1
|
Rist S, Ugwu K, Sampalo M, Karlsson TM, Rubesinghe CH, Acosta-Dacal A, Pérez-Luzardo O, Zumbado M, Almeda R. Impacts of spilled debris from the X-Press Pearl disaster in Sri Lanka on marine plankton. ENVIRONMENTAL RESEARCH 2025; 274:121260. [PMID: 40023388 DOI: 10.1016/j.envres.2025.121260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/17/2025] [Accepted: 02/27/2025] [Indexed: 03/04/2025]
Abstract
Accidents of ships carrying diverse hazardous chemicals and plastics can lead to complex spills of pollutants in marine ecosystems. One such incident was the catastrophic fire on the container ship X-Press Pearl which sank off the Sri Lankan coast in 2021. Explosions and fire resulted in plastic pellets and burnt clumps of melted plastic and combustion residues washing ashore. In this study, we analyzed the acute toxicity of the leached chemicals from this debris on various planktonic organisms: phytoplankton (Rhodomonas salina), meroplankton (Paracentrotus lividus larvae) and holoplankton (Acartia tonsa nauplii and adults). Acute exposures were conducted with a range of leachate dilutions for 72 h. The growth of R. salina was slightly affected by the leachates. Larvae of P. lividus showed a concentration-dependent reduction in growth and normal development (EC50 0.56 g L-1), with 94% of larvae showing malformations in the highest concentration. The hatching of A. tonsa decreased from 89% in the control to 29% at 0.75 g L-1. Nauplii mortality reached 46% and there was a trend of decreased growth. Mortality of the adults increased with concentration, reaching 51% in the highest concentration. Our results show that the complex mixture of spilled chemicals and debris from the X-Press Pearl accident can potentially harm the planktonic food web, particularly zooplankton. These findings highlight the urgent need for effective mitigation strategies and response measures to reduce impacts of accidental spills in sensitive and ecologically relevant areas, especially those located in major shipping lanes, such as the Sri Lankan coastal waters.
Collapse
Affiliation(s)
- Sinja Rist
- National Institute of Aquatic Resources (DTU Aqua), Technical University of Denmark, Kgs. Lyngby, Denmark; University Institute for Research in Sustainable Aquaculture and Marine Ecosystems (IU-ECOAQUA), University of Las Palmas de Gran Canaria, Spain.
| | - Kevin Ugwu
- University Institute for Research in Sustainable Aquaculture and Marine Ecosystems (IU-ECOAQUA), University of Las Palmas de Gran Canaria, Spain; Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Marta Sampalo
- University Institute for Research in Sustainable Aquaculture and Marine Ecosystems (IU-ECOAQUA), University of Las Palmas de Gran Canaria, Spain
| | | | | | - Andrea Acosta-Dacal
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016, Las Palmas de Gran Canaria, Spain
| | - Octavio Pérez-Luzardo
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016, Las Palmas de Gran Canaria, Spain; Spanish Biomedical Research Center in Physiopathology of Obesity and Nutrition (CIBERObn), Spain
| | - Manuel Zumbado
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016, Las Palmas de Gran Canaria, Spain; Spanish Biomedical Research Center in Physiopathology of Obesity and Nutrition (CIBERObn), Spain
| | - Rodrigo Almeda
- University Institute for Research in Sustainable Aquaculture and Marine Ecosystems (IU-ECOAQUA), University of Las Palmas de Gran Canaria, Spain
| |
Collapse
|
2
|
Domaoal JG, Stack ME, Hollman K, Khanum S, Cho C, Daines A, Mladenov N, Hoh E, Sant KE. Effects of sunlight exposure on tire tread particle leachates: Chemical composition and toxicity in aquatic systems. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 374:126286. [PMID: 40258507 DOI: 10.1016/j.envpol.2025.126286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/11/2025] [Accepted: 04/19/2025] [Indexed: 04/23/2025]
Abstract
Tire tread particles (TTP) are small micro- or nano-particles resulting from the friction of tire tread against roadways. These secondary microplastics have been found in waterways, arriving through airborne means or runoff. Due to their abundance and persistence in aquatic environments, TTP pose a potential hazard to wildlife. Natural degradation processes like photoirradiation can potentially worsen this by transforming leached TTP chemicals. In this study, we assessed the toxicity and chemical composition of TTP leachates produced over 1 or 6 days in either dark or photoirradiated conditions. For toxicity studies, zebrafish embryos were exposed to leachates over a range of concentrations and from 0 to 4 days post fertilization. TTP exposures impaired survival and hatching, induced embryonic defects, and modulated detoxification by the enzyme ethyoxyresorufin-O-deethylase. RNA sequencing revealed divergent effects based on photoirradiation, including impacts on glycolysis, lipid metabolism, and mitochondrial function. For chemical analysis, leachates were assessed using comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC × GC/TOF-MS) and chromatographic features were annotated. In total, 546 chromatographic features were detected across all samples, and clustering showed unique chemical profiles based on photoirradiation during leaching. Several compounds were in high abundance in 1-day irradiated leachates, including 1,3-diphenylguanidine, aniline, and 1H-benzotriazole, though their relative abundance was reduced in 6-day leachates. Overall, this research compounds on the existing literature defining TTPs as toxic microplastics in the environment, and we show novel chemical and toxicological data that demonstrates how photoirradiation in the natural environment may exacerbate toxicity.
Collapse
Affiliation(s)
- Jenielle G Domaoal
- San Diego State University School of Public Health, San Diego, CA, 92128, USA
| | - Margaret E Stack
- San Diego State University School of Public Health, San Diego, CA, 92128, USA; San Diego State University Research Foundation, San Diego, CA, 92128, USA
| | - Kelly Hollman
- San Diego State University Department of Civil, Construction, and Environmental Engineering, San Diego, 92128, CA, USA
| | - Saleha Khanum
- San Diego State University School of Public Health, San Diego, CA, 92128, USA; San Diego State University Research Foundation, San Diego, CA, 92128, USA
| | - Christine Cho
- San Diego State University School of Public Health, San Diego, CA, 92128, USA
| | - Alysia Daines
- San Diego State University School of Public Health, San Diego, CA, 92128, USA
| | - Natalie Mladenov
- San Diego State University Department of Civil, Construction, and Environmental Engineering, San Diego, 92128, CA, USA
| | - Eunha Hoh
- San Diego State University School of Public Health, San Diego, CA, 92128, USA
| | - Karilyn E Sant
- San Diego State University School of Public Health, San Diego, CA, 92128, USA; Michigan State University, Department of Pharmacology & Toxicology, East Lansing, 48824, MI, USA.
| |
Collapse
|
3
|
Parker-Jurd FNF, Abbott GD, Conley DC, Xavier CM, Pohl F, Thompson RC. Characterisation of tyre wear particle transport from road runoff to sea in coastal environments. MARINE POLLUTION BULLETIN 2025; 214:117811. [PMID: 40073528 DOI: 10.1016/j.marpolbul.2025.117811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 02/28/2025] [Accepted: 03/08/2025] [Indexed: 03/14/2025]
Abstract
Data on the fate of tyre wear particles (TWPs) within aquatic environments is limited. This study quantified TWPs entering estuaries in stormwater drainage and atmospheric fallout, and once they have reached the marine environment, within surface waters and sediments. TWPs were found at concentrations of 0.4 mg/L, 2.55 mg/m2/d, 0.00063 mg/L, and 0.96 g/kg respectively. Samples were partitioned by size to examine the distribution of TWP mass. 80-90% of TWP mass entering marine systems (stormwater and atmospheric fallout) lay between 31-125 µm. Larger particles preferentially accumulated in sediments where ∼50 % of TWP mass was >250 μm, compared to surface waters where the size class 15-63 μm accounted for ∼80 %. This study provides novel data on the sizes and concentrations of TWP pollution in coastal environments. Such data are of importance in determining biological exposures. Notably, the presence of TWPs in surface waters demonstrates their potential for transport over longer distances.
Collapse
Affiliation(s)
- Florence N F Parker-Jurd
- School of Biological and Marine Sciences, University of Plymouth, Drakes Circus, Plymouth PL4 8AA, UK.
| | - Geoffrey D Abbott
- School of Natural and Environmental Sciences, Drummond Building, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Daniel C Conley
- School of Biological and Marine Sciences, University of Plymouth, Drakes Circus, Plymouth PL4 8AA, UK
| | - Cijo M Xavier
- School of Natural and Environmental Sciences, Drummond Building, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Florian Pohl
- School of Biological and Marine Sciences, University of Plymouth, Drakes Circus, Plymouth PL4 8AA, UK; Faculty of Geosciences, University of Bayreuth, Bayreuth 95447, Germany
| | - Richard C Thompson
- School of Biological and Marine Sciences, University of Plymouth, Drakes Circus, Plymouth PL4 8AA, UK
| |
Collapse
|
4
|
Nava V, Dar JY, De Santis V, Fehlinger L, Pasqualini J, Adekolurejo OA, Burri B, Cabrerizo MJ, Chonova T, Cour M, Dory F, Drost AM, Figler A, Gionchetta G, Halabowski D, Harvey DR, Manzanares‐Vázquez V, Misteli B, Mori‐Bazzano L, Moser V, Rotta F, Schmid‐Paech B, Touchet CM, Gostyńska J. Zooming in the plastisphere: the ecological interface for phytoplankton-plastic interactions in aquatic ecosystems. Biol Rev Camb Philos Soc 2025; 100:834-854. [PMID: 39542439 PMCID: PMC11885710 DOI: 10.1111/brv.13164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 10/23/2024] [Accepted: 10/30/2024] [Indexed: 11/17/2024]
Abstract
Phytoplankton is an essential resource in aquatic ecosystems, situated at the base of aquatic food webs. Plastic pollution can impact these organisms, potentially affecting the functioning of aquatic ecosystems. The interaction between plastics and phytoplankton is multifaceted: while microplastics can exert toxic effects on phytoplankton, plastics can also act as a substrate for colonisation. By reviewing the existing literature, this study aims to address pivotal questions concerning the intricate interplay among plastics and phytoplankton/phytobenthos and analyse impacts on fundamental ecosystem processes (e.g. primary production, nutrient cycling). This investigation spans both marine and freshwater ecosystems, examining diverse organisational levels from subcellular processes to entire ecosystems. The diverse chemical composition of plastics, along with their variable properties and role in forming the "plastisphere", underscores the complexity of their influences on aquatic environments. Morphological changes, alterations in metabolic processes, defence and stress responses, including homoaggregation and extracellular polysaccharide biosynthesis, represent adaptive strategies employed by phytoplankton to cope with plastic-induced stress. Plastics also serve as potential habitats for harmful algae and invasive species, thereby influencing biodiversity and environmental conditions. Processes affected by phytoplankton-plastic interaction can have cascading effects throughout the aquatic food web via altered bottom-up and top-down processes. This review emphasises that our understanding of how these multiple interactions compare in impact on natural processes is far from complete, and uncertainty persists regarding whether they drive significant alterations in ecological variables. A lack of comprehensive investigation poses a risk of overlooking fundamental aspects in addressing the environmental challenges associated with widespread plastic pollution.
