binding competitively to HDAC11. Furthermore, SDCBP blockade with the lead compound V020-9974 can target HSP90 K754 to overcome 5-FU resistance, constituting a potential therapeutic strategy.
Collapse
Affiliation(s)
- Yan He
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- MOE Key Laboratory of Tumor Molecular Biology, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Can-Can Zheng
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jing Yang
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- MOE Key Laboratory of Tumor Molecular Biology, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Shu-Jun Li
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- MOE Key Laboratory of Tumor Molecular Biology, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Tao-Yang Xu
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- MOE Key Laboratory of Tumor Molecular Biology, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Xian Wei
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wen-You Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Zhi-Li Jiang
- Department of Radiation Oncology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jiao-Jiao Xu
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- MOE Key Laboratory of Tumor Molecular Biology, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Guo-Geng Zhang
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- MOE Key Laboratory of Tumor Molecular Biology, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Chao Cheng
- Department of Thoracic Surgery, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Kui-Sheng Chen
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Tumor Pathology, Zhengzhou, Henan, China
| | - Xing-Yuan Shi
- Department of Radiation Oncology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Da-Jiang Qin
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jin-Bao Liu
- Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Bin Li
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
45
|
Xu WW, Liao L, Dai W, Zheng CC, Tan XP, He Y, Zhang QH, Huang ZH, Chen WY, Qin YR, Chen KS, He ML, Law S, Lung ML, He QY, Li B. Genome-wide CRISPR/Cas9 screening identifies a targetable MEST-PURA interaction in cancer metastasis. EBioMedicine 2023; 92:104587. [PMID: 37149929 DOI: 10.1016/j.ebiom.2023.104587] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 05/09/2023] Open
Abstract
BACKGROUND Metastasis is one of the most lethal hallmarks of esophageal squamous cell carcinoma (ESCC), yet the mechanisms remain unclear due to a lack of reliable experimental models and systematic identification of key drivers. There is urgent need to develop useful therapies for this lethal disease. METHODS A genome-wide CRISPR/Cas9 screening, in combination with gene profiling of highly invasive and metastatic ESCC sublines, as well as PDX models, was performed to identify key regulators of cancer metastasis. The Gain- and loss-of-function experiments were taken to examine gene function. Protein interactome, RNA-seq, and whole genome methylation sequencing were used to investigate gene regulation and molecular mechanisms. Clinical significance was analyzed in tumor tissue microarray and TCGA databases. Homology modeling, modified ELISA, surface plasmon resonance and functional assays were performed to identify lead compound which targets MEST to suppress cancer metastasis. FINDINGS High MEST expression was associated with poor patient survival and promoted cancer invasion and metastasis in ESCC. Mechanistically, MEST activates SRCIN1/RASAL1-ERK-snail signaling by interacting with PURA. miR-449a was identified as a direct regulator of MEST, and hypermethylation of its promoter led to MEST upregulation, whereas systemically delivered miR-449a mimic could suppress tumor metastasis without overt toxicity. Furthermore, molecular docking and computational screening in a small-molecule library of 1,500,000 compounds and functional assays showed that G699-0288 targets the MEST-PURA interaction and significantly inhibits cancer metastasis. INTERPRETATION We identified the MEST-PURA-SRCIN1/RASAL1-ERK-snail signaling cascade as an important mechanism underlying cancer metastasis. Blockade of MEST-PURA interaction has therapeutic potential in management of cancer metastasis. FUNDING This work was supported by National Key Research and Development Program of China (2021YFC2501000, 2021YFC2501900, 2017YFA0505100); National Natural Science Foundation of China (31961160727, 82073196, 81973339, 81803551); NSFC/RGC Joint Research Scheme (N_HKU727/19); Natural Science Foundation of Guangdong Province (2021A1515011158, 2021A0505030035); Key Laboratory of Guangdong Higher Education Institutes of China (2021KSYS009).
