1
|
Abd Elkader HTAE, Al-Shami AS. Unveiling the impact of bisphenol A on date mussels: Insights into oxidative stress, hormonal imbalance, gonadal atresia, and immune resilience. MARINE ENVIRONMENTAL RESEARCH 2025; 208:107143. [PMID: 40250025 DOI: 10.1016/j.marenvres.2025.107143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/06/2025] [Accepted: 04/06/2025] [Indexed: 04/20/2025]
Abstract
Sedentary organisms, such as mussels, may be susceptible to environmental estrogenic compounds, including bisphenol A (BPA). This study aimed to evaluate the interplay between BPA exposure and the immune response, hormonal imbalance, tissue damage (specifically in the digestive glands, labial palps, and male gonads), gonadal atresia, and antioxidant mechanisms in the marine mussel, Lithophaga lithophaga. Over a period of 28 days, mussels were exposed to BPA concentrations of 0, 0.25, 1, 2, and 5 μg/L. The exposure resulted in notable morphological alterations in the hemocytes of L. lithophaga, characterized by irregularities in the outer cell membranes of granulocytes and hyalinocytes, with some cells exhibiting filopodia formation. Granulocytes displayed an increased number of granules and vacuoles, while the nuclei of hyalinocytes appeared shrunken. The condition index, along with levels of testosterone and 17β-estradiol, significantly decreased with increasing BPA concentration, except for the 1 and 2 μg/L treatments. BPA exposure led to a marked increase in malondialdehyde (MDA) levels and a reduction in reduced glutathione (GSH) across all tissues at every concentration tested. The activity of antioxidant enzymes varied among the gonads, digestive glands, and labial palps. Notably, there was a significant increase in superoxide dismutase (SOD) activity in the gonads of mussels exposed to 2 μg/L of BPA, as well as in the digestive glands and labial palps of those exposed to 1 μg/L, suggesting a potential alteration in redox homeostasis. Additionally, structural changes in the digestive tubules of BPA-exposed mussels were observed. The observed pathological symptoms were characteristic of an inflammatory response, including hemocyte diapedesis and infiltration, the formation of syncytia, and the sloughing of epithelial tissue, indicated by an increased ratio of mean luminal radius to mean epithelial thickness in a dose-dependent manner. In the BPA-exposed group, testicular follicles exhibited atrophy, deformation, and a reduction in both size and number per area, appearing nearly empty and lacking spermatids and spermatozoa, alongside hypertrophy and hyperplasia of auxiliary cells. Scanning electron microscopy further revealed structural abnormalities in the heads and flagella of spermatids from the BPA-exposed group. Thus, this study demonstrates the risk of long-term exposure to BPA in immune response, tissue, and biochemical responses of date mussel L. lithophaga. The gonad was the most affected tissues followed by the digestive gland and labial palps.
Collapse
Affiliation(s)
| | - Ahmed S Al-Shami
- Biotechnology Department, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| |
Collapse
|
2
|
Chelyadina NS, Popov MA, Pospelova NV. The effect of sex hormones on sex inversion in the mussel Mytilusgalloprovincialis. MARINE ENVIRONMENTAL RESEARCH 2024; 201:106710. [PMID: 39205360 DOI: 10.1016/j.marenvres.2024.106710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/18/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Global changes in the coastal ecosystems of oceans and seas, influenced by natural environmental factors and anthropogenic load, have led to a shift in the sexual structure of the mussel Mytilus galloprovincialis, a species cultivated in many countries. This paper is the first to study the effects of steroid hormones on sex inversion and mortality in the M. galloprovincialis. A unidirectional pattern of sex change from females to males was observed. A 100% sex change of females was achieved under the influence of the hormone testosterone during the period of post-spring restructuring of the gonads. No sex change occurred when males and females were exposed to 17β-estradiol. The mortality of mollusks did not exceed 5%.
Collapse
Affiliation(s)
- Natalya S Chelyadina
- A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Nakhimov ave. 2, 299011, Sevastopol, Russian Federation
| | - Mark A Popov
- A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Nakhimov ave. 2, 299011, Sevastopol, Russian Federation
| | - Natalya V Pospelova
- A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Nakhimov ave. 2, 299011, Sevastopol, Russian Federation.
| |
Collapse
|
3
|
Świacka K, Maculewicz J, Smolarz K, Szaniawska A, Caban M. Mytilidae as model organisms in the marine ecotoxicology of pharmaceuticals - A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 254:113082. [PMID: 31472454 DOI: 10.1016/j.envpol.2019.113082] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/17/2019] [Accepted: 08/19/2019] [Indexed: 06/10/2023]
Abstract
Growing production and consumption of pharmaceuticals is a global problem. Due to insufficient data on the concentration and distribution of pharmaceuticals in the marine environment, there are no appropriate legal regulations concerning their emission. In order to understand all aspects of the fate of pharmaceuticals in the marine environment and their effect on marine biota, it is necessary to find the most appropriate model organism for this purpose. This paper presents an overview of the ecotoxicological studies of pharmaceuticals, regarding the assessment of Mytilidae as suitable organisms for biomonitoring programs and toxicity tests. The use of mussels in the monitoring of pharmaceuticals allows the observation of changes in the concentration and distribution of these compounds. This in turn gives valuable information on the amount of pharmaceutical pollutants released into the environment in different areas. In this context, information necessary for the assessment of risks related to pharmaceuticals in the marine environment are provided based on what effective management procedures can be developed. However, the accumulation capacity of individual Mytilidae species, the bioavailability of pharmaceuticals and their biological effects should be further scrutinized.
Collapse
Affiliation(s)
- Klaudia Świacka
- Department of Experimental Ecology of Marine Organisms, Institute of Oceanography, University of Gdansk, Av. Pilsudskiego 46, 81-378 Gdynia, Poland.
| | - Jakub Maculewicz
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Katarzyna Smolarz
- Department of Marine Ecosystems Functioning, Institute of Oceanography, University of Gdansk, Av. Pilsudskiego 46, 81-378 Gdynia, Poland
| | - Anna Szaniawska
- Department of Experimental Ecology of Marine Organisms, Institute of Oceanography, University of Gdansk, Av. Pilsudskiego 46, 81-378 Gdynia, Poland
| | - Magda Caban
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| |
Collapse
|
4
|
Balbi T, Ciacci C, Canesi L. Estrogenic compounds as exogenous modulators of physiological functions in molluscs: Signaling pathways and biological responses. Comp Biochem Physiol C Toxicol Pharmacol 2019; 222:135-144. [PMID: 31055067 DOI: 10.1016/j.cbpc.2019.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 04/30/2019] [Accepted: 05/01/2019] [Indexed: 12/21/2022]
Abstract
Molluscs have been widely utilized to evaluate the effects of estrogenic compounds, one of the most widespread classes of Endocrine Disrupting Chemicals-EDCs. However, knowledge on steroid signaling and metabolism in molluscs has considerably increased in the last decade: from these studies, a considerable debate emerged on the role of 'natural' steroids in physiology, in particular in reproduction, of this invertebrate group. In this work, available information on the effects and mechanisms of action of estrogens in molluscs will be reviewed, with particular emphasis on bivalves that, widespread in aquatic ecosystems, are most likely affected by exposure to estrogenic EDCs. Recent advances in steroid uptake and metabolism, and estrogen receptors-ERs in molluscs, as well as in estrogen signaling in vertebrates, will be considered. The results so far obtained with 17β-estradiol and different estrogenic compounds in the model bivalve Mytilus spp., demonstrate specific effects on immune function, development and metabolism. Transcriptomic data reveal non genomic estrogen signaling pathways in mussel tissues that are supported by new observations at the cellular level. In vitro and in vivo data show, through independent lines of evidence, that estrogens act through non-genomic signaling pathways in bivalves. In this light, regardless of whether molluscs synthesize estrogens de novo or not, and despite their ERs are not directly activated by ligand binding, estrogens can interact with multiple signaling components, leading to modulation of different physiological functions. Increasing knowledge in endocrine physiology of molluscs will provide a framework for a better evaluation and interpretation of data on the impact of estrogenic EDCs in this invertebrate group.
Collapse
Affiliation(s)
- Teresa Balbi
- Dept. of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Genoa, Italy
| | - Caterina Ciacci
- Dept. of Biomolecular Sciences (DIBS), University 'Carlo Bo' of Urbino, Urbino, Italy
| | - Laura Canesi
- Dept. of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Genoa, Italy.
| |
Collapse
|
5
|
Accumulation of Dinophysis Toxins in Bivalve Molluscs. Toxins (Basel) 2018; 10:toxins10110453. [PMID: 30400229 PMCID: PMC6266557 DOI: 10.3390/toxins10110453] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/19/2018] [Accepted: 10/23/2018] [Indexed: 01/08/2023] Open
Abstract
Several species of the dinoflagellate genus Dinophysis produce toxins that accumulate in bivalves when they feed on populations of these organisms. The accumulated toxins can lead to intoxication in consumers of the affected bivalves. The risk of intoxication depends on the amount and toxic power of accumulated toxins. In this review, current knowledge on the main processes involved in toxin accumulation were compiled, including the mechanisms and regulation of toxin acquisition, digestion, biotransformation, compartmentalization, and toxin depuration. Finally, accumulation kinetics, some models to describe it, and some implications were also considered.
Collapse
|
6
|
Faggio C, Tsarpali V, Dailianis S. Mussel digestive gland as a model tissue for assessing xenobiotics: An overview. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 636:220-229. [PMID: 29704717 DOI: 10.1016/j.scitotenv.2018.04.264] [Citation(s) in RCA: 193] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/19/2018] [Accepted: 04/20/2018] [Indexed: 05/19/2023]
Abstract
Control strategies and routine biomonitoring programs are commonly performed worldwide using sentinel marine invertebrates, such as mussels of the genus Mytilus, for assessing the "health status" of the aquatic environment. Those species can accumulate and tolerate xenobiotics at levels higher than those being present into the aquatic environment, thus providing accurate and reliable biological endpoints (e.g. physiological, behavioral, cellular, biochemical and molecular indices) that can be measured in their tissues. Taking under consideration the significance of bivalves for assessing the environmental hazard of xenobiotics being present into the water medium, as well as the key role of digestive gland as a target-tissue for the compounds ingested in the organism, the present study aimed to summarize available data on the effects of different categories of xenobiotic compounds, previously characterized as a potential threat for the marine ecosystems. In this context, different types of pharmaceuticals and personal care products (PPCPs), biocides, microplastics (MPs) and nanoparticles (NPs), currently investigated in mussels' digestive gland, using a battery of experimental approaches and analytical methods, as well as stress indices evaluation, are briefly described and further discussed in order to elucidate not only the presence and the toxic mode of action of xenobiotics, but also the important role of the digestive gland as a reliable target-tissue for investigating the effects of xenobiotics at cellular, biochemical, and molecular levels.
Collapse
Affiliation(s)
- Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina Viale Ferdinando Stagno d'Alcontres, 31 98166 S. Agata-Messina, Italy.
| | - Vasiliki Tsarpali
- Section of Animal Biology, Department of Biology, Faculty of Sciences, University of Patras, Patras 26 500, Greece
| | - Stefanos Dailianis
- Section of Animal Biology, Department of Biology, Faculty of Sciences, University of Patras, Patras 26 500, Greece
| |
Collapse
|
7
|
Blanco J, Álvarez G, Rengel J, Díaz R, Mariño C, Martín H, Uribe E. Accumulation and Biotransformation of Dinophysis Toxins by the Surf Clam Mesodesma donacium. Toxins (Basel) 2018; 10:E314. [PMID: 30081538 PMCID: PMC6115731 DOI: 10.3390/toxins10080314] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/21/2018] [Accepted: 07/27/2018] [Indexed: 02/03/2023] Open
Abstract
Surf clams, Mesodesma donacium, were shown to accumulate toxins from Dinophysis acuminata blooms. Only pectenotoxin 2 (PTX2) and some of its derivatives were found, and no toxins from the okadaic acid group were detected. PTX2 seems to be transformed to PTX2 seco-acid (PTX2sa), which was found in concentrations more than ten-fold those of PTX2. The seco-acid was transformed to acyl-derivatives by esterification with different fatty acids. The estimated amount of these derivatives in the mollusks was much higher than that of PTX2. Most esters were originated by even carbon chain fatty acids, but some originated by odd carbon number were also found in noticeable concentrations. Some peaks of toxin in the bivalves did not coincide with those of Dinophysis abundance, suggesting that there were large differences in toxin content per cell among the populations that developed throughout the year. The observed depuration (from the digestive gland) was fast (more than 0.2 day-1), and was faster for PTX2 than for PTX2sa, which in turn was faster than that of esters of PTX2sa. PTX2 and PTX2sa were distributed nearly equally between the digestive gland and the remaining tissues, but less than 5% of the palmytoyl-esters were found outside the digestive gland.
