1
|
Taha AM, Mustafa FHA, Ibrahim HE, Mohamadein LI, Anwar ZM, Elsharaawy RFM. Adsorptive removal of heavy metal ions from wastewater using shrimp chitosan-cysteine-glutaraldehyde hydrogel as a sustainable biosorbent. Int J Biol Macromol 2025; 312:143846. [PMID: 40350115 DOI: 10.1016/j.ijbiomac.2025.143846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/26/2025] [Accepted: 04/30/2025] [Indexed: 05/14/2025]
Abstract
A new biosorbent, crosslinked chitosan-cysteine-glutaraldehyde hydrogel (CSCys-HG), was successfully synthesized and characterized using microanalytical and spectroscopic methods. CSCys-HG exhibited a high gel fraction and swelling capacity, indicating the highest degree of crosslinking and porosity. To optimize the performance of CSCys-HG as a scavenger for heavy metal ions (HMIs), its adsorptive removal of Cu(II) and Pb(II) ions from wastewater was studied through batch adsorption experiments under various conditions. The optimal parameters were determined to be an adsorbent dose of 5 mg/mL, contact times of 90 and 5 min, pH levels of 5 and 4, initial concentration of 25 ppm, and temperatures of 303 K and 308 K for Cu(II) and Pb(II), respectively. The CSCys-HG efficiently removed Cu(II) and Pb(II) ions, achieving adsorption capacities of 171.10 and 132.56 mg/g, respectively. CSCys-HG exhibited M(II) ion sorption performance that aligned with the nonlinear Langmuir isotherm model. For Cu(II), the parameters were b = 0.01411 L/mg and R2 = 0.99151, whereas for Pb(II), they were b = 0.02571 L/mg and R2 = 0.98908. The kinetics followed a pseudo-second-order model, with Cu(II) showing k2 = 4.34 × 10-4 g/mg min and R2 = 0.99924, and Pb(II) displaying k2 = 6.54 × 10-4 g/mg min and R2 = 0.99918.
Collapse
Affiliation(s)
- Aya M Taha
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Fatma H A Mustafa
- National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt
| | - Hoyida E Ibrahim
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | | | - Zeinab M Anwar
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Reda F M Elsharaawy
- Chemistry department, Faculty of Science, Suez University, Suez, Egypt; Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine Universität Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
2
|
Zitouni MA, Chabane M, Melkaoui C. Release of chlororotetracycline hydrochloride from novel hydrogels based on crosslinked chitosan and PVA. ANNALES PHARMACEUTIQUES FRANÇAISES 2025:S0003-4509(25)00079-3. [PMID: 40345322 DOI: 10.1016/j.pharma.2025.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/30/2025] [Accepted: 05/04/2025] [Indexed: 05/11/2025]
Abstract
Hydrogels based on hydrochloride polyvinyl alcohol (PVA) containing chlortetracycline and crosslinked chitosan (CS) by glutaraldehyde (GLA) were prepared by the freeze-thawing method and then characterized. The swelling properties and gel fraction of these hydrogels were studied and characterized by FTIR spectroscopy, the thermal and mechanical properties were evaluated by DSC and rheology. Controlled release of chlortetracycline hydrochloride from these hydrogels was studied by UV-Visible spectroscopy. The gel fraction decreases with increase of crosslinked chitosan concentration in hydrogel but the swelling was more important due to the relaxation of the hydrogel, and the extension of macromolecular chains in the system. The crystallinity of these hydrogels increased with increasing PVA concentration. All these hydrogels exhibited a gel character with a high crosslinking degree and possessed a network structure. The release of chlortetracycline hydrochloride from these hydrogels was occurred by fickian diffusion, faster at 37°C than at 25°C because hydrogels were more swollen at 37°C and their network densities were decreased to perfect the release of drugs from hydrogels.
Collapse
Affiliation(s)
- Mohammed Amine Zitouni
- Laboratory of Research on macromolecules, Department of Chemistry, Science Faculty, University of Tlemcen, 13000 Tlemcen, Algeria.
| | - Mustapha Chabane
- University Center of Naama, PO Box 66, 45000 Naama, Algeria; Laboratory of Research on Spectrochemistry and Structural Pharmacology, Department of Chemistry, Science Faculty, University of Tlemcen, 13000 Tlemcen, Algeria
| | - Chikh Melkaoui
- Centre de Recherche Scientifque et Technique en Analyse Physico-Chimique (CRAPC), Bouismail, BP 384, RP 42004, Tipasa, Algeria; Scientific and Technical Research Center on Arid Regions (CRSTRA), Biskra, Algeria
| |
Collapse
|
3
|
Liu J, Liu Y, Zhang Z, Deng Y, Chen G. Characterisation of polysaccharide from anammox granular sludge and potential application in hydrogel preparation. WATER RESEARCH 2025; 282:123710. [PMID: 40345129 DOI: 10.1016/j.watres.2025.123710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/24/2025] [Accepted: 04/21/2025] [Indexed: 05/11/2025]
Abstract
Microorganisms capable of anaerobic ammonia oxidation (anammox), or the conversion of nitrite and ammonium to dinitrogen, tend to aggregate and form a granular sludge in anammox reactors. This anammox granular sludge is a potential source of polysaccharides due to its richly diverse microbial community and abundant polymers. In this study, anammox polysaccharide (APS) was extracted from anammox granular sludge, and its potential to form hydrogels with alginate was investigated. The yield of APS was 9.91 % ± 0.12 %. The three main monosaccharides in APS were glucose (60.63 % ± 3.45 %), glucuronic acid (13.81 % ± 0.31 %), and rhamnose (18.88 % ± 0.22 %). The antioxidant potential of APS was evaluated through three antioxidant assays, which revealed significant antioxidant benefits at APS concentrations between 100 and 500 mg/L. Furthermore, L929 mouse fibroblasts exhibited high survival rates (>85 %) under different APS concentrations (1-50 μg/mL), indicating the good biological compatibility of APS. A series of hydrogels were prepared by mixing alginate with APS in different ratios (10:0, 9:1, 8:2, 7:3, and 6:4). The swelling ability of the prepared hydrogels in simulated gastric fluid varied between 1.4 and 2.0. In contrast, the swelling ability increased significantly to 10.37 ± 0.01 in simulated intestinal fluid when the ratio of alginate to APS in the hydrogel was 8:2. X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy were also used to analyse the functional groups and specific chemical bonds in the hydrogels. Subsequent loading experiments using bovine serum albumin (BSA) demonstrated that an alginate:APS ratio of 8:2 exhibited the highest loading efficiency for BSA, reaching 80.59 % ± 1.46 %. As the quantity of APS was increased, the release of BSA into simulated gastric fluid was effectively inhibited, with an alginate:APS ratio of 6:4 resulting in the lowest release amount (0.023 % in dry state, 0.11 % in wet state). Overall, this study highlights the derivation of a valuable resource from anammox sludge and offers insights into its potential applications in drug delivery.
Collapse
Affiliation(s)
- Jie Liu
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Yang Liu
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Zi Zhang
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Yangfan Deng
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
| | - Guanghao Chen
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China; Wastewater Treatment Laboratory, Fok Ying Tung Graduate School, The Hong Kong University of Science and Technology, Guangzhou, China.
| |
Collapse
|
4
|
Wu T, Sawut A, Simayi R. Preparation and Heavy Metal Adsorption Performance of 2-Aminopyridine-Modified Sodium Alginate/Polyacrylic Acid Hydrogel. Gels 2025; 11:224. [PMID: 40277660 PMCID: PMC12026975 DOI: 10.3390/gels11040224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/18/2025] [Accepted: 03/18/2025] [Indexed: 04/26/2025] Open
Abstract
This study utilized the Schiff base reaction as a chemical bonding method to successfully graft 2-aminopyridine onto oxidized sodium alginate, resulting in the formation of modified sodium alginate (OSM). Subsequently, the OSM/polyacrylic acid (OSM/PAA) hydrogel was synthesized via a thermally initiated free radical polymerization process and evaluated as an adsorbent for the removal of heavy metal ions from wastewater. Comprehensive characterization of the prepared samples was performed using FT-IR, SEM, and TGA. The influence of temperature, pH, adsorbent dosage, contact time, and heavy metal ion concentration on the adsorption capacity of the OSM/PAA adsorbent in simulated wastewater was thoroughly investigated. Additionally, a detailed analysis of the adsorption thermodynamics, kinetics, and mechanisms was conducted. Experimental results indicated that at 25 °C, pH 5.0, and an adsorbent dosage of 0.4 g/L, the maximum adsorption capacities of the OSM/PAA hydrogel for Cu(II), Zn(II), and Ni(II) were 367.64 mg/g, 398.4 mg/g, and 409.83 mg/g, respectively. These findings suggest that the adsorption of heavy metal ions by OSM/PAA is a spontaneous, heterogeneous chemical process with significant potential for practical applications in wastewater treatment.
Collapse
Affiliation(s)
- Tingxiang Wu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, China;
| | - Amatjan Sawut
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, China;
| | - Rena Simayi
- College of Chemical Engineering, Xinjiang University, Urumqi 830017, China
| |
Collapse
|
5
|
Paryav S, Rajabifar N, Rostami A, Abbasi M, Akrami M. Assembling Carbon Nanotube and Graphene in Chitosan/Sodium Alginate Hydrogels for Ion Removal Applications. Polymers (Basel) 2025; 17:353. [PMID: 39940555 PMCID: PMC11819824 DOI: 10.3390/polym17030353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/19/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
Hydrogels have emerged as a promising material for the removal of heavy metal ions from contaminated water owing to their high water absorption capacity and biocompatibility. Despite notable advancements in improving the adsorptive capacity of hydrogels, the demand for a more efficient structure persists. Here, we explore the ion adsorption performance of crosslinked hydrogels based on chitosan and sodium alginate with various ratios of carbon nanotubes (CNT) and graphene platelets (GNP). This study highlights the adsorption of chromium ions and the thermal stability of hydrogels for pure, single-particle, and hybrid nanocomposites. The results depict a uniform microstructure attained when CNT, GNP, or both are implemented into the hydrogel due to the strong interaction of functional moieties. The incorporation of CNT and GNP manipulates the crystalline structure of the hydrogels, lowering their crystallinity by around 28% and 13%, respectively. The synergistic effect of CNT and GNP in hybrid hydrogels raises the decomposition temperature by 16%, indicating a favorable interplay interaction between nanoparticles and polymers. Calculations of the adsorption capacity accentuate such a mutual effect between CNT and GNP in various loads of ion capture from aqueous solutions. Kinetic models fitted to the hydrogel nanocomposites reveal that the pseudo-second-order model aligns better with the experimental data in comparison to the pseudo-first-order and intraparticle diffusion models, addressing the adsorption mechanisms while capturing chromium ions.
