1
|
Li X, Ding L, Li Z, Cao Z, Li M, Yin K, Song S, Cao L, Xia Q, Wang Z, Zhao D, Tong X, Li X, Wang Z. Yangke powder alleviates OVA-induced allergic asthma by inhibiting the PI3K/AKT/NF-κB signaling pathway. Chin Med 2025; 20:69. [PMID: 40420184 PMCID: PMC12105270 DOI: 10.1186/s13020-025-01125-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Accepted: 05/06/2025] [Indexed: 05/28/2025] Open
Abstract
BACKGROUND Asthma is a chronic inflammatory airway disease that remains inadequately controlled by existing conventional treatments. A traditional Chinese medicine (TCM) formula of Yangke powder (yǎng ké sǎn-YKS) has demonstrated potential in alleviating asthma symptoms and reducing its acute exacerbation. Despite clinical evidence supporting its benefit, there is still insufficient understanding of the active compounds in YKS and their underlying mechanisms, which limits its broader clinical application. OBJECTIVE This study aims to identify the key active ingredients in YKS and explore their mechanisms, particularly through the PI3K/AKT/NF-κB pathways, to provide a scientific basis for its application in asthma treatment. METHODS We employed UPLC-Q-Exactive Orbitrap-MS to analyze YKS constituents, identified key ingredients, and explored asthma treatment mechanisms through bioinformatics, network pharmacology, Mendelian randomization, and molecular docking. The asthma model was evaluated using ovalbumin (OVA) and pulmonary function tests, while pathological examination was conducted using hematoxylin and eosin (HE), periodic acid-Schiff (PAS), and Masson trichrome stains. Concentrations of IgE, IL-4, and IL-5 were measured by ELISA, and protein and mRNA expressions were confirmed via qPCR, immunohistochemistry, and Western blot analysis. RESULTS A total of 174 compounds were identified in YKS by UPLC-MS, with 49 detected in the bloodstream, indicating their role as active ingredients. Bioinformatics analysis revealed 353 asthma-related targets and 972 potential targets for YKS. Key targets such as AKT1, TNF, and IL1B were validated by molecular docking. Our studies indicated that YKS modulates asthma primarily through the PI3K/Akt and NF-κB pathways, improving airway resistance, reducing inflammation, mucus production, and airway remodeling, and decreasing Th2 cytokines and IgE levels. CONCLUSION This investigation identifies Kaempferol, Norephedrine, Cynaroside, Genistein, and Rutin as critical active ingredients in YKS, impacting key biomarkers such as AKT1, TNF, and IL1B. These substances effectively modulate the PI3K/AKT/NF-κB pathway, enhancing the management of allergic asthma.
Collapse
Affiliation(s)
- Xueyan Li
- Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China
| | - Lu Ding
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China
| | - Zirui Li
- Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China
| | - Zhenghua Cao
- Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China
| | - Min Li
- Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China
| | - Kai Yin
- Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China
| | - Siyu Song
- Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China
| | - Liyuan Cao
- Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China
| | - Qinjing Xia
- Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China
| | - Zihan Wang
- Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China
| | - Daqing Zhao
- Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China
| | - Xiaolin Tong
- Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China.
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| | - Xiangyan Li
- Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China.
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130021, China.
| | - Zeyu Wang
- Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China.
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130021, China.
| |
Collapse
|
2
|
Zhou S, Liang L, Zhong W, Chen J, Xiao L. Kaempferol ameliorated central nervous injury induced by alcohol uptake through improving intestinal barrier function. Neuroreport 2025:00001756-990000000-00355. [PMID: 40298627 DOI: 10.1097/wnr.0000000000002170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Excessive neuroinflammation resulting from chronic alcohol intake is an important risk factor for central nervous system injury. The aim of this study was to investigate the effect of kaempferol (KAE) on alcohol-induced neural injury and its underlying mechanism. C57BL/6 N mice were employed to develop a binge-on-chronic alcohol exposure model, with different doses of KAE as an interventional drug for 6 weeks. Neuronal damage and microglial activation in the brain, as well as colonic tissue damage and serum lipopolysaccharide (LPS) concentrations, were systematically assessed. Additionally, Caco-2 cells were exposed to alcohol to induce intestinal epithelial injury in vitro. Chronic alcohol exposure let to significant neuronal damage in the cortex and hippocampus of mice. KAE treatment effectively attenuated microglial activation and reduced neuronal damage in the brains of alcohol-exposed mice. Analysis of colonic tissues revealed that KAE administration inhibited miRNA-122a expression, alleviated pathological damage, and enhanced occludin expression, thereby significantly lowing serum LPS concentrations in alcohol-fed mice. In vitro, KAE markedly decreased miRNA-122a expression and enhanced occludin levels in Caco-2 cells treated with alcohol. Furthermore, overexpression of miRNA-122a was found to diminish occludin protein production in Caco-2 cells, which was significantly counteracted by KAE treatment. KAE treatment enhanced intestinal barrier function to alleviate neuronal damage caused by microglial activation mediated by gut-derived LPS under alcohol expose. This effect of KAE was involved in the enhance of intestinal occludin expression by inhibiting the expression of miRNA-122a. This suggested that KAE had the potential to prevent alcohol-induced neurological damage.