Collapse
Affiliation(s)
- Juan Blanco
- Centro de Investigacións Mariñas, Xunta de Galicia, Pedras de Corón S/N, 36620 Vilanova de Arousa, Spain.
| | - Gonzalo Álvarez
- Departamento de Acuicultura, Universidad Católica del Norte, Larrondo 1281, Coquimbo, Chile.
- Centro de Investigación y Desarrollo Tecnológico en Algas (CIDTA), Facultad de Ciencias del Mar, Larrondo 1281, Universidad Católica del Norte, Coquimbo, Chile.
| | - José Rengel
- Departamento de Acuicultura, Universidad Católica del Norte, Larrondo 1281, Coquimbo, Chile.
| | - Rosario Díaz
- Departamento de Acuicultura, Universidad Católica del Norte, Larrondo 1281, Coquimbo, Chile.
| | - Carmen Mariño
- Centro de Investigacións Mariñas, Xunta de Galicia, Pedras de Corón S/N, 36620 Vilanova de Arousa, Spain.
| | - Helena Martín
- Centro de Investigacións Mariñas, Xunta de Galicia, Pedras de Corón S/N, 36620 Vilanova de Arousa, Spain.
| | - Eduardo Uribe
- Departamento de Acuicultura, Universidad Católica del Norte, Larrondo 1281, Coquimbo, Chile.
| |
Collapse
|
8
|
Smolarz K, Zabrzańska S, Konieczna L, Hallmann A. Changes in steroid profiles of the blue mussel Mytilus trossulus as a function of season, stage of gametogenesis, sex, tissue and mussel bed depth. Gen Comp Endocrinol 2018; 259:231-239. [PMID: 29247680 DOI: 10.1016/j.ygcen.2017.12.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 12/02/2017] [Accepted: 12/13/2017] [Indexed: 12/29/2022]
Abstract
This paper describes changes in the content of free steroid hormones e.g. testosterone (T), estradiol-17β (E2), estrone (E1) and estriol (E3) of Mytilus trossulus from the southern Baltic Sea as a function of season, stage of gametogenesis, sex, tissue (gonadal and somatic) and depth. The highest levels of T, E2, E1 and E3 were found in mussels sampled in spring and summer while the lowest levels were found in winter. This pattern was stable and was seen in both sexes and tissues in mussels from both mussel beds. The spring and summer peaks in steroid levels (SL) coincided with advanced levels of gametogenesis (the highest gonadal index, GI) of our model species. But, the lowest GI (autumn) and the lowest steroids content (winter) did not overlap. Instead, water temperature increase was followed by increase of SL and vice versa. This suggests that steroids may not be actively involved in the early stages of gamete development and does not preclude them from potentially being involved as endogenous modulators in the final stages of reproduction (e.g. spawning). Hence, observed fluctuations in SL in our model species are unlikely to be caused by reproductive cycle but are rather of unknown nature, likely linked with environmental conditions. Sex-related differences in steroid content included estrogen domination in females and androgen domination in males. A trend towards higher level of steroids in gills than in gonads was found, supporting the hypothesis about an exogenous origin of steroids in bivalves. However, based on the present results, we cannot exclude the possibility that these steroids have both an endogenous and exogenous origin.
Collapse
Affiliation(s)
- Katarzyna Smolarz
- Department of Marine Ecosystem Functioning, University of Gdańsk, Poland
| | - Sandra Zabrzańska
- Department of Marine Ecosystem Functioning, University of Gdańsk, Poland
| | - Lucyna Konieczna
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Poland
| | - Anna Hallmann
- Department of Pharmaceutical Biochemistry, Medical University of Gdańsk, Poland.
| |
Collapse
|
9
|
Mezghani-Chaari S, Machreki-Ajimi M, Hamza-Chaffai A, Minier C. High estradiol exposure disrupts the reproductive cycle of the clam Ruditapes decussatus in a sex-specific way. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:26670-26680. [PMID: 28956239 DOI: 10.1007/s11356-017-0146-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 09/07/2017] [Indexed: 06/07/2023]
Abstract
Bivalve species may be susceptible to environmental estrogenic compounds including estradiol (E2). However, they are able to biotransform the hormone quite readily and inactivate its estrogenic action. To study the long-term effects of elevated free E2 tissue levels, we transiently exceeded the biotransformation capacity of the clam Ruditapes decussatus by exposing them with high E2 concentrations (400 ng/L) and subsequently study the consequences on gametogenesis during the following reproductive cycle. Exposure to 400 ngE2/L led to a significant increase in tissue free E2 levels, which reached 10-50 ng E2Eq/gww. No deleterious effect on gonado-somatic index (GSI), condition index (CI), or ability to respond to the stress on stress test could be detected after a month of exposure, suggesting the absence of negative effects on the clam's health. However, a marked increase in gametogenesis could be observed in both sexes during the exposure. Subsequent transplantation of the clams in the field allowed the normal development of the male clams and maturation of the gonads without any detrimental effect observed after 4 months. In contrast, in early July, all female clams formerly exposed to E2 showed lower health status, and only ovaries with atretic oocytes while all control and indigenous females were normal and mature. These results show a sex-specific effect of high E2 exposure and suggest either a direct or indirect role for E2 in R. decussatus' reproduction.
Collapse
Affiliation(s)
- Sawssan Mezghani-Chaari
- Unit of Marine and Environmental Toxicology, Sfax University, IPEIS, BP 1172, 3018, Sfax, Tunisia.
- Laboratory of Ecotoxicology, UMR-I 02 SEBIO, Normandie University, BP 540, 76058, Le Havre, France.
| | - Monia Machreki-Ajimi
- Unit of Marine and Environmental Toxicology, Sfax University, IPEIS, BP 1172, 3018, Sfax, Tunisia
| | - Amel Hamza-Chaffai
- Unit of Marine and Environmental Toxicology, Sfax University, IPEIS, BP 1172, 3018, Sfax, Tunisia
| | - Christophe Minier
- Laboratory of Ecotoxicology, UMR-I 02 SEBIO, Normandie University, BP 540, 76058, Le Havre, France
| |
Collapse
|
10
|
Liu P, Miao J, Song Y, Pan L, Yin P. Effects of 2,2',4,4'-tetrabromodipheny ether (BDE-47) on gonadogenesis of the manila clam Ruditapes philippinarum. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 193:178-186. [PMID: 29096091 DOI: 10.1016/j.aquatox.2017.10.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 09/17/2017] [Accepted: 10/25/2017] [Indexed: 06/07/2023]
Abstract
The reported adverse effects of Polybrominated diphenyl ether (PBDE) congeners on gonadogenesis in fish may also occur in marine bivalves especially the burrowing species such as manila clam Ruditapes philippinarum. In this study, clams were exposed to BDE-47 for 25days at 0, 0.1 and 1μg/L. By using the water temperature control method, gonadal maturation from resting to ripe stage were observed successively in both the control and the treatment groups during 25days. The results showed that exposure to BDE-47 at concentration below 1μg/L did not delay the gonadogenesis process of the clam R. philippinarum, and no evidence of adverse effects of BDE-47 on clam gonadal histology was observed. However, exposure to 1μg/L BDE-47 caused significant decreases of haemolymph testosterone levels in both female and male clams at day 5 and day 15. The mRNA expression of 3β-HSD in females exposed to BDE-47 was significantly decreased at day 5, while mRNA expression of 17β-HSD and CYP17 was not significantly changed in either sex. Exposure to BDE-47 also resulted in up-regulation of the mRNA expression of vitellogenin (Vtg) in both sexes and spermatogenesis associated protein 4-homolog (SAP4) in males. These results suggest a potential contribution of BDE-47 to reproductive disruption in the manila clams, especially in males. This study demonstrates the promising utility of water temperature control method in conjunction with histological endpoints and biomarkers such as mRNA levels of Vtg in determining the reproductive disturbances caused by EDCs on bivalves.
Collapse
Affiliation(s)
- Peipei Liu
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, PR China
| | - Jingjing Miao
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, PR China.
| | - Ying Song
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, PR China
| | - Luqing Pan
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, PR China
| | - Pengfei Yin
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, PR China
| |
Collapse
|
11
|
Burgos-Aceves MA, Faggio C. An approach to the study of the immunity functions of bivalve haemocytes: Physiology and molecular aspects. FISH & SHELLFISH IMMUNOLOGY 2017; 67:513-517. [PMID: 28625873 DOI: 10.1016/j.fsi.2017.06.042] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/12/2017] [Accepted: 06/15/2017] [Indexed: 05/19/2023]
Abstract
The Mediterranean mussel Mytilus galloprovincialis is an ecologically and economically important species. It has been used in programs of monitoring of pollution, since it is sessile organism that is capable of accumulating pollutants in tissues through filter feeding. Due to an increase of pollutants in the environment, marine mussels present physiological alterations that compromise their innate immune system, which can latter lead to opportunistic diseases. The haemocytes are the cells in charge of the immune response in the Mediterranean mussel and in other mollusks. In this review, we summarize the physiological and genetic response capacity of these immune cells to the presence of xenobiotics, pathogens and the interplay. The identification of the basic mechanisms of immunity and their modulation in mussels can give important information for the possible utilization of this species as an invertebrate model for studies on innate immunity, future immunotoxicological studies, and predict changes in the community for the future.
Collapse
Affiliation(s)
- Mario Alberto Burgos-Aceves
- Centro de Investigaciones Biológicas de Noroeste, S.C., Mar Bermejo 195, Col. Playa Palo de Sta. Rita, La Paz, BCS 23090, Mexico
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres, 31, 98166 Messina, Italy.
| |
Collapse
|
12
|
Guercia C, Cianciullo P, Porte C. Analysis of testosterone fatty acid esters in the digestive gland of mussels by liquid chromatography-high resolution mass spectrometry. Steroids 2017; 123:67-72. [PMID: 28502861 DOI: 10.1016/j.steroids.2017.05.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 05/02/2017] [Accepted: 05/08/2017] [Indexed: 10/19/2022]
Abstract
Several studies have indicated that up to 70% of the total steroids detected in molluscs are in the esterified form and that pollutants, by modifying the esterification of steroids with fatty acids, might act as endocrine disrupters. However, despite the strong physiological significance of this process, there is almost no information on which fatty acids form the steroid esters and how this process is modulated. This study (a) investigates the formation of fatty acid esters of testosterone in digestive gland microsomal fractions of the mussel Mytilus galloprovincialis incubated with either palmitoly-CoA or CoA and ATP, and (b) assesses whether the endocrine disruptor tributyltin (TBT) interferes with the esterification of testosterone. Analysis of testosterone esters was performed by liquid chromatography-high resolution mass spectrometry (UPLC-HRMS). When microsomal fractions were incubated with testosterone and palmitoly-CoA, the formation of testosterone palmitate was detected. However, when microsomes were incubated with CoA and ATP, and no exogenous activated fatty acid was added, the synthesis of 16:0, 16:1, 20:5 and 22:6 testosterone esters was observed. The presence of 100µM TBT in the incubation mixture did not significantly alter the esterification of testosterone. These results evidence the conjugation of testosterone with the most abundant fatty acids in the digestive gland microsomal fraction of mussels.
