1
|
Wei X, Li J, Olsen ML. Temporal Profiling of Male Cortical Astrocyte Transcription Predicts Molecular Shifts From Early Development to Aging. Glia 2025. [PMID: 40079175 DOI: 10.1002/glia.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 02/08/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025]
Abstract
Astrocytes are the most abundant glial cell type in the central nervous system (CNS). Astrocytes are born during the early postnatal period in the rodent brain and mature alongside neurons, demonstrating remarkable morphological structural complexity, which is attained in the second postnatal month. Throughout this period of development and across the remainder of the lifespan, astrocytes participate in CNS homeostasis, support neuronal partners, and contribute to nearly all aspects of CNS function. In the present study, we analyzed astrocyte gene expression in the cortex of wild-type male rodents throughout their lifespan (postnatal 7 days to 18 months). A pairwise timepoint comparison of differential gene expression during early development and CNS maturation (7-60 days) revealed four unique astrocyte gene clusters, each with hundreds of genes, which demonstrate unique temporal profiles. These clusters are distinctively related to cell division, cell morphology, cellular communication, and vascular structure and regulation. A similar analysis across adulthood and in the aging brain (3 to 18 months) identified similar patterns of grouped gene expression related to cell metabolism and cell structure. Additionally, our analysis identified that during the aging process astrocytes demonstrate a bias toward shorter transcripts, with loss of longer genes related to synapse development and a significant increase in shorter transcripts related to immune regulation and the response to DNA damage. Our study highlights the critical role that astrocytes play in maintaining CNS function throughout life and reveals molecular shifts that occur during development and aging in the cortex of male mice.
Collapse
Affiliation(s)
- Xiaoran Wei
- Biomedical and Veterinary Sciences Graduate Program, Virginia Tech, Blacksburg, Virginia, USA
- School of Neuroscience, Virginia Tech, Blacksburg, Virginia, USA
| | - Jiangtao Li
- School of Neuroscience, Virginia Tech, Blacksburg, Virginia, USA
- Genetics, Bioinformatics and Computational Biology Graduate Program, Virginia Tech, Blacksburg, Virginia, USA
| | - Michelle L Olsen
- School of Neuroscience, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
2
|
Hwang JS, Seo JH, Kim HJ, Ryu Y, Lee Y, Shin YJ. Transcriptomic comparison of corneal endothelial cells in young versus old corneas. Sci Rep 2024; 14:31110. [PMID: 39732756 DOI: 10.1038/s41598-024-82423-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 12/05/2024] [Indexed: 12/30/2024] Open
Abstract
Corneal endothelial cells, situated on the innermost layer of the cornea, are vital for maintaining its clarity and thickness by regulating fluid. In this study, we investigated the differences in the transcriptome between young and old corneal endothelial cells using next-generation sequencing (NGS). Cultured endothelial cells from both young and elderly donors were subjected to NGS to unravel the transcriptomic landscape. Subsequent analyses, facilitated by Metascape, allowed for the dissection of gene expression variances, unearthing pivotal biological pathways. A total of 568 genes showed differences, and were related to Endomembrane system organization, nuclear receptors meta pathway, efferocytosis, etc. Notably, a reduction in the expression of 260 genes was observed in the aged cells form old donors, and in the related analysis, eukaryotic translation initiation, integrator complex, and Hippo YAP signaling were significant. Conversely, 308 genes exhibited elevated expression levels in the elderly, correlating with processes including transition metal ion transport and glycoprotein biosynthesis. In conclusion, our investigation has revealed critical genes involved in the aging process of corneal endothelial cells and elucidated their underlying biological pathways. These insights are instrumental in selecting targets for therapeutic intervention, thereby facilitating the advancement of novel therapeutic approaches for the restoration and preservation of corneal endothelial cell function.
Collapse
Affiliation(s)
- Jin Sun Hwang
- Department of Ophthalmology, Hallym University College of Medicine, Hallym University Medical Center, 1 Shingil-ro, Youngdeungpo-gu, Seoul, 07441, Korea
- Hallym BioEyeTech Research Center, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Je Hyun Seo
- Veterans Health Service Medical Center, Veterans Medical Research Institute, Seoul, Republic of Korea
| | - Hyeon Jung Kim
- Department of Ophthalmology, Hallym University College of Medicine, Hallym University Medical Center, 1 Shingil-ro, Youngdeungpo-gu, Seoul, 07441, Korea
- Hallym BioEyeTech Research Center, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Yunkyoung Ryu
- Department of Ophthalmology, Hallym University College of Medicine, Hallym University Medical Center, 1 Shingil-ro, Youngdeungpo-gu, Seoul, 07441, Korea
- Hallym BioEyeTech Research Center, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Young Lee
- Veterans Health Service Medical Center, Veterans Medical Research Institute, Seoul, Republic of Korea
| | - Young Joo Shin
- Department of Ophthalmology, Hallym University College of Medicine, Hallym University Medical Center, 1 Shingil-ro, Youngdeungpo-gu, Seoul, 07441, Korea.
- Hallym BioEyeTech Research Center, Hallym University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Crocco P, De Rango F, La Grotta R, Passarino G, Rose G, Dato S. Metallothionein-1A (MT1A) Gene Variability May Play a Role in Female Frailty: A Preliminary Study. Genes (Basel) 2024; 16:15. [PMID: 39858562 PMCID: PMC11765288 DOI: 10.3390/genes16010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/11/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Frailty is a complex geriatric syndrome resulting in decreased physiological reserve. While genetics plays a role, the underlying mechanisms remain unsolved. Metallothioneins (MTs), metal-binding proteins with high affinity for zinc, an essential mineral for many physiological functions, are involved in processes including oxidative stress and inflammation. We investigated the impact of genetic variations in MTs on frailty. METHODS 448 subjects (235 females and 213 males, median age of 76 years) were categorized into three frailty groups (non-frail/pre-frail/frail), by hierarchical cluster analysis based on cognitive status (MMSE), functional capacity (ADL), and physical strength (HGS). Subjects were analyzed for selected SNPs in MT1A, MT1B, MT2A, and MT3 genes by PCR-RFLP. RESULTS An association was found between the rs8052394-A/G (Lys51Arg) polymorphism in the MT1A gene and frailty in females both in binary (OR = 0.345, p = 0.037) and multinomial logistic regression (OR = 0.343, p = 0.036) corrected for age and sex, with carriers of the minor G-allele less likely to transition from non-frail to pre-frail status. Additionally, a significant association with albumin levels (beta = 0.231; p = 0.027) and a trend of association with CRP levels (beta = -1.563; p = 0.097) were observed for this SNP in non-frail females, both indicative of a low inflammatory status. However, Bonferroni correction for multiple SNPs and physiological parameters tested renders these results statistically non-significant. CONCLUSIONS Although its associations do not survive Bonferroni correction, this exploratory study suggests a sex-specific influence of MT1A variability in frailty, likely affecting zinc availability, aligning with ongoing research on sex differences in frailty risk and progression. Larger studies are needed to validate these findings and clarify the mechanisms behind MTs' variability in frailty progression.
Collapse
Affiliation(s)
| | | | | | | | | | - Serena Dato
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, CS, Italy; (P.C.); (F.D.R.); (R.L.G.); (G.P.); (G.R.)
| |
Collapse
|
4
|
Liu H, Nie X, Wang F, Chen D, Zeng Z, Shu P, Huang J. An integrated transcriptomic analysis of brain aging and strategies for healthy aging. Front Aging Neurosci 2024; 16:1450337. [PMID: 39713269 PMCID: PMC11659761 DOI: 10.3389/fnagi.2024.1450337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 11/18/2024] [Indexed: 12/24/2024] Open
Abstract
Background It is been noted that the expression levels of numerous genes undergo changes as individuals age, and aging stands as a primary factor contributing to age-related diseases. Nevertheless, it remains uncertain whether there are common aging genes across organs or tissues, and whether these aging genes play a pivotal role in the development of age-related diseases. Methods In this study, we screened for aging genes using RNAseq data of 32 human tissues from GTEx. RNAseq datasets from GEO were used to study whether aging genes drives age-related diseases, or whether anti-aging solutions could reverse aging gene expression. Results Aging transcriptome alterations showed that brain aging differ significantly from the rest of the body, furthermore, brain tissues were divided into four group according to their aging transcriptome alterations. Numerous genes were downregulated during brain aging, with functions enriched in synaptic function, ubiquitination, mitochondrial translation and autophagy. Transcriptome analysis of age-related diseases and retarding aging solutions showed that downregulated aging genes in the hippocampus further downregulation in Alzheimer's disease but were effectively reversed by high physical activity. Furthermore, the neuron loss observed during aging was reversed by high physical activity. Conclusion The downregulation of many genes is a major contributor to brain aging and neurodegeneration. High levels of physical activity have been shown to effectively reactivate these genes, making it a promising strategy to slow brain aging.
Collapse
Affiliation(s)
- Haiying Liu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xin Nie
- HBN Research Institute and Biological Laboratory, Shenzhen Hujia Technology Co., Ltd., Shenzhen, Guangdong, China
| | - Fengwei Wang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Dandan Chen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhuo Zeng
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Peng Shu
- HBN Research Institute and Biological Laboratory, Shenzhen Hujia Technology Co., Ltd., Shenzhen, Guangdong, China
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Ürümqi, Xinjiang, China
| | - Junjiu Huang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
5
|
Brodzka S, Baszyński J, Rektor K, Hołderna-Bona K, Stanek E, Kurhaluk N, Tkaczenko H, Malukiewicz G, Woźniak A, Kamiński P. Immunogenetic and Environmental Factors in Age-Related Macular Disease. Int J Mol Sci 2024; 25:6567. [PMID: 38928273 PMCID: PMC11203563 DOI: 10.3390/ijms25126567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/08/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Age-related macular degeneration (AMD) is a chronic disease, which often develops in older people, but this is not the rule. AMD pathogenesis changes include the anatomical and functional complex. As a result of damage, it occurs, in the retina and macula, among other areas. These changes may lead to partial or total loss of vision. This disease can occur in two clinical forms, i.e., dry (progression is slowly and gradually) and exudative (wet, progression is acute and severe), which usually started as dry form. A coexistence of both forms is possible. AMD etiology is not fully understood. Extensive genetic studies have shown that this disease is multifactorial and that genetic determinants, along with environmental and metabolic-functional factors, are important risk factors. This article reviews the impact of heavy metals, macro- and microelements, and genetic factors on the development of AMD. We present the current state of knowledge about the influence of environmental factors and genetic determinants on the progression of AMD in the confrontation with our own research conducted on the Polish population from Kuyavian-Pomeranian and Lubusz Regions. Our research is concentrated on showing how polluted environments of large agglomerations affects the development of AMD. In addition to confirming heavy metal accumulation, the growth of risk of acute phase factors and polymorphism in the genetic material in AMD development, it will also help in the detection of new markers of this disease. This will lead to a better understanding of the etiology of AMD and will help to establish prevention and early treatment.
Collapse
Affiliation(s)
- Sylwia Brodzka
- Division of Ecology and Environmental Protection, Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, M. Skłodowska-Curie St. 9, PL 85-094 Bydgoszcz, Poland; (S.B.); (J.B.); (K.H.-B.); (E.S.)
- Department of Biotechnology, Institute of Biological Sciences, Faculty of Biological Sciences, University of Zielona Góra, Prof. Z. Szafran St. 1, PL 65-516 Zielona Góra, Poland;
| | - Jędrzej Baszyński
- Division of Ecology and Environmental Protection, Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, M. Skłodowska-Curie St. 9, PL 85-094 Bydgoszcz, Poland; (S.B.); (J.B.); (K.H.-B.); (E.S.)
| | - Katarzyna Rektor
- Department of Biotechnology, Institute of Biological Sciences, Faculty of Biological Sciences, University of Zielona Góra, Prof. Z. Szafran St. 1, PL 65-516 Zielona Góra, Poland;
| | - Karolina Hołderna-Bona
- Division of Ecology and Environmental Protection, Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, M. Skłodowska-Curie St. 9, PL 85-094 Bydgoszcz, Poland; (S.B.); (J.B.); (K.H.-B.); (E.S.)
| | - Emilia Stanek
- Division of Ecology and Environmental Protection, Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, M. Skłodowska-Curie St. 9, PL 85-094 Bydgoszcz, Poland; (S.B.); (J.B.); (K.H.-B.); (E.S.)
| | - Natalia Kurhaluk
- Institute of Biology, Pomeranian University in Słupsk, Arciszewski St. 22 B, PL 76-200 Słupsk, Poland; (N.K.); (H.T.)
| | - Halina Tkaczenko
- Institute of Biology, Pomeranian University in Słupsk, Arciszewski St. 22 B, PL 76-200 Słupsk, Poland; (N.K.); (H.T.)
| | - Grażyna Malukiewicz
- Department of Eye Diseases, University Hospital No. 1, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, M. Skłodowska-Curie St. 9, PL 85-092 Bydgoszcz, Poland;
| | - Alina Woźniak
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, M. Karłowicz St. 24, PL 85-092 Bydgoszcz, Poland;
| | - Piotr Kamiński
- Division of Ecology and Environmental Protection, Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, M. Skłodowska-Curie St. 9, PL 85-094 Bydgoszcz, Poland; (S.B.); (J.B.); (K.H.-B.); (E.S.)
