1
|
Biswas C, Adhikari M, Pramanick K. Toxicological effects of nodularin on the reproductive endocrine system of female zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 273:107000. [PMID: 38875953 DOI: 10.1016/j.aquatox.2024.107000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/22/2024] [Accepted: 06/09/2024] [Indexed: 06/16/2024]
Abstract
Nodularin is a potent cyanotoxin that has been detected in aquatic environments as well as in the body of aquatic organisms throughout the world, but its effects on the reproductive system are yet to be explored. The present study investigated the toxic effects of environmentally relevant concentrations of nodularin on the reproductive endocrine system of female zebrafish (Danio rerio). After exposure to nodularin for 14 days, decreased gonadosomatic Index (GSI), germinal vesicle breakdown (GVBD), and decreased level of follicle-stimulating hormone (FSH), luteinizing hormone (LH), 17β-estradiol (E2) level and increased testosterone (T) content in female zebrafish suggested that nodularin may disrupt both oocyte growth and maturation. In support of this data, alteration in different marker gene expression on the hypothalamic-pituitary-gonadal-liver (HPGL) axis was observed. Transcriptional levels of genes related to steroidogenesis including cytochrome P450 aromatase (cyp19a1a) in the ovary and primary vitellogenin genes (vtg1, vtg2, and vtg3) in the liver were down-regulated and marker genes for oxidative stress (sod, cat, and gpx) were up-regulated on HPGL axis. These findings revealed for the first time that nodularin is a potent endocrine-disrupting compound posing oxidative stress and causes reproductive endocrine toxicity in female zebrafish, emphasizing the importance of assessing its environmental risks.
Collapse
Affiliation(s)
- Chayan Biswas
- Integrative Biology Research Unit (IBRU), Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India
| | - Madhuchhanda Adhikari
- Integrative Biology Research Unit (IBRU), Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India
| | - Kousik Pramanick
- Integrative Biology Research Unit (IBRU), Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India.
| |
Collapse
|
2
|
Wang X, Lu T, Yang B, Cao J, Li M. Exposure to resorcinol bis (diphenyl phosphate) induces colonization of alien microorganisms with potential impacts on the gut microbiota and metabolic disruption in male zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:172892. [PMID: 38719053 DOI: 10.1016/j.scitotenv.2024.172892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/27/2024] [Accepted: 04/28/2024] [Indexed: 05/12/2024]
Abstract
Organophosphate esters (OPEs) have been demonstrated to induce various forms of toxicity in aquatic organisms. However, a scarcity of evidence impedes the conclusive determination of whether OPEs manifest sex-dependent toxic effects. Here, we investigated the effects of tris (1-chloro-2-propyl) phosphate (TCPP) and resorcinol bis (diphenyl phosphate) (RDP) on the intestines of both female and male zebrafish. The results indicated that, in comparison to TCPP, RDP induced more pronounced intestinal microstructural damage and oxidative stress, particularly in male zebrafish. 16S rRNA sequencing and metabolomics revealed significant alterations in the species richness and oxidative stress-related metabolites in the intestinal microbiota of zebrafish under exposure to both TCPP and RDP, manifesting gender-specific effects. Based on differential species analysis, we defined invasive species and applied invasion theory to analyze the reasons for changes in the male fish intestinal community. Correlation analysis demonstrated that alien species may have potential effects on metabolism. Overall, this study reveals a pronounced gender-dependent impact on both the intestinal microbiota and metabolic disruptions of zebrafish due to OPEs exposure and offers a novel perspective on the influence of pollutants on intestinal microbial communities and metabolism.
Collapse
Affiliation(s)
- Xinwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Ting Lu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Jiangsu Environmental Engineering Technology Co. Ltd, Nanjing, Jiangsu 210019, China
| | - Bin Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Jing Cao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Mei Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
3
|
Mohanty S, Paul A, Banerjee S, Rajendran KV, Tripathi G, Das PC, Sahoo PK. Ultrastructural, molecular and haemato-immunological changes: Multifaceted toxicological effects of microcystin-LR in rohu, Labeo rohita. CHEMOSPHERE 2024; 358:142097. [PMID: 38657687 DOI: 10.1016/j.chemosphere.2024.142097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 04/26/2024]
Abstract
No water body is resilient to afflicts of algal bloom, if goes unmanaged. With the increasing trend of intensification, eutrophication and climate change, Labeo rohita (rohu) is highly anticipated to suffer from the deleterious effects of bloom and eventually its toxins. A comprehensive study was conducted to understand the toxicopathological effects of microcystin-LR (MC-LR) in rohu following intraperitoneal injection of 96 h-LD50 dose i.e., 713 μg kg-1. Substantial changes in micro- and ultrastructural level were evident in histopathology and transmission electron microscope (TEM) study. The haematological, biochemical, cellular and humoral innate immune biomarkers were significantly altered (p < 0.05) in MC-LR treated fish. The mRNA transcript levels of IL-1β, IL-10, IgM and IgZ in liver and kidney tissues were significantly up-regulated in 12 hpi and declined in 96 hpi MC-LR exposed fish. The relative mRNA expression of caspase 9 in the liver and kidney indicates mitochondrial-mediated apoptosis which was strongly supported by TEM study. In a nutshell, our study illustrates for the first time MC-LR induced toxicological implications in rohu displaying immunosuppression, enhanced oxidative stress, pathophysiology, modulation in mRNA transcription, genotoxicity, structural and ultrastructural alterations signifying it as a vulnerable species for MC-LR intoxication.
Collapse
Affiliation(s)
- Snatashree Mohanty
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, 751 002, India
| | - Anirban Paul
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, 751 002, India
| | | | - K V Rajendran
- ICAR- Central Institute of Fisheries Education, Mumbai, India; Central University of Kerala, Kasaragod, 671 316, India
| | | | - Pratap Chandra Das
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, 751 002, India
| | - Pramoda Kumar Sahoo
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, 751 002, India.
| |
Collapse
|
4
|
Lyu L, Tao Y, Abaakil K, Gu Y, Zhong G, Hu Y, Zhang Y. Novel insights into DEHP-induced zebrafish spleen damage: Cellular apoptosis, mitochondrial dysfunction, and innate immunity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169324. [PMID: 38145680 DOI: 10.1016/j.scitotenv.2023.169324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/15/2023] [Accepted: 12/10/2023] [Indexed: 12/27/2023]
Abstract
DEHP (Di(2-ethylhexyl) phthalate) is the most abundant phthalate component detected in environmental samples as it is widely used in the manufacturing of children's toys, medical devices and furniture. Due to its wide prevalence and propensity to accumulate in the food chain, significant concerns have risen about the safety profile of DEHP. Here, we used a zebrafish model to investigate the toxicity mechanisms of DEHP. Our results indicated that exposure to DEHP altered the ROS content in zebrafish spleen and inhibited the activities of antioxidant enzymes SOD and CAT, detoxification enzyme GSH-Px and induced histopathological damage. In addition, elucidated the mechanism of DEHP significantly promoted apoptosis and caused damage in spleen cells through the bax/bcl-2 pathway. Further genetic testing demonstrated significant alterations in mitochondrial biogenesis, fission, and fusion-related genes and suggested potential mechanistic pathways, including GM10532/m6A/FIS1 axis, the STAT3/POA1 axis, and the NFR1/TFAM axis. Serological and genomic analysis indicated that DEHP exposure activated the C3 complement cascade immune pathway and interfered with innate immune function. IBRv2 analysis proposes that innate immunity may serve as a signal indicator of early toxic responses to DEHP pollutants. This study provided comprehensive cellular and genetic data for DEHP toxicity studies and emphasized the need for future management and remediation of DEHP contamination. It also provides data to specifically support the health risk assessments of DEHP, as well as contributing to broader health and environmental research.
Collapse
Affiliation(s)
- Liang Lyu
- College of Resources and Environment, Northeast Agricultural University, Changjiang Street 600, Harbin 150030, PR China; Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, SW7 2AZ London, UK.
| | - Yue Tao
- College of Resources and Environment, Northeast Agricultural University, Changjiang Street 600, Harbin 150030, PR China
| | - Kaoutar Abaakil
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, SW7 2AZ London, UK.
| | - Yanyan Gu
- College of Resources and Environment, Northeast Agricultural University, Changjiang Street 600, Harbin 150030, PR China
| | - Guanyu Zhong
- College of Resources and Environment, Northeast Agricultural University, Changjiang Street 600, Harbin 150030, PR China
| | - Yang Hu
- College of Resources and Environment, Northeast Agricultural University, Changjiang Street 600, Harbin 150030, PR China
| | - Ying Zhang
- College of Resources and Environment, Northeast Agricultural University, Changjiang Street 600, Harbin 150030, PR China.
| |
Collapse
|
5
|
Lin W, Luo H, Wu J, Liu X, Cao B, Liu Y, Yang P, Yang J. Polystyrene microplastics enhance the microcystin-LR-induced gonadal damage and reproductive endocrine disruption in zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162664. [PMID: 36894083 DOI: 10.1016/j.scitotenv.2023.162664] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
The coexistence of eutrophication and plastic pollution in the aquatic environment is becoming a realistic water pollution problem worldwide. To investigate the microcystin-LR (MC-LR) bioavailability and the underlying reproductive interferences in the presence of polystyrene microplastic (PSMPs), zebrafish (Danio rerio) were exposed to individual MC-LR (0, 1, 5, and 25 μg/L) and combined MC-LR + PSMPs (100 μg/L) for 60 d. Our results showed that the existence of PSMPs increased the accumulation of MC-LR in zebrafish gonads compared to the MC-LR-only group. In the MC-LR-only exposure group, seminiferous epithelium deterioration and widened intercellular spaces were observed in the testis, and basal membrane disintegration and zona pellucida invagination were noticed in the ovary. Moreover, the existence of PSMPs exacerbated these injuries. The results of sex hormone levels showed that PSMPs enhanced MC-LR-induced reproductive toxicity, which is tightly related to the abnormal increase of 17β-estradiol (E2) and testosterone (T) levels. The changes of gnrh2, gnrh3, cyp19a1b, cyp11a, and lhr mRNA levels in the HPG axis further proved that MC-LR combined with PSMPs aggravated reproductive dysfunction. Our results revealed that PSMPs could increase the MC-LR bioaccumulation by serving as a carrier and exaggerate the MC-LR-induced gonadal damage and reproductive endocrine disruption in zebrafish.
Collapse
Affiliation(s)
- Wang Lin
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde 415000, China; Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China; Hunan Engineering Research Center of Aquatic Organism Resources and Environmental Ecology, Changde 415000, China
| | - Huimin Luo
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde 415000, China
| | - Jingyi Wu
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde 415000, China
| | - Xiangli Liu
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde 415000, China
| | - Beibei Cao
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde 415000, China
| | - Yuqing Liu
- Department of Gastroenterology, The First People's Hospital of Changde City, Changde 415000, China
| | - Pinhong Yang
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde 415000, China; Hunan Engineering Research Center of Aquatic Organism Resources and Environmental Ecology, Changde 415000, China.
| | - Jifeng Yang
- College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde 415000, China.
| |
Collapse
|
6
|
Davidović P, Blagojević D, Meriluoto J, Simeunović J, Svirčev Z. Biotests in Cyanobacterial Toxicity Assessment-Efficient Enough or Not? BIOLOGY 2023; 12:biology12050711. [PMID: 37237524 DOI: 10.3390/biology12050711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/27/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023]
Abstract
Cyanobacteria are a diverse group of organisms known for producing highly potent cyanotoxins that pose a threat to human, animal, and environmental health. These toxins have varying chemical structures and toxicity mechanisms and several toxin classes can be present simultaneously, making it difficult to assess their toxic effects using physico-chemical methods, even when the producing organism and its abundance are identified. To address these challenges, alternative organisms among aquatic vertebrates and invertebrates are being explored as more assays evolve and diverge from the initially established and routinely used mouse bioassay. However, detecting cyanotoxins in complex environmental samples and characterizing their toxic modes of action remain major challenges. This review provides a systematic overview of the use of some of these alternative models and their responses to harmful cyanobacterial metabolites. It also assesses the general usefulness, sensitivity, and efficiency of these models in investigating the mechanisms of cyanotoxicity expressed at different levels of biological organization. From the reported findings, it is clear that cyanotoxin testing requires a multi-level approach. While studying changes at the whole-organism level is essential, as the complexities of whole organisms are still beyond the reach of in vitro methodologies, understanding cyanotoxicity at the molecular and biochemical levels is necessary for meaningful toxicity evaluations. Further research is needed to refine and optimize bioassays for cyanotoxicity testing, which includes developing standardized protocols and identifying novel model organisms for improved understanding of the mechanisms with fewer ethical concerns. In vitro models and computational modeling can complement vertebrate bioassays and reduce animal use, leading to better risk assessment and characterization of cyanotoxins.
Collapse
Affiliation(s)
- Petar Davidović
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
| | - Dajana Blagojević
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
| | - Jussi Meriluoto
- Faculty of Science and Engineering, Biochemistry, Åbo Akademi, Tykistökatu 6 A, 20520 Turku, Finland
| | - Jelica Simeunović
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
| | - Zorica Svirčev
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
- Faculty of Science and Engineering, Biochemistry, Åbo Akademi, Tykistökatu 6 A, 20520 Turku, Finland
| |
Collapse
|
7
|
Wei L, Fu J, He L, Wang H, Ruan J, Li F, Wu H. Microcystin-LR-induced autophagy regulates oxidative stress, inflammation, and apoptosis in grass carp ovary cells in vitro. Toxicol In Vitro 2023; 87:105520. [PMID: 36410616 DOI: 10.1016/j.tiv.2022.105520] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022]
Abstract
MC-LR is one of the cyanotoxins produced by fresh water cyanobacteria. Previous studies showed that autophagy played an important role in MC-LR-induced reproduction toxicity. However, information on the toxicological mechanism is limited. In this study, MC-LR could induce autophagy and apoptosis in GCO cells in vitro. In GCO cells that had been exposed to MC-LR, the inhibitor of 3-MA effectively decreased cell viability and damaged cell ultrastructure. Oxidative stress was significantly increased in the 3-MA + MC-LR group, accompanied by significantly increased MDA content and decreased CAT activity and GST, SOD1, GPx, and GR expression levels (P < 0.05). Inflammation was more serious in the 3-MA + MC-LR group than that of MC-LR group, which was evidenced by increasing expression levels of TNFα, IL11, MyD88, TNFR1, TRAF2, JNK, CCL4, and CCL20 (P < 0.05). Interestingly, the significant decrease of Caspase-9, Caspase-7, and Bax expression and significant increase of Bcl-2 and Bcl-2/Bax ratio in 3-MA + MC-LR group compared to MC-LR group, suggesting that extent of apoptosis were reduced. Taken together, these results indicated that MC-LR induced autophagy and apoptosis in GCO cells, however, the inhibition of autophagy decreased the extent of apoptosis, induced more serious oxidative stress and inflammation, which eventually induced cell death. Our findings provided some information for exploring the toxicity of MC-LR, however, the role of autophagy require further study in vivo.