Collapse
Affiliation(s)
- Shinan Zhou
- College of Basic Medical Sciences, China Three Gorges University, YiChang, China and
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, YiChang, China
| | - Lu Liang
- College of Basic Medical Sciences, China Three Gorges University, YiChang, China and
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, YiChang, China
| | - Wenyan Zhong
- College of Basic Medical Sciences, China Three Gorges University, YiChang, China and
| | - Jingjing Chen
- College of Basic Medical Sciences, China Three Gorges University, YiChang, China and
| | - Li Xiao
- College of Basic Medical Sciences, China Three Gorges University, YiChang, China and
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, YiChang, China
| |
Collapse
|
3
|
Rinaldi F, Salerno S, Frigoli E, De Soricellis G, Brusotti G, Negri S, Radice M, Merlo F, Speltini A, Cena H, Calleri E. Development and Application of an In-Capillary CE-DAD Method for the Inhibitory Screening of Natural Extracts Towards Acetylcholinesterase Enzyme. Metabolites 2025; 15:283. [PMID: 40278412 PMCID: PMC12029648 DOI: 10.3390/metabo15040283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/11/2025] [Accepted: 04/17/2025] [Indexed: 04/26/2025] Open
Abstract
Background: The enzymatic activity of acetylcholinesterase (AChE) has been a focal point in neurodegenerative diseases research, particularly in relation to Alzheimer's disease. This is attributed to the significantly reduced levels of cholinergic neurons observed in Alzheimer's patients compared to healthy individuals. The strategy to mitigate the onset of these diseases in patients lies in the exploration of new potential AChE inhibitors with a focus also on natural extracts. A rapid and specific capillary electrophoresis method with direct ultraviolet detection (CZE-UV/Vis) was developed to screen natural extracts by assessing their potential to inhibit AChE. Materials and Methods: To enhance the specificity when analysing complex matrixes such as natural extracts, a sequential analysis approach based on the "sandwich model" was implemented using Ellman's reagent [5,5'-dithiobis-(2-nitrobenzoic acid)] (DTNB) as a colorimetric indicator. Results: A reference inhibitor, neostigmine, was used for system validation through IC50 and Ki values determination by subsequent injections of acetylthiocholine substrate in the presence of neostigmine at increasing concentrations, and the enzyme combined with DTNB in borate-phosphate buffer (30 mM, pH 8.0). The enzymatic product was selectively detected at 412 nm. The validated system was applied to the analysis of seven natural extracts. Conclusions: Results demonstrated promising outcomes for identifying phytotherapeutic agents with potential applications in the prevention of neurodegenerative diseases. This method provides high selectivity and automation, offering a streamlined and effective approach for screening natural matrices containing potential AChE inhibitors.
Collapse
Affiliation(s)
- Francesca Rinaldi
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (F.R.); (S.S.); (E.F.); (G.D.S.); (G.B.)
| | - Sofia Salerno
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (F.R.); (S.S.); (E.F.); (G.D.S.); (G.B.)
| | - Elena Frigoli
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (F.R.); (S.S.); (E.F.); (G.D.S.); (G.B.)
| | - Giulia De Soricellis
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (F.R.); (S.S.); (E.F.); (G.D.S.); (G.B.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy; (S.N.); (H.C.)
| | - Gloria Brusotti
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (F.R.); (S.S.); (E.F.); (G.D.S.); (G.B.)
| | - Stefano Negri
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy; (S.N.); (H.C.)
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Matteo Radice
- Campus Puyo, Universidad Estatal Amazónica, Km 2, Via Puyo-Tena, Puyo 160150, Ecuador;
| | - Francesca Merlo
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy; (F.M.); (A.S.)
| | - Andrea Speltini
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy; (F.M.); (A.S.)
| | - Hellas Cena
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy; (S.N.); (H.C.)