Collapse
Affiliation(s)
- Veronica Nava
- Department of Earth and Environmental SciencesUniversity of Milano‐BicoccaPiazza della Scienza 1Milan20126Italy
| | - Jaffer Y. Dar
- ICAR‐Central Soil Salinity Research InstituteKarnal132001India
- Department of Experimental LimnologyLeibniz Institute of Freshwater Ecology and Inland FisheriesMüggelseedamm 310Berlin12587Germany
| | - Vanessa De Santis
- Water Research Institute, National Research CouncilCorso Tonolli 50Verbania‐PallanzaVerbania28922Italy
| | - Lena Fehlinger
- GEA Aquatic Ecology GroupUniversity of Vic ‐ Central University of CataloniaCarrer de la Laura 13Catalonia08500 VicSpain
| | - Julia Pasqualini
- Department of River EcologyHelmholtz Centre for Environmental Research‐UFZBrückstr. 3aMagdeburg39114Germany
| | - Oloyede A. Adekolurejo
- Ecology and Evolution, School of BiologyUniversity of LeedsLeedsLS2 9JTUK
- Department of BiologyAdeyemi Federal University of EducationOndo CityOndoPMB 520Nigeria
| | - Bryan Burri
- Department F‐A. Forel for Environmental and Aquatic SciencesUniversity of Geneva, 30 Quai Ernest‐Ansermet Sciences IIGenèveCH‐1205Switzerland
| | - Marco J. Cabrerizo
- Department of Ecology & Institute of Water ResearchUniversity of GranadaCampus Fuentenueva s/nGranada18071Spain
- Estación de Fotobiología Playa Unióncasilla de correos 15RawsonChubut9103Argentina
| | - Teofana Chonova
- Department Environmental ChemistryEawag: Swiss Federal Institute of Aquatic Science and TechnologyÜberlandstr. 133DübendorfCH‐8600Switzerland
| | | | - Flavia Dory
- Department of Earth and Environmental SciencesUniversity of Milano‐BicoccaPiazza della Scienza 1Milan20126Italy
| | - Annemieke M. Drost
- Department of Aquatic EcologyNetherlands Institute of EcologyDroevendaalsesteeg 10Wageningen6708 PBThe Netherlands
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics (IBED)University of AmsterdamP.O. Box 94240Amsterdam1090 GEThe Netherlands
| | - Aida Figler
- Department of BioinformaticsSemmelweis UniversityTűzoltó utca 7‐9Budapest1094Hungary
| | - Giulia Gionchetta
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA)Spanish Council of Scientific Research (CSIC)Barcelona0803Spain
| | - Dariusz Halabowski
- Department of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental ProtectionUniversity of LodzBanacha 12/16Lodz90‐237Poland
| | - Daniel R. Harvey
- Lake Ecosystems Group, UK Centre for Ecology & HydrologyLancaster Environment CentreLibrary Avenue, BailriggLancasterLA1 4APUK
- Lancaster Environment CentreLancaster UniversityLancasterLA1 4YQUK
| | - Víctor Manzanares‐Vázquez
- Department of Research and DevelopmentCoccosphere Environmental AnalysisC/Cruz 39, 29120 Alhaurín el GrandeMálagaSpain
| | - Benjamin Misteli
- WasserCluster Lunz ‐ Biologische StationDr Carl Kupelwieser Promenade 5Lunz am See3293Austria
| | - Laureen Mori‐Bazzano
- Department F‐A. Forel for Environmental and Aquatic SciencesUniversity of Geneva, 30 Quai Ernest‐Ansermet Sciences IIGenèveCH‐1205Switzerland
| | - Valentin Moser
- Community Ecology, Swiss Federal Institute for ForestSnow and Landscape Research WSLZürcherstrasse 111BirmensdorfCH‐8903Switzerland
- Department of Aquatic EcologyEawag: Swiss Federal Institute of Aquatic Science and TechnologyÜberlandstrasse 133DübendorfCH‐8600Switzerland
| | - Federica Rotta
- Department of Earth and Environmental SciencesUniversity of PaviaVia Ferrata 1Pavia27100Italy
- Institute of Earth ScienceUniversity of Applied Science and Arts of Southern SwitzerlandVia Flora Ruchat‐Roncati 15MendrisioCH‐6850Switzerland
| | - Bianca Schmid‐Paech
- University Weihenstephan‐Triesdorf of Applied ScienceAm Hofgarten 4Freising85354Germany
| | - Camille M. Touchet
- Université Claude Bernard ‐ Lyon 1, “LEHNA UMR 5023, CNRS, ENTPE3‐6, rue Raphaël DuboisVilleurbanneF‐69622France
| | - Julia Gostyńska
- Department of Hydrobiology, Faculty of BiologyAdam Mickiewicz UniversityUniwersytetu Poznanskiego 6Poznan61‐614Poland
| |
Collapse
|
5
|
Calle L, Le Du-Carrée J, Martínez I, Sarih S, Montero D, Gómez M, Almeda R. Toxicity of tire rubber-derived pollutants 6PPD-quinone and 4-tert-octylphenol on marine plankton. JOURNAL OF HAZARDOUS MATERIALS 2025; 484:136694. [PMID: 39637807 DOI: 10.1016/j.jhazmat.2024.136694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/24/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024]
Abstract
The impacts of tire wear particles and their associated chemicals on the aquatic systems are a major environmental concern. In this study, we investigated the acute toxicity of two pollutants derived from tire rubber, 6PPD-quinone and 4-tert-octylphenol, on marine plankton. Specifically, we determined the acute effects of these pollutants on various organisms within the plankton food web: the microalgae Rhodomonas salina, the adult copepod Acartia tonsa, and the early life stages of the echinoderms Arbacia lixula and Paracentrotus lividus and the fish Sparus aurata. Exposure to 6PPD-quinone did not affect the microalgae growth, copepod survival, or fish embryo viability after 48 h of exposure at concentrations up to 1000 µgL-1. However, 6PPD-quinone significantly inhibited the growth of early developmental stages of both echinoderm species, with median effective concentrations of 7 and 8 µgL-1. Conversely, 4-tert-octylphenol was toxic to all studied organisms, with median lethal and effective concentrations ranging from 21 to 79 µgL-1 depending on the species and endpoints. The most sensitive planktonic organisms to 4-tert-octylphenol were echinoderm embryos and copepods, which exhibited negative effects at concentrations as low as 1 and 25 µgL-1, respectively. Our results demonstrate that acute exposure to 6PPD-quinone and 4-tert-octylphenol can cause harmful effects on key planktonic organisms at environmentally relevant concentrations. Overall, our findings highlight the need for develop ecologically safer tire rubber additives and reduce traffic-related tire particle emissions to mitigate their entry and potential impacts on aquatic ecosystems.
Collapse
Affiliation(s)
- Lisseth Calle
- EOMAR, ECOAQUA, Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Jessy Le Du-Carrée
- EOMAR, ECOAQUA, Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Ico Martínez
- EOMAR, ECOAQUA, Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Samira Sarih
- GIA, ECOAQUA, Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Daniel Montero
- GIA, ECOAQUA, Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain
| | - May Gómez
- EOMAR, ECOAQUA, Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Rodrigo Almeda
- EOMAR, ECOAQUA, Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain.
| |
Collapse
|
6
|
Ganie ZA, Guchhait S, Talib M, Choudhary A, Darbha GK. Investigating the sorption of Zinc-Oxide nanoparticles on Tire-wear particles and their toxic effects on Chlorella vulgaris: Insights from toxicological models and physiological analysis. JOURNAL OF HAZARDOUS MATERIALS 2025; 483:136648. [PMID: 39612875 DOI: 10.1016/j.jhazmat.2024.136648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/04/2024] [Accepted: 11/22/2024] [Indexed: 12/01/2024]
Abstract
This study investigated the interaction of Tire-wear particles (TWPs) with Zinc-Oxide nanoparticles (ZNPs) and studied their individual and combined toxic effects on Chlorella vulgaris in the co-presence of Humics. Physiological parameters, including growth, photosynthetic pigments, oxidative stress, and membrane damage, were analysed using Flow cytometry. Adsorption experiments exhibited that ZNPs were significantly absorbed by TWPs (qmax= 312.49 mg/g). A positive dose-response relation concerning inhibition in growth was observed in all treatment groups, and it was associated with reduced chlorophyll levels and damaged cell membranes. A negative impact of increased concentrations of TWPs and ZNPs was observed on anti-oxidant enzymes CAT and SOD; however, the impact was more severe when combined with exposure to both contaminants. Elevated concentrations of ZNPs and TWPs led to increased ROS production, lipid peroxidation and membrane damage, which could be contributing to the observed inhibition in growth. In the combined exposure groups, the Independent Action and the Abbott toxicity models revealed a synergistic effect on growth rates, which agreed with the Integrated Biomarker model results. The current study could enhance our understanding of the interaction between TWPs and metal nanoparticles in aquatic systems and offer novel understandings of the mechanisms underlying their combined toxic effects on microalgae.
Collapse
Affiliation(s)
- Zahid Ahmad Ganie
- Environmental Nanoscience Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, West Bengal 741246, India
| | - Soumadip Guchhait
- Environmental Nanoscience Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, West Bengal 741246, India
| | - Mohmmed Talib
- Environmental Nanoscience Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, West Bengal 741246, India
| | - Aniket Choudhary
- Environmental Nanoscience Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, West Bengal 741246, India
| | - Gopala Krishna Darbha
- Environmental Nanoscience Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, West Bengal 741246, India; Centre for Climate and Environmental Studies, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India.
| |
Collapse
|
7
|
Li L, Huang W, Qiao D, Zhong Z, Shang Y, Khan FU, Wei S, Wang Y. Marine Heatwaves Exacerbate the Toxic Effects of Tire Particle Leachate on Microalgae. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:177-187. [PMID: 39727297 DOI: 10.1021/acs.est.4c08986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Additives leached from tire particles (TPs) after entering the marine environment inevitably interact with marine life. Marine heatwaves (MHWs) would play a more destructive role than ocean warming during the interaction of pollutants and marine life. To evaluate the potential risks of TPs leachate under MHWs, the physiological and nutrient metabolic endpoints of microalgae Isochrysis galbana were observed for 7 days while being exposed to TPs leachate at current or predicted concentrations under MHWs. TPs leachate mainly contained Zn and 6-PPD, which could be absorbed by microalgae mostly, especially under MHWs. Additionally, TPs leachate increased the reactive oxygen species content, activated the antioxidant system, impaired photosynthesis and glycolysis, and decreased sugar and protein content. 10 mg/L TPs leachate increased the lipid content and saturation. Meanwhile, microalgae under such TPs leachate were biased toward the synthesis of long-chain fatty acids and Δ8 desaturation pathway. MHWs promoted the positive effects of TPs leachate on microalgae growth at the current concentration but exacerbated the negative effects at the predicted concentration. Our study emphasizes the potential risks of TPs leachate to marine primary production systems, especially if accompanied by the increasing intensity and frequency of extreme climate events.