- Department of Biotechnology, Institute of Biological Sciences, Faculty of Biological Sciences, University of Zielona Góra, Prof. Z. Szafran St. 1, PL 65-516 Zielona Góra, Poland;
| |
Collapse
|
6
|
You Y, Huang Y, Wang X, Ni H, Ma Q, Ran H, Cai J, Lin X, Luo T, Wu C, Xiao X, Ma L. Ketogenic diet time-dependently prevents NAFLD through upregulating the expression of antioxidant protein metallothionein-2. Clin Nutr 2024; 43:1475-1487. [PMID: 38723301 DOI: 10.1016/j.clnu.2024.04.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND & AIMS The past few decades have witnessed a rapid growth in the prevalence of nonalcoholic fatty liver disease (NAFLD). While the ketogenic diet (KD) is considered for managing NAFLD, the safety and efficacy of the KD on NAFLD has been a controversial topic. Here, we aimed to investigate the effect of KD of different durations on metabolic endpoints in mice with NAFLD and explore the underlying mechanisms. METHODS NAFLD mice were fed with KD for 1, 2, 4 and 6 weeks, respectively. The blood biochemical indexes (blood lipids, AST, ALT and etc.) and liver fat were measured. The LC-MS/MS based proteomic analysis was performed on liver tissues. Metallothionein-2 (MT2) was knocked down with adeno-associated virus (AAV) or small interfering RNA (siRNA) in NAFLD mice and AML-12 cells, respectively. H&E, BODIPY and ROS staining were performed to examine lipid deposition and oxidative stress. Furthermore, MT2 protein levels, nucleus/cytoplasm distribution and DNA binding activity of peroxisome proliferators-activated receptors α (PPARα) were evaluated. RESULTS KD feeding for 2 weeks showed the best improvement on NAFLD phenotype. Proteomic analysis revealed that MT2 was a key candidate for different metabolic endpoints of NAFLD affected by different durations of KD feeding. MT2 knockdown in NAFLD mice blocked the effects of 2 weeks of KD feeding on HFD-induced steatosis. In mouse primary hepatocytes and AML-12 cells, MT2 protein levels were induced by β-hydroxybutyric acid (β-OHB). MT2 Knockdown blunted the effects of β-OHB on alleviating PA-induced lipid deposition. Mechanistically, 2 weeks of KD or β-OHB treatment reduced oxidative stress and upregulated the protein levels of MT2 in nucleus, which subsequently increased its DNA binding activity and PPARα protein expression. CONCLUSIONS Collectively, these findings indicated that KD feeding prevented NAFLD in a time dependent manner and MT2 is a potential target contributing to KD improvement on steatosis.
Collapse
Affiliation(s)
- Yuehua You
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yi Huang
- Biomedical Analysis Center, Army Medical University, Chongqing, 400038, China; Chongqing Key Laboratory of Cytomics, Chongqing, 400038, China
| | - Xiaoyang Wang
- Biomedical Analysis Center, Army Medical University, Chongqing, 400038, China; Chongqing Key Laboratory of Cytomics, Chongqing, 400038, China
| | - Hongbin Ni
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Qin Ma
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Department of Nutrition and Food Hygiene, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, China
| | - Haiying Ran
- Biomedical Analysis Center, Army Medical University, Chongqing, 400038, China; Chongqing Key Laboratory of Cytomics, Chongqing, 400038, China
| | - Jingshu Cai
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xiaojing Lin
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Ting Luo
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Chaodong Wu
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX, USA
| | - Xiaoqiu Xiao
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Li Ma
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
7
|
Ozoani H, Ezejiofor AN, Okolo KO, Orish CN, Cirovic A, Cirovic A, Orisakwe OE. Ameliorative Effects of Zn and Se Supplementation on Heavy Metal Mixture Burden via Increased Renal Metal Excretion and Restoration of Redoxo-Inflammatory Alterations. Biol Trace Elem Res 2024; 202:643-658. [PMID: 37231320 DOI: 10.1007/s12011-023-03709-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023]
Abstract
Heavy metals (HM)in the environment have provoked global attention because of its deleterious effects. This study evaluated the protection offered by Zn or Se or both against HMM-induced alterations in the kidney. Male Sprague Dawley rats were distributed into 5 groups of 7 rats each. Group I served as normal control with unrestricted access to food and water. Group II received Cd, Pb, and As (HMM) per oral daily for 60 days while groups III and IV received HMM in addition to Zn and Se respectively for 60 days. Group V received both Zn and Se in addition to HMM for 60 days. Metal accumulation in feces was assayed at days 0, 30, and 60 while accumulation in the kidney and kidney weight were measured at day 60. Kidney function tests, NO, MDA, SOD, catalase, GSH, GPx, NO, IL-6, NF-Κb, TNFα, caspase 3, and histology were assessed. There is a significant increase in urea, creatinine, and bicarbonate ions while potassium ions decreased. There was significant increase in renal function biomarkers, MDA, NO, NF-Κb, TNFα, caspase 3, and IL-6 while SOD, catalase, GSH, and GPx decrease. Administration of HMM distorted the integrity of the rat kidney, and co-treatment with Zn or Se or both offered reasonable protection suggesting that Zn or Se could be used as an antidot against the deleterious effects of these metals.
Collapse
Affiliation(s)
- Harrison Ozoani
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, Port Harcourt, Choba, PMB, 5323, Nigeria
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Enugu State, University of Science & Technology, Enugu, Nigeria
| | - Anthonet N Ezejiofor
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, Port Harcourt, Choba, PMB, 5323, Nigeria
| | - Kenneth O Okolo
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Enugu State, University of Science & Technology, Enugu, Nigeria
| | - Chinna N Orish
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Port Harcourt, Port Harcourt, Choba, PMB, 5323, Nigeria
| | - Ana Cirovic
- University of Belgrade, Faculty of Medicine, Institute of Anatomy, Belgrade, Serbia
| | - Aleksandar Cirovic
- University of Belgrade, Faculty of Medicine, Institute of Anatomy, Belgrade, Serbia
| | - Orish E Orisakwe
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, Port Harcourt, Choba, PMB, 5323, Nigeria.
| |
Collapse
|
8
|
Tanaka Y, Parker R, Aganahi A. Up-Regulated Expression of ICAM1, MT1A, PTGS2, LCE3D, PPARD, and GM-CSF2 Following Solar Skincare Protection and Repair Strategies in a 3-Dimensional Reconstructed Human Skin Model. Clin Cosmet Investig Dermatol 2023; 16:2829-2839. [PMID: 37850108 PMCID: PMC10578178 DOI: 10.2147/ccid.s428170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/03/2023] [Indexed: 10/19/2023]
Abstract
Background Clinical, optical and histological research confirms that solar skin damage continues to pose a threat to human skin health globally despite widespread sunscreen usage and sun awareness campaigns. Despite this, very few studies examine the critical changes in gene expression and DNA repair activity following recommended topical solar protection and repair strategies to ameliorate the harmful effects of ultraviolet, visible light and near-infrared radiation. Purpose To investigate alterations in gene expression following topical solar protection and solar repair strategies. Methods Using epidermal keratinocytes and dermal fibroblasts derived from a 3-dimensional reconstructed human skin model, gene expression was assessed via the Genemarkers Standard Skin Panel using 112 genes deploying two analytical techniques: DNA microarray and quantitative real-time PCR exploration. Tissues were inoculated with products then collected after 24 hours following application of solar protection formulations and 16 hours following solar repair formulations (The Essential Six, RATIONALE, Victoria, Australia). Results A DNA microarray revealed 67 genes that were significantly up-regulated or down-regulated following the treatment. The quantitative real-time PCR revealed that, in comparison to the control, the genes encoding Intercellular Adhesion Molecule 1 (ICAM1), Metallothionein 1A (MT1A), Prostaglandin-Endoperoxide Synthase 1 (PTGS2), Late Cornified Envelope 3D (LCE3D), Peroxisome Proliferator Activated Receptor (PPARD), and Granulocyte/Macrophage Colony Stimulating Factor 2 (GM-CSF2) have been up-regulated following usage of the solar protection regime, 1.87, 861.16, 4.34, 1.91, 1.06, and 3.6, respectively. ICAM1, MT1A, PTGS2, LCE3D, PPARD, and GM-CSF2 were up-regulated following use of the solar repair regime, 3.78, 2.98, 14.89, 5.09, 2.42, and 13.51, respectively. Conclusion This study demonstrates that a specific solar protection and repair regime upregulated genes involved in photoprotection and repair mechanisms in a 3-dimensional (3D) reconstructed human-like skin model.
Collapse
Affiliation(s)
- Yohei Tanaka
- Clinica Tanaka Plastic, Reconstructive Surgery and Anti-Aging Center, Matsumoto, Nagano, Japan
| | | | | |
Collapse
|
9
|
Attig J, Pape J, Doglio L, Kazachenka A, Ottina E, Young GR, Enfield KS, Aramburu IV, Ng KW, Faulkner N, Bolland W, Papayannopoulos V, Swanton C, Kassiotis G. Human endogenous retrovirus onco-exaptation counters cancer cell senescence through calbindin. J Clin Invest 2023; 133:e164397. [PMID: 37192000 PMCID: PMC10348765 DOI: 10.1172/jci164397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 05/11/2023] [Indexed: 05/17/2023] Open
Abstract
Increased levels and diversity of human endogenous retrovirus (HERV) transcription characterize most cancer types and are linked with disease outcomes. However, the underlying processes are incompletely understood. Here, we show that elevated transcription of HERVH proviruses predicted survival of lung squamous cell carcinoma (LUSC) and identified an isoform of CALB1, encoding calbindin, ectopically driven by an upstream HERVH provirus under the control of KLF5, as the mediator of this effect. HERVH-CALB1 expression was initiated in preinvasive lesions and associated with their progression. Calbindin loss in LUSC cell lines impaired in vitro and in vivo growth and triggered senescence, consistent with a protumor effect. However, calbindin also directly controlled the senescence-associated secretory phenotype (SASP), marked by secretion of CXCL8 and other neutrophil chemoattractants. In established carcinomas, CALB1-negative cancer cells became the dominant source of CXCL8, correlating with neutrophil infiltration and worse prognosis. Thus, HERVH-CALB1 expression in LUSC may display antagonistic pleiotropy, whereby the benefits of escaping senescence early during cancer initiation and clonal competition were offset by the prevention of SASP and protumor inflammation at later stages.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - George Kassiotis
- Retroviral Immunology
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
10
|
Escalante-Covarrubias Q, Mendoza-Viveros L, González-Suárez M, Sitten-Olea R, Velázquez-Villegas LA, Becerril-Pérez F, Pacheco-Bernal I, Carreño-Vázquez E, Mass-Sánchez P, Bustamante-Zepeda M, Orozco-Solís R, Aguilar-Arnal L. Time-of-day defines NAD + efficacy to treat diet-induced metabolic disease by synchronizing the hepatic clock in mice. Nat Commun 2023; 14:1685. [PMID: 36973248 PMCID: PMC10043291 DOI: 10.1038/s41467-023-37286-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 03/07/2023] [Indexed: 03/29/2023] Open
Abstract
The circadian clock is an endogenous time-tracking system that anticipates daily environmental changes. Misalignment of the clock can cause obesity, which is accompanied by reduced levels of the clock-controlled, rhythmic metabolite NAD+. Increasing NAD+ is becoming a therapy for metabolic dysfunction; however, the impact of daily NAD+ fluctuations remains unknown. Here, we demonstrate that time-of-day determines the efficacy of NAD+ treatment for diet-induced metabolic disease in mice. Increasing NAD+ prior to the active phase in obese male mice ameliorated metabolic markers including body weight, glucose and insulin tolerance, hepatic inflammation and nutrient sensing pathways. However, raising NAD+ immediately before the rest phase selectively compromised these responses. Remarkably, timed NAD+ adjusted circadian oscillations of the liver clock until completely inverting its oscillatory phase when increased just before the rest period, resulting in misaligned molecular and behavioral rhythms in male and female mice. Our findings unveil the time-of-day dependence of NAD+-based therapies and support a chronobiology-based approach.
Collapse
Affiliation(s)
- Quetzalcoatl Escalante-Covarrubias
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Lucía Mendoza-Viveros
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
- Laboratorio de Cronobiología y Metabolismo, Instituto Nacional de Medicina Genómica, 14610, Mexico City, Mexico
| | - Mirna González-Suárez
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Román Sitten-Olea
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Laura A Velázquez-Villegas
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, 14080, Mexico City, Mexico
| | - Fernando Becerril-Pérez
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Ignacio Pacheco-Bernal
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Erick Carreño-Vázquez
- Laboratorio de Cronobiología y Metabolismo, Instituto Nacional de Medicina Genómica, 14610, Mexico City, Mexico
| | - Paola Mass-Sánchez
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Marcia Bustamante-Zepeda
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Ricardo Orozco-Solís
- Laboratorio de Cronobiología y Metabolismo, Instituto Nacional de Medicina Genómica, 14610, Mexico City, Mexico
- Centro de Investigación sobre el Envejecimiento, Centro de Investigación y de Estudios Avanzados, 14330, Mexico City, Mexico
| | - Lorena Aguilar-Arnal
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico.
| |
Collapse
|
11
|
Sun Z, Qin J, Yuan H, Guo M, Shang M, Niu S, Li Y, Li Q, Xue Y. Recombinant human metallothionein-III alleviates oxidative damage induced by copper and cadmium in Caenorhabditis elegans. J Appl Toxicol 2023. [PMID: 36918407 DOI: 10.1002/jat.4460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/16/2023]
Abstract
Recombinant human metallothionein III (rh-MT-III) is a genetically engineered product produced by Escherichia coli fermentation technology. Its molecules contain abundant reducing sulfhydryl groups, which possess the ability to bind heavy metal ions. The present study was to evaluate the binding effects of rh-MT-III against copper and cadmium in vitro and to investigate the antioxidant activity of rh-MT-III using Caenorhabditis elegans in vivo. For in vitro experiments, the binding rates of copper and cadmium were 91.4% and 97.3% for rh-MT-III at a dosage of 200 μg/mL at 10 h, respectively. For in vivo assays, the oxidative stress induced by copper (CuSO4 , 10 μg/mL) and cadmium (CdCl2 , 10 μg/mL) was significantly reduced after 72 h of exposure to different doses of rh-MT-III (5-500 μg/mL), indicated by restoring locomotion behavior and growth, and reducing malondialdehyde and reactive oxygen species levels in C. elegans. Moreover, rh-MT-III decreased the deposition of lipofuscin and fat content, which could delay the progression of aging. In addition, rh-MT-III (500 μg/mL) promoted the up-regulation of Mtl-1 and Mtl-2 gene expression in C. elegans, which could enhance the resistance to oxidative stress by increasing the enzymatic activity of antioxidant defense system and scavenging free radicals. The results indicated that supplemental rh-MT-III could effectively protect C. elegans from heavy metal stress, providing an experimental basis for the future application and development of rh-MT-III.