Collapse
Affiliation(s)
- Lili Wei
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi Province 330045, PR China.
| | - Jianping Fu
- College of life sciences, Jiangxi Normal university, Nanchang, Jiangxi Province 330022, PR China
| | - Li He
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi Province 330045, PR China
| | - Hui Wang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi Province 330045, PR China
| | - Jiming Ruan
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi Province 330045, PR China
| | - Fugui Li
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi Province 330045, PR China
| | - Huadong Wu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi Province 330045, PR China.
| |
Collapse
|
8
|
Zhang D, Huang L, Jia Y, Zhang S, Bi X, Dai W. Integrated analysis of mRNA and microRNA expression profiles in hepatopancreas of Litopenaeus vannamei under acute exposure to MC-LR. Front Genet 2023; 14:1088191. [PMID: 36741320 PMCID: PMC9892846 DOI: 10.3389/fgene.2023.1088191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 01/09/2023] [Indexed: 01/20/2023] Open
Abstract
Intensive shrimp farming is often threatened by microcystins Hepatopancreas is the primary target organ of MCs in shrimp. To investigate the response of hepatopancreas to acute MC-LR exposure, the expression profiles of RNA-seq and miRNA-seq in the hepatopancreas of L. vannamei were determined, and data integration analysis was performed at 72 h after MC-LR injection. The expression of 5 DEGs and three DEMs were detected by Quantitative PCR (qPCR). The results showed that the cumulative mortality rate of shrimp in MC-LR treatment group was 41.1%. A total of 1229 differentially expressed genes (844 up- and 385 down-regulated) and 86 differentially expressed miRNAs (40 up- and 46 down-regulated) were identified after MC-LR exposure. Functional analysis indicated that DEGs is mainly involved in the oxidative activity process in molecular functional categories, and proteasome was the most enriched KEGG pathway for mRNAs profile. According to the functional annotation of target genes of DEMs, protein binding was the most important term in the GO category, and protein processing in endoplasmic reticulum (ER) was the most enriched KEGG pathway. The regulatory network of miRNAs and DEGs involved in the pathway related to protein degradation in endoplasmic reticulum was constructed, and miR-181-5p regulated many genes in this pathway. The results of qPCR showed that there were significant differences in the expression of five DEGs and three DEMs, which might play an important role in the toxicity and hepatopancreas detoxification of MC-LR in shrimp. The results revealed that MC-LR exposure affected the degradation pathway of misfolded protein in ER of L. vannamei hepatopancreas, and miR-181-5p might play an important role in the effect of MC-LR on the degradation pathway of misfolded protein.
Collapse
Affiliation(s)
| | | | | | - Shulin Zhang
- Key Laboratory of Aquatic-Ecology and Aquaculture of Tianjin, College of Fishery, Tianjin Agricultural University, Tianjin, China
| | | | | |
Collapse
|
9
|
Liu X, Ye JC, Li F, Gao RJ, Wang XX, Cheng JL, Liu BL, Xiang L, Li YW, Cai QY, Zhao HM, Mo CH, Li QX. Revealing microcystin-LR ecotoxicity to earthworm (Eisenia fetida) at the intestinal cell level. CHEMOSPHERE 2023; 311:137046. [PMID: 36419272 DOI: 10.1016/j.chemosphere.2022.137046] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Potential adverse effects of microcystin-LR (MC-LR) on soil invertebrates have not been studied. Here we investigated the mechanism of MC-LR toxicity to earthworm (Eisenia fetida) intestine at the individual level and at the cellular level. The results showed an inverse relationship between the bodyweight and survival rate of earthworms over exposure time- and MC-LR doses in soil. Dose-dependent intestinal lesions and disturbances of enzymatic activities (e.g., cellulase, Na+/K+-ATPase, and AChE) were observed, which resulted in intestinal dysfunction. Excessive reactive oxygen species generation led to DNA damage and lipid peroxidation of intestinal cells. The oxidative damage to DNA prolonged cell cycle arrest at the G2/M-phase transition in mitosis, thus stimulating and accelerating apoptosis in earthworm intestine. MC-LR target earthworm intestine tissue. MC-LR at low concentrations can damage earthworm intestine regardless of exposure routes (oral or contact). High toxicity of MC-LR to earthworms delineates its ecological risks to terrestrial ecosystems.
Collapse
Affiliation(s)
- Xiang Liu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Jin-Cheng Ye
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Fen Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Rong-Jun Gao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Xiao-Xiao Wang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Ji-Liang Cheng
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Bai-Lin Liu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Lei Xiang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Yan-Wen Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Quan-Ying Cai
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Hai-Ming Zhao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Guangzhou, 510642, China.
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| |
Collapse
|
10
|
Han Y, Liu Y, Wang M, Xue Y. Effects of BPZ, BPC, BPF, and BPS Exposure on Adult Zebrafish ( Danio rerio): Accumulation, Oxidative Stress, and Gene Expression. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192315784. [PMID: 36497860 PMCID: PMC9739024 DOI: 10.3390/ijerph192315784] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 05/19/2023]
Abstract
As substitutes for bisphenol A (BPA), bisphenol analogs (BPs) have been found to cause endocrine disorders and induce toxic effects. The objective of this study was to evaluate the bioaccumulation and subacute toxicity of bisphenol Z (BPZ), bisphenol C (BPC), bisphenol F (BPF), and bisphenol S (BPS) to zebrafish. Five-month-old zebrafish were exposed to 1/100 LC50, 1/50 LC50, and 1/10 LC50 of BPZ, BPC, BPF, and BPS for 13 days, respectively. Bioaccumulation, oxidative stress, and related mRNA expression in zebrafish tissues were measured on days 1, 7, and 13. After exposure, the four kinds of BPs all resulted in the accumulation of concentration and lipid peroxidation in zebrafish tissues to varying degrees. BPZ and BPC had the highest bioaccumulation level and had the greatest influence on malonic dialdehyde (MDA). In addition, the enzyme activities of superoxide dismutase (SOD), peroxidase (POD), glutathione peroxidase (GSH-PX), and the content of glutathione (GSH) in zebrafish tissues were also affected at different levels. However, the enzyme activities of SOD and POD were inactivated in zebrafish exposed to a high concentration of BPC. Further studies showed that BPs exposure down-regulated the transcription level of sod but up-regulated the relative expression levels of cat and gpx. The mRNA relative expression level of erα was not significantly changed, while the mRNA relative expression level of erβ1 was significantly down-regulated except under BPS exposure. These results indicate that BPZ, BPC, and BPF significantly affect the expression level of the estrogen receptor (ER) in zebrafish tissues. Overall, the results suggest that exposure to waterborne BPs can cause severe oxidative stress and tissue damage in adult zebrafish that is not sufficient to kill them after 13 days of waterborne exposure. The toxicity of BPs to organisms, therefore, should be further analyzed and evaluated.
Collapse
|
11
|
Yang L, Guo H, Kuang Y, Yang H, Zhang X, Tang R, Li D, Li L. Neurotoxicity induced by combined exposure of microcystin-LR and nitrite in male zebrafish (Danio rerio): Effects of oxidant-antioxidant system and neurotransmitter system. Comp Biochem Physiol C Toxicol Pharmacol 2022; 253:109248. [PMID: 34826614 DOI: 10.1016/j.cbpc.2021.109248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/14/2021] [Accepted: 11/18/2021] [Indexed: 11/15/2022]
Abstract
With the intensification of water eutrophication around the world, cyanobacterial blooms have been becoming a common environmental pollution problem. The levels of microcystin-LR (MC-LR) and nitrite rise sharply during the cyanobacterial bloom period, which may have potential joint toxicity on aquatic organisms. In this study, adult male zebrafish were immersed into different joint solutions of MC-LR (0, 3, 30 μg/L) and nitrite (0, 2, 20 mg/L) for 30 days to explore the neurotoxic effects and underlying mechanisms. The results showed that single factor MC-LR or nitrite caused a concentration-dependent damage in brain ultrastructure and the effects of their joint exposure were much more intense. Downregulated expression of mbp and bdnf associated with myelination of nerve fibers further confirmed that MC-LR and nitrite could damage the structure and function of neuron. The decreases in dopamine content, acetylcholinesterase activity and related gene mRNA levels indicated that MC-LR and nitrite adversely affected the normal function of the dopaminergic and cholinergic systems in zebrafish brain. In addition, the significant increase in malondialdehyde content suggested the occurrence of oxidative stress caused by MC-LR, nitrite and their joint-exposure, which paralleled a significant decrease in antioxidant enzyme‑manganese superoxide dismutase activity and its transcription level. In conclusion, MC-LR + Nitrite joint-exposure has synergistic neurotoxic effects on the structure and neurotransmitter systems of fish brain, and antioxidant capacity disruption caused by these two factors might be one of the underlying synergistic mechanisms. Therefore, there is a risk of being induced neurotoxicity in fish during sustained cyanobacterial bloom events.
Collapse
Affiliation(s)
- Liping Yang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Honghui Guo
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yu Kuang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Hui Yang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Xi Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China; Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, PR China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, PR China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, PR China
| | - Rong Tang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China; Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, PR China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, PR China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, PR China
| | - Dapeng Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China; Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, PR China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, PR China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, PR China
| | - Li Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China; Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, PR China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, PR China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, PR China.
| |
Collapse
|
12
|
Banerjee S, Maity S, Guchhait R, Chatterjee A, Biswas C, Adhikari M, Pramanick K. Toxic effects of cyanotoxins in teleost fish: A comprehensive review. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 240:105971. [PMID: 34560410 DOI: 10.1016/j.aquatox.2021.105971] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 09/03/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
The phenomenon of eutrophication leads to the global occurrence of algal blooms. Cyanotoxins as produced by many cyanobacterial species can lead to detrimental effects to the biome due to their stability and potential biomagnification along food webs. Therefore, understanding of the potential risks these toxins pose to the most susceptible organisms is an important prerequisite for ecological risks assessment of cyanobacteria blooms. Fishes are an important component of aquatic ecosystems that are prone to direct exposure to cyanotoxins. However, relatively few investigations have focused on measuring the toxic potentials of cyanotoxins in teleost fishes. This review comprehensively describes the major toxicological impacts (such as hepatotoxicity, neurotoxicity, immune toxicity, reproductive toxicity and cytogenotoxicity) of commonly occurring cyanotoxins in teleost fishes. The present work encompasses recent research progresses with special emphasis on the basic molecular mechanisms by which different cyanotoxins impose their toxicities in teleost fishes. The major research areas, which need to be focused on in future scientific investigations, have also been highlighted. Protein kinase inhibition, transcriptional dysregulation, disruption of redox homeostasis and the induction of apoptotic pathways appear to be the key drivers of the toxicological effects of cyanotoxins in fish. Analyses also showed that the impacts of cyanotoxins on specific reproductive processes are relatively less described in teleosts in comparison to mammalian systems. In fact, as compared to other toxicological effects of cyanotoxins, their reproductive toxicity (such as impacts on oocyte development, maturation and their hormonal regulation) is poorly understood in fish, and thus requires further studies. Furthermore, additonal studies characterizing the molecular mechanisms responsible for the cellular uptake of cyanotoxins need to be investigated.
Collapse
Affiliation(s)
- Sambuddha Banerjee
- Integrative Biology Research Unit, Department of Life Sciences, Presidency University, 86/1, College Street, Kolkata 700073, India
| | - Sukhendu Maity
- Integrative Biology Research Unit, Department of Life Sciences, Presidency University, 86/1, College Street, Kolkata 700073, India
| | - Rajkumar Guchhait
- P.G. Department of Zoology, Mahishadal Raj College, Garkamalpur, Purba Medinipur, India
| | - Ankit Chatterjee
- Integrative Biology Research Unit, Department of Life Sciences, Presidency University, 86/1, College Street, Kolkata 700073, India
| | - Chayan Biswas
- Integrative Biology Research Unit, Department of Life Sciences, Presidency University, 86/1, College Street, Kolkata 700073, India
| | - Madhuchhanda Adhikari
- Integrative Biology Research Unit, Department of Life Sciences, Presidency University, 86/1, College Street, Kolkata 700073, India
| | - Kousik Pramanick
- Integrative Biology Research Unit, Department of Life Sciences, Presidency University, 86/1, College Street, Kolkata 700073, India.
| |
Collapse
|
13
|
Wu Z, Wang F, Hu L, Zhang J, Chen D, Zhao S. Inhibition of endoplasmic reticulum stress-related autophagy attenuates MCLR-induced apoptosis in zebrafish testis and mouse TM4 cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 221:112438. [PMID: 34175825 DOI: 10.1016/j.ecoenv.2021.112438] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/14/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
Microcystin-leucine arginine (MCLR), a widespread environmental contaminant produced by cyanobacteria, poses a severe threat to the male reproductive system. However, the mechanisms of MCLR-induced testis injury accompanied by autophagy are still obscure. This study aimed to investigate the effects of MCLR on autophagy and apoptosis on the male reproductive system and its mechanism both in vitro and in vivo. MCLR caused damage to the testis of zebrafish, resulting in decreased hatching and growth retardation in the offspring. It also remarkably enhanced autophagic flux by elevating the expression of LC3BII, ATG5, and ATG12 proteins. The autophagic flux was also confirmed through the formation of autophagosomes in the ultrastructure of the zebrafish testis and the accumulation of LC3-positive puncta in zebrafish testis and mouse TM4 cells. Further evaluations revealed that inhibition of autophagy by 3-methyladenine (3-MA) significantly attenuated MCLR-induced apoptosis. This finding indicated that autophagy plays an essential role in cell death in the male reproductive system. Besides, inhibiting endoplasmic reticulum (ER) stress using 4-phenylbutyrate (4-PBA) remarkably blocked autophagy and partially suppressed apoptosis in TM4 cells induced by MCLR. This phenomenon suggested that ER stress-related autophagy was involved in MCLR-induced apoptosis. This study reveals crosstalk between ER stress and autophagy via the PERK/eIF2α/ATF4 signaling pathway. It further suggests that ER stress-related autophagy contributes to MCLR-induced apoptosis and injury in the male reproductive system. These findings provide a novel insight into MCLR-induced impairments of the testis.
