1
|
Liu Z, Wang G, Ye X, Zhang X, Jiang Y, Han Y, Lu L, Liu Z, Zhang H. Multigenerational toxic effects in Daphnia pulex are induced by environmental concentrations of tire wear particle leachate. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:136977. [PMID: 39724716 DOI: 10.1016/j.jhazmat.2024.136977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/17/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
Microplastic pollution has emerged as the second most significant scientific issue in environmental science and ecology. Similarly, the biological effects of tire wear particles (TWPs) have garnered considerable research attention; however, studies on chronic TWP leachate toxicity at environmentally relevant concentrations remain sparse. Here, we investigated the effects of TWP leachate at environmentally relevant concentrations (0.3 mg/L and 3 mg/L) on multigenerational and transgenerational Daphnia pulex for 21 days/generation, spanning three generations (F0-F2). Growth and reproductive indices (body length, growth rate, time to first clutch, number of clutches, and total offspring/female) across generations were analyzed. Multigenerational exposure to TWP leachate did not cause D. pulex death, but impaired growth and development, prolonged sexual maturity time, and reduced reproductive capacity. The transgenerational exposure group (3 mg/L) also exhibited some sub-lethal effects, such as delayed reproduction, suggesting a transgenerational impact. Gene transcription analyses and weighted gene co-expression network analysis showed that the most impacted pathways were associated with lysosome function, apoptosis, and glutathione metabolism, indicating that TWP leachate exposure compromised immune defense mechanisms and disrupted APs, CTSB, GST, DUSP1, and ERN1 gene expression. These findings underscore multigenerational toxicity effects and TWP leachate transmission patterns on aquatic organisms at realistic environmental concentrations.
Collapse
Affiliation(s)
- Zhiqun Liu
- Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Guanghui Wang
- Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Xindi Ye
- Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Xiaofang Zhang
- Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yu Jiang
- Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yu Han
- Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Zhejiang Provincial Key Laboratory of Wetland Intelligent Monitoring and Ecological Restoration, Hangzhou, Zhejiang 311121, China
| | - Liping Lu
- Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Zhiquan Liu
- Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Zhejiang Provincial Key Laboratory of Wetland Intelligent Monitoring and Ecological Restoration, Hangzhou, Zhejiang 311121, China; State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environment Sciences, Shanghai 200233, China.
| | - Hangjun Zhang
- Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Zhejiang Provincial Key Laboratory of Wetland Intelligent Monitoring and Ecological Restoration, Hangzhou, Zhejiang 311121, China
| |
Collapse
|
2
|
Jeremias G, Muñiz-González AB, Mendes Gonçalves FJ, Martínez-Guitarte JL, Asselman J, Luísa Pereira J. History of exposure to copper influences transgenerational gene expression responses in Daphnia magna. Epigenetics 2024; 19:2296275. [PMID: 38154067 PMCID: PMC10761054 DOI: 10.1080/15592294.2023.2296275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/13/2023] [Indexed: 12/30/2023] Open
Abstract
The establishment of transgenerational effects following chemical exposure is a powerful phenomenon, capable of modulating ecosystem health beyond exposure periods. This study assessed the transgenerational effects occurring due to copper exposure in the invertebrate D. magna at the transcriptional level, while evaluating the role of exposure history on such responses. Thus, daphnids acclimated for several generations in a copper vs. clean medium were then exposed for one generation (F0) to this metal, and monitored for the following non-exposed generations (F1, F2 and F3). Organisms differing in exposure histories showed remarkably different transcriptional profiles at the F0, with naïve organisms being more profoundly affected. These trends were confirmed for F3 treatments, which presented different transcriptional patterns for genes involved in detoxification, oxidative stress, DNA damage repair, circadian clock functioning and epigenetic regulation. Furthermore, regardless of exposure history, a great number of histone modifier genes were always found transcriptionally altered, thus suggesting the involvement of histone modifications in the response of Daphnia to metal exposure. Lastly, remarkably distinct transgenerational transcriptional responses were found between naïve and non-naïve organisms, thereby highlighting the influence of exposure history on gene expression and confirming the capacity of metals to determine transgenerational transcriptional effects across non-exposed generations.
Collapse
Affiliation(s)
- Guilherme Jeremias
- CESAM - Centre for Environmental and Marine Studies & Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Ana-Belén Muñiz-González
- CESAM - Centre for Environmental and Marine Studies & Department of Biology, University of Aveiro, Aveiro, Portugal
- Biology & Toxicology Group, Department of Mathematics, Physics, and Fluids, National Distance Education University (UNED), Madrid, Spain
| | | | - José-Luis Martínez-Guitarte
- Biology & Toxicology Group, Department of Mathematics, Physics, and Fluids, National Distance Education University (UNED), Madrid, Spain
| | - Jana Asselman
- Blue Growth Research Lab, Ghent University, Ostend, Belgium
| | - Joana Luísa Pereira
- CESAM - Centre for Environmental and Marine Studies & Department of Biology, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
3
|
Heterologous Expression of Human Metallothionein Gene HsMT1L Can Enhance the Tolerance of Tobacco ( Nicotiana nudicaulis Watson) to Zinc and Cadmium. Genes (Basel) 2022; 13:genes13122413. [PMID: 36553680 PMCID: PMC9777932 DOI: 10.3390/genes13122413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
Metallothionein (MT) is a multifunctional inducible protein in animals, plants, and microorganisms. MT is rich in cysteine residues (10-30%), can combine with metal ions, has a low molecular weight, and plays an essential biological role in various stages of the growth and development of organisms. Due to its strong ability to bind metal ions and scavenge free radicals, metallothionein has been used in medicine, health care, and other areas. Zinc is essential for plant growth, but excessive zinc (Zn) is bound to poison plants, and cadmium (Cd) is a significant environmental pollutant. A high concentration of cadmium can significantly affect the growth and development of plants and even lead to plant death. In this study, the human metallothionein gene HsMT1L under the control of the CaMV 35S constitutive promoter was transformed into tobacco, and the tolerance and accumulation capacity of transgenic tobacco plants to Zn and Cd were explored. The results showed that the high-level expression of HsMT1L in tobacco could significantly enhance the accumulation of Zn2+ and Cd2+ in both the aboveground parts and the roots compared to wild-type tobacco plants and conferred a greater tolerance to Zn and Cd in transgenic tobacco. Subcellular localization showed that HsMT1L was localized to the nucleus and cytoplasm in the tobacco. Our study suggests that HsMT1L can be used for the phytoremediation of soil for heavy metal removal.
Collapse
|
4
|
Salesa B, Torres-Gavilá J, Ferrando-Rodrigo MD, Sancho E. Gene expression study alerted to possible impairment in Daphnia magna individuals as a consequence of exposure to sublethal concentrations of prochloraz. CHEMOSPHERE 2022; 308:136040. [PMID: 36007747 DOI: 10.1016/j.chemosphere.2022.136040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 07/14/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
In the present study, Daphnia magna individuals were exposed for 21 days to 87, 130, 170, 230 and 380 μg/L of prochloraz. The expression of genes related to lipid metabolism (fabd), oxidative stress (cat and gst), heat shock proteins synthesis (hsp70 and hsp90), haemoglobin synthesis (hgb1 and hgb2), metallothioneins synthesis (mt-a, mt-b and mt-c), and vitellogenin synthesis (vgt1 y vgt2) were analyzed. Results showed that some gene expression in D. magna was altered as a consequence of the individual exposure to the fungicide. The genes fabd, vtg1 and vtg2, cat and gst resulted unaltered by the exposure of the daphnids to different fungicide concentrations. However, daphnid exposure to 380 μg/L of prochloraz resulted in an overexpression (p < 0.05) of hsp70 gene which indicated an alteration of the normal protein synthesis and its integrity maintenance. On the other hand, mt-b gene resulted significantly underexpressed (p < 0.05) in daphnids exposed to the lowest fungicide concentrations (87, 130 and 170 μg/L, respectively). In addition, hgb1 and hgb2 genes which are related with the haemoglobin synthesis weresignificantly overexpressed (p < 0.05). Results showed that hgb1 gene was overexpressed almost 100 times more in daphnids exposed for 21 days to 170, 230 and 380 μg/L than control values. However, many authors advocate for an association of these gene expression changes with the presence of contaminants in the medium, in fact they could be used as a good indicator of early contamination at low concentrations of toxicants.