Collapse
Affiliation(s)
- Cesare Guercia
- Department of Environmental Chemistry, IDAEA-CSIC, Barcelona, Spain
| | | | - Cinta Porte
- Department of Environmental Chemistry, IDAEA-CSIC, Barcelona, Spain.
| |
Collapse
|
13
|
Schwarz TI, Katsiadaki I, Maskrey BH, Scott AP. Rapid uptake, biotransformation, esterification and lack of depuration of testosterone and its metabolites by the common mussel, Mytilus spp. J Steroid Biochem Mol Biol 2017; 171:54-65. [PMID: 28245981 DOI: 10.1016/j.jsbmb.2017.02.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 02/11/2017] [Accepted: 02/23/2017] [Indexed: 01/02/2023]
Abstract
The presence of the vertebrate steroids, testosterone (T) and 17β-estradiol in mollusks is often cited as evidence that they are involved in the control of their reproduction. In this paper, we show that a likely source of T in at least one species, the common mussel (Mytilus spp.), is from uptake from water. When mussels were exposed to waterborne tritiated T ([3H]-T) in a closed container, the radioactivity decreased rapidly and exponentially until, by 24h, approximately 35% remained in the water. The rate of uptake of radiolabel could not be saturated by concentrations as high as 16.5μgL-1 (mean measured) of non-radiolabeled T, showing that the animals have a very high capacity for uptake of T. At least 30% of the applied radioactivity could be extracted from the tissues of the animals with organic solvents and most of this (26% of the total applied radioactivity) was in the fatty acid ester fraction. Following alkaline hydrolysis, reverse phase HPLC and TLC, this fraction was shown to consist predominantly of 5α-dihydrotestosterone and 5α-androstane-3β,17β-diol, while T was a minor component. These steroids were definitively identified in the fatty acid ester fraction by mass spectrometry. Overall, less than 5% of the [3H]-T applied to the system remained untransformed at the end of exposure. After ten days of depuration there was no reduction in the total amount of radioactivity in the tissues, nor any changes in the ratio of the metabolites in the ester fraction. These findings show that any association between T presence and reproductive status or sex is confounded by their significant capacity for uptake, and that T undergoes extensive metabolism in mussels in vivo and therefore may not be representative of the androgenic burden of the animals. Consequently, measurements of T in mussel tissue offer little utility as an indicator of reproductive status or sex.
Collapse
Affiliation(s)
- Tamar I Schwarz
- Centre for Environment, Fisheries and Aquaculture Science, Barrack Road, Weymouth, Dorset DT4 8UB, UK
| | - Ioanna Katsiadaki
- Centre for Environment, Fisheries and Aquaculture Science, Barrack Road, Weymouth, Dorset DT4 8UB, UK.
| | - Benjamin H Maskrey
- Centre for Environment, Fisheries and Aquaculture Science, Barrack Road, Weymouth, Dorset DT4 8UB, UK
| | - Alexander P Scott
- Centre for Environment, Fisheries and Aquaculture Science, Barrack Road, Weymouth, Dorset DT4 8UB, UK
| |
Collapse
|
14
|
Lv L, Dong X, Lv F, Zhao W, Yu Y, Yang W. Molecular cloning and characterization of an estrogen receptor gene in the marine polychaete Perinereis aibuhitensis. Comp Biochem Physiol B Biochem Mol Biol 2017; 207:15-21. [DOI: 10.1016/j.cbpb.2017.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/30/2016] [Accepted: 02/03/2017] [Indexed: 11/17/2022]
|
15
|
Schwarz TI, Katsiadaki I, Maskrey BH, Scott AP. Mussels (Mytilus spp.) display an ability for rapid and high capacity uptake of the vertebrate steroid, estradiol-17β from water. J Steroid Biochem Mol Biol 2017; 165:407-420. [PMID: 27568213 DOI: 10.1016/j.jsbmb.2016.08.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 08/11/2016] [Accepted: 08/19/2016] [Indexed: 10/21/2022]
Abstract
Six experiments were carried out to define the optimum conditions for investigating the dynamics of uptake and metabolism of tritiated E2 from water by adult blue mussels, Mytilus spp. Optimum uptake was achieved using 400mL aerated sea water animal-1 and an incubation period of no more than 24h. The pattern of disappearance conformed closest to an inverse hyperbolic curve with the percentage of radiolabel that could be measured in the water reaching an asymptote that was on average 50% of the original. This apparent inability of the animals to absorb all the radiolabel was investigated further. Solvent partition and chromatography revealed that, after 24h, c. 60% of the radiolabel still present in the water was composed of water soluble conjugates, c. 25% was composed of tritiated water and only 15% ran on and around the chromatographic position of E2. The major water soluble constituent was identified by chromatography and mass-spectrometry as 1,3,5(10)-estratriene-3,17β-diol 3-sulfate (estradiol 3-S). The clearance rate of radiolabel was 46.9±1.8mLanimal-1h-1. This was not significantly affected by the addition of as much as 25μgL-1 cold E2 to the water, demonstrating that mussels have a large capacity for E2 uptake. A new procedure involving solvent partition was developed for separating the free, esterified and sulfated forms of E2 present in the flesh of mussels. This involved extracting the soft tissue with organic solvents and then treating a portion of dried extract with a combination of heptane (dissolved fatty acid esters of E2) and 80% ethanol (dissolved free and sulfated E2). The latter fraction was further partitioned between water (sulfate) and diethyl ether (free steroid). This procedure was much cheaper and less time-consuming than chromatography. Approximately 80% of the radioactivity that was taken up by the animals was present in the form of ester. Moreover, E2 was the only steroid identified after saponification of these esters. Of the remaining radioactivity, c. 10% was in the form of unidentified free steroids and c. 10% was estradiol 3-S. In order to determine how rapidly mussels were able to depurate tritiated E2 and its metabolites, two experiments were carried out. Animals from the first experiment purged up to 63% of radioactivity in 20days under flow-through conditions; whereas animals from the second experiment released only 16% of radioactivity in 10days under semi-static conditions. The ratios of the different forms of E2 did not change substantially during the course of depuration.
Collapse
Affiliation(s)
- Tamar I Schwarz
- Centre for Environment, Fisheries and Aquaculture Science Barrack Road, Weymouth, Dorset DT4 8UB, UK
| | - Ioanna Katsiadaki
- Centre for Environment, Fisheries and Aquaculture Science Barrack Road, Weymouth, Dorset DT4 8UB, UK.
| | - Benjamin H Maskrey
- Centre for Environment, Fisheries and Aquaculture Science Barrack Road, Weymouth, Dorset DT4 8UB, UK
| | - Alexander P Scott
- Centre for Environment, Fisheries and Aquaculture Science Barrack Road, Weymouth, Dorset DT4 8UB, UK
| |
Collapse
|
16
|
Maasz G, Zrinyi Z, Reglodi D, Petrovics D, Rivnyak A, Kiss T, Jungling A, Tamas A, Pirger Z. Pituitary adenylate cyclase-activating polypeptide (PACAP) has a neuroprotective function in dopamine-based neurodegeneration in rat and snail parkinsonian models. Dis Model Mech 2016; 10:127-139. [PMID: 28067625 PMCID: PMC5312006 DOI: 10.1242/dmm.027185] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 12/06/2016] [Indexed: 01/12/2023] Open
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) rescues dopaminergic neurons from neurodegeneration and improves motor changes induced by 6-hydroxy-dopamine (6-OHDA) in rat parkinsonian models. Recently, we investigated the molecular background of the neuroprotective effect of PACAP in dopamine (DA)-based neurodegeneration using rotenone-induced snail and 6-OHDA-induced rat models of Parkinson's disease. Behavioural activity, monoamine (DA and serotonin), metabolic enzyme (S-COMT, MB-COMT and MAO-B) and PARK7 protein concentrations were measured before and after PACAP treatment in both models. Locomotion and feeding activity were decreased in rotenone-treated snails, which corresponded well to findings obtained in 6-OHDA-induced rat experiments. PACAP was able to prevent the behavioural malfunctions caused by the toxins. Monoamine levels decreased in both models and the decreased DA level induced by toxins was attenuated by ∼50% in the PACAP-treated animals. In contrast, PACAP had no effect on the decreased serotonin (5HT) levels. S-COMT metabolic enzyme was also reduced but a protective effect of PACAP was not observed in either of the models. Following toxin treatment, a significant increase in MB-COMT was observed in both models and was restored to normal levels by PACAP. A decrease in PARK7 was also observed in both toxin-induced models; however, PACAP had a beneficial effect only on 6-OHDA-treated animals. The neuroprotective effect of PACAP in different animal models of Parkinson's disease is thus well correlated with neurotransmitter, enzyme and protein levels. The models successfully mimic several, but not all etiological properties of the disease, allowing us to study the mechanisms of neurodegeneration as well as testing new drugs. The rotenone and 6-OHDA rat and snail in vivo parkinsonian models offer an alternative method for investigation of the molecular mechanisms of neuroprotective agents, including PACAP. Summary: PACAP has a neuroprotective effect in different toxin-induced rat and snail parkinsonian models, acting partially through the same mechanisms.
Collapse
Affiliation(s)
- Gabor Maasz
- MTA-ÖK BLI NAP_B Adaptive Neuroethology, Department of Experimental Zoology, Balaton Limnological Institute, MTA-CER, 8237 Tihany, Hungary.,Department of Analytical Biochemistry, Institute of Biochemistry and Medical Chemistry, University of Pecs, 7624 Pecs, Hungary
| | - Zita Zrinyi
- MTA-ÖK BLI NAP_B Adaptive Neuroethology, Department of Experimental Zoology, Balaton Limnological Institute, MTA-CER, 8237 Tihany, Hungary
| | - Dora Reglodi
- Department of Anatomy, University of Pecs, 7624 Pecs, Hungary
| | - Dora Petrovics
- Department of Analytical Biochemistry, Institute of Biochemistry and Medical Chemistry, University of Pecs, 7624 Pecs, Hungary
| | - Adam Rivnyak
- Department of Anatomy, University of Pecs, 7624 Pecs, Hungary
| | - Tibor Kiss
- Department of Experimental Zoology, Balaton Limnological Institute, MTA-CER, 8237 Tihany, Hungary
| | - Adel Jungling
- Department of Anatomy, University of Pecs, 7624 Pecs, Hungary
| | - Andrea Tamas
- Department of Anatomy, University of Pecs, 7624 Pecs, Hungary
| | - Zsolt Pirger
- MTA-ÖK BLI NAP_B Adaptive Neuroethology, Department of Experimental Zoology, Balaton Limnological Institute, MTA-CER, 8237 Tihany, Hungary
| |
Collapse
|
17
|
Prichard E, Granek EF. Effects of pharmaceuticals and personal care products on marine organisms: from single-species studies to an ecosystem-based approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:22365-22384. [PMID: 27617334 DOI: 10.1007/s11356-016-7282-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 07/18/2016] [Indexed: 06/06/2023]
Abstract
Pharmaceuticals and personal care products (PPCPs) are contaminants of emerging concern that are increasing in use and have demonstrated negative effects on aquatic organisms. There is a growing body of literature reporting the effects of PPCPs on freshwater organisms, but studies on the effects of PPCPs to marine and estuarine organisms are limited. Among effect studies, the vast majority examines subcellular or cellular effects, with far fewer studies examining organismal- and community-level effects. We reviewed the current published literature on marine and estuarine algae, invertebrates, fish, and mammals exposed to PPCPs, in order to expand upon current reviews. This paper builds on previous reviews of PPCP contamination in marine environments, filling prior literature gaps and adding consideration of ecosystem function and level of knowledge across marine habitat types. Finally, we reviewed and compiled data gaps suggested by current researchers and reviewers and propose a multi-level model to expand the focus of current PPCP research beyond laboratory studies. This model includes examination of direct ecological effects including food web and disease dynamics, biodiversity, community composition, and other ecosystem-level indicators of contaminant-driven change.
Collapse
Affiliation(s)
- Emma Prichard
- Environmental Science & Management, Portland State University, Portland, OR, 97201, USA
| | - Elise F Granek
- Environmental Science & Management, Portland State University, Portland, OR, 97201, USA.
| |
Collapse
|
18
|
Avar P, Zrínyi Z, Maász G, Takátsy A, Lovas S, G-Tóth L, Pirger Z. β-Estradiol and ethinyl-estradiol contamination in the rivers of the Carpathian Basin. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:11630-11638. [PMID: 26936475 DOI: 10.1007/s11356-016-6276-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 02/11/2016] [Indexed: 06/05/2023]
Abstract
17β-Estradiol (E2) and 17α-ethinyl estradiol (EE2), which are environmental estrogens, have been determined with LC-MS in freshwater. Their sensitive analysis needs derivatization and therefore is very hard to achieve in multiresidue screening. We analyzed samples from all the large and some small rivers (River Danube, Drava, Mur, Sava, Tisza, and Zala) of the Carpathian Basin and from Lake Balaton. Freshwater was extracted on solid phase and derivatized using dansyl chloride. Separation was performed on a Kinetex XB-C18 column. Detection was achieved with a benchtop orbitrap mass spectrometer using targeted MS analysis for quantification. Limits of quantification were 0.05 ng/L (MS1) and 0.1 ng/L (MS/MS) for E2, and 0.001 ng/L (MS1) and 0.2 ng/L (MS/MS) for EE2. River samples contained n.d.-5.2 ng/L E2 and n.d.-0.68 ng/L EE2. Average levels of E2 and EE2 were 0.61 and 0.084 ng/L, respectively, in rivers, water courses, and Lake Balaton together, but not counting city canal water. EE2 was less abundant, but it was still present in almost all of the samples. In beach water samples from Lake Balaton, we measured 0.076-0.233 E2 and n.d.-0.133 EE2. A relative high amount of EE2 was found in river Zala (0.68 ng/L) and in Hévíz-Páhoki canal (0.52 ng/L), which are both in the catchment area of Lake Balaton (Hungary).