Collapse
Affiliation(s)
- Zuoyi Sun
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Jianxin Qin
- Suzhou Hvha Medical Technology Development Co., Ltd., Changshu, China
| | - Hailiang Yuan
- Suzhou Hvha Medical Technology Development Co., Ltd., Changshu, China
| | - Menghao Guo
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Mengting Shang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Shuyan Niu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Yunjing Li
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Qiang Li
- Changshu Municipal Market Supervision Administration, Changshu, China
| | - Yuying Xue
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| |
Collapse
|
12
|
Sahinyan K, Lazure F, Blackburn DM, Soleimani VD. Decline of regenerative potential of old muscle stem cells: contribution to muscle aging. FEBS J 2023; 290:1267-1289. [PMID: 35029021 DOI: 10.1111/febs.16352] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/23/2021] [Accepted: 01/11/2022] [Indexed: 01/01/2023]
Abstract
Muscle stem cells (MuSCs) are required for life-long muscle regeneration. In general, aging has been linked to a decline in the numbers and the regenerative potential of MuSCs. Muscle regeneration depends on the proper functioning of MuSCs, which is itself dependent on intricate interactions with its niche components. Aging is associated with both cell-intrinsic and niche-mediated changes, which can be the result of transcriptional, posttranscriptional, or posttranslational alterations in MuSCs or in the components of their niche. The interplay between cell intrinsic alterations in MuSCs and changes in the stem cell niche environment during aging and its impact on the number and the function of MuSCs is an important emerging area of research. In this review, we discuss whether the decline in the regenerative potential of MuSCs with age is the cause or the consequence of aging skeletal muscle. Understanding the effect of aging on MuSCs and the individual components of their niche is critical to develop effective therapeutic approaches to diminish or reverse the age-related defects in muscle regeneration.
Collapse
Affiliation(s)
- Korin Sahinyan
- Department of Human Genetics, McGill University, Montréal, QC, Canada.,Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
| | - Felicia Lazure
- Department of Human Genetics, McGill University, Montréal, QC, Canada.,Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
| | - Darren M Blackburn
- Department of Human Genetics, McGill University, Montréal, QC, Canada.,Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
| | - Vahab D Soleimani
- Department of Human Genetics, McGill University, Montréal, QC, Canada.,Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
| |
Collapse
|
13
|
Hong Y, Kim HJ, Park S, Yi S, Lim MA, Lee SE, Chang JW, Won HR, Kim JR, Ko H, Kim SY, Kim SK, Park JL, Chu IS, Kim JM, Kim KH, Lee JH, Ju YS, Shong M, Koo BS, Park WY, Kang YE. Single Cell Analysis of Human Thyroid Reveals the Transcriptional Signatures of Aging. Endocrinology 2023; 164:7040488. [PMID: 36791033 DOI: 10.1210/endocr/bqad029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/14/2022] [Accepted: 02/10/2023] [Indexed: 02/16/2023]
Abstract
The thyroid gland plays a critical role in the maintenance of whole-body metabolism. However, aging frequently impairs homeostatic maintenance by thyroid hormones due to increased prevalence of subclinical hypothyroidism associated with mitochondrial dysfunction, inflammation, and fibrosis. To understand the specific aging-related changes of endocrine function in thyroid epithelial cells, we performed single-cell RNA sequencing (RNA-seq) of 54 726 cells derived from pathologically normal thyroid tissues from 7 patients who underwent thyroidectomy. Thyroid endocrine epithelial cells were clustered into 5 distinct subpopulations, and a subset of cells was found to be particularly vulnerable with aging, showing functional deterioration associated with the expression of metallothionein (MT) and major histocompatibility complex class II genes. We further validated that increased expression of MT family genes are highly correlated with thyroid gland aging in bulk RNAseq datasets. This study provides evidence that aging induces specific transcriptomic changes across multiple cell populations in the human thyroid gland.
Collapse
Affiliation(s)
- Yourae Hong
- Samsung Genome Institute, Samsung Medical Center, Seoul, Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, Korea
| | - Hyun Jung Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | | | - Shinae Yi
- Research Institute of Medical Science, Chungnam National University, Daejeon, Korea
| | - Mi Ae Lim
- Research Institute of Medical Science, Chungnam National University, Daejeon, Korea
| | - Seong Eun Lee
- Research Institute of Medical Science, Chungnam National University, Daejeon, Korea
| | - Jae Won Chang
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Ho-Ryun Won
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Je-Ryong Kim
- Genome Insight Technology, Daejeon, Korea
- Department of Surgery, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Hyemi Ko
- Department of Surgery, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Seon-Young Kim
- Personalized Genomic Medicine Research Center, Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Seon-Kyu Kim
- Personalized Genomic Medicine Research Center, Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Jong-Lyul Park
- Personalized Genomic Medicine Research Center, Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - In-Sun Chu
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Jin Man Kim
- Department of Pathology, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Kun Ho Kim
- Department of Nuclear Medicine, Chungnam National University Hospital, Daejeon, Korea
| | - Jeong Ho Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Young Seok Ju
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
- Research Institute of Medical Science, Chungnam National University, Daejeon, Korea
| | - Minho Shong
- Genome Insight Technology, Daejeon, Korea
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Bon Seok Koo
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Woong-Yang Park
- Samsung Genome Institute, Samsung Medical Center, Seoul, Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, Korea
| | - Yea Eun Kang
- Genome Insight Technology, Daejeon, Korea
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon, Korea
| |
Collapse
|
14
|
Kravitz SN, Ferris E, Love MI, Thomas A, Quinlan AR, Gregg C. Random allelic expression in the adult human body. Cell Rep 2023; 42:111945. [PMID: 36640362 PMCID: PMC10484211 DOI: 10.1016/j.celrep.2022.111945] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 10/17/2022] [Accepted: 12/15/2022] [Indexed: 01/07/2023] Open
Abstract
Genes are typically assumed to express both parental alleles similarly, yet cell lines show random allelic expression (RAE) for many autosomal genes that could shape genetic effects. Thus, understanding RAE in human tissues could improve our understanding of phenotypic variation. Here, we develop a methodology to perform genome-wide profiling of RAE and biallelic expression in GTEx datasets for 832 people and 54 tissues. We report 2,762 autosomal genes with some RAE properties similar to randomly inactivated X-linked genes. We found that RAE is associated with rapidly evolving regions in the human genome, adaptive signaling processes, and genes linked to age-related diseases such as neurodegeneration and cancer. We define putative mechanistic subtypes of RAE distinguished by gene overlaps on sense and antisense DNA strands, aggregation in clusters near telomeres, and increased regulatory complexity and inputs compared with biallelic genes. We provide foundations to study RAE in human phenotypes, evolution, and disease.
Collapse
Affiliation(s)
- Stephanie N Kravitz
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA; Neurobiology, University of Utah, Salt Lake City, UT, USA
| | - Elliott Ferris
- Neurobiology, University of Utah, Salt Lake City, UT, USA
| | - Michael I Love
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alun Thomas
- Department of Internal Medicine, Epidemiology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Aaron R Quinlan
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Christopher Gregg
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA; Neurobiology, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
15
|
Swindell WR, Bojanowski K, Singh P, Randhawa M, Chaudhuri RK. Bakuchiol and ethyl (linoleate/oleate) synergistically modulate endocannabinoid tone in keratinocytes and repress inflammatory pathway mRNAs. JID INNOVATIONS 2022; 3:100178. [PMID: 36992949 PMCID: PMC10041561 DOI: 10.1016/j.xjidi.2022.100178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/23/2022] [Accepted: 10/20/2022] [Indexed: 12/27/2022] Open
Abstract
The endocannabinoid (eCB) system plays an active role in epidermal homeostasis. Phytocannabinoids such as cannabidiol modulate this system but also act through eCB-independent mechanisms. This study evaluated the effects of cannabidiol, bakuchiol (BAK), and ethyl (linoleate/oleate) (ELN) in keratinocytes and reconstituted human epidermis. Molecular docking simulations showed that each compound binds the active site of the eCB carrier FABP5. However, BAK and ethyl linoleate bound this site with the highest affinity when combined 1:1 (w/w), and in vitro assays showed that BAK + ELN most effectively inhibited FABP5 and fatty acid amide hydrolase. In TNF-stimulated keratinocytes, BAK + ELN reversed TNF-induced expression shifts and uniquely downregulated type I IFN genes and PTGS2 (COX2). BAK + ELN also repressed expression of genes linked to keratinocyte differentiation but upregulated those associated with proliferation. Finally, BAK + ELN inhibited cortisol secretion in reconstituted human epidermis skin (not observed with cannabidiol). These results support a model in which BAK and ELN synergistically interact to inhibit eCB degradation, favoring eCB mobilization and inhibition of downstream inflammatory mediators (e.g., TNF, COX-2, type I IFN). A topical combination of these ingredients may thus enhance cutaneous eCB tone or potentiate other modulators, suggesting novel ways to modulate the eCB system for innovative skincare product development.
Collapse
Affiliation(s)
- William R. Swindell
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
- Correspondence: William R. Swindell, Department of Internal Medicine, UT Southwestern Medical Center, 5959 Harry Hines Boulevard, Ste 7.700, Dallas, Texas 75390-9175, USA.
| | | | - Parvesh Singh
- School of Chemistry & Physics, University of KwaZulu-Natal, Westville, South Africa
| | | | | |
Collapse
|
16
|
Mangu JCK, Rai N, Mandal A, Olsson PE, Jass J. Lysinibacillus sphaericus mediates stress responses and attenuates arsenic toxicity in Caenorhabditis elegans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155377. [PMID: 35460794 DOI: 10.1016/j.scitotenv.2022.155377] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/15/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
Exposure to toxic metals alters host response and that leads to disease development. Studies have revealed the effects of metals on microbial physiology, however, the role of metal resistant bacteria on host response to metals is unclear. The hypothesis that xenobiotic interactions between gut microbes and arsenic influence the host physiology and toxicity was assessed in a Caenorhabditis elegans model. The arsenic-resistant Lysinibacillus sphaericus B1CDA was fed to C. elegans to determine the host responses to arsenic in comparison to Escherichia coli OP50 food. L. sphaericus diet extended C. elegans lifespan compared to E. coli diet, with an increased expression of genes involved in lifespan, stress response and immunity (hif-1, hsp-16.2, mtl-2, abf-2, clec-60), as well as reduced fat accumulation. Arsenic-exposed worms fed L. sphaericus also had a longer lifespan than those fed E. coli and had an increased expression of genes involved in cytoprotection, stress resistance (mtl-1, mtl-2) and oxidative stress response (cyp-35A2, isp-1, ctl-2, sod-1), together with a decreased accumulation of reactive oxygen species (ROS). In comparison with E. coli, L. sphaericus B1CDA diet increased C. elegans fitness while detoxifying arsenic induced ROS and extending lifespan.
Collapse
Affiliation(s)
| | - Neha Rai
- The Life Science Centre-Biology, School of Science and Technology, Örebro University, Örebro, Sweden
| | - Abul Mandal
- Systems Biology Research Center, School of Bioscience, University of Skövde, Skövde, Sweden
| | - Per-Erik Olsson
- The Life Science Centre-Biology, School of Science and Technology, Örebro University, Örebro, Sweden
| | - Jana Jass
- The Life Science Centre-Biology, School of Science and Technology, Örebro University, Örebro, Sweden.
| |
Collapse
|
17
|
Exacerbation of Elastase-Induced Emphysema via Increased Oxidative Stress in Metallothionein-Knockout Mice. Biomolecules 2022; 12:biom12040583. [PMID: 35454172 PMCID: PMC9030156 DOI: 10.3390/biom12040583] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/08/2022] [Accepted: 04/13/2022] [Indexed: 12/15/2022] Open
Abstract
Although the pathogenesis of chronic obstructive pulmonary disease (COPD) is not yet fully understood, recent studies suggest that the disruption of the intracellular balance of oxidative (such as reactive oxygen species (ROS)) and antioxidant molecules plays an important role in COPD development and progression. Metallothionein is an endogenous metal-binding protein with reported ROS scavenging activity. Although there have been many publications on the protective effects of metallothionein in the kidney and liver, its role in COPD models such as elastase- or cigarette smoke (CS)-induced lung injury is unknown. Thus, in the present study, we analyzed the elastase-induced lung injury model using metallothionein-knockout (MT-KO; MT-1 and -2 gene deletion) mice. The expression of MT-1 and MT-2 in the lungs of MT-KO mice was markedly lower compared with that in the lungs of wildtype (WT) mice. Porcine pancreatic elastase (PPE)-induced lung injury (alveolar enlargement and respiratory impairment) was significantly exacerbated in MT-KO mice compared with WT mice. Additionally, PPE-induced increases in the number of inflammatory cells, inflammatory cytokines, and cell death in lung tissue were significantly more pronounced in MT-KO mice compared with WT mice. Finally, using an in vivo imaging system, we also found that PPE-induced ROS production in the lungs was enhanced in MT-KO mice compared with WT mice. These results suggest that metallothionein may act as an inhibitor against elastase-induced lung injury by suppressing ROS production. These results suggest that metallothionein protein, or compounds that can induce metallothionein, could be useful in the treatment of COPD.