Collapse
Affiliation(s)
- Beatriz Salesa
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, 46001, Valencia, Spain.
| | - Javier Torres-Gavilá
- Instituto de Investigación en Medio Ambiente y Ciencia Marina (IMEDMAR-UCV), c/Guillem de Castro 94, 46001, Valencia, Spain
| | - María Dolores Ferrando-Rodrigo
- Laboratory of Ecotoxicology, Dept. Functional Biology and Physical Anthropology. Faculty of Biology. University of Valencia, Dr. Moliner 50, E-46100, Burjassot, Valencia, Spain
| | - Encarnación Sancho
- Laboratory of Ecotoxicology, Dept. Functional Biology and Physical Anthropology. Faculty of Biology. University of Valencia, Dr. Moliner 50, E-46100, Burjassot, Valencia, Spain
| |
Collapse
|
5
|
Jeremias G, Veloso T, Gonçalves FJM, Van Nieuwerburgh F, Pereira JL, Asselman J. Multigenerational DNA methylation responses to copper exposure in Daphnia: Potential targets for epigenetic biomarkers? CHEMOSPHERE 2022; 308:136231. [PMID: 36055596 DOI: 10.1016/j.chemosphere.2022.136231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
Epigenetic mechanisms are moving to the forefront of environmental sciences, as environmentally induced epigenetic changes shape biological responses to chemical contamination. This work focused on Daphnia as a representative of potentially threatened freshwater biota, aiming to gain an insight into the involvement of epigenetic mechanisms in their response and eventual adaptation to metal contamination. Copper-induced DNA methylation changes, their potential transgenerational inheritance, and life-history traits were assessed. Organisms with different histories of past exposure to copper were exposed to toxic levels of the element for one generation (F0) and then monitored for three subsequent unexposed generations (F1, F2, and F3). Overall, methylation changes targeted important genes for counteracting the effects of metals and oxidative stress, including dynein light chain, ribosomal kinase and nuclear fragile X mental retardation-interacting protein. Also, contrasting overall and gene-specific methylation responses were observed in organisms differing in their history of exposure to copper, with different transgenerational methylation responses being also identified among the two groups, without apparent life-history costs. Taken together, these results demonstrate the capacity of copper to promote epigenetic transgenerational inheritance in a manner related explicitly to history of exposure, thereby supporting the development and incorporation of epigenetic biomarkers in risk assessment frameworks.
Collapse
Affiliation(s)
- Guilherme Jeremias
- Department of Biology & CESAM - Centre for Environmental and Marine Studies, University of Aveiro, Portugal
| | - Telma Veloso
- Department of Biology & CESAM - Centre for Environmental and Marine Studies, University of Aveiro, Portugal; CICECO - Aveiro Institute of Materials & Department of Chemistry, University of Aveiro, Portugal
| | - Fernando J M Gonçalves
- Department of Biology & CESAM - Centre for Environmental and Marine Studies, University of Aveiro, Portugal
| | | | - Joana Luísa Pereira
- Department of Biology & CESAM - Centre for Environmental and Marine Studies, University of Aveiro, Portugal.
| | - Jana Asselman
- Blue Growth Research Lab, Ghent University, Bluebridge Building, Ostend Science Park 1, 8400, Ostend, Belgium
| |
Collapse
|
6
|
Cho H, Ryu CS, Lee SA, Adeli Z, Meupea BT, Kim Y, Kim YJ. Endocrine-disrupting potential and toxicological effect of para-phenylphenol on Daphnia magna. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 243:113965. [PMID: 35994907 DOI: 10.1016/j.ecoenv.2022.113965] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/03/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Several phenol derivatives are suspected endocrine disruptors and have received attention in risk assessment studies for several decades owing to the structural similarity between estrogens and phenolic compounds. We assessed the endocrine disrupting effect of the phenolic compound para-phenylphenol (PPP) through acute tests and evaluating chronic endpoints in an invertebrate model, Daphnia magna. Exposure of D. magna to PPP induced substantial adverse effects, namely, reduced fecundity, slowed growth rate, delayed first brood, and a reduction in neonate size. Furthermore, we investigated the mRNA expression of relevant genes to elucidate the mechanism of endocrine disruption by PPP. Exposure of D. magna to PPP induced the substantial downregulation of genes and markers related to reproduction and development, such as EcR-A, EcR-B, Jhe, and Vtg. Consequently, we demonstrated that PPP has an endocrine disrupting effect on reproduction and development in D. magna.
Collapse
Affiliation(s)
- Hyunki Cho
- Environmental Safety Group, KIST Europe Forschungsgesellschaft mbH, 66123 Saarbrücken, Germany
| | - Chang Seon Ryu
- Environmental Safety Group, KIST Europe Forschungsgesellschaft mbH, 66123 Saarbrücken, Germany
| | - Sang-Ah Lee
- Environmental Safety Group, KIST Europe Forschungsgesellschaft mbH, 66123 Saarbrücken, Germany
| | - Zahra Adeli
- Environmental Safety Group, KIST Europe Forschungsgesellschaft mbH, 66123 Saarbrücken, Germany
| | - Brenda Tenou Meupea
- Environmental Safety Group, KIST Europe Forschungsgesellschaft mbH, 66123 Saarbrücken, Germany
| | - Youngsam Kim
- Environmental Safety Group, KIST Europe Forschungsgesellschaft mbH, 66123 Saarbrücken, Germany; Division of Energy & Environment Technology, University of Science & Technology, Daejeon 34113, South Korea.
| | - Young Jun Kim
- Environmental Safety Group, KIST Europe Forschungsgesellschaft mbH, 66123 Saarbrücken, Germany; Division of Energy & Environment Technology, University of Science & Technology, Daejeon 34113, South Korea
| |
Collapse
|
7
|
Production of genome-edited Daphnia for heavy metal detection by fluorescence. Sci Rep 2020; 10:21490. [PMID: 33293611 PMCID: PMC7722880 DOI: 10.1038/s41598-020-78572-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/20/2020] [Indexed: 11/08/2022] Open
Abstract
Aquatic heavy metal pollution is a growing concern. To facilitate heavy metal monitoring in water, we developed transgenic Daphnia that are highly sensitive to heavy metals and respond to them rapidly. Metallothionein A, which was a metal response gene, and its promoter region was obtained from Daphnia magna. A chimeric gene fusing the promoter region with a green fluorescent protein (GFP) gene was integrated into D. magna using the TALEN technique and transgenic Daphnia named D. magna MetalloG were produced. When D. magna MetalloG was exposed to heavy metal solutions for 1 h, GFP expression was induced only in their midgut and hepatopancreas. The lowest concentrations of heavy metals that activated GFP expression were 1.2 µM Zn2+, 130 nM Cu2+, and 70 nM Cd2+. Heavy metal exposure for 24 h could lower the thresholds even further. D. magna MetalloG facilitates aqueous heavy metal detection and might enhance water quality monitoring.
Collapse
|
8
|
Mai H, Cachot J, Clérandeau C, Martin C, Mazzela N, Gonzalez P, Morin B. An environmentally realistic pesticide and copper mixture impacts embryonic development and DNA integrity of the Pacific oyster, Crassostrea gigas. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:3600-3611. [PMID: 30368696 DOI: 10.1007/s11356-018-3586-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/23/2018] [Indexed: 06/08/2023]
Abstract
Frequent occurrences of pesticides in the environment have raised concerns that combined exposure to these chemicals may result in enhanced toxicity through additive or synergistic interaction between compounds. Spermatozoa and embryos of the Pacific oyster, Crassostrea gigas, were exposed to different concentrations of a pesticide mixture with and without copper, mimicking the cocktail of pollutants occurring in the oyster culture area of Arcachon Bay. For the 1× exposure condition, measured concentration corresponds to a total concentration of 1.083 μg L-1 for the mixture of 14 pesticides and to 6.330 μg L-1 for copper (Cu). Several endpoints including larval abnormalities, DNA damage to spermatozoa and embryo and gene expression in D-larvae were investigated. Results demonstrated that pesticide mixtures in combination with or without copper induced a dose-dependent increase in embryotoxic and genotoxic effects on D-larvae from the lowest tested dose of 0.1×. Transcription of genes involved in anti-oxidative stress (cat), respiratory chain (coxI), metal detoxification (mt1 and mt2), and cell cycle arrest and apoptosis (p53) was found to be significantly downregulated while the xenobiotic biotransformation gene gst was significantly upregulated in embryos exposed to pesticide mixture with and without Cu. These findings raise the question of the possible impacts of mixtures of pesticides and metals on wild or farmed oyster populations from polluted coastal marine areas.