Collapse
Affiliation(s)
- Wen Wen Xu
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes and Key Laboratory of Protein Modification and Degradation, The Fifth Affiliated Hospital of Guangzhou Medical University and School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China; MOE Key Laboratory of Tumor Molecular Biology, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Long Liao
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes and Key Laboratory of Protein Modification and Degradation, The Fifth Affiliated Hospital of Guangzhou Medical University and School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China; MOE Key Laboratory of Tumor Molecular Biology, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Wei Dai
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Can-Can Zheng
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes and Key Laboratory of Protein Modification and Degradation, The Fifth Affiliated Hospital of Guangzhou Medical University and School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Xiang-Peng Tan
- Research Center of Cancer Diagnosis and Therapy, and Department of Clinical Oncology, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yan He
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes and Key Laboratory of Protein Modification and Degradation, The Fifth Affiliated Hospital of Guangzhou Medical University and School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China; MOE Key Laboratory of Tumor Molecular Biology, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Qi-Hua Zhang
- MOE Key Laboratory of Tumor Molecular Biology, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Zhi-Hao Huang
- MOE Key Laboratory of Tumor Molecular Biology, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Wen-You Chen
- Department of Thoracic Surgery, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yan-Ru Qin
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Department of Clinical Oncology, First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Kui-Sheng Chen
- Henan Province Key Laboratory of Tumor Pathology, Department of Pathology, First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Ming-Liang He
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Simon Law
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Maria Li Lung
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Qing-Yu He
- MOE Key Laboratory of Tumor Molecular Biology, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China.
| | - Bin Li
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes and Key Laboratory of Protein Modification and Degradation, The Fifth Affiliated Hospital of Guangzhou Medical University and School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China; MOE Key Laboratory of Tumor Molecular Biology, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China.
| |
Collapse
|
46
|
Liao L, He Y, Li SJ, Yu XM, Liu ZC, Liang YY, Yang H, Yang J, Zhang GG, Deng CM, Wei X, Zhu YD, Xu TY, Zheng CC, Cheng C, Li A, Li ZG, Liu JB, Li B. Lysine 2-hydroxyisobutyrylation of NAT10 promotes cancer metastasis in an ac4C-dependent manner. Cell Res 2023; 33:355-371. [PMID: 36882514 PMCID: PMC10156899 DOI: 10.1038/s41422-023-00793-4] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 02/08/2023] [Indexed: 03/09/2023] Open
Abstract
Posttranslational modifications add tremendous complexity to proteomes; however, gaps remain in knowledge regarding the function and regulatory mechanism of newly discovered lysine acylation modifications. Here, we compared a panel of non-histone lysine acylation patterns in metastasis models and clinical samples, and focused on 2-hydroxyisobutyrylation (Khib) due to its significant upregulation in cancer metastases. By the integration of systemic Khib proteome profiling in 20 paired primary esophageal tumor and metastatic tumor tissues with CRISPR/Cas9 functional screening, we identified N-acetyltransferase 10 (NAT10) as a substrate for Khib modification. We further showed that Khib modification at lysine 823 in NAT10 functionally contribute to metastasis. Mechanistically, NAT10 Khib modification enhances its interaction with deubiquitinase USP39, resulting in increased NAT10 protein stability. NAT10 in turn promotes metastasis by increasing NOTCH3 mRNA stability in an N4-acetylcytidine-dependent manner. Furthermore, we discovered a lead compound #7586-3507 that inhibited NAT10 Khib modification and showed efficacy in tumor models in vivo at a low concentration. Together, our findings bridge newly identified lysine acylation modifications with RNA modifications, thus providing novel insights into epigenetic regulation in human cancer. We propose that pharmacological inhibition of NAT10 K823 Khib modification constitutes a potential anti-metastasis strategy.