Collapse
Affiliation(s)
- Péter Avar
- Department of Analytical Biochemistry, Institute of Biochemistry and Medical Chemistry, University of Pécs, Pécs, 7624, Hungary.
| | - Zita Zrínyi
- Adaptive Neuroethology, Department of Experimental Zoology, Tihany, 8237, Hungary
| | - Gábor Maász
- Department of Analytical Biochemistry, Institute of Biochemistry and Medical Chemistry, University of Pécs, Pécs, 7624, Hungary
- Adaptive Neuroethology, Department of Experimental Zoology, Tihany, 8237, Hungary
| | - Anikó Takátsy
- Department of Analytical Biochemistry, Institute of Biochemistry and Medical Chemistry, University of Pécs, Pécs, 7624, Hungary
| | - Sándor Lovas
- Adaptive Neuroethology, Department of Experimental Zoology, Tihany, 8237, Hungary
| | - László G-Tóth
- Department of Hydrozoology, Balaton Limnological Institute, MTA Centre for Ecological Research, Tihany, 8237, Hungary
| | - Zsolt Pirger
- Adaptive Neuroethology, Department of Experimental Zoology, Tihany, 8237, Hungary
| |
Collapse
|
19
|
Omran NE, Salama WM. The endocrine disruptor effect of the herbicides atrazine and glyphosate on Biomphalaria alexandrina snails. Toxicol Ind Health 2016; 32:656-65. [PMID: 24215068 DOI: 10.1177/0748233713506959] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Atrazine (AZ) and glyphosate (GL) are herbicides that are widely applied to cereal crops in Egypt. The present study was designed to investigate the response of the snailBiomphalaria alexandrina(Mollusca: Gastropoda) as a bioindicator for endocrine disrupters in terms of steroid levels (testosterone (T) and 17β-estradiol (E)), alteration of microsomal CYP4501B1-like immunoreactivity, total protein (TP) level, and gonadal structure after exposure to sublethal concentrations of AZ or GL for 3 weeks. In order to study the ability of the snails' recuperation, the exposed snails were subjected to a recovery period for 2 weeks. The results showed that the level of T, E, and TP contents were significantly decreased (p ≤ 0.05) in both AZ- and GL-exposed groups compared with control (unexposed) group. The level of microsomal CYP4501B1-like immunoreactivity increased significantly (p ≤ 0.05) in GL- and AZ-exposed snails and reach nearly a 50% increase in AZ-exposed group. Histological investigation of the ovotestis showed that AZ and GL caused degenerative changes including azoospermia and oocytes deformation. Interestingly, all the recovered groups did not return back to their normal state. It can be concluded that both herbicides are endocrine disrupters and cause cellular toxicity indicated by the decrease of protein content and the increase in CYP4501B1-like immunoreactivity. This toxicity is irreversible and the snail is not able to recover its normal state. The fluctuation of CYP4501B1 suggests that this vertebrate-like enzyme may be functional also in the snail and may be used as a biomarker for insecticide toxicity.
Collapse
|
20
|
Ricciardi KL, Poynton HC, Duphily BJ, Blalock BJ, Robinson WE. Bioconcentration and depuration of (14)C-labeled 17α-ethinyl estradiol and 4-nonylphenol in individual organs of the marine bivalve Mytilus edulis L. . ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2016; 35:863-873. [PMID: 26126666 DOI: 10.1002/etc.3137] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 05/13/2015] [Accepted: 06/26/2015] [Indexed: 06/04/2023]
Abstract
Endocrine-disrupting compounds (EDCs), including 17α-ethinyl estradiol (EE2) and 4-nonylphenol (4-NP), enter coastal environments primarily in effluents of wastewater treatment facilities and have become ubiquitous in marine surface waters, sediments, and biota. Although EE2 and 4-NP have been detected in marine shellfish, the kinetics of bioconcentration and their tissue distribution have not been thoroughly investigated. The authors performed bioconcentration and depuration experiments in the blue mussel, Mytilus edulis, with 3.37 nM EE2 (0.999 μg/L) and 454 nM 4-NP (100.138 µg/L). Mussels and seawater were sampled throughout a 38-d exposure and a 35-d depuration period, and 6 tissues were individually assayed. Uptake of EE2 and 4-NP was curvilinear throughout exposure and followed a similar uptake pattern: digestive gland > gill ≥ remaining viscera > gonad > adductor > plasma. Depuration varied, however, with half-lives ranging from 2.7 d (plasma) to 92 d (gill) for EE2 and 15 d (plasma) to 57 d (gill) for 4-NP. An innovative modeling approach, with 3 coupled mathematical models, was developed to differentiate the unique roles of the gill and plasma in distributing the EDCs to internal tissues. Plasma appears pivotal in regulating EDC uptake and depuration within the whole mussel.
Collapse
Affiliation(s)
- Karen L Ricciardi
- The School for the Environment, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - Helen C Poynton
- The School for the Environment, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - Brian J Duphily
- The School for the Environment, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - Bonnie J Blalock
- The School for the Environment, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - William E Robinson
- The School for the Environment, University of Massachusetts Boston, Boston, Massachusetts, USA
| |
Collapse
|
21
|
Deng X, Pan L, Cai Y, Jin Q. Transcriptomic changes in the ovaries of scallop Chlamys farreri exposed to benzo[a]pyrene. Genes Genomics 2016. [DOI: 10.1007/s13258-016-0397-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Silvia M, Paolo T, Nobile M, Denise F, Cinta P, Michela S. Unraveling estradiol metabolism and involvement in the reproductive cycle of non-vertebrate animals: The sea urchin model. Steroids 2015; 104:25-36. [PMID: 26277857 DOI: 10.1016/j.steroids.2015.08.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 08/05/2015] [Accepted: 08/10/2015] [Indexed: 01/08/2023]
Abstract
Estradiol (E2) is a well-known hormone in vertebrates whereas in invertebrates its unambiguous presence was verified only in some species. Weather this presence is also associated to similarly conserved roles in animal phylogeny is similarly uncertain. Due to their phylogenetic position, echinoderms represent ideal experimental models to provide evolutionary insights into estrogen appearance and function. Therefore, in this research, we investigated if E2 is truly present and has a role in the reproductive biology of the sea urchin Paracentrotus lividus. Presence of 17β estradiol in body fluids was confirmed by liquid chromatography-mass spectrometry. By immunological methods (RIA) we evaluated the physiological circulating E2 levels of adult specimens and, on the basis of these, we directly administered E2 to study its metabolism and its putative effects on gonad development at physiological doses. Although different E2 tested concentrations, a correspondent dose-dependent increase of hormone levels was not found in both body fluids and gonads, suggesting the presence of potent homeostatic/detoxification mechanisms. These latter do not involve enzymes such as aromatase-like, sulfotransferase-like and acyltransferase-like, whose activities were not affected by E2 administration. Despite the increase of endogenous E2, the treatment did not induce significant variations in none of the considered reproductive parameters. Overall, this research (1) provides definitive evidence of E2 presence in sea urchin tissues and (2) demonstrate that, differently from vertebrates and starfish, E2 does not play a key role in sea urchins reproductive processes. Intra-phylum differences suggest the existence of class-specific hormonal mechanisms and highlight the risk of Phylum generalization.
Collapse
Affiliation(s)
- Mercurio Silvia
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Tremolada Paolo
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Maria Nobile
- Department of Veterinary Sciences and Public Health, University of Milan, Via Celoria 10, 20133 Milan, Italy
| | - Fernandes Denise
- FCT, CIMA, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Porte Cinta
- Department of Environmental Chemistry, IDAEA-CSIC, calle Jordi Girona 18, 08034 Barcelona, Spain
| | - Sugni Michela
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy.
| |
Collapse
|
23
|
Dimastrogiovanni G, Fernandes D, Bonastre M, Porte C. Progesterone is actively metabolized to 5α-pregnane-3,20-dione and 3β-hydroxy-5α-pregnan-20-one by the marine mussel Mytilus galloprovincialis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 165:93-100. [PMID: 26026673 DOI: 10.1016/j.aquatox.2015.05.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 05/15/2015] [Accepted: 05/19/2015] [Indexed: 06/04/2023]
Abstract
Progesterone (P4) and synthetic progestins enter the aquatic environment through wastewater treatment plant effluents and agricultural run-off, posing potential risks to aquatic organisms due to their biological activity. P4 is a precursor of a number of steroids in vertebrates, including estrogens and androgens. Mussels Mytilus galloprovincialis were exposed to P4 at the ng to low μg/L range (0.02-10μg/L) for 7 days with the aim of (a) assessing potential alterations on endogenous steroids as a consequence of exposure, and (b) describing the enzymatic pathways involved in P4 metabolism in mussels. No significant alteration of the levels of testosterone (T) and estradiol (E2) was observed in mantle/gonad tissue of exposed mussels, in spite of a 5.6-fold increase in immunoreactive T in those exposed to 10μg P4/L, which was attributed to cross-reactivity. P4 was actively metabolized to 5α-pregnane-3,20-dione (5α-DHP) and 3β-hydroxy-5α-pregnan-20-one (3β,20-one) in digestive gland, with no evidence for the synthesis of 17α-hydroxyprogesterone or androstenedione. The metabolism of P4 to 5α-DHP was not altered by exposure. Histological examination of the gonads suggested that exposure to 10μg/L P4 induced gamete maturation and release in mussels. Nonetheless, environmental concentrations of P4 are unlikely to have an endocrine action in mussels.
Collapse
Affiliation(s)
| | - Denise Fernandes
- Environmental Chemistry Department, IDAEA-CSIC, C/Jordi Girona 18-26, 08034 Barcelona, Spain; FCT, CIMA, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| | - Marta Bonastre
- Environmental Chemistry Department, IDAEA-CSIC, C/Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Cinta Porte
- Environmental Chemistry Department, IDAEA-CSIC, C/Jordi Girona 18-26, 08034 Barcelona, Spain.
| |
Collapse
|
24
|
Tian S, Pan L, Tao Y, Sun X. Environmentally relevant concentrations of benzo[a]pyrene affect steroid levels and affect gonad of male scallop Chlamys farreri. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 114:150-156. [PMID: 25637750 DOI: 10.1016/j.ecoenv.2015.01.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 01/14/2015] [Accepted: 01/19/2015] [Indexed: 06/04/2023]
Abstract
Sexually mature male Chlamys farreri were exposed to benzo[a]pyrene for 10 days at four concentrations at 0, 0.025, 0.5 and 10 μg/L. Fluctuations in sex steroids during the exposure period were observed, which indicated that sex steroids have a role in gamete development. Exposure to B[a]P altered levels of 17β-estradiol, testosterone, and progesterone. Furthermore, B[a]P treatments induced oxidative stress in a dose-dependent manner on spermary of scallop and led to delayed development and damaged spermatid in germinal epithelium of spermary. Overall, B[a]P affected the steroid levels and induced gonadal toxicity at environmentally relevant concentrations.
Collapse
Affiliation(s)
- Shuangmei Tian
- The Key Laboratory of Mariculture, Fisheries College, Ministry of Education, Ocean University of China, Yushan Road 5, Qingdao 266003, PR China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Fisheries College, Ministry of Education, Ocean University of China, Yushan Road 5, Qingdao 266003, PR China.
| | - Yanxia Tao
- The Key Laboratory of Mariculture, Fisheries College, Ministry of Education, Ocean University of China, Yushan Road 5, Qingdao 266003, PR China
| | - Xiaohua Sun
- The Key Laboratory of Mariculture, Fisheries College, Ministry of Education, Ocean University of China, Yushan Road 5, Qingdao 266003, PR China
| |
Collapse
|
25
|
Deng X, Pan L, Miao J, Cai Y, Hu F. Digital gene expression analysis of reproductive toxicity of benzo[a]pyrene in male scallop chlamys farreri. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 110:190-196. [PMID: 25244687 DOI: 10.1016/j.ecoenv.2014.09.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Revised: 08/28/2014] [Accepted: 09/02/2014] [Indexed: 06/03/2023]
Abstract
Benzo[a]pyrene (BaP) is a representative polycyclic aromatic hydrocarbon (PAH) and is studied widely for its strong toxicity and wide distribution. Although BaP pollution in marine environment is increasing, molecular mechanisms underlying reproductive toxicity of BaP in marine mollusks have been seldom systematically studied, especially in males. In this study, genes that regulated reproductive responses of Chlamys farreri under BaP stress were analyzed through digital gene expression (DGE) sequencing with testis tissues. A total of 12,485,055 and 14,454,127 clean reads were generated from control and BaP exposure DGE libraries, respectively. After comparing two libraries, 1051 differentially expressed genes were detected, with 223 up-regulated and 828 down-regulated genes. Gene ontology (GO) annotation and kyoto encyclopedia of genes and genomes (KEGG) pathway analyses were performed on all genes to understand their biological functions and processes. The results showed that numerous enriched, differentially expressed genes related to aromatic compound catabolic processes, spermatid development, microtubule-based movement, energy production and immune response. Quantitative real-time PCR was performed to verify the expressed genes of DGE. The study generated data to show the overall reproductive transcription responses of male C. farreri under BaP stress, and it also can serve as the reference for future study of organic pollutions in aquatic mollusks.