Collapse
Affiliation(s)
- Huong Mai
- Univ. Bordeaux, EPOC, UMR 5805, F-33400, Talence, France
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Jérôme Cachot
- Univ. Bordeaux, EPOC, UMR 5805, F-33400, Talence, France
| | | | | | | | | | | |
Collapse
|
9
|
Shaw JR, Colbourne JK, Glaholt SP, Turner E, Folt CL, Chen CY. Dynamics of Cadmium Acclimation in Daphnia pulex: Linking Fitness Costs, Cross-Tolerance, and Hyper-Induction of Metallothionein. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:14670-14678. [PMID: 31738529 DOI: 10.1021/acs.est.9b05006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Acclimation increases tolerance to stress in individuals but is assumed to contribute fitness costs when the stressor is absent, though data supporting this widely held claim are sparse. Therefore, using clonal (i.e., genetically identical) cultures of Daphnia pulex, we isolated the contributions of acclimation to the regulation of the metal response gene, metallothionein 1 (MT1), and defined the reproductive benefits and costs of cadmium (Cd)-acclimation. Daphnia pulex were exposed for 50 parthenogenetic generations to environmentally realistic levels (1 μg Cd/L), and tolerance to Cd and other metals assessed during this period via standard toxicity tests. These tests revealed (1) increased tolerance to Cd compared to genetically identical nonacclimated cultures, (2) fitness costs in Cd-acclimated Daphnia when Cd was removed, and (3) cross-tolerance of Cd-acclimated Daphnia to zinc and silver, but not arsenic, thereby defining a functional role for metallothionein. Indeed, Cd-acclimated clones had significantly higher expression of MT1 mRNA than nonacclimated clones, when Cd exposed. Both the enhanced induction of MT1 and tolerant phenotype were rapidly lost when Cd was removed (1-2 generations), which is further evidence of acclimation costs. These findings provide evidence for the widely held view that acclimation is costly and are important for investigating evolutionary principles of genetic assimilation and the survival mechanisms of natural populations that face changing environments.
Collapse
Affiliation(s)
- Joseph R Shaw
- O'Neill School of Public and Environmental Affairs , Indiana University , Bloomington , Indiana 47405 , United States
- Department of Biology , Dartmouth College , Hanover , New Hampshire 03755 , United States
- Center for Environmental Health Sciences , Dartmouth Medical School , Hanover , New Hampshire 03755 , United States
| | - John K Colbourne
- School of Biosciences , University of Birmingham , Birmingham B15 2TT , U.K
| | - Stephen P Glaholt
- O'Neill School of Public and Environmental Affairs , Indiana University , Bloomington , Indiana 47405 , United States
- Department of Biology , Dartmouth College , Hanover , New Hampshire 03755 , United States
| | - Elizabeth Turner
- O'Neill School of Public and Environmental Affairs , Indiana University , Bloomington , Indiana 47405 , United States
| | - Carol L Folt
- Department of Biology , Dartmouth College , Hanover , New Hampshire 03755 , United States
- Center for Environmental Health Sciences , Dartmouth Medical School , Hanover , New Hampshire 03755 , United States
- USC Office of the President , University of Southern California , Los Angeles , California 90089 , United States
| | - Celia Y Chen
- Department of Biology , Dartmouth College , Hanover , New Hampshire 03755 , United States
- Center for Environmental Health Sciences , Dartmouth Medical School , Hanover , New Hampshire 03755 , United States
| |
Collapse
|
10
|
Baldwin WS. Phase 0 of the Xenobiotic Response: Nuclear Receptors and Other Transcription Factors as a First Step in Protection from Xenobiotics. NUCLEAR RECEPTOR RESEARCH 2019; 6:101447. [PMID: 31815118 PMCID: PMC6897393 DOI: 10.32527/2019/101447] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
This mini-review examines the crucial importance of transcription factors as a first line of defense in the detoxication of xenobiotics. Key transcription factors that recognize xenobiotics or xenobiotic-induced stress such as reactive oxygen species (ROS), include AhR, PXR, CAR, MTF, Nrf2, NF-κB, and AP-1. These transcription factors constitute a significant portion of the pathways induced by toxicants as they regulate phase I-III detoxication enzymes and transporters as well as other protective proteins such as heat shock proteins, chaperones, and anti-oxidants. Because they are often the first line of defense and induce phase I-III metabolism, could these transcription factors be considered the phase 0 of xenobiotic response?
Collapse
Affiliation(s)
- William S Baldwin
- Clemson University, Biological Sciences/Environmental Toxicology, 132 Long Hall, Clemson, SC 29634
| |
Collapse
|
11
|
Cai M, Liu Z, Chen M, Huang Y, Zhang M, Jiao Y, Zhao Y. Changes in ultrastructure of gonads and external morphology during aging in the parthenogenetic cladoceran Daphnia pulex. Micron 2019; 122:1-7. [DOI: 10.1016/j.micron.2019.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/07/2019] [Accepted: 04/12/2019] [Indexed: 01/23/2023]
|
12
|
Xu XH, Meng X, Gan HT, Liu TH, Yao HY, Zhu XY, Xu GC, Xu JT. Immune response, MT and HSP70 gene expression, and bioaccumulation induced by lead exposure of the marine crab, Charybdis japonica. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 210:98-105. [PMID: 30840922 DOI: 10.1016/j.aquatox.2019.02.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/18/2019] [Accepted: 02/18/2019] [Indexed: 06/09/2023]
Abstract
In order to understand the mechanisms of the toxicity of lead (Pb) on invertebrates, the immunotoxic effects of Pb in the marine crab, Charybdis japonica, were evaluated in the present study. The crabs were exposed to 0.066, 0.132, 1.318, 2.636, 6.590, and 13.181 μM of lead acetate and a control over 30 days, and the hemolymph was sampled terminally for testing the immunity-related indices, including total hemocyte count (THC), hemocyanin content, the activities of the phenoloxidase (PO) and lysozyme (LSZ). In addition, tissue samples were collected from the hepatopancreas, gill, muscle and ovary after 30 days of exposure for detecting the Pb accumulation in the major organs. The gene expression profiles of metallothionein (MT) and heat shock protein 70 (HSP70) in the hepatopancreas of C. japonica upon exposure to lead acetate over 96 h were also analyzed. The results showed a decline in the majority of the immunity-related parameters after an initial rise, and their levels were significantly lower in the treatment groups compared with those in the control, except in the group exposed to 0.066 μM of lead acetate for 30 days. Furthermore, a significant negative correlation was observed between the lead acetate concentration and the hemocyanin content, the activities of PO and LSZ (P<0.01). The expression levels of MT and HSP70 genes were rapidly induced, reaching a peak level after 12 and 24 h of exposure, respectively, and remained at a significantly higher level than the control after 96 h of exposure. It was also observed that the distribution pattern of Pb in the tissues of exposed crabs was in the order of gill > hepatopancreas > ovary and muscle, and exhibited a concentration-dependent response. Taken together, the results revealed that Pb exposure induced the immunosuppression of C. japonica and resulted in bioaccumulation, which could subsequently increase the disease susceptibility and threaten the food safety.