Collapse
Affiliation(s)
- Zaiwei Wu
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Fang Wang
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Liwen Hu
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Jianrong Zhang
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Daojun Chen
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Sujuan Zhao
- School of Public Health, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
14
|
Zhang S, Du X, Liu H, Losiewic MD, Chen X, Ma Y, Wang R, Tian Z, Shi L, Guo H, Zhang H. The latest advances in the reproductive toxicity of microcystin-LR. ENVIRONMENTAL RESEARCH 2021; 192:110254. [PMID: 32991922 DOI: 10.1016/j.envres.2020.110254] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/02/2020] [Accepted: 09/20/2020] [Indexed: 06/11/2023]
Abstract
Microcystin-LR (MC-LR) is an emerging environmental pollutant produced by cyanobacteria that poses a threat to wild life and human health. In recent years, the reproductive toxicity of MC-LR has gained widespread attention, a large number of toxicological studies have filled the gaps in past research and more molecular mechanisms have been elucidated. Hence, this paper reviews the latest research advances on MC-LR-induced reproductive toxicity. MC-LR can damage the structure and function of the testis, ovary, prostate, placenta and other organs of animals and then reduce their fertility. Meanwhile, MC-LR can also be transmitted through the placenta to the offspring causing trans-generational and developmental toxicity including death, malformation, growth retardation, and organ dysfunction in embryos and juveniles. The mechanisms of MC-LR-induced reproductive toxicity mainly include the inhibition of protein phosphatase 1/2 A (PP1/2 A) activity and the induction of oxidative stress. On the one hand, MC-LR triggers the hyperphosphorylation of certain proteins by inhibiting intracellular PP1/2 A activity, thereby activating multiple signaling pathways that cause inflammation and blood-testis barrier destruction, etc. On the other hand, MC-LR-induced oxidative stress can result in cell programmed death via the mitochondrial and endoplasmic reticulum pathways. It is worth noting that epigenetic modifications are also involved in reproductive cell apoptosis, which may be an important direction for future research. Furthermore, this paper proposes for the first time that MC-LR can produce estrogenic effects in animals as an environmental estrogen. New findings and suggestions in this review could be areas of interest for future research.
Collapse
Affiliation(s)
- Shiyu Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Xingde Du
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Haohao Liu
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Michael D Losiewic
- Department of Chemistry and Biochemistry, St Mary's University, San Antonio, TX, USA
| | - Xinghai Chen
- Department of Chemistry and Biochemistry, St Mary's University, San Antonio, TX, USA
| | - Ya Ma
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Rui Wang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhihui Tian
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Linjia Shi
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Hongxiang Guo
- College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan, China.
| | - Huizhen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
15
|
Shang X, Yu P, Yin Y, Zhang Y, Lu Y, Mao Q, Li Y. Effect of selenium-rich Bacillus subtilis against mercury-induced intestinal damage repair and oxidative stress in common carp. Comp Biochem Physiol C Toxicol Pharmacol 2021; 239:108851. [PMID: 32777471 DOI: 10.1016/j.cbpc.2020.108851] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/04/2020] [Accepted: 07/22/2020] [Indexed: 12/13/2022]
Abstract
Mercury (Hg) poisoning in humans and fish represents a significant global problem. Hg is one of the most dangerous threats to the aquatic ecosystem due to its high toxicity. Mercury has a high oxidative stress-inducing potential, and can compounds exert toxic effects by interacting with many important enzymes involved in the regulation of antioxidants. Selenium (Se) supplementation can reactivate the mercury-inhibited enzymes viability. The probiotic Bacillus subtilis is widely used in aquaculture, and it has a certain adsorption effect on heavy metals. The interactions between Hg and Se have been rigorously investigated, particularly due to the observed protective effects of Se against Hg toxicity. The objective of this study was to evaluate whether Se-rich B. subtilis ameliorated Hg-induced toxicity in C. carpio var. specularis. Fish were exposed to waterborne Hg (0.03 mg/L) and fed a diet supplemented with 105 cfu/g Se-rich B. subtilis for 30 days. Fish were sampled, antioxidant activity, and Intestinal damage repair were assessed. Our results indicated that Se-rich B. subtilis protected the Intestinal from Hg-induced morphological changes. Hg treatment significantly decreased the activity levels of SOD, CAT and GSH-PX while increasing the activity levels of MDA, GST, and GSH. Hg treatment also upregulated the mRNA expression of Nrf2, CAT, GSH-PX and HO-1, and reduced expression of keap1. Se-rich B. subtilis had a significant protective effect against Hg-induced oxidative stress.
Collapse
Affiliation(s)
- Xinchi Shang
- College of Animal Science and Technology, Jilin Agriculture University, Changchun 130118, China
| | - Peng Yu
- College of Electronic and Information Engineering, Changchun University of Science and Technology, Changchun, Jilin 130022, China
| | - Yuwei Yin
- College of Animal Science and Technology, Jilin Agriculture University, Changchun 130118, China
| | - Yue Zhang
- College of Animal Science and Technology, Jilin Agriculture University, Changchun 130118, China
| | - Yuting Lu
- College of Animal Science and Technology, Jilin Agriculture University, Changchun 130118, China
| | - Qiaohong Mao
- College of Animal Medicine, Jilin University, Changchun, China
| | - Yuehong Li
- College of Animal Science and Technology, Jilin Agriculture University, Changchun 130118, China.
| |
Collapse
|
16
|
Li M, Cao J, Zhao Y, Wu P, Li X, Khodaei F, Han Y, Wang J. Fluoride impairs ovary development by affecting oogenesis and inducing oxidative stress and apoptosis in female zebrafish (Danio rerio). CHEMOSPHERE 2020; 256:127105. [PMID: 32450357 DOI: 10.1016/j.chemosphere.2020.127105] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 06/11/2023]
Abstract
Previous studies have shown that waterborne fluoride exposure has adverse effects on the reproductive system of zebrafish. However, the underlying toxic mechanisms were still not clear. In the present study, female zebrafish were exposed to different concentrations of 0.787 (Control), 18.599, 36.832 mg/L of fluoride for 30 d and 60 d, and the effects of different doses of fluoride on ovary development, reproductive hormones, oogenesis, ROS content, antioxidant levels, and the expression of apoptosis-related genes and proteins in the ovaries of female zebrafish were analyzed. The results showed that ovarian weight and GSI were significantly decreased, FSH, LH and VTG levels were significantly reduced, the transcriptional profiles of oogenesis-related genes (tgfβ1, bmp15, gdf9, mprα, mprβ, ptg2β) were remarkably altered, ROS levels was notably increased, the SOD, CAT, GPx activities and GSH content as well as their mRNA expressions were significantly decreased, MDA content was remarkably increased, the expressions of apoptosis-related genes and proteins (caspase3, caspase8, caspase9, Fas-L, Cytochrome C, Bax and Bcl-2) were significantly changed, the ratio of Bax/Bcl-2 protein levels were notably increased. Taken together, this study demonstrated that fluoride exposure significantly affected ovarian development, decreased the reproductive hormones, affected oogenesis, induced oxidative stress, caused apoptosis through both extrinsic and intrinsic pathways in ovary of zebrafish. Indicating that oogenesis, oxidative stress, and apoptosis were responsible for the impairment of ovarian development.
Collapse
Affiliation(s)
- Meiyan Li
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Jinling Cao
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Yangfei Zhao
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Panhong Wu
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Xuehua Li
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Forouzan Khodaei
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Yongli Han
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Jundong Wang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China.
| |
Collapse
|
17
|
Shi F, Li W, Zhao H, He Y, Jiang Y, Ni J, Abbasi B, Rui R, Ju S. Microcystin-LR exposure results in aberrant spindles and induces apoptosis in porcine oocytes. Theriogenology 2020; 158:358-367. [PMID: 33038821 DOI: 10.1016/j.theriogenology.2020.09.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/25/2020] [Accepted: 09/25/2020] [Indexed: 12/11/2022]
Abstract
Microcystin-LR (MC-LR), as a well-known hepatotoxin, was recently found to accumulate in gonads and induce a variety of reproductive damages in zebrafish, mice and other model organisms, however, little information is available on whether MC-LR has toxic effects on the mammalian oocytes, especially in livestock species. In this study, the effects of MC-LR on meiotic maturation of porcine oocytes were investigated, and the potential mechanism of MC-LR toxicity was explored. Germinal vesicle (GV)-stage oocytes were exposed to 0, 20, 40 and 60 μM MC-LR, respectively, during the in vitro maturation for 44 h, and the results showed that the first polar body (PbI) extrusion rate of the oocytes decreased significantly when the MC-LR concentration reached 40 (P < 0.01) or 60 μM (P < 0.001). After treated with 60 μM MC-LR for 44 h, a significant higher percentage of the oocytes arrested at anaphase-telophase I (ATI) stage (P < 0.01). Laser scanning confocal results further confirmed that a significantly larger proportion of the 60 μM MC-LR-treated oocytes exhibited aberrant spindles and misaligned chromosomes, suggesting a failure of spindle assembly and homologous chromosome segregation during the ATI stage. Furthermore, the ROS levels in the 60 μM MC-LR-exposed oocytes were significantly higher than the control group (P < 0.01), while the expression of antioxidant related genes (SOD1, CAT and GPX) were much lower compared with control group, indicating that oxidative stress was induced and the antioxidant capacity of oocytes was depleted by 60 μM MC-LR treatment. Additionally, markedly decreased mitochondrial membrane potential (MMP) (P < 0.01) and significantly higher incidence of early apoptosis (P < 0.01) were observed in the 60 μM MC-LR-treated oocytes, suggesting that MC-LR exposure induced apoptosis in porcine oocytes. Moreover, the protein expression of PP2A was remarkably inhibited, whereas the expression of p53, BAX, Caspase3 and Cleaved-caspase3 were prominently increased in the 60 μM MC-LR-exposed oocytes. Together, these results suggested that 60 μM of MC-LR exposure can induce oxidative stress, and lead to aberrant spindles, impaired MMP, and trigger apoptosis, which eventually result in failure of porcine oocyte maturation.
Collapse
Affiliation(s)
- Fengyao Shi
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China
| | - Wenhui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China
| | - Hongyu Zhao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China
| | - Yijing He
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China
| | - Yao Jiang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China
| | - Jun Ni
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China
| | - Benazir Abbasi
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China
| | - Rong Rui
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China
| | - Shiqiang Ju
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China.
| |
Collapse
|
18
|
Zhou W, Wang J, Zhang J, Peng C, Li G, Li D. Environmentally relevant concentrations of geosmin affect the development, oxidative stress, apoptosis and endocrine disruption of embryo-larval zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 735:139373. [PMID: 32473435 DOI: 10.1016/j.scitotenv.2020.139373] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/08/2020] [Accepted: 05/10/2020] [Indexed: 06/11/2023]
Abstract
Geosmin (trans-1, 10-dimethyl-trans-9-decalol), a volatile organic compound, has been widely detected in aquatic ecosystems. However, the ecological effects of geosmin are not clear. Here, using zebrafish (Danio rerio) embryo as a model, we investigated biological activity effects of environmentally relevant concentrations (50, 500, 5000 ng/L) of geosmin on the developing zebrafish starting from 2 h post-fertilization (hpf) to 96 hpf. Results showed geosmin had no effect on hatchability, malformations and mortality. However, we observed that geosmin exposure significantly increased zebrafish body length in a concentration dependent manner. This effect was possibly due to up-regulation of expression of genes along the growth hormone/insulin-like growth factor (GH/IGF) axis and hypothalamic-pituitary-thyroid (HPT) axis. In addition, superoxide dismutase (SOD) activities and catalase (CAT) activities significantly increased at 96 hpf when the embryos were exposed to 500 and 5000 ng/L of geosmin. The malondialdehyde (MDA) contents and glutathione S-transferase (GST) activities decreased significantly after the exposure to 5000 ng/L geosmin. Simultaneously, exposure to geosmin resulted in significant increase in cell apoptosis, mainly in the heart area. The mRNA levels of the genes related to oxidative stress and apoptosis were also altered significantly after geosmin exposure. These findings indicated that geosmin can simultaneously induce multiple responses during zebrafish embryonic development, including oxidative stress, apoptosis, and endocrine disruption.
Collapse
Affiliation(s)
- Weicheng Zhou
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; College of Chemistry, Biology and Environmental Engineering, Xiangnan University, Chenzhou 423000, PR China
| | - Jinglong Wang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jinli Zhang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Chengrong Peng
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Genbao Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Dunhai Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China.
| |
Collapse
|
19
|
Hu C, Hou J, Zhu Y, Lin D. Multigenerational exposure to TiO 2 nanoparticles in soil stimulates stress resistance and longevity of survived C. elegans via activating insulin/IGF-like signaling. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114376. [PMID: 32203849 DOI: 10.1016/j.envpol.2020.114376] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/10/2020] [Accepted: 03/13/2020] [Indexed: 06/10/2023]
Abstract
With increasing release of nanoparticles (NPs) into the environment, soil organisms likely suffer from high dose and long duration of NPs contamination, while the effect of NPs across multiple generations in soil is rarely studied. Herein, we investigated how multigenerational exposure to different crystal forms (anatase, rutile, and their mixture) of TiO2 NPs (nTiO2) affected the survival, behavior, physiological and biochemical traits, and lifespan of nematodes (C. elegans) in a paddy soil. The soil property changed very slightly after being spiked with nTiO2, and the toxicities of three nTiO2 forms were largely comparable. The nTiO2 exposure adversely influenced the survival and locomotion of nematodes, and increased intracellular reactive oxygen species (ROS) generation. Interestingly, the toxic effect gradually attenuated and the lifespan of survived nematodes increased from the P0 to F3 generation, which was ascribed to the survivor selection and stimulatory effect. The lethal effect and the increased oxidative stress may continuously screen out offspring possessing stronger anti-stress capabilities. Moreover, key genes (daf-2, age-1, and skn-1) in the insulin/IGF-like signaling (IIS) pathway actively responded to the nTiO2 exposure, which further optimized the selective expression of downstream genes, increased the antioxidant enzyme activities and antioxidant contents, and thereby increased the stress resistance and longevity of survived nematodes across successive generations. Our findings highlight the crucial role of bio-responses in the progressively decreased toxicity of nTiO2, and add new knowledge on the long-term impact of soil nTiO2 contamination.