- Clinical Nutrition and Dietetics Service, Unit of Internal Medicine and Endocrinology, ICS Maugeri IRCCS, 27100 Pavia, Italy
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Via Bassi 21, 27100 Pavia, Italy
| | - Enrica Calleri
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (F.R.); (S.S.); (E.F.); (G.D.S.); (G.B.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy; (S.N.); (H.C.)
| |
Collapse
|
4
|
Gong K, Zhou S, Xiao L, Xu M, Zhou Y, Lu K, Yu X, Zhu J, Liu C, Zhu Q. Danggui Shaoyao San ameliorates Alzheimer's disease by regulating lipid metabolism and inhibiting neuronal ferroptosis through the AMPK/Sp1/ACSL4 signaling pathway. Front Pharmacol 2025; 16:1588375. [PMID: 40271063 PMCID: PMC12014676 DOI: 10.3389/fphar.2025.1588375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Accepted: 03/31/2025] [Indexed: 04/25/2025] Open
Abstract
Introduction Alzheimer's disease (AD) is a neurodegenerative disorder characterized by cognitive decline; recent studies suggest that neuronal ferroptosis plays a key role in its pathogenesis. Danggui Shaoyao San (DSS), a traditional Chinese medicine formula, has shown demonstrated neuroprotective effects, but its precise mechanisms in AD treatment remain unclear. This study aims to investigate the mechanism of DSS in treating AD by inhibiting neuronal ferroptosis, explore whether DSS alleviates AD by suppressing neuronal ferroptosis via the AMPK/Sp1/ACSL4 pathway. Methods Chemical composition of DSS was identified by LC-MS/MS, followed by network pharmacology to predict targets and pathways. Molecular docking assessed binding affinities between DSS compounds and key proteins (AMPK, Sp1, ACSL4). In vivo experiments on APP/PS1 mice evaluated DSS effects on cognitive function, oxidative stress markers, lipid peroxidation, and ferroptosis-related proteins. Results Network pharmacology analysis suggested that DSS regulates lipid metabolism and inhibits neuronal ferroptosis via the AMPK pathway. Molecular docking revealed strong binding affinities between DSS compounds and AMPK downstream proteins, Sp1 and ACSL4. In vivo experiments showed that DSS improved cognitive function, enhanced antioxidant capacity, reduced lipid peroxide accumulation, and decreased Fe2+ content in brain tissue. Furthermore, DSS increased the expression of FTH, p-AMPK, and GPX4 while decreasing Sp1 and ACSL4 levels, thereby inhibiting ferroptosis. Conclusion DSS alleviates AD symptoms by suppressing neuronal ferroptosis via the AMPK/Sp1/ACSL4 axis, representing a novel lipid metabolism-targeted therapeutic strategy.
Collapse
Affiliation(s)
- Kai Gong
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shuang Zhou
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Li Xiao
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Mengzhen Xu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuhe Zhou
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Kaihui Lu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xin Yu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiang Zhu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chuanguo Liu
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qingjun Zhu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Jinan, China
| |
Collapse
|
5
|
Christimann G, Rocha G, Sattler JAG. Bioactive compounds and dietary patterns in Alzheimer's disease. J Alzheimers Dis 2025; 104:597-610. [PMID: 40012188 DOI: 10.1177/13872877251319048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that primarily affects the elderly, leading to severe cognitive decline and loss of autonomy. The accumulation of amyloid-β peptides and tau proteins in the brain is considered the central pathogenic mechanism, which results in neuronal dysfunction and cell death. Various metabolic disruptions, such as chronic oxidative stress and inflammatory processes, further exacerbate the progression of AD. This review, based on literature from PubMed, SciELO, MDPI, and ScienceDirect, evaluates the role of bioactive compounds and dietary patterns, specifically the Mediterranean and MIND diets, in mitigating the progression of AD. These diets, rich in vitamins, flavonoids, carotenoids, and omega-3 fatty acids, have shown potential in reducing oxidative damage and inflammation in the brain, offering neuroprotective benefits. The findings suggest that bioactive compounds such as vitamin E isomers and polyphenols may delay cognitive decline, presenting a promising avenue for future dietary interventions aimed at optimizing the consumption of these compounds to prevent or slow the onset of AD. Further research is needed to determine the optimal doses and combinations of these bioactive compounds to maximize their protective effects.