Collapse
Affiliation(s)
- Long Liao
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, State Key Laboratory of Respiratory Disease, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- MOE Key Laboratory of Tumor Molecular Biology, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Yan He
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, State Key Laboratory of Respiratory Disease, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- MOE Key Laboratory of Tumor Molecular Biology, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Shu-Jun Li
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, State Key Laboratory of Respiratory Disease, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- MOE Key Laboratory of Tumor Molecular Biology, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Xiao-Mei Yu
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, State Key Laboratory of Respiratory Disease, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- MOE Key Laboratory of Tumor Molecular Biology, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Zhi-Chao Liu
- Department of Thoracic Surgery, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yi-Yao Liang
- Key Laboratory of CNS Regeneration, Ministry of Education, Guangdong Key Laboratory of Non-Human Primate Research, Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong, China
| | - Han Yang
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Jing Yang
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, State Key Laboratory of Respiratory Disease, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- MOE Key Laboratory of Tumor Molecular Biology, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Guo-Geng Zhang
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, State Key Laboratory of Respiratory Disease, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- MOE Key Laboratory of Tumor Molecular Biology, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Chun-Miao Deng
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, State Key Laboratory of Respiratory Disease, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xian Wei
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, State Key Laboratory of Respiratory Disease, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yi-Dong Zhu
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, State Key Laboratory of Respiratory Disease, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- MOE Key Laboratory of Tumor Molecular Biology, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Tao-Yang Xu
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, State Key Laboratory of Respiratory Disease, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- MOE Key Laboratory of Tumor Molecular Biology, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Can-Can Zheng
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, State Key Laboratory of Respiratory Disease, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Chao Cheng
- Department of Thoracic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ang Li
- Key Laboratory of CNS Regeneration, Ministry of Education, Guangdong Key Laboratory of Non-Human Primate Research, Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong, China
| | - Zhi-Gang Li
- Department of Thoracic Surgery, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jin-Bao Liu
- Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, and School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Bin Li
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, State Key Laboratory of Respiratory Disease, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
47
|
Li J, Li L, You P, Wei Y, Xu B. Towards artificial intelligence to multi-omics characterization of tumor heterogeneity in esophageal cancer. Semin Cancer Biol 2023; 91:35-49. [PMID: 36868394 DOI: 10.1016/j.semcancer.2023.02.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/21/2023] [Accepted: 02/28/2023] [Indexed: 03/05/2023]
Abstract
Esophageal cancer is a unique and complex heterogeneous malignancy, with substantial tumor heterogeneity: at the cellular levels, tumors are composed of tumor and stromal cellular components; at the genetic levels, they comprise genetically distinct tumor clones; at the phenotypic levels, cells in distinct microenvironmental niches acquire diverse phenotypic features. This heterogeneity affects almost every process of esophageal cancer progression from onset to metastases and recurrence, etc. Intertumoral and intratumoral heterogeneity are major obstacles in the treatment of esophageal cancer, but also offer the potential to manipulate the heterogeneity themselves as a new therapeutic strategy. The high-dimensional, multi-faceted characterization of genomics, epigenomics, transcriptomics, proteomics, metabonomics, etc. of esophageal cancer has opened novel horizons for dissecting tumor heterogeneity. Artificial intelligence especially machine learning and deep learning algorithms, are able to make decisive interpretations of data from multi-omics layers. To date, artificial intelligence has emerged as a promising computational tool for analyzing and dissecting esophageal patient-specific multi-omics data. This review provides a comprehensive review of tumor heterogeneity from a multi-omics perspective. Especially, we discuss the novel techniques single-cell sequencing and spatial transcriptomics, which have revolutionized our understanding of the cell compositions of esophageal cancer and allowed us to determine novel cell types. We focus on the latest advances in artificial intelligence in integrating multi-omics data of esophageal cancer. Artificial intelligence-based multi-omics data integration computational tools exert a key role in tumor heterogeneity assessment, which will potentially boost the development of precision oncology in esophageal cancer.
Collapse
Affiliation(s)
- Junyu Li
- Department of Radiation Oncology, Jiangxi Cancer Hospital, Nanchang 330029, Jiangxi, China; Jiangxi Health Committee Key (JHCK) Laboratory of Tumor Metastasis, Jiangxi Cancer Hospital, Nanchang 330029, Jiangxi, China
| | - Lin Li
- Department of Thoracic Oncology, Jiangxi Cancer Hospital, Nanchang 330029, Jiangxi, China
| | - Peimeng You
- Nanchang University, Department of Radiation Oncology, Jiangxi Cancer Hospital, Nanchang 330029, Jiangxi, China
| | - Yiping Wei
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China.