Collapse
Affiliation(s)
- Xing H Xu
- Jiangsu Institute of Marine Resources, Lianyungang 222005, China; Jiangsu Key Laboratory of Marine Bioresources and Environment, Huaihai Institute of Technology, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Lianyungang 222005, China.
| | - Xiao Meng
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Huaihai Institute of Technology, China.
| | - Hong T Gan
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Huaihai Institute of Technology, China.
| | - Tong H Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Huaihai Institute of Technology, China.
| | - Hai Y Yao
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Huaihai Institute of Technology, China.
| | - Xiao Y Zhu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Huaihai Institute of Technology, China.
| | - Guo C Xu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Huaihai Institute of Technology, China.
| | - Jia T Xu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Huaihai Institute of Technology, China.
| |
Collapse
|
13
|
Chain FJJ, Finlayson S, Crease T, Cristescu M. Variation in transcriptional responses to copper exposure across Daphnia pulex lineages. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 210:85-97. [PMID: 30836324 DOI: 10.1016/j.aquatox.2019.02.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 02/19/2019] [Accepted: 02/19/2019] [Indexed: 06/09/2023]
Abstract
Copper pollution is pervasive in aquatic habitats and is particularly harmful to invertebrates sensitive to environmental changes such as Daphnia pulex. Mechanisms of toxicity and tolerance to copper are not well understood. We used RNA-sequencing to investigate these mechanisms in three genetically distinct D. pulex clonal lineages with different histories of copper exposure. Upregulated genes after copper exposure were enriched with Gene Ontology (GO) categories involved in digestion, molting and growth, whereas downregulated genes after copper exposure were enriched in the metal-regulatory system, immune response and epigenetic modifications. The three D. pulex clones in our study show largely similar transcriptional patterns in response to copper, with only a total of twenty genes differentially expressed in a single clonal lineages. We also detected lower relative expression of some genes known to be important for copper tolerance, metallothionein and glutathione-S-transferase, in a sensitive lineage sampled from an uncontaminated habitat. Daphnia-specific genes (without orthologs outside the genus) and Daphnia-specific duplications (genes duplicated in the Daphnia lineage) were overrepresented in differentially expressed genes, highlighting an important role for newly emerged genes in tolerating environmental stressors. The results indicate that the D. pulex lineages tested in this study generally respond to copper stress using the same major pathways, but that the more resistant clone with previous copper exposure might be better able to regulate key genes. This finding highlights the important nuances in gene expression among clones, shaped by historical exposure and influencing copper tolerance.
Collapse
Affiliation(s)
- Frédéric J J Chain
- Department of Biology, McGill University, QC, H3A 1B1, Canada; Department of Biological Sciences, University of Massachusetts Lowell, MA, 01854, USA
| | - Sarah Finlayson
- Department of Biology, McGill University, QC, H3A 1B1, Canada
| | - Teresa Crease
- Department of Integrative Biology, University of Guelph, ON, N1G 2W1, Canada
| | | |
Collapse
|
14
|
Fitness and Genomic Consequences of Chronic Exposure to Low Levels of Copper and Nickel in Daphnia pulex Mutation Accumulation Lines. G3-GENES GENOMES GENETICS 2019; 9:61-71. [PMID: 30389796 PMCID: PMC6325897 DOI: 10.1534/g3.118.200797] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In at least some unicellular organisms, mutation rates are temporarily raised upon exposure to environmental stress, potentially contributing to the evolutionary response to stress. Whether this is true for multicellular organisms, however, has received little attention. This study investigated the effects of chronic mild stress, in the form of low-level copper and nickel exposure, on mutational processes in Daphnia pulex using a combination of mutation accumulation, whole genome sequencing and life-history assays. After over 100 generations of mutation accumulation, we found no effects of metal exposure on the rates of single nucleotide mutations and of loss of heterozygosity events, the two mutation classes that occurred in sufficient numbers to allow statistical analysis. Similarly, rates of decline in fitness, as measured by intrinsic rate of population increase and of body size at first reproduction, were negligibly affected by metal exposure. We can reject the possibility that Daphnia were insufficiently stressed to invoke genetic responses as we have previously shown rates of large-scale deletions and duplications are elevated under metal exposure in this experiment. Overall, the mutation accumulation lines did not significantly depart from initial values for phenotypic traits measured, indicating the lineage used was broadly mutationally robust. Taken together, these results indicate that the mutagenic effects of chronic low-level exposure to these metals are restricted to certain mutation classes and that fitness consequences are likely minor and therefore unlikely to be relevant in determining the evolutionary responses of populations exposed to these stressors.
Collapse
|
15
|
Falfushynska H, Horyn O, Brzozowska A, Fedoruk O, Buyak B, Poznansky D, Poniedziałek B, Kokociński M, Rzymski P. Is the presence of Central European strains of Raphidiopsis (Cylindrospermopsis) raciborskii a threat to a freshwater fish? An in vitro toxicological study in common carp cells. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 206:105-113. [PMID: 30472479 DOI: 10.1016/j.aquatox.2018.11.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/11/2018] [Accepted: 11/13/2018] [Indexed: 06/09/2023]
Abstract
As yet European strains of Raphidiopsis raciborskii (previously Cylindrospermopsis raciborskii) have not been found to produce known cyanotoxins although their extracts have caused adverse effects in mammals, as shown using in vitro and in vivo experimental models. The present study investigated whether R. raciborskii isolated from Western Poland and Ukraine can affect fish cells using in vitro exposures of hepatocytes and red blood cells (RBC), and brain homogenates obtained from common carp (Cyprinus carpio) to 1.0% and 0.1% extracts of 7 strains. The studied extracts evoked different responses of catalase activity in hepatocytes with both increase and decrease observed under low and high concentrations. The cellular thiol pool was also altered with most extracts inducing a decrease in the activity of glutathione-S-transferase, and Ukrainian strains leading to an increase in glutathione level and a decrease in metallothionein content. All the studied extracts induced comparable reactive oxygen species formation, lipid peroxidation, protein carbonylation and DNA fragmentation in hepatocytes, and all but one increased the activity of caspase-3. Only one extract caused lysosomal membrane destabilization as measured by neutral red retention in RBC. In contrast to extracts of Ukrainian isolates, exposure of brain homogenates to extracts of Polish strains induced an increase in acetylcholinesterase activity suggesting the neurotoxic action of their exudates. The results indicate that both Polish and Ukrainian strains of R. raciborskii may pose a toxicological risk to freshwater fish, and further, that Polish strains may produce compound(s) evoking neurotoxic effects.
Collapse
Affiliation(s)
- Halina Falfushynska
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine
| | - Oksana Horyn
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine
| | - Agnieszka Brzozowska
- Department of Hydrobiology, Faculty of Biology, Adam Mickiewicz University in Poznan, Poznań, Poland
| | - Olga Fedoruk
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine
| | - Bogdan Buyak
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine
| | - Dmytro Poznansky
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine
| | - Barbara Poniedziałek
- Department of Environmental Medicine, Poznan University of Medical Sciences, Poznań, Poland
| | - Mikołaj Kokociński
- Department of Hydrobiology, Faculty of Biology, Adam Mickiewicz University in Poznan, Poznań, Poland
| | - Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, Poznań, Poland.
| |
Collapse
|
16
|
Zhao WJ, Zhang ZJ, Zhu ZY, Song Q, Zheng WJ, Hu X, Mao L, Lian HZ. Time-dependent response of A549 cells upon exposure to cadmium. J Appl Toxicol 2018; 38:1437-1446. [PMID: 30051583 DOI: 10.1002/jat.3665] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 06/08/2018] [Accepted: 06/08/2018] [Indexed: 01/15/2023]
Abstract
Cadmium is considered one of the most harmful carcinogenic heavy metals in the human body. Although many scientists have performed research on cadmium toxicity mechanism, the toxicokinetic process of cadmium toxicity remains unclear. In the present study, the kinetic response of proteome in/and A549 cells to exposure of exogenous cadmium was profiled. A549 cells were treated with cadmium sulfate (CdSO4 ) for different periods and expressions of proteins in cells were detected by two-dimensional gel electrophoresis. The kinetic expressions of proteins related to cadmium toxicity were further investigated by reverse transcription-polymerase chain reaction and western blotting. Intracellular cadmium accumulation and content fluctuation of several essential metals were observed after 0-24 hours of exposure by inductively coupled plasma mass spectrometry. Fifty-four protein spots showed significantly differential responses to CdSO4 exposure at both 4.5 and 24 hours. From these proteins, four expression patterns were concluded. Their expressions always exhibited a maximum abundance ratio after CdSO4 exposure for 24 hours. The expression of metallothionein-1 and ZIP-8, concentration of total protein, and contents of cadmium, zinc, copper, cobalt and manganese in cells also showed regular change. In synthesis, the replacement of the essential metals, the inhibition of the expression of metal storing protein and the activation of metal efflux system are involved in cadmium toxicity.