Collapse
Affiliation(s)
- Xuxu Deng
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China.
| | - Jingjing Miao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Yuefeng Cai
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Fengxiao Hu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| |
Collapse
|
26
|
Zhang Y, Wang Q, Ji Y, Zhang Q, Wu H, Xie J, Zhao J. Identification and mRNA expression of two 17β-hydroxysteroid dehydrogenase genes in the marine mussel Mytilus galloprovincialis following exposure to endocrine disrupting chemicals. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 37:1243-1255. [PMID: 24835553 DOI: 10.1016/j.etap.2014.04.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 04/22/2014] [Accepted: 04/23/2014] [Indexed: 06/03/2023]
Abstract
17β-Hydroxysteroid dehydrogenases (17β-HSDs) are multifunctional enzymes involved in the metabolism of steroids, fatty acids, retinoids and bile acid. In this study, two novel types of 17β-HSDs (named as MgHsd17b10 and MgHsd17b12) were cloned from Mytilus galloprovincialis by using rapid amplification of cDNA ends (RACE) approaches. Sequence analysis showed that MgHsd17b10 and MgHsd17b12 encoded a polypeptide of 259 and 325 amino acids, respectively. Phylogenetic analysis revealed that MgHsd17b10 and MgHsd17b12 were evolutionarily clustered with other invertebrate 17β-HSD type 10 and 17β-HSD type 12 homologues. The MgHsd17b10 and MgHsd17b12 transcripts could be detected in all examined tissues with higher expression levels in digestive glands and gonad. After exposed to endocrine disrupting chemicals (Bisphenol A or 2,2',4,4'-tetrabromodiphenyl ether), the expression of MgHsd17b10 and MgHsd17b12 transcripts was both down-regulated in digestive glands. These findings suggest that MgHsd17b10 and MgHsd17b12 perhaps play an important role in the endocrine regulation of M. galloprovincialis.
Collapse
Affiliation(s)
- Yingying Zhang
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Qing Wang
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Yinglu Ji
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Qian Zhang
- China Agriculture University (Yantai), Yantai 264670, PR China
| | - Huifeng Wu
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China.
| | - Jia Xie
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jianmin Zhao
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China.
| |
Collapse
|
27
|
Liu J, Zhang Z, Zhang L, Liu X, Yang D, Ma X. Variations of estradiol-17β and testosterone levels correlated with gametogenesis in the gonad of Zhikong scallop (Chlamys farreri) during annual reproductive cycle. CAN J ZOOL 2014. [DOI: 10.1139/cjz-2013-0202] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
To assess the potential roles of sex steroids in modulating reproductive processes in the Zhikong scallop (Chlamys farreri (Jones and Preston, 1904)), variations in estradiol-17β (E2) and testosterone (T) levels in gonads were examined monthly from January to December 2012 by enzyme-linked immunosorbent assay (ELISA). The mean concentrations of E2 and T in gonads ranged from 75.07 to 666.24 pg/g and from 91.09 to 506.28 pg/g, respectively. Concentrations of E2 were significantly higher in ovaries than in testes, while T concentrations were higher in testes than in ovaries during gametogenesis. Concentrations of E2 in females and T in males increased with development and maturation of gonad, attained the highest value before spawning, and decreased rapidly after spawning. A positive correlation between E2 levels and oocyte diameters (r = 0.743, P < 0.05, n = 25) was observed, suggesting that E2 may play a role in oogenesis. These findings indicate that E2 and T, which are highly correlated with the reproductive cycle, may play an important role in sex determination, sex differentiation, gametogenesis, and spawning in C. farreri.
Collapse
Affiliation(s)
- J. Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, People’s Republic of China
| | - Z. Zhang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, People’s Republic of China
| | - L. Zhang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, People’s Republic of China
| | - X. Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, People’s Republic of China
| | - D. Yang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, People’s Republic of China
| | - X. Ma
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, People’s Republic of China
| |
Collapse
|
28
|
Tian S, Pan L, Sun X. An investigation of endocrine disrupting effects and toxic mechanisms modulated by benzo[a]pyrene in female scallop Chlamys farreri. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 144-145:162-171. [PMID: 24185101 DOI: 10.1016/j.aquatox.2013.09.031] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Revised: 09/27/2013] [Accepted: 09/29/2013] [Indexed: 06/02/2023]
Abstract
The purpose of this study was to investigate the endocrine disrupting effects induced by benzo[a]pyrene (B[a]P) and explore the underlying mechanisms in mollusks. In this study, sexually mature female Chlamys farreri were exposed to benzo[a]pyrene for 10 days at four different concentrations as 0, 0.025, 0.5 and 10 μg/L. Sex steroids were identified and quantified by electrochemiluminescence immunoassay (ECLIA) method and results showed that exposure to B[a]P exerts great suppression on 17β-estradiol, testosterone production and disrupts progesterone levels in ovary. Transcription of genes were detected and measured by real-time RT-PCR. It showed that at day 10 B[a]P inhibited 3 β-HSD, CYP17 and 17β-HSD mRNA expression in a dose-dependent manner, which suggests that they could be potential targets of B[a]P that disrupt steroidogenic machinery. Moreover, 0.025 μg/L B[a]P activated transcription of aryl hydrocarbon receptor (AHR), AHR nuclear translocator (ARNT), CYP1A1 and estrogen receptor (ER), while 10 μg/L B[a]P suppressed all of them. The consistency of their responses to B[a]P exposure implies that AHR action may be involved in invertebrate CYP regulation and ER transcription despite of unknown mechanisms. Additionally, B[a]P exposure could induce ovarian impairment and developmental delay in C. farreri. Overall, sensitivity of C. farreri to endocrine disruption and toxicity suggests that C. farreri is a suitable species for study of endocrine-disrupting effects in marine invertebrates. This study will form a solid basis for a realistic extrapolation of endocrine disrupting effects across taxonomic groups and phyla.
Collapse
Affiliation(s)
- Shuangmei Tian
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | | | | |
Collapse
|
29
|
Giusti A, Joaquim-Justo C. Esterification of vertebrate like steroids in molluscs: a target of endocrine disruptors? Comp Biochem Physiol C Toxicol Pharmacol 2013; 158:187-98. [PMID: 24004916 DOI: 10.1016/j.cbpc.2013.08.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 08/27/2013] [Accepted: 08/27/2013] [Indexed: 12/24/2022]
Abstract
Alterations of the reproductive organs of gastropod molluscs exposed to pollutants have been reported in natural populations for more than 40 years. In some cases, these impacts have been linked to exposure to endocrine-disrupting chemicals (EDCs), which are known to induce adverse impacts on vertebrates, mainly by direct binding to steroid receptors or by altering hormone synthesis. Investigations on the mechanisms of action of endocrine disruptors in molluscs show that EDCs induce modifications of endogenous titres of androgens (e.g., testosterone, androstenedione) and oestrogens (e.g., 17ß-oestradiol). Alterations of the activity of enzymes related to steroid metabolism (i.e., cytochrome P-450 aromatase, acyltransferases) are also often observed. In bivalves and gastropods, fatty acid esterification of steroids might constitute the major regulation of androgen and oestrogen homeostasis. The present review indicates that metabolism of steroid hormones to fatty acid esters might be a target of synthetic EDCs. Alterations of this process would impact the concentrations of free, potentially bioactive, form of steroids.
Collapse
Affiliation(s)
- Arnaud Giusti
- Laboratory of Animal Ecology and Ecotoxicology, Centre of Analytical Research and Technology (CART), Liège University, 15 Allée du 6 août, 4000 Liège, Belgium.
| | | |
Collapse
|
30
|
Scott AP. Do mollusks use vertebrate sex steroids as reproductive hormones? II. Critical review of the evidence that steroids have biological effects. Steroids 2013; 78:268-81. [PMID: 23219696 DOI: 10.1016/j.steroids.2012.11.006] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 10/22/2012] [Accepted: 11/02/2012] [Indexed: 01/02/2023]
Abstract
In assessing the evidence as to whether vertebrate sex steroids (e.g. testosterone, estradiol, progesterone) have hormonal actions in mollusks, ca. 85% of research papers report at least one biological effect; and 18 out of 21 review papers (published between 1970 and 2012) express a positive view. However, just under half of the research studies can be rejected on the grounds that they did not actually test steroids, but compounds or mixtures that were only presumed to behave as steroids (or modulators of steroids) on the basis of their effects in vertebrates (e.g. Bisphenol-A, nonylphenol and sewage treatment effluents). Of the remaining 55 papers, some can be criticized for having no statistical analysis; some for using only a single dose of steroid; others for having irregular dose-response curves; 40 out of the 55 for not replicating the treatments; and 50 out of 55 for having no within-study repetition. Furthermore, most studies had very low effect sizes in comparison to fish-based bioassays for steroids (i.e. they had a very weak 'signal-to-noise' ratio). When these facts are combined with the fact that none of the studies were conducted with rigorous randomization or 'blinding' procedures (implying the possibility of 'operator bias') one must conclude that there is no indisputable bioassay evidence that vertebrate sex steroids have endocrinological or reproductive roles in mollusks. The only observation that has been independently validated is the ability of estradiol to trigger rapid (1-5 min) lysosomal membrane breakdown in hemocytes of Mytilus spp. This is a typical 'inflammatory' response, however, and is not proof that estradiol is a hormone - especially when taken in conjunction with the evidence (discussed in a previous review) that mollusks have neither the enzymes necessary to synthesize vertebrate steroids nor nuclear receptors with which to respond to them.
Collapse
Affiliation(s)
- Alexander P Scott
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, Dorset, UK.
| |
Collapse
|
31
|
Scott AP. Do mollusks use vertebrate sex steroids as reproductive hormones? Part I: Critical appraisal of the evidence for the presence, biosynthesis and uptake of steroids. Steroids 2012; 77:1450-68. [PMID: 22960651 DOI: 10.1016/j.steroids.2012.08.009] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 08/16/2012] [Accepted: 08/21/2012] [Indexed: 01/27/2023]
Abstract
The consensus view is that vertebrate-type steroids are present in mollusks and perform hormonal roles which are similar to those that they play in vertebrates. Although vertebrate steroids can be measured in molluscan tissues, a key question is 'Are they formed endogenously or they are picked up from their environment?'. The present review concludes that there is no convincing evidence for biosynthesis of vertebrate steroids by mollusks. Furthermore, the 'mollusk' genome does not contain the genes for key enzymes that are necessary to transform cholesterol in progressive steps into vertebrate-type steroids; nor does the mollusk genome contain genes for functioning classical nuclear steroid receptors. On the other hand, there is very strong evidence that mollusks are able to absorb vertebrate steroids from the environment; and are able to store some of them (by conjugating them to fatty acids) for weeks to months. It is notable that the three steroids that have been proposed as functional hormones in mollusks (i.e. progesterone, testosterone and 17β-estradiol) are the same as those of humans. Since humans (and indeed all vertebrates) continuously excrete steroids not just via urine and feces, but via their body surface (and, in fish, via the gills), it is impossible to rule out contamination as the sole reason for the presence of vertebrate steroids in mollusks (even in animals kept under supposedly 'clean laboratory conditions'). Essentially, the presence of vertebrate steroids in mollusks cannot be taken as reliable evidence of either endogenous biosynthesis or of an endocrine role.
