1
|
Giommi C, Lombó M, Francioni F, Sella F, Habibi HR, Maradonna F, Carnevali O. Mitigation of PFOA-Induced Developmental Toxicity in Danio rerio by Bacillus subtilis var. natto: Focus on Growth and Ossification. Int J Mol Sci 2025; 26:4261. [PMID: 40362494 PMCID: PMC12071895 DOI: 10.3390/ijms26094261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/24/2025] [Accepted: 04/28/2025] [Indexed: 05/15/2025] Open
Abstract
Perfluorooctanoic acid (PFOA) is a persistent environmental contaminant that resists biological degradation and accumulates in organisms. It disrupts zebrafish embryo development, affecting their heartbeat rate and locomotion. Meanwhile, probiotics are known to enhance the development and ossification of zebrafish embryos. In this study, we examined the toxic effects of PFOA on growth and bone formation in zebrafish and the potential of the probiotic Bacillus subtilis var. natto to counteract its toxicity. Larvae were exposed to 0, 50, or 100 mg/L PFOA from hatching to 21 days post-fertilization (dpf), with or without dietary probiotic supplementation (107 CFU/larva/day), and they were sampled at 7, 14, and 21 dpf. PFOA exposure reduced standard length at 21 dpf, while the co-administration of probiotics mitigated these effects. Craniofacial cartilage defects appeared in larvae exposed to 50 mg/L PFOA at 7 and 14 dpf, while 100 mg/L PFOA impaired bone development at 7 dpf. Probiotics counteracted these abnormalities. PFOA also delayed ossification, correlating with the downregulation of col10a1a, runx2b, and cyp26b1, while the probiotic treatment restored normal ossification. These findings improve our understanding of PFOA's detrimental effects on zebrafish growth and bone formation while demonstrating the protective role of probiotics against PFOA-induced developmental toxicity.
Collapse
Affiliation(s)
- Christian Giommi
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (C.G.); (M.L.); (F.S.)
- INBB—Biostructures and Biosystems National Institute, 00136 Roma, Italy
| | - Marta Lombó
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (C.G.); (M.L.); (F.S.)
- INBB—Biostructures and Biosystems National Institute, 00136 Roma, Italy
- Department of Molecular Biology, Faculty of Biology and Environmental Sciences, University of León, 24071 León, Spain
| | - Francesca Francioni
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy;
| | - Fiorenza Sella
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (C.G.); (M.L.); (F.S.)
- INBB—Biostructures and Biosystems National Institute, 00136 Roma, Italy
| | - Hamid R. Habibi
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada;
| | - Francesca Maradonna
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (C.G.); (M.L.); (F.S.)
- INBB—Biostructures and Biosystems National Institute, 00136 Roma, Italy
| | - Oliana Carnevali
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (C.G.); (M.L.); (F.S.)
- INBB—Biostructures and Biosystems National Institute, 00136 Roma, Italy
| |
Collapse
|
2
|
Li F, Chen L, Shi S, Hong WJ, Li M, Guo LH. Perfluorobutanoic acid: A short-chain perfluoroalkyl substance exhibiting estrogenic effects through the estrogen-related receptor γ pathways. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136947. [PMID: 39708599 DOI: 10.1016/j.jhazmat.2024.136947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/09/2024] [Accepted: 12/18/2024] [Indexed: 12/23/2024]
Abstract
Perfluorobutanoic acid (PFBA) is an emerging contaminant that was demonstrated to exhibit estrogen effects via action on classic estrogen receptors (ERs) in a low-activity manner. The purpose of the present study is to reveal the estrogen disruption effect and mechanism of PFBA via estrogen-related receptor γ (ERRγ) pathways. In vivo experiment indicated that PFBA accumulated in zebrafish ovary and caused ovarian injury, with disturbing sex hormone levels and interfering gene expression related to estrogen synthesis and follicle regulation. In vitro, with cell proliferation assay, PFBA could promote estrogen-sensitive endometrial cancer cell Ishikawa proliferation at lowest observed effective concentrations (LOEC) 10 nM, which was close to human exposure levels. And cell proliferation was inhibited by ERRγ antagonist GSK5182. By fluorescence competitive binding assay, molecular docking and luciferase reporter gene assays, it demonstrated that PFBA could directly bind with ERRγ and activate ERRγ transcriptional activities with a LOEC of 10 nM. Furthermore, PFBA up-regulated the proliferation-related factors downstream of ERRγ and inhibited by PI3K/Akt inhibitor LY294002, which also suppressed the cell proliferation induced by PFBA. Taken together, the results revealed that PFBA had estrogen effects at the human-related exposure concentration, and demonstrated a new estrogen effects mechanism of PFBA via ERRγ pathway.
Collapse
Affiliation(s)
- Fangfang Li
- College of Energy Environment and Safety Engineering, China Jiliang University, 258 Xueyuan Street, Hangzhou, Zhejiang 310018, China; Institute of Environmental and Health Sciences, China Jiliang University, 168 Xueyuan Street, Hangzhou, Zhejiang 310018, China
| | - Lu Chen
- Institute of Environmental and Health Sciences, China Jiliang University, 168 Xueyuan Street, Hangzhou, Zhejiang 310018, China; College of Life Sciences, China Jiliang University, 258 Xueyuan Street, Hangzhou, Zhejiang 310018, China
| | - Sha Shi
- Institute of Environmental and Health Sciences, China Jiliang University, 168 Xueyuan Street, Hangzhou, Zhejiang 310018, China; College of Life Sciences, China Jiliang University, 258 Xueyuan Street, Hangzhou, Zhejiang 310018, China
| | - Wen-Jun Hong
- College of Energy Environment and Safety Engineering, China Jiliang University, 258 Xueyuan Street, Hangzhou, Zhejiang 310018, China; Institute of Environmental and Health Sciences, China Jiliang University, 168 Xueyuan Street, Hangzhou, Zhejiang 310018, China
| | - Minjie Li
- College of Energy Environment and Safety Engineering, China Jiliang University, 258 Xueyuan Street, Hangzhou, Zhejiang 310018, China; Institute of Environmental and Health Sciences, China Jiliang University, 168 Xueyuan Street, Hangzhou, Zhejiang 310018, China.
| | - Liang-Hong Guo
- College of Energy Environment and Safety Engineering, China Jiliang University, 258 Xueyuan Street, Hangzhou, Zhejiang 310018, China; Institute of Environmental and Health Sciences, China Jiliang University, 168 Xueyuan Street, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
3
|
Liao Y, Wang Y, Lin Y, Xiao Y, Mohan M, Jaman R, Dong H, Zhu J, Li X, Zhang C, Chen G, Zhou J. Molecular mechanisms of tetrabromobisphenol A (TBBPA) toxicity: Insights from various biological systems. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117418. [PMID: 39612681 DOI: 10.1016/j.ecoenv.2024.117418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/03/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024]
Abstract
Tetrabromobisphenol A (TBBPA) is a ubiquitous brominated flame retardant extensively incorporated into a wide range of products. As its utilization has escalated, its environmental exposure risks have concomitantly increased. The molecular properties of TBBPA allow it to persist in the environment and within organisms. In this review, we comprehensively examine the toxicity of TBBPA across different organ systems and elucidate the underlying molecular mechanisms. We particularly emphasize TBBPA's impact on biological signaling pathways, protein functionality, cellular architecture, and epigenetic regulation, which collectively lead to disruptions in endocrine, hepatic, neurological, reproductive, and other biological systems. The analysis of these toxicological phenomena and their fundamental molecular mechanisms has substantially enhanced our understanding of TBBPA's hazardous characteristics. This review also examines potential avenues for future research, with a focus on uncovering novel molecular mechanisms and assessing the toxicological impacts of TBBPA exposure, particularly in relation to interactions with other environmental contaminants. We propose a greater focus on examining the toxic effects and molecular mechanisms of long-term TBBPA exposure at environmentally relevant concentrations to facilitate more accurate assessments of human health risks.
Collapse
Affiliation(s)
- Yuxing Liao
- School of Basic Medical Sciences, Dali University, Dali, Yunnan 671000, China
| | - Yilin Wang
- College of Clinical Medicine, Dali University, Dali, Yunnan 671000, China
| | - YaJie Lin
- College of Clinical Medicine, Dali University, Dali, Yunnan 671000, China
| | - Yuxi Xiao
- College of Clinical Medicine, Dali University, Dali, Yunnan 671000, China
| | - Mohith Mohan
- College of Clinical Medicine, Dali University, Dali, Yunnan 671000, China
| | - Rummana Jaman
- College of Clinical Medicine, Dali University, Dali, Yunnan 671000, China
| | - Hao Dong
- College of Clinical Medicine, Dali University, Dali, Yunnan 671000, China
| | - Jiao Zhu
- College of Clinical Medicine, Dali University, Dali, Yunnan 671000, China
| | - Xuerui Li
- College of Clinical Medicine, Dali University, Dali, Yunnan 671000, China
| | - Conglin Zhang
- Department rehabilitation medicine, the First Affiliated Hospital of Dali University, Dali, Yunnan 671000, China
| | - Guiyuan Chen
- School of Basic Medical Sciences, Dali University, Dali, Yunnan 671000, China
| | - Jiaqi Zhou
- School of Basic Medical Sciences, Dali University, Dali, Yunnan 671000, China.
| |
Collapse
|
4
|
Li S, Qin S, Zeng H, Chou W, Oudin A, Kanninen KM, Jalava P, Dong G, Zeng X. Adverse outcome pathway for the neurotoxicity of Per- and polyfluoroalkyl substances: A systematic review. ECO-ENVIRONMENT & HEALTH 2024; 3:476-493. [PMID: 39605965 PMCID: PMC11599988 DOI: 10.1016/j.eehl.2024.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 08/08/2024] [Accepted: 08/21/2024] [Indexed: 11/29/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are endocrine disruptors with unambiguous neurotoxic effects. However, due to variability in experimental models, population characteristics, and molecular endpoints, the elucidation of mechanisms underlying PFAS-induced neurotoxicity remains incomplete. In this review, we utilized the adverse outcome pathway (AOP) framework, a comprehensive tool for evaluating toxicity across multiple biological levels (molecular, cellular, tissue and organ, individual, and population), to elucidate the mechanisms of neurotoxicity induced by PFAS. Based on 271 studies, the reactive oxygen species (ROS) generation emerged as the molecular initiating event 1 (MIE1). Subsequent key events (KEs) at the cellular level include oxidative stress, neuroinflammation, apoptosis, altered Ca2+ signal transduction, glutamate and dopamine signaling dyshomeostasis, and reduction of cholinergic and serotonin. These KEs culminate in synaptic dysfunction at organ and tissue levels. Further insights were offered into MIE2 and upstream KEs associated with altered thyroid hormone levels, contributing to synaptic dysfunction and hypomyelination at the organ and tissue levels. The inhibition of Na+/I- symporter (NIS) was identified as the MIE2, initiating a cascade of KEs at the cellular level, including altered thyroid hormone synthesis, thyroid hormone transporters, thyroid hormone metabolism, and binding with thyroid hormone receptors. All KEs ultimately result in adverse outcomes (AOs), including cognition and memory impairment, autism spectrum disorders, attention deficit hyperactivity disorders, and neuromotor development impairment. To our knowledge, this review represents the first comprehensive and systematic AOP analysis delineating the intricate mechanisms responsible for PFAS-induced neurotoxic effects, providing valuable insights for risk assessments and mitigation strategies against PFAS-related health hazards.
Collapse
Affiliation(s)
- Shenpan Li
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Shuangjian Qin
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Huixian Zeng
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Weichun Chou
- Department of Environmental Sciences, College of Natural and Agricultural Sciences, University of California, Riverside, CA, United States
| | - Anna Oudin
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Katja M. Kanninen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Pasi Jalava
- Department of Environmental and Biological Science, University of Eastern Finland, Kuopio, Finland
| | - Guanghui Dong
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiaowen Zeng
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
5
|
Niaz K, McAtee D, Adhikari P, Rollefson P, Ateia M, Abdelmoneim A. Assessing the effects of fluorine-free and PFAS-containing firefighting foams on development and behavioral responses using a zebrafish-based platform. CHEMOSPHERE 2024; 365:143361. [PMID: 39303789 DOI: 10.1016/j.chemosphere.2024.143361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/04/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Significant progress has been made in developing fluorine-free firefighting foams (F3) as alternatives to perfluoroalkyl substances (PFAS)-containing aqueous film-forming foams (AFFF) to help eliminate the health and environmental concerns linked to PFAS exposure. However, developing viable F3 options hinges on a thorough assessment of potential risks alongside the technical performance evaluations. This study showcases the capability of a zebrafish-based platform to discern the developmental and behavioral toxicities associated with exposure to one AFFF and two F3 formulations. To facilitate direct exposure to the chemicals, embryos were enzymatically dechorionated and then exposed to the diluted formulations (6-120 hours post fertilization (hpf)) at concentrations folding from 0.1% of the manufacturer-recommended working concentrations. The exposure regimen also included daily automated media changes (50%) and mortality assessments (24 and 120 hpf). At 120 hpf, a comprehensive assessment encompassing overall development, prevalence of morphological defects, and behavioral responses to acute stressors (visual, acoustic, and peripheral irritant) was conducted. Exposure to both F3s significantly increased larval mortalities to percentages exceeding 90%, whereas AFFF exposures did not cause any significant effect. Overall development, marked by total larval length, was significantly impacted following exposures to all foams. Behavioral responses to acute stressors were also significantly altered following exposures to both F3s, whereas the AFFF did not alter behavior at the concentrations tested. Our findings demonstrate toxicities associated with tested F3 formulations that encompass several endpoints and highlight the utility of the proposed platform in evaluating the developmental toxicities of current and future foam formulations.
Collapse
Affiliation(s)
- Kamal Niaz
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA; Department of Pharmacology and Toxicology, Faculty of Bio-Sciences, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, 63100, Pakistan
| | - Demetrius McAtee
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Pranup Adhikari
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Patrik Rollefson
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Mohamed Ateia
- United States Environmental Protection Agency, Center for Environmental Solutions & Emergency Response, Cincinnati, OH, 45220, USA.
| | - Ahmed Abdelmoneim
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
6
|
Rohonczy J, Forbes MR, Gilroy ÈAM, Carpenter DJ, Young SD, Morrill A, Brinovcar C, De Silva AO, Bartlett AJ, Robinson SA. Effects of perfluoroalkyl sulfonic acids on developmental, physiological, and immunological measures in northern leopard frog tadpoles. CHEMOSPHERE 2024; 365:143333. [PMID: 39271078 DOI: 10.1016/j.chemosphere.2024.143333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/06/2024] [Accepted: 09/11/2024] [Indexed: 09/15/2024]
Abstract
The chronic toxicity of short chain perfluoroalkyl sulfonic acids (PFSAs), such as perfluorobutanesulfonic acid (PFBS) and perfluorohexanesulfonic acid (PFHxS), are relatively understudied despite the increasing detection of these compounds in the environment. We investigated the chronic toxicity and bioconcentration of PFBS and PFHxS using northern leopard frog (Rana [Lithobates] pipiens) tadpoles. We exposed Gosner stage (GS) 25 tadpoles to either PFBS or PFHxS at nominal concentrations of 0.1, 1, 10, 100, and 1000 μg/L until metamorphosis (GS42). We then assessed tadpole growth, development, stress, and immune metrics, and measured fatty acid (FA) composition and PFSA concentrations in liver and whole-body tissues. Tadpole growth and development measures were relatively unaffected by PFSA exposure. However, tadpoles exposed to 1000 μg/L PFBS or PFHxS had significantly increased hepatosomatic indexes (HSI) relative to controls. Further, tadpoles from the 1000 μg/L PFHxS treatment had altered FA profiles relative to controls, with increased total FAs, saturated FAs, monounsaturated FAs, and omega-6 polyunsaturated FAs. In addition, tadpoles from the 1000 μg/L PFHxS treatment had a higher probability of waterborne corticosterone detection. These results suggest that PFBS and PFHxS influence the hepatic health of tadpoles, and that PFHxS may alter lipid metabolism in tadpoles. We also observed a higher probability of tadpoles being phenotypically female after exposure to an environmentally relevant concentration (0.1 μg/L) of PFHxS, suggesting that PFHxS may exert endocrine disrupting effects on tadpoles during early development. The measured bioconcentration factors (BCFs) for both compounds were ≤10 L kg-1 wet weight, suggesting low bioconcentration potential for PFBS and PFHxS in tadpoles. Many of the significant effects observed in this study occurred at concentrations several orders of magnitude above those measured in the environment; however, our work shows effects of PFSAs exposure on amphibians and provides essential information for ecological risk assessments of these compounds.