Collapse
Affiliation(s)
- Wen-Jie Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of E-Waste Recycling, College of Chemical and Environmental Engineering, Jiangsu University of Technology, Changzhou, China
| | - Zi-Jin Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing, China
| | - Zhen-Yu Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Qun Song
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing, China
| | - Wei-Juan Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xin Hu
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing, China
| | - Li Mao
- Ministry of Education (MOE) Key Laboratory of Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hong-Zhen Lian
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing, China
| |
Collapse
|
17
|
Chen S, Nichols KM, Poynton HC, Sepúlveda MS. MicroRNAs are involved in cadmium tolerance in Daphnia pulex. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 175:241-8. [PMID: 27078211 DOI: 10.1016/j.aquatox.2016.03.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/22/2016] [Accepted: 03/23/2016] [Indexed: 05/20/2023]
Abstract
Daphnia can develop tolerance to cadmium (Cd) after multi-generational exposures. Until now, Cd tolerance in this crustacean was thought to be mainly due to its sequestration via induction of metallothioneins (MTs). Our research supports other studies showing microRNAs (miRNAs) also play a role in this enhanced tolerance. We induced Cd tolerance in Daphnia pulex after exposing them for 25 generations and examined the maintenance of enhanced Cd tolerance under a Cd-free environment for an additional three generations. Acute Cd tolerance as well as long-term effects on population dynamics were measured in selected generations via 48h LC50 tests and 21 d reproductive tests, respectively. Cd tolerance was associated with differential expression of 10 miRNAs (miR-2, miR-33, miR-92, miR-96, miR-153, miR-252, miR-279, miR-283, miR-305 and miR-615). Pathway analysis revealed these miRNAs might increase Cd tolerance by suppressing cellular growth and proliferation by GTPase and cuticle protein pathways, which switch cellular energy allocation to detoxification processes. Moreover, we found increased Cd tolerance is related with induction of MT3 and MT4 and a subsequent downregulation of MT1 and MT3 expression when animals are moved to a Cd-free environment. This is the first study linking aquatic invertebrate miRNAs with induced tolerance to environmental stressors.
Collapse
Affiliation(s)
- Shuai Chen
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA
| | - Krista M Nichols
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA; Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Ocean and Atmospheric Administration, Seattle, WA, USA
| | - Helen C Poynton
- School for the Environment, University of Massachusetts, Boston, MA, USA
| | - Maria S Sepúlveda
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
18
|
Bøhn T, Rover CM, Semenchuk PR. Daphnia magna negatively affected by chronic exposure to purified Cry-toxins. Food Chem Toxicol 2016; 91:130-40. [DOI: 10.1016/j.fct.2016.03.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 03/02/2016] [Accepted: 03/11/2016] [Indexed: 10/22/2022]
|
19
|
Haap T, Schwarz S, Köhler HR. Metallothionein and Hsp70 trade-off against one another in Daphnia magna cross-tolerance to cadmium and heat stress. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 170:112-119. [PMID: 26655655 DOI: 10.1016/j.aquatox.2015.11.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 11/04/2015] [Accepted: 11/10/2015] [Indexed: 05/29/2023]
Abstract
The association between the insensitivity of adapted ecotypes of invertebrates to environmental stress, such as heavy metal pollution, and overall low Hsp levels characterizing these organisms has been attracting attention in various studies. The present study seeks to induce and examine this phenomenon in Daphnia magna by multigenerational acclimation to cadmium in a controlled laboratory setting. In this experiment, interclonal variation was examined: two clones of D. magna that have previously been characterized to diverge regarding their cadmium resistance and levels of the stress protein Hsp70, were continuously exposed to a sublethal concentration of Cd over four generations to study the effects of acclimation on Hsp70, metallothionein (MT), reproduction and cross-tolerance to heat stress. The two clones differed in all the measured parameters in a characteristic way, clone T displaying Cd and heat resistance, lower Hsp70 levels and offspring numbers on the one hand and higher MT expression on the other hand, clone S the opposite for all these parameters. We observed only slight acclimation-induced changes in constitutive Hsp70 levels and reproductive output. The differences in MT expression between clones as well as between acclimated organisms and controls give evidence for MT accounting for the higher Cd tolerance of clone T. Overall high Hsp70 levels of clone S did not confer cross tolerance to heat stress, contrary to common expectations. Our results suggest a trade-off between the efforts to limit the proteotoxic symptoms of Cd toxicity by Hsp70 induction and those to sequester and detoxify Cd by means of MT.
Collapse
Affiliation(s)
- Timo Haap
- Animal Physiological Ecology, University of Tübingen, Auf der Morgenstelle 5, D-72076 Tübingen, Germany.
| | - Simon Schwarz
- Animal Physiological Ecology, University of Tübingen, Auf der Morgenstelle 5, D-72076 Tübingen, Germany
| | - Heinz-R Köhler
- Animal Physiological Ecology, University of Tübingen, Auf der Morgenstelle 5, D-72076 Tübingen, Germany
| |
Collapse
|
20
|
Heger Z, Michalek P, Guran R, Havelkova B, Kominkova M, Cernei N, Richtera L, Beklova M, Adam V, Kizek R. Exposure to 17β-Oestradiol Induces Oxidative Stress in the Non-Oestrogen Receptor Invertebrate Species Eisenia fetida. PLoS One 2015; 10:e0145426. [PMID: 26695684 PMCID: PMC4690593 DOI: 10.1371/journal.pone.0145426] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 12/03/2015] [Indexed: 02/03/2023] Open
Abstract
Background The environmental impacts of various substances on all levels of organisms are under investigation. Among these substances, endocrine-disrupting compounds (EDCs) present a threat, although the environmental significance of these compounds remains largely unknown. To shed some light on this field, we assessed the effects of 17β-oestradiol on the growth, reproduction and formation of free radicals in Eisenia fetida. Methodology/Principal Findings Although the observed effects on growth and survival were relatively weak, a strong impact on reproduction was observed (50.70% inhibition in 100 μg/kg of E2). We further demonstrated that the exposure of the earthworm Eisenia fetida to a contaminant of emerging concern, 17β-oestradiol (E2), significantly affected the molecules involved in antioxidant defence. Exposure to E2 results in the production of reactive oxygen species (ROS) and the stimulation of antioxidant systems (metallothionein and reduced oxidized glutathione ratio) but not phytochelatins at both the mRNA and translated protein levels. Matrix-assisted laser desorption/ionization (MALDI)-imaging revealed the subcuticular bioaccumulation of oestradiol-3,4-quinone, altering the levels of local antioxidants in a time-dependent manner. Conclusions/Significance The present study illustrates that although most invertebrates do not possess oestrogen receptors, these organisms can be affected by oestrogen hormones, likely reflecting free diffusion into the cellular microenvironment with subsequent degradation to molecules that undergo redox cycling, producing ROS, thereby increasing environmental contamination that also perilously affects keystone animals, forming lower trophic levels.