Collapse
Affiliation(s)
- Chao Hu
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China
| | - Jie Hou
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China
| | - Ya Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China
| | - Daohui Lin
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
20
|
Wang F, Zheng F, Liu F. Effects of triclosan on antioxidant- and apoptosis-related genes expression in the gill and ovary of zebrafish. Exp Anim 2020; 69:199-206. [PMID: 31839624 PMCID: PMC7220719 DOI: 10.1538/expanim.19-0115] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/11/2019] [Indexed: 12/13/2022] Open
Abstract
Triclosan (TCS) is a broad-spectrum antibacterial and anti-fungal agent used in a broad variety of personal care products (PCPs) throughout the world. However, the molecular mechanism of TCS's effects on the gill and ovary of fish is not clear. In this study, the effects of TCS exposure on expression of antioxidant- and apoptosis-related genes were investigated in the gill and ovary of zebrafish (Danio rerio). Zebrafish were exposed to 0, 17, 34, or 68 µg/l TCS for 42 days. Antioxidant-related genes (SOD, GPx1a, CAT, sMT-B, and MT-2) in the gill were significantly downregulated in the 34 (except GPx1a) and 68 µg/l TCS groups, and these genes (except MT-2) in the ovary were significantly downregulated in the 68 µg/l TCS group. Apoptosis-related gene (Bax and p53) expression level in the gill were significantly downregulated in the 68 µg/l TCS group, while the ratios of BCL-2 to Bax and MDM2 gene were significantly upregulated. The Bax gene in the ovary was significantly upregulated in the 34 and 68 µg/l TCS groups, while the ratio of BCL-2 to Bax was significantly downregulated. Moreover, the p53 gene in the ovary in the 34 µg/l TCS group was significantly upregulated. In addition, the MDA contents in the gill in the 34 and 68 μg/l TCS treated groups and in the ovary in 68 μg/l group were significantly increased. The results showed that the higher dose of TCS might cause oxidative damage in the gills and ovaries and accelerate ROS-dependent ovary apoptosis in zebrafish.
Collapse
Affiliation(s)
- Fan Wang
- School of Life Sciences, Luoyang Normal University, No. 6 Jinqing Road, Yinbin District, Luoyang 471934, P.R. China
| | - Fangfang Zheng
- School of Life Sciences, Luoyang Normal University, No. 6 Jinqing Road, Yinbin District, Luoyang 471934, P.R. China
| | - Fei Liu
- School of Life Sciences, Luoyang Normal University, No. 6 Jinqing Road, Yinbin District, Luoyang 471934, P.R. China
| |
Collapse
|
21
|
Guo H, Lin W, Wu X, Wang L, Zhang D, Li L, Li D, Tang R, Yang L, Qiu Y. Survival strategies of Wuchang bream (Megalobrama amblycephala) juveniles for chronic ammonia exposure: Antioxidant defense and the synthesis of urea and glutamine. Comp Biochem Physiol C Toxicol Pharmacol 2020; 230:108707. [PMID: 31953219 DOI: 10.1016/j.cbpc.2020.108707] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 12/20/2019] [Accepted: 01/11/2020] [Indexed: 12/19/2022]
Abstract
This study aimed to explore how Wuchang bream (Megalobrama amblycephala) survive and defend against the toxicity of ambient total ammonia nitrogen (0, 5, 10, 20 and 30 mg/L TA-N) during 30-day exposure. As a result, hepatic malondialdehyde and protein carbonylation as well as histopathological alterations increased with increasing TA-N level, which suggested that chronic ammonia exposure caused oxidative stress and damage in the liver of fish. Meanwhile, the activities of hepatic total superoxide dismutase (T-SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR) and glucose 6-phosphate dehydrogenase (G6PD) as well as the mRNA expression of Cu/Zn sod, cat, gpx and g6pd were elevated significantly along with significant reduction of glutathione (GSH) and nicotinamide adenine dinucleotide phosphate (NADPH) (P < 0.05). These results indicated that hepatic antioxidant responses were activated to alleviate oxidative damages induced by ammonia, in which lower-concentration ammonia only initiate SOD-CAT-GR-G6PDH defense and higher ammonia activated the SOD-CAT-GPx-GSH-GR-G6PDH antioxidant response. In addition, significant increases of serum urea and hepatic ammonia, urea, glutamine, arginase as well as glutamine synthetase were detected with the increase of TA-N (P < 0.05), while serum ammonia levels kept stable (P > 0.05). The present findings further revealed that ammonia could be detoxified directly into glutamine and urea in Wuchang bream to cope with ammonia exposure. In conclusion, under chronic ammonia exposure, enhanced hepatic antioxidant responses as well as increased urea and glutamine synthesis worked in combination to allow Megalobrama amblycephala to defend against environmental ammonia toxicity.
Collapse
Affiliation(s)
- Honghui Guo
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Wang Lin
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Xueyang Wu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Lingkai Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Dandan Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Li Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, PR China; National Demonstration Center for Experimental Aquaculture Education (Huazhong Agricultural University), Wuhan 430070, PR China.
| | - Dapeng Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, PR China; National Demonstration Center for Experimental Aquaculture Education (Huazhong Agricultural University), Wuhan 430070, PR China
| | - Rong Tang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, PR China; National Demonstration Center for Experimental Aquaculture Education (Huazhong Agricultural University), Wuhan 430070, PR China
| | - Liping Yang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yuming Qiu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| |
Collapse
|
22
|
Zhan C, Zhang F, Liu W, Zhang X. Microcystin-LR promotes zebrafish (Danio rerio) oocyte (in vivo) maturation by activating ERK1/2-MPF signaling pathways, and cAMP is involved in this process. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 259:113843. [PMID: 31887595 DOI: 10.1016/j.envpol.2019.113843] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/28/2019] [Accepted: 12/16/2019] [Indexed: 06/10/2023]
Abstract
Cyanobacterial blooms and their secondary metabolites, microcystins (MCs), are not only toxic to aquatic organisms, but also to humans. MCs exert reproductive toxicity in female fish by affecting the oocyte development. However, the mechanism behind MC-LR interference in oocyte development remains largely unknown. In our study, adult female zebrafish were exposed to MC-LR (0, 1, 5, 20 μg/L) for 30 d. After exposure to MC-LR for 30 d, fertilized eggs from the treated females and healthy males were collected and cultured in water without MC-LR. Histomorphological observations showed pathological damage in the ovary after MC-LR exposure, which was mainly characterized by enlarged intercellular spaces, detachment of follicular cells from oocytes, and vacuolation of parenchymal tissues. The 20 μg/L MC-LR treatment caused a remarkable increase in the rate of the zebrafish oocytes germinal vesicle breakdown (GVBD) and a significant decrease in the levels of cyclic adenosine monophosphate (cAMP) and vitellogenin (VTG). In addition, the phosphorylation levels of the extracellular signal-regulated kinases (ERK) were elevated in ovaries from zebrafish exposed to 5 and 20 μg/L MC-LR, and cyclinB phosphorylation levels were also upregulated notably in the 20 μg/L MC-LR group. However, MC-LR exposure did not cause any change in the levels of cAMP-dependent protein kinase (PKA) protein and cdc2 phosphorylation in all the treatments. All the doses of MC-LR reduced the number of eggs, prematurely hatched the fertilized eggs and increased the abnormal rate of offspring generation. In summary, the present study demonstrates that MC-LR promotes oocyte maturation by activating the ERK1/2 and MPF signaling pathways, and cAMP is involved in this process.
Collapse
Affiliation(s)
- Chunhua Zhan
- College of Fisheries, Huazhong Agricultural University, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China
| | - Feng Zhang
- College of Fisheries, Huazhong Agricultural University, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China
| | - Wanjing Liu
- College of Fisheries, Huazhong Agricultural University, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China
| | - Xuezhen Zhang
- College of Fisheries, Huazhong Agricultural University, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China.
| |
Collapse
|
23
|
Zhan C, Liu W, Zhang F, Zhang X. Microcystin-LR triggers different endoplasmic reticulum stress pathways in the liver, ovary, and offspring of zebrafish (Danio rerio). JOURNAL OF HAZARDOUS MATERIALS 2020; 386:121939. [PMID: 31884362 DOI: 10.1016/j.jhazmat.2019.121939] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/12/2019] [Accepted: 12/17/2019] [Indexed: 06/10/2023]
Abstract
The existence of microcystins (MCs), the secondary metabolite of cyanobacteria, has become a growing public health concern. Previous researches have proved that MCs can trigger endoplasmic reticulum stress (ERS), but the underlying mechanisms remain unclear. In the present study, adult female zebrafish were exposed to MC-LR (0, 1, 5 and 20 μg/L) for 30 d, and the offspring derived from the treated females and healthy males were cultured in water without MC-LR until 96 h post fertilization (hpf). Our data suggested that MC-LR causes a significant increase in the eif2s1a, atf4, and eif2ak3 transcription levels in the liver and ovary. The mRNA levels of atf4, atf6, bcl-2, hspa5, eif2s1a and eif2ak3 upregulated notably in the offspring. JNK phosphorylation level and cleaved-caspase3 protein expression elevated obviously in the liver and ovary, but had no remarkable change in the offspring. Furthermore, TUNEL results showed that MC-LR significantly induced apoptosis in the liver and ovary, while acridine orange (AO) staining indicated that MC-LR did not cause abnormal apoptosis in offspring. Concisely, the present study indicated that MC-LR leads to apoptosis through different ERS pathways in the liver, ovary and offspring, and also provides a new perspective for understanding the apoptosis caused by MC-LR.
Collapse
Affiliation(s)
- Chunhua Zhan
- College of Fisheries, Huazhong Agricultural University, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China
| | - Wanjing Liu
- College of Fisheries, Huazhong Agricultural University, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China
| | - Feng Zhang
- College of Fisheries, Huazhong Agricultural University, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China
| | - Xuezhen Zhang
- College of Fisheries, Huazhong Agricultural University, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China.
| |
Collapse
|
24
|
Lin W, Guo H, Wang L, Zhang D, Wu X, Li L, Qiu Y, Yang L, Li D, Tang R. Waterborne microcystin-LR exposure induced chronic inflammatory response via MyD88-dependent toll-like receptor signaling pathway in male zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 702:134969. [PMID: 31710851 DOI: 10.1016/j.scitotenv.2019.134969] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 09/29/2019] [Accepted: 10/11/2019] [Indexed: 06/10/2023]
Abstract
Waterborne microcystin-LR (MC-LR) released by cyanobacterial blooms in eutrophic water bodies have caused serious risk to aquatic animal and human health. In the present study, we for the first time conducted a comprehensive in vivo investigation on chronic inflammatory responses and its molecular pathways of different environmental relevant levels of MC-LR (0, 0.4, 2 and 10 μg/L) in male zebrafish (Danio rerio). The results showed that chronic MC-LR exposure caused splenic inflammatory changes including the formation of melano-macrophage centers, remarkable elevation of serum tumor necrosis factor alpha (TNFα) and interleukin 1 beta (IL1β) levels as well as significant upregulated expression of MyD88-dependent toll-like receptor (TLR/MyD88) signaling pathway genes (tlr4a, myd88, erk2, p38a, il1β and tnfα). The immunohistochemical and western blot results further validated that higher MC-LR concentrations tended to enhance the MyD88 signal. Moreover, significant decreases of serum C3 levels along with splenic c3b expression in the 10 μg/L exposure group proved that chronic MC-LR exposure could ultimately decrease the innate immunity of fish. Our findings revealed that chronic exposure of MC-LR could cause chronic inflammation through TLR/MyD88 signaling pathway and subsequently induce immune disorders in male zebrafish, which also urge us to pay more attention on the potential immunotoxicity of long-term exposure to low concentration of MC-LR.
Collapse
Affiliation(s)
- Wang Lin
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Honghui Guo
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Lingkai Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Dandan Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Xueyang Wu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Li Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, PR China; National Demonstration Center for Experimental Aquaculture Education (Huazhong Agricultural University), Wuhan 430070, PR China.
| | - Yuming Qiu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Liping Yang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Dapeng Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, PR China; National Demonstration Center for Experimental Aquaculture Education (Huazhong Agricultural University), Wuhan 430070, PR China
| | - Rong Tang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, PR China; National Demonstration Center for Experimental Aquaculture Education (Huazhong Agricultural University), Wuhan 430070, PR China
| |
Collapse
|
25
|
Calado SLDM, Vicentini M, Santos GS, Pelanda A, Santos H, Coral LA, Magalhães VDF, Mela M, Cestari MM, Silva de Assis HC. Sublethal effects of microcystin-LR in the exposure and depuration time in a neotropical fish: Multibiomarker approach. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 183:109527. [PMID: 31400723 DOI: 10.1016/j.ecoenv.2019.109527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/30/2019] [Accepted: 08/01/2019] [Indexed: 06/10/2023]
Abstract
Eutrophication is an ecological process that results in cyanobacterial blooms. Microcystin-LR is the most toxic variant of microcystins and may cause toxic effects in the organisms, mainly in hepatic tissues. The aims of this study were to use multiple biomarkers in order to evaluate the sublethal effects of a low concentration of MC-LR (1 μg/L) in fish Geophagus brasiliensis by waterborne exposure; and evaluate the depuration of this toxin during 15 days. A group of 30 fish was exposed to 1 μg/L of MC-LR solution for 96 h in a static bioassay. After this time, blood, brain, muscle, liver, gonad and gills were collected from half of the exposed fish group in order to evaluate chemical, biochemical, histological and genotoxic biomarkers. The rest of the fish group was submitted to the depuration experiment with free MC-LR water for 15 days. After this time the same tissues were collected and evaluated using biomarkers analysis. Toxic effects were found mostly in the fish liver from depuration time as alterations on the antioxidant system and histopathologies. The results showed that even low concentrations can cause sublethal effects to aquatic organisms, and cyanotoxins monitoring and regulation tools are required.