Collapse
Affiliation(s)
- Li'ang Li
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Wei Huang
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
- Key Laboratory of Ocean Space Resource Management Technology, Ministry of Natural Resources, Hangzhou 310012, China
| | - Dan Qiao
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Zhen Zhong
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yueyong Shang
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Fahim Ullah Khan
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Shuaishuai Wei
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Youji Wang
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
8
|
Muresan B, Truong XT, De Oliveira T, Lumière L, Cerezo V, Watanabe N, Do MT. A study of the direct emission of tire wear particles on different types of roads. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:178018. [PMID: 39674154 DOI: 10.1016/j.scitotenv.2024.178018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/28/2024] [Accepted: 12/07/2024] [Indexed: 12/16/2024]
Abstract
In the range of 5-6 Mt/y tire wear particles (TWP) are emitted from vehicles in both developed and emerging countries. In an attempt to reduce these emissions, new regulations will come into force in the EU and USA, although currently no oversight methods are actually in place. This study proposes a method for assessing direct TWP emissions (TWPD) from vehicles. The method entails labeling the tire with mercury, then collecting and fractionating the particles emitted at the rear of the wheel (RoWP), and lastly analyzing their Hg content in the laboratory using atomic absorption spectroscopy. It provides access to the magnitude, size distribution and factors affecting TWPD emissions under actual driving conditions. Furthermore, the implementation of desorption and dispersion models allows evaluation of the proportion of TWPD embedded in tire and road wear particles (TRWP) and estimating the TWPD contribution to the lower atmosphere PM1, PM2.5 and PM10 pollution within the EU-27. A key finding of this research is that ultrafine TWPD (accounting for 33-260 mg/g of abraded front tire material) account for 30-70 % of total TWPD emissions (with >93 % being in the form of inclusions), although they make up 0.5-5.7 % of RoWP mass emissions. Our data also draw attention to the magnitude and lower TRWP-embedment of TWPD emissions in urban areas.
Collapse
Affiliation(s)
- B Muresan
- Gustave Eiffel University, AME-EASE, F-44344 Bouguenais, France.
| | - X T Truong
- Gustave Eiffel University, AME-EASE, F-44344 Bouguenais, France
| | - T De Oliveira
- Gustave Eiffel University, GERS-LEE, F-44344 Bouguenais, France
| | - L Lumière
- Gustave Eiffel University, AME-EASE, F-44344 Bouguenais, France
| | - V Cerezo
- Gustave Eiffel University, AME-EASE, F-44344 Bouguenais, France
| | - N Watanabe
- Hokkaido University, Faculty of Engineering-LNEM, 060-8628, Japan
| | - M T Do
- Gustave Eiffel University, AME-EASE, F-44344 Bouguenais, France
| |
Collapse
|
9
|
Gao S, Huang G, Han D. Ecotoxicity of plastic leachates on aquatic plants: Multi-factor multi-effect meta-analysis. WATER RESEARCH 2025; 268:122577. [PMID: 39396492 DOI: 10.1016/j.watres.2024.122577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 09/17/2024] [Accepted: 10/03/2024] [Indexed: 10/15/2024]
Abstract
Despite heightened awareness of plastic contamination, a comprehensive understanding of the ecotoxicity of plastic leachates remains challenging due to discrepancies in previous findings and complexities in the effects of myriad factors. Herein, we proposed a multi-factor multi-effect plastic-leachate ecotoxicology meta-analysis approach (PLEM) to elucidate the ecotoxicity of plastic leachates on aquatic plants. To distinguish the leachate toxicity from the general effects of leachates and plastic particles, the previous studies on the effects of leachate stricto sensu (i.e., without particles) were exclusively encompassed. A total of 890 data points explored in 18 previous articles were systematically analyzed. Our findings revealed that plastic leachates negatively affected aquatic plants' growth (31 %) and photosynthesis (13 %). These toxic effects were influenced by multifaced factors including plastic characteristics, leaching conditions, and plant species. Polyvinyl chloride leachates exhibited the highest toxicity among different polymers. Marine species showed greater susceptibility than freshwater species. Surprisingly, leachates from centimeter-sized plastics exhibit higher toxicity than those from nanometer, micrometer, and millimeter-sized plastics. These findings underscore the toxicity of plastic leachates on aquatic plants should be more systematically assessed using standardized laboratory methods and considering multi-factors. This study offers a valuable insight into the toxic mechanism of plastic leachates and plastic contamination.
Collapse
Affiliation(s)
- Sichen Gao
- Faculty of Engineering and Applied Science, Environmental Systems Engineering Program, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Guohe Huang
- Faculty of Engineering and Applied Science, Environmental Systems Engineering Program, University of Regina, Regina, Saskatchewan S4S 0A2, Canada.
| | - Dengcheng Han
- Faculty of Engineering and Applied Science, Environmental Systems Engineering Program, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| |
Collapse
|
10
|
De Oliveira T, Dang DPT, Chaillou M, Roy S, Caubrière N, Guillon M, Mabilais D, Ricordel S, Jean-Soro L, Béchet B, Paslaru BM, Poirier L, Gasperi J. Tire and road wear particles in infiltration pond sediments: Occurrence, spatial distribution, size fractionation and correlation with metals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176855. [PMID: 39414040 DOI: 10.1016/j.scitotenv.2024.176855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024]
Abstract
Stormwater systems, such as infiltration ponds or basins, play a critical role in managing runoff water and reducing particulate pollution loads in downstream environments through decantation. Road runoff carries several pollutants, including trace metals and tire and road wear particles (TRWP). To improve our understanding of infiltration ponds as regards TRWP and their capacity to reduce TRWP loads, we have studied the occurrence, spatial distribution and size distribution of TRWP, as well as their relationship with metals, in considering the input of metals as tire additives, in the sediments of an infiltration pond located along the Nantes urban ring road (Western France), which happens to be a high-traffic roadway site. The sediment was analyzed using pyrolysis coupled with gas chromatography-mass spectrometry to determine the polymeric content of tires, specifically in quantifying the styrene-butadiene rubber (SBR) and butadiene rubber (BR) pyrolytic markers. By applying an SBR + BR-to-TRWP conversion factor, the results showed significant TRWP contamination, up to 65 mg/g, with a spatial enrichment from the entrance to the overflow section of the pond. Size fractionation revealed a bimodal distribution, indicating two distinct types of TRWP. The first type is characterized by small diameters (63-160 μm), suggesting the presence of TRWP less integrated with mineral and organic particles. The second type, characterized by larger diameters (200-500 μm), suggests a more pronounced integration with these same mineral and organic particles. A significant positive correlation between TRWP and metals (As, Cd, Cr, Cu, Li, Mo, Ni, Sb, V, Zn) was found (r > 0.739, p < 0.05). This correlation implies that TRWP and/or their associated phases may act as an indicator of metal contamination in the pond sediments. Lastly, a mass balance between TRWP inputs and the amount retained in the sediments underscores the role of infiltration ponds as "sinks" for TRWP.
Collapse
Affiliation(s)
| | | | | | - Sampriti Roy
- Univ Gustave Eiffel, GERS-LEE, F-44344 Bouguenais, France
| | | | - Martin Guillon
- Univ Gustave Eiffel, GERS-LEE, F-44344 Bouguenais, France
| | - David Mabilais
- Univ Gustave Eiffel, GERS-LEE, F-44344 Bouguenais, France
| | | | | | | | | | | | - Johnny Gasperi
- Univ Gustave Eiffel, GERS-LEE, F-44344 Bouguenais, France
| |
Collapse
|
11
|
Liu C, Wan S, Cheng Y, Lv Z, Luo S, Liang Y, Xie Y, Leng X, Hu M, Zhang B, Yang X, Zheng G. Occurrence, sources, and human exposure assessment of amine-based rubber additives in dust from various micro-environments in South China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177023. [PMID: 39423893 DOI: 10.1016/j.scitotenv.2024.177023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/15/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Despite the ubiquitous use and potential health effects of amine-based rubber additives, information regarding their occurrences in indoor environments remains scarce and is basically investigated in traffic-related environments. In this study, a total of 140 dust samples collected from eight indoor micro-environments were analyzed for twelve amine-based rubber additives. Overall, 1,3-diphenylguanidine (DPG), dicyclohexylamine (DCHA), N-(1,3-dimethylbutyl)-N'-phenyl-p-penylenediamine (6PPD), 6PPD-quinone (6PPDQ), and hexa(methoxymethyl)melamine (HMMM) were frequently detected across all micro-environments with detection frequencies of 97 %, 51 %, 71 %, 99 %, and 77 %, respectively. The highest total concentration of amine-based rubber additives was found in parking lots (median 10,300 ng/g), indicating heavier emission sources of these compounds in vehicle-related indoor environments. Despite this, amine-based rubber additives were also frequently detected in various non-vehicle-related environments, such as markets, cinemas, and hotels, probably due to the widespread use of consumer products and more frequent air exchanges with outdoor environments. Further tracking of tire rubber products and paint particles from flooring materials in parking lots revealed that paint particles might be an overlooked contributor to amine-based rubber additives in indoor environments. Finally, the highest estimated daily intakes (EDIs) of all amine-based rubber additives via dust ingestion at home were observed for toddlers (3.48 ng/kg bw/d). This research provides a comprehensive overview of human exposure to a variety of amine-based rubber additives in various indoor environments. ENVIRONMENTAL IMPLICATION: This study highlights the presence of high concentrations of amine-based additives in indoor dust from both traffic-related and non-traffic-related indoor environments. Additional efforts are needed to identify potential sources of amine-based rubber additives indoors, beyond just tire rubber. This is critical because the widespread presence of rubber products in indoor settings could pose a risk to human health.
Collapse
Affiliation(s)
- Chenglin Liu
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Sheng Wan
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yao Cheng
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhong Lv
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shusheng Luo
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuge Liang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yichun Xie
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xinrui Leng
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Min Hu
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Bintian Zhang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xin Yang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Guomao Zheng
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
12
|
Lao A, Zhang S, Huang X, Feng D, Xiong Y, Du Z, Zheng Z, Wu H. Evaluating physiological responses of microalgae towards environmentally coexisting microplastics: A meta-analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135890. [PMID: 39307009 DOI: 10.1016/j.jhazmat.2024.135890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/06/2024] [Accepted: 09/17/2024] [Indexed: 12/01/2024]
Abstract
Microplastics (MPs) are abundantly present in aquatic environments, where the phytoplankton-microalgae, are now inevitably bound to a long-term coexistence with them. While numerous studies have focused on the toxicological effects of high-concentration MPs exposure, there remains controversy over whether and how MPs affect microalgae at environmentally relevant concentrations. This study aims to draw conclusions that narrow the gap from 52 studies with varying results. Overall, MPs can inhibit growth and photosynthesis, induce oxidative damage, from which microalgae can recover after an appropriate period. Cyanobacteria exhibit greater vulnerability than chlorophyta. The relative size of MPs to algal cells potentially governs their coexistence behavior, thereby altering the mechanisms of impact. Pristine MPs may increase the production of extracellular polymeric substances (EPS) and microcystins (MCs), while aged MPs have the opposite effect. Additionally, relevant factors are systematically discussed, offering insights for future research.