Collapse
Affiliation(s)
- Jillian Rohonczy
- Department of Biology, Carleton University, Ottawa, ON, K1S 5B6, Canada
| | - Mark R Forbes
- Department of Biology, Carleton University, Ottawa, ON, K1S 5B6, Canada
| | - Ève A M Gilroy
- Water Science and Technology Directorate, Environment and Climate Change Canada, Burlington, ON, L7S 1A1, Canada
| | - David J Carpenter
- Wildlife and Landscape Science Directorate, Environment and Climate Change Canada, Ottawa, ON, K1A 0H3, Canada
| | - Sarah D Young
- Wildlife and Landscape Science Directorate, Environment and Climate Change Canada, Ottawa, ON, K1A 0H3, Canada
| | - André Morrill
- Wildlife and Landscape Science Directorate, Environment and Climate Change Canada, Ottawa, ON, K1A 0H3, Canada
| | - Cassandra Brinovcar
- Water Science and Technology Directorate, Environment and Climate Change Canada, Burlington, ON, L7S 1A1, Canada
| | - Amila O De Silva
- Water Science and Technology Directorate, Environment and Climate Change Canada, Burlington, ON, L7S 1A1, Canada
| | - Adrienne J Bartlett
- Water Science and Technology Directorate, Environment and Climate Change Canada, Burlington, ON, L7S 1A1, Canada
| | - Stacey A Robinson
- Department of Biology, Carleton University, Ottawa, ON, K1S 5B6, Canada; Wildlife and Landscape Science Directorate, Environment and Climate Change Canada, Ottawa, ON, K1A 0H3, Canada.
| |
Collapse
|
7
|
Xu H, Mao X, Zhang S, Ren J, Jiang S, Cai L, Miao X, Tao Y, Peng C, Lv M, Li Y. Perfluorooctanoic acid triggers premature ovarian insufficiency by impairing NAD+ synthesis and mitochondrial function in adult zebrafish. Toxicol Sci 2024; 201:118-128. [PMID: 38830045 DOI: 10.1093/toxsci/kfae071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
High-dose perfluorooctanoic acid (PFOA) impairs oocyte maturation and offspring quality. However, the physiological concentrations of PFOA in follicular fluids of patients with premature ovarian insufficiency (POI) were detected at lower levels, thus the relationship between physiological PFOA and reproductive disorders remains elusive. Here, we investigated whether physiological PFOA exposure affects gonad function in adult zebrafish. Physiological PFOA exposure resulted in POI-like phenotypes in adult females, which exhibited decreased spawning frequency, reduced number of ovulated eggs, abnormal gonadal index, and aberrant embryonic mortality. Meanwhile, oocytes from PFOA-exposed zebrafish showed mitochondrial disintegration and diminished mitochondrial membrane potential. Unlike the high-dose treated oocytes exhibiting high reactive oxygen species (ROS) levels and excessive apoptosis, physiological PFOA reduced the ROS levels and did not trigger apoptosis. Interestingly, physiological PFOA exposure would not affect testis function, indicating specific toxicity in females. Mechanistically, PFOA suppressed the NAD+ biosynthesis and impaired mitochondrial function in oocytes, thus disrupting oocyte maturation and ovarian fertility. Nicotinamide mononucleotide (NMN), a precursor for NAD+ biosynthesis, alleviated the PFOA-induced toxic effects in oocytes and improved the oocyte maturation and fertility upon PFOA exposure. Our findings discover new insights into PFOA-induced reproductive toxicity and provide NMN as a potential drug for POI therapy.
Collapse
Affiliation(s)
- Hao Xu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing 400715, China
| | - Xiaoyu Mao
- College of Language Intelligence, Sichuan International Studies University, Chongqing 400031, China
| | - Siling Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Jie Ren
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Shanwen Jiang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Lijuan Cai
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Xiaomin Miao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Yixi Tao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Chao Peng
- Fisheries Development Department of Agriculture and Rural Committee of Nanchuan District, Chongqing 408400, China
| | - Mengzhu Lv
- Department of Immunology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Yun Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing 400715, China
| |
Collapse
|
8
|
Zhao X, Meng X, Yang D, Dong S, Xu J, Chen D, Shi Y, Sun Y, Ding G. Thyroid disrupting effects and the developmental toxicity of hexafluoropropylene oxide oligomer acids in zebrafish during early development. CHEMOSPHERE 2024; 361:142462. [PMID: 38815816 DOI: 10.1016/j.chemosphere.2024.142462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/10/2024] [Accepted: 05/25/2024] [Indexed: 06/01/2024]
Abstract
As perfluorooctanoic acid (PFOA) alternatives, hexafluoropropylene oxide dimeric acid (HFPO-DA) and hexafluoropropylene oxide trimeric acid (HFPO-TA) have been increasingly used and caused considerable water pollution. However, their toxicities to aquatic organisms are still not well known. Therefore, in this study, zebrafish embryos were exposed to PFOA (0, 1.5, 3 and 6 mg/L), HFPO-DA (0, 3, 6 and 12 mg/L) and HFPO-TA (0, 1, 2 and 4 mg/L) to comparatively investigate their thyroid disrupting effects and the developmental toxicity. Results demonstrated that waterborne exposure to PFOA and its two alternatives decreased T4 contents, the heart rate and swirl-escape rate of zebrafish embryos/larvae. The transcription levels of genes related to thyroid hormone regulation (crh), biosynthesis (tpo and tg), function (trα and trβ), transport (transthyretin, ttr), and metabolism (dio1, dio2 and ugt1ab), were differently altered after the exposures, which induced the thyroid disrupting effects and decreased the heart rate. In addition, the transcription levels of some genes related to the nervous system development were also significantly affected, which was associated with the thyroid disrupting effects and consequently affected the locomotor activity of zebrafish. Therefore, HFPO-DA and HFPO-TA could not be safe alternatives to PFOA. Further studies to uncover the underlying mechanisms of these adverse effects are warranted.
Collapse
Affiliation(s)
- Xiaohui Zhao
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Xianghan Meng
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Dan Yang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Shasha Dong
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Jianhui Xu
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Dezhi Chen
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Yawei Shi
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Ya Sun
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Guanghui Ding
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China.
| |
Collapse
|
9
|
Horie Y, Sawada A, Dorcas U, Ramaswamy BR, Iguchi T. Iopanoic acid alters thyroid hormone-related gene expression, thyroid hormone levels, swim bladder inflation, and swimming performance in Japanese medaka. Comp Biochem Physiol C Toxicol Pharmacol 2024; 281:109930. [PMID: 38663833 DOI: 10.1016/j.cbpc.2024.109930] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/30/2024] [Accepted: 04/22/2024] [Indexed: 04/30/2024]
Abstract
Disruption of the thyroid hormone system by synthetic chemicals is gaining attention owing to its potential negative effects on organisms. In this study, the effects of the dio-inhibitor iopanoic acid (IOP) on the levels of thyroid hormone and related gene expression, swim bladder inflation, and swimming performance were investigated in Japanese medaka. Iopanoic acid exposure suppressed thyroid-stimulating hormone β (tshβ), tshβ-like, iodotyronin deiodinase 1 (dio1), and dio2 expression, and increased T4 and T3 levels. In addition, IOP exposure inhibited swim bladder inflation, reducing swimming performance. Although adverse outcome pathways of thyroid hormone disruption have been developed using zebrafish, no adverse outcome pathways have been developed using Japanese medaka. This study confirmed that IOP inhibits dio expression (a molecular initiating event), affects T3 and T4 levels (a key event), and reduces swim bladder inflation (a key event) and swimming performance (an adverse outcome) in Japanese medaka.
Collapse
Affiliation(s)
- Yoshifumi Horie
- Research Center for Inland Seas (KURCIS), Kobe University, Fukaeminami-machi, Higashinada-ku, Kobe 658-0022, Japan.
| | - Ayaka Sawada
- Graduate School of Maritime Science, Kobe University, Fukaeminami-machi, Higashinada-ku, Kobe 658-0022, Japan
| | - Uaciquete Dorcas
- Research Center for Inland Seas (KURCIS), Kobe University, Fukaeminami-machi, Higashinada-ku, Kobe 658-0022, Japan
| | - Babu Rajendran Ramaswamy
- Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli 620024, India
| | - Taisen Iguchi
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan
| |
Collapse
|
10
|
Manera M, Giari L. Segmentation of Renal Thyroid Follicle Colloid in Common Carp: Insights into Perfluorooctanoic Acid-Induced Morphometric Alterations. TOXICS 2024; 12:369. [PMID: 38787148 PMCID: PMC11126022 DOI: 10.3390/toxics12050369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/12/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
Perfluorooctanoic acid (PFOA) is a globally prevalent contaminant of concern recognised for its persistence and detrimental effects on both wildlife and humans. While PFOA has been established as a disruptor of thyroid function, limited data exist regarding its impact on thyroid morphology. The kidney of the common carp (Cyprinus carpio) harbours numerous thyroid follicles, rendering it a valuable biomarker organ for investigating PFOA-induced thyroid alterations. Renal tissue slides, stained with the Alcian blue/PAS method, were examined from carp in three experimental groups: unexposed, exposed to 200 ng L-1, and exposed to 2 mg L-1 of PFOA over 56 days. Thyroid follicle colloids were segmented, and related morphometric parameters, including perimeter, area, and shape descriptors, were obtained. Statistical analyses revealed significant reductions in thyroid follicle colloid perimeter and area in the 200 ng L-1 PFOA group compared to the unexposed and 2 mg L-1 PFOA groups. Additionally, the fish exposed to PFOA exhibited a significantly higher follicle count compared to the unexposed fish. These findings collectively suggest that PFOA induces thyroid folliculogenesis, emphasising its impact on thyroid morphology even at an environmentally relevant concentration (200 ng L-1).
Collapse
Affiliation(s)
- Maurizio Manera
- Department of Biosciences, Food and Environmental Technologies, University of Teramo, St. R. Balzarini 1, 64100 Teramo, Italy
| | - Luisa Giari
- Department of Environmental and Prevention Sciences, University of Ferrara, St. L. Borsari 46, 44121 Ferrara, Italy;
| |
Collapse
|
11
|
Hamed M, Vats A, Lim IE, Sapkota B, Abdelmoneim A. Effects of developmental exposure to individual and combined PFAS on development and behavioral stress responses in larval zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123912. [PMID: 38570156 DOI: 10.1016/j.envpol.2024.123912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/29/2024] [Accepted: 03/31/2024] [Indexed: 04/05/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a class of synthetic chemicals known for their widespread use and persistence in the environment. Laboratory and epidemiological studies investigating these compounds have signaled their neurotoxic and endocrine-disrupting propensities, prompting further research into their effects on behavioral stress responses and their potential role as risk factors for stress-related disorders such as anxiety and depression. This study elucidates the ramifications of early developmental exposures to individual and combined PFAS on the development and behavioral stress responses of larval zebrafish (Danio rerio), an established model in toxicological research. Wild-type zebrafish embryos were enzymatically dechorionated and exposed to PFOS, PFOA, PFHxS, and PFHxA between 6 and 120 h post-fertilization (hpf). We targeted environmentally relevant concentrations stemming from the USEPA 2016 Hazard Advisory Limit (HAL, 0.07 μg/L) and folds higher (0.35, 0.7, 1.75, and 3.5 μg/L). Evaluations at 120 hpf encompassed mortality, overall development, developmental defects, and larval activity both at baseline stress levels and following exposure to acute stressors (acoustic and visual). Larval exposure to PFOA, PFOS, or PFHxS (0.07 μg/L or higher) elicited significant increases in mortality rates, which capped at 23.1%. Exposure to individual chemicals resulted in limited effects on overall development but increased the prevalence of developmental defects in the body axis, swim bladder, pigmentation, and eyes, as well as the prevalence of yolk sac and pericardial edemas. Larval activity at baseline stress levels and following exposure to acute stimuli was significantly altered. Combined exposure to all four chemicals intensified the breadth of developmental and behavioral alterations, suggesting possible additive or synergistic effects. Our findings shed light on the developmental and neurobehavioral disturbances associated with developmental exposure to PFAS at environmentally relevant concentrations, the added risks of combined exposures to these chemicals, and their possible role as environmental risk factors for stress-related disorders.
Collapse
Affiliation(s)
- Mohamed Hamed
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Ajn Vats
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Ignitius Ezekiel Lim
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Biplov Sapkota
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Ahmed Abdelmoneim
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
12
|
Correia D, Bellot M, Goyenechea J, Prats E, Moro H, Gómez-Canela C, Bedrossiantz J, Tagkalidou N, Ferreira CSS, Raldúa D, Domingues I, Faria M, Oliveira M. Parental exposure to antidepressants has lasting effects on offspring? A case study with zebrafish. CHEMOSPHERE 2024; 355:141851. [PMID: 38579950 DOI: 10.1016/j.chemosphere.2024.141851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/07/2024]
Abstract
Fish have common neurotransmitter pathways with humans, exhibiting a significant degree of conservation and homology. Thus, exposure to fluoxetine makes fish potentially susceptible to biochemical and physiological changes, similarly to what is observed in humans. Over the years, several studies demonstrated the potential effects of fluoxetine on different fish species and at different levels of biological organization. However, the effects of parental exposure to unexposed offspring remain largely unknown. The consequences of 15-day parental exposure to relevant concentrations of fluoxetine (100 and 1000 ng/L) were assessed on offspring using zebrafish as a model organism. Parental exposure resulted in offspring early hatching, non-inflation of the swimming bladder, increased malformation frequency, decreased heart rate and blood flow, and reduced growth. Additionally, a significant behavioral impairment was also found (reduced startle response, basal locomotor activity, and altered non-associative learning during early stages and a negative geotaxis and scototaxis, reduced thigmotaxis, and anti-social behavior at later life stages). These behavior alterations are consistent with decreased anxiety, a significant increase in the expression of the monoaminergic genes slc6a4a (sert), slc6a3 (dat), slc18a2 (vmat2), mao, tph1a, and th2, and altered levels of monoaminergic neurotransmitters. Alterations in behavior, expression of monoaminergic genes, and neurotransmitter levels persisted until offspring adulthood. Given the high conservation of neuronal pathways between fish and humans, data show the possibility of potential transgenerational and multigenerational effects of pharmaceuticals' exposure. These results reinforce the need for transgenerational and multigenerational studies in fish, under realistic scenarios, to provide realistic insights into the impact of these pharmaceuticals.