Collapse
|
18
|
The lncRNA-AK046375 Upregulates Metallothionein-2 by Sequestering miR-491-5p to Relieve the Brain Oxidative Stress Burden after Traumatic Brain Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8188404. [PMID: 35222805 PMCID: PMC8865981 DOI: 10.1155/2022/8188404] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 12/08/2021] [Accepted: 12/27/2021] [Indexed: 12/11/2022]
Abstract
We previously discovered that traumatic brain injury (TBI) induces significant perturbations in long noncoding RNA (lncRNA) levels in the mouse cerebral cortex, and lncRNA-AK046375 is one of the most significantly changed lncRNAs after TBI. lncRNA-AK046375 overexpression and knockdown models were successfully constructed both in vitro and in vivo. In cultured primary cortical neurons and astrocytes, lncRNA-AK046375 sequestered miR-491-5p, thereby enhancing the expression of metallothionein-2 (MT2), which ameliorated oxidative-induced cell injury. In addition, upregulated lncRNA-AK046375 promoted the recovery of motor, learning, and memory functions after TBI in C57BL/6 mice, and the underlying mechanism may be related to ameliorated apoptosis, inhibited oxidative stress, reduced brain edema, and relieved loss of tight junction proteins at the blood-brain barrier in the mouse brain. Therefore, we conclude that lncRNA-AK046375 enhances MT2 expression by sequestering miR-491-5p, ultimately strengthening antioxidant activity, which ameliorates neurological deficits post-TBI.
Collapse
|
19
|
Elevated metallothionein expression in long-lived species. Aging (Albany NY) 2022; 14:1-3. [PMID: 35027505 PMCID: PMC8791206 DOI: 10.18632/aging.203831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/11/2022] [Indexed: 11/25/2022]
|
20
|
Kadota Y, Yano A, Kawakami T, Sato M, Suzuki S. Metabolomic profiling of plasma from middle-aged and advanced-age male mice reveals the metabolic abnormalities of carnitine biosynthesis in metallothionein gene knockout mice. Aging (Albany NY) 2021; 13:24963-24988. [PMID: 34851303 PMCID: PMC8714139 DOI: 10.18632/aging.203731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 11/22/2021] [Indexed: 12/30/2022]
Abstract
Metallothionein (MT) is a family of low molecular weight, cysteine-rich proteins that regulate zinc homeostasis and have potential protective effects against oxidative stress and toxic metals. MT1 and MT2 gene knockout (MTKO) mice show shorter lifespans than wild-type (WT) mice. In this study, we aimed to investigate how MT gene deficiency accelerates aging. We performed comparative metabolomic analyses of plasma between MTKO and WT male mice at middle age (50-week-old) and advanced age (100-week-old) using liquid chromatography with time-of-flight mass spectrometry (LC-TOF-MS). The concentration of N6,N6,N6-trimethyl-L-lysine (TML), which is a metabolic intermediate in carnitine biosynthesis, was consistently higher in the plasma of MTKO mice compared to that of WT mice at middle and advanced age. Quantitative reverse transcription PCR (RT-PCR) analysis revealed remarkably lower mRNA levels of Tmlhe, which encodes TML dioxygenase, in the liver and kidney of male MTKO mice compared to that of WT mice. L-carnitine is essential for β-oxidation of long-chain fatty acids in mitochondria, the activity of which is closely related to aging. Our results suggest that reduced carnitine biosynthesis capacity in MTKO mice compared to WT mice led to metabolic disorders of fatty acids in mitochondria in MTKO mice, which may have caused shortened lifespans.
Collapse
Affiliation(s)
- Yoshito Kadota
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan
| | - Asuka Yano
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan
| | - Takashige Kawakami
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan
| | - Masao Sato
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan
| | - Shinya Suzuki
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan
| |
Collapse
|
21
|
Pabis K, Chiari Y, Sala C, Straka E, Giacconi R, Provinciali M, Li X, Brown-Borg H, Nowikovsky K, Valencak TG, Gundacker C, Garagnani P, Malavolta M. Elevated metallothionein expression in long-lived species mediates the influence of cadmium accumulation on aging. GeroScience 2021; 43:1975-1993. [PMID: 34117600 DOI: 10.1007/s11357-021-00393-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 05/24/2021] [Indexed: 11/29/2022] Open
Abstract
Cadmium (Cd) accumulates with aging and is elevated in long-lived species. Metallothioneins (MTs), small cysteine-rich proteins involved in metal homeostasis and Cd detoxification, are known to be related to longevity. However, the relationship between Cd accumulation, the role of MTs, and aging is currently unclear. Specifically, we do not know if long-lived species evolved an efficient metal stress response by upregulating their MT levels to reduce the toxic effects of environmental pollutants, such as Cd, that accumulate over their longer life span. It is also unknown if the number of MT genes, their expression, or both protect the organisms from potentially damaging effects during aging. To address these questions, we reanalyzed several cross-species studies and obtained data on MT expression and Cd accumulation in long-lived mouse models. We confirmed a relationship between species maximum life span in captive mammals and their Cd content in liver and kidney. We found that although the number of MT genes does not affect longevity, gene expression and protein amount of specific MT paralogs are strongly related to life span in mammals. MT expression rather than gene number may influence the high Cd levels and longevity of some species. In support of this, we found that overexpression of MT-1 accelerated Cd accumulation in mice and that tissue Cd was higher in long-lived mouse strains with high MT expression. We conclude that long-lived species have evolved a more efficient stress response by upregulating the expression of MT genes in presence of Cd, which contributes to elevated tissue Cd levels.
Collapse
Affiliation(s)
- Kamil Pabis
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Währinger Strasse 10, 1090, Wien, Vienna, Austria
| | - Ylenia Chiari
- Department of Biology, George Mason University, Fairfax, VA, 22030, USA
| | - Claudia Sala
- Department of Physics and Astronomy, University of Bologna, 40126, Bologna, Italy
| | - Elisabeth Straka
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Währinger Strasse 10, 1090, Wien, Vienna, Austria
| | - Robertina Giacconi
- Advanced Technology Center for Aging Research, IRCCS INRCA, 60121, Ancona, Italy
| | - Mauro Provinciali
- Advanced Technology Center for Aging Research, IRCCS INRCA, 60121, Ancona, Italy
| | - Xinna Li
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, 48109, USA
| | - Holly Brown-Borg
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, 58203, USA
| | - Karin Nowikovsky
- Department of Internal Medicine I and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Teresa G Valencak
- Department of Animal Science and Technology, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Claudia Gundacker
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Währinger Strasse 10, 1090, Wien, Vienna, Austria
| | - Paolo Garagnani
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), and Interdepartmental Centre "L. Galvani" (CIG), University of Bologna, Bologna, Italy.,Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Marco Malavolta
- Advanced Technology Center for Aging Research, IRCCS INRCA, 60121, Ancona, Italy.
| |
Collapse
|
22
|
Cruz T, Jia M, Sembrat J, Tabib T, Agostino N, Bruno TC, Vignali D, Sanchez P, Lafyatis R, Mora AL, Benos P, Rojas M. Reduce Proportion and Activity of NK Cells in the Lung of Idiopathic Pulmonary Fibrosis Patients. Am J Respir Crit Care Med 2021; 204:608-610. [PMID: 34077698 DOI: 10.1164/rccm.202012-4418le] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Tamara Cruz
- University of Pittsburgh, Department of Medicine, Pittsburgh, Pennsylvania, United States
| | - Minxue Jia
- University of Pittsburgh, Computational Biology, Pittsburgh, Pennsylvania, United States
| | - John Sembrat
- University of Pittsburgh, Medicine, Pittsburgh, Pennsylvania, United States
| | - Tracy Tabib
- University of Pittsburgh, Medicine/Rheumatology, Pittsburgh, Pennsylvania, United States
| | - Naomi Agostino
- University of Pittsburgh, 6614, Cardiology, Pittsburgh, Pennsylvania, United States
| | - Tullia C Bruno
- University of Pittsburgh School of Medicine, 12317, Immunology, Pittsburgh, Pennsylvania, United States
| | - Dario Vignali
- University of Pittsburgh School of Medicine, 12317, Immunology, Pittsburgh, Pennsylvania, United States
| | - Pablo Sanchez
- University of Pittsburgh, Cardiothoracic Surgery, Pittsburgh, Pennsylvania, United States
| | - Robert Lafyatis
- University of Pittsburgh Department of Medicine, 199716, Rheumatology and Clinical Immunology, Pittsburgh, Pennsylvania, United States
| | - Ana L Mora
- University of Pittsburgh, Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Pittsburgh, Pennsylvania, United States
| | - Panayiotis Benos
- University of Pittsburgh, Computational Biology, Pittsburgh, Pennsylvania, United States
| | - Mauricio Rojas
- University of Pittsburgh, Department of Medicine, Pittsburgh, Pennsylvania, United States;
| |
Collapse
|
23
|
Ahn MY, Yoon HJ, Hwang JS, Jin JM, Park KK. The role of noble bumblebee (Bombus terrestris) queen glycosaminoglycan in aged rat and gene expression profile based on DNA microarray. Toxicol Res 2021; 37:85-98. [PMID: 33489860 DOI: 10.1007/s43188-020-00065-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 09/08/2020] [Accepted: 09/23/2020] [Indexed: 01/10/2023] Open
Abstract
Glycosaminoglycans (GAGs) have been used to diminish the deleterious effects associated with aging by preventing the destruction of cartilage, bone, discs, and skin. The objective of this study was to evaluate the anti-aging effect of a newly prepared GAG derived from bumblebee (Bombus terrestris) queen (BTQG, 10 mg/kg). Gryllus bimaculatus (Gb, cricket) GAG (GbG, 10 mg/kg) or glucosamine sulfate (GS) was used as a positive control. N-glycans derived from BTQG contained hexose polymers including Hex4HexNAc3Pen1, Hex9, and Hex5HexNAc3dHex2 as the primary components. The GAGs were intraperitoneally administered to 14-month-old aged rats for 1 month. BTQG reduced the serum levels of free fatty acid, alkaline phosphatase (ALP), glutamate pyruvate transaminase (GPT), creatinine, and blood urea nitrogen (BUN), showing hepato-and renal-protective effects with anti-lipidemic activities comparable to GS. The changes of gene expression profile of liver tissue by cDNA microarray showed the simultaneous upregulation of 36 genes in the BTQG-treated rat group compared to the control group, including secretogranin II (Scg2), Activator (AP)-1-regulated protein-related reactive oxygen species (ROS) DNA damage repair, metallothionein 1a, and alpha-2 macroglobulin. The BTQG-treated group also showed 417 downregulated genes, including vimentin, moesin, and mitochondrial carbonic anhydrase. Insect glycosaminoglycan from the bumblebee (B. terrestris) queen may help decelerate the aging stage by ameliorating the aging effects on circulation, and liver and kidney function.
Collapse
Affiliation(s)
- Mi Young Ahn
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration (RDA), 166 Nongsaengmyung-Ro, Iseo-Myun, Wanju-Gun, 55365 Korea
| | - Hyung Joo Yoon
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration (RDA), 166 Nongsaengmyung-Ro, Iseo-Myun, Wanju-Gun, 55365 Korea
| | - Jae Sam Hwang
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration (RDA), 166 Nongsaengmyung-Ro, Iseo-Myun, Wanju-Gun, 55365 Korea
| | - Jang Mi Jin
- Korean Basic Science Institute, Ochang, 28119 Korea
| | | |
Collapse
|
24
|
Wang C, He M, Chen B, Hu B. Study on cytotoxicity, cellular uptake and elimination of rare-earth-doped upconversion nanoparticles in human hepatocellular carcinoma cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 203:110951. [PMID: 32678752 DOI: 10.1016/j.ecoenv.2020.110951] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 06/22/2020] [Accepted: 06/25/2020] [Indexed: 06/11/2023]
Abstract
The growing use of rare-earth doped upconversion nanoparticles (UCNPs) has caused increasing concern about their biosafety. Here, to understand the toxicity of UCNPs and their mechanism in HepG2 cells, we systematically study the cytotoxicity, uptake and elimination behaviors of three types of UCNPs combined multiple cytotoxicity evaluation means with inductively coupled plasma mass spectrometry (ICP-MS) detection. Sodium yttrium fluoride, doped with 18% (molar ratio) ytterbium and 2% erbium (NaYF4: Yb3+, Er3+) was selected as the model UCNPs with two sizes (35 and 55 nm), and the poly(acrylic acid) and polyethylenimine were selected as the representatives of negative and positive surface coating of UCNPs, respectively. UCNPs were found to induce cytotoxicity in time- and dose-dependent manners, which might be mediated by reactive oxygen species generation and oxidative stress. Apoptosis, inflammation, and metabolic process were enhanced after cells exposed to 200 mg/L UCNPs for 48 h. Increase in the protein levels of cleaved caspased-9, cleaved caspase-3 and Bax and decrease in the anti-apoptotic protein, Bcl-2 suggested that the mitochondria mediated pathway was involved in UCNP-induced apoptosis. With the aid of ICP-MS, it demonstrated that the cytotoxicity was associated with internalized amount of UCNPs, which largely relied on their surface properties rather than size in the tested range. By comparing UCNPs with Y3+ ions, it demonstrated that NPs properties played a nonnegligible role in the cytotoxicity of UCNPs. These findings provide new insights for fundamental understanding of cytotoxicity of UCNPs and may contribute to more rational use of these materials in the future.