Collapse
Affiliation(s)
- Alexander P Scott
- Centre for Environment, Fisheries and Aquaculture Science, Barrack Road, Weymouth, Dorset DT4 8UB, UK.
| |
Collapse
|
32
|
Wang F, Vihma V, Badeau M, Savolainen-Peltonen H, Leidenius M, Mikkola T, Turpeinen U, Hämäläinen E, Ikonen E, Wähälä K, Fledelius C, Jauhiainen M, Tikkanen MJ. Fatty acyl esterification and deesterification of 17β-estradiol in human breast subcutaneous adipose tissue. J Clin Endocrinol Metab 2012; 97:3349-56. [PMID: 22723316 DOI: 10.1210/jc.2012-1762] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
CONTEXT Adipose tissue has an important role in peripheral estrogen synthesis. One of the metabolic pathways of estradiol (E(2)) is its conversion to lipophilic fatty acyl esters. OBJECTIVE The aim was to study the metabolism of E(2) fatty acyl esters in adipose tissue and, specifically, the role of hormone-sensitive lipase (HSL) in steroid ester hydrolysis. DESIGN AND SETTING Tissue samples were obtained during elective surgery in University Central Hospital in the years 2008-2011. PATIENTS Women undergoing reduction mammoplasty (n = 27) or surgery for breast cancer (n = 16) participated in the study. INTERVENTIONS Two sc adipose tissue samples were taken from different quadrants of the breast. Radiolabeled steroids were incubated with tissue homogenate (esterase assay) or microsomal fraction (acyl transferase assay). E(2) and E(2) fatty acyl ester concentrations were determined by fluoroimmunoassay or liquid chromatography-tandem mass spectrometry. MAIN OUTCOME MEASURES We evaluated the hydrolysis rate of E(2) fatty acyl esters as well as the esterification rate of E(2); we also related tissue concentrations of E(2) and E(2) esters to serum estrogen concentrations. RESULTS Compared to esters of dehydroepiandrosterone and cholesterol, the hydrolysis of E(2) esters was much slower, whereas the esterification rate of E(2) was higher. The hydrolysis of E(2) esters in adipose tissue was reduced by 33-51% by inhibition of HSL. Estrogen concentration in sc adipose tissue was higher than in serum in both pre- and postmenopausal women. CONCLUSIONS E(2) fatty acyl esters in adipose tissue surrounding the mammary gland may act as a reservoir for conversion back to biologically active E(2). This is partly dependent on HSL activity.
Collapse
Affiliation(s)
- Feng Wang
- Folkhälsan Research Center, Biomedicum Helsinki C415, Haartmaninkatu 8, 00290 Helsinki, Finland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
MacKenzie LA, Selwood AI, Marshall C. Isolation and characterization of an enzyme from the Greenshell™ mussel Perna canaliculus that hydrolyses pectenotoxins and esters of okadaic acid. Toxicon 2012; 60:406-19. [PMID: 22613166 DOI: 10.1016/j.toxicon.2012.05.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 04/30/2012] [Accepted: 05/08/2012] [Indexed: 12/01/2022]
Abstract
An enzyme capable of hydrolysing pectenotoxins (PTXs) and okadaic acid (OA) esters within the hepatopancreas of the Greenshell™ mussel Perna canaliculus was isolated and characterized. The enzyme was purified by sequential polyethylene glycol fractionation, anion exchange, hydrophobic interaction, gel filtration and hydroxyapatite chromatography. The enzyme was an acidic (pI ∼ 4.8), monomeric, 67 kDa, serine esterase with optimum activity at pH 8.0 and 25 °C. PTX2 and PTX1 were hydrolysed but the enzyme was inactive against PTX11, PTX6 and acid isomerised PTX2 and PTX11. PTX11 and PTX2b competitively inhibited PTX2 hydrolysis. The enzyme also hydrolysed short and medium chain length (C2-C10) 4-nitrophenyl-esters, okadaic acid C8-C10 diol esters and DTX1 7-O-palmitoyl ester (DTX3). MALDI-Tof MS/MS analysis showed that the enzyme had some homology with a juvenile hormone esterase from the Red Flour Beetle Tribolium castaneum, although BLAST searches of several data bases using de novo amino acid sequences failed to identify any homology with known proteins.
Collapse
|
34
|
Cubero-Leon E, Puinean AM, Labadie P, Ciocan C, Itoh N, Kishida M, Osada M, Minier C, Hill EM, Rotchell JM. Two CYP3A-like genes in the marine mussel Mytilus edulis: mRNA expression modulation following short-term exposure to endocrine disruptors. MARINE ENVIRONMENTAL RESEARCH 2012; 74:32-39. [PMID: 22189070 DOI: 10.1016/j.marenvres.2011.11.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 10/06/2011] [Accepted: 11/21/2011] [Indexed: 05/31/2023]
Abstract
Members of the vertebrate CYP3A subfamily are involved in the metabolism of steroids and a wide range of xenobiotics. In this study two CYP3A-like mRNAs have been isolated from the mussel (Mytilus edulis), and their seasonal expression profile and modulation by estrogens examined. Sexual dimorphism of CYP3A-like mRNA expression was not observed in mussel gonads of individuals collected throughout a year. Nevertheless, natural variation in gonadal CYP3A-like mRNA expression was observed, with highest levels of CYP3A isoform1 and lowest levels of CYP3A isoform2 mRNA during the maturation and spawning season. Exposure to a 10% sewage treatment works extract did not result in any significant changes in mRNA expression of CYP3A-like. In contrast, exposure to E2 (200 ng/L) and TBT (100 ng/L) significantly down-regulated the expression of CYP3A-like isoform1 but not CYP3A-like isoform2 suggesting differential regulation.
Collapse
Affiliation(s)
- Elena Cubero-Leon
- Department of Biology and Environmental Science, University of Sussex, Falmer, Brighton BN1 9QJ, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
David A, Fenet H, Escande A, Munaron D, Rosain D, Maillot-Maréchal E, Aït-Aïssa S, Casellas C, Gomez E. In vitro biomonitoring of contamination by estrogenic compounds in coastal environments: comments on the use of M. galloprovincialis. ENVIRONMENTAL TOXICOLOGY 2012; 27:74-82. [PMID: 20549642 DOI: 10.1002/tox.20613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Revised: 03/06/2010] [Accepted: 04/01/2010] [Indexed: 05/29/2023]
Abstract
The use of mussel extracts in in vitro bioassays which express the estrogen receptor could provide valuable information on the bioavailability of endocrine disruptors in coastal environments. The aim of this study was to assess the temporal variability of the estrogenic responses in bioassays in Mytilus galloprovincialis. A 6-month in situ experiment was conducted in order to follow the estrogenic activity on MELN cell line during the reproduction stages of mussels. Estradiol equivalents (EEQ) determined in mussels using the MELN cell lines ranged from 0.79 to 3.72 ng/g dry weight (d.w.) in males, from 0.42 to 2.33 ng/g d.w. in females and from 3.41 to 4.2 d.w. in undifferentiated bivalves. We observed an increase in EEQ values during the spawning stage for males, not for female. The maximal EEQ values were observed at the indifferent stage. We discuss these results in regards to the actual knowledge on mussels' reproductive cycle and to the possible impact of xeno-estrogens. Variations of E2 levels in mussels must be taken into account for further studies on xeno-estrogens monitoring using hER reporter cell-lines bioassays.
Collapse
Affiliation(s)
- Arthur David
- Hydrosciences Montpellier, Université Montpellier, Montpellier Cedex, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Lazzara R, Blázquez M, Porte C, Barata C. Low environmental levels of fluoxetine induce spawning and changes in endogenous estradiol levels in the zebra mussel Dreissena polymorpha. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2012; 106-107:123-130. [PMID: 22155424 DOI: 10.1016/j.aquatox.2011.11.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 11/04/2011] [Accepted: 11/08/2011] [Indexed: 05/31/2023]
Abstract
The pharmaceutical fluoxetine, a selective serotonin reuptake inhibitor (SSRI), is often detected in municipal wastewater treatment plant effluents and surface waters within the ng/l range. There is, however, insufficient research evaluating potential hazards of fluoxetine in aquatic organisms at environmentally relevant concentrations. Taking into account that several SSRIs (fluoxetine, fluvoxamine) act as spawning inducers in bivalves, this study aimed at investigating the effects of fluoxetine exposure in the zebra mussel (Dreissena polymorpha) by assessing its potential to induce spawning at environmentally relevant concentrations (20 and 200 ng/l), as well as alterations of endogenous levels of testosterone and estradiol. Histological analyses of female and male gonads showed a concentration dependent decrease of oocyte and spermatozoan density, with a reduction in the number of oocytes per follicle of 40-70%, and spermatozoan density of 21-25%, relative to controls, following exposure to 20 and 200 ng/l of fluoxetine for 6 days, respectively. There was also a significant increase (1.5-fold) in the endogenous level of esterified estradiol in organisms exposed to 200 ng/l fluoxetine. Overall, the study shows that exposure to low levels of fluoxetine may effectively induce gamete liberation in the zebra mussel as well as alter endogenous levels of estradiol, and evidences the need of further investigating the potential of fluoxetine to alter the endocrine system of molluscs at environmentally relevant concentrations.
Collapse
Affiliation(s)
- Raimondo Lazzara
- Environmental Chemistry Department, IDAEA-CSIC, Consejo Superior de Investigaciones Científicas, C/Jordi Girona 18, 08034 Barcelona, Spain
| | | | | | | |
Collapse
|
37
|
Fernandes D, Loi B, Porte C. Biosynthesis and metabolism of steroids in molluscs. J Steroid Biochem Mol Biol 2011; 127:189-95. [PMID: 21184826 DOI: 10.1016/j.jsbmb.2010.12.009] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 11/22/2010] [Accepted: 12/15/2010] [Indexed: 01/13/2023]
Abstract
Molluscs are the second most diverse animal group, they are ecologically important and they are considered excellent indicators of ecosystem health. Some species have been widely used in pollution biomonitoring programs; however, their endocrinology is still poorly known. Despite some studies reporting the presence of (vertebrate-type) steroids in molluscs, information regarding enzymatic pathways involved in steroid synthesis and further catabolism of those steroids is still fragmentary. Regarding steroidogenesis, a number of excellent studies were performed in the 70s using different radio-labelled steroid precursors and detecting the formation of different metabolites. But, since then a long gap of research exist until the late 90s when the 'endocrine disruption' issue raised the need of a better knowledge of mollusc (and invertebrate) endocrinology in order to assess alterations caused by pollutants. Here we summarize past and recent studies dealing with steroid biosynthesis and metabolism in different mollusc species. Most of these studies suggest the involvement of steroids in mollusc reproduction. However, the knowledge is still fragmentary and many questions remain to be answered.
Collapse
Affiliation(s)
- Denise Fernandes
- Environmental Chemistry Department, IDAEA-CSIC, Jordi Girona 18, 08034 Barcelona, Spain
| | | | | |
Collapse
|
38
|
Zhou J, Zhu XS, Cai ZH. Influences of DMP on the fertilization process and subsequent embryogenesis of abalone (Haliotis diversicolor supertexta) by gametes exposure. PLoS One 2011; 6:e25951. [PMID: 22028799 PMCID: PMC3197592 DOI: 10.1371/journal.pone.0025951] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2011] [Accepted: 09/14/2011] [Indexed: 12/21/2022] Open
Abstract
Di-methyl phthalate (DMP), a typical endocrine disrupting chemical (EDC), is ubiquitously distributed in aquatic environments; yet studies regarding its impact on gametes and the resulting effects on embryogenesis in marine gastropods are relatively scarce. In this study, the influences of DMP on the gametes and subsequent developmental process of abalone (Haliotis diversicolor supertexta, a representative marine benthic gastropod) were assessed. Newborn abalone eggs and sperm were exposed separately to different DMP concentrations (1, 10 or 100 ppb) for 60 min. At the end-point of exposure, the DMP-treated eggs and sperm were collected for analysis of their ultra-structures, ATPase activities and total lipid levels, and the fertilized gametes (embryos) were collected to monitor related reproductive parameters (fertilization rate, abnormal development rate and hatching success rate). Treatment with DMP did not significantly alter the structure or total lipid content of eggs at any of the doses tested. Hatching failures and morphological abnormalities were only observed with the highest dose of DMP (100 ppb). However, DMP exposure did suppress sperm ATPase activities and affect the morphological character of their mitochondria. DMP-treated sperm exhibited dose-dependent decreases in fertilization efficiency, morphogenesis and hatchability. Relatively obvious toxicological effects were observed when both sperm and eggs were exposed to DMP. Furthermore, RT-PCR results indicate that treatment of gametes with DMP changed the expression patterns of physiologically-regulated genes (cyp3a, 17β-HSD-11 and 17β-HSD-12) in subsequent embryogenesis. Taken together, this study proofed that pre-fertilization exposure of abalone eggs, sperm or both to DMP adversely affects the fertilization process and subsequent embryogenesis.