Collapse
Affiliation(s)
- Sajad Paryav
- Department of Chemical Engineering, Persian Gulf University, Bushehr P.O. Box 75169-13817, Iran; (S.P.); (M.A.)
| | - Nariman Rajabifar
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology (Tehran Polytechnic), Tehran P.O. Box 15875-4413, Iran;
| | - Amir Rostami
- Department of Chemical Engineering, Persian Gulf University, Bushehr P.O. Box 75169-13817, Iran; (S.P.); (M.A.)
| | - Mohsen Abbasi
- Department of Chemical Engineering, Persian Gulf University, Bushehr P.O. Box 75169-13817, Iran; (S.P.); (M.A.)
| | - Mohammad Akrami
- Department of Engineering, University of Exeter, Exeter EX4 4QF, UK
| |
Collapse
|
6
|
Yao M, Liu J, Liu J, Qi X, Bai E, Yin J, Wu T. Fabrication and characterization of responsible approach for targeted intestinal releasing and enhancing the effectivity of kidney tea saponin upon porous starch /xanthan gum /sodium alginate-based hydrogel bead. Int J Biol Macromol 2024; 279:134974. [PMID: 39181374 DOI: 10.1016/j.ijbiomac.2024.134974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/11/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
To enhance the intestinal targeted release of kidney tea saponins, a simple delivery system was designed through the use of porous starch (PS), sodium alginate (ALG) and xanthan gum (XG). Porous starch was prepared by hydrolysis with a combination of α-amylase and amyloglucosidase and it was characterized by scanning electron microscopy, which revealed the formation of porous structures in the starch granules. The results of one-way optimisation illustrated that this unique delivery system achieved 79.00 ± 1.22 % of the optimal encapsulation rate. The carrier structure was subjected to analysis using Fourier transform infrared spectroscopy and X-ray diffraction. The α-glucosidase inhibition assay showed better inhibition of kidney tea saponin compared to the positive control acarbose. In addition, the effectiveness of this delivery design was confirmed via an in vitro simulated digestion method. It was showed that only a 15.57 ± 1.27 % release rate of kidney tea saponin was observed in the upper gastrointestinal tract, whereas release rates of 17.51 ± 1.29 % and 41.07 ± 0.76 % were observed for xanthan gum/sodium alginate/kidney tea saponin and sodium alginate/kidney tea saponin beads, respectively. It was concluded that the utilization of PS and a xanthan gum/sodium alginate coating represents an efficacious methodology for the development of an intestinal targeted delivery system.
Collapse
Affiliation(s)
- Muzi Yao
- College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jiahui Liu
- College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jiaming Liu
- College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Xinmiao Qi
- College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Erlu Bai
- College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jinjin Yin
- College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Tao Wu
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, China.
| |
Collapse
|
7
|
Moreno-Rivas SC, Ibarra-Gutiérrez MJ, Fernández-Quiroz D, Lucero-Acuña A, Burgara-Estrella AJ, Zavala-Rivera P. pH-Responsive Alginate/Chitosan Gel Films: An Alternative for Removing Cadmium and Lead from Water. Gels 2024; 10:669. [PMID: 39451322 PMCID: PMC11507177 DOI: 10.3390/gels10100669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024] Open
Abstract
Biosorption, a non-expensive and easy method for removing potentially toxic metal ions from water, has been the subject of extensive research. In this context, this study introduces a novel approach using sodium alginate and chitosan, versatile biopolymers that have shown excellent results as biosorbents. The challenge of maintaining high efficiencies and reuse is addressed by developing alginate/chitosan-based films. These films, prepared using solvent casting and crosslinking methods, form a hydrogel network. The alginate/chitosan-based films, obtained using the eco-friendly polyelectrolyte complex method, were characterized by FTIR, SEM, TGA, and DSC. The study of their swelling pH response, adsorption, and desorption behavior revealed promising results. The adsorption of Pb was significantly enhanced by the presence of both biopolymers (98%) in a shorter time (15 min) at pH = 6.5. The adsorption of both ions followed a pseudo-second-order kinetic and the Langmuir isotherm model. The desorption efficiencies for Cd and Pb were 98.8% and 77.6% after five adsorption/desorption cycles, respectively. In conclusion, the alginate/chitosan-based films present a highly effective and novel approach for removing Cd and Pb from water, with a promising potential for reuse, demonstrating their strong potential in potentially toxic metal removal.
Collapse
Affiliation(s)
- Silvia Carolina Moreno-Rivas
- Department of Chemical Engineering and Metallurgy, University of Sonora, Hermosillo 83000, Mexico; (S.C.M.-R.); (M.J.I.-G.); (A.L.-A.)
| | - María José Ibarra-Gutiérrez
- Department of Chemical Engineering and Metallurgy, University of Sonora, Hermosillo 83000, Mexico; (S.C.M.-R.); (M.J.I.-G.); (A.L.-A.)
| | - Daniel Fernández-Quiroz
- Department of Chemical Engineering and Metallurgy, University of Sonora, Hermosillo 83000, Mexico; (S.C.M.-R.); (M.J.I.-G.); (A.L.-A.)
| | - Armando Lucero-Acuña
- Department of Chemical Engineering and Metallurgy, University of Sonora, Hermosillo 83000, Mexico; (S.C.M.-R.); (M.J.I.-G.); (A.L.-A.)
| | | | - Paul Zavala-Rivera
- Department of Chemical Engineering and Metallurgy, University of Sonora, Hermosillo 83000, Mexico; (S.C.M.-R.); (M.J.I.-G.); (A.L.-A.)
| |
Collapse
|
8
|
Shruthi S, Vishalakshi B. Development of banana pseudo stem cellulose fiber based magnetic nanocomposite as an adsorbent for dye removal. Int J Biol Macromol 2024; 278:134877. [PMID: 39163967 DOI: 10.1016/j.ijbiomac.2024.134877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/07/2024] [Accepted: 08/17/2024] [Indexed: 08/22/2024]
Abstract
A hybrid hydrogel nanocomposite derived from cellulose fiber extracted from Banana Pseudo Stem (BPS) was developed as an adsorbent material for wastewater treatment. The hydrogel was developed by graft copolymerization of N-hydroxyethylacrylamide on Cellulose Fiber (BPSCF-g-PHEAAm) with potassium peroxodisulphate (KPS) as an initiator and N, N'-methylene bisacrylamide (MBA) as a crosslinker using microwave irradiation. Magnetic nanoparticles generated by an in-situ method were incorporated into the network structure. Fourier Transform Infrared Spectroscopy (FTIR), Powder X-ray Diffraction (XRD), Thermogravimetric analysis (TGA), Vibrating Sample Magnetometer (VSM), Brunauer-Emmett-Teller analysis (BET), Field Emission Scanning Electron Microscopy (FESEM), and Energy Dispersive Spectrometer (EDS) were employed. The adsorption capacities of hydrogel and its nanocomposite were evaluated using Methylene Blue (MB) and Crystal Violet (CV) as model dyes. The parent gel exhibited the maximum absorption capacity of 235, and 219 mg g-1 towards MB and CV respectively which was enhanced to 320 and 303 mg g-1 for the nanocomposite. Adsorption data were best fitted with the pseudo-second-order kinetic model and the Freundlich isotherm model. Negative ΔG° and positive ΔH° indicated spontaneous and endothermic adsorption. Desorption was effective to an extent of 99 % in the HCl medium suggesting high reusability potential of the developed adsorbent material.
Collapse
Affiliation(s)
- S Shruthi
- Department of Post-Graduate Studies and Research in Chemistry, Mangalore University, Mangalagangothri 574199 (DK), Karnataka, India
| | - B Vishalakshi
- Department of Post-Graduate Studies and Research in Chemistry, Mangalore University, Mangalagangothri 574199 (DK), Karnataka, India.
| |
Collapse
|
9
|
de Araujo CMB, Rios AG, Ferreira AFP, da Motta Sobrinho MA, Rodrigues AE, Ghislandi MG. Agar/graphene oxide hydrogels as nano-bioadsorbents: a comparative analysis for dye removal. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:53629-53641. [PMID: 38055167 DOI: 10.1007/s11356-023-31158-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/17/2023] [Indexed: 12/07/2023]
Abstract
Nano-biocomposite hydrogel samples were produced using graphene oxide (GO) and agar and applied as adsorbents of organic components in water. The hydrogels were prepared by varying the wt% of Agar and GO. The samples were characterized, and batch adsorption experiments evaluated the effect of initial pH, equilibrium isotherms, and kinetics for the adsorption of the anionic dye Acid Orange 7 (AO) and the cationic dyes Nile Blue A (NB) and methylene blue (MB) in an aqueous medium. Overall, both hydrogel samples exhibited satisfactory results for removing NB and MB; however, there was no effective removal for the anionic dye AO. Adsorption equilibrium isotherms were obtained, and Freundlich, Langmuir, and Sips models were fitted to the experimental equilibrium data; moreover, kinetic data were adjusted to driving force models and particle mass balance. The maximum experimental adsorption capacities, 141.48 mg·g-1 (MB) and 284.69 mg·g-1 (NB), were obtained, on a dry basis, for the sample produced with 70 wt% of agar and 30 wt% of GO. Both hydrogels exhibited remarkable regenerative potential for NB and MB, with the adsorption capacity remaining constant, even after five adsorption/desorption cycles.
Collapse
Affiliation(s)
- Caroline Maria Bezerra de Araujo
- Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235, Recife, 50670-901, Brazil.
- Laboratory of Separation and Reaction Engineering, Faculty of Engineering of the University of Porto, R. Dr. Roberto Frias, S/N, 4200-465, Porto, Portugal.
| | - Albertina Gonçalves Rios
- Laboratory of Separation and Reaction Engineering, Faculty of Engineering of the University of Porto, R. Dr. Roberto Frias, S/N, 4200-465, Porto, Portugal
| | - Alexandre Filipe Porfírio Ferreira
- Laboratory of Separation and Reaction Engineering, Faculty of Engineering of the University of Porto, R. Dr. Roberto Frias, S/N, 4200-465, Porto, Portugal
| | | | - Alírio Egídio Rodrigues
- Laboratory of Separation and Reaction Engineering, Faculty of Engineering of the University of Porto, R. Dr. Roberto Frias, S/N, 4200-465, Porto, Portugal
| | - Marcos Gomes Ghislandi
- Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235, Recife, 50670-901, Brazil
- Federal Rural University of Pernambuco, R. Cento E Sessenta E Três, 300, Cabo de Sto. Agostinho, 54518-430, Brazil
| |
Collapse
|
10
|
Tan Z, Chen C, Tang W. Advances in Hydrogels Research for Ion Detection and Adsorption. Crit Rev Anal Chem 2024:1-23. [PMID: 39128001 DOI: 10.1080/10408347.2024.2388817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The continuing development of heavy industry worldwide has led to an exponential increase in the amount of wastewater discharged from factories and entering the natural world in the form of rivers and air. As the top of the food chain in the natural world, toxic ions penetrate the human body through the skin, nose, and a few milligrams of toxic ions can often cause irreversible damage to the human body, so ion detection and adsorption is related to the health and safety of human beings. Hydrogel is a hydrophilic three-dimensional reticulated polymer material that first synthesized by Wichterle and Lim in 1960, which is rich in porous structure and has a variety of active adsorption sites as a new type of adsorbent and can be used to detect ions through the introduction of photonic crystals, DNA, fluorescent probe, and other materials. This review describes several synthetic and natural hydrogels for the adsorption and detection of ions and discusses the mechanism of ion adsorption by hydrogels, and provide a perspective for the future development.