Collapse
Affiliation(s)
- Chuan Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Man He
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Beibei Chen
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Bin Hu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
25
|
Pretsch D, Rollinger JM, Schmid A, Genov M, Wöhrer T, Krenn L, Moloney M, Kasture A, Hummel T, Pretsch A. Prolongation of metallothionein induction combats Aß and α-synuclein toxicity in aged transgenic Caenorhabditis elegans. Sci Rep 2020; 10:11707. [PMID: 32678125 PMCID: PMC7366685 DOI: 10.1038/s41598-020-68561-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 06/22/2020] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative disorders (ND) like Alzheimer's (AD), Parkinson's (PD), Huntington's or Prion diseases share similar pathological features. They are all age dependent and are often associated with disruptions in analogous metabolic processes such as protein aggregation and oxidative stress, both of which involve metal ions like copper, manganese and iron. Bush and Tanzi proposed 2008 in the 'metal hypothesis of Alzheimer's disease' that a breakdown in metal homeostasis is the main cause of NDs, and drugs restoring metal homeostasis are promising novel therapeutic strategies. We report here that metallothionein (MT), an endogenous metal detoxifying protein, is increased in young amyloid ß (Aß) expressing Caenorhabditis elegans, whereas it is not in wild type strains. Further MT induction collapsed in 8 days old transgenic worms, indicating the age dependency of disease outbreak, and sharing intriguing parallels to diminished MT levels in human brains of AD. A medium throughput screening assay method was established to search for compounds increasing the MT level. Compounds known to induce MT release like progesterone, ZnSO4, quercetin, dexamethasone and apomorphine were active in models of AD and PD. Thioflavin T, clioquinol and emodin are promising leads in AD and PD research, whose mode of action has not been fully established yet. In this study, we could show that the reduction of Aß and α-synuclein toxicity in transgenic C. elegans models correlated with the prolongation of MT induction time and that knockdown of MT with RNA interference resulted in a loss of bioactivity.
Collapse
Affiliation(s)
- Dagmar Pretsch
- Oxford Antibiotic Group GmbH, Konrad-Lorenz-Straße 24, 3430, Tulln, Austria.
| | - Judith Maria Rollinger
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Axel Schmid
- Department of Neuroscience and Developmental Biology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Miroslav Genov
- Oxford Antibiotic Group GmbH, Konrad-Lorenz-Straße 24, 3430, Tulln, Austria
| | - Teresa Wöhrer
- Oxford Antibiotic Group GmbH, Konrad-Lorenz-Straße 24, 3430, Tulln, Austria
| | - Liselotte Krenn
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Mark Moloney
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Ameya Kasture
- Department of Neuroscience and Developmental Biology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Thomas Hummel
- Department of Neuroscience and Developmental Biology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Alexander Pretsch
- Oxford Antibiotic Group GmbH, Konrad-Lorenz-Straße 24, 3430, Tulln, Austria
| |
Collapse
|
26
|
Mallikarjun V, Richardson SM, Swift J. BayesENproteomics: Bayesian Elastic Nets for Quantification of Peptidoforms in Complex Samples. J Proteome Res 2020; 19:2167-2184. [PMID: 32319298 DOI: 10.1021/acs.jproteome.9b00468] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Multivariate regression modelling provides a statistically powerful means of quantifying the effects of a given treatment while compensating for sources of variation and noise, such as variability between human donors and the behavior of different peptides during mass spectrometry. However, methods to quantify endogenous post-translational modifications (PTMs) are typically reliant on summary statistical methods that fail to consider sources of variability such as changes in the levels of the parent protein. Here, we compare three multivariate regression methods, including a novel Bayesian elastic net algorithm (BayesENproteomics) that enables assessment of relative protein abundances while also quantifying identified PTMs for each protein. We tested the ability of these methods to accurately quantify expression of proteins in a mixed-species benchmark experiment and to quantify synthetic PTMs induced by stable isotope labelling. Finally, we extended our regression pipeline to calculate fold changes at the pathway level, providing a complement to commonly used enrichment analysis. Our results show that BayesENproteomics can quantify changes to protein levels across a broad dynamic range while also accurately quantifying PTM and pathway-level fold changes.
Collapse
Affiliation(s)
- Venkatesh Mallikarjun
- Wellcome Centre for Cell-Matrix Research, University of Manchester, Oxford Road, Manchester M13 9PT, U.K.,Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Stephen M Richardson
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Joe Swift
- Wellcome Centre for Cell-Matrix Research, University of Manchester, Oxford Road, Manchester M13 9PT, U.K.,Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| |
Collapse
|
27
|
Kimmel JC, Hwang AB, Scaramozza A, Marshall WF, Brack AS. Aging induces aberrant state transition kinetics in murine muscle stem cells. Development 2020; 147:dev183855. [PMID: 32198156 PMCID: PMC7225128 DOI: 10.1242/dev.183855] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 02/17/2020] [Indexed: 12/12/2022]
Abstract
Murine muscle stem cells (MuSCs) experience a transition from quiescence to activation that is required for regeneration, but it remains unknown if the trajectory and dynamics of activation change with age. Here, we use time-lapse imaging and single cell RNA-seq to measure activation trajectories and rates in young and aged MuSCs. We find that the activation trajectory is conserved in aged cells, and we develop effective machine-learning classifiers for cell age. Using cell-behavior analysis and RNA velocity, we find that activation kinetics are delayed in aged MuSCs, suggesting that changes in stem cell dynamics may contribute to impaired stem cell function with age. Intriguingly, we also find that stem cell activation appears to be a random walk-like process, with frequent reversals, rather than a continuous linear progression. These results support a view of the aged stem cell phenotype as a combination of differences in the location of stable cell states and differences in transition rates between them.
Collapse
Affiliation(s)
- Jacob C Kimmel
- Eli and Edythe Broad Center for Regenerative Medicine, University of California, San Francisco, 35 Medical Center Way, San Francisco, CA 94143, USA
- Center for Cellular Construction, University of California, San Francisco, San Francisco, CA 94143, USA
- Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ara B Hwang
- Eli and Edythe Broad Center for Regenerative Medicine, University of California, San Francisco, 35 Medical Center Way, San Francisco, CA 94143, USA
| | - Annarita Scaramozza
- Eli and Edythe Broad Center for Regenerative Medicine, University of California, San Francisco, 35 Medical Center Way, San Francisco, CA 94143, USA
| | - Wallace F Marshall
- Center for Cellular Construction, University of California, San Francisco, San Francisco, CA 94143, USA
- Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Andrew S Brack
- Eli and Edythe Broad Center for Regenerative Medicine, University of California, San Francisco, 35 Medical Center Way, San Francisco, CA 94143, USA
| |
Collapse
|
28
|
Kawakami T, Takasaki S, Kadota Y, Fukuoka D, Sato M, Suzuki S. Regulatory role of metallothionein-1/2 on development of sex differences in a high-fat diet-induced obesity. Life Sci 2019; 226:12-21. [PMID: 30954474 DOI: 10.1016/j.lfs.2019.04.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/01/2019] [Accepted: 04/03/2019] [Indexed: 10/27/2022]
Abstract
AIMS To evaluate the role of metallothionein (MT) in sex differences of obesity, we examined the effect of MT on regulation of lipid accumulation in female and male wild type (WT) and MT1/MT2-null (MT-KO) mice. MAIN METHODS Male and female WT and MT-KO mice fed standard diet (SD) or high-fat diet (HFD) for 35 weeks. Surgical castration in male mice was also performed to examine the effects of androgen on fat accumulation under HFD condition. KEY FINDINGS The fat mass and size of adipocytes in white adipose tissue (WAT) was greater in adult MT-KO mice than in WT mice after 35 weeks of SD feeding without gender differences, suggesting a role of MT in limiting WAT development during normal growth in both sexes. In female mice fed HFD, weights of WAT and body were greater in MT-KO mice than in WT mice, indicating that MT had a preventive role against excess fat accumulation. In male mice fed HFD, WAT weight hardly increased in MT-KO mice compared to the increase in WT mice. Surgically castrated WT males fed HFD had lower WAT weight compared with sham-treated mice, although castrated MT-KO males fed HFD had greater increases in WAT weight compared with sham-treated mice and castrated WT males. SIGNIFICANCE These data suggest that MT could enhance the preventive action of estrogen against excess fat accumulation, on the contrary, MT augmented the ability of androgen to increase fat accumulation. MT may act to modify the susceptibility to obesity under sex hormones.
Collapse
Affiliation(s)
- Takashige Kawakami
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan.
| | - Satoshi Takasaki
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Yoshito Kadota
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Daiki Fukuoka
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Masao Sato
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Shinya Suzuki
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| |
Collapse
|
29
|
Ljubojević M, Orct T, Micek V, Karaica D, Jurasović J, Breljak D, Madunić IV, Rašić D, Jovanović IN, Peraica M, Gerić M, Gajski G, Oguić SK, Rogić D, Nanić L, Rubelj I, Sabolić I. Sex-dependent expression of metallothioneins MT1 and MT2 and concentrations of trace elements in rat liver and kidney tissues: Effect of gonadectomy. J Trace Elem Med Biol 2019; 53:98-108. [PMID: 30910215 DOI: 10.1016/j.jtemb.2019.02.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 02/20/2019] [Accepted: 02/22/2019] [Indexed: 02/02/2023]
Abstract
Metallothioneins (MTs) exhibit binding affinity for several essential and toxic trace elements. Previous studies in rodents indicated sex differences in the hepatic and renal expression of MTs and concentrations of various elements. The mechanism responsible for these differences has not been resolved. Here, in the liver and kidney tissues of sham-operated and gonadectomized male and female rats we determined the expression of MT1 and MT2 (MT1&2) mRNA by RT-PCR, abundance of MT1&2 proteins by Western blotting and immunocytochemistry, concentrations of essential (Fe, Zn, Cu, Co) and toxic (Cd, Hg, Pb) elements by ICP-MS, and oxidative status parameters (SOD, GPx, MDA, GSH) by biochemical methods. In both organs, the expression of MT1&2 mRNA and MT1&2 proteins was female-dominant, upregulated by castration, and downregulated by ovariectomy. Concentrations of Fe in the liver and Co in the kidneys followed the same pattern. Most other elements (Zn, Cu, Cd, Hg) exhibited female- or male-dominant sex differences, affected by gonadectomy in one or both organs. Pb was sex- and gonadectomy-unaffected. GPx and MDA were elevated and associated with the highest concentrations of Fe only in the female liver. We conclude that the sex-dependent expression of MT1&2 mRNA and proteins in the rat liver and kidneys may include different mechanisms. In the liver, the female-dominant tissue concentrations of Fe may generate oxidative stress which is a potent enhancer of MTs production, whereas in kidneys, the female-dominant expression of MTs may be unrelated to Fe-mediated oxidative stress.
Collapse
Affiliation(s)
- Marija Ljubojević
- Molecular Toxicology Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Tatjana Orct
- Analytical Toxicology and Mineral Metabolism Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Vedran Micek
- Animal Breeding Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Dean Karaica
- Molecular Toxicology Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Jasna Jurasović
- Analytical Toxicology and Mineral Metabolism Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Davorka Breljak
- Molecular Toxicology Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Ivana Vrhovac Madunić
- Molecular Toxicology Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Dubravka Rašić
- Toxicology Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Ivana Novak Jovanović
- Toxicology Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Maja Peraica
- Toxicology Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Marko Gerić
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Goran Gajski
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Saša Kralik Oguić
- Clinical Institute of Laboratory Diagnostics, Clinical Hospital Center, Zagreb, Croatia
| | - Dunja Rogić
- Clinical Institute of Laboratory Diagnostics, Clinical Hospital Center, Zagreb, Croatia
| | - Lucia Nanić
- Laboratory for Molecular and Cellular Biology, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Ivica Rubelj
- Laboratory for Molecular and Cellular Biology, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Ivan Sabolić
- Molecular Toxicology Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia.
| |
Collapse
|
30
|
Payán-Gómez C, Rodríguez D, Amador-Muñoz D, Ramírez-Clavijo S. Integrative Analysis of Global Gene Expression Identifies Opposite Patterns of Reactive Astrogliosis in Aged Human Prefrontal Cortex. Brain Sci 2018; 8:brainsci8120227. [PMID: 30572619 PMCID: PMC6317157 DOI: 10.3390/brainsci8120227] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/28/2018] [Accepted: 12/04/2018] [Indexed: 12/14/2022] Open
Abstract
The prefrontal cortex (PFC) is one of the brain regions with more prominent changes in human aging. The molecular processes related to the cognitive decline and mood changes during aging are not completely understood. To improve our knowledge, we integrated transcriptomic data of four studies of human PFC from elderly people (58–80 years old) compared with younger people (20–40 years old) using a meta-analytic approximation combined with molecular signature analysis. We identified 1817 differentially expressed genes, 561 up-regulated and 1256 down-regulated. Pathway analysis revealed down-regulation of synaptic genes with conservation of gene expression of other neuronal regions. Additionally, we identified up-regulation of markers of astrogliosis with transcriptomic signature compatible with A1 neurotoxic astrocytes and A2 neuroprotective astrocytes. Response to interferon is related to A1 astrocytes and the A2 phenotype is mediated in aging by activation of sonic hedgehog (SHH) pathway and up-regulation of metallothioneins I and genes of the family ERM (ezrin, radixin, and moesin). The main conclusions of our study are the confirmation of a global dysfunction of the synapses in the aged PFC and the evidence of opposite phenotypes of astrogliosis in the aging brain, which we report for the first time in the present article.