Collapse
Affiliation(s)
- Sabrina Loise de Morais Calado
- Ecology and Conservation Program Post-Graduation, Federal University of Paraná, PO Box 19031, 81530-990, Curitiba-PR, Brazil.
| | - Maiara Vicentini
- Ecology and Conservation Program Post-Graduation, Federal University of Paraná, PO Box 19031, 81530-990, Curitiba-PR, Brazil.
| | - Gustavo Souza Santos
- Department of Genetics, Federal University of Paraná, PO Box 19031, 81530-990, Curitiba-PR, Brazil.
| | - Ana Pelanda
- Department of Pharmacology, Federal University of Paraná, PO Box 19031, 81530-990, Curitiba-PR, Brazil.
| | - Hayanna Santos
- Department of Pharmacology, Federal University of Paraná, PO Box 19031, 81530-990, Curitiba-PR, Brazil.
| | - Lucila Andriani Coral
- Department of Chemistry and Biology, Federal Technical University of Paraná, 81280-340, Curitiba-PR, Brazil.
| | | | - Maritana Mela
- Department of Cell Biology, Federal University of Paraná, PO Box 19031, 81530-990, Curitiba-PR, Brazil.
| | - Marta Margarete Cestari
- Department of Genetics, Federal University of Paraná, PO Box 19031, 81530-990, Curitiba-PR, Brazil.
| | | |
Collapse
|
26
|
Liu W, Zhan C, Zhang T, Zhang X. Microcystin-LR influences the in vitro oocyte maturation of zebrafish by activating the MAPK pathway. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 215:105261. [PMID: 31419757 DOI: 10.1016/j.aquatox.2019.105261] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 06/14/2019] [Accepted: 07/16/2019] [Indexed: 06/10/2023]
Abstract
Harmful cyanobacteria and their production of microcystins (MCs) exert significant toxicity on reproduction of fish, especially the process of oogenesis. Our previous studies demonstrated that MCs have negative impacts on the quantity and quality of mature oocytes in female zebrafish. However, the underlying mechanisms of MCs disrupting oocyte maturation (OM) have been rarely reported. In the present study, in vitro oocytes (immature) were separated from zebrafish and treated with 1, 10, 100 μg/L MC-LR. The serine/threonine protein phosphatase 2A (PP2A) activity was downregulated significantly in oocytes exposed to 10 and 100 μg/L MC-LR for both 2 and 4 h. The phosphorylation levels of mitogen-activated protein kinase (MAPK) were detected without noticeable change in all oocytes treated with MC-LR for 2 h, whereas the activated levels of MAPK subtypes (ERK, p38 and JNK) increased remarkably in the 100 μg/L MC-LR treatment of 4 h. In the oocytes exposed to 100 μg/L MC-LR for 4 h, germinal vesicle breakdown (GVBD) rates changed abnormally and maturation-promoting factor (MPF) activity increased significantly, in accordance with the upregulation of Cyclin B protein levels. Moreover, the MAPK inhibitors (10 μM) were applied to explore the role of MAPK subtypes during MC-LR influencing OM and results showed that ERK inhibitor U0126 and p38 inhibitor SB203580 mitigated the effects of 100 μg/L MC-LR-induced MAPK hyper-phosphorylation and elevated GVBD in the oocytes. In conclusion, the present study indicates that microcystins disrupt the meiotic maturation by the pathway of MC-PP2A-MAPK-OM due to the phosphorylation disorder in oocytes.
Collapse
Affiliation(s)
- Wanjing Liu
- College of Fisheries, Huazhong Agricultural University, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, China
| | - Chunhua Zhan
- College of Fisheries, Huazhong Agricultural University, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, China
| | - Tongzhou Zhang
- College of Fisheries, Huazhong Agricultural University, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, China
| | - Xuezhen Zhang
- College of Fisheries, Huazhong Agricultural University, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, China.
| |
Collapse
|
27
|
Kawan A, Zhang T, Liu W, Mukhtar H, Zhan C, Zhang X. Recovery of reproductive function of female zebrafish from the toxic effects of microcystin-LR exposure. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 214:105240. [PMID: 31319295 DOI: 10.1016/j.aquatox.2019.105240] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/02/2019] [Accepted: 07/04/2019] [Indexed: 06/10/2023]
Abstract
Fish has a strong resistance to microcystins (MCs), cyclic heptapeptide cyanotoxins, known as endocrine disrupting chemicals (EDCs) which are released during cyanobacterial blooms and many laboratory and field studies have found the hepatic recovery of fish from the MCs exposure. The aim of the present study was to investigate the recovery mechanisms of reproductive function of adult zebrafish (Danio rerio) from microcystin-LR (MC-LR) exposure. Therefore, adult female zebrafish were exposed to 0, 1 or 50 μg/L of MC-LR for 21days and transferred to MC free water for another 21 days to investigate the recovery. After MC-LR exposure, marked histological lesions in the gonads, decreased the percentage of mature oocytes, decreased number of spawned eggs, decreased fertilization and hatching rates were observed. MC-LR exposure increased the concentration of 17β-estradiol (E2), testosterone (T) and vitellogenin (VTG) in female zebrafish. Some gene transcriptions of the hypothalamic-pituitary-gonad (HPG) axis significantly changed. The protein levels of 17βhsd and cyp19a remarkably increased in the MC-LR exposure groups. However, our laboratory observation also indicates that zebrafish transferred from microcystin exposure to toxin-free water and reared for 21 days exhibited a nearly complete recovery of reproductive functions, including histological structure, increased the percentage of matured oocytes and spawned eggs, stable hormone levels, well-balanced transcriptional and translational levels. These results indicate that after MC-LR exposure, the reproductive impairments in zebrafish are also reversible likewise hepatic recovery seen by different studies in fish. Future studies should be conducted to explore a better understanding of the recovery mechanisms of fish from microcystins exposure.
Collapse
Affiliation(s)
- Atufa Kawan
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Tongzhou Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Wanjing Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Hina Mukhtar
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Chunhua Zhan
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Xuezhen Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| |
Collapse
|
28
|
Zhang Y, Shi Q, Wei W, Xu F, Nie F, Yang H. Effects of microcystin-LR on the immune dysfunction and ultrastructure of hepatopancreas in giant freshwater prawn Macrobrachium rosenbergii. FISH & SHELLFISH IMMUNOLOGY 2019; 89:586-594. [PMID: 30991147 DOI: 10.1016/j.fsi.2019.04.039] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/07/2019] [Accepted: 04/11/2019] [Indexed: 06/09/2023]
Abstract
Microcystins (MCs), produced by cyanobacteria, can strongly inhibit the activity of protein phosphatase, and exhibit strong hepatotoxicity. Macrobrachium rosenbergii is an important aquaculture economic species. Cyanobacterial blooms occur frequently during the culture of M. rosenbergii. However, the effects of MCs on the M. rosenbergii immune function have not been studied. In the present study, M. rosenbergii were exposed to environment-related concentrations of MC-LR type (0.5 and 5 μg/L) for 3 weeks. Hepatopancreatic histology was investigated, and antioxidant enzymes activity, acid phosphatase, alkaline phosphatase and lysozyme activity in hepatopancreas were also analyzed. Results showed that MC-LR could damage M. rosenbergii hepatopancreas, induce hepatopancreatic apoptosis and antioxidant dysfunctions. The expression profiles of major immune-related genes after MC-LR exposure were also detected. Some genes with antibacterial functions were suppressed, and the expression of apoptosis-related genes were up-regulated. After MC-LR exposure, the cumulative mortality of M. rosenbergii infected with Vibrio vulnificus and Aeromonas hydrophila were much higher than the control in a time-dose dependent manner. These results indicated the potential negative influence of MC-LR on the immune function of M. rosenbergii.
Collapse
Affiliation(s)
- Yingying Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Qiang Shi
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Wenzhi Wei
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Fei Xu
- Lake Gaobaoshaobo Fishery Administrative Committee, 732 Middle Yangzijiang Road, Yangzhou, 225009, China
| | - Fubing Nie
- Lake Gaobaoshaobo Fishery Administrative Committee, 732 Middle Yangzijiang Road, Yangzhou, 225009, China
| | - Hui Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
29
|
Fernandes K, Gomes A, Calado L, Yasui G, Assis D, Henry T, Fonseca A, Pinto E. Toxicity of Cyanopeptides from Two Microcystis Strains on Larval Development of Astyanax altiparanae. Toxins (Basel) 2019; 11:E220. [PMID: 31013880 PMCID: PMC6520764 DOI: 10.3390/toxins11040220] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 03/31/2019] [Accepted: 04/04/2019] [Indexed: 12/27/2022] Open
Abstract
Absorption and accumulation of bioavailable cyanobacterial metabolites (including cyanotoxins) are likely in fish after senescence and the rupturing of cells during bloom episodes. We determined the toxicity of cyanopeptides identified from two strains of Microcystis (M. panniformis MIRS-04 and M. aeruginosa NPDC-01) in a freshwater tropical fish, Astyanax altiparanae (yellowtail tetra, lambari). Aqueous extracts of both Microcystis strains were prepared in order to simulate realistic fish exposure to these substances in a freshwater environment. Both strains were selected because previous assays evidenced the presence of microcystins (MCs) in MIRS-04 and lack of cyanotoxins in NPDC-01. Identification of cyanobacterial secondary metabolites was performed by LC-HR-QTOF-MS and quantification of the MC-LR was carried out by LC-QqQ-MS/MS. MIRS-04 produces the MCs MC-LR, MC-LY and MC-HilR as well as micropeptins B, 973, 959 and k139. NPCD-01 biosynthetizes microginins FR1, FR2/FR4 and SD-755, but does not produce MCs. Larval fish survival and changes in morphology were assessed for 96 h exposure to aqueous extracts of both strains at environmentally relevant concentrations from 0.1 to 0.5 mg (dry weight)/mL, corresponding to 0.15 to 0.74 μg/mL of MC-LR (considering dried amounts of MIRS-04 for comparison). Fish mortality increased with concentration and time of exposure for both strains of Microcystis. The frequencies of morphological abnormalities increased with concentration in both strains, and included abdominal and pericardial oedema, and spinal curvature. Results demonstrate that toxicity was not solely caused by MCs, other classes of cyanobacterial secondary metabolites contributed to the observed toxicity.
Collapse
Affiliation(s)
- Kelly Fernandes
- Natural Resources Institute, Federal University of Itajubá, 1303 BPS Avenue, Itajubá, MG 37500-903, Brazil.
- School of Pharmaceutical Sciences, University of Sao Paulo, 580 Professor Lineu Prestes Avenue, São Paulo, SP 05508-000, Brazil.
| | - Andreia Gomes
- Natural Resources Institute, Federal University of Itajubá, 1303 BPS Avenue, Itajubá, MG 37500-903, Brazil.
- Federal Institute of Education Science and Technology of Rio de Janeiro, Washington Luis Highway, Niteroi, RJ 24310-000, Brazil.
| | - Leonardo Calado
- National Center for Research and Conservation of Continentals' Fish-CEPTA, SP-201 (Pref. Euberto Nemésio Pereira de Godoy-Motorway), Km 6.5, Pirassununga, SP 13630-970, Brazil.
- Faculty of Technology, State University of Campinas, 1888 Paschoal Marmo Street, Limeira, SP 13484-332, Brazil.
| | - George Yasui
- National Center for Research and Conservation of Continentals' Fish-CEPTA, SP-201 (Pref. Euberto Nemésio Pereira de Godoy-Motorway), Km 6.5, Pirassununga, SP 13630-970, Brazil.
| | - Diego Assis
- Bruker Daltonics Corporation, Condomínio BBP-Barão de Mauá, Atibaia, SP 12954-260, Brazil.
| | - Theodore Henry
- Institute of Life and Earth Sciences (ILES), Center for Marine Biodiversity & Biotechnology (CMBB), The School of Energy, Geoscience, Infrastructure and Society (EGIS), Heriot-Watt University, Edinburgh EH14 4AS, UK.
| | - Ana Fonseca
- Natural Resources Institute, Federal University of Itajubá, 1303 BPS Avenue, Itajubá, MG 37500-903, Brazil.
| | - Ernani Pinto
- School of Pharmaceutical Sciences, University of Sao Paulo, 580 Professor Lineu Prestes Avenue, São Paulo, SP 05508-000, Brazil.
| |
Collapse
|
30
|
Li X, Li J, Meng F, Yao L. Hepatotoxicity and immunotoxicity of MC-LR on silver carp. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 169:28-32. [PMID: 30412895 DOI: 10.1016/j.ecoenv.2018.10.110] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/27/2018] [Accepted: 10/30/2018] [Indexed: 06/08/2023]
Abstract
Microcystins produced by some cyanobacteria can cause damages to the liver and kidneys of aquatic animals. In the natural water with cyanobacterial blooms, silver carp may suffer from the most serious affect of the bloom due to their filtering these cyanobacteria and ingesting them as food. In the present study, silver carp was exposed to microcystin-LR by using the method of intraperitoneal injection first to determine the acute toxicity of microcystin-LR on silver carp and then to determine the activity of inflammatory protein and content of inflammatory factors from the serum of silver carp following a subacute exposure of microcystin-LR at doses of 104.9 μg kg-1 (1/5 of LD50) or 262.1 μg kg-1 (1/2 of LD50). The results showed that MC-LR exposure increased fish liver index and promoted the activities of fish serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST), indicating the hepatotoxicity of MC-LR on the fish. Moreover, MC-LR exposure also increased the number of leukocytes, complement C3 level, lysozyme activity (at the first 9 h of exposure), and the contents of cytokines TNF-α, IL-1β and IFN-γ in fish serum. In addition, a significant increase in IgM level was observed in the serum and head kidney of silver carp following MC-LR exposure. This result suggests that semi-lethal doses of MC-LR exposure is not only hepatotoxic but also immunotoxic to silver carp.
Collapse
Affiliation(s)
- Xiaoyu Li
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Jing Li
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Fanxiao Meng
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Lan Yao
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
31
|
Lin W, Guo H, Wang L, Zhang D, Wu X, Li L, Li D, Tang R. Nitrite Enhances MC-LR-Induced Changes on Splenic Oxidation Resistance and Innate Immunity in Male Zebrafish. Toxins (Basel) 2018; 10:E512. [PMID: 30513985 PMCID: PMC6315824 DOI: 10.3390/toxins10120512] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/24/2018] [Accepted: 11/28/2018] [Indexed: 01/14/2023] Open
Abstract
Hazardous contaminants, such as nitrite and microcystin-leucine arginine (MC-LR), are released into water bodies during cyanobacterial blooms and may adversely influence the normal physiological function of hydrobiontes. The combined effects of nitrite and MC-LR on the antioxidant defense and innate immunity were evaluated through an orthogonal experimental design (nitrite: 0, 29, 290 μM; MC-LR: 0, 3, 30 nM). Remarkable increases in malondialdehyde (MDA) levels have suggested that nitrite and/or MC-LR exposures induce oxidative stress in fish spleen, which were indirectly confirmed by significant downregulations of total antioxidant capacity (T-AOC), glutathione (GSH) contents, as well as transcriptional levels of antioxidant enzyme genes cat1, sod1 and gpx1a. Simultaneously, nitrite and MC-LR significantly decreased serum complement C3 levels as well as the transcriptional levels of splenic c3b, lyz, il1β, ifnγ and tnfα, and indicated that they could jointly impact the innate immunity of fish. The severity and extent of splenic lesions were aggravated by increased concentration of nitrite or MC-LR and became more serious in combined groups. The damages of mitochondria and pseudopodia in splenic macrophages suggest that oxidative stress exerted by nitrite and MC-LR aimed at the membrane structure of immune cells and ultimately disrupted immune function. Our results clearly demonstrate that nitrite and MC-LR exert synergistic suppressive effects on fish innate immunity via interfering antioxidant responses, and their joint toxicity should not be underestimated in eutrophic lakes.