Collapse
Affiliation(s)
- Daniela Correia
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - Marina Bellot
- Department of Analytical Chemistry and Applied (Chromatography Section), School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull, Via Augusta 390, 08017, Barcelona, Spain.
| | - Júlia Goyenechea
- Department of Analytical Chemistry and Applied (Chromatography Section), School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull, Via Augusta 390, 08017, Barcelona, Spain.
| | - Eva Prats
- Center for Research and Development, Spanish National Research Council (CSIC), Spain.
| | - Hugo Moro
- Institute of Environmental Assessment and Water Research, Spanish National Research Council (CSIC), Spain.
| | - Cristian Gómez-Canela
- Department of Analytical Chemistry and Applied (Chromatography Section), School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull, Via Augusta 390, 08017, Barcelona, Spain.
| | - Juliette Bedrossiantz
- Institute of Environmental Assessment and Water Research, Spanish National Research Council (CSIC), Spain.
| | - Niki Tagkalidou
- Department of Biochemistry and Biotechnology, University of Thessaly, Greece.
| | - Carla S S Ferreira
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - Demetrio Raldúa
- Institute of Environmental Assessment and Water Research, Spanish National Research Council (CSIC), Spain.
| | - Inês Domingues
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - Melissa Faria
- Institute of Environmental Assessment and Water Research, Spanish National Research Council (CSIC), Spain.
| | - Miguel Oliveira
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
13
|
Porseryd T, Larsson J, Lindman J, Malmström E, Smolarz K, Grahn M, Dinnétz P. Effects on food intake of Gammarus spp. after exposure to PFBA in very low concentrations. MARINE POLLUTION BULLETIN 2024; 202:116369. [PMID: 38640762 DOI: 10.1016/j.marpolbul.2024.116369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/14/2024] [Accepted: 04/09/2024] [Indexed: 04/21/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a group of thousands of highly persistent anthropogenic chemicals widely used in many industries. Therefore, they are, ubiquitously present in various types of environments. Despite their omnipresence, ecotoxicological studies of most PFAS are scarce, and those available often assess the effects of long chain PFAS. In this study, we present the results of an exposure experiment in which wild aquatic amphipod Gammarus spp. was exposed to the short chain perfluorinated substance perfluorobutanoic acid (PFBA) at very low and environmentally relevant concentrations of 0, 10 and 100 ng/L. The exposure lasted for 12 days, and food intake and non-reproductive behavior were analyzed. Exposure to 10 and 100 ng/L PFBA resulted in a lower consumption of food during exposure but no effect on behavior was found.
Collapse
Affiliation(s)
- Tove Porseryd
- Department of Natural Sciences, Technology and Environmental Studies, Södertörn University, Huddinge, Sweden.
| | - Josefine Larsson
- Department of Natural Sciences, Technology and Environmental Studies, Södertörn University, Huddinge, Sweden; Marint centrum, Simrishamn Kommun, Simrishamn, Sweden
| | - Johanna Lindman
- Department of Natural Sciences, Technology and Environmental Studies, Södertörn University, Huddinge, Sweden
| | - Erica Malmström
- Department of Natural Sciences, Technology and Environmental Studies, Södertörn University, Huddinge, Sweden
| | - Katarzyna Smolarz
- Department of Marine Ecosystems Functioning, Institute of Oceanography, University of Gdańsk, Poland
| | - Mats Grahn
- Department of Natural Sciences, Technology and Environmental Studies, Södertörn University, Huddinge, Sweden
| | - Patrik Dinnétz
- Department of Natural Sciences, Technology and Environmental Studies, Södertörn University, Huddinge, Sweden
| |
Collapse
|
14
|
Castañeda-Cortés DC, Lefebvre-Raine M, Triffault-Bouchet G, Langlois VS. Toxicogenomics of Five Cytostatics in Fathead Minnow (Pimephales promelas) Larvae. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 112:66. [PMID: 38643435 DOI: 10.1007/s00128-024-03896-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/09/2024] [Indexed: 04/22/2024]
Abstract
In this study, the toxicogenomic effects of five cytostatics (tamoxifen, methotrexate, capecitabine, cyclophosphamide, and ifosfamide) on fathead minnow (Pimephales promelas) larvae were evaluated. Post-fertilization eggs were exposed to increasing concentrations of the drugs for six days. The expression levels of two genetic biomarkers for toxicity and four thyroid hormone-related gene pathways were measured. Interestingly, the results showed that all concentrations of the five cytostatics affect the transcription levels of both toxicity biomarker genes. Additionally, the thyroid hormone-related genes had different expression levels than the control, with the most significant changes observed in those larvae exposed to cyclophosphamide and ifosfamide. While a previous study found no effects on fish morphology, this study suggests that the five cytostatics modify subtle molecular responses of P. promelas, highlighting the importance of assessing multibiological level endpoints throughout the lifecycle of animals to understand the full portrait of potential effects of cytostatics and other contaminants.
Collapse
Affiliation(s)
- D C Castañeda-Cortés
- Institut National de La Recherche Scientifique (INRS), Centre Eau Terre Environnement (ETE), Quebec City, QC, Canada
| | - M Lefebvre-Raine
- Institut National de La Recherche Scientifique (INRS), Centre Eau Terre Environnement (ETE), Quebec City, QC, Canada
| | - G Triffault-Bouchet
- Ministère de l'Environnement, de la Lutte Contre les Changements Climatiques, de la Faune et des Parcs (MELCCFP), Centre d'expertise en analyse environnementale du Québec (CEAEQ), Quebec city, QC, Canada
| | - V S Langlois
- Institut National de La Recherche Scientifique (INRS), Centre Eau Terre Environnement (ETE), Quebec City, QC, Canada.
| |
Collapse
|
15
|
Albers J, Mylroie J, Kimble A, Steward C, Chapman K, Wilbanks M, Perkins E, Garcia-Reyero N. Per- and Polyfluoroalkyl Substances: Impacts on Morphology, Behavior and Lipid Levels in Zebrafish Embryos. TOXICS 2024; 12:192. [PMID: 38535925 PMCID: PMC10975676 DOI: 10.3390/toxics12030192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 04/01/2024]
Abstract
The presence of per- and polyfluoroalkyl substances (PFASs) in aquatic environments is often persistent and widespread. Understanding the potential adverse effects from this group of chemicals on aquatic communities allows for better hazard characterization. This study examines impacts on zebrafish (Danio rerio) embryo physiology, behavior, and lipid levels from exposure to perfluorooctanoic acid (PFOA), perfluorohexane sulfonate (PFHxS), and heptadecafluorooctanesulfonic acid (PFOS). Embryos were exposed to lethal and sublethal levels of each chemical and monitored for alterations in physiological malformations, mortality, lipid levels, and behavior (only PFOA and PFHxS). The predicted 50% lethal concentrations for 120 hpf embryos were 528.6 ppm PFOA, 14.28 ppm PFHxS, and 2.14 ppm PFOS. Spine curvature and the inability of the 120 hpf embryos to maintain a dorsal-up orientation was significantly increased at 10.2 ppm PFHxS and 1.9 ppm PFOS exposure. All measured 120 hpf embryo behaviors were significantly altered starting at the lowest levels tested, 188 ppm PFOA and 6.4 ppm PFHxS. Lipid levels decreased at the highest PFAS levels tested (375 PFOA ppm, 14.4 PFHxS ppm, 2.42 ppm PFOS). In general, the PFAS chemicals, at the levels examined in this study, increased morphological deformities, embryo activity, and startle response time, as well as decreased lipid levels in 120 hpf zebrafish embryos.
Collapse
Affiliation(s)
- Janice Albers
- Oak Ridge Institute for Science and Education, Environmental Laboratory, US Army Engineer Research & Development Center, Vicksburg, MS 39180, USA
| | - John Mylroie
- Environmental Laboratory, US Army Engineer Research & Development Center, Vicksburg, MS 39180, USA (N.G.-R.)
| | - Ashley Kimble
- Environmental Laboratory, US Army Engineer Research & Development Center, Vicksburg, MS 39180, USA (N.G.-R.)
| | | | - Kacy Chapman
- Oak Ridge Institute for Science and Education, Environmental Laboratory, US Army Engineer Research & Development Center, Vicksburg, MS 39180, USA
| | - Mitchell Wilbanks
- Environmental Laboratory, US Army Engineer Research & Development Center, Vicksburg, MS 39180, USA (N.G.-R.)
| | - Edward Perkins
- Environmental Laboratory, US Army Engineer Research & Development Center, Vicksburg, MS 39180, USA (N.G.-R.)
| | - Natàlia Garcia-Reyero
- Environmental Laboratory, US Army Engineer Research & Development Center, Vicksburg, MS 39180, USA (N.G.-R.)
| |
Collapse
|
16
|
Ivantsova E, Lu A, Martyniuk CJ. Occurrence and toxicity mechanisms of perfluorobutanoic acid (PFBA) and perfluorobutane sulfonic acid (PFBS) in fish. CHEMOSPHERE 2024; 349:140815. [PMID: 38040261 DOI: 10.1016/j.chemosphere.2023.140815] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/03/2023]
Abstract
Perfluorobutanoic acid (PFBA) and perfluorobutane sulfonic acid (PFBS) are short-chain perfluoroalkyl substances (PFAS) ubiquitous in the environment. Here we review data on the presence and toxicity mechanisms of PFBA and PFBS in fish. We aimed to (1) synthesize data on physiological systems perturbed by PFBA or PFBS; (2) determine whether toxicity studies use concentrations reported in aquatic ecosystems and fish tissues; (3) conduct a computational toxicity assessment to elucidate putative mechanisms of PFBA and PFBS-induced toxicity. PFBA and PFBS are reported in the low ng/L in aquatic systems, and both substances are present in tissues of several fish including carp, bass, tilapia, and drum species. Evidence supports toxicity effects on several organ systems, including the cardiac, immune, hepatic, and reproductive system. Multigenerational effects in fish have also been documented for these smaller chain PFAS. To further elucidate mechanisms of reproductive impairment, we conducted in silico molecular docking to evaluate chemical interactions with several fish estrogen receptors, specifically zebrafish, fathead minnow, and Atlantic salmon. PFBS showed higher binding affinity for fish estrogen receptors relative to PFBA. Computational analysis also pointed to effects on lipids "Adipocyte Hypertrophy and Hyperplasia", "Lipogenesis Regulation in Adipocyte", and estrogen-related processes. Based on our review, most data for PFBA and PFBS are gathered for concentrations outside environmental relevance, limiting our understanding of their environment impacts. At the time of this review, there is relatively more toxicity data available for PFBS relative to PFBA in fish. This review synthesizes data on environmental levels and toxicology endpoints for PFBA and PFBS in fish to guide future investigations and endpoint assessments.
Collapse
Affiliation(s)
- Emma Ivantsova
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Austin Lu
- Blind Brook High School, Rye Brook, NY, 10573, USA
| | - Christopher J Martyniuk
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA; UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, University of Florida, USA.
| |
Collapse
|
17
|
Wu M, Zheng N, Zhan X, He J, Xiao M, Zuo Z, He C. Icariin induces developmental toxicity via thyroid hormone disruption in zebrafish larvae. Food Chem Toxicol 2023; 182:114155. [PMID: 37898232 DOI: 10.1016/j.fct.2023.114155] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
Icariin (ICA) is a natural flavonoid isolated from the traditional Chinese medicinal herb, Epimedium brevicornu Maxim. Although previous studies have reported that ICA exhibits various pharmacological activities, little is known about its toxicology. Herein, zebrafish embryos were exposed to ICA at 0, 2.5, 10, and 40 μM. In developmental analysis, reduced hatching rates, decreased body length, and abnormal swim bladder were found after treatment with 10 and 40 μM ICA. In addition, the ability of locomotor behavior was impaired by ICA. Two important thyroid hormones (THs), triiodothyronine (T3) and thyroxine (T4), were tested. The exposure resulted in a remarkable alteration of T4 level and a significant decrease of the T3/T4 ratio in the 40 μM, indicating thyroid endocrine disruption. Furthermore, gene transcription analysis showed that genes involved in thyroid development (nkx2.1) and THs synthesis (tg) were up-regulated after ICA exposure. Significant down-regulation of iodothyronine deiodinase (dio1) was also observed in the 10 and 40 μM groups compared to the control. Taken together, our study first demonstrated that ICA caused developmental toxicity possibly through disrupting thyroid development and hormone synthesis. These results show that it is necessary to perform risk assessments of ICA in clinical practice.
Collapse
Affiliation(s)
- Meifang Wu
- Fujian Institute of Subtropical Botany / Fujian Key Laboratory of Physiology and Biochemistry for Subtropical Plant, Xiamen, Fujian, 361006, China
| | - Naying Zheng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Xiaoxiao Zhan
- Fujian Institute of Subtropical Botany / Fujian Key Laboratory of Physiology and Biochemistry for Subtropical Plant, Xiamen, Fujian, 361006, China
| | - Jianzhang He
- Fujian Institute of Subtropical Botany / Fujian Key Laboratory of Physiology and Biochemistry for Subtropical Plant, Xiamen, Fujian, 361006, China
| | - Min Xiao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Zhenghong Zuo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Chengyong He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China.
| |
Collapse
|
18
|
Bai Y, Wang Q, Li J, Zhou B, Lam PKS, Hu C, Chen L. Significant Variability in the Developmental Toxicity of Representative Perfluoroalkyl Acids as a Function of Chemical Speciation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14904-14916. [PMID: 37774144 DOI: 10.1021/acs.est.3c06178] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
Current toxicological data of perfluoroalkyl acids (PFAAs) are disparate under similar exposure scenarios. To find the cause of the conflicting data, this study examined the influence of chemical speciation on the toxicity of representative PFAAs, including perfluorooctanoic acid (PFOA), perfluorobutane carboxylic acid (PFBA), and perfluorobutanesulfonic acid (PFBS). Zebrafish embryos were acutely exposed to PFAA, PFAA salt, and a pH-negative control, after which the developmental impairment and mechanisms were explored. The results showed that PFAAs were generally more toxic than the corresponding pH control, indicating that the embryonic toxicity of PFAAs was mainly caused by the pollutants themselves. In contrast to the high toxicity of PFAAs, PFAA salts only exhibited mild hazards to zebrafish embryos. Fingerprinting the changes along the thyroidal axis demonstrated distinct modes of endocrine disruption for PFAAs and PFAA salts. Furthermore, biolayer interferometry monitoring found that PFOA and PFBS acids bound more strongly with albumin proteins than did their salts. Accordingly, the acid of PFAAs accumulated significantly higher concentrations than their salt counterparts. The present findings highlight the importance of chemical forms to the outcome of developmental toxicity, calling for the discriminative risk assessment and management of PFAAs and salts.
Collapse
Affiliation(s)
- Yachen Bai
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Wang
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
| | - Jing Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bingsheng Zhou
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Paul K S Lam
- Department of Science, School of Science and Technology, Hong Kong Metropolitan University, Kowloon 999077, Hong Kong, China
| | - Chenyan Hu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430072, China
| | - Lianguo Chen
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
19
|
Zhang YH, Ding TT, Huang ZY, Liang HY, Du SL, Zhang J, Li HX. Environmental exposure and ecological risk of perfluorinated substances (PFASs) in the Shaying River Basin, China. CHEMOSPHERE 2023; 339:139537. [PMID: 37478992 DOI: 10.1016/j.chemosphere.2023.139537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/09/2023] [Accepted: 07/15/2023] [Indexed: 07/23/2023]
Abstract
There have been concerns raised about the environmental effects of perfluoroalkyl substances (PFASs) because of their toxicity, widespread distribution, and persistence. Understanding the occurrences and ecological risk posed by PFASs is essential, especially for the short-chain replacements perfluorobutanoic acid (PFBA) and perfluorobutane sulfonic acid (PFBS), which are now becoming predominant PFASs. The lack of aquatic life criteria (ALC), however, prevents an accurate assessment of the ecological risks of PFBA and PFBS. This study thus investigated the occurrence of 15 PFASs at 29 sampling sites in Shaying River Basin (in China) systematically, conducted the toxicity tests of PFBA and PFBS on eight resident aquatic organisms in China, and derived the predicted non-effect concentration (PNEC) values for PFBA and PFBS for two environmental media in China. The results showed that the total PFASs concentrations (ΣPFASs) ranged from 5.07 to 20.32 ng/L (average of 10.95 ng/L) in surface water, whereas in sediment, ΣPFASs ranged from 6.46 to 20.05 ng/g (dw) (average of 11.51 ng/g). The presence of PFBS was the most prominent PFASs in both water (0.372-8.194 ng/L) and sediment (4.54-15.72 ng/g), demonstrating that short-chain substitution effects can be observed in watersheds. The PNEC values for freshwater and sediment were 6.60 mg/L and 8.30 mg/kg (ww), respectively, for PFBA, and 14.04 mg/L, 37.08 mg/kg (ww), respectively, for PFBS. Ecological risk assessment of two long-chain PFASs, perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), and two short-chain PFASs, PFBA and PFBS, using the hazard quotient method revealed that Shaying River and other major River Basins in China were at risk of PFOS contamination. This study contributes to a better understanding of the presence and risk of PFASs in the Shaying River and first proposes the ALCs for PFBA and PFBS in China, which could provide important reference information for water quality standards.