Collapse
Affiliation(s)
- César Payán-Gómez
- Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Bogotá 111221, Colombia.
| | - Diego Rodríguez
- Neuroscience (NEUROS) Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 No. 63C-69, Bogotá 111221, Colombia.
| | - Diana Amador-Muñoz
- Neuroscience (NEUROS) Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 No. 63C-69, Bogotá 111221, Colombia.
| | - Sandra Ramírez-Clavijo
- Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Bogotá 111221, Colombia.
| |
Collapse
|
31
|
Hanana H, Turcotte P, Dubé M, Gagnon C, Gagné F. Response of the freshwater mussel, Dreissena polymorpha to sub-lethal concentrations of samarium and yttrium after chronic exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 165:662-670. [PMID: 30245300 DOI: 10.1016/j.ecoenv.2018.09.047] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 09/06/2018] [Accepted: 09/09/2018] [Indexed: 06/08/2023]
Abstract
Samarium (Sm) and yttrium (Y) are commonly used rare earth elements (REEs) but there is a scarcity of information concerning their biological effects in non-target aquatic organisms. The purpose of this study was to determine the bioavailability of those REEs and their toxicity on Dreissena polymorpha after exposure to increasing concentration of Sm and Y for 28 days at 15 °C. At the end of the exposure period, the gene expression of superoxide dismutase (SOD), catalase (CAT), metallothionein (MT), glutathione-S-transferase (GST), cytochrome c oxidase 1 (CO1) and cyclin D (Cyc D) were analysed. In addition, we examined lipid peroxidation (LPO), DNA strand breaks (DSB), GST and prostaglandin cyclooxygenase (COX) activities. Results showed a concentration dependent increase in the level of the REEs accumulated in the soft tissue of mussels. Both REEs decreased CAT but did not significantly modulated SOD and MT expressions. Furthermore, Sm3+ up-regulated GST, CO1 and Cyc D, while Y3+ increased and decreased GST and CO1 transcripts levels, respectively. Biomarker activities showed no oxidative damage as evidenced by LPO, while COX activity was decreased and DNA strand breaks levels were changed suggesting that Sm and Y exhibit anti-inflammatory and genotoxic effects. Factorial analysis revealed that the major impacted biomarkers by Sm were LPO, CAT, CO1 and COX, while GST gene expression, COX, Cyc D and CAT as the major biomarkers affected by Y. We conclude that these REEs display different mode of action but further investigations are required in order to define the exact mechanism involved in their toxicity.
Collapse
Affiliation(s)
- Houda Hanana
- Aquatic Contaminant Research Division, Environment and Climate Change Canada, 105 McGill, Montreal, Quebec, Canada H2Y 2E7.
| | - Patrice Turcotte
- Aquatic Contaminant Research Division, Environment and Climate Change Canada, 105 McGill, Montreal, Quebec, Canada H2Y 2E7
| | - Maxime Dubé
- Aquatic Contaminant Research Division, Environment and Climate Change Canada, 105 McGill, Montreal, Quebec, Canada H2Y 2E7
| | - Christian Gagnon
- Aquatic Contaminant Research Division, Environment and Climate Change Canada, 105 McGill, Montreal, Quebec, Canada H2Y 2E7
| | - François Gagné
- Aquatic Contaminant Research Division, Environment and Climate Change Canada, 105 McGill, Montreal, Quebec, Canada H2Y 2E7.
| |
Collapse
|
32
|
Moreno-Villanueva M, Bürkle A. Epigenetic and redox biomarkers: Novel insights from the MARK-AGE study. Mech Ageing Dev 2018; 177:128-134. [PMID: 29969595 DOI: 10.1016/j.mad.2018.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/12/2018] [Accepted: 06/29/2018] [Indexed: 02/07/2023]
Abstract
Ageing is a multifactorial process that affects most, if not all, of the body's tissues and organs and can be defined as the accumulation of physical and psychological changes in a human being over time. The rate of ageing differs between individuals of the same chronological age, meaning that 'biological age' of a person may be different from 'chronological age'. Furthermore, ageing represents a very potent risk factor for diseases and disability in humans. Therefore, establishment of markers of biological ageing is important for preventing age-associated diseases and extending health span. MARK-AGE, a large-scale European study, aimed at identifying a set of biomarkers which, as a combination of parameters with appropriate weighting, would measure biological age better than any marker in isolation. But beyond the identification of useful biomarkers, MARK-AGE provided new insights in age-associated specific cellular processes, such as DNA methylation, oxidative stress and the regulation of zinc homeostasis.
Collapse
Affiliation(s)
- Maria Moreno-Villanueva
- Molecular Toxicology Group, Dept. of Biology, University of Konstanz, D-78457 Konstanz, Germany
| | - Alexander Bürkle
- Molecular Toxicology Group, Dept. of Biology, University of Konstanz, D-78457 Konstanz, Germany.
| |
Collapse
|
33
|
Baltaci AK, Yuce K, Mogulkoc R. Zinc Metabolism and Metallothioneins. Biol Trace Elem Res 2018; 183:22-31. [PMID: 28812260 DOI: 10.1007/s12011-017-1119-7] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 08/02/2017] [Indexed: 12/20/2022]
Abstract
Among the trace elements, zinc is one of the most used elements in biological systems. Zinc is found in the structure of more than 2700 enzymes, including hydrolases, transferases, oxyreductases, ligases, isomerases, and lyases. Not surprisingly, it is present in almost all body cells. Preserving the stability and integrity of biological membranes and ion channels, zinc is also an intracellular regulator and provides structural support to proteins during molecular interactions. It acts as a structural element in nucleic acids or other gene-regulating proteins. Metallothioneins, the low molecular weight protein family rich in cysteine groups, are involved significantly in numerous physiological and pathological processes including particularly oxidative stress. A critical role of metallothioneins (MT) is to bind zinc with high affinity and to serve as an intracellular zinc reservoir. By releasing free intracellular zinc when needed, MTs mediate the unique physiological roles of zinc. MT expression is induced by zinc elevation, and thus, zinc homeostasis is maintained. That MT mediates the effects of zinc, besides having strong radical scavenging effects, points to the critical part it plays in oxidative stress. The present review aims to give information on metallothioneins, which have critical importance in the metabolism and molecular pathways of zinc.
Collapse
Affiliation(s)
| | - Kemal Yuce
- Department of Physiology, Medical Faculty, Selcuk University, Konya, Turkey
| | - Rasim Mogulkoc
- Department of Physiology, Medical Faculty, Selcuk University, Konya, Turkey
| |
Collapse
|
34
|
Role of phospholipase D in the lifespan of Caenorhabditis elegans. Exp Mol Med 2018; 50:1-10. [PMID: 29622768 PMCID: PMC5938010 DOI: 10.1038/s12276-017-0015-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 12/01/2017] [Accepted: 12/05/2017] [Indexed: 11/08/2022] Open
Abstract
We have previously shown that phospholipase D (PLD) downregulation accelerates cellular senescence, which is widely believed to play an important role in aging, by stimulating reactive oxygen species (ROS) accumulation in human cells. In this study, we examined the role of PLD in aging using the nematode Caenorhabditis elegans. The mRNA level of pld-1 was found to be inversely correlated with aging. RNAi-mediated knockdown of pld-1 expression in nematodes enhanced ROS and lipofuscin accumulation and decreased lifespan, motility, and resistance to stress compared to that in nematodes treated with control RNAi. Pld-1 knockdown repressed the long lifespan of age-1 and akt-1 mutants but did not further reduce the short lifespan of daf-16 mutants, suggesting that PLD functions between AKT-1 and DAF-16. The ROS scavenger N-acetyl-L-cysteine, a PLD effector phosphatidic acid and a possible CK2 activator spermidine attenuated the lifespan shortening and age-related biomarkers triggered by pld-1 knockdown. Pld-1 RNAi downregulated the expression of DAF-16 target genes such as sod-3, dod-11, and mtl-1 in nematodes. In human cells, furthermore, PLD2 downregulation decreased the transcription of FoxO3a target genes (Cu/ZnSOD, MnSOD, catalase, thioredoxin-2, and peroxiredoxin-5), whereas ectopic PLD2 expression elevated the mRNA levels of these antioxidant genes. Taken together, these results indicated that PLD downregulation shortens longevity and induces age-related biomarkers through ROS accumulation by inhibiting the DAF-16/FoxO3a pathway in nematodes.
Collapse
|
35
|
Park JH, Lee JH, Park JW, Kim DY, Hahm JH, Nam HG, Bae YS. Downregulation of protein kinase CK2 activity induces age-related biomarkers in C. elegans. Oncotarget 2018; 8:36950-36963. [PMID: 28445141 PMCID: PMC5513713 DOI: 10.18632/oncotarget.16939] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 03/27/2017] [Indexed: 02/06/2023] Open
Abstract
Studies show that a decrease in protein kinase CK2 (CK2) activity is associated with cellular senescence. However, the role of CK2 in organism aging is still poorly understood. Here, we investigated whether protein kinase CK2 (CK2) modulated longevity in Caenorhabditis elegans. CK2 activity decreased with advancing age in the worms. Knockdown of kin-10 (the ortholog of CK2β) led to a short lifespan phenotype and induced age-related biomarkers, including retardation of locomotion, decreased pharyngeal pumping rate, increased lipofuscin accumulation, and reduced resistance to heat and oxidative stress. The long lifespan of age-1 and akt-1 mutants was significantly suppressed by kin-10 RNAi, suggesting that CK2 acts downstream of AGE-1 and AKT-1. Kin-10 knockdown did not further shorten the short lifespan of daf-16 mutant worms but either decreased or increased the transcriptional activity of DAF-16 depending on the promoters of the target genes, indicating that CK2 is an upstream regulator of DAF-16 in C. elegans. Kin-10 knockdown increased production of reactive oxygen species (ROS) in the worms. Finally, the ROS scavenger N-acetyl-L-cysteine significantly counteracts the lifespan shortening and lipofuscin accumulation induced by kin-10 knockdown. Therefore, the present results suggest that age-dependent CK2 downregulation reduces longevity by associating with both ROS generation and the AGE-1-AKT-1-DAF-16 pathway in C. elegans.
Collapse
Affiliation(s)
- Jeong-Hwan Park
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Joo-Hyun Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Jeong-Woo Park
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Dong-Yun Kim
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Jeong-Hoon Hahm
- Center for Plant Aging Research, Institute for Basic Science, Daegu, Republic of Korea
| | - Hong Gil Nam
- Center for Plant Aging Research, Institute for Basic Science, Daegu, Republic of Korea.,Department of New Biology, DGIST, Daegu, Republic of Korea
| | - Young-Seuk Bae
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea.,School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
36
|
Park Y, Zhang J, Cai L. Reappraisal of metallothionein: Clinical implications for patients with diabetes mellitus. J Diabetes 2018; 10:213-231. [PMID: 29072367 DOI: 10.1111/1753-0407.12620] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 08/29/2017] [Accepted: 10/20/2017] [Indexed: 12/22/2022] Open
Abstract
Reactive oxygen and nitrogen species (ROS and RNS, respectively) are byproducts of cellular physiological processes of the metabolism of intermediary nutrients. Although physiological defense mechanisms readily convert these species into water or urea, an improper balance between their production and removal leads to oxidative stress (OS), which is harmful to cellular components. This OS may result in uncontrolled growth or, ultimately, cell death. In addition, ROS and RNS are closely related to the development of diabetes and its complications. Therefore, numerous researchers have proposed the development of strategies for the removal of ROS/RNS to prevent or treat diabetes and its complications. Some molecules that are synthesized in the body or obtained from food participate in the removal and neutralization of ROS and RNS. Metallothionein, a cysteine-rich protein, is a metal-binding protein that has a wide range of functions in cellular homeostasis and immunity. Metallothionein can be induced by a variety of conditions, including zinc supplementation, and plays a crucial role in mediating anti-OS, anti-apoptotic, detoxification, and anti-inflammatory effects. Metallothionein can modulate various stress-induced signaling pathways (mitogen-activated protein kinase, Wnt, nuclear factor-κB, phosphatidylinositol 3-kinase, sirtuin 1/AMP-activated protein kinase and fibroblast growth factor 21) to alleviate diabetes and diabetic complications. However, a deeper understanding of the functional, biochemical, and molecular characteristics of metallothionein is needed to bring about new opportunities for OS therapy. This review focuses on newly proposed functions of a metallothionein and their implications relevant to diabetes and its complications.