Collapse
Affiliation(s)
- Guilherme Christimann
- Faculdade de Nutrição, Escola de Ciências da Saúde, Centro Universitário Ritter dos Reis, Porto Alegre, RS, Brazil
| | - Gabriela Rocha
- Faculdade de Medicina, Programa de Pós-Graduação em Psiquiatria e Ciências dos Comportamento, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | |
Collapse
|
6
|
Shadman J, Haghi-Aminjan H, Alipour MR, Panahpour H. The Neuroprotective Mechanisms of Kaempferol in Experimental Ischemic Stroke: A Preclinical Systematic Review. Mol Neurobiol 2025:10.1007/s12035-025-04848-y. [PMID: 40120044 DOI: 10.1007/s12035-025-04848-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 03/12/2025] [Indexed: 03/25/2025]
Abstract
Ischemic stroke represents a critical global health challenge, resulting in significant mortality and disability worldwide, yet there are limited effective treatment options currently available. While the intricate molecular pathways underlying the onset and progression of ischemic stroke are multifaceted, relying on a single therapeutic approach is unlikely to yield effective treatment for this complex disease. Therefore, it is crucial to explore efficient strategies that employ multifaceted targeting and address the multifarious pathological processes to overcome the challenges associated with ischemic brain injury. In recent times, natural plant-derived compounds have garnered significant interest as promising neuroprotective agents for the management of neurological conditions, including ischemic stroke. This study investigates the possible neuroprotective properties of kaempferol, a naturally occurring flavonoid compound, in mitigating the detrimental consequences of cerebral ischemic events. The findings from the reviewed preclinical studies suggest that kaempferol exhibits significant neuroprotective potential as a multifaceted therapeutic agent for ischemic stroke. Its efficacy stems from a combination of antioxidant, anti-inflammatory, and anti-apoptotic properties, which collectively mitigate ischemic stroke-induced brain injury. While these results are promising, clinical studies are essential to validate kaempferol's therapeutic viability for ischemic stroke patients.
Collapse
Affiliation(s)
- Javad Shadman
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Hamed Haghi-Aminjan
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
- Toxicology and Diseases Specialty Group, Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| | | | - Hamdollah Panahpour
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
7
|
Zhang Y, Wu Q, Fu H, Pang J, Zhang Y, Zhou H, Zhuang L, Zhang X, Chen L, Yang Q. Kaempferol attenuates cyclosporine-induced renal tubular injury via inhibiting the ROS-ASK1-MAPK pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:3001-3014. [PMID: 39316086 DOI: 10.1007/s00210-024-03409-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 08/21/2024] [Indexed: 09/25/2024]
Abstract
Cyclosporine (CSA) is a widely used immunosuppressive medication. CSA nephrotoxicity severely limits its application. Kaempferol (KPF), a naturally occurring phenolic compound, has a promising protective effect in reducing CSA-induced renal tubular injury, but the mechanism remains unknown. Our study aimed to determine the protective role of KPF against CSA-induced renal tubular injury. C57/B6 mice and the NRK-52E cell line were employed. CSA worsened renal function in mice, causing detachment and necrosis of tubular cells, leading to tubular vacuolation and renal interstitial fibrosis. CSA caused the detachment, rupture, and death of tubular cells in vitro, resulting in cell viability loss. KPF mitigated all these injurious alterations. KPF hindered CSA-induced ROS generation and protected renal tubular epithelial cells, similar to the antioxidant NAC. CSA lowered SOD activity and GSH levels while increasing MDA levels, and KPF ameliorated these changes. CSA caused phosphorylation of ASK1, JNK, and p38, similar to H2O2, whereas KPF significantly inhibited these changes. In conclusion, KPF reduces CSA-induced tubular epithelial cell injury via its antioxidant properties, inhibits the phosphorylation of ASK1, and inhibits the phosphorylation of p38 and JNK, implying that the synergistic use of KPF in CSA immunotherapy may be a promising option to reduce CSA-evoked renal injury.
Collapse
Affiliation(s)
- Yaowu Zhang
- The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu Province, China
| | - Qijing Wu
- The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu Province, China
| | - Huali Fu
- The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu Province, China
| | - Jieya Pang
- The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu Province, China
| | - Yiyuan Zhang
- The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu Province, China
| | - Hui Zhou
- The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu Province, China
| | - Ling Zhuang
- The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu Province, China
| | - Xiaobo Zhang
- The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu Province, China
| | - Lianhua Chen
- The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu Province, China.
| | - Qianqian Yang
- The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu Province, China.