Collapse
Affiliation(s)
- An Lao
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China.
| | - Shiqi Zhang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Xuhui Huang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Dunfeng Feng
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Yujie Xiong
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Zunqing Du
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Zheng Zheng
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China.
| | - Hanqi Wu
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China.
| |
Collapse
|
13
|
Xu Q, Kazmi SSUH, Li G. Tracking the biogeochemical behavior of tire wear particles in the environment - A review. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136184. [PMID: 39418907 DOI: 10.1016/j.jhazmat.2024.136184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
The environmental fate and risks associated with tire wear particles (TWPs) are closely linked to their biogeochemical behaviors. However, reviews that focus on TWPs from this perspective remain scarce, hindering our understanding of their environmental fate and cascading effects on ecosystems. In this review, we summarize the existing knowledge on TWPs by addressing five key areas: (i) the generation and size-dependent distribution of TWPs; (ii) the release and transformation of TWP-leachates; (iii) methodologies for the quantification of TWPs; (iv) the toxicity of TWPs; and (v) interactions of TWPs with other environmental processes. It has been established that the size distribution of TWPs significantly influences their transport and occurrence in different matrices, leading to the release and transformation of specific TWP-chemicals that can be toxic to organisms. By highlighting the challenges and knowledge gaps in this field, we propose critical issues that need to be addressed to enhance the risk assessment of TWPs. This review aims to provide a comprehensive framework for evaluating the environmental behavior of TWPs.
Collapse
Affiliation(s)
- Qiao Xu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Syed Shabi Ul Hassan Kazmi
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Gang Li
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
14
|
Thiagarajan V, Nah T, Xin X. Impacts of atmospheric particulate matter deposition on phytoplankton: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175280. [PMID: 39122032 DOI: 10.1016/j.scitotenv.2024.175280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
In many rapidly urbanizing and industrializing countries, atmospheric pollution causes severe environmental problems and compromises the health of humans and ecosystems. Atmospheric emissions, which encompass gases and particulate matter, can be transported back to the earth's surface through atmospheric deposition. Atmospheric deposition supplies chemical species that can serve as nutrients and/or toxins to aquatic ecosystems, resulting in wide-ranging responses of aquatic organisms. Among the aquatic organisms, phytoplankton is the basis of the aquatic food web and is a key player in global primary production. Atmospheric deposition alters nutrient availability and thus influences phytoplankton species abundance and composition. This review provides a comprehensive overview of the physiological responses of phytoplankton resulting from the atmospheric deposition of trace metals, nitrogen-containing compounds, phosphorus-containing compounds, and sulfur-containing compounds in particulate matter into aquatic ecosystems. Knowledge gaps and critical areas for future studies are also discussed.
Collapse
Affiliation(s)
- Vignesh Thiagarajan
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong
| | - Theodora Nah
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong.
| | - Xiaying Xin
- Beaty Water Research Centre, Department of Civil Engineering, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| |
Collapse
|
15
|
Laranjeiro F, Rotander A, López-Ibáñez S, Vilas A, Södergren Seilitz F, Clérandeau C, Sampalo M, Rial D, Bellas J, Cachot J, Almeda R, Beiras R. Comparative assessment of the acute toxicity of commercial bio-based polymer leachates on marine plankton. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174403. [PMID: 38960198 DOI: 10.1016/j.scitotenv.2024.174403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 06/23/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024]
Abstract
Conventional plastics have become a major environmental concern due to their persistence and accumulation in marine ecosystems. The development of potential degradable polymers (PBP), such as polyhydroxyalkanoates (PHAs) and polylactic acid (PLA), has gained attention as an alternative to mitigate plastic pollution, since they have the potential to biodegrade under certain conditions, and their production is increasing as replacement of conventional polyolefins. This study aimed to assess and compare the toxicity of leachates of pre-compounding PBP (PLA and the PHA, polyhydroxybutyrate-covalerate (PHBv)) and polypropylene (PP) on five marine planktonic species. A battery of standard bioassays using bacteria, microalgae, sea urchin embryos, mussel embryos and copepod nauplii was conducted to assess the toxicity of leachates from those polymers. Additionally, the presence of chemical additives in the leachates was also verified through GC-MS and LC-HRMS analysis. Results showed that PHBv leachates exhibited higher toxicity compared to other polymers, with the microalgae Rhodomonas salina, being the most sensitive species to the tested leachates. On the other hand, PP and PLA generally displayed minimal to no toxicity in the studied species. Estimated species sensitivity distribution curves (SSD) show that PHBv leachates can be 10 times more hazardous to marine plankton than PP or PLA leachates, as demonstrated by the calculated Hazardous Concentration for 5 % of species (HC5). Qualitative chemical analysis supports the toxicological results, with 80 % of compounds being identified in PHBv leachates of which 2,4,6-trichlorophenol is worth mentioning due to the deleterious effects to aquatic biota described in literature. These findings underscore the fact that whereas environmental persistence can be targeted using PBP, the issue of chemical safety remains unsolved by some alternatives, such as PHBv. Gaining a comprehensive understanding of the toxicity profiles of PBP materials through a priori toxicological risk assessment is vital for their responsible application as alternatives to conventional plastics.
Collapse
Affiliation(s)
- F Laranjeiro
- ECIMAT, Centro de Investigación Mariña (CIM), Universidade de Vigo, 36331 Vigo, Galicia, Spain.
| | - A Rotander
- MTM Research Centre, Örebro University, Örebro, Sweden
| | - S López-Ibáñez
- ECIMAT, Centro de Investigación Mariña (CIM), Universidade de Vigo, 36331 Vigo, Galicia, Spain
| | - A Vilas
- ECIMAT, Centro de Investigación Mariña (CIM), Universidade de Vigo, 36331 Vigo, Galicia, Spain
| | | | - C Clérandeau
- EPOC, University of Bordeaux, CNRS, Bordeaux INP, UMR 5805, F-33600 Pessac, France
| | - M Sampalo
- EOMAR, ECOAQUA, University of Las Palmas of Gran Canaria, Canary Islands, Spain
| | - D Rial
- Instituto Español de Oceanografía (IEO-CSIC), Centro Oceanográfico de Vigo, Subida a Radio Faro, 50-52 36390 Vigo, Galicia, Spain
| | - J Bellas
- Instituto Español de Oceanografía (IEO-CSIC), Centro Oceanográfico de Vigo, Subida a Radio Faro, 50-52 36390 Vigo, Galicia, Spain
| | - J Cachot
- EPOC, University of Bordeaux, CNRS, Bordeaux INP, UMR 5805, F-33600 Pessac, France
| | - R Almeda
- EOMAR, ECOAQUA, University of Las Palmas of Gran Canaria, Canary Islands, Spain
| | - R Beiras
- ECIMAT, Centro de Investigación Mariña (CIM), Universidade de Vigo, 36331 Vigo, Galicia, Spain
| |
Collapse
|
16
|
Zhao T, Zhang Y, Song Q, Meng Q, Zhou S, Cong J. Tire and road wear particles in the aquatic organisms - A review of source, properties, exposure routes, and biological effects. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 273:107010. [PMID: 38917645 DOI: 10.1016/j.aquatox.2024.107010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 06/27/2024]
Abstract
With the continuous development of the modern social economy, rubber has been widely used in our daily life. Tire and road wear particles (TRWPs) are generated by friction between tires and the road surface during the processes of driving, acceleration, and braking. TRWPs can be divided into three main components according to their source: tire tread, brake wear, and road wear. Due to urban runoff, TRWPs flow with rainwater into the aquatic environment and influence the surrounding aquatic organisms. As an emerging contaminant, TRWPs with the characteristics of small particles and strong toxicity have been given more attention recently. Here, we summarized the existing knowledge of the physical and chemical properties of TRWPs, the pathways of TRWPs into the water body, and the exposure routes of TRWPs. Furthermore, we introduced the biological effects of TRWPs involved in size, concentration, and shape, as well as key toxic compounds involved in heavy metals, polycyclic aromatic hydrocarbons (PAHs), N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD), and benzothiazole on aquatic organisms, and attempted to find the relevant factors influencing the toxic effects of TRWPs. In the context of existing policies that ignore pollution from TRWPs emissions in the aquatic environment, we also proposed measures to mitigate the impact of TRWPs in the future, as well as an outlook for TRWPs research.
Collapse
Affiliation(s)
- Tianyu Zhao
- College of Marine Science and biological engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China; Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao 266000, PR China
| | - Yun Zhang
- College of Marine Science and biological engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China; Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao 266000, PR China
| | - Qianqian Song
- College of Marine Science and biological engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China; Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao 266000, PR China
| | - Qingxuan Meng
- College of Marine Science and biological engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China; Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao 266000, PR China
| | - Siyu Zhou
- College of Marine Science and biological engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China; Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao 266000, PR China
| | - Jing Cong
- College of Marine Science and biological engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China; Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao 266000, PR China.
| |
Collapse
|
17
|
Vilke JM, Fonseca TG, Alkimin GD, Gonçalves JM, Edo C, Errico GD, Seilitz FS, Rotander A, Benedetti M, Regoli F, Lüchmann KH, Bebianno MJ. Looking beyond the obvious: The ecotoxicological impact of the leachate from fishing nets and cables in the marine mussel Mytilus galloprovincialis. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134479. [PMID: 38762985 DOI: 10.1016/j.jhazmat.2024.134479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/25/2024] [Accepted: 04/27/2024] [Indexed: 05/21/2024]
Abstract
Once in the marine environment, fishing nets and cables undergo weathering, breaking down into micro and nano-size particles and leaching plastic additives, which negatively affect marine biota. This study aims to unravel the ecotoxicological impact of different concentrations of leachate obtained from abandoned or lost fishing nets and cables in the mussel Mytilus galloprovincialis under long-term exposure (28 days). Biochemical biomarkers linked to antioxidant defense system, xenobiotic biotransformation, oxidative damage, genotoxicity, and neurotoxicity were evaluated in different mussel tissues. The chemical nature of the fishing nets and cables and the chemical composition of the leachate were assessed and metals, plasticizers, UV stabilizers, flame retardants, antioxidants, dyes, flavoring agents, preservatives, intermediates and photo initiators were detected. The leachate severely affected the antioxidant and biotransformation systems in mussels' tissues. Following exposure to 1 mg·L-1 of leachate, mussels' defense system was enhanced to prevent oxidative damage. In contrast, in mussels exposed to 10 and 100 mg·L-1 of leachate, defenses failed to overcome pro-oxidant molecules, resulting in genotoxicity and oxidative damage. Principal component analysis (PCA) and Weight of Evidence (WOE) evaluation confirmed that mussels were significantly affected by the leachate being the hazard of the leachate concentrations of 10 mg·L-1 ranked as major, while 1 and 100 mg·L-1 was moderate. These results highlighted that the leachate from fishing nets and cables can be a threat to the heath of the mussel M. galloprovincialis.