Collapse
Affiliation(s)
- Wang Lin
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
| | - Honghui Guo
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
| | - Lingkai Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
| | - Dandan Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xueyang Wu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
| | - Li Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China.
- National Demonstration Center for Experimental Aquaculture Education, Huazhong Agricultural University, Wuhan 430070, China.
| | - Dapeng Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China.
- National Demonstration Center for Experimental Aquaculture Education, Huazhong Agricultural University, Wuhan 430070, China.
| | - Rong Tang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China.
- National Demonstration Center for Experimental Aquaculture Education, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
32
|
Lin W, Guo H, Li Y, Wang L, Zhang D, Hou J, Wu X, Li L, Li D, Zhang X. Single and combined exposure of microcystin-LR and nitrite results in reproductive endocrine disruption via hypothalamic-pituitary-gonadal-liver axis. CHEMOSPHERE 2018; 211:1137-1146. [PMID: 30223329 DOI: 10.1016/j.chemosphere.2018.08.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/10/2018] [Accepted: 08/11/2018] [Indexed: 05/25/2023]
Abstract
Microcystin-LR (MC-LR) released by Microcystis blooms degradation usually co-exists with a chemical called nitrite, posing a serious harm to aquatic organisms. To assess the single and combined effects of MC-LR and nitrite on the reproductive endocrine system, a fully factorial experiment was designed and adult male zebrafish (Danio rerio) were exposed to 9 treatment combinations of MC-LR (0, 3, 30 μg/L) and nitrite (0, 2, 20 mg/L) for 30 d. The results showed that both MC-LR and nitrite caused concentration-dependent effects including the growth inhibition, decreased gonad index as well as testicular injuries with widen intercellular spaces and seminiferous epithelium deteriorations. And testicular pathological changes in the co-exposure groups of MC-LR and nitrite were similar but more serious than those in single-factor exposure groups. Concurrently, exposure to MC-LR or nitrite alone could significantly decrease T levels by downregulating gene expressions (gnrh2, lhβ, ar, lhr) in the hypothalamic-pituitary-gonadal-liver-axis (HPGL-axis), and there were significant interactions between MC-LR and nitrite on them. In contrast, E2 levels as well as transcriptional levels of cyp19a1b, cyp19a1a and vtg1 showed significant inductions with increasing MC-LR concentrations, indicating an estrogen-like effect of MC-LR. Our findings illustrated that co-exposure of MC-LR and nitrite synergistically cause reproductive dysfunction by interfering with the HPGL axis in male fish, which prompt us to focus more on the potential risks in fish reproduction and even population dynamics due to the wide occurrence of toxic cyanobacterial blooms.
Collapse
Affiliation(s)
- Wang Lin
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Honghui Guo
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Yufen Li
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Lingkai Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Dandan Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Jie Hou
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Xueyang Wu
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Li Li
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, PR China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, PR China; National Demonstration Center for Experimental Aquaculture Education (Huazhong Agricultural University), Wuhan, 430070, PR China.
| | - Dapeng Li
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, PR China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, PR China; National Demonstration Center for Experimental Aquaculture Education (Huazhong Agricultural University), Wuhan, 430070, PR China
| | - Xuezhen Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, PR China
| |
Collapse
|
33
|
Hou J, Su Y, Lin W, Guo H, Li L, Anderson DM, Li D, Tang R, Chi W, Zhang X. Estrogenic potency of MC-LR is induced via stimulating steroidogenesis: In vitro and in vivo evidence. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 240:615-622. [PMID: 29772511 PMCID: PMC6859840 DOI: 10.1016/j.envpol.2018.04.140] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/26/2018] [Accepted: 04/30/2018] [Indexed: 05/06/2023]
Abstract
Waterborne microcystin-LR (MC-LR) has been reported to disrupt sex hormones, while its estrogenic potency remains controversial. We hypothesized that MC-LR could induce estrogenic effects via disrupting sex hormone synthesis, and verified this hypothesis by in vitro and in vivo assays. Effects of MC-LR (1, 10, 100, 500, 1000 and 5000 μg/L) on steroidogenesis were assessed in the H295R cells after 48 h. The contents of 17β-estradiol (E2) and testosterone (T) increased in a non-dose-dependent manner, which showed positive correlations with the expression of steroidogenic genes. In the in vivo assay, adult male zebrafish were exposed to 0.3, 1, 3, 10 and 30 μg/L MC-LR for 30 d. Similarly, E2 and T contents in the testis were increased, accompanied by extensive up-regulation of steroidogenic genes, especially cyp19a. Meanwhile, the percentage of spermatid in the testis declined. In the liver, the vtg1 gene was significantly up-regulated while both the transcriptional and protein levels of the estrogenic receptor (ER) declined. These results indicate that MC-LR induced non-dose-dependent estrogenic effects at environmental concentrations, which may result from steroidogenesis stimulation via a non-ER-mediated pathway. Our findings support a paradigm shift in the risk assessment of MC-LR from traditional toxicity to estrogenic risk, particularly at low concentrations, and emphasize the potential threat to the male reproductive capacity of wildlife in bloom areas.
Collapse
Affiliation(s)
- Jie Hou
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yujing Su
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Wang Lin
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Honghui Guo
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Li Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China; Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070, PR China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, PR China; National Demonstration Center for Experimental Aquaculture Education (Huazhong Agricultural University), Wuhan 430070, PR China.
| | - Donald M Anderson
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Dapeng Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China; Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070, PR China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, PR China; National Demonstration Center for Experimental Aquaculture Education (Huazhong Agricultural University), Wuhan 430070, PR China
| | - Rong Tang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China; Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070, PR China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, PR China; National Demonstration Center for Experimental Aquaculture Education (Huazhong Agricultural University), Wuhan 430070, PR China
| | - Wei Chi
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China; Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070, PR China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, PR China; National Demonstration Center for Experimental Aquaculture Education (Huazhong Agricultural University), Wuhan 430070, PR China
| | - Xi Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China; Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070, PR China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, PR China; National Demonstration Center for Experimental Aquaculture Education (Huazhong Agricultural University), Wuhan 430070, PR China
| |
Collapse
|
34
|
Liu H, Zhang X, Zhang S, Huang H, Wu J, Wang Y, Yuan L, Liu C, Zeng X, Cheng X, Zhuang D, Zhang H. Oxidative Stress Mediates Microcystin-LR-Induced Endoplasmic Reticulum Stress and Autophagy in KK-1 Cells and C57BL/6 Mice Ovaries. Front Physiol 2018; 9:1058. [PMID: 30131715 PMCID: PMC6090159 DOI: 10.3389/fphys.2018.01058] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/16/2018] [Indexed: 01/28/2023] Open
Abstract
Microcystin-leucine arginine (MC-LR) is a cyclic heptapeptide intracellular toxin released by cyanobacteria that exhibits strong reproductive toxicity. However, little is known about its biotoxicity to the female reproductive system. The present study investigates unexplored molecular pathways by which oxidative stress acts on MC-LR-induced endoplasmic reticulum stress (ERs) and autophagy. In the present study, immortalized murine ovarian granular cells (KK-1 cells) were exposed to 8.5, 17, and 34 μg/mL (IC50) of MC-LR with or without N-acetyl-l-cysteine (NAC, 10 mM) for 24 h, and C57BL/6 mice were treated with 12.5, 25.0, and 40.0 μg/kg⋅bw of MC-LR with or without NAC (200 mg/kg⋅bw) for 14 days. The results revealed that MC-LR could induce cells apoptosis and morphologic changes in ovarian tissues, induce oxidative stress by stimulating the generation of reactive oxygen species (ROS), destroying antioxidant capacity, and subsequently trigger ERs and autophagy by inducing the hyper-expression of ATG12, ATG5, ATG16, EIF2α (phosphorylated at S51), CHOP, XBP1, GRP78, Beclin1, and PERK (Thr980). Furthermore, NAC pretreatment partly inhibited MC-LR-induced ERs and autophagy via the PERK/ATG12 and XBP1/Beclin1 pathways. These results suggest that oxidative stress mediated MC-LR-induced ERs and autophagy in KK-1 cells and C57BL/6 mice ovaries. Therefore, oxidative stress plays an important role in female toxicity induced by MC-LR.
Collapse
Affiliation(s)
- Haohao Liu
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xiaofeng Zhang
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Shenshen Zhang
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Hui Huang
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Jinxia Wu
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yueqin Wang
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Le Yuan
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Chuanrui Liu
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xin Zeng
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xuemin Cheng
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Donggang Zhuang
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Huizhen Zhang
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
35
|
Zhao S, Liu Y, Wang F, Xu D, Xie P. N-acetylcysteine protects against microcystin-LR-induced endoplasmic reticulum stress and germ cell apoptosis in zebrafish testes. CHEMOSPHERE 2018; 204:463-473. [PMID: 29679867 DOI: 10.1016/j.chemosphere.2018.04.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 06/08/2023]
Abstract
Previous studies have shown that microcystin-LR (MCLR) is a reproductive toxicant that induces germ cell apoptosis in the testes, but the underlying mechanisms have not been well understood. In this study, we investigated that MCLR induces germ cell apoptosis is through activation of endoplasmic reticulum (ER) stress and N-acetylcysteine (NAC), an antioxidant could protect against germ cell apoptosis by inhibiting the ER stress. Healthy male zebrafish were intraperitoneally injected with NAC (500 nM), beginning at 2 h before different doses of MCLR (0, 50, 100, 200 μg/kg). As expected, acute MCLR exposure resulted in oxidative stress and germ cell apoptosis in zebrafish testes. Further analysis showed that NAC significantly alleviated MCLR-induced testicular germ cell apoptosis and inhibited the caspase-dependent apoptotic proteins. Meanwhile H&E staining showed that NAC could rescue testicular damage induced by MCLR. Moreover, MCLR induced activation of ER stress which consequently triggered apoptosis in zebrafish testes. Interestingly, NAC was effective in improving the total antioxidant capacity (T-AOC) level and activity of antioxidant enzymes in NAC pretreated groups. NAC significantly attenuated MCLR-induced upregulation of GRP78 in testes. In addition, NAC significantly attenuated MCLR-triggered testicular eIF2s1 and MAPK8 activation, indicating that NAC counteracts MCLR-induced unfolded protein response (UPR) in testes. Taken together, the results observed in this study suggested that ER stress plays a critical role in germ cell apoptosis exposed to MCLR and NAC could protect against apoptosis via inhibiting ER stress in zebrafish testes.
Collapse
Affiliation(s)
- Sujuan Zhao
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Ying Liu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Fang Wang
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Dexiang Xu
- School of Public Health, Anhui Medical University, Hefei 230032, China.
| | - Ping Xie
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
36
|
Wang C, Wu Y, Wang Y, Bai L, Jiang H, Yu J. Lanthanum-modified drinking water treatment residue for initial rapid and long-term equilibrium phosphorus immobilization to control eutrophication. WATER RESEARCH 2018; 137:173-183. [PMID: 29549799 DOI: 10.1016/j.watres.2018.03.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 02/11/2018] [Accepted: 03/08/2018] [Indexed: 06/08/2023]
Abstract
This study presents an approach for developing inactivating materials to achieve an initial rapid and a long-term equilibrium P immobilization to control eutrophication based on drinking water treatment residue (DWTR), which is a byproduct of potable water production. By taking advantage of the long-term equilibrium P adsorption by DWTR, the La chemical properties, and the previous success of using La-modified bentonite clay (Phoslock®), we used DWTR as a La carrier with different ratios to develop the specific materials. The La loading mechanisms, the potentially toxic effect of La-modified DWTR on snail Bellamya aeruginosa (within 120 d), and the short- and long-term (within 80 d) P immobilization characteristics of the modified DWTR were investigated to understand the performance of the developed materials. The results showed that La loading into DWTR was based on ligand exchanges and the formation of new particles; DWTR loaded with <5% La had no toxicity against the snail. Most importantly, the loading of 5% La to DWTR substantially enhanced the rapid immobilization capacity of DWTR, achieving an initial rapid and a long-term equilibrium P adsorption in aqueous solutions. This study promotes the beneficial recycling of DWTR and results in a win-win situation for lake restoration.
Collapse
Affiliation(s)
- Changhui Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Yu Wu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; College of Biology and Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Youquan Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; College of Biology and Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Leilei Bai
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; Graduate University of Chinese Academy of Sciences, China
| | - Helong Jiang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Juhua Yu
- CEER, State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China
| |
Collapse
|
37
|
Min BH, Ravikumar Y, Lee DH, Choi KS, Kim BM, Rhee JS. Age-dependent antioxidant responses to the bioconcentration of microcystin-LR in the mysid crustacean, Neomysis awatschensis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 232:284-292. [PMID: 28947316 DOI: 10.1016/j.envpol.2017.09.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/13/2017] [Accepted: 09/17/2017] [Indexed: 06/07/2023]
Abstract
Microcystins (MCs) are naturally occurring algal toxins in the aquatic environment and pose a serious threat to the ecosystem. In general, aquatic populations are structured by organisms of different ages, with varying degrees of biochemical and physiological responses. In this study, juvenile and adult marine mysids (Neomysis awatschensis) were exposed to MC-Leucine Arginine (MC-LR) (0.1, 1, and 10 μg L-1) for 7 days, and the bioconcentration dynamics and responses of antioxidant defense system were measured during the exposure and additional depuration periods (7 days). MC-LR bioconcentrated in a dose-dependent manner, from a threshold concentration of 1 μg L-1 in both stages, and the levels reduced gradually during the depuration phase. Bioconcentration patterns of MC-LR were highly age-specific, as juvenile mysids showed peaks during the exposure period, whereas adults exhibited a peak on the first day of depuration. After exposure to 10 μg L-1 concentration, elevated levels of malondialdehyde (MDA) and glutathione (GSH) were observed during the late (days 5 and 7) exposure and early (days 1 and 3) depuration periods in juvenile mysids, while adult mysids showed a peak on day 7 of the exposure period. Age-specific responses were also observed in the enzymatic activities of glutathione S-transferase (GST), catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione reductase (GR). Juvenile mysids showed a significant elevation in all enzymatic activities during the exposure and/or depuration phase upon exposure to 10 μg L-1 MC-LR, but only CAT and SOD enzymes showed significant changes during the exposure and/or depuration periods in adults. Overall, our results indicate the bioconcentration potential of MC-LR and its threshold in the marine mysid, in addition to age-specific MC-LR dynamics and subsequent biochemical responses.