Collapse
Affiliation(s)
- Ya-Hui Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; Environmental Analysis and Testing Laboratory, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China.
| | - Ting-Ting Ding
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Zi-Yan Huang
- Environmental Analysis and Testing Laboratory, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; Hangzhou Yanqu Information Technology Co., Ltd, Hangzhou, 310005, PR China; Key Laboratory of Water Pollution Control and Waste Water Resource of Anhui Province, College of Environment and Energy Engineering, Anhui Jianzhu University, Hefei, 230601, PR China
| | - Hong-Yi Liang
- Environmental Analysis and Testing Laboratory, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, China
| | - Shi-Lin Du
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; Environmental Analysis and Testing Laboratory, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China
| | - Jin Zhang
- Key Laboratory of Water Pollution Control and Waste Water Resource of Anhui Province, College of Environment and Energy Engineering, Anhui Jianzhu University, Hefei, 230601, PR China
| | - Hui-Xian Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China.
| |
Collapse
|
20
|
Hou Y, Liu X, Qin Y, Hou Y, Hou J, Wu Q, Xu W. Zebrafish as model organisms for toxicological evaluations in the field of food science. Compr Rev Food Sci Food Saf 2023; 22:3481-3505. [PMID: 37458294 DOI: 10.1111/1541-4337.13213] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 09/13/2023]
Abstract
Food safety has long been an area of concern. The selection of stable and efficient model organisms is particularly important for food toxicology studies. Zebrafish (Danio rerio) are small model vertebrates, and 70% of human genes have at least one zebrafish ortholog. Zebrafish have advantages as model organisms due to their short life cycle, strong reproductive ability, easy rearing, and low cost. Zebrafish embryos have the advantage of being sensitive to the breeding environment and thus have been used as biosensors. Zebrafish and their embryos have been widely used for food toxicology assessments. This review provides a systematic and comprehensive summary of food toxicology studies using zebrafish as model organisms. First, we briefly introduce the multidimensional mechanisms and structure-activity relationship studies of food toxicological assessment. Second, we categorize these studies according to eight types of hazards in foods, including mycotoxins, pesticides, antibiotics, heavy metals, endocrine disruptors, food additives, nanoparticles, and other food-related ingredients. Finally, we list the applications of zebrafish in food toxicology studies in line with future research prospects, aiming to provide a valuable reference for researchers in the field of food science.
Collapse
Affiliation(s)
- Yingyu Hou
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, Hubei, China
| | - Xixia Liu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, Hubei, China
| | - Yanlin Qin
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, Hubei, China
| | - Yaoyao Hou
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, Hubei, China
| | - Jianjun Hou
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, Hubei, China
| | - Qin Wu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, Hubei, China
| | - Wentao Xu
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing, China
| |
Collapse
|
21
|
Hedge JM, Hunter DL, Sanders E, Jarema KA, Olin JK, Britton KN, Lowery M, Knapp BR, Padilla S, Hill BN. Influence of Methylene Blue or Dimethyl Sulfoxide on Larval Zebrafish Development and Behavior. Zebrafish 2023; 20:132-145. [PMID: 37406269 PMCID: PMC10627343 DOI: 10.1089/zeb.2023.0017] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023] Open
Abstract
The use of larval zebrafish developmental testing and assessment, specifically larval zebrafish locomotor activity, has been recognized as a higher throughput testing strategy to identify developmentally toxic and neurotoxic chemicals. There are, however, no standardized protocols for this type of assay, which could result in confounding variables being overlooked. Two chemicals commonly employed during early-life stage zebrafish assays, methylene blue (antifungal agent) and dimethyl sulfoxide (DMSO, a commonly used vehicle) have been reported to affect the morphology and behavior of freshwater fish. In this study, we conducted developmental toxicity (morphology) and neurotoxicity (behavior) assessments of commonly employed concentrations for both chemicals (0.6-10.0 μM methylene blue; 0.3%-1.0% v/v DMSO). A light-dark transition behavioral testing paradigm was applied to morphologically normal, 6 days postfertilization (dpf) zebrafish larvae kept at 26°C. Additionally, an acute DMSO challenge was administered based on early-life stage zebrafish assays typically used in this research area. Results from developmental toxicity screens were similar between both chemicals with no morphological abnormalities detected at any of the concentrations tested. However, neurodevelopmental results were mixed between the two chemicals of interest. Methylene blue resulted in no behavioral changes up to the highest concentration tested, 10.0 μM. By contrast, DMSO altered larval behavior following developmental exposure at concentrations as low as 0.5% (v/v) and exhibited differential concentration-response patterns in the light and dark photoperiods. These results indicate that developmental DMSO exposure can affect larval zebrafish locomotor activity at routinely used concentrations in developmental neurotoxicity assessments, whereas methylene blue does not appear to be developmentally or neurodevelopmentally toxic to larval zebrafish at routinely used concentrations. These results also highlight the importance of understanding the influence of experimental conditions on larval zebrafish locomotor activity that may ultimately confound the interpretation of results.
Collapse
Affiliation(s)
- Joan M. Hedge
- Office of Research and Development, Center for Computational Toxicology and Exposure, Biomolecular and Computational Toxicology Division, Advanced Experimental Toxicology Models Branch, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Deborah L. Hunter
- Office of Research and Development, Center for Computational Toxicology and Exposure, Biomolecular and Computational Toxicology Division, Rapid Assay Development Branch, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Erik Sanders
- Aquatics Lab Services LLC 1112 Nashville Street St. Peters, MO 63376, USA
| | - Kimberly A. Jarema
- Office of Research and Development, Center for Public Health and Environmental Assessment, Immediate Office, Program Operations Staff, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Jeanene K. Olin
- Office of Research and Development, Center for Computational Toxicology and Exposure, Biomolecular and Computational Toxicology Division, Rapid Assay Development Branch, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Katy N. Britton
- ORAU Research Participation Program hosted by EPA, Office of Research and Development, Center for Computational Toxicology and Exposure, Biomolecular and Computational Toxicology Division, Rapid Assay Development Branch, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Morgan Lowery
- Office of Research and Development, Center for Computational Toxicology and Exposure, Biomolecular and Computational Toxicology Division, Rapid Assay Development Branch, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Bridget R. Knapp
- ORISE Research Participation Program hosted by EPA, Office of Research and Development, Center for Computational Toxicology and Exposure, Biomolecular and Computational Toxicology Division, Rapid Assay Development Branch, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Stephanie Padilla
- Office of Research and Development, Center for Computational Toxicology and Exposure, Biomolecular and Computational Toxicology Division, Rapid Assay Development Branch, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Bridgett N. Hill
- ORISE Research Participation Program hosted by EPA, Office of Research and Development, Center for Computational Toxicology and Exposure, Biomolecular and Computational Toxicology Division, Rapid Assay Development Branch, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| |
Collapse
|
22
|
Pannetier P, Poulsen R, Gölz L, Coordes S, Stegeman H, Koegst J, Reger L, Braunbeck T, Hansen M, Baumann L. Reversibility of Thyroid Hormone System-Disrupting Effects on Eye and Thyroid Follicle Development in Zebrafish (Danio rerio) Embryos. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:1276-1292. [PMID: 36920003 DOI: 10.1002/etc.5608] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/13/2022] [Accepted: 03/10/2023] [Indexed: 05/27/2023]
Abstract
Early vertebrate development is partially regulated by thyroid hormones (THs). Environmental pollutants that interact with the TH system (TH system-disrupting chemicals [THSDCs]) can have massively disrupting effects on this essential phase. Eye development of fish is directly regulated by THs and can, therefore, be used as a thyroid-related endpoint in endocrine disruptor testing. To evaluate the effects of THSDC-induced eye malformations during early development, zebrafish (Danio rerio) embryos were exposed for 5 days postfertilization (dpf) to either propylthiouracil, a TH synthesis inhibitor, or tetrabromobisphenol A, which interacts with TH receptors. Subsequently, one half of the embryos were exposed further to the THSDCs until 8 dpf, while the other half of the embryos were raised in clean water for 3 days to check for reversibility of effects. Continued THSDC exposure altered eye size and pigmentation and induced changes in the cellular structure of the retina. This correlated with morphological alterations of thyroid follicles as revealed by use of a transgenic zebrafish line. Interestingly, effects were partly reversible after a recovery period as short as 3 days. Results are consistent with changes in TH levels measured in different tissues of the embryos, for example, in the eyes. The results show that eye development in zebrafish embryos is very sensitive to THSDC treatment but able to recover quickly from early exposure by effective repair mechanisms. Environ Toxicol Chem 2023;42:1276-1292. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Pauline Pannetier
- Aquatic Ecology & Toxicology, Center for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Rikke Poulsen
- Environmental Metabolomics Laboratory, Department of Environmental Science, University of Aarhus, Aarhus, Denmark
| | - Lisa Gölz
- Aquatic Ecology & Toxicology, Center for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Sara Coordes
- Aquatic Ecology & Toxicology, Center for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Hanna Stegeman
- Aquatic Ecology & Toxicology, Center for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Johannes Koegst
- Aquatic Ecology & Toxicology, Center for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Luisa Reger
- Aquatic Ecology & Toxicology, Center for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Thomas Braunbeck
- Aquatic Ecology & Toxicology, Center for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Martin Hansen
- Environmental Metabolomics Laboratory, Department of Environmental Science, University of Aarhus, Aarhus, Denmark
| | - Lisa Baumann
- Aquatic Ecology & Toxicology, Center for Organismal Studies, University of Heidelberg, Heidelberg, Germany
- Amsterdam Institute for Life and Environment (A-LIFE), Section on Environmental Health & Toxicology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
23
|
Chen L, Xie Y, Li M, Mortimer M, Li F, Guo LH. Toxicological Mechanisms of Emerging Per-/poly-fluoroalkyl Substances: Focusing on Transcriptional Activity and Gene Expression Disruption. Toxicology 2023:153566. [PMID: 37263573 DOI: 10.1016/j.tox.2023.153566] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 06/03/2023]
Abstract
Environmental and human monitoring studies have witnessed increasing occurrence of emerging per-/poly-fluoroalkyl substances (ePFASs) worldwide. Three classes of ePFASs, namely chlorinated polyfluoroalkylether sulfonic acids, hexafluoropropylene oxide homologues and short-chain perfluoroalkyl acids attracted the most attention. It is, therefore, the goal of this review to systematically and critically analyse the toxicity and toxicological mechanisms of these ePFASs based on the papers published between 2017 and 2022. The review summarized the main findings from both in vivo and in vitro studies, covering the hepatotoxicity of ePFASs and their interference with the endocrine system, including reproductive, developmental and thyroid toxicity. It also summarized the changes in gene expression in the hypothalamic-pituitary-thyroid axis and hypothalamic-pituitary-gonad axis of the model organisms after ePFASs exposure. The changes in gene expression in vitro and in vivo provide a clearer understanding of the toxicological mechanisms of ePFASs interference on hormonal levels (i.e., estradiol, testosterone, and thyroid hormones), developmental disturbance (e.g., swim bladder dysfunction) and lipid metabolism disruption (e.g., lipid droplet accumulation and hepatomegaly). In the end, future research directions on the toxicological mechanisms of ePFASs are suggested.
Collapse
Affiliation(s)
- Lu Chen
- College of Life Sciences, China Jiliang University, 258 Xueyuan Street, Hangzhou, Zhejiang310018, China; Institute of Environmental and Health Sciences, China Jiliang University, 168 Xueyuan Street, Hangzhou, Zhejiang310018, China.
| | - Yue Xie
- College of Life Sciences, China Jiliang University, 258 Xueyuan Street, Hangzhou, Zhejiang310018, China; Institute of Environmental and Health Sciences, China Jiliang University, 168 Xueyuan Street, Hangzhou, Zhejiang310018, China.
| | - Minjie Li
- College of Quality and Safety Engineering, China Jiliang University, 258 Xueyuan Street, Hangzhou, Zhejiang310018, China.
| | - Monika Mortimer
- Institute of Environmental and Health Sciences, China Jiliang University, 168 Xueyuan Street, Hangzhou, Zhejiang310018, China; College of Quality and Safety Engineering, China Jiliang University, 258 Xueyuan Street, Hangzhou, Zhejiang310018, China.
| | - Fangfang Li
- Institute of Environmental and Health Sciences, China Jiliang University, 168 Xueyuan Street, Hangzhou, Zhejiang310018, China; College of Quality and Safety Engineering, China Jiliang University, 258 Xueyuan Street, Hangzhou, Zhejiang310018, China.
| | - Liang-Hong Guo
- Institute of Environmental and Health Sciences, China Jiliang University, 168 Xueyuan Street, Hangzhou, Zhejiang310018, China; College of Quality and Safety Engineering, China Jiliang University, 258 Xueyuan Street, Hangzhou, Zhejiang310018, China.
| |
Collapse
|
24
|
Horie Y. Environmentally relevant concentrations of triclosan induce lethality and disrupt thyroid hormone activity in zebrafish (Danio rerio). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 100:104151. [PMID: 37207895 DOI: 10.1016/j.etap.2023.104151] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/30/2023] [Accepted: 05/16/2023] [Indexed: 05/21/2023]
Abstract
Triclosan is an antimicrobial agent that has been used in common household products and can be detected in water environment. In this study, therefore, I aimed at clarifying the effects of environmentally relevant concentrations of triclosan on the early life stage development in zebrafish. A lethal effect was observed: the lowest effect and the no effect concentrations were 70.6 and 48.4μg/L, respectively. These concentrations are very close to the environmentally detected residual concentrations. In 10.9, 19.8, 48.4, and 70.6μg/L of triclosan, the iodothyronine deiodinase 1 gene expression was found to be significantly increased when compared with that of the control group. These findings indicate that triclosan can potentially disrupt the thyroid hormone activity in zebrafish. The exposure to triclosan (at 149.2μg/L) was also found to inhibit the gene expression of insulin-like growth factor-1. My findings suggest that triclosan can exert a thyroid hormone-disrupting effect on fish.
Collapse
Affiliation(s)
- Yoshifumi Horie
- Research Center for Inland Seas (KURCIS), Kobe University, Fukaeminami-machi, Higashinada-ku, Kobe 658-0022, Japan.
| |
Collapse
|
25
|
Guerrero-Limón G, Nivelle R, Bich-Ngoc N, Duy-Thanh D, Muller M. A Realistic Mixture of Persistent Organic Pollutants Affects Zebrafish Development, Behavior, and Specifically Eye Formation by Inhibiting the Condensin I Complex. TOXICS 2023; 11:357. [PMID: 37112584 PMCID: PMC10146850 DOI: 10.3390/toxics11040357] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/07/2023] [Accepted: 04/07/2023] [Indexed: 06/19/2023]
Abstract
Persistent organic pollutants (POPs) are posing major environmental and health threats due to their stability, ubiquity, and bioaccumulation. Most of the numerous studies of these compounds deal with single chemicals, although real exposures always consist of mixtures. Thus, using different tests, we screened the effects on zebrafish larvae caused by exposure to an environmentally relevant POP mixture. Our mixture consisted of 29 chemicals as found in the blood of a Scandinavian human population. Larvae exposed to this POP mix at realistic concentrations, or sub-mixtures thereof, presented growth retardation, edemas, retarded swim bladder inflation, hyperactive swimming behavior, and other striking malformations such as microphthalmia. The most deleterious compounds in the mixture belong to the per- and polyfluorinated acids class, although chlorinated and brominated compounds modulated the effects. Analyzing the changes in transcriptome caused by POP exposure, we observed an increase of insulin signaling and identified genes involved in brain and eye development, leading us to propose that the impaired function of the condensin I complex caused the observed eye defect. Our findings contribute to the understanding of POP mixtures, their consequences, and potential threats to human and animal populations, indicating that more mechanistic, monitoring, and long-term studies are imperative.