Collapse
Affiliation(s)
- Yongsoo Park
- Department of Pediatrics, Pediatrics Research Institute, University of Louisville, Louisville, Kentucky, USA
- Hanyang University, College of Medicine and Engineering, Seoul, South Korea
| | - Jian Zhang
- Department of Pediatrics, Pediatrics Research Institute, University of Louisville, Louisville, Kentucky, USA
- The Center of Cardiovascular Disorders, The First Hospital of Jilin University, Changchun, China
| | - Lu Cai
- Department of Pediatrics, Pediatrics Research Institute, University of Louisville, Louisville, Kentucky, USA
- Department of Radiation Oncology, University of Louisville, Louisville, Kentucky, USA
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
37
|
Hall JA, McElwee MK, Freedman JH. Identification of ATF-7 and the insulin signaling pathway in the regulation of metallothionein in C. elegans suggests roles in aging and reactive oxygen species. PLoS One 2017. [PMID: 28632756 PMCID: PMC5478092 DOI: 10.1371/journal.pone.0177432] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It has been proposed that aging results from the lifelong accumulation of intracellular damage via reactions with reactive oxygen species (ROS). Metallothioneins are conserved cysteine-rich proteins that function as efficient ROS scavengers and may affect longevity. To better understand mechanisms controlling metallothionein expression, the regulatory factors and pathways that controlled cadmium-inducible transcription of the C. elegans metallothionein gene, mtl-1, were identified. The transcription factor ATF-7 was identified in both ethylmethanesulfonate mutagenesis and candidate gene screens. PMK-1 and members of the insulin signaling pathway, PDK-1 and AKT-1/2, were also identified as mtl-1 regulators. Genetic and previous results support a model for the regulation of cadmium-inducible mtl-1 transcription based on the derepression of the constitutively active transcription factor ELT-2. In addition, knockdown of the mammalian homologs of PDK1 and ATF7 in HEK293 cells resulted in changes in metallothionein expression, suggesting that this pathway was evolutionarily conserved. The insulin signaling pathway is known to influence the aging process; however, various factors responsible for affecting the aging phenotype are unknown. Identification of portions of the insulin signaling pathway as regulators of metallothionein expression supports the hypothesis that longevity is affected by the expression of this efficient ROS scavenger.
Collapse
Affiliation(s)
- Julie A. Hall
- Biomolecular Screening Branch, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
- * E-mail:
| | - Matthew K. McElwee
- Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| | - Jonathan H. Freedman
- Biomolecular Screening Branch, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
- Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| |
Collapse
|
38
|
Kadota Y, Toriuchi Y, Aki Y, Mizuno Y, Kawakami T, Nakaya T, Sato M, Suzuki S. Metallothioneins regulate the adipogenic differentiation of 3T3-L1 cells via the insulin signaling pathway. PLoS One 2017; 12:e0176070. [PMID: 28426713 PMCID: PMC5398611 DOI: 10.1371/journal.pone.0176070] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 04/05/2017] [Indexed: 12/18/2022] Open
Abstract
Knockout of metallothionein (MT) genes contributes to a heavier body weight in early life and the potential to become obese through the intake of a high fat diet (HFD) in mice. It has thus been suggested that MT genes regulate the formation of adipose tissue, which would become the base for later HFD-induced obesity. We evaluated the fat pads of mice during the lactation stage. The fat mass and adipocyte size of MT1 and MT2 knockout mice were greater than those of wild type mice. Next, we assayed the ability of small interfering RNA (siRNA) to silence MT genes in the 3T3-L1 cell line. The expressions of MT1 and MT2 genes were transiently upregulated during adipocyte differentiation, and the siRNA pretreatment led to the suppression of the expression of both MT mRNAs and proteins. The MT siRNA promoted lipid accumulation in adipocytes and caused proliferation of post-confluent preadipocytes; these effects were suppressed by an inhibitor of phosphatidylinositol 3-kinase (LY294002). In addition, MT siRNA promoted insulin-stimulated phosphorylation of Akt, a downstream kinase of the insulin signaling pathway. Enhanced lipid accumulation in 3T3-L1 cells resulting from MT-gene silencing was inhibited by pretreatment with an antioxidant, N-acetylcysteine, used as a substitute for antioxidant protein MTs. These results suggest that interference in MT expression enhanced the activation of the insulin signaling pathway, resulting in higher lipid accumulation in 3T3-L1 adipocytes.
Collapse
Affiliation(s)
- Yoshito Kadota
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Yuriko Toriuchi
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Yuka Aki
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Yuto Mizuno
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Takashige Kawakami
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Tomoko Nakaya
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Masao Sato
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Shinya Suzuki
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| |
Collapse
|
39
|
Ide T. Physiological activities of the combination of fish oil and α-lipoic acid affecting hepatic lipogenesis and parameters related to oxidative stress in rats. Eur J Nutr 2017; 57:1545-1561. [DOI: 10.1007/s00394-017-1440-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 03/13/2017] [Indexed: 01/05/2023]
|
40
|
Cong W, Niu C, Lv L, Ni M, Ruan D, Chi L, Wang Y, Yu Q, Zhan K, Xuan Y, Wang Y, Tan Y, Wei T, Cai L, Jin L. Metallothionein Prevents Age-Associated Cardiomyopathy via Inhibiting NF-κB Pathway Activation and Associated Nitrative Damage to 2-OGD. Antioxid Redox Signal 2016; 25:936-952. [PMID: 27477335 PMCID: PMC5144888 DOI: 10.1089/ars.2016.6648] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 06/20/2016] [Accepted: 07/13/2016] [Indexed: 11/12/2022]
Abstract
AIMS Cardiac-specific metallothionein (MT) overexpression extends lifespan, but the mechanism underlying the effect of MT protection against age-associated cardiovascular diseases (CVD) remains elusive. To elucidate this, male wild-type and two lines of MT-transgenic (MT-TG) mice, MM and MT-1 (cardiac-specific overexpressing MT about 10- and 80-fold, respectively) at three representative ages (2-3, 9-10, and 18-20 months), were utilized. A stable human MT2A overexpressing cardiomyocytes (H9c2MT7) was also introduced. RESULTS Histomorphology and echocardiographic analysis revealed that age-associated cardiac hypertrophy, remodeling, and dysfunction were ameliorated in MT-TG mice. Also, aging-accompanied NF-κB activation, characterized by increased nuclear p65 translocation, elevated DNA-binding activity, and upregulation of inflammatory cytokines, was largely attenuated by MT overexpression. Treatment of H9c2 cardiomyocytes with tumor necrosis factor-α (TNF-α), which mimicked an inflammatory environment, significantly increased NF-κB activity, and some age-related phenotypes appeared. The NF-κB activation was further proved to be pivotal for both age-associated and TNF-α-induced nitrative damage to cardiac 2-oxoglutarate dehydrogenase (2-OGD) by virtue of NF-κB p65 gene silencing. MT inhibited NF-κB activation and associated nitrative damage to cardiac 2-OGD in both old MT-TG hearts and TNF-α-treated H9c2MT7 cardiomyocytes; these protective effects were abolished in H9c2MT7 cardiomyocytes by MT-specific gene silencing. Innovation and Conclusion: Together, these findings indicate that the protective effects of MT against age-associated CVD can be attributed mainly to its role in NF-κB inhibition and resultant alleviation of nitrative damage to 2-OGD. Antioxid. Redox Signal. 25, 936-952.
Collapse
Affiliation(s)
- Weitao Cong
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, P.R. China
| | - Chao Niu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, P.R. China
| | - Lingchun Lv
- The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, P.R. China
| | - Maowei Ni
- Zhejiang Cancer Hospital, Hangzhou, P.R. China
| | - Dandan Ruan
- The Health Examination Center, the 117th Hospital of Chinese People's Liberation Army, Hangzhou, P.R. China
| | - Lisha Chi
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, P.R. China
| | - Yang Wang
- Department of Histology and Embryology, Institute of Neuroscience, Wenzhou Medical University, Wenzhou, P.R. China
| | - Qing Yu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, P.R. China
| | - Kungao Zhan
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, P.R. China
| | - Yuanhu Xuan
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, P.R. China
| | - Yuehui Wang
- The First Hospital of Jilin University, Changchun, P.R. China
| | - Yi Tan
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, P.R. China
- Department of Pediatrics, Kosair Children's Hospital Research Institute, University of Louisville, Louisville, Kentucky
| | - Tiemin Wei
- The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, P.R. China
| | - Lu Cai
- The First Hospital of Jilin University, Changchun, P.R. China
- Department of Pediatrics, Kosair Children's Hospital Research Institute, University of Louisville, Louisville, Kentucky
| | - Litai Jin
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, P.R. China
| |
Collapse
|
41
|
Mammalian Metallothionein-2A and Oxidative Stress. Int J Mol Sci 2016; 17:ijms17091483. [PMID: 27608012 PMCID: PMC5037761 DOI: 10.3390/ijms17091483] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 08/19/2016] [Accepted: 08/24/2016] [Indexed: 01/01/2023] Open
Abstract
Mammalian metallothionein-2A (MT2A) has received considerable attention in recent years due to its crucial pathophysiological role in anti-oxidant, anti-apoptosis, detoxification and anti-inflammation. For many years, most studies evaluating the effects of MT2A have focused on reactive oxygen species (ROS), as second messengers that lead to oxidative stress injury of cells and tissues. Recent studies have highlighted that oxidative stress could activate mitogen-activated protein kinases (MAPKs), and MT2A, as a mediator of MAPKs, to regulate the pathogenesis of various diseases. However, the molecule mechanism of MT2A remains elusive. A deeper understanding of the functional, biochemical and molecular characteristics of MT2A would be identified, in order to bring new opportunities for oxidative stress therapy.
Collapse
|
42
|
Szrok S, Stelmanska E, Turyn J, Bielicka-Gieldon A, Sledzinski T, Swierczynski J. Metallothioneins 1 and 2, but not 3, are regulated by nutritional status in rat white adipose tissue. GENES AND NUTRITION 2016; 11:18. [PMID: 27551319 PMCID: PMC4968437 DOI: 10.1186/s12263-016-0533-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 06/10/2016] [Indexed: 11/23/2022]
Abstract
Background Cumulating evidence underlines the role of adipose tissue metallothionein (MT) in the development of obesity and type 2 diabetes. Fasting/refeeding was shown to affect MT gene expression in the rodent liver. The influence of nutritional status on MT gene expression in white adipose tissue (WAT) is inconclusive. The aim of this study was to verify if fasting and fasting/refeeding may influence expression of MT genes in WAT of rats. Results Fasting resulted in a significant increase in MT1 and MT2 gene expressions in retroperitoneal, epididymal, and inguinal WAT of rats, and this effect was reversed by refeeding. Altered expressions of MT1 and MT2 genes in all main fat depots were reflected by changes in serum MT1 and MT2 levels. MT1 and MT2 messenger RNA (mRNA) levels in WAT correlated inversely with serum insulin concentration. Changes in MT1 and MT2 mRNA levels were apparently not related to total zinc concentrations and MTF1 and Zn transporter mRNA levels in WAT. Fasting or fasting/refeeding exerted no effect on the expression of MT3 gene in WAT. Addition of insulin to isolated adipocytes resulted in a significant decrease in MT1 and MT2 gene expressions. In contrast, forskolin or dibutyryl-cAMP (dB-cAMP) enhanced the expressions of MT1 and MT2 genes in isolated adipocytes. Insulin partially reversed the effect of dB-cAMP on MT1 and MT2 gene expressions. Conclusions This study showed that the expressions of MT1 and MT2 genes in WAT are regulated by nutritional status, and the regulation may be independent of total zinc concentration. Electronic supplementary material The online version of this article (doi:10.1186/s12263-016-0533-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sylwia Szrok
- Department of Biochemistry, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland
| | - Ewa Stelmanska
- Department of Biochemistry, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland
| | - Jacek Turyn
- Department of Biochemistry, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland
| | | | - Tomasz Sledzinski
- Department of Pharmaceutical Biochemistry, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland
| | - Julian Swierczynski
- Department of Biochemistry, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland
| |
Collapse
|
43
|
de Francisco P, Melgar LM, Díaz S, Martín-González A, Gutiérrez JC. The Tetrahymena metallothionein gene family: twenty-one new cDNAs, molecular characterization, phylogenetic study and comparative analysis of the gene expression under different abiotic stressors. BMC Genomics 2016; 17:346. [PMID: 27165301 PMCID: PMC4862169 DOI: 10.1186/s12864-016-2658-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 04/22/2016] [Indexed: 01/22/2023] Open
Abstract
Background Ciliate metallothioneins (MTs) are included in family 7 of the MT superfamily. This family has been divided into two main subfamilies: 7a or CdMTs and 7b or CuMTs. All ciliate MTs reported have been isolated from different Tetrahymena species and present unique features with regard to standard MTs. Likewise, an expression analysis has been carried out on some of MT genes under metal stress, corroborating their classification into two subfamilies. Results We isolated 21 new cDNAs from different Tetrahymena species to obtain a wider view of the biodiversity of these conserved genes. Structural analysis (cysteine patterns) and an updated phylogenetic study both corroborated the previous classification into two subfamilies. A new CuMT from a Tetrahymena-related species Ichthyophthirius multifiliis was also included in this general analysis. We detected a certain tendency towards the presentation of a CdMT tri-modular structure in Borealis group species with respect to Australis group. We report for the first time a semi-complete paralog duplication of a CdMT gene originating a new CdMT gene isoform in T. malaccensis. An asymmetry of the codon usage for glutamine residues was detected between Cd- and CuMTs, and the phylogenetic implications are discussed. A comparative gene expression analysis of several MT genes by qRT-PCR revealed differential behavior among them under different abiotic stressors in the same Tetrahymena species. Conclusions The Tetrahymena metallothionein family represents a quite conserved protein structure group with unique features with respect to standard MTs. Both Cd- and CuMT subfamilies present very defined and differentiated characteristics at several levels: cysteine patterns, modular structure, glutamine codon usage and gene expression under metal stress, among others. Gene duplication through evolution seems to be the major genetic mechanism for creating new MT gene isoforms and increasing their functional diversity. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2658-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Patricia de Francisco
- Departamento Microbiología-III, Facultad de Biología. C/José Antonio Novais, 12, Universidad Complutense de Madrid (UCM), 28040, Madrid, Spain
| | - Laura María Melgar
- Universidad Castilla-La Mancha, Campus Tecnológico de la fábrica de armas, Edificio Sabatini. Av. Carlos III, s/n. 45071, Toledo, Spain
| | - Silvia Díaz
- Departamento Microbiología-III, Facultad de Biología. C/José Antonio Novais, 12, Universidad Complutense de Madrid (UCM), 28040, Madrid, Spain
| | - Ana Martín-González
- Departamento Microbiología-III, Facultad de Biología. C/José Antonio Novais, 12, Universidad Complutense de Madrid (UCM), 28040, Madrid, Spain
| | - Juan Carlos Gutiérrez
- Departamento Microbiología-III, Facultad de Biología. C/José Antonio Novais, 12, Universidad Complutense de Madrid (UCM), 28040, Madrid, Spain.