Collapse
Affiliation(s)
- Zhenjiang Tan
- Shanghai Key Laboratory of Engineering Materials Application and Evaluation, School of Energy and Materials, Shanghai Polytechnic University, Shanghai, China
| | - Cheng Chen
- Shanghai Key Laboratory of Engineering Materials Application and Evaluation, School of Energy and Materials, Shanghai Polytechnic University, Shanghai, China
- Shanghai Thermophysical Properties Big Data Professional Technical Service Platform, Shanghai Engineering Research Center of Advanced Thermal Functional Materials, Shanghai, China
| | - Wenwei Tang
- School of Mathematics Physics and Statistics, Shanghai Polytechnic University, Shanghai, China
| |
Collapse
|
11
|
Chen LH, Ban C, Helal MH, El-Bahy SM, Zeinhom M, Song S, Zhao YG, Lu Y. Preparation and modification of polymer microspheres, application in wastewater treatment: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121807. [PMID: 39025011 DOI: 10.1016/j.jenvman.2024.121807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/19/2024] [Accepted: 07/07/2024] [Indexed: 07/20/2024]
Abstract
The removal of various pollutants from water is necessary due to the increasing requirements for the removal of various pollutants from wastewater and the quality of drinking water. Polymer microspheres are regarded as exemplary adsorbent materials due to their high adsorption efficiency, excellent adsorption performance, and ease of handling. Herein, the advantages and disadvantages of different preparation methods, modifications, applications and the current research status of polymer microspheres are summarized at large. Furthermore, the enhanced performance of modified composite microspheres is emphasized, including adsorption efficiency, thermal stability, and significant improvements in physical and chemical properties. Subsequently, the current applications and potential of polymeric microspheres for wastewater treatment, including the removal of inorganic and organic pollutants, heavy metal ions, and other contaminants are summarized. Finally, future research directions for polymer microspheres are proposed, outlining the challenges and solutions associated with the application of polymer microspheres in wastewater treatment.
Collapse
Affiliation(s)
- Li-Hui Chen
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China; College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Cao Ban
- Zhejiang Institute of Geosciences, Zhejiang, 310015, China
| | - Mohamed H Helal
- Department of Chemistry, Faculty of Arts and Science, Northern Border University, Rafha, Saudi Arabia
| | - Salah M El-Bahy
- Department of Chemistry, Turabah University College, Taif University, Turabah, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - M Zeinhom
- Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City, 11884, Cairo, Egypt
| | - Shuang Song
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yong-Gang Zhao
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, China.
| | - Yin Lu
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, China.
| |
Collapse
|
12
|
Fila D, Kołodyńska D. Facile synthesis of eco-friendly alginate-chitosan bio-adsorbent for critical raw materials adsorption: A comprehensive study. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121609. [PMID: 38943744 DOI: 10.1016/j.jenvman.2024.121609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/07/2024] [Accepted: 06/23/2024] [Indexed: 07/01/2024]
Abstract
Sustainable management of critical raw materials is of paramount importance to ensure a steady supply and reduce environmental impact. The application of newly synthesized and environmentally friendly ALG@CS material as a bio-adsorbent for the effective rare earth elements removal from aqueous solution has been presented. The synthesized material underwent FTIR, XPS, EDX, and SEM analysis to determine its suitability for metal uptake. To evaluate the adsorption capacity of ALG@CS for rare earth elements several factors were taken into consideration. These factors included alginate:chitosan ratios, bead size, pH level, composite mass, interaction time, metal ion concentration, and temperature, being all varied during the batch mode evaluation process. Under the optimal conditions, the maximum adsorption capacities were found to be 145.90 mg La(III)/g, 168.44 mg Ce(III)/g, 132.51 mg Pr(III)/g, 128.40 mg Nd(III)/g, 154.36 mg Sm(III)/g, and 165.10 mg Ho(III)/g. The equilibrium data fits well with non-linear three-parameter Sips and Redlich-Peterson isotherm models. The PSO model finds the highest process suitability. The synthesized ALG@CS bio-adsorbent showed excellent regenerative capacity in ten cycles, making it a suitable adsorbent for rare earth elements uptake. The unique bio-adsorbents combination allows for efficient critical raw materials adsorption providing a promising solution for their recovery and recycling.
Collapse
Affiliation(s)
- Dominika Fila
- Department of Inorganic Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, Maria Curie-Skłodowska Sq. 2, 20-031, Lublin, Poland.
| | - Dorota Kołodyńska
- Department of Inorganic Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, Maria Curie-Skłodowska Sq. 2, 20-031, Lublin, Poland
| |
Collapse
|
13
|
Narita Y, Nishi K, Matsuyama T, Ida J. Reusable isotype heterojunction g-C 3N 4/alginate hydrogel spheres for photocatalytic wastewater treatment. RSC Adv 2024; 14:20898-20907. [PMID: 38957583 PMCID: PMC11217724 DOI: 10.1039/d4ra02876g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024] Open
Abstract
Various visible-light-driven photocatalysts have been studied for practical applications in photocatalytic wastewater treatment via solar irradiation. Among them, g-C3N4 has attractive features, including its metal-free and environmentally friendly nature; however, it is prone to charge recombination and has low photocatalytic activity. To solve these problems, isotype heterojunction g-C3N4 was recently developed; however, the methods employed for synthesis suffered from limited reproducibility and efficiency. In this study, isotype heterojunction g-C3N4 was synthesized from various combinations of precursor materials using a planetary ball mill. The isotype heterojunction g-C3N4 synthesized from urea and thiourea showed the highest photocatalytic activity and completely decolorized Rhodamine B (RhB; 10 ppm) in 15 min under visible-light irradiation. Furthermore, to improve recyclability, isotype heterojunction g-C3N4 was immobilized in alginate hydrogel spheres. The isotype heterojunction g-C3N4/alginate hydrogel beads were used in 10 repeated RhB degradation experiments and were able to maintain their initial photocatalytic activity and mechanical strength. These achievements represent an advance towards practical, sustainable photocatalytic wastewater treatment.
Collapse
Affiliation(s)
- Yuito Narita
- Environmental Engineering for Symbiosis, Graduate School of Science and Engineering, Soka University 1-236 Tangi-cho Hachioji-shi Tokyo 192-8577 Japan
| | - Kento Nishi
- Department of Science and Engineering for Sustainable Innovation, Faculty of Science and Engineering, Soka University 1-236 Tangi-cho Hachioji-shi Tokyo 192-8577 Japan
| | - Tatsushi Matsuyama
- Department of Science and Engineering for Sustainable Innovation, Faculty of Science and Engineering, Soka University 1-236 Tangi-cho Hachioji-shi Tokyo 192-8577 Japan
| | - Junichi Ida
- Department of Science and Engineering for Sustainable Innovation, Faculty of Science and Engineering, Soka University 1-236 Tangi-cho Hachioji-shi Tokyo 192-8577 Japan
| |
Collapse
|
14
|
Hamidon TS, Garba ZN, Zango ZU, Hussin MH. Biopolymer-based beads for the adsorptive removal of organic pollutants from wastewater: Current state and future perspectives. Int J Biol Macromol 2024; 269:131759. [PMID: 38679272 DOI: 10.1016/j.ijbiomac.2024.131759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/13/2024] [Accepted: 04/20/2024] [Indexed: 05/01/2024]
Abstract
Among biopolymer-based adsorbents, composites in the form of beads have shown promising results in terms of high adsorption capacity and ease of separation from the effluents. This review addresses the potential of biopolymer-based beads to remediate wastewaters polluted with emerging organic contaminants, for instance dyes, active pharmaceutical ingredients, pesticides, phenols, oils, polyaromatic hydrocarbons, and polychlorinated biphenyls. High adsorption capacities up to 2541.76 mg g-1 for dyes, 392 mg g-1 for pesticides and phenols, 1890.3 mg g-1 for pharmaceuticals, and 537 g g-1 for oils and organic solvents have been reported. The review also attempted to convey to its readers the significance of wastewater treatment through adsorption by providing an overview on decontamination technologies of organic water contaminants. Various preparation methods of biopolymer-based gel beads and adsorption mechanisms involved in the process of decontamination have been summarized and analyzed. Therefore, we believe there is an urge to discuss the current state of the application of biopolymer-based gel beads for the adsorption of organic pollutants from wastewater and future perspectives in this regard since it is imperative to treat wastewater before releasing into freshwater bodies.
Collapse
Affiliation(s)
- Tuan Sherwyn Hamidon
- Materials Technology Research Group (MaTReC), School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia.
| | | | - Zakariyya Uba Zango
- Department of Chemistry, Faculty of Science, Al-Qalam University Katsina, Katsina 820101, Nigeria
| | - M Hazwan Hussin
- Materials Technology Research Group (MaTReC), School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia.
| |
Collapse
|
15
|
Wang C, Wang F, Zhang H, Zhang Y, Zhang C, Zang W, Peng M, Yang Y, Wang S, Xu C, Wu A, Zhang Y. Multifunctional polyaniline modified calcium alginate aerogel membrane with antibacterial, oil-water separation, dye and heavy metal ions removal properties for complex water purification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172058. [PMID: 38552978 DOI: 10.1016/j.scitotenv.2024.172058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/20/2024] [Accepted: 03/26/2024] [Indexed: 04/08/2024]
Abstract
With the rapid development of urbanization, the discharge of industrial wastewater has led to increasingly critical water pollution issues. Additionally, heavy metals, organic dyes, microorganisms and oil pollution often coexist and have persistence and harmfulness. Developing materials that can treat these complex pollutants simultaneously has important practical significance. In this study, a calcium alginate-based aerogel membrane (PANI@CA membrane) was prepared by spraying, polymerization, Ca2+ cross-linking and freeze-drying using aniline and sodium alginate as raw materials. Oil-water emulsion can be separated by PANI@CA membrane only under gravity, and the separation efficiency was as high as 99 %. At the same time, the membrane can effectively intercept or adsorb organic dyes and heavy metal ions. The removal rates of methylene blue and Congo red were above 92 % and 63 % respectively even after ten times of cyclic filtration. The removal rate of Pb2+ was up to 95 %. In addition, PANI@CA membrane shows excellent photothermal conversion ability, and it can effectively kill Staphylococcus aureus under 808 nm laser irradiation. PANI@CA membrane has the advantages of low cost, simple preparation, good stability and high recycling ability, and has potential application prospects in wastewater treatment.