| | - Bin Xu
- Jiangxi Health Committee Key (JHCK) Laboratory of Tumor Metastasis, Jiangxi Cancer Hospital, Nanchang 330029, Jiangxi, China.
| |
Collapse
|
48
|
Yu XM, Li SJ, Yao ZT, Xu JJ, Zheng CC, Liu ZC, Ding PB, Jiang ZL, Wei X, Zhao LP, Shi XY, Li ZG, Xu WW, Li B. N4-acetylcytidine modification of lncRNA CTC-490G23.2 promotes cancer metastasis through interacting with PTBP1 to increase CD44 alternative splicing. Oncogene 2023; 42:1101-1116. [PMID: 36792757 DOI: 10.1038/s41388-023-02628-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/26/2023] [Accepted: 02/06/2023] [Indexed: 02/17/2023]
Abstract
Although N4-acetylcytidine (ac4C) modification affects the stability and translation of mRNA, it is unknown whether it exists in noncoding RNAs, and its biological function is unclear. Here, nucleotide-resolution method for profiling CTC-490G23.2 ac4C sites and gain- and loss-of-function experiments revealed that N-acetyltransferase 10 (NAT10) is responsible for ac4C modification of long noncoding RNAs (lncRNAs). NAT10-mediated ac4C modification leads to the stabilization and overexpression of lncRNA CTC-490G23.2 in primary esophageal squamous cell carcinoma (ESCC) and its further upregulation in metastatic tissues. CTC-490G23.2 significantly promotes cancer invasion and metastasis in vitro and in vivo. Mechanistically, CTC-490G23.2 acts as a scaffold to increase the binding of CD44 pre-mRNA to polypyrimidine tract-binding protein 1 (PTBP1), resulting in a oncogenic splicing switch from the standard isoform CD44s to the variant isoform CD44v(8-10). CD44v(8-10), but not CD44s, binds to and increases the protein stability of vimentin. Expression levels of CTC-490G23.2 and CD44v(8-10) can predict poor prognosis in cancer patients. Furthermore, the antisense oligonucleotide (ASO)/SV40-LAH4-L1 peptide self-assembled nanocomplexes targeting CTC490G23.2 exerts a significantly suppressive effect on cancer metastasis. The outcome of this study will provide new mechanistic insight into the ac4C modification of lncRNAs and useful clues for the development of novel systemic therapies and prognostic biomarkers.
Collapse
Affiliation(s)
- Xiao-Mei Yu
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,MOE Key Laboratory of Tumor Molecular Biology, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Shu-Jun Li
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,MOE Key Laboratory of Tumor Molecular Biology, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Zi-Ting Yao
- MOE Key Laboratory of Tumor Molecular Biology, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Jiao-Jiao Xu
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,MOE Key Laboratory of Tumor Molecular Biology, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Can-Can Zheng
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhi-Chao Liu
- Department of Thoracic Surgery, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Peng-Bo Ding
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,MOE Key Laboratory of Tumor Molecular Biology, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Zhi-Li Jiang
- Department of Radiation Oncology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xian Wei
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lin-Ping Zhao
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xing-Yuan Shi
- Department of Radiation Oncology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhi-Gang Li
- Department of Thoracic Surgery, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wen Wen Xu
- Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Bin Li
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
49
|
Afonso J, Gonçalves C, Costa M, Ferreira D, Santos L, Longatto-Filho A, Baltazar F. Glucose Metabolism Reprogramming in Bladder Cancer: Hexokinase 2 (HK2) as Prognostic Biomarker and Target for Bladder Cancer Therapy. Cancers (Basel) 2023; 15:cancers15030982. [PMID: 36765947 PMCID: PMC9913750 DOI: 10.3390/cancers15030982] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
Proliferating cancer cells are able to reprogram their energy metabolism, favouring glycolysis even in the presence of oxygen and fully functioning mitochondria. Research is needed to validate the glycolysis-related proteins as prognostic/predictive biomarkers in urothelial bladder carcinoma (UBC), a malignancy tagged by high recurrence rates and poor response to chemotherapy. Here, we assessed GLUT1, HK2, PFKL, PKM2, phospho-PDH, and LDHA immunoexpression in 76 UBC samples, differentiating among urothelial, fibroblast, and endothelial cells and among normoxic versus hypoxic areas. We additionally studied the functional effects of the HK2 inhibitor 2-deoxy-D-glucose (2DG) in "in vitro" and "in vivo" preclinical UBC models. We showed that the expression of the glycolysis-related proteins is associated with UBC aggressiveness and poor prognosis. HK2 remained as an independent prognostic factor for disease-free and overall survival. 2DG decreased the UBC cell's viability, proliferation, migration, and invasion; the inhibition of cell cycle progression and apoptosis occurrence was also verified. A significant reduction in tumour growth and blood vessel formation upon 2DG treatment was observed in the chick chorioallantoic membrane assay. 2DG potentiated the cisplatin-induced inhibition of cell viability in a cisplatin-resistant subline. This study highlights HK2 as a prognostic biomarker for UBC patients and demonstrates the potential benefits of using 2DG as a glycolysis inhibitor. Future studies should focus on integrating 2DG into chemotherapy design, as an attempt to overcome cisplatin resistance.