Collapse
Affiliation(s)
- Juliano M Vilke
- Centre for Marine and Environmental Research - CIMA/ARNET - Infrastructure Network in Aquatic Research, University of Algarve, Campus de Gambelas, Faro 8000-139, Portugal; Multicenter Program in Postgraduate in Biochemistry and Molecular Biology - PMBqBM, Santa Catarina State University, Lages 88520-000, Brazil
| | - Tainá G Fonseca
- Centre for Marine and Environmental Research - CIMA/ARNET - Infrastructure Network in Aquatic Research, University of Algarve, Campus de Gambelas, Faro 8000-139, Portugal
| | - Gilberto D Alkimin
- Centre for Marine and Environmental Research - CIMA/ARNET - Infrastructure Network in Aquatic Research, University of Algarve, Campus de Gambelas, Faro 8000-139, Portugal
| | - Joanna M Gonçalves
- Centre for Marine and Environmental Research - CIMA/ARNET - Infrastructure Network in Aquatic Research, University of Algarve, Campus de Gambelas, Faro 8000-139, Portugal
| | - Carlos Edo
- Centre for Marine and Environmental Research - CIMA/ARNET - Infrastructure Network in Aquatic Research, University of Algarve, Campus de Gambelas, Faro 8000-139, Portugal; Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Alcalá de Henares, E-28871 Madrid, Spain
| | - Giuseppe d' Errico
- Dipartimento di Scienze Della Vita e Dell'Ambiente, Università Politecnica Delle Marche, Via Brecce Bianche, Ancona, Italy
| | | | - Anna Rotander
- Man-Technology-Environment (MTM) Research Centre, Örebro University, SE-701 82 Örebro, Sweden
| | - Maura Benedetti
- Dipartimento di Scienze Della Vita e Dell'Ambiente, Università Politecnica Delle Marche, Via Brecce Bianche, Ancona, Italy
| | - Francesco Regoli
- Dipartimento di Scienze Della Vita e Dell'Ambiente, Università Politecnica Delle Marche, Via Brecce Bianche, Ancona, Italy
| | - Karim H Lüchmann
- Department of Scientific and Technological Education, Santa Catarina State University, Florianopolis 88035-001, Brazil
| | - Maria João Bebianno
- Centre for Marine and Environmental Research - CIMA/ARNET - Infrastructure Network in Aquatic Research, University of Algarve, Campus de Gambelas, Faro 8000-139, Portugal.
| |
Collapse
|
18
|
Le Du-Carrée J, Palacios CK, Rotander A, Larsson M, Alijagic A, Kotlyar O, Engwall M, Sjöberg V, Keiter SH, Almeda R. Cocktail effects of tire wear particles leachates on diverse biological models: A multilevel analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134401. [PMID: 38678714 DOI: 10.1016/j.jhazmat.2024.134401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/03/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
Tire wear particles (TWP) stand out as a major contributor to microplastic pollution, yet their environmental impact remains inadequately understood. This study delves into the cocktail effects of TWP leachates, employing molecular, cellular, and organismal assessments on diverse biological models. Extracted in artificial seawater and analyzed for metals and organic compounds, TWP leachates revealed the presence of polyaromatic hydrocarbons and 4-tert-octylphenol. Exposure to TWP leachates (1.5 to 1000 mg peq L-1) inhibited algae growth and induced zebrafish embryotoxicity, pigment alterations, and behavioral changes. Cell painting uncovered pro-apoptotic changes, while mechanism-specific gene-reporter assays highlighted endocrine-disrupting potential, particularly antiandrogenic effects. Although heavy metals like zinc have been suggested as major players in TWP leachate toxicity, this study emphasizes water-leachable organic compounds as the primary causative agents of observed acute toxicity. The findings underscore the need to reduce TWP pollution in aquatic systems and enhance regulations governing highly toxic tire additives.
Collapse
Affiliation(s)
- Jessy Le Du-Carrée
- University of Las Palmas de Gran Canaria: Las Palmas de Gran Canaria, Spain.
| | - Clara Kempkens Palacios
- Man-Technology-Environment Research Center (MTM), Biology, Örebro University, SE-701 82 Örebro, Sweden
| | - Anna Rotander
- Man-Technology-Environment Research Center (MTM), Biology, Örebro University, SE-701 82 Örebro, Sweden
| | - Maria Larsson
- Man-Technology-Environment Research Center (MTM), Biology, Örebro University, SE-701 82 Örebro, Sweden
| | - Andi Alijagic
- Man-Technology-Environment Research Center (MTM), Biology, Örebro University, SE-701 82 Örebro, Sweden; Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, SE-701 82 Örebro, Sweden; Faculty of Medicine and Health, School of Medical Sciences, Örebro University, SE-701 82 Örebro, Sweden
| | - Oleksandr Kotlyar
- Man-Technology-Environment Research Center (MTM), Biology, Örebro University, SE-701 82 Örebro, Sweden; Centre for Applied Autonomous Sensor Systems (AASS), Mobile Robotics and Olfaction Lab (MRO), Örebro University, SE-701 82 Örebro, Sweden
| | - Magnus Engwall
- Man-Technology-Environment Research Center (MTM), Biology, Örebro University, SE-701 82 Örebro, Sweden
| | - Viktor Sjöberg
- Man-Technology-Environment Research Center (MTM), Biology, Örebro University, SE-701 82 Örebro, Sweden
| | - Steffen H Keiter
- Man-Technology-Environment Research Center (MTM), Biology, Örebro University, SE-701 82 Örebro, Sweden
| | - Rodrigo Almeda
- University of Las Palmas de Gran Canaria: Las Palmas de Gran Canaria, Spain
| |
Collapse
|
19
|
Lv M, Meng F, Man M, Lu S, Ren S, Yang X, Wang Q, Chen L, Ding J. Aging increases the particulate- and leachate-induced toxicity of tire wear particles to microalgae. WATER RESEARCH 2024; 256:121653. [PMID: 38678723 DOI: 10.1016/j.watres.2024.121653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/04/2024] [Accepted: 04/20/2024] [Indexed: 05/01/2024]
Abstract
The toxic effects of tire wear particles (TWPs) on organisms have attracted widespread concerns over the past decade. However, the underlying toxicity mechanism of TWPs, especially aged TWPs to marine microalgae remains poorly understood. This study investigated the physiological and metabolic responses of Phaeodactylum tricornutum to different concentrations of TWPs (Experiment 1), virgin and differently aged TWPs (Experiment 2) as well as their leachates and leached particles (Experiment 3). Results demonstrated that TWPs promoted the growth of microalgae at low concentrations (0.6 and 3 mg L-1) and inhibited their growth at high concentrations (15 and 75 mg L-1). Moreover, aged TWPs induced more profound physiological effects on microalgae than virgin TWPs, including inhibiting microalgae growth, decreasing the content of Chla, promoting photosynthetic efficiency, and causing oxidative damage to algal cells. Untargeted metabolomics analysis confirmed that aged TWPs induced more pronounced metabolic changes than virgin TWPs. This study represented the first to demonstrate that both particulate- and leachate-induced toxicity of TWPs was increased after aging processes, which was confirmed by the changes in the surface morphology of TWPs and enhanced release of additives. Through the significant correlations between the additives and the microalgal metabolites, key additives responsible for the shift of microalgal metabolites were identified. These results broaden the understanding of the toxicity mechanism of aged TWPs to microalgae at the physiological and metabolic levels and appeal for considering the effects of long-term aging on TWP toxicity in risk assessment of TWPs.
Collapse
Affiliation(s)
- Min Lv
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Fanyu Meng
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Mingsan Man
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Shuang Lu
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Suyu Ren
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Xiaoyong Yang
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Qiaoning Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China.
| | - Jing Ding
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China.
| |
Collapse
|
20
|
Vidal-Abad A, Casal MA, Rey-Aguiño JM, Pichel-González A, Solana-Muñoz A, Poza-Nogueiras V, Varela Z, Galbán-Malagón C, Ouro P, Fernández-Sanlés A. Case report of plastic nurdles pollution in Galicia (NW Atlantic) following the Toconao's spill in December 2023: The VIEIRA Collaborative. MARINE POLLUTION BULLETIN 2024; 203:116442. [PMID: 38718547 DOI: 10.1016/j.marpolbul.2024.116442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 06/06/2024]
Abstract
Plastic nurdles pose a significant environmental threat due to recurrent accidental spills into marine ecosystems. This report examines the nurdle pollution over the 1498 km of the Galician coastline (Spain) following the spill of 25 t of nurdles into the Northwest Atlantic after the loss of six containers from the Toconao vessel in December 2023. This accident highlights the urgent need for proactive, effective measures in maritime transport to prevent and mitigate such environmental catastrophes. The complexity of nurdle dispersion challenges the evaluation of their fate at sea, and the potential long-term consequences on the marine ecosystem and food web remain uncertain and yet to be investigated. This report also presents the VIEIRA collaborative and underscores the critical role of citizen-led initiatives in responding to such environmental disasters, and advocates for efficient policy reforms, involving cross-border collaboration. Furthermore, we call for greater international cooperation to underpin effective regulatory frameworks to address the growing hazard of plastic nurdle pollution worldwide.
Collapse
Affiliation(s)
| | - Miguel A Casal
- CITIC-Research Center of Information and Communication Technologies, University of A Coruña, A Coruña, Spain
| | | | | | | | - Verónica Poza-Nogueiras
- CINTECX, University of Vigo, Bioengineering and Sustainable Processes, Department of Chemical Engineering, Vigo, Spain
| | - Zulema Varela
- CRETUS, Ecology Unit, Department Functional Biology, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Cristóbal Galbán-Malagón
- GEMA, Center for Genomics, Ecology & Environment, Universidad Mayor, Huechuraba, Santiago, Chile; Institute of Environment, Florida International University, University Park, Miami, USA
| | - Pablo Ouro
- School of Engineering, The University of Manchester, United Kingdom.
| | | |
Collapse
|
21
|
Ebbesen LG, Strange MV, Gunaalan K, Paulsen ML, Herrera A, Nielsen TG, Shashoua Y, Lindegren M, Almeda R. Do weathered microplastics impact the planktonic community? A mesocosm approach in the Baltic Sea. WATER RESEARCH 2024; 255:121500. [PMID: 38554636 DOI: 10.1016/j.watres.2024.121500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/02/2024]
Abstract
Microplastics (MPs) are ubiquitous pollutants of increasing concern in aquatic systems. However, little is still known about the impacts of weathered MPs on plankton at the community level after long-term exposure. In this study, we investigated the effects of weathered MPs on the structure and dynamics of a Baltic Sea planktonic community during ca. 5 weeks of exposure using a mesocosm approach (2 m3) mimicking natural conditions. MPs were obtained from micronized commercial materials of polyvinyl chloride, polypropylene, polystyrene, and polyamide (nylon) previously weathered by thermal ageing and sunlight exposure. The planktonic community was exposed to 2 μg L-1 and 2 mg L-1 of MPs corresponding to measured particle concentrations (10-120 μm) of 680 MPs L-1 and 680 MPs mL-1, respectively. The abundance and composition of all size classes and groups of plankton and chlorophyll concentrations were periodically analyzed throughout the experiment. The population dynamics of the studied groups showed some variations between treatments, with negative and positive effects of MPs exhibited depending on the group and exposure time. The abundance of heterotrophic bacteria, pico- and nanophytoplankton, cryptophytes, and ciliates was lower in the treatment with the higher MP concentration than in the control at the last weeks of the exposure. The chlorophyll concentration and the abundances of heterotrophic nanoflagellates, Astromoeba, dinoflagellate, diatom, and metazooplankton were not negatively affected by the exposure to MPs and, in some cases, some groups showed even higher abundances in the MP treatments. Despite these tendencies, statistical analyses indicate that in most cases there were no statistically significant differences between treatments over the exposure period, even at very high exposure concentrations. Our results show that weathered MPs of the studied conventional plastic materials have minimal or negligible impact on planktonic communities after long-term exposure to environmentally relevant concentrations.