Collapse
Affiliation(s)
- Jin Zhou
- Ocean Science and Technology Division, Graduate School at Shenzhen, Tsinghua University, Shenzhen, People's Republic of China
| | - Xiao-Shan Zhu
- Ocean Science and Technology Division, Graduate School at Shenzhen, Tsinghua University, Shenzhen, People's Republic of China
| | - Zhong-Hua Cai
- Ocean Science and Technology Division, Graduate School at Shenzhen, Tsinghua University, Shenzhen, People's Republic of China
- * E-mail:
| |
Collapse
|
39
|
Canesi L, Negri A, Barmo C, Banni M, Gallo G, Viarengo A, Dondero F. The organophosphate Chlorpyrifos interferes with the responses to 17β-estradiol in the digestive gland of the marine mussel Mytilus galloprovincialis. PLoS One 2011; 6:e19803. [PMID: 21625485 PMCID: PMC3098840 DOI: 10.1371/journal.pone.0019803] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 04/06/2011] [Indexed: 01/12/2023] Open
Abstract
Background Many pesticides have been shown to act as endocrine disrupters. Although the
potencies of currently used pesticides as hormone agonists/antagonists are
low compared with those of natural ligands, their ability to act via
multiple mechanisms might enhance the biological effect. The organophosphate
Chlorpyrifos (CHP) has been shown to be weakly estrogenic and cause adverse
neurodevelopmental effects in mammals. However, no information is available
on the endocrine effects of CHP in aquatic organisms. In the digestive gland
of the bivalve Mytilus galloprovincialis, a target tissue
of both estrogens and pesticides, the possible effects of CHP on the
responses to the natural estrogen 17β-estradiol (E2) were
investigated. Methodology/Principal Findings Mussels were exposed to CHP (4.5 mg/l, 72 hrs) and subsequently injected with
E2 (6.75 ng/g dw). Responses were evaluated in CHP,
E2 and CHP/E2 treatment groups at 24 h p.i. by a
biomarker/transcriptomic approach. CHP and E2 induced additive,
synergistic, and antagonistic effects on lysosomal biomarkers (lysosomal
membrane stability, lysosome/cytoplasm volume ratio, lipofuscin and neutral
lipid accumulation). Additive and synergistic effects were also observed on
the expression of estrogen-responsive genes (GSTπ, catalase, 5-HTR)
evaluated by RT-Q-PCR. The use of a 1.7K cDNA Mytilus
microarray showed that CHP, E2 and CHP/E2, induced 81,
44, and 65 Differentially Expressed Genes (DEGs), respectively. 24 genes
were exclusively shared between CHP and CHP/E2, only 2 genes
between E2 and CHP/E2. Moreover, 36 genes were
uniquely modulated by CHP/E2. Gene ontology annotation was used
to elucidate the putative mechanisms involved in the responses elicited by
different treatments. Conclusions The results show complex interactions between CHP and E2 in the
digestive gland, indicating that the combination of certain pesticides and
hormones may give rise to unexpected effects at the molecular/cellular
level. Overall, these data demonstrate that CHP can interfere with the
mussel responses to natural estrogens.
Collapse
Affiliation(s)
- Laura Canesi
- Dipartimento di Biologia, Università di Genova, Genova, Italy.
| | | | | | | | | | | | | |
Collapse
|
40
|
McGinnis CL, Crivello JF. Elucidating the mechanism of action of tributyltin (TBT) in zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2011; 103:25-31. [PMID: 21388611 DOI: 10.1016/j.aquatox.2011.01.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 01/06/2011] [Accepted: 01/17/2011] [Indexed: 05/29/2023]
Abstract
Tributyltin (TBT), an antifouling agent, has been implicated in the masculinization of fish species worldwide, but the masculinizing mechanism is not fully understood. We have examined the actions of TBT as an endocrine disruptor in zebrafish (Danio rerio). In HeLa cells transiently co-transfected with plasmid constructs containing the zebrafish estrogen receptors (zfERα, zfERβ(1) and zfERβ(2)) and the zebrafish estrogen response element (zfERE-tk-luc), ethinyl estradiol (EE2) induced luciferase activity 4 to 6-fold and was inhibited by TBT. In HeLa cells transiently co-transfected with the zebrafish androgen receptor (zfAR) and the murine androgen receptor response element (ARE-slp-luc), testosterone induced luciferase activity was not inhibited by TBT. In HeLa cells co-transfected with zfERα, zfERβ(1) and zfERβ(2) and a plasmid containing zebrafish aromatase (zfCyp19b-luc), TBT inhibited luciferase activity. In zebrafish exposed to 1mg/kg and 5mg/kg TBT in vivo, there was a increase in liver sulfotransferase and a decrease acyl-CoA testosterone acyltransferase activity. Real-time PCR analysis of sexual differentiation markers in fish exposed to TBT in vivo revealed a tissue-specific response. In brain there was increased production of Sox9, Dax1, and SF1 mRNA, an androgenizing effect, while in the liver there was increased production of Dax1, Cyp19a and zfERβ(1) mRNA but decreased production of Sox9 mRNA, a feminizing effect. In the gonads there was increased production of zfERα and zfCyp19a mRNA, again a feminizing effect. TBT has an overall masculinizing effect but the masculinizing effect is tempered by a feminizing effect on gene transcription in certain tissues. These results are discussed in the context of TBT as an endocrine disruptor in zebrafish.
Collapse
Affiliation(s)
- Courtney L McGinnis
- Department of Physiology and Neurobiology, U-3156, University of Connecticut, Storrs, CT 06269, United States
| | | |
Collapse
|
41
|
Vihma V, Tikkanen MJ. Fatty acid esters of steroids: synthesis and metabolism in lipoproteins and adipose tissue. J Steroid Biochem Mol Biol 2011; 124:65-76. [PMID: 21277977 DOI: 10.1016/j.jsbmb.2011.01.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 01/18/2011] [Accepted: 01/19/2011] [Indexed: 12/21/2022]
Abstract
At the end of the last century ideas concerning the physiological role of the steroid fatty acid ester family were emerging. Estrogens, fatty acylated at C-17 hydroxyl group and incorporated in lipoproteins were proposed to provide antioxidative protection to these particles. A large number of studies involving non-estrogenic adrenal steroids, and their fatty acylated forms, demonstrated their lipoprotein-mediated transport into cells and subsequent intracellular activation, suggesting a novel transport mechanism for lipophilic steroid derivatives. After these important advances the main focus of interest has shifted away from C-19 and C-21 steroids to fatty acylated estrogens. However, interest in their lipoprotein-mediated transport has decreased because only minute amounts of these derivatives were detected in circulating lipoproteins, and their antioxidative activity remained unconfirmed under physiological circumstances. It now appears that the overwhelming majority of estradiol in postmenopausal women resides in adipose tissue, most of it in esterified form. This is poorly reflected in plasma levels which are very low. Recent data suggest that estrogen fatty acid esters probably represent a storage form. The future focus of investigation is likely to be on firstly, the enzymatic mechanisms regulating the esterification and de-esterification of estradiol and other steroids residing in adipose tissue and secondly, on the role of insulin and other hormones in the regulation of these enzymatic mechanisms. Thirdly, as a large proportion of fatty acid esterified C-19 and C-21 non-estrogenic steroids is transported in lipoproteins and as they are important precursors of androgens and estrogens, this field should be investigated further.
Collapse
Affiliation(s)
- Veera Vihma
- Institute of Clinical Medicine, Department of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | | |
Collapse
|
42
|
Rossignoli AE, Fernández D, Regueiro J, Mariño C, Blanco J. Esterification of okadaic acid in the mussel Mytilus galloprovincialis. Toxicon 2011; 57:712-20. [PMID: 21329714 DOI: 10.1016/j.toxicon.2011.02.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 02/02/2011] [Accepted: 02/08/2011] [Indexed: 10/18/2022]
Abstract
Okadaic acid and other toxins of the diarrheic shellfish poisoning (DSP) group are transformed mainly to their acyl-derivatives in bivalves. Some recent studies suggest that bacteria present in the bivalve gut could contribute substantially to the acylation of the toxins. By feeding microcapsules containing okadaic acid to mussels we have shown unequivocally that the ingested okadaic acid is nearly completely transformed to its fatty acid esters (acyl-derivatives). Treating mussels with antibiotics did not have any significant effect on the acylation of the supplied okadaic acid, suggesting that bacteria do not play any significant role in this process. The microsomal and mitochondrial subcellular fractions of the cells of the digestive gland have been shown to have contain enzymes that are able to transfer a fatty acid molecule from Coenzyme A to okadaic acid (so, that have Acyl-CoA:OA acyltransferase activity). This activity was related to that of the enzyme Cytochrome C reductase (NADPH), a marker of endoplasmic reticulum, suggesting that this organelle is the main responsible for the acylation process. Acylation of DSP toxins seems to be a key step in the depuration of these toxins from mussels, as these compounds are found in feces as acyl-derivatives. This is probably true for most bivalves. The proportion of acyl-derivatives accumulated can point to the key process of the depuration: acylation or excretion of acylated derivatives. In the mussels Mytilus galloprovincialis, Mytilus edulis and in Donax trunculus, the first process seems to be the most important, but in most bivalve species it seems to be the second one. Other aspects of the relationship between depuration and acylation are also discussed.
Collapse
Affiliation(s)
- Araceli E Rossignoli
- Centro de Investigacións Mariñas (CIMA), Pedras de Corón, s/n. Apdo. 13, 36620 Vilanova de Arousa (Pontevedra), Spain
| | | | | | | | | |
Collapse
|
43
|
Fernandes D, Navarro JC, Riva C, Bordonali S, Porte C. Does exposure to testosterone significantly alter endogenous metabolism in the marine mussel Mytilus galloprovincialis? AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2010; 100:313-20. [PMID: 20850876 DOI: 10.1016/j.aquatox.2010.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 08/09/2010] [Accepted: 08/12/2010] [Indexed: 05/22/2023]
Abstract
Mussels (Mytilus galloprovincialis) were exposed to different concentrations of testosterone (T: 20, 200 and 2000ng/L) in a semi-static water regime (1-day dosing intervals) for up to 5 days in an attempt to see whether endogenous steroid levels and steroid metabolism were altered by exogenous exposure to testosterone. Whole tissue levels of total testosterone (free+esterified) sharply increased in a concentration-dependent manner, from 2ng/g in controls to 290ng/g in organisms exposed to the highest concentration. In contrast, levels of free testosterone were only significantly elevated at the high-exposure group (5-fold increase with respect to controls). Increased activity of palmitoyl-CoA:testosterone acyltransferase (ATAT) was detected in organisms exposed to the highest concentration of testosterone, while those exposed to low and medium concentrations showed significant alterations in their polyunsaturated fatty acid profiles. The obtained results suggest that esterification of the excess of T with fatty acids might act as a homeostatic mechanism to maintain endogenous levels of free T stable. Interestingly, a decrease in CYP3A-like activity was detected in T-exposed mussels together with a significant decrease in the metabolism of the androgen precursor androstenedione to dihydrotestosterone (5α-DHT). Overall, the work contributes to the better knowledge of androgen metabolism in mussels.
Collapse
Affiliation(s)
- Denise Fernandes
- Environmental Chemistry Department, IDAEA-CSIC, Barcelona, Spain
| | | | | | | | | |
Collapse
|
44
|
Obata M, Sano N, Kimata S, Nagasawa K, Yoshizaki G, Komaru A. The proliferation and migration of immature germ cells in the mussel, Mytilus galloprovincialis: observation of the expression pattern in the M. galloprovincialis vasa-like gene (Myvlg) by in situ hybridization. Dev Genes Evol 2010; 220:139-49. [PMID: 20725841 DOI: 10.1007/s00427-010-0335-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Accepted: 07/24/2010] [Indexed: 10/19/2022]
Abstract
In bivalve, the distribution of primordial germ cells can be traced from early embryogenesis to the veliger larva by the expression of the vasa ortholog. However, the distribution of germ cells from metamorphosis to maturation in bivalves has not been examined extensively. In this study, we used in situ hybridization to observe expression of the Mytilus galloprovincialis vasa-like gene (Myvlg). The distribution of germ cells was clarified in immature mussels. We observed germ cells in adult mussels during the non-reproductive and reproductive seasons. Myvlg was specifically expressed in germ cells. Gametogenesis occurs in acini surrounded by connective tissue. Myvlg expression was detected in spermatogonia, spermatocytes, oogonia, and oocytes. In the non-reproductive season, gametes were not observed in the acini, but Myvlg was expressed in germinal stem cells along the acini. The expression intensity in the non-reproductive season, however, was much weaker than that in the reproductive season. Myvlg-positive cells proliferated during the non-reproductive season. In immature mussels, a pair of germ cell clumps was distributed laterally in the connective tissue between the nephric tubules and posterior byssal retractor muscle. Germ cells were also observed along pericardium. When immature mussels grew, a pair of germ cell clumps migrated anteriorly in the connective tissue along the outer epithelium at the dorsal region of the mantle base between the mantle and gill. The number of germ cells increased significantly as the mussels grew. This is the first report to observe the proliferation and migration of germ cells in immature mussels.