Collapse
Affiliation(s)
- Chaozhen Wang
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, PR China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fangfang Wang
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, PR China; School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Hao Zhang
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, PR China; School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Yuenan Zhang
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, PR China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenguang Zhang
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, PR China; Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China
| | - Wen Zang
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, PR China; Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China
| | - Minjie Peng
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, PR China; Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China
| | - Yiyu Yang
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, PR China; Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China
| | - Shiwei Wang
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, PR China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chen Xu
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, PR China; Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, PR China; Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yujie Zhang
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, PR China; Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
16
|
Aljeboree AM, Alkaim AF. Studying removal of anionic dye by prepared highly adsorbent surface hydrogel nanocomposite as an applicable for aqueous solution. Sci Rep 2024; 14:9102. [PMID: 38643156 PMCID: PMC11032352 DOI: 10.1038/s41598-024-59545-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 02/05/2024] [Indexed: 04/22/2024] Open
Abstract
In this study, a Sodium alginate-g-poly (acrylamide-clay)/TiO2 hydrogel nanocomposite [SA-g-p(AM-Bn)/TiO2] was synthesized using the biopolymer sodium alginate (SA), acrylamide (AM), and bentonite clay (Bn) as hybrid materials embedded with titanium dioxide nanoparticles (TiO2NPs) for the removal of toxic Congo Red (CR) dye from an aqueous solution. The [SA-g-p(AM-Bn)/TiO2] nanocomposite has been described on the basis of thermal stability, morphological analysis, estimation of functional group, and crystalline/amorphous character by TGA, EFSEM/EDX, TEM, FT-IR, and XRD analysis, respectively. The effects of operational parameters toward the CR dye adsorption on [SA-g-p(AM-Bn)/TiO2], including contact time, adsorbent dosage, initial concentration, initial pH, and temperature were investigated. The maximum adsorption efficiency was found to be 185.12 mg/g for [SA-g-p(AM-Bn)/TiO2] in 100 mg/L of solution CR at pH 6.0 within 1 h. The equilibrium isotherms, kinetics, and thermodynamics parameters of adsorption were examined, and results showed that the isotherm fitted the Freundlich model and the kinetics adsorption model of CR followed pseudo-first-order, thus indicating physisorption of anionic-CR onto the sorbent due to the development of an electrostatic attraction bond. Thermodynamic parameters for [SA-g-p(AM-Bn)/TiO2] have values (ΔG and ΔH) reflecting the spontaneous and endothermic nature of the adsorption processes. Moreover, [SA-g-p(AM-Bn)/TiO2] presented outstanding excellent reusability and recyclability with a relatively best removal percentage as compared to [SA-g-p(AM-Bn)] and suggested their applicability towards the textile industry and water purification purposes.
Collapse
Affiliation(s)
- Aseel M Aljeboree
- Department of Chemistry, College of Sciences for Girls, University of Babylon, Hilla, 5001, Iraq.
| | - Ayad F Alkaim
- Department of Chemistry, College of Sciences for Girls, University of Babylon, Hilla, 5001, Iraq
| |
Collapse
|
17
|
Chen F, Zhao Y, Zhao H, Zhou X, Liu X. Heavy Metal Removal from Wastewater Using Poly(Gamma-Glutamic Acid)-Based Hydrogel. Gels 2024; 10:259. [PMID: 38667678 PMCID: PMC11049372 DOI: 10.3390/gels10040259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/05/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
The removal of toxic heavy metal ions from wastewater is of great significance in the protection of the environment and human health. Poly(gamma-glutamic acid) (PGA) is a non-toxic, biodegradable, and highly water-soluble polymer possessing carboxyl and imino functional groups. Herein, water-insoluble PGA-based hydrogels were prepared, characterized, and investigated as heavy metal adsorbents. The prepared hydrogels were recyclable and exhibited good adsorption effects on heavy metal ions including Cu2+, Cr6+, and Zn2+. The effects of adsorption parameters including temperature, solution pH, initial concentration of metal ions, and contact time on the adsorption capacity of the hydrogel for Cu2+ were investigated. The adsorption was a spontaneous and exothermic process. The process followed the pseudo-first-order kinetic model and Langmuir isotherm model, implying a physical and monolayer adsorption. The adsorption mechanisms investigation exhibited that Cu2+ adsorbed on the hydrogel via electrostatic interactions with anionic carboxylate groups of PGA in addition to the coordination interactions with the -NH groups. Importantly, the PGA hydrogel exhibited good reusability and the adsorption capability for Cu2+ remained high after five consecutive cycles. The properties of PGA hydrogel make it a potential candidate material for heavy metal ion removal in wastewater treatment.
Collapse
Affiliation(s)
- Fujie Chen
- School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, China; (F.C.)
- Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing & Finishing, Wuhan Textile University, Wuhan 430200, China
| | - Yanbin Zhao
- School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, China; (F.C.)
| | - Hang Zhao
- School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, China; (F.C.)
| | - Xuan Zhou
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Xiuying Liu
- School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, China; (F.C.)
| |
Collapse
|
18
|
Niculescu AG, Mihaiescu B, Mihaiescu DE, Hadibarata T, Grumezescu AM. An Updated Overview of Magnetic Composites for Water Decontamination. Polymers (Basel) 2024; 16:709. [PMID: 38475395 DOI: 10.3390/polym16050709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Water contamination by harmful organic and inorganic compounds seriously burdens human health and aquatic life. A series of conventional water purification methods can be employed, yet they come with certain disadvantages, including resulting sludge or solid waste, incomplete treatment process, and high costs. To overcome these limitations, attention has been drawn to nanotechnology for fabricating better-performing adsorbents for contaminant removal. In particular, magnetic nanostructures hold promise for water decontamination applications, benefiting from easy removal from aqueous solutions. In this respect, numerous researchers worldwide have reported incorporating magnetic particles into many composite materials. Therefore, this review aims to present the newest advancements in the field of magnetic composites for water decontamination, describing the appealing properties of a series of base materials and including the results of the most recent studies. In more detail, carbon-, polymer-, hydrogel-, aerogel-, silica-, clay-, biochar-, metal-organic framework-, and covalent organic framework-based magnetic composites are overviewed, which have displayed promising adsorption capacity for industrial pollutants.
Collapse
Affiliation(s)
- Adelina-Gabriela Niculescu
- Research Institute of the University of Bucharest-ICUB, University of Bucharest, 050657 Bucharest, Romania
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, Gh. Polizu St. 1-7, 060042 Bucharest, Romania
| | - Bogdan Mihaiescu
- Research Institute of the University of Bucharest-ICUB, University of Bucharest, 050657 Bucharest, Romania
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, Gh. Polizu St. 1-7, 060042 Bucharest, Romania
| | - Dan Eduard Mihaiescu
- Department of Organic Chemistry, Politehnica University of Bucharest, 011061 Bucharest, Romania
| | - Tony Hadibarata
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, Gh. Polizu St. 1-7, 060042 Bucharest, Romania
- Environmental Engineering Program, Faculty of Engineering and Science, Curtin University, Miri 98009, Malaysia
| | - Alexandru Mihai Grumezescu
- Research Institute of the University of Bucharest-ICUB, University of Bucharest, 050657 Bucharest, Romania
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, Gh. Polizu St. 1-7, 060042 Bucharest, Romania
| |
Collapse
|
19
|
Mosaffa E, Patel D, Ramsheh NA, Patel RI, Banerjee A, Ghafuri H. Bacterial cellulose microfiber reinforced hollow chitosan beads decorated with cross-linked melamine plates for the removal of the Congo red. Int J Biol Macromol 2024; 254:127794. [PMID: 37923035 DOI: 10.1016/j.ijbiomac.2023.127794] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/12/2023] [Accepted: 10/29/2023] [Indexed: 11/07/2023]
Abstract
In this epoch, the disposal of multipollutant wastewater inevitably compromises life on Earth. In this study, the inclusion of Bacterial cellulose microfilaments reinforced chitosan adorned with melamine 2D plates creates a unique 3D bead structure for anionic dye removal. The establishment of an imine network between melamine and chitosan, along with the quantity of inter- and intra‑hydrogen bonds, boosts the specific surface area to 106.68 m2.g-1. Removal efficiency and in-depth comprehension of synthesized adsorbent characteristics were assessed using batch adsorption experiments and characterization methods. Additionally, pH, adsorbent quantity, time, beginning concentration of solution, and temperature were analyzed and optimized as adsorption essential factors. Owing to the profusion of hydroxyl, amine, imine functional groups and aromatic rings, the synthesized adsorbent intimated an astonishing maximum adsorption capacity of 3168 mg.g-1 in Congo red dye removal at pH 5.5. Based on the kinetic evaluation, pseudo-second-order (R2 = 0.999), pseudo-first-order (R2 = 0.964), and Avrami (R2 = 0.986) models were well-fitted with the kinetic results among the seven investigated models. The isothermal study reveals that the adsorption mechanism predominantly follows the Redlich-Peterson (R2 = 0.996), Koble-Carrigan, and Hill isotherm models (R2 = 0.994). The developed semi-natural sorbent suggests high adsorption capacity, which results from its exceptional structure, presenting promising implications for wastewater treatment.
Collapse
Affiliation(s)
- Elias Mosaffa
- Dr. K. C. Patel R & D Centre, Charotar University of Science and Technology (CHARUSAT), 388 421 Anand, Gujrat, India; P D Patel Institute of Applied Sciences, Charotar University of Science and Technology (CHARUSAT), 388 421, Anand, Gujrat, India; Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, 16846 Tehran, Iran
| | - Dhruvi Patel
- Dr. K. C. Patel R & D Centre, Charotar University of Science and Technology (CHARUSAT), 388 421 Anand, Gujrat, India; P D Patel Institute of Applied Sciences, Charotar University of Science and Technology (CHARUSAT), 388 421, Anand, Gujrat, India
| | - Nasim Amiri Ramsheh
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, 16846 Tehran, Iran
| | - Rishikumar Indravadan Patel
- Dr. K. C. Patel R & D Centre, Charotar University of Science and Technology (CHARUSAT), 388 421 Anand, Gujrat, India; P D Patel Institute of Applied Sciences, Charotar University of Science and Technology (CHARUSAT), 388 421, Anand, Gujrat, India
| | - Atanu Banerjee
- Dr. K. C. Patel R & D Centre, Charotar University of Science and Technology (CHARUSAT), 388 421 Anand, Gujrat, India.
| | - Hossein Ghafuri
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, 16846 Tehran, Iran
| |
Collapse
|
20
|
Radoor S, Karayil J, Jayakumar A, Kandel DR, Kim JT, Siengchin S, Lee J. Recent advances in cellulose- and alginate-based hydrogels for water and wastewater treatment: A review. Carbohydr Polym 2024; 323:121339. [PMID: 37940239 DOI: 10.1016/j.carbpol.2023.121339] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 11/10/2023]
Abstract
From the environmental perspective, it is essential to develop cheap, eco-friendly, and highly efficient materials for water and wastewater treatment. In this regard, hydrogels and hydrogel-based composites have been widely employed to mitigate global water pollution as this methodology is simple and free from harmful by-products. Notably, alginate and cellulose, which are natural carbohydrate polymers, have gained great attention for their availability, price competitiveness, excellent biodegradability, biocompatibility, hydrophilicity, and superior physicochemical performance in water treatment. This review outlined the recent progress in developing and applying alginate- and cellulose-based hydrogels to remove various pollutants such as dyes, heavy metals, oils, pharmaceutical contaminants, and pesticides from wastewater streams. This review also highlighted the effects of various physical or chemical methods, such as crosslinking, grafting, the addition of fillers, nanoparticle incorporation, and polymer blending, on the physiochemical and adsorption properties of hydrogels. In addition, this review covered the alginate- and cellulose-based hydrogels' current limitations such as low mechanical performance and poor stability, while presenting strategies to improve the drawbacks of the hydrogels. Lastly, we discussed the prospects and future directions of alginate- and cellulose-based hydrogels. We hope this review provides valuable insights into the efficient preparations and applications of hydrogels.