Collapse
Affiliation(s)
- Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic, European Union
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic, European Union
- Department of Ecology and Diseases of Game, Fish and Bees, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences, Palackeho 1–3, CZ-612 42 Brno, Czech Republic, European Union
| | - Petr Michalek
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic, European Union
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic, European Union
| | - Roman Guran
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic, European Union
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic, European Union
| | - Barbora Havelkova
- Department of Ecology and Diseases of Game, Fish and Bees, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences, Palackeho 1–3, CZ-612 42 Brno, Czech Republic, European Union
| | - Marketa Kominkova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic, European Union
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic, European Union
| | - Natalia Cernei
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic, European Union
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic, European Union
| | - Lukas Richtera
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic, European Union
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic, European Union
| | - Miroslava Beklova
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic, European Union
- Department of Ecology and Diseases of Game, Fish and Bees, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences, Palackeho 1–3, CZ-612 42 Brno, Czech Republic, European Union
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic, European Union
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic, European Union
| | - Rene Kizek
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic, European Union
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic, European Union
- * E-mail:
| |
Collapse
|
21
|
Beg MU, Al-Jandal N, Al-Subiai S, Karam Q, Husain S, Butt SA, Ali A, Al-Hasan E, Al-Dufaileej S, Al-Husaini M. Metallothionein, oxidative stress and trace metals in gills and liver of demersal and pelagic fish species from Kuwaits' marine area. MARINE POLLUTION BULLETIN 2015; 100:662-672. [PMID: 26231068 DOI: 10.1016/j.marpolbul.2015.07.058] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 07/02/2015] [Accepted: 07/25/2015] [Indexed: 06/04/2023]
Abstract
Two fish species yellowfin seabream (Acanthopagrus latus) and tonguesole (Cynoglossus arel) were collected from two locations in Kuwait's territorial waters in non-reproductive periods and used as bio-indicator organism for the assessment of metals in the marine environment. Species variation in fish was observed; seabream contained high metal content and metallothionein in liver and gill tissues compared to tonguesole, especially from Kuwait Bay area. Oxidative injury was registered in the gills of both species, but in tonguesole liver was also involved. Consequently, antioxidant enzyme catalase was elevated in tonguesole enabling bottom dwelling fish to combat oxidative assault. The study provided information about the current status of metals in marine sediment and levels of metals accumulated in representative species along with oxidative damage in exposed tissues and the range of biomarker protein metallothionein and enzymes of antioxidant defence mechanism enhancing our understanding about the biological response to the existing marine environment in Kuwait.
Collapse
Affiliation(s)
- M U Beg
- Environmental Pollution and Climate Program, Environment and Life Sciences Research Centre, Kuwait Institute for Scientific Research, P.O. Box 24885, Safat 13109, Kuwait.
| | - N Al-Jandal
- Environmental Pollution and Climate Program, Environment and Life Sciences Research Centre, Kuwait Institute for Scientific Research, P.O. Box 24885, Safat 13109, Kuwait
| | - S Al-Subiai
- Environmental Pollution and Climate Program, Environment and Life Sciences Research Centre, Kuwait Institute for Scientific Research, P.O. Box 24885, Safat 13109, Kuwait
| | - Q Karam
- Environmental Pollution and Climate Program, Environment and Life Sciences Research Centre, Kuwait Institute for Scientific Research, P.O. Box 24885, Safat 13109, Kuwait
| | - S Husain
- Environmental Pollution and Climate Program, Environment and Life Sciences Research Centre, Kuwait Institute for Scientific Research, P.O. Box 24885, Safat 13109, Kuwait
| | - S A Butt
- Environmental Pollution and Climate Program, Environment and Life Sciences Research Centre, Kuwait Institute for Scientific Research, P.O. Box 24885, Safat 13109, Kuwait
| | - A Ali
- Environmental Pollution and Climate Program, Environment and Life Sciences Research Centre, Kuwait Institute for Scientific Research, P.O. Box 24885, Safat 13109, Kuwait
| | - E Al-Hasan
- Environmental Pollution and Climate Program, Environment and Life Sciences Research Centre, Kuwait Institute for Scientific Research, P.O. Box 24885, Safat 13109, Kuwait
| | - S Al-Dufaileej
- Environmental Pollution and Climate Program, Environment and Life Sciences Research Centre, Kuwait Institute for Scientific Research, P.O. Box 24885, Safat 13109, Kuwait
| | - M Al-Husaini
- Environmental Pollution and Climate Program, Environment and Life Sciences Research Centre, Kuwait Institute for Scientific Research, P.O. Box 24885, Safat 13109, Kuwait
| |
Collapse
|
22
|
Asselman J, De Coninck DIM, Vandegehuchte MB, Jansen M, Decaestecker E, De Meester L, Vanden Bussche J, Vanhaecke L, Janssen CR, De Schamphelaere KAC. Global cytosine methylation in Daphnia magna depends on genotype, environment, and their interaction. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2015; 34:1056-1061. [PMID: 25639773 DOI: 10.1002/etc.2887] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 11/13/2014] [Accepted: 01/06/2015] [Indexed: 06/04/2023]
Abstract
The authors characterized global cytosine methylation levels in 2 different genotypes of the ecotoxicological model organism Daphnia magna after exposure to a wide array of biotic and abiotic environmental stressors. The present study aimed to improve the authors' understanding of the role of cytosine methylation in the organism's response to environmental conditions. The authors observed a significant genotype effect, an environment effect, and a genotype × environment effect. In particular, global cytosine methylation levels were significantly altered after exposure to Triops predation cues, Microcystis, and sodium chloride compared with control conditions. Significant differences between the 2 genotypes were observed when animals were exposed to Triops predation cues, Microcystis, Cryptomonas, and sodium chloride. Despite the low global methylation rate under control conditions (0.49-0.52%), global cytosine methylation levels upon exposure to Triops demonstrated a 5-fold difference between the genotypes (0.21% vs 1.02%). No effects were found in response to arsenic, cadmium, fish, lead, pH of 5.5, pH of 8, temperature, hypoxia, and white fat cell disease. The authors' results point to the potential role of epigenetic effects under changing environmental conditions such as predation (i.e., Triops), diet (i.e., Cryptomonas and Microcystis), and salinity. The results of the present study indicate that, despite global cytosine methylation levels being low, epigenetic effects may be important in environmental studies on Daphnia.
Collapse
Affiliation(s)
- Jana Asselman
- Laboratory for Environmental Toxicology and Aquatic Ecology (GhEnToxLab), Ghent University, Ghent, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Castro AV, de Almeida AAF, Pirovani CP, Reis GSM, Almeida NM, Mangabeira PAO. Morphological, biochemical, molecular and ultrastructural changes induced by Cd toxicity in seedlings of Theobroma cacao L. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 115:174-86. [PMID: 25700096 DOI: 10.1016/j.ecoenv.2015.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 02/02/2015] [Accepted: 02/04/2015] [Indexed: 05/17/2023]
Abstract
Seeds from Theobroma cacao progenies derived from the self-pollination of 'Catongo'×'Catongo' and the crossing between CCN-10×SCA-6 were immersed for 24h in different Cd solutions (2; 4; 8; 16 and 32 mgL(-1)) along with the control treatment (without Cd). Shortly after, the seeds were sown in plastic tubes containing organic substrate and were grown in a greenhouse for 60 days. The treatment with Cd was observed to cause morphological, biochemical, molecular and ultrastructural changes in both progenies of T. cacao. There has been deformation in chloroplasts, nuclear chromatin condensation, and reduction in thickness of the mesophyll. As for 'Catongo'×'Catongo', a decrease in thickness of the epidermis was noted on the abaxial face. There has been increased guaiacol peroxidase activity in the roots of CCN-10×SCA-6, as well as in the''Catongo'×'Catongo' leaves. In the presence of Cd, CCN-10×SCA-6 showed increased expression of the genes associated with the biosynthesis of phytochelatin (PCS-1) and class III peroxidases (PER-1) in leaves, and metallothionein (MT2b), in roots. In 'Catongo'×'Catongo', there has been an increase in the expression of genes associated with the biosynthesis of PER-1 and cytosolic superoxide dismutase dependent on copper and zinc (Cu-Zn SODCyt) in leaves and from MT2b and PCS-1 and roots. There was higher accumulation of Cd in the aerial parts of seedlings from both progenies, whereas the most pronounced accumulation was seen in''Catongo'×'Catongo'. The increase in Cd concentration has led to lower Zn and Fe levels in both progenies. Hence, one may conclude that the different survival strategies used by CCN-10×SCA-6 made such progeny more tolerant to Cd stress when compared to''Catongo'×'Catongo'.