| |
Collapse
|
44
|
Malavolta M, Orlando F, Piacenza F, Giacconi R, Costarelli L, Basso A, Lucarini G, Pierpaoli E, Provinciali M. Metallothioneins, longevity and cancer: Comment on "Deficiency of metallothionein-1 and -2 genes shortens the lifespan of the 129/Sv mouse strain". Exp Gerontol 2015; 73:28-30. [PMID: 26615880 DOI: 10.1016/j.exger.2015.11.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 11/01/2015] [Accepted: 11/22/2015] [Indexed: 02/04/2023]
Affiliation(s)
- M Malavolta
- Scientific and Technological pole, INRCA, Ancona, Italy.
| | - F Orlando
- Scientific and Technological pole, INRCA, Ancona, Italy
| | - F Piacenza
- Scientific and Technological pole, INRCA, Ancona, Italy
| | - R Giacconi
- Scientific and Technological pole, INRCA, Ancona, Italy
| | - L Costarelli
- Scientific and Technological pole, INRCA, Ancona, Italy
| | - A Basso
- Scientific and Technological pole, INRCA, Ancona, Italy
| | - G Lucarini
- Department of Molecular and Clinical Sciences, Histology, Polytechnic University of Marche Region, Ancona, Italy
| | - E Pierpaoli
- Scientific and Technological pole, INRCA, Ancona, Italy
| | - M Provinciali
- Scientific and Technological pole, INRCA, Ancona, Italy
| |
Collapse
|
45
|
Cardioprotective Signature of Short-Term Caloric Restriction. PLoS One 2015; 10:e0130658. [PMID: 26098549 PMCID: PMC4476723 DOI: 10.1371/journal.pone.0130658] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 05/25/2015] [Indexed: 12/04/2022] Open
Abstract
Objective To understand the molecular pathways underlying the cardiac preconditioning effect of short-term caloric restriction (CR). Background Lifelong CR has been suggested to reduce the incidence of cardiovascular disease through a variety of mechanisms. However, prolonged adherence to a CR life-style is difficult. Here we reveal the pathways that are modulated by short-term CR, which are associated with protection of the mouse heart from ischemia. Methods Male 10-12 wk old C57bl/6 mice were randomly assigned to an ad libitum (AL) diet with free access to regular chow, or CR, receiving 30% less food for 7 days (d), prior to myocardial infarction (MI) via permanent coronary ligation. At d8, the left ventricles (LV) of AL and CR mice were collected for Western blot, mRNA and microRNA (miR) analyses to identify cardioprotective gene expression signatures. In separate groups, infarct size, cardiac hemodynamics and protein abundance of caspase 3 was measured at d2 post-MI. Results This short-term model of CR was associated with cardio-protection, as evidenced by decreased infarct size (18.5±2.4% vs. 26.6±1.7%, N=10/group; P=0.01). mRNA and miR profiles pre-MI (N=5/group) identified genes modulated by short-term CR to be associated with circadian clock, oxidative stress, immune function, apoptosis, metabolism, angiogenesis, cytoskeleton and extracellular matrix (ECM). Western blots pre-MI revealed CR-associated increases in phosphorylated Akt and GSK3ß, reduced levels of phosphorylated AMPK and mitochondrial related proteins PGC-1α, cytochrome C and cyclooxygenase (COX) IV, with no differences in the levels of phosphorylated eNOS or MAPK (ERK1/2; p38). CR regimen was also associated with reduced protein abundance of cleaved caspase 3 in the infarcted heart and improved cardiac function.
Collapse
|
46
|
Xiao X, Xue J, Liao L, Huang M, Zhou B, He B. A highly sensitive fluorescence probe for metallothioneins based on tiron-copper complex. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 145:85-89. [PMID: 25767991 DOI: 10.1016/j.saa.2015.02.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 02/07/2015] [Accepted: 02/11/2015] [Indexed: 06/04/2023]
Abstract
The fabrication of tiron-copper complex as a novel fluorescence probe for the sensitive directly detection of metallothioneins at nanomolar levels was demonstrated. In Britton-Robinson (B-R) buffer (pH 7.50), the interaction of bis(tiron)copper(II) complex cation [Cu(tiron)2](2+) and metallothioneins enhanced the fluorescence intensity of the system. The fluorescence enhancement at 347 nm was proportional to the concentration of metallothioneins. The mechanism was studied and discussed in terms of the fluorescence spectra. Under the optimal experimental conditions, at 347 nm, there was a linear relationship between the fluorescence intensity and the concentration of the metallothioneins in the range of 8.80 × 10(-9)-7.70 × 10(-7)mol L(-1), with a correlation coefficient of r=0.995 and detection limit 2.60 × 10(-9)mol L(-1). The relative standard deviation was 0.77% (n=11), and the average recovery 94.4%. The method proposed was successfully reliable, selective and sensitive in determining of trace metallothioneins in fish visceral organ samples with the results in good agreement with those obtained by HPLC.
Collapse
Affiliation(s)
- Xilin Xiao
- College of Chemistry and Chemical Engineering, College of Public Health, Institute of Pathogenic Biology, University of South China, Hengyang City, 421001 Hunan Province, PR China.
| | - Jinhua Xue
- College of Chemistry and Chemical Engineering, College of Public Health, Institute of Pathogenic Biology, University of South China, Hengyang City, 421001 Hunan Province, PR China
| | - Lifu Liao
- College of Chemistry and Chemical Engineering, College of Public Health, Institute of Pathogenic Biology, University of South China, Hengyang City, 421001 Hunan Province, PR China
| | - Mingyang Huang
- College of Chemistry and Chemical Engineering, College of Public Health, Institute of Pathogenic Biology, University of South China, Hengyang City, 421001 Hunan Province, PR China
| | - Bin Zhou
- College of Chemistry and Chemical Engineering, College of Public Health, Institute of Pathogenic Biology, University of South China, Hengyang City, 421001 Hunan Province, PR China
| | - Bo He
- College of Chemistry and Chemical Engineering, College of Public Health, Institute of Pathogenic Biology, University of South China, Hengyang City, 421001 Hunan Province, PR China
| |
Collapse
|
47
|
Kadota Y, Aki Y, Toriuchi Y, Mizuno Y, Kawakami T, Sato M, Suzuki S. Deficiency of metallothionein-1 and -2 genes shortens the lifespan of the 129/Sv mouse strain. Exp Gerontol 2015; 66:21-4. [PMID: 25871729 DOI: 10.1016/j.exger.2015.04.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 04/09/2015] [Accepted: 04/10/2015] [Indexed: 12/18/2022]
Abstract
Metallothionein (MT) family proteins are small molecular weight and cysteine-rich proteins that regulate zinc homeostasis and have potential protective effects against oxidative stress and toxic metals. To investigate whether MTs play a role in longevity determination in mammals, we measured the lifespans of wild-type (WT) and MT-1 and -2 gene knockout (MTKO) mice in a 129/Sv genetic background. MTKO mice of both sexes had shorter lifespans than WT mice. In particular, male MTKO mice living beyond the mean lifespan exhibited signs of weight loss, hunchbacked spines, lackluster fur and an absence of vigor. These results suggest that lifespan is shortened due to accelerated senescence in the absence of MT genes.
Collapse
Affiliation(s)
- Yoshito Kadota
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Yamashiro-cho, Tokushima 770-8514, Japan.
| | - Yuka Aki
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Yamashiro-cho, Tokushima 770-8514, Japan
| | - Yuriko Toriuchi
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Yamashiro-cho, Tokushima 770-8514, Japan
| | - Yuto Mizuno
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Yamashiro-cho, Tokushima 770-8514, Japan
| | - Takashige Kawakami
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Yamashiro-cho, Tokushima 770-8514, Japan
| | - Masao Sato
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Yamashiro-cho, Tokushima 770-8514, Japan
| | - Shinya Suzuki
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Yamashiro-cho, Tokushima 770-8514, Japan
| |
Collapse
|
48
|
Yan YQ, Tang X, Wang YS, Li MH, Cao JX, Chen SH, Zhu YF, Wang XF, Huang YQ. A sensitive and selective fluorescence assay for metallothioneins by exploiting the surface energy transfer between rhodamine 6G and gold nanoparticles. Mikrochim Acta 2015. [DOI: 10.1007/s00604-015-1457-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
49
|
Glover-Cutter KM, Alderman S, Dombrowski JE, Martin RC. Enhanced oxidative stress resistance through activation of a zinc deficiency transcription factor in Brachypodium distachyon. PLANT PHYSIOLOGY 2014; 166:1492-505. [PMID: 25228396 PMCID: PMC4226367 DOI: 10.1104/pp.114.240457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 09/15/2014] [Indexed: 05/07/2023]
Abstract
Identification of viable strategies to increase stress resistance of crops will become increasingly important for the goal of global food security as our population increases and our climate changes. Considering that resistance to oxidative stress is oftentimes an indicator of health and longevity in animal systems, characterizing conserved pathways known to increase oxidative stress resistance could prove fruitful for crop improvement strategies. This report argues for the usefulness and practicality of the model organism Brachypodium distachyon for identifying and validating stress resistance factors. Specifically, we focus on a zinc deficiency B. distachyon basic leucine zipper transcription factor, BdbZIP10, and its role in oxidative stress in the model organism B. distachyon. When overexpressed, BdbZIP10 protects plants and callus tissue from oxidative stress insults, most likely through distinct and direct activation of protective oxidative stress genes. Increased oxidative stress resistance and cell viability through the overexpression of BdbZIP10 highlight the utility of investigating conserved stress responses between plant and animal systems.
Collapse
Affiliation(s)
- Kira M Glover-Cutter
- United States Department of Agriculture, Agricultural Research Service, National Forage Seed Production Research Center, Corvallis, Oregon 97331
| | - Stephen Alderman
- United States Department of Agriculture, Agricultural Research Service, National Forage Seed Production Research Center, Corvallis, Oregon 97331
| | - James E Dombrowski
- United States Department of Agriculture, Agricultural Research Service, National Forage Seed Production Research Center, Corvallis, Oregon 97331
| | - Ruth C Martin
- United States Department of Agriculture, Agricultural Research Service, National Forage Seed Production Research Center, Corvallis, Oregon 97331
| |
Collapse
|
50
|
Balci TB, Prykhozhij SV, Teh EM, Da'as SI, McBride E, Liwski R, Chute IC, Leger D, Lewis SM, Berman JN. A transgenic zebrafish model expressing KIT-D816V recapitulates features of aggressive systemic mastocytosis. Br J Haematol 2014; 167:48-61. [PMID: 24989799 DOI: 10.1111/bjh.12999] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Accepted: 05/20/2014] [Indexed: 12/12/2022]
Abstract
Systemic mastocytosis (SM) is a rare myeloproliferative disease without curative therapy. Despite clinical variability, the majority of patients harbour a KIT-D816V mutation, but efforts to inhibit mutant KIT with tyrosine kinase inhibitors have been unsatisfactory, indicating a need for new preclinical approaches to identify alternative targets and novel therapies in this disease. Murine models to date have been limited and do not fully recapitulate the most aggressive forms of SM. We describe the generation of a transgenic zebrafish model expressing the human KIT-D816V mutation. Adult fish demonstrate a myeloproliferative disease phenotype, including features of aggressive SM in haematopoeitic tissues and high expression levels of endopeptidases, consistent with SM patients. Transgenic embryos demonstrate a cell-cycle phenotype with corresponding expression changes in genes associated with DNA maintenance and repair, such as reduced dnmt1. In addition, epcam was consistently downregulated in both transgenic adults and embryos. Decreased embryonic epcam expression was associated with reduced neuromast numbers, providing a robust in vivo phenotypic readout for chemical screening in KIT-D816V-induced disease. This study represents the first zebrafish model of a mast cell disease with an aggressive adult phenotype and embryonic markers that could be exploited to screen for novel agents in SM.
Collapse
Affiliation(s)
- Tugce B Balci
- Department of Pediatrics, IWK Health Centre, Halifax, NS, Canada; Department of Medical Genetics, University of Ottawa, Ottawa, ON, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|