Collapse
Affiliation(s)
- Mayu Obata
- Faculty of Bioresources, Mie University, 1577 Kurimamachiya, Tsu, Mie, 514-8507, Japan.
| | | | | | | | | | | |
Collapse
|
45
|
Morishita F, Furukawa Y, Matsushima O, Minakata H. Regulatory actions of neuropeptides and peptide hormones on the reproduction of molluscsThe present review is one of a series of occasional review articles that have been invited by the Editors and will feature the broad range of disciplines and expertise represented in our Editorial Advisory Board. CAN J ZOOL 2010. [DOI: 10.1139/z10-041] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Reproductive success of individual animals is essential for the survival of any species. Molluscs have adapted to a wide variety of environments (freshwater, brackish water, seawater, and terrestrial habits) and have evolved unique tactics for reproduction. Both of these features attract the academic interests of scientists. Because neuropeptides and peptide hormones play critical roles in neural and neurohormonal regulation of physiological functions and behaviors in this animal group, the regulatory actions of these messengers in reproduction have been extensively investigated. In this review, we will briefly summarize how peptidergic messengers are involved in various aspects of reproduction, using some peptides such as egg-laying hormone, caudo-dorsal cell hormone, APGWamide, and gonadotropin-releasing hormone as typical examples.
Collapse
Affiliation(s)
- Fumihiro Morishita
- Department of Biological Science, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
- Laboratory of Neurobiology, Graduate School of Integrated Arts and Sciences, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan
- Department of Global Environment Studies, Faculty of Environmental Studies, Hiroshima Institute of Technology, 2-1-1 Miyake, Saeki-ku, Hiroshima 731-5193, Japan
- Suntory Institute for Bioorganic Research, 1-1-1 Wakayamadai, Shimamoto, Mishima, Osaka 618-8503, Japan
| | - Yasuo Furukawa
- Department of Biological Science, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
- Laboratory of Neurobiology, Graduate School of Integrated Arts and Sciences, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan
- Department of Global Environment Studies, Faculty of Environmental Studies, Hiroshima Institute of Technology, 2-1-1 Miyake, Saeki-ku, Hiroshima 731-5193, Japan
- Suntory Institute for Bioorganic Research, 1-1-1 Wakayamadai, Shimamoto, Mishima, Osaka 618-8503, Japan
| | - Osamu Matsushima
- Department of Biological Science, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
- Laboratory of Neurobiology, Graduate School of Integrated Arts and Sciences, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan
- Department of Global Environment Studies, Faculty of Environmental Studies, Hiroshima Institute of Technology, 2-1-1 Miyake, Saeki-ku, Hiroshima 731-5193, Japan
- Suntory Institute for Bioorganic Research, 1-1-1 Wakayamadai, Shimamoto, Mishima, Osaka 618-8503, Japan
| | - Hiroyuki Minakata
- Department of Biological Science, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
- Laboratory of Neurobiology, Graduate School of Integrated Arts and Sciences, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan
- Department of Global Environment Studies, Faculty of Environmental Studies, Hiroshima Institute of Technology, 2-1-1 Miyake, Saeki-ku, Hiroshima 731-5193, Japan
- Suntory Institute for Bioorganic Research, 1-1-1 Wakayamadai, Shimamoto, Mishima, Osaka 618-8503, Japan
| |
Collapse
|
46
|
Ciocan CM, Cubero-Leon E, Puinean AM, Hill EM, Minier C, Osada M, Fenlon K, Rotchell JM. Effects of estrogen exposure in mussels, Mytilus edulis, at different stages of gametogenesis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2010; 158:2977-2984. [PMID: 20615598 DOI: 10.1016/j.envpol.2010.05.025] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 05/24/2010] [Accepted: 05/30/2010] [Indexed: 05/29/2023]
Abstract
Mytilus edulis were exposed to 17beta-estradiol (E2) and the synthetic estrogens ethinyl estradiol (EE2) and estradiol benzoate (EB) for 10 days. Two exposures were performed to determine their effect on vitellogenin (VTG) and estrogen receptor 2 (ER2) mRNA expression at different stages of the reproductive cycle. Significant natural variation was not observed in VTG mRNA expression, though ER2 mRNA expression displayed significantly lower values during January, February and July compared with other times of the year. A significant increase in VTG and ER2 mRNA expression was observed in mussels exposed to estrogens at the early stage of gametogenesis. In contrast, mature mussels displayed no statistically significant change in the VTG or ER2 mRNA expression. The data presented suggests that the reproductive physiology of molluscs, in terms of VTG and ER2 mRNA expression, may be susceptible to damage by environmental estrogens at certain points in their gametogenesis process.
Collapse
Affiliation(s)
- Corina M Ciocan
- Department of Biology and Environmental Science, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QJ, UK
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Riva C, Porte C, Binelli A, Provini A. Evaluation of 4-nonylphenol in vivo exposure in Dreissena polymorpha: Bioaccumulation, steroid levels and oxidative stress. Comp Biochem Physiol C Toxicol Pharmacol 2010; 152:175-81. [PMID: 20388554 DOI: 10.1016/j.cbpc.2010.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 03/30/2010] [Accepted: 04/06/2010] [Indexed: 01/11/2023]
Abstract
Nonylphenol (NP) represents the most critical metabolite of alkylphenols (APs) and alkylphenol ethoxylates (APEs), non-ionic surfactants widely used in the formulation of domestic and industrial products. On the basis of in vitro and in vivo animal studies 4-nonylphenol (4-NP) is considered an endocrine disrupting chemical (EDC). The evidence to date indicates that mollusks are able to synthesize sex steroids from the precursor cholesterol and their endocrine pathways are theoretically susceptible to disruption. The aim of this study was to investigate the endocrine modulating potency of 4-NP in the freshwater mussel Dreissena polymorpha by looking at endogenous steroid levels in control and exposed individuals. 4-NP bioaccumulation in mussels tissues and alterations in the activity of enzymes related both to oxidative stress (catalase - CAT- and glutathione peroxidase - GPX-) and phase II metabolism (glutathione-S-transferase - GST-) were also assessed. The results highlighted a build-up of 4-NP in exposed mussels and an overall decrease of 17-beta-estradiol and testosterone levels. On the other hand this chemical at the tested concentrations does not interfere with the antioxidant defense mechanisms in D. polymorpha. The mechanisms by which 4-NP alter steroids levels are unknown and require more in-depth investigations.
Collapse
Affiliation(s)
- Consuelo Riva
- Department of Biology, University of Milan, via Celoria 33, 20133 Milan, Italy.
| | | | | | | |
Collapse
|
48
|
Sugni M, Tremolada P, Porte C, Barbaglio A, Bonasoro F, Carnevali MDC. Chemical fate and biological effects of several endocrine disrupters compounds in two echinoderm species. ECOTOXICOLOGY (LONDON, ENGLAND) 2010; 19:538-554. [PMID: 19937112 DOI: 10.1007/s10646-009-0439-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/03/2009] [Indexed: 05/28/2023]
Abstract
Two echinoderm species, the sea urchin Paracentrotus lividus and the feather star Antedon mediterranea, were exposed for 28 days to several EDCs: three putative androgenic compounds, triphenyltin (TPT), fenarimol (FEN), methyltestosterone (MET), and two putative antiandrogenic compounds, p,p'-DDE (DDE) and cyproterone acetate (CPA). The exposure nominal concentrations were from 10 to 3000 ng L(-1), depending on the compound. This paper is an attempt to join three different aspects coming from our ecotoxicological tests: (1) the chemical behaviour inside the experimental system; (2) the measured toxicological endpoints; (3) the biochemical responses, to which the measured endpoints may depend. The chemical fate of the different compounds was enquired by a modelling approach throughout the application of the 'Aquarium model'. An estimation of the day-to-day concentration levels in water and biota were obtained together with the amount assumed each day by each animal (uptake in microg animal(-1) d(-1) or ng g-wet weight(-1) d(-1)). The toxicological endpoints investigated deal with the reproductive potential (gonad maturation stage, gonad index and oocyte diameter) and with the regenerative potential (growth and histology). Almost all the compounds exerted some kind of effect at the tested concentrations, however TPT was the most effective in altering both reproductive and regenerative parameters (also at the concentration of few ng L(-1)). The biochemical analyses of testosterone (T) and 17beta-estradiol (E(2)) also showed the ability of the selected compounds to significantly alter endogenous steroid concentrations.
Collapse
Affiliation(s)
- Michela Sugni
- Dipartimento di Biologia, Università degli Studi di Milano, Milan, Italy.
| | | | | | | | | | | |
Collapse
|
49
|
Liscio C, Magi E, Di Carro M, Suter MJF, Vermeirssen ELM. Combining passive samplers and biomonitors to evaluate endocrine disrupting compounds in a wastewater treatment plant by LC/MS/MS and bioassay analyses. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2009; 157:2716-2721. [PMID: 19497651 DOI: 10.1016/j.envpol.2009.04.034] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Revised: 04/24/2009] [Accepted: 04/27/2009] [Indexed: 05/27/2023]
Abstract
Two types of integrative sampling approaches (passive samplers and biomonitors) were tested for their sampling characteristics of selected endocrine disrupting compounds (EDCs). Chemical analyses (LC/MS/MS) were used to determine the amounts of five EDCs (nonylphenol, bisphenol A, estrone, 17beta-estradiol and 17alpha-ethinylestradiol) in polar organic chemical integrative samplers (POCIS) and freshwater mussels (Unio pictorum); both had been deployed in the influent and effluent of a municipal wastewater treatment plant (WWTP) in Genoa, Italy. Estrogenicity of the POCIS samples was assessed using the yeast estrogen screen (YES). Estradiol equivalent values derived from the bioassay showed a positive correlation with estradiol equivalents calculated from chemical analyses data. As expected, the amount of estrogens and EEQ values in the effluent were lower than those in the influent. Passive sampling proved to be the preferred method for assessing the presence of these compounds since employing mussels had several disadvantages both in sampling efficiency and sample analyses.
Collapse
Affiliation(s)
- C Liscio
- Dipartimento di Chimica e Chimica Industriale, Università di Genova, via Dodecaneso, 31, 16146 Genova, Italy
| | | | | | | | | |
Collapse
|
50
|
David A, Fenet H, Gomez E. Alkylphenols in marine environments: distribution monitoring strategies and detection considerations. MARINE POLLUTION BULLETIN 2009; 58:953-60. [PMID: 19476957 DOI: 10.1016/j.marpolbul.2009.04.021] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Revised: 04/15/2009] [Accepted: 04/24/2009] [Indexed: 05/04/2023]
Abstract
The presence of alkylphenols (APs) in coastal and marine ecosystems is not as well-documented as it is in freshwater ecosystems. This paper reviews reported concentrations of alkylphenol ethoxylates (APEOs) and APs in seawater, sediments and organisms of marine environments such as estuaries, coastal lagoons, bights, harbours or deep sea in order to study their distribution. Overall contamination of marine aquatic compartments by APs and APEOs has been observed, while coastal areas in the vicinity of wastewater discharges are more impacted than deep sea environments, but to a lesser extent than freshwater sites. Sediments act as sinks for APs and APEOs, especially around wastewater discharge sites. Reported AP concentrations in marine organisms are higher in bivalves and gastropods than in fishes. As nonylphenols and octylphenols are estrogenomimetic, biological responses induced in marine organisms are discussed. Finally, we describe the cell bioassay approach for the biodetection of APs.
Collapse
Affiliation(s)
- Arthur David
- UMR 5569 - Hydrosciences Montpellier, Université Montpellier I, 15 Avenue Charles Flahault, B.P. 14491-34093, Montpellier, France
| | | | | |
Collapse
|