Collapse
Affiliation(s)
- Sabarish Radoor
- Department of Polymer-Nano Science and Technology, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Republic of Korea
| | - Jasila Karayil
- Department of Applied Science, Government Engineering College West Hill, Kozhikode, Kerala, India
| | - Aswathy Jayakumar
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Dharma Raj Kandel
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Republic of Korea
| | - Jun Tae Kim
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Suchart Siengchin
- Materials and Production Engineering, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut's University of Technology North Bangkok, Bangkok 10800, Thailand
| | - Jaewoo Lee
- Department of Polymer-Nano Science and Technology, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Republic of Korea; Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Republic of Korea; Department of JBNU-KIST Industry-Academia Convergence Research, Polymer Materials Fusion Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Republic of Korea.
| |
Collapse
|
21
|
Vassalini I, Maddaloni M, Depedro M, De Villi A, Ferroni M, Alessandri I. From Water for Water: PEDOT:PSS-Chitosan Beads for Sustainable Dyes Adsorption. Gels 2023; 10:37. [PMID: 38247760 PMCID: PMC10815287 DOI: 10.3390/gels10010037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
This study investigates the viability of developing chitosan-based hydrogels derived from waste shrimp shells for the removal of methylene blue and methyl orange, thereby transforming food waste into advanced materials for environmental remediation. Despite chitosan-based adsorbents being conventionally considered ideal for the removal of negative pollutants, through targeted functionalization with poly(3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS) at varying concentrations, we successfully enhance the hydrogels' efficacy in also adsorbing positively charged adsorbates. Specifically, the incorporation of PEDOT:PSS at a concentration of 10% v/v emerges as a critical factor in facilitating the robust adsorption of dyes. In the case of the anionic dye methyl orange (MO, 10-5 M), the percentage of removed dye passed from 47% (for beads made of only chitosan) to 66% (for beads made of chitosan-PEDOT:PSS 10%), while, in the case of the cationic dye methylene blue (MB, 10-5 M), the percentage of removed dye passed from 52 to 100%. At the basis of this enhancement, there is an adsorption mechanism resulting from the interplay between electrostatic forces and π-π interactions. Furthermore, the synthesized functionalized hydrogels exhibit remarkable stability and reusability (at least five consecutive cycles) in the case of MB, paving the way for the development of cost-effective and sustainable adsorbents. This study highlights the potential of repurposing waste materials for environmental benefits, introducing an innovative approach to address the challenges regarding water pollution.
Collapse
Affiliation(s)
- Irene Vassalini
- Sustainable Chemistry and Materials Laboratory, Department of Information Engineering, University of Brescia, Via Branze 38, 25123 Brescia, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Research Unit of Brescia, Via Branze 38, 25123 Brescia, Italy
- CNR-INO, Research Unit of Brescia, Via Branze 38, 25123 Brescia, Italy
| | - Marina Maddaloni
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Research Unit of Brescia, Via Branze 38, 25123 Brescia, Italy
- Chemistry for Technology Laboratory, Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze 38, 25123 Brescia, Italy
| | - Mattia Depedro
- Sustainable Chemistry and Materials Laboratory, Department of Information Engineering, University of Brescia, Via Branze 38, 25123 Brescia, Italy
| | - Alice De Villi
- Sustainable Chemistry and Materials Laboratory, Department of Information Engineering, University of Brescia, Via Branze 38, 25123 Brescia, Italy
| | - Matteo Ferroni
- Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, Via Branze 43, 25123 Brescia, Italy
- CNR-IMM Bologna, Via Gobetti 101, 40129 Bologna, Italy
| | - Ivano Alessandri
- Sustainable Chemistry and Materials Laboratory, Department of Information Engineering, University of Brescia, Via Branze 38, 25123 Brescia, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Research Unit of Brescia, Via Branze 38, 25123 Brescia, Italy
- CNR-INO, Research Unit of Brescia, Via Branze 38, 25123 Brescia, Italy
| |
Collapse
|
22
|
Teijido R, Zhang Q, Blanco M, Pérez-Álvarez L, Lanceros-Méndez S, Vilas-Vilela JL, Ruiz-Rubio L. Graphene-Enhanced Methacrylated Alginate Gel Films for Sustainable Dye Removal in Water Purification. Gels 2023; 10:25. [PMID: 38247748 PMCID: PMC10815123 DOI: 10.3390/gels10010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/24/2023] [Accepted: 12/26/2023] [Indexed: 01/23/2024] Open
Abstract
Self-standing nanocomposite films were prepared by three-dimensional UV-induced radical copolymerization of methacrylated alginate (MALG) with acrylic acid (AA) and reinforced with graphene oxide (GO) to improve both mechanical strength and dye adsorption capacity in wastewater decontamination operations. Dynamic mechanical-thermal analysis revealed variations in storage modulus: the higher the GO content, the higher the storage modulus (E') values. Also, the higher the temperature (associated with a lower and lower water content of films), the larger values of E' for the films of the same composition (E'(25 °C) = 676.6-1538.7 MPa; E'(100 °C) = 886.9-2066.6 MPa), providing insights into the compatibility between GO and the MALG/AA matrix, as well as, assessing the improvement in the nanocomposite's final mechanical properties. These crosslinked films in a dry state exhibited rapid water uptake and relatively short drying times (ca. 30 min at room temperature for the MALG/AA/GO composites) resulting from the swelling-drying studies and water contact angle measurements. The efficacy of methylene blue removal from water assessed via UV-VIS spectrometry revealed excellent results, expressed as an adsorption yield of 70-80% and 85-98% after 30 h and 258 h, respectively, of immersion time of films into an MB aqueous solution of 12.5 mg/L (as the contaminated water model). The reusability of the same films was evaluated by consecutive extraction processes of MB from the composite membranes when the content of desorbed dye was also spectrophotometrically monitored and conducted in acidic conditions (HCl aqueous solutions of pH 2). Overall, the introduction of GO in the developed self-standing MALG/AA nanocomposite films exhibited enhanced mechanical properties and increased efficiency for dye removal applications. Their great reutilization potential was highlighted by low drying times and a good ability to release the dye initially adsorbed. Thus, the prepared films could be suitable materials for sustainable and effective water treatment technologies.
Collapse
Affiliation(s)
- Rubén Teijido
- Macromolecular Chemistry Group (LQM), Physical Chemistry Department, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (R.T.); (L.P.-Á.)
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; (Q.Z.); (S.L.-M.)
| | - Qi Zhang
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; (Q.Z.); (S.L.-M.)
| | - Miren Blanco
- Tekniker, Basque Research and Technology Alliance (BRTA), 20600 Eibar, Spain;
| | - Leyre Pérez-Álvarez
- Macromolecular Chemistry Group (LQM), Physical Chemistry Department, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (R.T.); (L.P.-Á.)
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; (Q.Z.); (S.L.-M.)
| | - Senentxu Lanceros-Méndez
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; (Q.Z.); (S.L.-M.)
| | - José Luis Vilas-Vilela
- Macromolecular Chemistry Group (LQM), Physical Chemistry Department, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (R.T.); (L.P.-Á.)
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; (Q.Z.); (S.L.-M.)
| | - Leire Ruiz-Rubio
- Macromolecular Chemistry Group (LQM), Physical Chemistry Department, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (R.T.); (L.P.-Á.)
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; (Q.Z.); (S.L.-M.)
| |
Collapse
|
23
|
Ayiotis A, Georgiou E, Ioannou PS, Pashalidis I, Krasia-Christoforou T. 3D Composite U(VI) Adsorbents Based on Alginate Hydrogels and Oxidized Biochar Obtained from Luffa cylindrica. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6577. [PMID: 37834714 PMCID: PMC10574392 DOI: 10.3390/ma16196577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023]
Abstract
3D naturally derived composites consisting of calcium alginate hydrogels (CA) and oxidized biochar obtained from Luffa cylindrica (ox-LC) were synthesized and further evaluated as adsorbents for the removal of U(VI) from aqueous media. Batch-type experiments were conducted to investigate the effect of various physicochemical parameters on the adsorption performance of materials. The maximum adsorption capacity (qmax) was 1.7 mol kg-1 (404.6 mg·g-1) at pH 3.0 for the CA/ox-LC with a 10% wt. ox-LC content. FTIR spectroscopy indicated the formation of inner-sphere complexes between U(VI) and the surface-active moieties existing on both CA and ox-LC, while thermodynamic data revealed that the adsorption process was endothermic and entropy-driven. The experimental data obtained from the adsorption experiments were well-fitted by the Langmuir and Freundlich models. Overall, the produced composites exhibited enhanced adsorption efficiency against U(VI), demonstrating their potential use as effective adsorbents for the recovery of uranium ions from industrial effluents and seawater.
Collapse
Affiliation(s)
- Andreas Ayiotis
- Department of Mechanical and Manufacturing Engineering, University of Cyprus, 1 Panepistimiou Avenue, 2109, Aglantzia, P.O. Box 20537, 1678 Nicosia, Cyprus; (A.A.); (P.S.I.)
| | - Efthalia Georgiou
- Department of Chemistry, University of Cyprus, 1 Panepistimiou Avenue, 2109, Aglantzia, P.O. Box 20537, 1678 Nicosia, Cyprus; (E.G.); (I.P.)
| | - Panagiotis S. Ioannou
- Department of Mechanical and Manufacturing Engineering, University of Cyprus, 1 Panepistimiou Avenue, 2109, Aglantzia, P.O. Box 20537, 1678 Nicosia, Cyprus; (A.A.); (P.S.I.)
| | - Ioannis Pashalidis
- Department of Chemistry, University of Cyprus, 1 Panepistimiou Avenue, 2109, Aglantzia, P.O. Box 20537, 1678 Nicosia, Cyprus; (E.G.); (I.P.)
| | - Theodora Krasia-Christoforou
- Department of Mechanical and Manufacturing Engineering, University of Cyprus, 1 Panepistimiou Avenue, 2109, Aglantzia, P.O. Box 20537, 1678 Nicosia, Cyprus; (A.A.); (P.S.I.)
| |
Collapse
|
24
|
Ali A, Khan S, Garg U, Luqman M, Bhagwath SS, Azim Y. Chitosan-based hydrogel system for efficient removal of Cu[II] and sustainable utilization of spent adsorbent as a catalyst for environmental applications. Int J Biol Macromol 2023; 247:125805. [PMID: 37453639 DOI: 10.1016/j.ijbiomac.2023.125805] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/23/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
The growing requirement for clean potable water requires sustainable methods of eliminating heavy metal ions and other organic contaminants. Herein, we synthesized a novel dual-purpose magnetically separable chitosan-based hydrogel system (CSGO-R@IO) that can efficiently remove toxic Cu2+ pollutants from water. FT-IR, XRD, SEM-EDX, VSM, XPS analyses were used to characterize the synthesized hydrogel. The CSGO-R@IO hydrogel showed high swelling capacity (1036.06 %), prominent adsorption capacity for Cu2+ ions (119.5 mg/g), and good recyclability up to four cycles. The adsorption data of Cu+2 ions on hydrogel fitted better to the Langmuir isotherm model (R2 = 0.9942), indicating spontaneous monolayer adsorption of Cu2+ ions on a homogenous surface. The adsorption kinetic studies fitted better with the pseudo-second-order model (R2 = 0.9992), suggesting that the adsorption process was controlled by chemisorption. We also showed a sustainable way to convert harmful Cu2+ pollutants into valuable Cu nanoparticles for catalysis, and Cu nanoparticles loaded hydrogel (CSGO-R@IO/Cu) had high catalytic activity. Hence, building attractive multipurpose hydrogel systems will give us new ideas about how to design and use new adsorbents to clean water in real life. They will also help in recycle metals (copper and maybe others) to conserve resources.