Collapse
Affiliation(s)
- Gustavo Guerrero-Limón
- Laboratory for Organogenesis and Regeneration, GIGA Institute, University of Liège, 4000 Liège, Belgium; (G.G.-L.); (R.N.); (D.D.-T.)
| | - Renaud Nivelle
- Laboratory for Organogenesis and Regeneration, GIGA Institute, University of Liège, 4000 Liège, Belgium; (G.G.-L.); (R.N.); (D.D.-T.)
| | - Nguyen Bich-Ngoc
- VNU School of Interdisciplinary Studies, Vietnam National University (VNU), Hanoi 10000, Vietnam;
| | - Dinh Duy-Thanh
- Laboratory for Organogenesis and Regeneration, GIGA Institute, University of Liège, 4000 Liège, Belgium; (G.G.-L.); (R.N.); (D.D.-T.)
| | - Marc Muller
- Laboratory for Organogenesis and Regeneration, GIGA Institute, University of Liège, 4000 Liège, Belgium; (G.G.-L.); (R.N.); (D.D.-T.)
| |
Collapse
|
26
|
Tapper MA, Denny JS, Sheedy BR, Johnson B, Kolanczyk RC. Estrogenic Activity of Perfluoro Carboxylic and Sulfonic Acids in Rainbow Trout Estrogen Receptor Binding and Liver Slice Vtg mRNA Expression Assays. APPLIED IN VITRO TOXICOLOGY 2023; 9:13-22. [PMID: 38840692 PMCID: PMC11151740 DOI: 10.1089/aivt.2022.0013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Perfluoroalkylated substances (PFAS) such as carboxylic acids, and sulfonic acids were manufactured in high quantities and are ubiquitous environmental contaminants. These chemicals persist in the environment and tend to bioaccumulate. In the current study, the estrogenic potential of a series of perfluoro carboxylic acids and select perfluoro sulfonic acids were assessed in an in vitro rainbow trout estrogen receptor (rtER) binding assay and an ex vivo rtER dependent vitellogenin (Vtg) expression rainbow trout liver slice assay. Perfluoro carboxylic acids with perfluoroalkyl chain lengths of four to six did not significantly bind to the rtER or induce Vtg expression in liver slices. Perfluoro carboxylic acids with chain lengths of seven to ten, and sulfonic acids with seven and eight carbon chains bound to the rtER, but with low relative binding affinities. While affinity for the rtER increased with increasing chain length the highest affinity measured was only 0.0025% relative to the endogenous hormone 17ß-estradiol at 100%. Both the eight-carbon carboxylic acid and eight-carbon sulfonic acid induced Vtg expression in ex vivo liver slices. However, toxicity did not allow expression to achieve maximum efficacy relative to estradiol.
Collapse
Affiliation(s)
- Mark A Tapper
- USEPA, ORD, CCTE, GLTED, 6201 Congdon Boulevard, Duluth, MN 55804
| | - Jeffrey S Denny
- USEPA, ORD, CCTE, GLTED, 6201 Congdon Boulevard, Duluth, MN 55804
| | - Barbara R Sheedy
- USEPA, ORD, CCTE, GLTED, 6201 Congdon Boulevard, Duluth, MN 55804
| | - Ben Johnson
- Wisconsin Veterinary Diagnostic Laboratory, 445 Easterday Ln. Madison, WI 53706
| | | |
Collapse
|
27
|
Horie Y, Nomura M, Ramaswamy BR, Harino H, Yap CK, Okamura H. Effects of non-phthalate plasticizer bis(2-ethylhexyl) sebacate (DEHS) on the endocrine system in Japanese medaka (Oryzias latipes). Comp Biochem Physiol C Toxicol Pharmacol 2023; 264:109531. [PMID: 36470400 DOI: 10.1016/j.cbpc.2022.109531] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/26/2022] [Accepted: 11/30/2022] [Indexed: 12/07/2022]
Abstract
Water pollution due to plasticizers is one of the most severe environmental problems worldwide. Phthalate plasticizers can act as endocrine disruptors in vertebrates. In this study, we investigated whether the non-phthalate bis(2-ethylhexyl) sebacate (DEHS) plasticizer can act as an endocrine disruptor by evaluating changes in the expression levels of thyroid hormone-related, reproduction-related, and estrogen-responsive genes of Japanese medaka (Oryzias latipes) exposed to the plasticizer. Following the exposure, the gene expression levels of thyroid-stimulating hormone subunit beta (tshβ), deiodinase 1 (dio1), and thyroid hormone receptor alpha (trα) did not change. Meanwhile, DEHS suppressed dio2 expression, did not induce swim bladder inflation, and eventually reduced the swimming performance of Japanese medaka. These findings indicate that DEHS can potentially disrupt the thyroid hormone-related gene expression and metabolism of these fish. However, exposure to DEHS did not induce changes in the gene expression levels of kisspeptin 1 (kiss1), gonadotropin-releasing hormone (gnrh), follicle-stimulating hormone beta (fshβ), luteinizing hormone beta (lhβ), choriogenin H (chgH), and vitellogenin (vtg) in a dose-dependent manner. This is the first report providing evidence that DEHS can disrupt thyroid hormone-related metabolism in fish.
Collapse
Affiliation(s)
- Yoshifumi Horie
- Research Center for Inland Seas (KURCIS), Kobe University, Fukaeminami-machi, Higashinada-ku, Kobe 658-0022, Japan.
| | - Miho Nomura
- Graduate School of Maritime Science, Kobe University, Fukaeminami-machi, Higashinada-ku, Kobe 658-0022, Japan
| | - Babu Rajendran Ramaswamy
- Research Center for Inland Seas (KURCIS), Kobe University, Fukaeminami-machi, Higashinada-ku, Kobe 658-0022, Japan; Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli 620024, India
| | - Hiroya Harino
- School of Human Sciences, Kobe College, 4-1 Okadayama, Nishinomiya, Hyogo, Iwate 662-8505, Japan
| | - Chee Kong Yap
- Department of Biology, Faculty of Science, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Hideo Okamura
- Research Center for Inland Seas (KURCIS), Kobe University, Fukaeminami-machi, Higashinada-ku, Kobe 658-0022, Japan
| |
Collapse
|
28
|
Horie Y, Ramaswamy BR, Ríos JM, Yap CK, Okamura H. Effects of plasticizer diisobutyl adipate on the Japanese medaka (Oryzias latipes) endocrine system. J Appl Toxicol 2023. [PMID: 36647207 DOI: 10.1002/jat.4437] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/30/2022] [Accepted: 01/13/2023] [Indexed: 01/18/2023]
Abstract
Plasticizer pollution of the water environment is one of the world's most serious environmental issues. Phthalate plasticizers can disrupt endocrine function in vertebrates. Therefore, this study analyzed thyroid-related, reproduction-related, and estrogen-responsive genes in Japanese medaka (Oryzias latipes) to determine whether non-phthalate diisobutyl adipate (DIBA) plasticizer could affect endocrine hormone activity or not. Developmental toxicity during fish embryogenesis was also evaluated. At a concentration of 11.57 mg/l, embryonic exposure to DIBA increased the mortality rate. Although abnormal development, including body curvature, edema, and lack of swim bladder inflation, was observed at 3.54 and 11.57 mg/l DIBA, growth inhibition and reduced swimming performance were also observed. In addition, DIBA exposure increased the levels of thyroid-stimulating hormone beta-subunit (tshβ) and deiodinase 1 (dio1) but decreased the levels of thyroid hormone receptor alpha (trα) and beta (trβ). These results suggest that DIBA has thyroid hormone-disrupting activities in fish. However, kisspeptin (kiss1 and kiss2), gonadotropin-releasing hormone (gnrh1), follicle-stimulating hormone beta (fshβ), luteinizing hormone beta (lhβ), choriogenin H (chgH), and vitellogenin (vtg1) expression did not change dose-dependently in response to DIBA exposure, whereas gnrh2 and vtg2 expression was elevated. These results indicate that DIBA has low estrogenic activity and does not disrupt the endocrine reproduction system in fish. Overall, this is the first report indicating that non-phthalate DIBA plasticizer is embryotoxic and disrupt thyroid hormone activity in fish.
Collapse
Affiliation(s)
- Yoshifumi Horie
- Research Center for Inland Seas (KURCIS), Kobe University, Fukae Minamimachi, Higashinada-ku, Kobe, 658-0022, Japan
| | - Babu Rajendran Ramaswamy
- Research Center for Inland Seas (KURCIS), Kobe University, Fukae Minamimachi, Higashinada-ku, Kobe, 658-0022, Japan.,Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli, 620024, India
| | - Juan Manuel Ríos
- Laboratorio de Ecotoxicología, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU, CCT-CONICET), 5500, Mendoza, Argentina
| | - Chee Kong Yap
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Hideo Okamura
- Research Center for Inland Seas (KURCIS), Kobe University, Fukae Minamimachi, Higashinada-ku, Kobe, 658-0022, Japan
| |
Collapse
|
29
|
Huang M, Ivantsova E, Konig I, Patel N, English C, Souders CL, Martyniuk CJ. Developmental and mitochondrial toxicity assessment of perfluoroheptanoic acid (PFHpA) in zebrafish (Danio rerio). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 97:104037. [PMID: 36526081 DOI: 10.1016/j.etap.2022.104037] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
The potential toxicity of several perfluoroalkyl and polyfluoroalkyl substances (PFASs) to aquatic species are not well understood. Here, we assessed the sub-lethal toxicity potential of perfluoroheptanoic acid (PFHpA) to developing zebrafish. PFHpA was not acutely toxic to fish up to 50 µM and there was > 96% survival in all treatments. Exposure to 200 µM PFHpA decreased ATP-linked respiration of embryos. There was no evidence for ROS induction in 7-day-old larvae fish exposed to 0.1 µM or 1 µM PFHpA. Twenty-four transcripts related to mitochondrial complexes I through V were measured and atp06, cox4i1, and cyc1 levels were decreased in larval zebrafish in a concentration-dependent manner by PFHpA exposure. Locomotor activity was reduced in fish exposed to 0.1 µM PFHpA based on a visual motor response test. Anxiolytic-type behaviors were not affected by PFHpA. This study contributes to environmental risk assessments for perfluorinated chemicals.
Collapse
Affiliation(s)
- Michelle Huang
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Emma Ivantsova
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Isaac Konig
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; Department of Chemistry, Federal University of Lavras (UFLA), Minas Gerais, Brazil
| | - Neep Patel
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Cole English
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Christopher L Souders
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Christopher J Martyniuk
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, USA.
| |
Collapse
|
30
|
Horie Y, Yamagishi T, Yamamoto J, Suzuki M, Onishi Y, Chiba T, Miyagawa S, Lange A, Tyler CR, Okamura H, Iguchi T. Adverse effects of thyroid-hormone-disrupting chemicals 6-propyl-2-thiouracil and tetrabromobisphenol A on Japanese medaka (Oryzias latipes). Comp Biochem Physiol C Toxicol Pharmacol 2023; 263:109502. [PMID: 36368510 DOI: 10.1016/j.cbpc.2022.109502] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/03/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
Abstract
Thyroid-hormone-disrupting chemicals are increasingly attracting attention because of their potential harmful effects on animal health, including on fishes. Here, we investigated the effects of exposure to the thyroid-hormone-disrupting chemicals 6-propyl-2-thiouracil (PTU) and tetrabromobisphenol A (TBBPA) on swim bladder inflation, eye development, growth, swimming performance, and the expression of thyroid-related genes in Japanese medaka (Oryzias latipes). PTU exposure resulted in reductions in eye size, growth, and swim bladder inflation, and these effects led to poorer swimming performance. These phenotypic effects were accompanied by increased expression of the thyroid-stimulating hormone subunit beta (tshβ) paralog tshβ-like, but there were no significant changes in expression for tshβ, deiodinase 1 (dio1), deiodinase 2 (dio2), and thyroid hormone receptor alpha (trα) and beta (trβ). For PTU exposure, we identified the key event (swim bladder inflation reduction) and an adverse outcome (swimming performance reduction). No significant effects from TBBPA exposure were seen on swim bladder inflation, eye development, growth, or swimming performance. However, expression of tshβ-like and tshβ (significantly enhanced) and trα and trβ (significantly reduced) were affected by TBBPA exposure albeit not in dose-dependent manners. There were no effects of TBBPA on the expression of dio1 and dio2. We thus show that the two thyroid-hormone-disrupting chemicals PTU and TBBPA differ in their effect profiles with comparable effects on the studied phenotypes and thyroid-related gene expression to those reported in zebrafish.
Collapse
Affiliation(s)
- Yoshifumi Horie
- Research Center for Inland Seas (KURCIS), Kobe University, Fukaeminami-machi, Higashinada-ku, Kobe 658-0022, Japan.
| | - Takahiro Yamagishi
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Jun Yamamoto
- Institute of Environmental Ecology, IDEA Consultants, Inc., Shizuoka 421-0212, Japan
| | - Mayumi Suzuki
- Institute of Environmental Ecology, IDEA Consultants, Inc., Shizuoka 421-0212, Japan
| | - Yuta Onishi
- Institute of Environmental Ecology, IDEA Consultants, Inc., Shizuoka 421-0212, Japan
| | - Takashi Chiba
- Department of Environmental and Symbiotic Science, Rakuno Gakuen University, 582 Bunkyodai Midorimachi, Ebetsu, Hokkaido 069-8501, Japan
| | - Shinichi Miyagawa
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Niijuku 6-3-1, Katsushika, Tokyo 125-8585, Japan
| | - Anke Lange
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Charles R Tyler
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Hideo Okamura
- Research Center for Inland Seas (KURCIS), Kobe University, Fukaeminami-machi, Higashinada-ku, Kobe 658-0022, Japan
| | - Taisen Iguchi
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan
| |
Collapse
|
31
|
Zhang W, Zhou M, Kan Y, Chen J, Hu Y, Xing W. Synthesis and flame retardant efficiency study of two phosphorus-nitrogen type flame retardants containing triazole units. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.110236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
32
|
Horie Y, Nomura M, Ramaswamy BR, Harino H, Yap CK, Okamura H. Thyroid hormone disruption by bis-(2-ethylhexyl) phthalate (DEHP) and bis-(2-ethylhexyl) adipate (DEHA) in Japanese medaka Oryzias latipes. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 252:106312. [PMID: 36174385 DOI: 10.1016/j.aquatox.2022.106312] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Pollution of water bodies with plasticizers is a serious environmental problem worldwide. In this study, we investigated the effects of plasticizers bis-(2-ethylhexyl) phthalate (DEHP) and bis-(2-ethylhexyl) adipate (DEHA) in Japanese medaka (Oryzias latipes). DEHP significantly increased the expression of all the genes tested: thyroid stimulating hormone beta subunit (tshβ-like), tshβ, deiodinase 1 (dio1), deiodinase 2 (dio2), and thyroid hormone receptor alpha (trα) and beta (trβ). However, DEHA only significantly increased tshβ at 7.4 µg/L but significantly decreased dio2 expression at 25.8, 111.1, and 412.6 4 µg/L, while other genes were not significantly affected. Both chemicals reduced eye size and total body length, but did not affect embryo development, hatching time and rate, and swimming performance. DEHA alone affected swim bladder inflation and not DEHP. This is the first report that not only DEHP but also DEHA disrupt thyroid hormone activity in fish. DEHP contamination (13.2 μg/L) was detected in tap water from Kobe, Japan; thus, tap water itself may disrupt thyroid hormone activity in Japanese medaka. Importantly, the effective concentration of DEHP for thyroid hormone-related gene expression and growth was close to or lower than DEHP concentrations reported in surface water elsewhere, indicating that DEHP contamination is a serious aquatic pollution.