Collapse
Affiliation(s)
- Byung-Hwa Min
- Aquaculture Research Division, National Institute of Fisheries Science, Busan 46083, South Korea
| | - Yuvaraj Ravikumar
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, South Korea
| | - Do-Hee Lee
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, South Korea
| | - Kwang Seek Choi
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, South Korea
| | - Bo-Mi Kim
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon 21990, South Korea
| | - Jae-Sung Rhee
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, South Korea; Research Institute of Basic Sciences, Incheon National University, Incheon 22012, South Korea; Institute of Green Environmental Research Center, 169, Gaetbeol-ro, Yeonsugu, Incheon 21999, South Korea.
| |
Collapse
|
38
|
Icoglu Aksakal F, Ciltas A. The impact of ultraviolet B (UV-B) radiation in combination with different temperatures in the early life stage of zebrafish (Danio rerio). Photochem Photobiol Sci 2018; 17:35-41. [DOI: 10.1039/c7pp00236j] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Ultraviolet B (UV-B) radiation is an environmental stressor with detrimental effects on many aquatic organisms including fish.
Collapse
Affiliation(s)
- Feyza Icoglu Aksakal
- Department of Agricultural Biotechnology
- Faculty of Agriculture
- Atatürk University
- Erzurum
- Turkey
| | - Abdulkadir Ciltas
- Department of Agricultural Biotechnology
- Faculty of Agriculture
- Atatürk University
- Erzurum
- Turkey
| |
Collapse
|
39
|
Chen QL, Sun YL, Liu ZH, Li YW. Sex-dependent effects of subacute mercuric chloride exposure on histology, antioxidant status and immune-related gene expression in the liver of adult zebrafish (Danio rerio). CHEMOSPHERE 2017; 188:1-9. [PMID: 28865787 DOI: 10.1016/j.chemosphere.2017.08.148] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 08/24/2017] [Accepted: 08/28/2017] [Indexed: 06/07/2023]
Abstract
Mercury (Hg) is a global pollutant that causes negative health effects. In order to assess Hg-induced hepatotoxicity in fish and examine whether gender differences existed in response to Hg exposure, adult zebrafish were exposed to 0, 15 and 30 μg L-1 Hg2+ for 30 days, and histology, antioxidant status and the transcription levels of several immune-related genes were examined in the liver. Hg2+ exposure caused a dose-dependent increase in histopathological lesions of the liver, including vacuolization, parenchyma disorganization and pyknotic nucleus, and these lesions were more severe in males than in females. In females, Hg2+ exposure decreased CAT activity and its mRNA levels, while increased GSH content and the expressions of sod1, gpx1a, gstr and keap1. In males, the decrease in cat1 expression and the increase in GST activity, GSH and MDA contents as well as gpx1a, gstr, nrf2 and keap1 mRNA levels were observed in Hg2+-exposed groups, but the activities of CAT, SOD and GPX were only stimulated in the 15 μg L-1 Hg2+ group. Moreover, both in females and males, Hg2+ exposure down-regulated il-8 expression while up-regulated il-10 and lyz mRNAs. However, the down-regulation of il-1β and tnfα was detected only in males under Hg2+ treatments. Thus, our results indicated that HgCl2 exposure induced histopathological damage, oxidative stress and immunotoxicity in the liver of zebrafish. Different response patterns of histology, antioxidant status and immune defenses to Hg2+ between females and males suggested sex-dependent effects of Hg, and males showed more vulnerable to Hg2+ exposure than females.
Collapse
Affiliation(s)
- Qi-Liang Chen
- Chongqing Key Laboratory of Animal Biology, School of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Ya-Ling Sun
- Chongqing Key Laboratory of Animal Biology, School of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Zhi-Hao Liu
- Chongqing Key Laboratory of Animal Biology, School of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Ying-Wen Li
- Chongqing Key Laboratory of Animal Biology, School of Life Sciences, Chongqing Normal University, Chongqing, 401331, China.
| |
Collapse
|
40
|
Lin W, Hou J, Guo H, Qiu Y, Li L, Li D, Tang R. Dualistic immunomodulation of sub-chronic microcystin-LR exposure on the innate-immune defense system in male zebrafish. CHEMOSPHERE 2017; 183:315-322. [PMID: 28551208 DOI: 10.1016/j.chemosphere.2017.05.079] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/11/2017] [Accepted: 05/12/2017] [Indexed: 06/07/2023]
Abstract
Microcystins (MCs), produced by toxic cyanobacterial blooms that appeared world wildly in eutrophication waters, have often caused fish illness and even massive death cases. Among at least 90 structural variants, microcystin-LR (MC-LR) is the most common and toxic variant. In order to better understand innate immune responses in fish disrupted by environmental concentrations of MC-LR, male zebrafish (Danio rerio) were exposed to 0, 0.3, 1, 3, 10 and 30 μg/L MC-LR for 30 d, and the changes in splenic pathology and immunological gene expression as well as serum immune parameters were studied. In the low concentration groups (0.3, 1 and 3 μg/L), zebrafish displayed splenic inflammatory changes including the formation of melano-macrophage centers and the increase of macrophage pseudopodia, remarkable elevation of serum C3 levels, and significantly upregulated expression of innate immune-related genes (c3b, lyz, il1β, tnfα and ifnγ). In contrast, high concentrations of MC-LR (10 and 30 μg/L) resulted in the degeneration of splenic lymphocytes and macrophages, and down-regulation of immune-related genes as well as significant decreases in the level of serum C3. Furthermore, significant increases in the activity of serum ACP and ALP suggested that high concentrations of MC-LR increased permeability of macrophage plasma membrane or cellular necrosis, and subsequently decreased innate immune function. Our findings illustrated that sub-chronic exposure of MC-LR has dualistic influences on fish innate immune system with inflammatory activation at low exposure concentrations but turned to immune inhibition with the increases of exposure concentration.
Collapse
Affiliation(s)
- Wang Lin
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Jie Hou
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Honghui Guo
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yuming Qiu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Li Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China; Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070, PR China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, PR China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, PR China.
| | - Dapeng Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China; Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070, PR China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, PR China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, PR China
| | - Rong Tang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China; Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070, PR China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, PR China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, PR China
| |
Collapse
|
41
|
Hou J, Su Y, Lin W, Guo H, Xie P, Chen J, Gu Z, Li L. Microcystin-LR retards gonadal maturation through disrupting the growth hormone/insulin-like growth factors system in zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 139:27-35. [PMID: 28109900 DOI: 10.1016/j.ecoenv.2017.01.025] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 01/12/2017] [Accepted: 01/13/2017] [Indexed: 06/06/2023]
Abstract
Recent studies have documented that microcystins (MCs) have potential toxic effects on growth and reproduction in fish. However, no systematic data exist on whether MCs cause gonadal development retardation through disrupting the growth hormone/insulin-like growth factors (GH/IGFs) system. To this end, zebrafish hatchlings (5 d post-fertilization) were exposed to 0, 0.3, 3 and 30µg/L microcystin-LR (MC-LR) for 90 d until they reached sexual maturity. Life-cycle exposure to MC-LR caused delayed ovarian maturation and sperm development along with ultrapathological lesions in the brain and liver. Moreover, the retarded gonadal development was accompanied by an inhibition of the GH/IGFs system, which was characterized by significant decreases in the transcriptional levels of brain gh (males only), hepatic igf2a and igf2b as well as gonadal igf1 (males only), igf3 and igf2r. These findings for the first time point to the influence of MC-LR on fish gonadal development via the GH/IGFs system. Also, sex-differential impairments suggested that gonadal development of males is more vulnerable than that of female to MC-LR. Our results provide evidence that MC-LR at environmentally relevant concentrations is able to induce impairments on fish gonadal development.
Collapse
Affiliation(s)
- Jie Hou
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yujing Su
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Wang Lin
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Honghui Guo
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Ping Xie
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory for Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Jun Chen
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory for Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Zemao Gu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, PR China.
| | - Li Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China; Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070, PR China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, PR China.
| |
Collapse
|
42
|
Yuan SS, Xu HZ, Liu LQ, Zheng JL. Different effects of blue and red light-emitting diodes on antioxidant responses in the liver and ovary of zebrafish Danio rerio. FISH PHYSIOLOGY AND BIOCHEMISTRY 2017; 43:411-419. [PMID: 27664022 DOI: 10.1007/s10695-016-0296-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 09/21/2016] [Indexed: 06/06/2023]
Abstract
The present study assessed the effects of a white fluorescent bulb (the control) and two different light-emitting diodes (blue LEDs, LDB; red, LDR) on growth, morphology, and oxidative stress in the liver and ovary of zebrafish for 5 weeks. Growth maintained relatively constant under LDB condition, but was reduced under LDR condition. In the liver, hepatosomatic index (HSI) and protein carbonylation (PC) increased under LDR condition, whereas lipid peroxidation (LPO) declined and HSI remained unchanged under LDB condition. The decrease in oxidative damage by LDB could be attributed to the up-regulated levels of mRNA, protein, and activity of Cu/Zn-SOD and CAT. A failure to activate the activity of both enzymes may result in the enhanced PC levels under LDR condition, though both genes were up-regulated at transcriptional and translational levels. In the ovary, although gonadosomatic index sharply increased under LDR condition, LPO and PC dramatically accumulated. The increase in oxidative damage by LDR might result from the down-regulated levels of protein and activity of Cu/Zn-SOD and CAT, though both genes were up-regulated at a transcriptional level. Furthermore, a sharp increase in expression of transcription factor Nrf2 that targets antioxidant genes was observed in the liver but not in the ovary under LDB and LDR conditions. In conclusion, our data demonstrated a positive effect of LDB and negative effect of LDR on fish antioxidant defenses, emphasizing the potentials of LDB as an effective light source in fish farming.
Collapse
Affiliation(s)
- Shuang-Shuang Yuan
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, People's Republic of China
| | - Huan-Zhi Xu
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, People's Republic of China
| | - Li-Qin Liu
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, People's Republic of China
| | - Jia-Lang Zheng
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, People's Republic of China.
| |
Collapse
|
43
|
Lundqvist J, Pekar H, Oskarsson A. Microcystins activate nuclear factor erythroid 2-related factor 2 (Nrf2) in human liver cells in vitro – Implications for an oxidative stress induction by microcystins. Toxicon 2017; 126:47-50. [DOI: 10.1016/j.toxicon.2016.12.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/16/2016] [Accepted: 12/21/2016] [Indexed: 01/27/2023]
|
44
|
Qiao Q, Le Manach S, Huet H, Duvernois-Berthet E, Chaouch S, Duval C, Sotton B, Ponger L, Marie A, Mathéron L, Lennon S, Bolbach G, Djediat C, Bernard C, Edery M, Marie B. An integrated omic analysis of hepatic alteration in medaka fish chronically exposed to cyanotoxins with possible mechanisms of reproductive toxicity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 219:119-131. [PMID: 27814527 DOI: 10.1016/j.envpol.2016.10.029] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 09/27/2016] [Accepted: 10/09/2016] [Indexed: 05/22/2023]
Abstract
Cyanobacterial blooms threaten human health as well as the population of other living organisms in the aquatic environment, particularly due to the production of natural toxic components, the cyanotoxin. So far, the most studied cyanotoxins are microcystins (MCs). In this study, the hepatic alterations at histological, proteome and transcriptome levels were evaluated in female and male medaka fish chronically exposed to 1 and 5 μg L-1 microcystin-LR (MC-LR) and to the extract of MC-producing Microcystis aeruginosa PCC 7820 (5 μg L-1 of equivalent MC-LR) by balneation for 28 days, aiming at enhancing our understanding of the potential reproductive toxicity of cyanotoxins in aquatic vertebrate models. Indeed, both MC and Microcystis extract adversely affect reproductive parameters including fecundity and egg hatchability. The liver of toxin treated female fish present glycogen storage loss and cellular damages. The quantitative proteomics analysis revealed that the quantities of 225 hepatic proteins are dysregulated. In particular, a notable decrease in protein quantities of vitellogenin and choriogenin was observed, which could explain the decrease in reproductive output. Liver transcriptome analysis through Illumina RNA-seq reveals that over 100-400 genes are differentially expressed under 5 μg L-1 MC-LR and Microcystis extract treatments, respectively. Ingenuity pathway analysis of the omic data attests that various metabolic pathways, such as energy production, protein biosynthesis and lipid metabolism, are disturbed by both MC-LR and the Microcystis extract, which could provoke the observed reproductive impairment. The transcriptomics analysis also constitutes the first report of the impairment of circadian rhythm-related gene induced by MCs. This study contributes to a better understanding of the potential consequences of chronic exposure of fish to environmental concentrations of cyanotoxins, suggesting that Microcystis extract could impact a wider range of biological pathways, compared with pure MC-LR, and even 1 μg L-1 MC-LR potentially induces a health risk for aquatic organisms.