Collapse
Affiliation(s)
- Andressa V Castro
- Universidade Estadual de Santa Cruz - UESC, Campus Soane Nazaré de Andrade, Rodovia Jorge Amado, km 16, Bairro Salobrinho, 45662-900 Ilhéus, Iran.
| | - Alex-Alan F de Almeida
- Universidade Estadual de Santa Cruz - UESC, Campus Soane Nazaré de Andrade, Rodovia Jorge Amado, km 16, Bairro Salobrinho, 45662-900 Ilhéus, Iran.
| | - Carlos P Pirovani
- Universidade Estadual de Santa Cruz - UESC, Campus Soane Nazaré de Andrade, Rodovia Jorge Amado, km 16, Bairro Salobrinho, 45662-900 Ilhéus, Iran.
| | - Graciele S M Reis
- Universidade Estadual de Santa Cruz - UESC, Campus Soane Nazaré de Andrade, Rodovia Jorge Amado, km 16, Bairro Salobrinho, 45662-900 Ilhéus, Iran.
| | - Nicolle M Almeida
- Universidade Estadual de Santa Cruz - UESC, Campus Soane Nazaré de Andrade, Rodovia Jorge Amado, km 16, Bairro Salobrinho, 45662-900 Ilhéus, Iran.
| | - Pedro A O Mangabeira
- Universidade Estadual de Santa Cruz - UESC, Campus Soane Nazaré de Andrade, Rodovia Jorge Amado, km 16, Bairro Salobrinho, 45662-900 Ilhéus, Iran.
| |
Collapse
|
24
|
Tang S, Wu Y, Ryan CN, Yu S, Qin G, Edwards DS, Mayer GD. Distinct expression profiles of stress defense and DNA repair genes in Daphnia pulex exposed to cadmium, zinc, and quantum dots. CHEMOSPHERE 2015; 120:92-9. [PMID: 25014899 DOI: 10.1016/j.chemosphere.2014.06.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 05/31/2014] [Accepted: 06/04/2014] [Indexed: 05/27/2023]
Abstract
The ever-increasing production and use of nanocrystaline semiconductors (Quantum dots; QDs) will inevitably result in increased appearance of these nanomaterials in the aquatic environment. However, the behavior and potential toxicity of heavy metal constituted nanoparticulates in aquatic invertebrates is largely unknown, especially with regard to molecular responses. The freshwater crustacean Daphnia pulex is a well-suited toxicological and ecological model to study molecular responses to environmental stressors. In this study, D. pulex were exposed for 48 h to sublethal doses of QDs (25% and 50% of LC50) with differing spectral properties (CdTe and CdSe/ZnS QDs) and Cd and Zn salts. Our data suggest that acute exposure to both CdSO4 and Cd-based QDs leads to Cd uptake in vivo, which was biologically supported by the observation of increased expression of metallothionein (MT-1). Furthermore, Cd, Zn, and CdSe/ZnS QDs induced different patterns of gene expression regarding stress defense and DNA repair, which furthers our knowledge regarding which response pathways are affected by nanoparticulate forms of metals versus ionic forms in aquatic crustaceans.
Collapse
Affiliation(s)
- Song Tang
- The Institute of Environmental and Human Health, Texas Tech University, Lubbock, TX 79416, USA; School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada
| | - Yonggan Wu
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Caitlin N Ryan
- The Institute of Environmental and Human Health, Texas Tech University, Lubbock, TX 79416, USA
| | - Shuangying Yu
- The Institute of Environmental and Human Health, Texas Tech University, Lubbock, TX 79416, USA
| | - Guangqiu Qin
- Institute of Toxicology, Guangxi Center for Disease Prevention and Control, Nanning, Guangxi 530028, China
| | - Donn S Edwards
- The Institute of Environmental and Human Health, Texas Tech University, Lubbock, TX 79416, USA
| | - Gregory D Mayer
- The Institute of Environmental and Human Health, Texas Tech University, Lubbock, TX 79416, USA; Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04672, USA.
| |
Collapse
|
25
|
Felix-Portillo M, Martinez-Quintana JA, Peregrino-Uriarte AB, Yepiz-Plascencia G. The metallothionein gene from the white shrimp Litopenaeus vannamei: characterization and expression in response to hypoxia. MARINE ENVIRONMENTAL RESEARCH 2014; 101:91-100. [PMID: 25299575 DOI: 10.1016/j.marenvres.2014.09.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 09/03/2014] [Accepted: 09/10/2014] [Indexed: 06/04/2023]
Abstract
Aquatic animals encounter variation in oxygen tension that leads to the accumulation of reactive oxygen species (ROS) that can harm the organisms. Under these circumstances some organisms have evolved to tolerate hypoxia. In mammals, metallothioneins (MTs) protect against hypoxia-generated ROS. Here we report the MT gene from the shrimp Litopenaeus vannamei (LvMT). LvMT is differentially expressed in hemocytes, intestine, gills, pleopods, heart, hepatopancreas and muscle, with the highest levels in hepatopancreas and heart. LvMT mRNA increases during hypoxia in hepatopancreas and gills after 3 h at 1.5 mg L(-1) dissolved oxygen (DO). This gene structure resembles the homologs from invertebrates and vertebrates possessing three exons, two introns and response elements for metal response transcription factor 1 (MTF-1), hypoxia-inducible factor 1 (HIF-1) and p53 in the promoter region. During hypoxia, HIF-1/MTF-1 might participate inducing MT to contribute towards the tolerance to ROS toxicity. MT importance in aquatic organisms may include also ROS-detoxifying processes.
Collapse
Affiliation(s)
- Monserrath Felix-Portillo
- Centro de Investigación en Alimentación y Desarrollo. A.C., P.O. Box 1735. Carretera a Ejido La Victoria Km. 0.6 Hermosillo, Sonora 83304, Mexico
| | - José A Martinez-Quintana
- Centro de Investigación en Alimentación y Desarrollo. A.C., P.O. Box 1735. Carretera a Ejido La Victoria Km. 0.6 Hermosillo, Sonora 83304, Mexico
| | - Alma B Peregrino-Uriarte
- Centro de Investigación en Alimentación y Desarrollo. A.C., P.O. Box 1735. Carretera a Ejido La Victoria Km. 0.6 Hermosillo, Sonora 83304, Mexico
| | - Gloria Yepiz-Plascencia
- Centro de Investigación en Alimentación y Desarrollo. A.C., P.O. Box 1735. Carretera a Ejido La Victoria Km. 0.6 Hermosillo, Sonora 83304, Mexico.
| |
Collapse
|
26
|
Blickley TM, Matson CW, Vreeland WN, Rittschof D, Di Giulio RT, McClellan-Green PD. Dietary CdSe/ZnS quantum dot exposure in estuarine fish: bioavailability, oxidative stress responses, reproduction, and maternal transfer. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 148:27-39. [PMID: 24440963 DOI: 10.1016/j.aquatox.2013.12.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 12/18/2013] [Accepted: 12/22/2013] [Indexed: 06/03/2023]
Abstract
Continued development, use, and disposal of quantum dots (QDs) ensure their entrance into aquatic environments where they could pose a risk to biological organisms as whole nanoparticles or as degraded metal constituents. Reproductive Fundulus heteroclitus were fed a control diet with lecithin, diets containing 1 or 10 μg of lecithin-encapsulated CdSe/ZnS QD/day, or a diet containing 5.9 μg CdCl2/day for 85 days. Cadmium concentrations in liver, intestine, and eggs were quantified with inductively coupled plasma mass spectrometry. In fish fed 10 μg QD/day, QDs or their degradation products traversed the intestinal epithelia and accumulated in the liver. Less than 0.01% of the QD's cadmium was retained in the liver or intestinal tissues. This compares to 0.9% and 0.5% of the cadmium in the intestine and liver, respectively of fish fed a CdCl2 diet. Cadmium was also detected in the eggs from parents fed 10 μg QD/day. No significant changes in hepatic total glutathione, lipid peroxidation, or expression of genes involved in metal metabolism or oxidative stress were observed. While QDs in the diet are minimally bioavailable, unusual levels of vitellogenin transcription in male fish as well as declining fecundity require further investigation to determine if endocrine disruption is of environmental concern.