Collapse
Affiliation(s)
- Linea Gry Ebbesen
- Department of Environmental Engineering, Technical University of Denmark, Denmark; National Institute of Aquatic Resources (DTU AQUA) Technical University of Denmark, Denmark
| | - Markus Varlund Strange
- Department of Environmental Engineering, Technical University of Denmark, Denmark; National Institute of Aquatic Resources (DTU AQUA) Technical University of Denmark, Denmark
| | - Kuddithamby Gunaalan
- National Institute of Aquatic Resources (DTU AQUA) Technical University of Denmark, Denmark
| | | | - Alicia Herrera
- EOMAR, ECOAQUA, University of Las Palmas de Gran Canaria, Spain
| | - Torkel Gissel Nielsen
- National Institute of Aquatic Resources (DTU AQUA) Technical University of Denmark, Denmark
| | - Yvonne Shashoua
- Environmental Archaeology and Materials Science, National Museum of Denmark, Denmark
| | - Martin Lindegren
- National Institute of Aquatic Resources (DTU AQUA) Technical University of Denmark, Denmark
| | - Rodrigo Almeda
- National Institute of Aquatic Resources (DTU AQUA) Technical University of Denmark, Denmark; EOMAR, ECOAQUA, University of Las Palmas de Gran Canaria, Spain.
| |
Collapse
|
22
|
Gu Y, Jiang Y, Chen X, Li L, Chen H, Chen J, Wang C, Yu J, Chen C, Li H. Generation of environmentally persistent free radicals on photoaged tire wear particles and their neurotoxic effects on neurotransmission in Caenorhabditis elegans. ENVIRONMENT INTERNATIONAL 2024; 186:108640. [PMID: 38608385 DOI: 10.1016/j.envint.2024.108640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/31/2024] [Accepted: 04/06/2024] [Indexed: 04/14/2024]
Abstract
Tire wear particles (TWP) are a prevalent form of microplastics (MPs) extensively distributed in the environment, raising concerns about their environmental behaviors and risks. However, knowledge regarding the properties and toxicity of these particles at environmentally relevant concentrations, specifically regarding the role of environmentally persistent free radicals (EPFRs) generated during TWP photoaging, remains limited. In this study, the evolution of EPFRs on TWP under different photoaging times and their adverse effects on Caenorhabditis elegans were systematically investigated. The photoaging process primarily resulted in the formation of EPFRs and reactive oxygen species (O2•-, ⋅OH, and 1O2), altering the physicochemical properties of TWP. The exposure of nematodes to 100 μg/L of TWP-50 (TWP with a photoaging time of 50 d) led to a significant decrease in locomotory behaviors (e.g., head thrashes, body bends, and wavelength) and neurotransmitter contents (e.g., dopamine, glutamate, and serotonin). Similarly, the expression of neurotransmission-related genes was reduced in nematodes exposed to TWP-50. Furthermore, the addition of free-radical inhibitors significantly suppressed TWP-induced neurotoxicity. Notably, correlation analysis revealed a significantly negative correlation between EPFRs levels and the locomotory behaviors and neurotransmitter contents of nematodes. Thus, it was concluded that EPFRs on photoaged TWP induce neurotoxicity by affecting neurotransmission. These findings elucidate the toxicity effects and mechanisms of EPFRs, emphasizing the importance of considering their contributions when evaluating the environmental risks associated with TWP.
Collapse
Affiliation(s)
- Yulun Gu
- Institute for Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yongqi Jiang
- Institute for Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Xiaoxia Chen
- Institute for Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Liangzhong Li
- CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Haibo Chen
- Institute for Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| | - Jinyu Chen
- Institute for Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Chen Wang
- Institute for Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Jun Yu
- Institute for Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Chao Chen
- Institute for Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Hui Li
- Institute for Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
23
|
García-Regalado A, Herrera A, Almeda R. Microplastic and mesoplastic pollution in surface waters and beaches of the Canary Islands: A review. MARINE POLLUTION BULLETIN 2024; 201:116230. [PMID: 38479326 DOI: 10.1016/j.marpolbul.2024.116230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/27/2024] [Accepted: 03/03/2024] [Indexed: 04/07/2024]
Abstract
The Canary Archipelago is a group of volcanic islands located in the North Atlantic Ocean with high marine biodiversity. This archipelago intercepts the Canary Current, the easternmost branch of the Azores Current in the North Atlantic Subtropical Gyre, which brings large amounts of litter from remote sources via oceanic transportation. It is, therefore, particularly vulnerable to marine plastic pollution. Here, we present a review of the available studies on mesoplastics and microplastics in the Canary Islands over the last decade to evaluate the level and distribution of plastic pollution in this archipelago. Specifically, we focused on data from beaches and surface waters to assess the pollution level among the different islands as well as between windward and leeward zones, and the main characteristics (size, type, colour, and polymer) of the plastics found in the Canary Islands. The concentrations of meso- and MPs on beaches ranged from 1.5 to 2972 items/m2 with a mean of 381 ± 721 items/m2. The concentration of MPs (>200 μm) in surface waters was highly variable with mean values of 998 × 103 ± 3364 × 103 items/km2 and 10 ± 31 items/m3. Plastic pollution in windward beaches was one order of magnitude significantly higher than in leeward beaches. The accumulation of MPs in surface waters was higher in the leeward zones of the high-elevation islands, corresponding to the Special Areas of Conservation (ZECs) and where the presence of marine litter windrows (MLW) has been reported. Microplastic fragments of polyethylene of the colour category "white/clear/uncoloured" were the most common type of plastic reported in both beaches and surface waters. More studies on the occurrence of MLW in ZECS and plastic pollution in the water column and sediments, including small-size fractions (<200 μm), are needed to better assess the level of plastic pollution and its fate in the Canary Islands. Overall, this review confirms that the Canary Archipelago is a hotspot of oceanic plastic pollution, with concentrations of MPs in surface waters in the highest range reported for oceanic islands and one of the highest recorded mean concentrations of beached meso- and microplastics in the world.
Collapse
Affiliation(s)
| | - Alicia Herrera
- EOMAR, ECOAQUA, Universidad de Las Palmas de Gran Canaria, Spain
| | - Rodrigo Almeda
- EOMAR, ECOAQUA, Universidad de Las Palmas de Gran Canaria, Spain.
| |
Collapse
|
24
|
De Oliveira T, Muresan B, Ricordel S, Lumière L, Truong XT, Poirier L, Gasperi J. Realistic assessment of tire and road wear particle emissions and their influencing factors on different types of roads. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133301. [PMID: 38141300 DOI: 10.1016/j.jhazmat.2023.133301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/25/2023]
Abstract
This study aims to examine tire and road wear particle (TRWP) emissions under realistic conditions in order to provide some valuable insights into understanding their sources and fate in the environment. TRWP emissions were evaluated with a fully instrumented vehicle driving on five representative road types: urban, ring road, suburban, highway, and rural. Multiple vehicle dynamic variables were recorded to assess the factors influencing these emissions. For the first time, emitted particles were collected on filters and analyzed by means of pyrolysis coupled with gas chromatography-mass spectrometry to determine the polymeric content of tires, in specifically quantifying styrene-butadiene rubber (SBR) and butadiene rubber (BR) pyrolytic markers. The measurements obtained from the five road types revealed similar size distributions for SBR + BR emissions, with maxima found in the (ultra)fine fraction (< 0.39 µm). Upon applying an SBR + BR-to-TRWP conversion factor, (ultra)fine fraction TRWP emissions proved to be the highest for suburban (64 ± 5 µg/km), followed by highway, urban, ring road and rural routes. The output represents up to 480 tons of TRWP per year emitted in the EU27, thus suggesting a widely impregnated atmospheric compartment capable of threatening human health. Furthermore, an analysis of variables revealed that acceleration, tire constraints, and constant sustained driving factors had specific impacts on TRWP emissions.
Collapse
|
25
|
Thomsen ES, Almeda R, Nielsen TG. Tire particles and their leachates reduce the filtration rate of the mussel Mytilus edulis. MARINE ENVIRONMENTAL RESEARCH 2024; 195:106348. [PMID: 38237468 DOI: 10.1016/j.marenvres.2024.106348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/30/2023] [Accepted: 01/08/2024] [Indexed: 02/10/2024]
Abstract
Microplastics (MPs) are found in aquatic environments all over the world. Among MPs, tire wear particles (TWPs) are a major contributor to microplastic pollution, and their effects on marine ecosystems are of emerging concern. The blue mussel (Mytilus edulis) is a keystone species in coastal ecosystems with a high risk of exposure to microplastic pollution as the microplastics often overlap in size with the plankton consumed by mussels. In the present study, we investigated the effect of tire particles and their leachates on the filtration rates of M. edulis after short (72 h) and long-term (3 weeks) exposure. Acute exposure to leachates alone causes a significant decrease in the filtration rates of M. edulis with a low observed effect concentration (LOEC) of 1.25 g L-1 and a median effect concentration (EC50) = 3 g L-1. At a concentration of 1.25 g L-1, the filtration rate was reduced compared to the control on average by 38% when mussels were exposed to either TWP or leachates for 72 h. Similarly, mussels exposed to tire particles or their leachates for 3 weeks showed a 46% reduction in filtration rates, compared to the control group. A non-significant difference in filtration rate decrease was found between leachates alone or TWP, which indicates that leachates are the main responsible for the observed toxicity. Our findings indicate that elevated levels of TWP pollution can cause an adverse impact on M. edulis. This could disrupt the natural grazing pressure exerted by M. edulis on phytoplankton, potentially leading to an increased likelihood of algal blooms and hypoxia occurrence in coastal ecosystems.