Collapse
Affiliation(s)
- Anwer Ali
- Department of Applied Chemistry, Zakir Husain College of Engineering & Technology, Faculty of Engineering & Technology, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Saif Khan
- Department of Basic Dental and Medical Sciences, College of Dentistry, Ha'il University, Ha'il 2440, Saudi Arabia.
| | - Utsav Garg
- Department of Applied Chemistry, Zakir Husain College of Engineering & Technology, Faculty of Engineering & Technology, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Mohammad Luqman
- Department of Chemical Engineering, College of Engineering, Taibah University, 4430, Yanbu 46421, Saudi Arabia
| | - Sundeep S Bhagwath
- Department of Basic Dental and Medical Sciences, College of Dentistry, Ha'il University, Ha'il 2440, Saudi Arabia
| | - Yasser Azim
- Department of Applied Chemistry, Zakir Husain College of Engineering & Technology, Faculty of Engineering & Technology, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India.
| |
Collapse
|
25
|
Yáñez O, Alegría-Arcos M, Suardiaz R, Morales-Quintana L, Castro RI, Palma-Olate J, Galarza C, Catagua-González Á, Rojas-Pérez V, Urra G, Hernández-Rodríguez EW, Bustos D. Calcium-Alginate-Chitosan Nanoparticle as a Potential Solution for Pesticide Removal, a Computational Approach. Polymers (Basel) 2023; 15:3020. [PMID: 37514411 PMCID: PMC10383139 DOI: 10.3390/polym15143020] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Pesticides have a significant negative impact on the environment, non-target organisms, and human health. To address these issues, sustainable pest management practices and government regulations are necessary. However, biotechnology can provide additional solutions, such as the use of polyelectrolyte complexes to encapsulate and remove pesticides from water sources. We introduce a computational methodology to evaluate the capture capabilities of Calcium-Alginate-Chitosan (CAC) nanoparticles for a broad range of pesticides. By employing ensemble-docking and molecular dynamics simulations, we investigate the intermolecular interactions and absorption/adsorption characteristics between the CAC nanoparticles and selected pesticides. Our findings reveal that charged pesticide molecules exhibit more than double capture rates compared to neutral counterparts, owing to their stronger affinity for the CAC nanoparticles. Non-covalent interactions, such as van der Waals forces, π-π stacking, and hydrogen bonds, are identified as key factors which stabilized the capture and physisorption of pesticides. Density profile analysis confirms the localization of pesticides adsorbed onto the surface or absorbed into the polymer matrix, depending on their chemical nature. The mobility and diffusion behavior of captured compounds within the nanoparticle matrix is assessed using mean square displacement and diffusion coefficients. Compounds with high capture levels exhibit limited mobility, indicative of effective absorption and adsorption. Intermolecular interaction analysis highlights the significance of hydrogen bonds and electrostatic interactions in the pesticide-polymer association. Notably, two promising candidates, an antibiotic derived from tetracycline and a rodenticide, demonstrate a strong affinity for CAC nanoparticles. This computational methodology offers a reliable and efficient screening approach for identifying effective pesticide capture agents, contributing to the development of eco-friendly strategies for pesticide removal.
Collapse
Affiliation(s)
- Osvaldo Yáñez
- Núcleo de Investigación en Data Science, Facultad de Ingeniería y Negocios, Universidad de las Américas, Santiago 7500000, Chile
| | - Melissa Alegría-Arcos
- Núcleo de Investigación en Data Science, Facultad de Ingeniería y Negocios, Universidad de las Américas, Santiago 7500000, Chile
| | - Reynier Suardiaz
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Luis Morales-Quintana
- Multidisciplinary Agroindustry Research Laboratory, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca 3400000, Chile
| | - Ricardo I Castro
- Multidisciplinary Agroindustry Research Laboratory, Carrera de Ingeniería en Construcción, Instituto de Ciencias Químicas Aplicadas, Universidad Autónoma de Chile, Talca 3400000, Chile
| | | | - Christian Galarza
- Escuela Superior Politécnica del Litoral, Guayaquil EC090903, Ecuador
| | | | - Víctor Rojas-Pérez
- Doctorado en Biotecnología Traslacional, Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Talca 3480094, Chile
| | - Gabriela Urra
- Laboratorio de Bioinformática y Química Computacional, Departamento de Medicina Traslacional, Facultad de Medicina, Universidad Católica del Maule, Talca 3480094, Chile
| | - Erix W Hernández-Rodríguez
- Laboratorio de Bioinformática y Química Computacional, Departamento de Medicina Traslacional, Facultad de Medicina, Universidad Católica del Maule, Talca 3480094, Chile
- Unidad de Bioinformática Clínica, Centro Oncológico, Facultad de Medicina, Universidad Católica del Maule, Talca 3480094, Chile
| | - Daniel Bustos
- Laboratorio de Bioinformática y Química Computacional, Departamento de Medicina Traslacional, Facultad de Medicina, Universidad Católica del Maule, Talca 3480094, Chile
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado Universidad Católica del Maule, Talca 3460000, Chile
| |
Collapse
|
26
|
Tu NTT, Vo TLA, Ho TTT, Dang KPT, Le VD, Minh PN, Dang CH, Tran VT, Dang VS, Chi TTK, Vu-Quang H, Fajgar R, Nguyen TLH, Doan VD, Nguyen TD. Silver nanoparticles loaded on lactose/alginate: in situ synthesis, catalytic degradation, and pH-dependent antibacterial activity. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2023; 14:781-792. [PMID: 37441001 PMCID: PMC10334209 DOI: 10.3762/bjnano.14.64] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023]
Abstract
We present the in situ synthesis of silver nanoparticles (AgNPs) through ionotropic gelation utilizing the biodegradable saccharides lactose (Lac) and alginate (Alg). The lactose reduced silver ions to form AgNPs. The crystallite structure of the nanocomposite AgNPs@Lac/Alg, with a mean size of 4-6 nm, was confirmed by analytical techniques. The nanocomposite exhibited high catalytic performance in degrading the pollutants methyl orange and rhodamine B. The antibacterial activity of the nanocomposite is pH-dependent, related to the alterations in surface properties of the nanocomposite at different pH values. At pH 6, the nanocomposite demonstrated the highest antibacterial activity. These findings suggest that this nanocomposite has the potential to be tailored for specific applications in environmental and medicinal treatments, making it a highly promising material.
Collapse
Affiliation(s)
- Nguyen Thi Thanh Tu
- Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City, Vietnam
| | - T Lan-Anh Vo
- Institute of Chemical Technology, Vietnam Academy of Science and Technology, 1A TL29 Street, District 12, Ho Chi Minh City 700000, Vietnam
| | - T Thu-Trang Ho
- Institute of Chemical Technology, Vietnam Academy of Science and Technology, 1A TL29 Street, District 12, Ho Chi Minh City 700000, Vietnam
| | - Kim-Phuong T Dang
- Institute of Chemical Technology, Vietnam Academy of Science and Technology, 1A TL29 Street, District 12, Ho Chi Minh City 700000, Vietnam
| | - Van-Dung Le
- Institute of Chemical Technology, Vietnam Academy of Science and Technology, 1A TL29 Street, District 12, Ho Chi Minh City 700000, Vietnam
| | - Phan Nhat Minh
- Institute of Chemical Technology, Vietnam Academy of Science and Technology, 1A TL29 Street, District 12, Ho Chi Minh City 700000, Vietnam
| | - Chi-Hien Dang
- Institute of Chemical Technology, Vietnam Academy of Science and Technology, 1A TL29 Street, District 12, Ho Chi Minh City 700000, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 11000, Vietnam
| | - Vinh-Thien Tran
- Faculty of Environment Ho Chi Minh City University of Natural Resources and Environment, 236B Le Van Sy Street, Tan Binh District, Ho Chi Minh City 700000, Vietnam
| | - Van-Su Dang
- Department of Chemical Technology, Ho Chi Minh City University of Food Industry, Ho Chi Minh City 700000, Vietnam
| | - Tran Thi Kim Chi
- Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc 14 Viet, Cau Giay District, Hanoi 11000, Vietnam
| | - Hieu Vu-Quang
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam
| | - Radek Fajgar
- Institute of Chemical Process Fundamentals of the AS CR Prague, Czech Republic
| | - Thi-Lan-Huong Nguyen
- Institute of Biotechnology and Food Technology, Industrial University of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Van-Dat Doan
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Thanh-Danh Nguyen
- Institute of Chemical Technology, Vietnam Academy of Science and Technology, 1A TL29 Street, District 12, Ho Chi Minh City 700000, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 11000, Vietnam
| |
Collapse
|
27
|
Banerjee P, Dinda P, Kar M, Uchman M, Mandal TK. Ionic Liquid Cross-Linked High-Absorbent Polymer Hydrogels: Kinetics of Swelling and Dye Adsorption. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37399547 DOI: 10.1021/acs.langmuir.3c00808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
The use of polymer gels for the removal of toxic chemicals from wastewater is an important area in terms of both academic and industrial research. This work presents a simple approach to the fabrication of chemically cross-linked cationic hydrogel adsorbents using designed ionic liquid-based cross-linkers and their successful use in the removal of organic dyes. Two different ionic liquid cross-linkers, [VIm-4VBC][Cl] (ILA)/[DMAEMA-4VBC][Cl] (ILB), are synthesized by the simple nucleophilic substitution reaction of 4-vinylbenzyl chloride (4VBC) separately with 1-vinylimidazole (VIm) and 2-(dimethylamino)ethyl methacrylate (DMAEMA). Cross-linked poly(acrylamide) (CPAam) and poly(2-hydroxyethyl methacrylate) (CPHEMA) hydrogels are then prepared from the corresponding monomers and as-synthesized cross-linkers (ILA and ILB) by free radical polymerization in the presence of a redox initiator combining ammonium persulfate (APS) and N,N,N',N'-tetramethylethylenediamine (TEMED). The dried CPAam and CPHEMA xerogels exhibit macroporous morphology and high thermal stability. The hydrogel samples exhibit high swelling behavior, and the diffusion of water molecules into the hydrogels follows pseudo-Fickian kinetics. The cationic cross-linking sites in the hydrogel networks allow preferable binding with anionic dyes, and these dye uptake capacities are determined using different model anionic dyes via UV-vis spectroscopy. The dye adsorption onto these hydrogels follows a pseudo-second-order kinetic model. The adsorption mechanism is also analyzed by employing intraparticle diffusion and Boyd kinetic models. The relationship between the maximum equilibrium adsorption capacity (qm) of the hydrogels for eosin B (EB) dye and the equilibrium EB concentration can be better described by Langmuir and Freundlich isotherm models, and the estimated qm using the Langmuir isotherm can reach more than 100 mg g-1. The cross-linked hydrogels can be easily regenerated and have a recycling efficiency of >80% for up to three consecutive dye adsorption-desorption cycles, which is promising for their use in wastewater treatment.