Collapse
Affiliation(s)
- T Michelle Blickley
- Marine Science and Conservation, Duke University Marine Laboratory, Beaufort, NC, United States; Integrated Toxicology & Environmental Health Program, Duke University, Durham, NC, United States.
| | - Cole W Matson
- Integrated Toxicology & Environmental Health Program, Duke University, Durham, NC, United States; Center for the Environmental Implications of NanoTechnology (CEINT), Duke University, Durham, NC, United States.
| | - Wyatt N Vreeland
- Biochemical Science Div., National Institute of Standards & Technology, Gaithersburg, MD, United States.
| | - Daniel Rittschof
- Marine Science and Conservation, Duke University Marine Laboratory, Beaufort, NC, United States; Integrated Toxicology & Environmental Health Program, Duke University, Durham, NC, United States.
| | - Richard T Di Giulio
- Integrated Toxicology & Environmental Health Program, Duke University, Durham, NC, United States; Center for the Environmental Implications of NanoTechnology (CEINT), Duke University, Durham, NC, United States.
| | - Patricia D McClellan-Green
- Dept. of Environmental & Molecular Toxicology, North Carolina State University, Raleigh, NC, United States; Center for Marine Sciences & Technology, North Carolina State University, Morehead City, NC, United States.
| |
Collapse
|
27
|
He Y, Ma W, Li Y, Liu J, Jing W, Wang L. Expression of metallothionein of freshwater crab (Sinopotamon henanense) in Escherichia coli enhances tolerance and accumulation of zinc, copper and cadmium. ECOTOXICOLOGY (LONDON, ENGLAND) 2014; 23:56-64. [PMID: 24276409 DOI: 10.1007/s10646-013-1151-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/14/2013] [Indexed: 06/02/2023]
Abstract
Metallothioneins (MTs) are ubiquitous metal-binding, cysteine-rich, small proteins and play a major role in metal homeostasis and/or detoxification in all organisms. In a previous study, a novel full length MT gene was isolated from the freshwater crab (Sinopotamon henanense), a species widely distributed in Shanxi and Henan Provinces, China. In this report, the gene for the crab MT was inserted into a PET-28a-6His-SUMO vector and recombinant soluble MT was over-expressed as fusions with SUMO in Escherichia coli. The recombinant fusion protein was purified by affinity chromatography and its biochemical properties were analyzed. In addition, on the basis of constructing SUMO-MT, two mutants, namely SUMO-MTt1 and SUMO-MTt2, were constructed to change the primary structure of SUMO-MT using site-directed mutagenesis techniques with the amino acid substitutions D3C and S37C in order to increase metal-binding capacity of MT. E. coli cells expressing SUMO-MT and these single-mutant proteins exhibited enhanced metal tolerance and higher accumulation of metal ions than control cells. The results showed that the bioaccumulation and tolerance of Zn(2+), Cu(2+) and Cd(2+) in these strains followed the decreasing order of SUMO-MTt1 > SUMO-MTt2 > SUMO-MT. E. coli cells have low tolerance and high accumulation towards cadmium compared to zinc and copper. These results show that the MT of S. henanense could enhance tolerance and accumulation of metal ions. Moreover, we were able to create a novel protein based on the crab MT to bind metal ions at high density and with high affinity. Therefore, SUMO-MT and its mutants can provide potential candidates for heavy metal bioremediation. This study could help further elucidate the mechanism of how the crab detoxifies heavy metals and provide a scientific basis for environment bioremediation of heavy metal pollution using the over-expression of the crab MT and mutant proteins.
Collapse
Affiliation(s)
- Yongji He
- School of Life Science, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, Shanxi, People's Republic of China
| | | | | | | | | | | |
Collapse
|
28
|
Asselman J, Shaw JR, Glaholt SP, Colbourne JK, De Schamphelaere KAC. Transcription patterns of genes encoding four metallothionein homologs in Daphnia pulex exposed to copper and cadmium are time- and homolog-dependent. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 142-143:422-30. [PMID: 24113165 PMCID: PMC3891374 DOI: 10.1016/j.aquatox.2013.09.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 09/03/2013] [Accepted: 09/08/2013] [Indexed: 05/21/2023]
Abstract
Metallothioneins are proteins that play an essential role in metal homeostasis and detoxification in nearly all organisms studied to date. Yet discrepancies between outcomes of chronic and acute exposure experiments hamper the understanding of the regulatory mechanisms of their isoforms following metal exposure. Here, we investigated transcriptional differences among four identified homologs (mt1-mt4) in Daphnia pulex exposed across time to copper and cadmium relative to a control. Transcriptional upregulation of mt1 and mt3 was detected on day four following exposure to cadmium, whereas that of mt2 and mt4 was detected on day two and day eight following exposure to copper. These results confirm temporal and metal-specific differences in the transcriptional induction of genes encoding metallothionein homologs upon metal exposure which should be considered in ecotoxicological monitoring programs of metal-contaminated water bodies. Indeed, the mRNA expression patterns observed here illustrate the complex regulatory system associated with metallothioneins, as these patterns are not only dependent on the metal, but also on exposure time and the homolog studied. Further phylogenetic analysis and analysis of regulatory elements in upstream promoter regions revealed a high degree of similarity between metallothionein genes of Daphnia pulex and Daphnia magna, a species belonging to the same genus. These findings, combined with a limited amount of available expression data for D. magna metallothionein genes, tentatively suggest a potential generalization of the metallothionein response system between these Daphnia species.
Collapse
Affiliation(s)
- Jana Asselman
- Laboratory of Environmental Toxicology and Aquatic Ecology, Ghent University, Ghent, Belgium.
| | | | | | | | | |
Collapse
|
29
|
A pharm-ecological perspective of terrestrial and aquatic plant-herbivore interactions. J Chem Ecol 2013; 39:465-80. [PMID: 23483346 DOI: 10.1007/s10886-013-0267-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Revised: 02/05/2013] [Accepted: 02/19/2013] [Indexed: 12/14/2022]
Abstract
We describe some recent themes in the nutritional and chemical ecology of herbivores and the importance of a broad pharmacological view of plant nutrients and chemical defenses that we integrate as "Pharm-ecology". The central role that dose, concentration, and response to plant components (nutrients and secondary metabolites) play in herbivore foraging behavior argues for broader application of approaches derived from pharmacology to both terrestrial and aquatic plant-herbivore systems. We describe how concepts of pharmacokinetics and pharmacodynamics are used to better understand the foraging phenotype of herbivores relative to nutrient and secondary metabolites in food. Implementing these concepts into the field remains a challenge, but new modeling approaches that emphasize tradeoffs and the properties of individual animals show promise. Throughout, we highlight similarities and differences between the historic and future applications of pharm-ecological concepts in understanding the ecology and evolution of terrestrial and aquatic interactions between herbivores and plants. We offer several pharm-ecology related questions and hypotheses that could strengthen our understanding of the nutritional and chemical factors that modulate foraging behavior of herbivores across terrestrial and aquatic systems.
Collapse
|
30
|
Won EJ, Rhee JS, Ra K, Kim KT, Au DWT, Shin KH, Lee JS. Molecular cloning and expression of novel metallothionein (MT) gene in the polychaete Perinereis nuntia exposed to metals. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2011; 19:2606-2618. [PMID: 22828888 DOI: 10.1007/s11356-012-0905-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 03/29/2012] [Indexed: 06/01/2023]
Abstract
To report a novel metallothionein (MT) gene and evaluate its potency as a biomarker, we clone this MT gene and measured the expression levels in the metal-exposed polychaete Perinereis nuntia. Accumulated metal contents and metallothionein-like proteins (MTLPs), which have been recognized as potential biomarkers, were compared with the relative mRNA expressions of the MT gene of P. nuntia (Pn-MT). In addition, the metal-binding affinity was estimated by recombinant Pn-MT protein. Pn-MT having high cysteine residues with three metal response elements in the promoter region closely clusters with those of other invertebrates. The accumulation patterns of metals were dependent on the exposure times in lead (Pb), cadmium (Cd), and copper (Cu) exposure. Particularly, both MTLP levels and relative mRNA expressions of MT were increased with accumulated metal contents and exposure time in P. nuntia exposed to Pb and Cd. There was no significant modulation of the Pn-MT gene in polychaetes exposed to Zn and As. However, the metal-binding ability of the recombinant Pn-MT protein provides a clear evidence for a high affinity of MT to several metal elements. These results suggest that Pn-MT would play an important role in the detoxification and/or sequestration of specific metals (e.g., Pb and Cd) in P. nuntia and have potential as a molecular biomarker in the monitoring of the marine environment using a polychaete.
Collapse
Affiliation(s)
- Eun-Ji Won
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul, 133-791, South Korea
| | | | | | | | | | | | | |
Collapse
|