Collapse
Affiliation(s)
- Emilie Skrubbeltrang Thomsen
- National Institute of Aquatic Resources (DTU AQUA), Section for Oceans and Arctic, DTU-AQUA, 2800, Kgs Lyngby, Denmark.
| | - Rodrigo Almeda
- EOMAR, IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Campus Universitario de Tafira, 35017, Las Palmas de Gran Canaria, Spain
| | - Torkel Gissel Nielsen
- National Institute of Aquatic Resources (DTU AQUA), Section for Oceans and Arctic, DTU-AQUA, 2800, Kgs Lyngby, Denmark
| |
Collapse
|
26
|
Moreira W, Alonso O, Paule A, Martínez I, Le Du-Carreé J, Almeda R. Life stage-specific effects of tire particle leachates on the cosmopolitan planktonic copepod Acartia tonsa. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123256. [PMID: 38171424 DOI: 10.1016/j.envpol.2023.123256] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/20/2023] [Accepted: 12/27/2023] [Indexed: 01/05/2024]
Abstract
Tire wear particles (TWP) are a major source of microplastics in the aquatic environment and the ecological impacts of their leachates are of major environmental concern. Among marine biota, copepods are the most abundant animals in the ocean and a main link between primary producers and higher trophic levels in the marine food webs. In this study, we determined the acute lethal and sublethal effects of tire particle leachates on different life stages of the cosmopolitan planktonic copepod Acartia tonsa. Median lethal concentration (LC50, 48 h) ranged from 0.4 to 0.6 g L-1 depending on the life stages, being nauplii and copepodites more sensitive to tire particle leachates than adults. The median effective concentration (EC50, 48 h) for hatching was higher than 1 g L-1, indicating a relatively low sensitivity of hatching to tire particle leachates. However, metamorphosis (from nauplius VI to copepodite I) was notably reduced by tire particle leachates with an EC50 (48 h) of 0.23 g L-1 and the absence of metamorphosis at 1 g L-1, suggesting a strong developmental delay or endocrine disruption. Leachates also caused a significant decrease (10-22%) in the body length of nauplii and copepodites after exposure to TWP leachates (0.25 and 0.5 g L-1). We tested a battery of enzymatic biomarkers in A. tonsa adult stages, but a sublethal concentration of 50 mg L-1 of tire particle leachates did not cause a statistically significant effect on the measured enzymatic activities. Our results show that tire particle leachates can negatively impact the development, metamorphosis, and survival of planktonic copepods. More field data on concentrations of TWPs and the fate and persistence of their leached additives is needed for a better assessment of the risk of tire particle pollution on marine food webs.
Collapse
Affiliation(s)
- Wilma Moreira
- EOMAR, ECOAQUA, University of Las Palmas de Gran Canaria, Spain
| | - Olalla Alonso
- EOMAR, ECOAQUA, University of Las Palmas de Gran Canaria, Spain
| | - Antonio Paule
- EOMAR, ECOAQUA, University of Las Palmas de Gran Canaria, Spain
| | - Ico Martínez
- EOMAR, ECOAQUA, University of Las Palmas de Gran Canaria, Spain
| | | | - Rodrigo Almeda
- EOMAR, ECOAQUA, University of Las Palmas de Gran Canaria, Spain.
| |
Collapse
|
27
|
Gorule PA, Šmejkal M, Tapkir S, Stepanyshyna Y, Stejskal V, Follesa MC, Cau A. Long-term sublethal exposure to polyethylene and tire wear particles: Effects on risk-taking behaviour in invasive and native fish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168233. [PMID: 37923265 DOI: 10.1016/j.scitotenv.2023.168233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 09/21/2023] [Accepted: 10/29/2023] [Indexed: 11/07/2023]
Abstract
Anthropogenic polymeric particles pollute even the most remote ecosystems and may compromise organisms' behaviour and movement skills. It is expected that invasive species cope better with pollutants than native species (i.e., pollution resistance hypothesis). In this study, invasive gibel carp (Carassius gibelio) and native crucian carp (Carassius carassius) were used as model organisms. Specimens were fed daily with food pellets (1 % body weight) added with 0.1 % polyethylene (PE), tire wear particles (TWPs) and control. Their behavioural parameters were compared before and after 14 and 60 days of exposure. Additionally, we evaluated burst swimming capacity after 60 days of exposure to the treatments. The fishes exposed to the PE and TWPs treatments showed significant trends toward increased boldness scores and, in the PE treatment, higher utilization of the open field, and both behavioural changes are associated with higher risk-taking. Invasive gibel carp had substantially better swimming performance than crucian carp, but the expected trend in relation to the treatments was not found. Fish exposed to sublethal doses of PE and TWPs showed signs of behavioural changes after two months of exposure that may affect risk-taking behaviour, which might impact species interactions with predators.
Collapse
Affiliation(s)
- Pankaj A Gorule
- Department of Life and Environmental Sciences, University of Cagliari, Via Tommaso Fiorelli 1, 09126 Cagliari, Italy
| | - Marek Šmejkal
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, Na Sádkách 7, 370 05, České Budějovice, Czech Republic.
| | - Sandip Tapkir
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
| | - Yevdokiia Stepanyshyna
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
| | - Vlastimil Stejskal
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and Protection of Waters, Na Sádkách 1780, 370 05 České Budějovice, Czech Republic
| | - Maria Cristina Follesa
- Department of Life and Environmental Sciences, University of Cagliari, Via Tommaso Fiorelli 1, 09126 Cagliari, Italy; ConISMa, Piazzale Flaminio 9, 00196 Rome, Italy
| | - Alessandro Cau
- Department of Life and Environmental Sciences, University of Cagliari, Via Tommaso Fiorelli 1, 09126 Cagliari, Italy; ConISMa, Piazzale Flaminio 9, 00196 Rome, Italy
| |
Collapse
|
28
|
Rosso B, Bravo B, Gregoris E, Barbante C, Gambaro A, Corami F. Quantification and Chemical Characterization of Plastic Additives and Small Microplastics (<100 μm) in Highway Road Dust. TOXICS 2023; 11:936. [PMID: 37999588 PMCID: PMC10674966 DOI: 10.3390/toxics11110936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023]
Abstract
Road dust is one of the environment's most important microplastic and plastic additive sources. Traffic vehicles and the wear of tires can release these emerging contaminants, which can be resuspended in the air and washed off by stormwater runoff. In this study, a concurrent quantification and chemical characterization of additives, plasticizers, natural and non-plastic synthetic fibers (APFs), and small microplastics (SMPs, <100 µm) in samples of highway road dust (HWRD) was performed. The sampling procedure was optimized, as well as pretreatment (extraction, purification, and filtration) and analysis via micro-FTIR. The average length of the SMPs was 88 µm, while the average width was 50 µm. The highest abundance of SMPs was detected in HWRD 7 (802 ± 39 SMPs/g). Among the polymers characterized and quantified, vinyl ester and polytetrafluoroethylene were predominant. APFs' average particle length was 80 µm and their width was 45 µm, confirming that both of these emerging pollutants are less than 100 µm in size. Their maximum concentration was in RD7, with 1044 ± 45 APFs/g. Lubricants and plasticizers are the two most abundant categories, followed by vulcanizing agents, accelerators, and pre-vulcanizing retarders derived mainly from tires. A potential relationship between APFs and SMPs in the different seasons was observed, as their concentration was lower in summer for both and higher in winter 2022. These results will be significant in investigating the load of these pollutants from highways, which is urgently necessary for more accurate inclusion in emission inventories, receptor modeling, and health protection programs by policymakers, especially in air and water pollution policies, to prevent risks to human health.
Collapse
Affiliation(s)
- Beatrice Rosso
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172 Venice, Italy
| | - Barbara Bravo
- Thermo Fisher Scientific, Str. Rivoltana, Km 4, 20090 Rodano, Italy
| | - Elena Gregoris
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172 Venice, Italy
- Institute of Polar Sciences, CNR-ISP, Campus Scientifico, Ca' Foscari University of Venice, Via Torino 155, 30172 Venice, Italy
| | - Carlo Barbante
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172 Venice, Italy
- Institute of Polar Sciences, CNR-ISP, Campus Scientifico, Ca' Foscari University of Venice, Via Torino 155, 30172 Venice, Italy
| | - Andrea Gambaro
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172 Venice, Italy
| | - Fabiana Corami
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172 Venice, Italy
- Institute of Polar Sciences, CNR-ISP, Campus Scientifico, Ca' Foscari University of Venice, Via Torino 155, 30172 Venice, Italy
| |
Collapse
|
29
|
Rist S, Le Du-Carrée J, Ugwu K, Intermite C, Acosta-Dacal A, Pérez-Luzardo O, Zumbado M, Gómez M, Almeda R. Toxicity of tire particle leachates on early life stages of keystone sea urchin species. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122453. [PMID: 37633434 DOI: 10.1016/j.envpol.2023.122453] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/18/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
Particles from tires are a major fraction of microplastic pollution. They contain a wide range of chemical additives that can leach into the water and be harmful to aquatic organisms. In this study, we investigated the acute toxicity of tire particle leachates in early life stages of three keystone echinoderm species (Paracentrotus lividus, Arbacia lixula, Diadema africanum). Embryos were exposed for 72 h to a range of leachate dilutions, prepared using a concentration of 1 g L-1. Larval growth, abnormal development, and mortality were the measured endpoints. Furthermore, we estimated the activity of glutathione S transferase (GST) and the electron transport system (ETS) in P. lividus. Strong concentration-dependent responses were observed in all species, though with differing sensitivity. The median effect concentrations for abnormal development in P. lividus and A. lixula were 0.16 and 0.35 g L-1, respectively. In D. africanum, mortality overshadowed abnormal development and the median lethal concentration was 0.46 g L-1. Larvae of P. lividus were significantly smaller than the control from 0.125 g L-1, while the other two species were affected from 0.5 g L-1. ETS activity did not change but there was a non-significant trend of increasing GST activity with leachate concentration in P. lividus. Seven organic chemicals and eight metals were detected at elevated concentrations in the leachates. While we regard zinc as a strong candidate to explain some of the observed toxicity, it can be expected that tire particle leachates exhibit a cocktail effect and other leached additives may also contribute to their toxicity. Our results emphasize the importance of multi-species studies as they differ in their susceptibility to tire particle pollution. We found negative effects at concentrations close to projections in the environment, which calls for more research and mitigation actions on these pollutants.