Collapse
Affiliation(s)
- Julieta Afonso
- Life and Health Sciences Research Institute (ICVS), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Céline Gonçalves
- Life and Health Sciences Research Institute (ICVS), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Marta Costa
- Life and Health Sciences Research Institute (ICVS), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Débora Ferreira
- Centre of Biological Engineering (CEB), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
| | - Lúcio Santos
- Experimental Pathology and Therapeutics Group, Research Center of the Portuguese Institute of Oncology (CI-IPOP), 4200-072 Porto, Portugal
- Porto Comprehensive Cancer Center (P.CCC), 4200-072 Porto, Portugal
| | - Adhemar Longatto-Filho
- Life and Health Sciences Research Institute (ICVS), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
- Laboratory of Medical Investigation (LIM14), Faculty of Medicine, São Paulo State University, São Paulo 01049-010, Brazil
- Molecular Oncology Research Center, Barretos Cancer Hospital, São Paulo 14784-400, Brazil
| | - Fátima Baltazar
- Life and Health Sciences Research Institute (ICVS), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
- Correspondence: ; Tel.: +351-253-60-48-28
| |
Collapse
|
50
|
Blockade of NMT1 enzymatic activity inhibits N-myristoylation of VILIP3 protein and suppresses liver cancer progression. Signal Transduct Target Ther 2023; 8:14. [PMID: 36617552 PMCID: PMC9826789 DOI: 10.1038/s41392-022-01248-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/24/2022] [Accepted: 11/01/2022] [Indexed: 01/10/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors. Identification of the underlying mechanism of HCC progression and exploration of new therapeutic drugs are urgently needed. Here, a compound library consisting of 419 FDA-approved drugs was taken to screen potential anticancer drugs. A series of functional assays showed that desloratadine, an antiallergic drug, can repress proliferation in HCC cell lines, cell-derived xenograft (CDX), patient-derived organoid (PDO) and patient-derived xenograft (PDX) models. N-myristoyl transferase 1 (NMT1) was identified as a target protein of desloratadine by drug affinity responsive target stability (DARTS) and surface plasmon resonance (SPR) assays. Upregulation of NMT1 expression enhanced but NMT1 knockdown suppressed tumor growth in vitro and in vivo. Metabolic labeling and mass spectrometry analyses revealed that Visinin-like protein 3 (VILIP3) was a new substrate of NMT1 in protein N-myristoylation modification, and high NMT1 or VILIP3 expression was associated with advanced stages and poor survival in HCC. Mechanistically, desloratadine binds to Asn-246 in NMT1 and inhibits its enzymatic activity, disrupting the NMT1-mediated myristoylation of the VILIP3 protein and subsequent NFκB/Bcl-2 signaling. Conclusively, this study demonstrates that desloratadine may be a novel anticancer drug and that NMT1-mediated myristoylation contributes to HCC progression and is a potential biomarker and therapeutic target in HCC.
Collapse
|