Collapse
Affiliation(s)
- Yoshifumi Horie
- Research Center for Inland Seas (KURCIS), Kobe University, Fukaeminami-machi, Higashinada-ku, Kobe 658-0022, Japan.
| | - Miho Nomura
- Graduate School of Maritime Science, Kobe University, Fukaeminami-machi, Higashinada-ku, Kobe 658-0022, Japan
| | - Babu Rajendran Ramaswamy
- Research Center for Inland Seas (KURCIS), Kobe University, Fukaeminami-machi, Higashinada-ku, Kobe 658-0022, Japan; Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli 620024, India
| | - Hiroya Harino
- School of Human Sciences, Kobe College, 4-1 Okadayama, Nishinomiya, Hyogo, 662-8505, Japan
| | - Chee Kong Yap
- Department of Biology, Faculty of Science, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Hideo Okamura
- Research Center for Inland Seas (KURCIS), Kobe University, Fukaeminami-machi, Higashinada-ku, Kobe 658-0022, Japan
| |
Collapse
|
33
|
Gebreab KY, Benetti D, Grosell M, Stieglitz JD, Berry JP. Toxicity of perfluoroalkyl substances (PFAS) toward embryonic stages of mahi-mahi (Coryphaena hippurus). ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:1057-1067. [PMID: 35982347 DOI: 10.1007/s10646-022-02576-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Perfluoroalkyl substances (PFAS) are highly persistent organic pollutants that have been detected in a wide array of environmental matrices and, in turn, diverse biota including humans and wildlife wherein they have been associated with a multitude of toxic, and otherwise adverse effects, including ecosystem impacts. In the present study, we developed a toxicity assay for embryonic stages of mahi-mahi (Coryphaena hippurus), as an environmentally relevant pelagic fish species, and applied this assay to the evaluation of the toxicity of "legacy" and "next-generation" PFAS including, respectively, perfluorooctanoic acid (PFOA) and several perfluoroethercarboxylic acids (PFECA). Acute embryotoxicity, in the form of lethality, was measured for all five PFAS toward mahi-mahi embryos with median lethal concentrations (LC50) in the micromolar range. Consistent with studies in other similar model systems, and specifically the zebrafish, embryotoxicity in mahi-mahi generally (1) correlated with fluoroalkyl/fluoroether chain length and hydrophobicity, i.e., log P, of PFAS, and thus, aligned with a role of uptake in the relative toxicity; and (2) increased with continuous exposure, suggesting a possible role of development stage specifically including a contribution of hatching (and loss of protective chorion) and/or differentiation of target systems (e.g., liver). Compared to prior studies in the zebrafish embryo model, mahi-mahi was significantly more sensitive to PFAS which may be related to differences in either exposure conditions (e.g., salinity) and uptake, or possibly differential susceptibility of relevant targets, for the two species. Moreover, when considered in the context of the previously reported concentration of PFAS within upper sea surface layers, and co-localization of buoyant eggs (i.e., embryos) and other early development stages (i.e., larvae, juveniles) of pelagic fish species to the sea surface, the observed toxicity potentially aligns with environmentally relevant concentrations in these marine systems. Thus, impacts on ecosystems including, in particular, population recruitment are a possibility. The present study is the first to demonstrate embryotoxicity of PFAS in a pelagic marine fish species, and suggests that mahi-mahi represents a potentially informative, and moreover, environmentally relevant, ecotoxicological model for PFAS in marine systems.
Collapse
Affiliation(s)
- Kiflom Y Gebreab
- Department of Chemistry and Biochemistry, Institute of Environment, Florida International University, North Miami, FL, USA
| | - Daniel Benetti
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA
| | - Martin Grosell
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA
| | - John D Stieglitz
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA
| | - J P Berry
- Department of Chemistry and Biochemistry, Institute of Environment, Florida International University, North Miami, FL, USA.
| |
Collapse
|
34
|
Myosho T, Ishibashi A, Fujimoto S, Miyagawa S, Iguchi T, Kobayashi T. Preself-Feeding Medaka Fry Provides a Suitable Screening System for in Vivo Assessment of Thyroid Hormone-Disrupting Potential. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:6479-6490. [PMID: 35475622 DOI: 10.1021/acs.est.1c06729] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Endocrine-disrupting chemicals are assessed based on their physiological potential and their potential associated adverse effects. However, suitable end points for detection of chemicals that interfere with the thyroid hormone (TH) system have not been established in nonmammals, with the exception of amphibian metamorphosis. The aims of the current study were to develop an in vivo screening system using preself-feeding medaka fry (Oryzias latipes) for the detection of TH-disrupting chemicals and elucidate the underlying molecular mechanism. 17α-Ethinylestradiol (EE2: <100 ng/L) did not induce mRNA expression of estrogen-responsive genes, vitellogenins (vtgs) mRNA. Meanwhile, coexposure with thyroxin (T4) induced an increase of vtg expression. TH-disrupting chemicals (thiourea (TU), perfluorooctanoic acid (PFOA), and tetrabromobisphenol A (TBBPA)) significantly suppressed EE2 (1,000 ng/L)-induced vtg1 expression, while T4 rescued their expression as well as that of thyroid hormone receptor α (tRα) and estrogen receptors (esrs). These results were supported by in silico analysis of the 5'-transcriptional regulatory region of these genes. Furthermore, the esr1 null mutant revealed that EE2-induced vtg1 expression requires mainly esr2a and esr2b in a TH-dependent manner in preself-feeding fry. Application of preself-feeding medaka fry as a screening system might help decipher the in vivo mechanisms of action of TH-disrupting molecules, while providing an alternative to the traditional animal model.
Collapse
Affiliation(s)
- Taijun Myosho
- Laboratory of Molecular Reproductive Biology, Institute for Environmental Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
- Graduate School of Integrated Pharmaceutical and Nutrition Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Ayaka Ishibashi
- Graduate School of Integrated Pharmaceutical and Nutrition Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Shingo Fujimoto
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa 903-0213, Japan
| | - Shinichi Miyagawa
- Faculty of Advanced Engineering, Tokyo University of Science, Tokyo 125-8585, Japan
| | - Taisen Iguchi
- Graduate School of Nanobioscience, Yokohama City University, Yokohama 236-0027, Japan
| | - Tohru Kobayashi
- Laboratory of Molecular Reproductive Biology, Institute for Environmental Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
- Graduate School of Integrated Pharmaceutical and Nutrition Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| |
Collapse
|
35
|
Horie Y, Nomura M, Okamoto K, Takahashi C, Sato T, Miyagawa S, Okamura H, Iguchi T. Effect of thyroid hormone-disrupting chemicals on swim bladder inflation and thyroid hormone-related gene expression in Japanese medaka and zebrafish. J Appl Toxicol 2022; 42:1385-1395. [PMID: 35172387 DOI: 10.1002/jat.4302] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/07/2022] [Accepted: 02/07/2022] [Indexed: 11/10/2022]
Abstract
We compared the influence of thyroid hormone-disrupting chemicals (heptafluorobutanoic acid, PFBA and tris(1,3-dichloro-2-propyl) phosphate, TDCPP), and thyroid hormone (3,3',5-triiodo-L-thyronine, T3) on swim bladder inflation and thyroid hormone-related gene expression in Japanese medaka and zebrafish. The swim bladder of most larvae had inflated at 4 hours post hatching (hph) in Japanese medaka and at 48 hph in zebrafish in controls. In both fish species, the swim bladder inflation was inhibited in larvae exposed to PFBA (lowest observed effect concentration (LOEC) in medaka: 40 mg/L; in zebrafish: 80 mg/L), TDCPP (LOEC in medaka: 1 mg/L; in zebrafish: 0.5 mg/L), and T3 (no inhibition in Japanese medaka; LOEC in zebrafish: 7.5 μg/L). We also examined the influence of PFBA, TDCPP, and T3 on the expression of thyroid stimulating hormone subunit beta (tshβ) or thyroid hormone receptor alpha (trα) and beta (trβ). No changes were observed in the expression of genes after PFBA and TDCPP exposure; however, T3 exposure upregulated trα and trβ expression in both fish species. When the results were compared between Japanese medaka and zebrafish, swim bladder inflation in both species was found to be inhibited by exposure to thyroid hormone-disrupting chemicals. Our results show that inhibition of the swim bladder inflation at 4 hph in Japanese medaka and 48 hph in zebrafish is a potential indicator of thyroid hormone-disturbing activity of chemicals.
Collapse
Affiliation(s)
- Yoshifumi Horie
- Research Center for Inland Sea (KURCIS), Kobe University, Kobe, Japan.,Faculty of Bioresource Sciences, Akita Prefectural University, Akita, Japan
| | - Miho Nomura
- Faculty of Maritime Sciences, Kobe University, Kobe, Japan
| | - Konori Okamoto
- Faculty of Maritime Sciences, Kobe University, Kobe, Japan
| | - Chiho Takahashi
- Faculty of Bioresource Sciences, Akita Prefectural University, Akita, Japan
| | - Tomomi Sato
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Japan
| | - Shinichi Miyagawa
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Hideo Okamura
- Research Center for Inland Sea (KURCIS), Kobe University, Kobe, Japan
| | - Taisen Iguchi
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Japan
| |
Collapse
|
36
|
Asala TE, Dasmahapatra AK, Myla A, Tchounwou PB. Histological and Histochemical Evaluation of the Effects of Graphene Oxide on Thyroid Follicles and Gas Gland of Japanese Medaka (Oryzias latipes) Larvae. CHEMOSPHERE 2022; 286:131719. [PMID: 34426126 PMCID: PMC8595807 DOI: 10.1016/j.chemosphere.2021.131719] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 05/13/2023]
Abstract
Graphene oxide (GO) has become a topic of increasing concern for its environmental and health risks. However, studies on the potential toxic effects of GO, especially as an endocrine disrupting chemical (EDC), are very limited. In the present study we have used Japanese medaka fish as a model to assess the endocrine disruption potential of GO by evaluating its toxic and histopathologic effects on thyroid follicles and the gas gland (GG) of medaka larvae. One day post-hatch (dph) starved medaka fries were exposed to GO (2.5, 5.0, 10.0, and 20 mg/L) for 96 h, followed by 6 weeks depuration in a GO-free environment with feeding. Larvae were sacrificed and histopathological evaluation of thyroid follicles and the GG cells were done microscopically. Different sizes of spherical/oval shape thyroid follicles containing PAS positive colloids, surrounded by single-layered squamous/cuboidal epithelium, were found to be scattered predominantly throughout the pharyngeal region near the ventral aorta. We have apparently observed a sex-specific difference in the follicular size and thyrocytes height and a non-linear effect of GO exposure on the larvae on 47th day post hatch (dph). The GG is composed of large uniform epithelial cells with eosinophilic cytoplasm. Like thyroids, our studies on GG cells indicate a sex-specific difference and GO exposure non-linearly reduced the GG cell numbers in males and females as well as in XY and XX genotypes. Our data further confirm that sex effect should be carefully considered while assessing the toxicity of EDCs on the thyroid gland.
Collapse
Affiliation(s)
- Tolulope E Asala
- RCMI Center for Environmental Health, Jackson State University, 1400 JR Lynch Street, Jackson, MS, 39217, USA
| | - Asok K Dasmahapatra
- RCMI Center for Environmental Health, Jackson State University, 1400 JR Lynch Street, Jackson, MS, 39217, USA; Department of BioMolecular Sciences, Environmental Toxicology Division, University of Mississippi, University, MS, 38677, USA
| | - Anitha Myla
- RCMI Center for Environmental Health, Jackson State University, 1400 JR Lynch Street, Jackson, MS, 39217, USA
| | - Paul B Tchounwou
- RCMI Center for Environmental Health, Jackson State University, 1400 JR Lynch Street, Jackson, MS, 39217, USA.
| |
Collapse
|
37
|
Li R, Yang L, Han J, Zou Y, Wang Y, Feng C, Zhou B. Early-life exposure to tris (1,3-dichloro-2-propyl) phosphate caused multigenerational neurodevelopmental toxicity in zebrafish via altering maternal thyroid hormones transfer and epigenetic modifications. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117471. [PMID: 34082372 DOI: 10.1016/j.envpol.2021.117471] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
Tris (1,3-dichloro-2-propyl) phosphate (TDCIPP), an alternative to brominated flame retardants, might pose an exposure risk to humans and wild animals during fetal development. Our recent study suggested that short-term TDCIPP exposure during early development caused sex-dependent behavioral alteration in adults. In the present study, multigenerational neurodevelopmental toxicity upon early-life exposure of parental zebrafish was evaluated, and the possible underlying mechanisms were further explored. Specifically, after embryonic exposure (0-10 days post-fertilization, dpf) to TDCIPP (0, 0.01, 0.10, and 1.00 μM), zebrafish larvae were cultured in clean water until the sexually matured to produce progeny (F1). The results confirmed neurodevelopmental toxicity in F1 larvae characterized by changes of developmental endpoints, reduced thigmotaxis, as well as altered transcription of genes including myelin basic protein a (mbpa), growth associated protein (gap43) and synapsin IIa (syn2a). Sex-specific changes in thyroid hormones (THs) indicated the relationship of abnormal THs levels with previously reported neurotoxicity in adult females after early-life exposure to TDCIPP. Similar changing profiles of TH levels (increased T3 and decreased T4) in adult females and F1 eggs, but not in F1 larvae, suggested that the TH disruptions were primarily inherited from the maternal fish. Further results demonstrated hypermethylation of global DNA and key genes related to TH transport including transthyretin (ttr) and solute carrier family 16 member 2 (slc16a2), which might affect the transport of THs to target tissues, thus at least partially contributing to the neurodevelopmental toxicity in F1 larvae. Overall, our results confirmed that early-life TDCIPP exposure of parental fish could affect the early neurodevelopment of F1 offspring. The underlying mechanism could involve altered TH levels inherited from maternal zebrafish and epigenetic modifications in F1 larvae.
Collapse
Affiliation(s)
- Ruiwen Li
- Ecological Environment Monitoring and Scientific Research Center, Changjiang River Basin Ecological Environment Administration, Ministry of Ecology and Environment of the People's Republic of China, Wuhan, 430014, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Lihua Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Jian Han
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yu Zou
- Institute of Pharmaceutical Innovation, Medical College, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Yingcai Wang
- Ecological Environment Monitoring and Scientific Research Center, Changjiang River Basin Ecological Environment Administration, Ministry of Ecology and Environment of the People's Republic of China, Wuhan, 430014, China
| | - Chenglian Feng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Bingsheng Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| |
Collapse
|
38
|
Dang Z, Arena M, Kienzler A. Fish toxicity testing for identification of thyroid disrupting chemicals. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 284:117374. [PMID: 34051580 DOI: 10.1016/j.envpol.2021.117374] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/05/2021] [Accepted: 05/12/2021] [Indexed: 05/03/2023]
Abstract
Identification of thyroid disrupting chemicals (TDCs), one of the most studied types of endocrine disruptors (EDs), is required according to EU regulations on industrial chemicals, pesticides, and biocides. Following that requirement, the use of fish as a unique non-mammalian model species for identification of EDs may be warranted. This study summarized and evaluated effects of TDCs on fish thyroid sensitive endpoints including thyroid hormones, thyroid related gene expression, immunostaining for thyroid follicles, eye size and pigmentation, swim bladder inflation as well as effects of TDCs on secondary sex characteristics, sex ratio, growth and reproduction. Changes in thyroid sensitive endpoints may reflect the balanced outcome of different processes of the thyroid cascade. Thyroid sensitive endpoints may also be altered by non-thyroid molecular or endocrine pathways as well as non-specific factors such as general toxicity, development, stress, nutrient, and the environmental factors like temperature and pH. Defining chemical specific effects on thyroid sensitive endpoints is important for identification of TDCs. Application of the AOP (adverse outcome pathway) concept could be helpful for defining critical events needed for testing and identification of TDCs in fish.