Collapse
Affiliation(s)
- Qin Qiao
- UMR 7245 MNHN/CNRS Molécules de Communication et Adaptation des Micro-organismes, Sorbonne Universités, Muséum National d'Histoire Naturelle, CP 39, 12 Rue Buffon, 75005 Paris, France.
| | - Séverine Le Manach
- UMR 7245 MNHN/CNRS Molécules de Communication et Adaptation des Micro-organismes, Sorbonne Universités, Muséum National d'Histoire Naturelle, CP 39, 12 Rue Buffon, 75005 Paris, France
| | - Hélène Huet
- UMR 7245 MNHN/CNRS Molécules de Communication et Adaptation des Micro-organismes, Sorbonne Universités, Muséum National d'Histoire Naturelle, CP 39, 12 Rue Buffon, 75005 Paris, France; Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, BioPôle Alfort, 94700 Maisons-Alfort, France
| | - Evelyne Duvernois-Berthet
- UMR 7221 CNRS/MNHN, Évolution des Régulations Endocriniennes, Sorbonne Universités, Muséum Nationale d'Histoire Naturelle, Paris, France
| | - Soraya Chaouch
- UMR 7245 MNHN/CNRS Molécules de Communication et Adaptation des Micro-organismes, Sorbonne Universités, Muséum National d'Histoire Naturelle, CP 39, 12 Rue Buffon, 75005 Paris, France
| | - Charlotte Duval
- UMR 7245 MNHN/CNRS Molécules de Communication et Adaptation des Micro-organismes, Sorbonne Universités, Muséum National d'Histoire Naturelle, CP 39, 12 Rue Buffon, 75005 Paris, France
| | - Benoit Sotton
- UMR 7245 MNHN/CNRS Molécules de Communication et Adaptation des Micro-organismes, Sorbonne Universités, Muséum National d'Histoire Naturelle, CP 39, 12 Rue Buffon, 75005 Paris, France
| | - Loïc Ponger
- UMR 7196 MNHN/CNRS, INSERM U1154, Sorbonne Universités, Museum National d'Histoire Naturelle, Paris, France
| | - Arul Marie
- UMR 7245 MNHN/CNRS Molécules de Communication et Adaptation des Micro-organismes, Sorbonne Universités, Muséum National d'Histoire Naturelle, CP 39, 12 Rue Buffon, 75005 Paris, France
| | - Lucrèce Mathéron
- Institut de Biologie Paris Seine/FR 3631, Plateforme Spectrométrie de masse et Protéomique, Institut de Biologie Intégrative IFR 83, Sorbonne Universités, Université Pierre et Marie Curie, 75005 Paris, France
| | | | - Gérard Bolbach
- Institut de Biologie Paris Seine/FR 3631, Plateforme Spectrométrie de masse et Protéomique, Institut de Biologie Intégrative IFR 83, Sorbonne Universités, Université Pierre et Marie Curie, 75005 Paris, France
| | - Chakib Djediat
- UMR 7245 MNHN/CNRS Molécules de Communication et Adaptation des Micro-organismes, Sorbonne Universités, Muséum National d'Histoire Naturelle, CP 39, 12 Rue Buffon, 75005 Paris, France
| | - Cécile Bernard
- UMR 7245 MNHN/CNRS Molécules de Communication et Adaptation des Micro-organismes, Sorbonne Universités, Muséum National d'Histoire Naturelle, CP 39, 12 Rue Buffon, 75005 Paris, France
| | - Marc Edery
- UMR 7245 MNHN/CNRS Molécules de Communication et Adaptation des Micro-organismes, Sorbonne Universités, Muséum National d'Histoire Naturelle, CP 39, 12 Rue Buffon, 75005 Paris, France
| | - Benjamin Marie
- UMR 7245 MNHN/CNRS Molécules de Communication et Adaptation des Micro-organismes, Sorbonne Universités, Muséum National d'Histoire Naturelle, CP 39, 12 Rue Buffon, 75005 Paris, France.
| |
Collapse
|
45
|
Hu M, Hu N, Ding D, Zhao W, Feng Y, Zhang H, Li G, Wang Y. Developmental toxicity and oxidative stress induced by gamma irradiation in zebrafish embryos. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2016; 55:441-450. [PMID: 27582010 DOI: 10.1007/s00411-016-0663-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 08/18/2016] [Indexed: 06/06/2023]
Abstract
This study aimed to evaluate the biological effects of gamma irradiation on zebrafish embryos. Different doses of gamma rays (0.01, 0.05, 0.1, 0.5 and 1 Gy) were used to irradiate zebrafish embryos at three developmental stages (stage 1, 6 h post-fertilization (hpf); stage 2, 12 hpf; stage three, 24 hpf), respectively. The survival, malformation and hatching rates of the zebrafish embryos were measured at the morphological endpoint of 96 hpf. The activities of superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), glutathione peroxidase (GPx) and glutathione S-transferase (GST) were assayed. Morphology analysis showed that gamma irradiation inhibited hatching and induced developmental toxicity in a dose-dependent manner. Interestingly, after irradiation the malformation rate changed not only in a dose-dependent manner but also in a developmental stage-dependent manner, indicating that the zebrafish embryos at stage 1 were more sensitive to gamma rays than those at other stages. Biochemical analysis showed that gamma irradiation modulated the activities of antioxidant enzymes in a dose-dependent manner. A linear relationship was found between GPx activity and irradiation dose in 0.1-1 Gy group, and GPx was a suitable biomarker for gamma irradiation in the dose range from 0.1 to 1 Gy. Furthermore, the activities of SOD, CAT, GR and GPx of the zebrafish embryos at stage 3 were found to be much higher than those at other stages, indicating that the zebrafish embryos at stage 3 had a greater ability to protect against gamma rays than those at other stages, and thus the activities of antioxidant enzymes changed in a developmental stage-dependent manner.
Collapse
Affiliation(s)
- Miao Hu
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, 421001, Hunan Province, China
| | - Nan Hu
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, 421001, Hunan Province, China
| | - Dexin Ding
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, 421001, Hunan Province, China.
| | - Weichao Zhao
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, 421001, Hunan Province, China
| | - Yongfu Feng
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, 421001, Hunan Province, China
| | - Hui Zhang
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, 421001, Hunan Province, China
| | - Guangyue Li
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, 421001, Hunan Province, China
| | - Yongdong Wang
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, 421001, Hunan Province, China
| |
Collapse
|
46
|
Zheng JL, Yuan SS, Wu CW, Li WY. Chronic waterborne zinc and cadmium exposures induced different responses towards oxidative stress in the liver of zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 177:261-268. [PMID: 27323295 DOI: 10.1016/j.aquatox.2016.06.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 06/03/2016] [Accepted: 06/06/2016] [Indexed: 06/06/2023]
Abstract
Based on the same toxic level of 0.6% LC50 for 96-h and the severe situation of water pollution, we compared effects of chronic Zn (180μgL(-1)) and Cd exposures (30μgL(-1)) on growth, survival, histology, ultrastructure, and oxidative stress in the liver of zebrafish for 5 weeks. Growth performance and survival rate remained relatively constant under Zn stress, but was reduced under Cd exposure. Cd exposure also induced severe pyknotic nuclei, evident ultrastructure damage, and considerable lipid inclusions in the hepatocytes. However, these phenomena were not pronounced under Zn exposure. The negative effects caused by Cd may be explained by an increase in hepatic oxidative damage, as reflected by the enhanced levels of lipid peroxidation (LPO) and protein carbonylation (PC). The reduced activity of Cu/Zn-superoxide dismutase (Cu/Zn-SOD) and catalase (CAT) may result in the enhanced hepatic oxidative damage, though the mRNA and protein levels of both genes increased and remained unchanged respectively. On the contrary, Zn up-regulated the levels of mRNA, protein and activity of Cu/Zn-SOD, which may contribute to the decreased LPO levels. Nonetheless, the sharply up-regulated mRNA levels of CAT did not induce an increase in the protein and activity levels of CAT under Zn stress. Furthermore, transcription factor NF-E2-related factor 2 (Nrf2) expression parelleled with its target genes, suggesting that Nrf2 is required for the protracted induction of antioxidant genes. In conclusion, our data demonstrated that essential and non-essential metals induced some differences in oxidative damage in fish. The differences were not caused by the transcriptional level of related genes but depended on post-transcriptional modifications.
Collapse
Affiliation(s)
- Jia-Lang Zheng
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China.
| | - Shuang-Shuang Yuan
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Chang-Wen Wu
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Wei-Ye Li
- Zhoushan fisheries research institute, Zhoushan 316022, PR China
| |
Collapse
|
47
|
Yuan J, Gu Z, Zheng Y, Zhang Y, Gao J, Chen S, Wang Z. Accumulation and detoxification dynamics of microcystin-LR and antioxidant responses in male red swamp crayfish Procambarus clarkii. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 177:8-18. [PMID: 27218425 DOI: 10.1016/j.aquatox.2016.05.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 04/30/2016] [Accepted: 05/06/2016] [Indexed: 06/05/2023]
Abstract
MC-LR is one of major microcystin isoforms with potent hepatotoxicity. In the present study, we aim to: 1) explore the dynamics of MC-LR accumulation and elimination in different tissues of male red swamp crayfish Procambarus clarkii; 2) reveal the mechanisms underlying hepatic antioxidation and detoxification. In the semi-static toxicity tests under the water temperature of 25±2°C, P. clarkii were exposed to 0.1, 1, 10 and 100μg/L MC-LR for 7days for accumulation and subsequently relocated to freshwater for another 7days to depurate MC-LR. MC-LR was measured in the hepatopancreas, intestine, abdominal muscle and gill by HPLC. The enzyme activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione S-transferase (GST), content of glutathione (GSH), and transcripts of Mn-sod, cat, gpx1, Mu-gst, heat shock protein90 (hsp90), hsp70 and hsp60 in hepatopancreas were detected. The results showed that P. clarkii accumulated more MC-LR in intestine, and less in abdominal muscle and gill during accumulation period and eliminated the toxin more quickly in gill and abdominal muscle, and comparatively slowly in intestine during depuration period. The fast increase of SOD and CAT activities at early stage, subsequent decrease at later stage of accumulation period and then fast increase during depuration period were partially consistent with the transcriptional changes of their respective genes. GPx was activated by longer MC-LR exposure and gpx1 mRNA expression showed uncoordinated regulation pattern compared with its enzyme. Hsp genes were up-regulated when P. clarkii was exposed to MC-LR.
Collapse
Affiliation(s)
- Julin Yuan
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China; Zhejiang Institute of Freshwater Fisheries, Freshwater Fishery Healthy Breeding Laboratory of Ministry of Agriculture, Huzhou, Zhejiang 313001, China
| | - Zhimin Gu
- Zhejiang Institute of Freshwater Fisheries, Freshwater Fishery Healthy Breeding Laboratory of Ministry of Agriculture, Huzhou, Zhejiang 313001, China.
| | - Yao Zheng
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences; Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Wuxi 214081, China
| | - Yingying Zhang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Jiancao Gao
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Shu Chen
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Zaizhao Wang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|
48
|
Hoo JY, Kumari Y, Shaikh MF, Hue SM, Goh BH. Zebrafish: A Versatile Animal Model for Fertility Research. BIOMED RESEARCH INTERNATIONAL 2016; 2016:9732780. [PMID: 27556045 PMCID: PMC4983327 DOI: 10.1155/2016/9732780] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 06/20/2016] [Indexed: 02/06/2023]
Abstract
The utilization of zebrafish in biomedical research is very common in the research world nowadays. Today, it has emerged as a favored vertebrate organism for the research in science of reproduction. There is a significant growth in amount numbers of scientific literature pertaining to research discoveries in reproductive sciences in zebrafish. It has implied the importance of zebrafish in this particular field of research. In essence, the current available literature has covered from the very specific brain region or neurons of zebrafish, which are responsible for reproductive regulation, until the gonadal level of the animal. The discoveries and findings have proven that this small animal is sharing a very close/similar reproductive system with mammals. More interestingly, the behavioral characteristics and along with the establishment of animal courtship behavior categorization in zebrafish have laid an even stronger foundation and firmer reason on the suitability of zebrafish utilization in research of reproductive sciences. In view of the immense importance of this small animal for the development of reproductive sciences, this review aimed at compiling and describing the proximate close similarity of reproductive regulation on zebrafish and human along with factors contributing to the infertility, showing its versatility and its potential usage for fertility research.
Collapse
Affiliation(s)
- Jing Ying Hoo
- Biomedical Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia; School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia; Sunway College, Jalan Universiti, Bandar Sunway, 46150 Petaling Jaya, Selangor Darul Ehsan, Malaysia
| | - Yatinesh Kumari
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Mohd Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Seow Mun Hue
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Bey Hing Goh
- Biomedical Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia; Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia; Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of Phayao, Phayao 56000, Thailand
| |
Collapse
|
49
|
Sex-dependent effects of microcystin-LR on hypothalamic-pituitary-gonad axis and gametogenesis of adult zebrafish. Sci Rep 2016; 6:22819. [PMID: 26960901 PMCID: PMC4785373 DOI: 10.1038/srep22819] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 02/17/2016] [Indexed: 01/07/2023] Open
Abstract
While microcystins (MCs) have been reported to exert reproductive toxicity on fish with a sex-dependent effect, the underlying mechanism has been rarely investigated. In the present study, zebrafish were exposed to 1, 5 and 20 μg/L MC-LR for 30 d. The gonad-somatic index declined in all treated males. 17β-estradiol (E2), testosterone (T), 11-keto testosterone (11-KT) and follicle-stimulating hormone (FSH) levels increased in serum from all treated females, while T, FSH and luteinizing hormone (LH) levels changed in all treated males. Histomorphological observation showed that MC-LR exposure evidently retarded oogenesis and spermatogenesis. Transcriptional changes of 22 genes of the hypothalamic-pituitary-gonad (HPG) axis exhibited sex-specific responses, and the relationship between gene transcriptions and gametogenesis was evaluated by principle component analysis (PCA). Major contributors to PC1 (gnrh2, gnrhr3, ar, lhr, hmgra, hmgrb and cyp19a) were positively correlated with the number of post-vitellogenic oocytes, while PC1 (gnrh2, lhβ, erβ, fshr, cyp11a and 17βhsd) were positively correlated with the number of spermatozoa. The protein levels of 17βHSD and CYP19a were affected in both females and males. In conclusion, this study first investigated the sex-dependent effects of microcystins on fish reproduction and revealed some important molecular biomarkers related to gametogenesis in zebrafish suffered from MC-LR.
Collapse
|
50
|
Chen L, Chen J, Zhang X, Xie P. A review of reproductive toxicity of microcystins. JOURNAL OF HAZARDOUS MATERIALS 2016; 301:381-99. [PMID: 26521084 DOI: 10.1016/j.jhazmat.2015.08.041] [Citation(s) in RCA: 256] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 08/20/2015] [Accepted: 08/23/2015] [Indexed: 05/25/2023]
Abstract
Animal studies provide strong evidence of positive associations between microcystins (MCs) exposure and reproductive toxicity, representing a threat to human reproductive health and the biodiversity of wild life. This paper reviews current knowledge of the reproductive toxicity of MCs, with regard to mammals, fishes, amphibians, and birds, mostly in males. Toxicity of MCs is primarily governed by the inhibition of protein phosphatases 1 and 2A (PP1 and PP2A) and disturbance of cellular phosphorylation balance. MCs exposure is related to excessive production of reactive oxygen species (ROS) and oxidative stress, leading to cytoskeleton disruption, mitochondria dysfunction, endoplasmic reticulum (ER) stress, and DNA damage. MCs induce cell apoptosis mediated by the mitochondrial and ROS and ER pathways. Through PP1/2A inhibition and oxidative stress, MCs lead to differential expression/activity of transcriptional factors and proteins involved in the pathways of cellular differentiation, proliferation, and tumor promotion. MC-induced DNA damage is also involved in carcinogenicity. Apart from a direct effect on testes and ovaries, MCs indirectly affect sex hormones by damaging the hypothalamic-pituitary-gonad (HPG) axis and liver. Parental exposure to MCs may result in hepatotoxicity and neurotoxicity of offspring. We also summarize the current research gaps which should be addressed by further studies.
Collapse
Affiliation(s)
- Liang Chen
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jun Chen
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Xuezhen Zhang
- College of Fisheries, Huazhong Agricultural University, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China.
| | - Ping Xie
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|