Collapse
Affiliation(s)
- Palash Banerjee
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Priyanka Dinda
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Mahuya Kar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Mariusz Uchman
- Department of Physical and Macromolecular Chemistry, Charles University, Hlavova 2030, 12843 Prague 2, Czech Republic
| | - Tarun K Mandal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
28
|
Wang M, Chen Y, Su W, Zhao K, Feng X. Sodium alginate encapsulated nano zero valent iron loaded in aminated magnesium hydroxide for effective removal of chromium. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
29
|
Zhao C, Liu G, Tan Q, Gao M, Chen G, Huang X, Xu X, Li L, Wang J, Zhang Y, Xu D. Polysaccharide-based biopolymer hydrogels for heavy metal detection and adsorption. J Adv Res 2023; 44:53-70. [PMID: 36725194 PMCID: PMC9936414 DOI: 10.1016/j.jare.2022.04.005] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/14/2022] [Accepted: 04/09/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND With rapid development in agriculture and industry, water polluted with heavy metallic ions has come to be a serious problem. Adsorption-based methods are simple, efficient, and broadly used to eliminate heavy metals. Conventional adsorption materials have the problems of secondary environmental contamination. Hydrogels are considered effective adsorbents, and those prepared from biopolymers are biocompatible, biodegradable, non-toxic, safe to handle, and increasingly used to adsorb heavy metal ions. AIM OF REVIEW The natural origin and easy degradability of biopolymer hydrogels make them potential for development in environmental remediation. Its water absorption capacity enables it to efficiently adsorb various pollutants in the aqueous environment, and its internal pore channels increase the specific surface area for adsorption, which can provide abundant active binding sites for heavy metal ions through chemical modification. KEY SCIENTIFIC CONCEPT OF REVIEW As the most representative of biopolymer hydrogels, polysaccharide-based hydrogels are diverse, physically and chemically stable, and can undergo complex chemical modifications to enhance their performance, thus exhibiting superior ability to remove contaminants. This review summarizes the preparation methods of hydrogels, followed by a discussion of the main categories and applications of polysaccharide-based biopolymer hydrogels.
Collapse
Affiliation(s)
- Chenxi Zhao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture of China, Beijing 100081, People's Republic of China; College of Horticulture, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Guangyang Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture of China, Beijing 100081, People's Republic of China.
| | - Qiyue Tan
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture of China, Beijing 100081, People's Republic of China; College of Horticulture, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Mingkun Gao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture of China, Beijing 100081, People's Republic of China
| | - Ge Chen
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture of China, Beijing 100081, People's Republic of China
| | - Xiaodong Huang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture of China, Beijing 100081, People's Republic of China
| | - Xiaomin Xu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture of China, Beijing 100081, People's Republic of China
| | - Lingyun Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture of China, Beijing 100081, People's Republic of China
| | - Jing Wang
- Institute of Quality Standard and Testing Technology for Agro Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agrifood Safety and Quality, Ministry of Agriculture of China, Beijing 100081, People's Republic of China
| | - Yaowei Zhang
- College of Horticulture, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| | - Donghui Xu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture of China, Beijing 100081, People's Republic of China.
| |
Collapse
|
30
|
Nhung NTH, Long VD, Fujita T. A Critical Review of Snail Shell Material Modification for Applications in Wastewater Treatment. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1095. [PMID: 36770102 PMCID: PMC9919195 DOI: 10.3390/ma16031095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/23/2022] [Accepted: 01/03/2023] [Indexed: 06/18/2023]
Abstract
Sea material is becoming increasingly popular and widely used as an adsorbent in wastewater treatment. Snail shell, a low-cost and natural animal waste material, has been shown to have a high calcium content (>99%) and a large potential surface area for the development of sustainable adsorbents. This paper presents a novel synthesis of methods for using snail shell absorbent materials in the treatment of wastewater containing heavy metals, textile dyes, and other organic substances. Modified biochar made from snail shells has gained popularity in recent years due to its numerous benefits. This paper discusses and analyzes modification methods, including impregnating with supplements, combining other adsorbents, synthesis of hydroxyapatite, co-precipitation, and the sol-gel method. The analysis of factors influencing adsorption efficiency revealed that pH, contact time, temperature, initial concentration, and adsorbent dose all have a significant impact on the adsorption process. Future research directions are also discussed in this paper as a result of presenting challenges for current snail adsorbents.
Collapse
Affiliation(s)
- Nguyen Thi Hong Nhung
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Vo Dinh Long
- Institute of Environmental Science, Engineering and Management, Industrial University of Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam
| | - Toyohisa Fujita
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| |
Collapse
|
31
|
Pandey S, Makhado E, Kim S, Kang M. Recent developments of polysaccharide based superabsorbent nanocomposite for organic dye contamination removal from wastewater - A review. ENVIRONMENTAL RESEARCH 2023; 217:114909. [PMID: 36455632 DOI: 10.1016/j.envres.2022.114909] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/15/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
One of the main problems with water pollution is dye contamination of rivers, industrial effluents, and water sources. It has endangered the world's sources of drinking water. Several remediation strategies have been carefully developed and tested to minimize this ominous picture. Due to their appealing practical and financial benefits, adsorption methods in particular are often listed as one of the most popular solutions to remediate dye-contaminated water. Biopolymer-based hydrogel nanocomposites are a cutting-edge class of materials with a wide range of applications that are effective in removing organic dyes from the environment. Since the incorporation of various materials into hydrogel matrices generated composite materials with distinct characteristics, these unique materials were often alluded to as ideal adsorbents. The fundamental emphasis of the conceptual and critical review of the literature in this research is the significant potential of hydrogel nanocomposites (HNCs) to remediate dye-contaminated water (especially for articles from the previous five years). The review also provides knowledge for the development of biopolymer-based HNCs, prospects, and opportunities for future research. It is also focused on optimum conditions for dye adsorption processes along with their adsorption kinetics and isotherm models. In summary, the information gained in this review research may contribute to a strengthened scientific rationale for the practical and efficient application of these novel adsorbent materials.
Collapse
Affiliation(s)
- Sadanand Pandey
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| | - Edwin Makhado
- Department of Chemistry, School of Physical and Mineral Sciences, University of Limpopo, Sovenga, 0727, Polokwane, South Africa
| | - Sujeong Kim
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Misook Kang
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| |
Collapse
|
32
|
Nunes FB, da Silva Bruckmann F, da Rosa Salles T, Rhoden CRB. Study of phenobarbital removal from the aqueous solutions employing magnetite-functionalized chitosan. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:12658-12671. [PMID: 36114403 DOI: 10.1007/s11356-022-23075-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/13/2022] [Indexed: 06/15/2023]
Abstract
Due to its wide use in anticonvulsant pharmacotherapy, phenobarbital (PHEN) is an aquatic contaminant with a high prevalence in the environment. In this adsorption study, chitosan and chitosan-based magnetic adsorbents containing different amounts of incorporated magnetite (CS, CS·Fe3O4 1:1, CS·Fe3O4 1:5, and CS·Fe3O4 1:10) were used for phenobarbital removal. The magnetic adsorbents were synthesized by co-precipitation method and characterized through FTIR, XRD, MEV, and VSM analysis. In PHEN adsorption, the equilibrium and adsorption kinetic were better adjusted by the Sips and pseudo-second-order model, respectively. Among the four nanoadsorbents used, the maximum phenobarbital adsorption capacity was 94.60 mg g-1 using 25 mg of CS·Fe3O4 1:5, with a concentration of PHEN (50 mg L-1), pH 7.0 at room temperature. The parameters of pH, adsorbent dosage, ionic strength, and thermodynamic study were tested for the adsorbent with the highest performance (CS·Fe3O4 1:5). The nanoadsorbent demonstrates efficiency in the removal of the contaminant for diverse adsorption cycles. Finally, the protocol employing magnetic adsorbents dispenses the subsequent steps of filtration and centrifugation.
Collapse
Affiliation(s)
- Franciane Batista Nunes
- Laboratório de Materiais Magnéticos Nanoestruturados, LaMMaN, Universidade Franciscana - UFN, Santa Maria-RS, Brazil
| | - Franciele da Silva Bruckmann
- Laboratório de Materiais Magnéticos Nanoestruturados, LaMMaN, Universidade Franciscana - UFN, Santa Maria-RS, Brazil
- Programa de Pós-Graduação Em Nanociências, Universidade Franciscana - UFN, Santa Maria-RS, Brazil
| | - Theodoro da Rosa Salles
- Laboratório de Materiais Magnéticos Nanoestruturados, LaMMaN, Universidade Franciscana - UFN, Santa Maria-RS, Brazil
| | - Cristiano Rodrigo Bohn Rhoden
- Laboratório de Materiais Magnéticos Nanoestruturados, LaMMaN, Universidade Franciscana - UFN, Santa Maria-RS, Brazil.
- Programa de Pós-Graduação Em Nanociências, Universidade Franciscana - UFN, Santa Maria-RS, Brazil.
| |
Collapse
|
33
|
Labus K, Maniak H. Colourimetric Plate Assays Based on Functionalized Gelatine Hydrogel Useful for Various Screening Purposes in Enzymology. Int J Mol Sci 2022; 24:ijms24010033. [PMID: 36613477 PMCID: PMC9819853 DOI: 10.3390/ijms24010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Hydrogels are intensively investigated biomaterials due to their useful physicochemical and biological properties in bioengineering. In particular, naturally occurring hydrogels are being deployed as carriers for bio-compounds. We used two approaches to develop a plate colourimetric test by immobilising (1) ABTS or (2) laccase from Trametes versicolor in the gelatine-based hydrogel. The first system (1) was applied to detect laccase in aqueous samples. We investigated the detection level of the enzyme between 0.05 and 100 µg/mL and pH ranging between 3 and 9; the stability of ABTS in the solution and the immobilised form, as well as the retention functional property of the hydrogel in 4 °C for 30 days. The test can detect laccase within 20 min in the concentration range of 2.5−100 µg/mL; is effective at pH 3−6; preserves high stability and functionality under storage and can be also successfully applied for testing samples from a microbial culture. The second system with the immobilised laccase (2) was tested in terms of substrate specificity (ABTS, syringaldazine, guaiacol) and inhibitor (NaN3) screening. ABTS appeared the most proper substrate for laccase with detection sensitivity CABTS > 0.5 mg/mL. The NaN3 tested in the range of 0.5−100 µg/mL showed a distinct inhibition effect in 20 min for 0.5 µg/mL and total inhibition for ≥75 µg/mL.