Collapse
Affiliation(s)
- Sinja Rist
- National Institute of Aquatic Resources (DTU Aqua), Technical University of Denmark, Kemitorvet, Kgs. Lyngby, Denmark; Marine Ecophysiology Group (EOMAR, IU-ECOAQUA), University of Las Palmas de Gran Canaria, Spain.
| | - Jessy Le Du-Carrée
- Marine Ecophysiology Group (EOMAR, IU-ECOAQUA), University of Las Palmas de Gran Canaria, Spain
| | - Kevin Ugwu
- Marine Ecophysiology Group (EOMAR, IU-ECOAQUA), University of Las Palmas de Gran Canaria, Spain; Man-Technology-Environment Research Centre (MTM), Örebro University, Örebro, Sweden
| | - Chiara Intermite
- Marine Ecophysiology Group (EOMAR, IU-ECOAQUA), University of Las Palmas de Gran Canaria, Spain
| | - Andrea Acosta-Dacal
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera S/n, 35016, Las Palmas de Gran Canaria, Spain
| | - Octavio Pérez-Luzardo
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera S/n, 35016, Las Palmas de Gran Canaria, Spain; Spanish Biomedical Research Center in Physiopathology of Obesity and Nutrition (CIBERObn), Spain
| | - Manuel Zumbado
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera S/n, 35016, Las Palmas de Gran Canaria, Spain; Spanish Biomedical Research Center in Physiopathology of Obesity and Nutrition (CIBERObn), Spain
| | - May Gómez
- Marine Ecophysiology Group (EOMAR, IU-ECOAQUA), University of Las Palmas de Gran Canaria, Spain
| | - Rodrigo Almeda
- Marine Ecophysiology Group (EOMAR, IU-ECOAQUA), University of Las Palmas de Gran Canaria, Spain
| |
Collapse
|
30
|
Bournaka E, Almeda R, Koski M, Page TS, Mejlholm REA, Nielsen TG. Lethal effect of leachates from tyre wear particles on marine copepods. MARINE ENVIRONMENTAL RESEARCH 2023; 191:106163. [PMID: 37678098 DOI: 10.1016/j.marenvres.2023.106163] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/24/2023] [Accepted: 08/30/2023] [Indexed: 09/09/2023]
Abstract
With thousands of tons of Tyre Wear Particles (TWP) entering the aquatic environment every year, TWP are considered a major contributor to microplastic pollution. TWP leach organic compounds and metals in water, potentially affecting the marine food web. However, little is known about the toxicity of TWP leachates on marine copepods, a major food web constituent, and a key group to determine the environmental risk of pollution in marine ecosystems. In this study, we determined the lethal effect of TWP leachates on marine copepods after 24, 48, and 72-h of exposure to 0.05-100% leachate solutions prepared using a concentration of 5 g TWP L-1. The calanoids Acartia tonsa, Temora longicornis and Centropages hamatus, the cyclopoid Oithona davisae and the harpacticoid Amonardia normanni were used as experimental species. TWP leachates were toxic to all the studied species, with toxicity increasing as leachate solution and exposure time increased. Median lethal concentration (LC50, 72-h) ranged from 0.22 to 3.43 g L-1 and calanoid copepods were more sensitive to TWP leachates than the cyclopoid O. davisae and the harpacticoid A. normanni. Toxicity of TWP leachates was not related to the copepod body size, which suggests that other traits such as foraging behaviour or adaptation to contaminants could explain the higher tolerance of cyclopoid and harpacticoid to TWP leachates compared to calanoid copepods. Although field data on the concentration of TWP and their chemical additives are still limited, our results suggest that TWP leachates can negatively impact planktonic food webs in coastal areas after road runoff events.
Collapse
Affiliation(s)
- Evanthia Bournaka
- National Institute of Aquatic Resources-DTU Aqua, Kemitorvet, Building 202, DK-2800, Kgs. Lyngby, Denmark.
| | - Rodrigo Almeda
- EOMAR, IU-ECOAQUA, University of Las Palmas de Gran Canaria, Spain
| | - Marja Koski
- National Institute of Aquatic Resources-DTU Aqua, Kemitorvet, Building 202, DK-2800, Kgs. Lyngby, Denmark
| | - Thomas Suurlan Page
- National Institute of Aquatic Resources-DTU Aqua, Kemitorvet, Building 202, DK-2800, Kgs. Lyngby, Denmark
| | | | - Torkel Gissel Nielsen
- National Institute of Aquatic Resources-DTU Aqua, Kemitorvet, Building 202, DK-2800, Kgs. Lyngby, Denmark
| |
Collapse
|
31
|
Gunaalan K, Nielsen TG, Rodríguez Torres R, Lorenz C, Vianello A, Andersen CA, Vollertsen J, Almeda R. Is Zooplankton an Entry Point of Microplastics into the Marine Food Web? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:11643-11655. [PMID: 37497822 PMCID: PMC10413952 DOI: 10.1021/acs.est.3c02575] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 07/28/2023]
Abstract
Microplastics (MPs) overlap in size with phytoplankton and can be ingested by zooplankton, transferring them to higher trophic levels. Copepods are the most abundant metazoans among zooplankton and the main link between primary producers and higher trophic levels. Ingestion of MPs has been investigated in the laboratory, but we still know little about the ingestion of MPs by zooplankton in the natural environment. In this study, we determined the concentration and characteristics of MPs down to 10 μm in zooplankton samples, sorted calanoid copepods, and fecal pellets collected in the Kattegat/Skagerrak Sea (Denmark). We found a median concentration of 1.7 × 10-3 MPs ind-1 in the zooplankton samples, 2.9 × 10-3 MPs ind-1 in the sorted-copepods, and 3 × 10-3 MPs per fecal pellet. Most MPs in the zooplankton samples and fecal pellets were fragments smaller than 100 μm, whereas fibers dominated in the sorted copepods. Based on the collected data, we estimated a MP budget for the surface layer (0-18 m), where copepods contained only 3% of the MPs in the water, while 5% of the MPs were packed in fecal pellets. However, the number of MPs exported daily to the pycnocline via fecal pellets was estimated to be 1.4% of the total MPs in the surface layer. Our results indicate that zooplankton are an entry point of small MPs in the food web, but the number of MPs in zooplankton and their fecal pellets was low compared with the number of MPs found in the water column and the occurrence and/or ingestion of MPs reported for nekton. This suggests a low risk of MP transferring to higher trophic levels through zooplankton and a quantitatively low, but ecologically relevant, contribution of fecal pellets to the vertical exportation of MPs in the ocean.
Collapse
Affiliation(s)
- Kuddithamby Gunaalan
- National
Institute of Aquatic Resource, Technical
University of Denmark, Kemitorvet, 201, 2800 Kgs. Lyngby, Denmark
- Department
of the Built Environment, Aalborg University, Thomas Manns Vej 23, 9220 Aalborg East, Denmark
| | - Torkel Gissel Nielsen
- National
Institute of Aquatic Resource, Technical
University of Denmark, Kemitorvet, 201, 2800 Kgs. Lyngby, Denmark
| | - Rocío Rodríguez Torres
- National
Institute of Aquatic Resource, Technical
University of Denmark, Kemitorvet, 201, 2800 Kgs. Lyngby, Denmark
- Laboratoire
d’Océanographie de Villefranche sur mer (LOV), UPMC
Université Paris 06, CNRS UMR 7093, Sorbonne Université, 06230 Villefranche sur Mer, France
| | - Claudia Lorenz
- Department
of the Built Environment, Aalborg University, Thomas Manns Vej 23, 9220 Aalborg East, Denmark
| | - Alvise Vianello
- Department
of the Built Environment, Aalborg University, Thomas Manns Vej 23, 9220 Aalborg East, Denmark
| | - Ceelin Aila Andersen
- National
Institute of Aquatic Resource, Technical
University of Denmark, Kemitorvet, 201, 2800 Kgs. Lyngby, Denmark
| | - Jes Vollertsen
- Department
of the Built Environment, Aalborg University, Thomas Manns Vej 23, 9220 Aalborg East, Denmark
| | - Rodrigo Almeda
- National
Institute of Aquatic Resource, Technical
University of Denmark, Kemitorvet, 201, 2800 Kgs. Lyngby, Denmark
- EOMAR-ECOAQUA, University of Las Palmas of Gran Canaria, 35017 Las Palmas
de Gran Canaria, Spain
| |
Collapse
|
32
|
Li J, Xu J, Jiang X. Urban runoff mortality syndrome in zooplankton caused by tire wear particles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 329:121721. [PMID: 37116570 DOI: 10.1016/j.envpol.2023.121721] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/03/2023]
Abstract
Stormwater runoff from roadways is a global threat to water quality, aquatic organisms, and ecosystems. Tire tread wear particles (TWP) from roadway runoff may lead to urban runoff mortality syndrome (URMS) in some aquatic organisms. We tested the hypothesis that urban runoff from roadways can kill zooplankton. Both roadway runoff and TWP leachate were acutely lethal to a model species, the water flea Daphnia pulex. Life table experiments further revealed the lowered survival rates, intrinsic rate of increase, average life span, and net productive rate of D. pulex when exposed to roadway runoff and TWP leachate. The tire rubber antioxidant N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD) mainly contributed to the TWP toxicity. The toxicity of TWP and 6PPD extracted varied with time in nature. Cladocerans and rotifers were more sensitive to TWP and 6PPD than copepods. These results demonstrate the presence of URMS in zooplankton, which may cascade through food webs and affect aquatic ecosystems.
Collapse
Affiliation(s)
- Jianan Li
- State Key Laboratory Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, People's Republic of China
| | - Jiale Xu
- State Key Laboratory Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, People's Republic of China
| | - Xiaodong Jiang
- State Key Laboratory Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, People's Republic of China.
| |
Collapse
|
33
|
Gunaalan K, Almeda R, Lorenz C, Vianello A, Iordachescu L, Papacharalampos K, Rohde Kiær CM, Vollertsen J, Nielsen TG. Abundance and distribution of microplastics in surface waters of the Kattegat/ Skagerrak (Denmark). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120853. [PMID: 36509350 DOI: 10.1016/j.envpol.2022.120853] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Microplastics (MPs) are ubiquitous pollutants in the ocean, and there is a general concern about their persistence and potential effects on marine ecosystems. We still know little about the smaller size-fraction of marine MPs (MPs <300 μm), which are not collected with standard nets for MPs monitoring (e.g., Manta net). This study aims to determine the concentration, composition, and size distribution of MPs down to 10 μm in the Kattegat/Skagerrak area. Surface water samples were collected at fourteen stations using a plastic-free pump-filter device (UFO sampler) in October 2020. The samples were treated with an enzymatic-oxidative method and analyzed using FPA-μFTIR imaging. MPs concentrations ranged between 11 and 87 MP m-3, with 88% of the MPs being smaller than 300 μm. The most abundant shape of MPs were fragments (56%), and polyester, polypropylene, and polyethylene were the dominant synthetic polymer types. The concentration of MPs shows a significant positive correlation to the seawater density. Furthermore, there was a tendency towards higher MPs concentrations in the Northern and the Southern parts of the study area. The concentration of MPs collected with the UFO sampler was several orders of magnitude higher than those commonly found in samples collected with the Manta net due to the dominance of MP smaller size fractions. Despite the multiple potential sources of MPs in the study area, the level of MPs pollution in the surface waters was low compared (<100 MP m-3) to other regions. The concentrations of MPs found in the studied surface waters were six orders of magnitude lower than those causing negative effects on pelagic organisms based on laboratory exposure studies, thus is not expected to cause any impact on the pelagic food web.
Collapse
Affiliation(s)
- Kuddithamby Gunaalan
- National Institute of Aquatic Resource, Technical University of Denmark, Denmark; Department of the Built Environment, Aalborg University, Denmark.
| | - Rodrigo Almeda
- National Institute of Aquatic Resource, Technical University of Denmark, Denmark; University Institute for Research in Sustainable Aquaculture and Marine Ecosystems (IU-ECOAQUA, EOMAR), Department of Biology, University of Las Palmas of Gran Canaria, Spain
| | - Claudia Lorenz
- Department of the Built Environment, Aalborg University, Denmark
| | - Alvise Vianello
- Department of the Built Environment, Aalborg University, Denmark
| | | | | | | | - Jes Vollertsen
- Department of the Built Environment, Aalborg University, Denmark
| | | |
Collapse
|