Collapse
Affiliation(s)
- ZhiChao Dang
- National Institute for Public Health and the Environment A. van Leeuwenhoeklaan, 93720, BA, Bilthoven, the Netherlands.
| | - Maria Arena
- European Food Safety Authority Via Carlo Magno 1/A, 43126, Parma, Italy
| | - Aude Kienzler
- European Food Safety Authority Via Carlo Magno 1/A, 43126, Parma, Italy
| |
Collapse
|
39
|
Navarrete J, Wilson P, Allsing N, Gordon C, Margolis R, Schwartz AV, Cho C, Rogowski B, Topps J, George UZ, Sant KE. The ecotoxicological contaminant tris(4-chlorophenyl)methanol (TCPMOH) impacts embryonic development in zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 235:105815. [PMID: 33838494 PMCID: PMC8113121 DOI: 10.1016/j.aquatox.2021.105815] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 03/15/2021] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
Tris(4-chlorophenyl)methanol (TCPMOH) is a water contaminant with unknown etiology, but is believed to be a byproduct of DDT manufacturing. It is highly persistent in the environment, and bioaccumulates in marine species. TCPMOH has also been measured in human breast milk, which poses a risk for developing infants. However, almost no toxicity data is currently available. In this study, we investigate the hazard posed by developmental TCPMOH exposures using the zebrafish model (Danio rerio). Zebrafish (Danio rerio) embryos were exposed to 0, 0.1, 0.5, 1, or 5 µM TCPMOH beginning at 24 h post fertilization (hpf). Embryonic mortality and incidence of morphological deformities increased in a concentration-dependent manner with TCPMOH exposure. RNA sequencing assessed changes in gene expression associated with acute (4 hour) exposures to 50 nM TCPMOH. Developmental exposure to TCPMOH decreased expression of ahr2, as well as metabolic enzymes cyp1a1, cyp1b1, cyp1c1, cyp1c2, and cyp2y3 (p<0.05). These findings were concordant with decreased Cyp1a1 induction measured by the ethoxyresorufin-O-deethylase (EROD) assay (p<0.05). Pathways associated with xenobiotic metabolism, lipid metabolism, and transcriptional and translational regulation were decreased. Pathways involved in DNA replication and repair, carbohydrate metabolism, and endocrine function were upregulated. Overall, this study demonstrates that TCPMOH is acutely toxic to zebrafish embryos at elevated concentrations.
Collapse
Affiliation(s)
- Julian Navarrete
- San Diego State University School of Public Health, 5500 Campanile Dr., Hardy Tower 119, San Diego, CA, 92182, USA
| | - Peyton Wilson
- San Diego State University School of Public Health, 5500 Campanile Dr., Hardy Tower 119, San Diego, CA, 92182, USA
| | - Nicholas Allsing
- San Diego State University Biology Department, San Diego, CA, 92182, USA
| | - Chandi Gordon
- San Diego State University School of Public Health, 5500 Campanile Dr., Hardy Tower 119, San Diego, CA, 92182, USA
| | - Rachel Margolis
- San Diego State University School of Public Health, 5500 Campanile Dr., Hardy Tower 119, San Diego, CA, 92182, USA
| | - Ashley V Schwartz
- San Diego State University Department of Mathematics, San Diego, CA, 92182, USA
| | - Christine Cho
- San Diego State University School of Public Health, 5500 Campanile Dr., Hardy Tower 119, San Diego, CA, 92182, USA
| | - Brynn Rogowski
- San Diego State University School of Public Health, 5500 Campanile Dr., Hardy Tower 119, San Diego, CA, 92182, USA
| | - Jennifer Topps
- San Diego State University School of Public Health, 5500 Campanile Dr., Hardy Tower 119, San Diego, CA, 92182, USA
| | - Uduak Z George
- San Diego State University Department of Mathematics, San Diego, CA, 92182, USA
| | - Karilyn E Sant
- San Diego State University School of Public Health, 5500 Campanile Dr., Hardy Tower 119, San Diego, CA, 92182, USA.
| |
Collapse
|
40
|
Lefebvre-Raine M, Paquet N, Triffault-Bouchet G, Langlois VS. Embryotoxicity of Five Cytostatics in Fathead Minnow (Pimephales promelas) Larvae. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 106:747-752. [PMID: 33713142 DOI: 10.1007/s00128-021-03146-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
Cytostatics are compounds used in chemotherapy, known to be genotoxic, mutagenic, and teratogenic at low concentrations. The amount of cytostatic drugs prescribed increases every year as does their release into the aquatic ecosystems, which possibly is a major concern for the health of aquatic organisms. This study aimed to evaluate the putative toxicity of five cytostatics to fathead minnow (Pimephales promelas) larvae: tamoxifen, capecitabine, methotrexate, cyclophosphamide, and ifosfamide. Eggs collected post-fertilization were exposed for 6 days to a range of concentrations, including one above environmental level. At all environmental concentrations, no significant difference in mortality, hatching time, length, heart rate, and presence of malformations were found. Altogether, these cytostatics do not seem embryotoxic to fish. Although, an increased proportion of complete swim bladder were found after ifosfamide's exposure, suggesting an interaction with the thyroid axis, involved in swim bladder development. Complementary work should address other endpoints, such as behavioral changes, reproductive success, and transgenerational effects.
Collapse
Affiliation(s)
- M Lefebvre-Raine
- Institut National de La Recherche Scientifique (INRS), Centre Eau Terre Environnement (ETE), Québec, QC, Canada
| | - N Paquet
- Ministère de L'Environnement et de La Lutte Contre Les Changements Climatiques (MELCC), Centre D'expertise en Analyse Environnementale du Québec (CEAEQ), Québec, QC, Canada
| | - G Triffault-Bouchet
- Ministère de L'Environnement et de La Lutte Contre Les Changements Climatiques (MELCC), Centre D'expertise en Analyse Environnementale du Québec (CEAEQ), Québec, QC, Canada
| | - V S Langlois
- Institut National de La Recherche Scientifique (INRS), Centre Eau Terre Environnement (ETE), Québec, QC, Canada.
| |
Collapse
|
41
|
Horie Y, Chiba T, Takahashi C, Tatarazako N, Iguchi T. Influence of triphenyltin on morphologic abnormalities and the thyroid hormone system in early-stage zebrafish (Danio rerio). Comp Biochem Physiol C Toxicol Pharmacol 2021; 242:108948. [PMID: 33285321 DOI: 10.1016/j.cbpc.2020.108948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/23/2020] [Accepted: 11/29/2020] [Indexed: 10/22/2022]
Abstract
In the present study, we assessed the negative effects of triphenyltin (TPT) on zebrafish (Danio rerio) by exposing embryos and early-stage larvae to various concentrations of TPT from 2 h after fertilization (haf) until 30 days after hatching (dah). Whether test groups were fed or fasted during ecotoxicity studies using fish models has varied historically, and whether this experimental condition influences test results is unknown. Here, we confirmed that the lethal concentration of TPT to embryo and early-stage larvae (i.e., 3 dah or younger) showed in fed (lowest observed effect concentration (LOEC); 6.34 μg/L) and fasted (LOEC; 6.84 μg/L) groups. In addition, 84% and 100% of the larvae in the 2.95 and 6.64 μg/L exposure groups, respectively, had uninflated swim bladders; all affected larvae died within 9 dah. This finding suggests that morphologic abnormalities in early larval zebrafish are useful as endpoints for predicting the lethality of chemical substances after hatching. We then assessed the expression of several genes in the thyroid hormone pathway, which regulates swim bladder development in many fish species, including zebrafish. Larvae exposed to 6.64 μg/L TPT showed significant increases in the mRNA expression levels of thyroid hormone receptor α (trα) and trβ but not of thyroid stimulating hormone β subunit. These findings suggest that TPT disrupts the thyroid system in zebrafish.
Collapse
Affiliation(s)
- Yoshifumi Horie
- Faculty of Bioresource Sciences, Akita Prefectural University, 241-438 Kaidobata-Nishi Nakano Simoshinjo, Akita 010-0195, Japan.
| | - Takashi Chiba
- Faculty of Bioresource Sciences, Akita Prefectural University, 241-438 Kaidobata-Nishi Nakano Simoshinjo, Akita 010-0195, Japan
| | - Chiho Takahashi
- Faculty of Bioresource Sciences, Akita Prefectural University, 241-438 Kaidobata-Nishi Nakano Simoshinjo, Akita 010-0195, Japan
| | - Norihisa Tatarazako
- Department of Science and Technology for Biological Resources and Environment, Graduate School of Agriculture, Ehime University, Tarumi 3-5-7, Matsuyama 790-8566, Japan
| | - Taisen Iguchi
- Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan
| |
Collapse
|
42
|
Reinwald H, König A, Ayobahan SU, Alvincz J, Sipos L, Göckener B, Böhle G, Shomroni O, Hollert H, Salinas G, Schäfers C, Eilebrecht E, Eilebrecht S. Toxicogenomic fin(ger)prints for thyroid disruption AOP refinement and biomarker identification in zebrafish embryos. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 760:143914. [PMID: 33333401 DOI: 10.1016/j.scitotenv.2020.143914] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 06/12/2023]
Abstract
Endocrine disruption (ED) can trigger far-reaching effects on environmental populations, justifying a refusal of market approval for chemicals with ED properties. For the hazard assessment of ED effects on the thyroid system, regulatory decisions mostly rely on amphibian studies. Here, we used transcriptomics and proteomics for identifying molecular signatures of interference with thyroid hormone signaling preceding physiological effects in zebrafish embryos. For this, we analyzed the thyroid hormone 3,3',5-triiodothyronine (T3) and the thyroid peroxidase inhibitor 6-propyl-2-thiouracil (6-PTU) as model substances for increased and repressed thyroid hormone signaling in a modified zebrafish embryo toxicity test. We identified consistent gene expression fingerprints for both modes-of-action (MoA) at sublethal test concentrations. T3 and 6-PTU both significantly target the expression of genes involved in muscle contraction and functioning in an opposing fashion, allowing for a mechanistic refinement of key event relationships in thyroid-related adverse outcome pathways in fish. Furthermore, our fingerprints identify biomarker candidates for thyroid disruption hazard screening approaches. Perspectively, our findings will promote the AOP-based development of in vitro assays for thyroidal ED assessment, which in the long term will contribute to a reduction of regulatory animal tests.
Collapse
Affiliation(s)
- Hannes Reinwald
- Fraunhofer Attract Eco'n'OMICs, Fraunhofer Institute for Molecular Biology and Applied Ecology, Schmallenberg, Germany; Department Evolutionary Ecology and Environmental Toxicology, Faculty Biological Sciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Azora König
- Fraunhofer Attract Eco'n'OMICs, Fraunhofer Institute for Molecular Biology and Applied Ecology, Schmallenberg, Germany
| | - Steve U Ayobahan
- Fraunhofer Attract Eco'n'OMICs, Fraunhofer Institute for Molecular Biology and Applied Ecology, Schmallenberg, Germany
| | - Julia Alvincz
- Fraunhofer Attract Eco'n'OMICs, Fraunhofer Institute for Molecular Biology and Applied Ecology, Schmallenberg, Germany
| | - Levente Sipos
- Fraunhofer Attract Eco'n'OMICs, Fraunhofer Institute for Molecular Biology and Applied Ecology, Schmallenberg, Germany
| | - Bernd Göckener
- Department Environmental and Food Analysis, Fraunhofer Institute for Molecular Biology and Applied Ecology, Schmallenberg, Germany
| | - Gisela Böhle
- Department Ecotoxicology, Fraunhofer Institute for Molecular Biology and Applied Ecology, Schmallenberg, Germany
| | - Orr Shomroni
- NGS-Services for Integrative Genomics, University of Göttingen, Göttingen, Germany
| | - Henner Hollert
- Department Evolutionary Ecology and Environmental Toxicology, Faculty Biological Sciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Gabriela Salinas
- NGS-Services for Integrative Genomics, University of Göttingen, Göttingen, Germany
| | - Christoph Schäfers
- Department Ecotoxicology, Fraunhofer Institute for Molecular Biology and Applied Ecology, Schmallenberg, Germany
| | - Elke Eilebrecht
- Department Ecotoxicology, Fraunhofer Institute for Molecular Biology and Applied Ecology, Schmallenberg, Germany
| | - Sebastian Eilebrecht
- Fraunhofer Attract Eco'n'OMICs, Fraunhofer Institute for Molecular Biology and Applied Ecology, Schmallenberg, Germany.
| |
Collapse
|
43
|
Van Essen D, Devoy C, Miller J, Jones PD, Wiseman S. Effects of the brominated flame retardant, TBCO, on development of zebrafish (Danio rerio) embryos. CHEMOSPHERE 2021; 266:129195. [PMID: 33310513 DOI: 10.1016/j.chemosphere.2020.129195] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
Brominated flame retardants (BFRs) can enter aquatic environments where they can have adverse effects on organisms. The BFR, 1,2,5,6-Tetrabromocyclooctane (TBCO), has been introduced as a potential replacement for the major use BRF, Hexabromocyclododecane (HBCD). However, little is known about effects of TBCO on aquatic organisms. Using zebrafish (Danio rerio) as a model species, objectives of this study were to determine whether TBCO has adverse effects on early life-stages and to investigate the molecular and biochemical mechanisms of any effects on development. Exposure to TBCO caused a concentration dependant increase in mortality, decrease in heart rate, and increase in incidences of spinal curvature and uninflated swim bladders. Neither peroxidation of lipids or mRNA abundances of genes important for the response to oxidative stress were greater in embryos exposed to TBCO suggesting effects were not caused by oxidative stress. The mRNA abundance of cytochrome p4501a was not greater in embryos exposed to TBCO suggesting that effects were not caused by activation of the aryl hydrocarbon receptor. Finally, mRNA abundances of genes important for development and inflation of the swim bladder were not affected by TBCO. Overall, TBCO causes adverse effects on early life-stages of zebrafish, but mechanisms of effects require further investigation.
Collapse
Affiliation(s)
- Darren Van Essen
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada
| | - Chloe Devoy
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada
| | - Justin Miller
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada
| | - Paul D Jones
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, S7N 5B3, Canada; School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK, S7N 5B3, Canada
| | - Steve Wiseman
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada; Water Institute for Sustainable Environments (WISE), University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada.
| |
Collapse
|
44
|
Qiao K, Hu T, Jiang Y, Huang J, Hu J, Gui W, Ye Q, Li S, Zhu G. Crosstalk of cholinergic pathway on thyroid disrupting effects of the insecticide chlorpyrifos in zebrafish (Danio rerio). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143769. [PMID: 33221011 DOI: 10.1016/j.scitotenv.2020.143769] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/03/2020] [Accepted: 11/08/2020] [Indexed: 06/11/2023]
Abstract
Chlorpyrifos is a widely used organophosphate insecticide and ubiquitously detected in the environment. However, little attention has been paid to its endocrine disrupting effect to non-target organisms. In the present study, zebrafish was exposed to 13 and 65 μg/L of chlorpyrifos for 7 and 10 days to determine the induced neurotoxicity and the alteration of thyroid metabolism. The 120 h LC50 and LC10 of chlorpyrifos was estimated as 1.35 mg/L and 0.62 mg/L based on the acute embryo toxicity assay, respectively. The acetylcholinesterase (AChE) inhibitory was detected by 13 μg/L chlorpyrifos and could be reversed by the co-exposure of 100 and 1000 μg/L anticholinergic agent atropine. For thyroid hormone level, 13 and 65 μg/L of chlorpyrifos induced increased free T3 levels in 10 dpf (days post-fertilization). The expression of thyroid related genes in 7 and 10 dpf exposed zebrafish were measured by the quantitative Real-Time PCR (qRT-PCR) assay. The mRNA expression of tshba, thrb, crhb, ttr, tpo, ugt1ab and slc5a5 had significant change. However, the alterations of thyroid hormone and mRNA expression could be partly rescued by the addition of atropine. The molecular docking of chlorpyrifos and T3 to the thyroid receptor β in zebrafish using homology modelling and CDOCKER procedures shown weaker binding ability of chlorpyrifos compared to T3. Therefore, we concluded that the disturbance of thyroid signaling in zebrafish might arise from the developmental neurotoxicity induced by chlorpyrifos.