Collapse
|
34
|
da Silva Fernandes R, Tanaka FC, Junior CRF, Yonezawa UG, de Moura MR, Aouada FA. PAAm/CMC/nanoclay nanocomposite hydrogel: understanding the influence of initiators on the chain-growth mechanisms. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03373-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
35
|
Zhang S, Ange KU, Ali N, Yang Y, Khan A, Ali F, Sajid M, Tian CT, Bilal M. Analytical perspective and environmental remediation potentials of magnetic composite nanosorbents. CHEMOSPHERE 2022; 304:135312. [PMID: 35709848 DOI: 10.1016/j.chemosphere.2022.135312] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/02/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
The synthesis and application of magnetic nanosorbents to remove emerging pollutants have been considered the best environmental remediation and sustainability option. Incorporating magnetism shortens the treatment time and allows the sorbent to be recovered quickly using external magnetic with many cycles. The implementation of magnetic solid-phase extraction (MSPE) using magnetic materials of different shapes, sizes, and surface morphology can be a valuable tool in applying materials to prepare analytical samples. In MSPE applications, materials with strong magnetic domain can be used as precursors for constructing magnetic composite as a promising sorbent. This article focuses on the most recent and exceptional applications of magnetic adsorbents for preconcentration and removal purposes. Magnetic adsorbents, such as nanoparticles (NPs), foam, sponges, nanocomposites, hydrogels, and beads with multifunctional attributes have been comprehensively studied in terms of preparation procedures, limitations, advantages, and interactions between pollutants and magnetic composites. The role of magnetic sorbents in sample preparation methods, such as simple solid-phase extraction and microextraction, as well as sorptive extraction using a stir bar, was also examined. The use of magnetic adsorbents with analytical techniques, such as solid-phase extraction and solid-phase microextraction improves the method for preparing samples concerning the influential role of magnetic adsorbents. Towards the end, promising features and future outlook are also directed.
Collapse
Affiliation(s)
- Shizhong Zhang
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China.
| | - Kunda Umuhoza Ange
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Nisar Ali
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China.
| | - Yong Yang
- Key Laboratory of Regional Resource Exploitation and Medicinal Research, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu Province, PR China
| | - Adnan Khan
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Farman Ali
- Department of Chemistry, Hazara University, KPK, Mansehra, 21300, Pakistan
| | - Muhammad Sajid
- Faculty of Materials and Chemical Engineering, Yibin University, Yibin, 644000, Sichuan, China
| | - Chen Tian Tian
- Key Laboratory of Regional Resource Exploitation and Medicinal Research, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu Province, PR China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China.
| |
Collapse
|
36
|
Ganea IV, Nan A, Roba C, Neamțiu I, Gurzău E, Turcu R, Filip X, Baciu C. Development of a New Eco-Friendly Copolymer Based on Chitosan for Enhanced Removal of Pb and Cd from Water. Polymers (Basel) 2022; 14:polym14183735. [PMID: 36145880 PMCID: PMC9504173 DOI: 10.3390/polym14183735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Worldwide, concerns about heavy metal contamination from manmade and natural sources have increased in recent decades. Metals released into the environment threaten human health, mostly due to their integration into the food chain and persistence. Nature offers a large range of materials with different functionalities, providing also a source of inspiration for scientists working in the field of material synthesis. In the current study, a new type of copolymer is introduced, which was synthesized for the first time by combining chitosan and poly(benzofurane-co-arylacetic acid), for use in the adsorption of toxic heavy metals. Such naturally derived materials can be easily and inexpensively synthesized and separated by simple filtration, thus becoming an attractive alternative solution for wastewater treatment. The new copolymer was investigated by solid-state nuclear magnetic resonance, thermogravimetric analysis, scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray photon electron microscopy. Flame atomic absorption spectrometry was utilized to measure heavy metal concentrations in the investigated samples. Equilibrium isotherms, kinetic 3D models, and artificial neural networks were applied to the experimental data to characterize the adsorption process. Additional adsorption experiments were performed using metal-contaminated water samples collected in two seasons (summer and winter) from two former mining areas in Romania (Roșia Montană and Novăț-Borșa). The results demonstrated high (51–97%) adsorption efficiency for Pb and excellent (95–100%) for Cd, afttr testing on stock solutions and contaminated water samples. The recyclability study of the copolymer indicated that the removal efficiency decreased to 89% for Pb and 58% for Cd after seven adsorption–desorption cycles.
Collapse
Affiliation(s)
- Iolanda-Veronica Ganea
- Faculty of Environmental Science and Engineering, Babes-Bolyai University, 30 Fantanele, 400294 Cluj-Napoca, Romania
- Development of Isotopic and Molecular Technologies, National Institute for Research, 67-103 Donath, 400293 Cluj-Napoca, Romania
| | - Alexandrina Nan
- Development of Isotopic and Molecular Technologies, National Institute for Research, 67-103 Donath, 400293 Cluj-Napoca, Romania
- Correspondence: (A.N.); (C.B.)
| | - Carmen Roba
- Faculty of Environmental Science and Engineering, Babes-Bolyai University, 30 Fantanele, 400294 Cluj-Napoca, Romania
| | - Iulia Neamțiu
- Faculty of Environmental Science and Engineering, Babes-Bolyai University, 30 Fantanele, 400294 Cluj-Napoca, Romania
- Environmental Health Center, 58 Busuiocului, 400240 Cluj-Napoca, Romania
| | - Eugen Gurzău
- Faculty of Environmental Science and Engineering, Babes-Bolyai University, 30 Fantanele, 400294 Cluj-Napoca, Romania
- Environmental Health Center, 58 Busuiocului, 400240 Cluj-Napoca, Romania
- Cluj School of Public Health, College of Political, Administrative and Communication Sciences, Babeș-Bolyai University, 7 Pandurilor, 400095 Cluj-Napoca, Romania
| | - Rodica Turcu
- Development of Isotopic and Molecular Technologies, National Institute for Research, 67-103 Donath, 400293 Cluj-Napoca, Romania
| | - Xenia Filip
- Development of Isotopic and Molecular Technologies, National Institute for Research, 67-103 Donath, 400293 Cluj-Napoca, Romania
| | - Călin Baciu
- Faculty of Environmental Science and Engineering, Babes-Bolyai University, 30 Fantanele, 400294 Cluj-Napoca, Romania
- Correspondence: (A.N.); (C.B.)
| |
Collapse
|
37
|
Xue X, Song G, Chang C. Tough all-polysaccharide hydrogels with uniaxially/planarly oriented structure. Carbohydr Polym 2022; 288:119376. [DOI: 10.1016/j.carbpol.2022.119376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/04/2022] [Accepted: 03/16/2022] [Indexed: 01/24/2023]
|
38
|
ALSamman MT, Sánchez J. Chitosan- and Alginate-Based Hydrogels for the Adsorption of Anionic and Cationic Dyes from Water. Polymers (Basel) 2022; 14:polym14081498. [PMID: 35458248 PMCID: PMC9025658 DOI: 10.3390/polym14081498] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 02/04/2023] Open
Abstract
Novel hydrogel systems based on polyacrylamide/chitosan (PAAM/chitosan) or polyacrylic acid/alginate (PAA/alginate) were prepared, characterized, and applied to reduce the concentrations of dyes in water. These hydrogels were synthetized via a semi-interpenetrating polymer network (semi-IPN) and then characterized by Fourier transformed infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA), and their swelling capacities in water were measured. In the adsorption experiments, methylene blue (MB) was used as a cationic dye, and methyl orange (MO) was used as an anionic dye. The study was carried out using a successive batch method for the dye absorption process and an equilibrium system to investigate the adsorption of MO on PAAM/chitosan hydrogels and MB on PAA/alginate in separate experiments. The results showed that the target hydrogels were synthetized with high yield (more than 90%). The chemical structure of the hydrogels was corroborated by FTIR, and their high thermal stability was verified by TGA. The absorption of the MO dye was higher at pH 3.0 using PAAM/chitosan, and it had the ability to remove 43% of MO within 10 min using 0.05 g of hydrogel. The presence of interfering salts resulted in a 20–60% decrease in the absorption of MO. On the other hand, the absorption of the MB dye was higher at pH 8.5 using PAA/alginate, and it had the ability to remove 96% of MB within 10 min using 0.05 g of hydrogel, and its removal capacity was stable for interfering salts.
Collapse
|
39
|
Maliki S, Sharma G, Kumar A, Moral-Zamorano M, Moradi O, Baselga J, Stadler FJ, García-Peñas A. Chitosan as a Tool for Sustainable Development: A Mini Review. Polymers (Basel) 2022; 14:polym14071475. [PMID: 35406347 PMCID: PMC9003291 DOI: 10.3390/polym14071475] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/31/2022] [Accepted: 04/02/2022] [Indexed: 01/27/2023] Open
Abstract
New developments require innovative ecofriendly materials defined by their biocompatibility, biodegradability, and versatility. For that reason, the scientific society is focused on biopolymers such as chitosan, which is the second most abundant in the world after cellulose. These new materials should show good properties in terms of sustainability, circularity, and energy consumption during industrial applications. The idea is to replace traditional raw materials with new ecofriendly materials which contribute to keeping a high production rate but also reducing its environmental impact and the costs. The chitosan shows interesting and unique properties, thus it can be used for different purposes which contributes to the design and development of sustainable novel materials. This helps in promoting sustainability through the use of chitosan and diverse materials based on it. For example, it is a good sustainable alternative for food packaging or it can be used for sustainable agriculture. The chitosan can also reduce the pollution of other industrial processes such as paper production. This mini review collects some of the most important advances for the sustainable use of chitosan for promoting circular economy. Hence, the present review focuses on different aspects of chitosan from its synthesis to multiple applications.
Collapse
Affiliation(s)
- Soundouss Maliki
- Departamento de Ciencia e Ingeniería de Materiales e Ingeniería Química (IAAB), Universidad Carlos III de Madrid, 28911 Leganés, Spain; (S.M.); (M.M.-Z.); (J.B.)
| | - Gaurav Sharma
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan 173212, India;
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Nanshan District Key Laboratory for Biopolymers and Safety Evaluation, Shenzhen University, Shenzhen 518060, China;
- School of Science and Technology, Glocal University, Saharanpur 247001, India
- Correspondence: (G.S.); (A.G.-P.)
| | - Amit Kumar
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan 173212, India;
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Nanshan District Key Laboratory for Biopolymers and Safety Evaluation, Shenzhen University, Shenzhen 518060, China;
| | - María Moral-Zamorano
- Departamento de Ciencia e Ingeniería de Materiales e Ingeniería Química (IAAB), Universidad Carlos III de Madrid, 28911 Leganés, Spain; (S.M.); (M.M.-Z.); (J.B.)
| | - Omid Moradi
- Department of Chemistry, Shahr-e-Qods Branch, Islamic Azad University, Tehran 61349, Iran;
| | - Juan Baselga
- Departamento de Ciencia e Ingeniería de Materiales e Ingeniería Química (IAAB), Universidad Carlos III de Madrid, 28911 Leganés, Spain; (S.M.); (M.M.-Z.); (J.B.)
| | - Florian J. Stadler
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Nanshan District Key Laboratory for Biopolymers and Safety Evaluation, Shenzhen University, Shenzhen 518060, China;
| | - Alberto García-Peñas
- Departamento de Ciencia e Ingeniería de Materiales e Ingeniería Química (IAAB), Universidad Carlos III de Madrid, 28911 Leganés, Spain; (S.M.); (M.M.-Z.); (J.B.)
- Correspondence: (G.S.); (A.G.-P.)
| |
Collapse
|
40
|
Modification of Silica Nanoparticles with 4,6-Diacetylresorcinol as a Novel Composite for the Efficient Removal of Pb(II), Cu(II), Co(II), and Ni(II) Ions from Aqueous Media. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02282-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|