Collapse
Affiliation(s)
- Kun Qiao
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, PR China; Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Tiantian Hu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, PR China
| | - Yao Jiang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, PR China
| | - Jianping Huang
- Zhejiang Haotian Testing Technology Service Co., Ltd., Zhejiang, Hangzhou 311121, PR China
| | - Jingjin Hu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, PR China
| | - Wenjun Gui
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, PR China
| | - Qingfu Ye
- Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Shuying Li
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, PR China.
| | - Guonian Zhu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, PR China
| |
Collapse
|
45
|
Everitt S, Fujita KK, MacPherson S, Brinkmann M, Pyle GG, Wiseman S. Toxicity of Weathered Sediment-Bound Dilbit to Early Life Stages of Zebrafish ( Danio rerio). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:1721-1729. [PMID: 33449613 DOI: 10.1021/acs.est.0c06349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Due to high viscosity, bitumen extracted from the Alberta oil sands is diluted with natural gas condensates to form diluted bitumen (dilbit) to facilitate transport through pipelines. Dilbit that is spilled into or near a waterbody is subject to environmental weathering processes such as evaporation and interaction with sediments. This is the first study that assessed the toxicity of weathered sediment-bound dilbit (WSD) to fish early life stages. Exposure of zebrafish (Danio rerio) embryos to water-soluble fractions (WSFs) or water-accommodated fractions (WAFs) of WSD from 30 min to 120 h postfertilization resulted in pericardial edema, yolk sac edema, and incidences of uninflated swim bladder. The presence of oil-mineral aggregates (OMAs) in the WAFs greatly increased toxicity, despite all fractions having similar concentrations of dissolved polycyclic aromatic hydrocarbons (PAHs). There were greater cyp1a mRNA abundances in larvae exposed to WAFs, suggesting that there were differences in bioavailability of PAHs between fractions. However, there was little evidence that embryotoxicity was caused by oxidative stress. Results suggest that evaporation and sediment interaction do not completely attenuate toxicity of dilbit to zebrafish early life stages, and OMAs in exposures exacerbate toxicity.
Collapse
Affiliation(s)
- Sean Everitt
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Kaden K Fujita
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Stephanie MacPherson
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5C8, Canada
| | - Markus Brinkmann
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5C8, Canada
- School of Environment and Sustainability (SENS), University of Saskatchewan, Saskatoon, Saskatchewan S7N 5C8, Canada
- Global Institute for Water Security, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5C8, Canada
| | - Gregory G Pyle
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
- Water Institute for Sustainable Environment, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Steve Wiseman
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
- Water Institute for Sustainable Environment, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| |
Collapse
|
46
|
Yang L, Huang T, Li R, Souders CL, Rheingold S, Tischuk C, Li N, Zhou B, Martyniuk CJ. Evaluation and comparison of the mitochondrial and developmental toxicity of three strobilurins in zebrafish embryo/larvae. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 270:116277. [PMID: 33360065 DOI: 10.1016/j.envpol.2020.116277] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/27/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
Strobilurin fungicides have been frequently detected in aquatic environments and can induce mitochondrial toxicity to non-target aquatic organisms. However, the derived toxicity and subsequent mechanisms related to their adverse effects are not fully elucidated. In the present study, we compared the mitochondrial and developmental toxicity of azoxystrobin, pyraclostrobin, and trifloxystrobin using zebrafish embryo/larvae. The results showed that all three strobilurins inhibited mitochondrial and non-mitochondrial respiration (the potency is pyraclostrobin ≈ trifloxystrobin > azoxystrobin). Behavioral changes indicated that sublethal doses of pyraclostrobin and azoxystrobin caused hyperactivity of zebrafish larvae in dark cycles, whereas trifloxystrobin resulted in hypoactivity of zebrafish larvae. In addition, pyraclostrobin exposure impaired the inflation of swim bladder, and caused down-regulation of annexin A5 (anxa5) mRNA levels, and up-regulated transcript levels of pre-B-cell leukemia homeobox 1a (pbx1a); conversely, azoxystrobin and trifloxystrobin did not cause detectable effects with swim bladder inflation. Molecular docking results indicated that azoxystrobin had higher interacting potency with iodotyrosine deiodinase (IYD), prolactin receptor (PRLR), antagonistic conformation of thyroid hormone receptor β (TRβ) and glucocorticoid receptor (GR) compared to pyraclostrobin and trifloxystrobin; pyraclostrobin and azoxystrobin were more likely to interact with the antagonistic conformation of TRβ and GR, respectively. These results may partially explain the different effects observed in behavior and swim bladder inflation, and also point to potential endocrine disruption induced by these strobilurins. Taken together, our study revealed that all three strobilurins alter mitochondrial bioenergetics and cause developmental toxicity. However, the toxic phenotypes and underlying mechanisms of each chemical may differ, and this requires further investigation. Pyraclostrobin showed higher mitochondrial toxicity at lethal doses and higher developmental toxicity at sublethal doses compared to the two other strobilurins tested. These results provide novel information for toxicological study as well as risk assessment of strobilurin fungicides.
Collapse
Affiliation(s)
- Lihua Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China; Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Tao Huang
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA; State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, PR China
| | - Ruiwen Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China; Ecological Environment Monitoring and Scientific Research Center, Changjiang River Basin Ecological Environment Administration, Ministry of Ecology and Environment, Wuhan, 430014, PR China
| | - Christopher L Souders
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Spencer Rheingold
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Claire Tischuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Na Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 10085, PR China
| | - Bingsheng Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
47
|
Yang L, Ivantsova E, Souders CL, Martyniuk CJ. The agrochemical S-metolachlor disrupts molecular mediators and morphology of the swim bladder: Implications for locomotor activity in zebrafish (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111641. [PMID: 33396161 DOI: 10.1016/j.ecoenv.2020.111641] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 06/12/2023]
Abstract
Metolachlor herbicides are derived from the chloroacetamide chemical family of which there are the S- and R-metolachlor isomers. S-metolachlor is a selective herbicide that inhibits cell division and mitosis via enzyme interference. The herbicide is used globally in agriculture and studies report adverse effects in aquatic organisms; however, there are no studies investigating sub-lethal effects of S-metolachlor on swim bladder formation, mitochondrial ATP production, nor light-dark preference behaviors in fish. These endpoints are relevant for larval locomotor activity and metabolism. To address these knowledge gaps, we exposed zebrafish embryos/larvae to various concentrations of S-metolachlor (0.5-50 µM) over early development. S-metolachlor affected survival, hatching percentage, and increased developmental deformities at concentrations of 50 µM and above. Exposure levels as high as 200 µM for 24 and 48 h did not alter oxygen consumption rates in zebrafish, and there were no changes detected in endpoints related to mitochondrial oxidative phosphorylation. We observed impairment of swim bladder inflation at 50 µM in 6 dpf larvae. To elucidate mechanisms related to this, we measured relative transcript abundance for genes associated with the swim bladder (smooth muscle alpha (α)-2 actin, annexin A5, pre-B-cell leukemia homeobox 1a). Smooth muscle alpha (α)-2 actin mRNA levels were reduced in fish exposed to 50 µM while annexin A5 mRNA levels were increased in abundance, corresponding to reduced swim bladder size in larvae. A visual motor response test revealed that larval zebrafish exhibited some hyperactivity in the light with exposure to the herbicide and only the highest dose tested (50 µM) resulted in hypoactivity in the dark cycle. Regression analysis indicated that there was a positive relationship between surface area of the swim bladder and distance traveled, and the size of the swim bladder explained ~10-14% in the variation for total distance moved. Lastly, we tested larvae in a light dark preference test, and we did not detect any altered behavioral response to any concentration tested. Here we present new data on sublethal endpoints associated with exposure to the herbicide S-metolachlor and demonstrate that this chemical may disrupt transcripts associated with swim bladder formation and morphology, which could ultimately affect larval zebrafish activity. These data are expected to contribute to further risk assessment guidelines for S-metolachlor in aquatic ecosystems.
Collapse
Affiliation(s)
- Lihua Yang
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Emma Ivantsova
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Christopher L Souders
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, USA.
| |
Collapse
|
48
|
Kim J, Lee G, Lee YM, Zoh KD, Choi K. Thyroid disrupting effects of perfluoroundecanoic acid and perfluorotridecanoic acid in zebrafish (Danio rerio) and rat pituitary (GH3) cell line. CHEMOSPHERE 2021; 262:128012. [PMID: 33182161 DOI: 10.1016/j.chemosphere.2020.128012] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/23/2020] [Accepted: 08/11/2020] [Indexed: 05/26/2023]
Abstract
Due to global restriction on perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA), the use of long-chain perfluoroalkyl substances (PFASs, C > 8) and their environmental occurrences have increased. PFOS and PFOA have been known for thyroid disruption, however, knowledge is still limited on thyroid disrupting effects of long-chain PFASs (C > 10). In this study, two long-chain perfluorinated carboxylic acids (PFCAs), i.e., perfluoroundecanoic acid (PFUnDA) and perfluorotridecanoic acid (PFTrDA), were chosen and investigated for thyroid disrupting effects, using zebrafish embryo/larvae and rat pituitary cell line (GH3). For comparison, PFOA was also added as a test chemical and also investigated for its thyroid disruption potential. Following a 5 d exposure to PFTrDA, zebrafish larvae showed upregulation of the genes responsible for thyroid hormone synthesis (tshβ, nkx2.1, nis, tpo, mct8) and (de)activation (dio1, dio2). In contrast, both PFUnDA and PFOA induced no regulatory changes except for upregulation of a thyroid metabolism related gene (ugt1ab). Morphological changes such as decreased eyeball size, increased yolk sac size, or deflated swim bladder, occurred following exposure to PFUnDA, PFTrDA, and PFOA. In GH3 cells, exposure to PFUnDA and PFTrDA upregulated Tshβ gene, suggesting that these PFCAs increase thyroid hormone synthesis through stimulation by Tsh. In summary, both long-chain PFCAs could cause transcriptional changes of thyroid regulating genes that may lead to increased malformation of the zebrafish larvae, but the pathway of thyroid disruption appears to be different by the chain length. Confirmation and validation in adult fish following long term exposure are warranted.
Collapse
Affiliation(s)
- Jihyun Kim
- School of Public Health, Seoul National University, Seoul, 08826, South Korea
| | - Gowoon Lee
- School of Public Health, Seoul National University, Seoul, 08826, South Korea
| | - Young-Min Lee
- School of Public Health, Seoul National University, Seoul, 08826, South Korea; Institute of Health and Environment, Seoul National University, Seoul, 08826, South Korea
| | - Kyung-Duk Zoh
- School of Public Health, Seoul National University, Seoul, 08826, South Korea; Institute of Health and Environment, Seoul National University, Seoul, 08826, South Korea
| | - Kyungho Choi
- School of Public Health, Seoul National University, Seoul, 08826, South Korea; Institute of Health and Environment, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
49
|
Robinson SA, Young SD, Brinovcar C, McFee A, De Silva AO. Ecotoxicity assessment and bioconcentration of a highly brominated organophosphate ester flame retardant in two amphibian species. CHEMOSPHERE 2020; 260:127631. [PMID: 32688321 DOI: 10.1016/j.chemosphere.2020.127631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/25/2020] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
Restrictions on the production and use of some highly toxic and persistent flame retardants has resulted in the increased use of alternative phosphate flame retardants that are less-well characterized. The brominated organophosphate ester flame retardant, tris(tribromoneopentyl) phosphate (CAS 19186-97-1, molecular formula C15H24Br9O4P, molecular weight 1018.47 g/mol, acronym TTBrNP) is a compound with potential to bioaccumulate and disrupt endocrine functions. To determine the toxicity of TTBrNP, two Canadian native amphibian species, Lithobates sylvaticus and L. pipiens, were acutely (embryos and Gosner stage 25 (GS25) tadpoles) or sub-chronically (GS25-41 tadpoles) exposed to the following nominal concentrations of TTBrNP: 0 (water and solvent controls), 30.6, 61.3, 122.5 and 245.0 μg/L. Note, measured concentrations declined with time (i.e., 118%-30% of nominal). There was high survival for both species after acute and sub-chronic exposures, where 75%-100% survived the exposures, respectively. There were no differences in the occurrence of abnormalities or hatchling size between controls and TTBrNP treatments for either species exposed acutely as embryos or tadpoles. Furthermore, after 30 d of sub-chronic exposure of L. pipiens tadpoles to TTBrNP there were no effects on size, developmental stage, liver somatic index or sex ratio. Bioconcentration factors were low at 26 ± 3.1 L/kg ww in tadpoles from all treatments, suggesting biotransformation or limited bioavailability via aquatic exposures. Thus, using two species of anurans at different early larval stages, we found TTBrNP up to 245 μg/L to have no overt detrimental effects on survival or morphological responses that would suggest fitness-relevant consequences.
Collapse
Affiliation(s)
- Stacey A Robinson
- Ecotoxicology and Wildlife Health Division, Wildlife and Landscape Science Directorate, Science and Technology Branch, Environment and Climate Change Canada, 1125 Colonel By Drive, Ottawa, Ontario, K1A 0H3, Canada.
| | - Sarah D Young
- Ecotoxicology and Wildlife Health Division, Wildlife and Landscape Science Directorate, Science and Technology Branch, Environment and Climate Change Canada, 1125 Colonel By Drive, Ottawa, Ontario, K1A 0H3, Canada.
| | - Cassandra Brinovcar
- Aquatics Contaminants Research Division, Water Science and Technology Directorate, Environment and Climate Change Canada, 867 Lakeshore Rd, Burlington, Ontario, L7S 1A1, Canada.
| | - Ashley McFee
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada.
| | - Amila O De Silva
- Aquatics Contaminants Research Division, Water Science and Technology Directorate, Environment and Climate Change Canada, 867 Lakeshore Rd, Burlington, Ontario, L7S 1A1, Canada.
| |
Collapse
|
50
|
Chen X, Teng M, Zhang J, Qian L, Duan M, Cheng Y, Zhao F, Zheng J, Wang C. Tralopyril induces developmental toxicity in zebrafish embryo (Danio rerio) by disrupting the thyroid system and metabolism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 746:141860. [PMID: 33027873 DOI: 10.1016/j.scitotenv.2020.141860] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
Tralopyril, an antifouling biocide, widely used in antifouling systems to prevent underwater equipment from biological contamination, which can pose a potential risk to aquatic organisms and human health. However, there is little information available on the toxicity of tralopyril to aquatic organisms. Herein, zebrafish (Danio rerio) were used to investigate the toxicity mechanisms of tralopyril and a series of developmental indicators, thyroid hormones, gene expression and metabolomics were measured. Results showed that tralopyril significantly decreased the heart-beat and body length of zebrafish embryos-larvae exposed to 4.20 μg/L or higher concentrations of tralopyril and also induced developmental defects including pericardial hemorrhage, spine deformation, pericardial edema, tail malformation and uninflated gas bladder. Tralopyril decreased the thyroid hormone concentrations in embryos and changed the transcriptions of the related genes (TRHR, TSHβ, TSHR, Nkx2.1, Dio1, TRα, TRβ, TTR and UGT1ab). Additionally, metabolomics analysis showed that tralopyril affected the metabolism of amino acids, energy and lipids, which was associated with regulation of thyroid system. Furthermore, this study demonstrated that alterations of endogenous metabolites induced the thyroid endocrine disruption in zebrafish following the tralopyril treatment. Therefore, the results showed that tralopyril can induce adverse developmental effects on zebrafish embryos by disrupting the thyroid system and metabolism.
Collapse
Affiliation(s)
- Xiangguang Chen
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| | - Miaomiao Teng
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| | - Jie Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| | - Le Qian
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| | - Manman Duan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| | - Yi Cheng
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| | - Feng Zhao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| | - Junyue Zheng
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| | - Chengju Wang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|