| |
Collapse
|
8
|
Liu MJ, Xu ZP, Guan YQ, Wang YY, Wen XS, Li GH, Wang XN, Shen T. Ethyl acetate fraction of Thesium chinense Turcz. alleviates chronic obstructive pulmonary disease through inhibition of ferroptosis mediated by activating Nrf2/SLC7A11/GPX4 axis. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118776. [PMID: 39222758 DOI: 10.1016/j.jep.2024.118776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/24/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Thesium chinense Turcz., a traditional Chinese herbal medicine, displays good therapeutic efficiency against respiratory diseases (e.g. pneumonia, pharyngitis) in clinical applications, however, its effects on COPD and the mechanism of action are still unclear. AIM OF THE STUDY This study aims to investigate the therapeutic effect of the ethyl acetate fraction of Thesium chinense Turcz. (TCEA) on COPD and reveal the underlying mechanism. MATERIALS AND METHODS A cigarette smoke (CS)-induced mouse COPD model was established, and the efficacy of TCEA was evaluated using peripheral blood testing, HE and Masson staining, qRT-PCR and ELISA assays. TCEA was analyzed for chemical composition by LC-MS/MS and HPLC. Prediction of major signaling pathways and potential targets was performed by network pharmacology. The molecular mechanism of TCEA was explored by immunoblotting, immunofluorescence staining, flow cytometry, and ubiquitination assay. Finally, potential active small molecules in TCEA were identified by molecular virtual screening. RESULTS TCEA treatment significantly inhibited the secretion of pro-inflammatory factors and attenuated pathological emphysema. The main chemical constituents of TCEA were identified as flavonoids by UPLC-MS/MS. Network pharmacology analysis enriched the Nrf2 signaling pathway closely related to oxidative stress. Our results suggested that TCEA inhibited ferroptosis by activating Nrf2/SLC7A11/GPX4 axis and inhibiting lipid metabolism-related proteins, ACSL4, ALOX5 and COX2 in vivo and in vitro. Noteworthily, the beneficial impact of TCEA on regulation of SLC7A11 and GPX4 vanished after silencing Nrf2. Moreover, Nrf2 ubiquitination was inhibited by TCEA treatment. Finally, several flavonoids modulating Nrf2 were identified by molecular virtual screening. CONCLUSIONS TCEA significantly alleviated COPD progression by inhibiting ferroptosis primarily through activation of Nrf2/SLC7A11/GPX4 signaling. Flavonoids are the main active components that exert their effects. These findings shed light on the mechanism of action of TCEA and its potential active components, providing a feasible approach for the treatment of COPD.
Collapse
Affiliation(s)
- Ming-Jie Liu
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Zhen-Peng Xu
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Yue-Qin Guan
- Jiuhua Huayuan Pharmaceutical Co., Ltd., Chuzhou, People's Republic of China
| | - Ying-Yue Wang
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Xue-Sen Wen
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Guo-Hui Li
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China; Department of Pharmacy, Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, Jinan, People's Republic of China.
| | - Xiao-Ning Wang
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Tao Shen
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China.
| |
Collapse
|
9
|
Gu L, Wang C, Liu J, Zheng M, Tan Y, Du Q, Li Q, Yang W, Zhang X. Unlocking the neuroprotective potential of Ziziphora clinopodioides flavonoids in combating neurodegenerative diseases and other brain injuries. Biomed Pharmacother 2025; 182:117744. [PMID: 39674108 DOI: 10.1016/j.biopha.2024.117744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/05/2024] [Accepted: 12/08/2024] [Indexed: 12/16/2024] Open
Abstract
Ziziphora clinopodioides Lam. (Z. clinopodioides) is a traditional Chinese and ethnic medicine in Xinjiang, China with various therapeutic effects. It is primarily used for conditions such as heart disease, fever with chills, palpitations, and insomnia. Flavonoids are the main medicinal components of Z. clinopodioides, Interestingly, current research has increasingly focused on its neuroprotective effects. This study provides a comprehensive overview of the potential therapeutic applications of Z. clinopodioides and its constituents in central nervous system disorders such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and cerebral ischemia-reperfusion injury. At present, about 25 flavonoids have been isolated and identified from various organs of Z. clinopodioides, including linarin, acacetin, hyperoside, quercetin, apigenin, luteolin, chrysin, kaempferol, baicalein, rutin and others. Modern pharmacological studies have revealed that Z. clinopodioides and its constituents exhibits neuroprotective effects in vitro and in vivo, and the mechanism of action is related to anti-apoptosis, anti-inflammatory, antioxidant, autophagy, endoplasmic reticulum stress and so on. Currently, there is limited research on the extracts of Z. clinopodioides and their potential mechanisms of action in these neurological disorders. It is also important to prioritize research on biosynthetic pathways and chemical modification approaches to fully explore and improve the neuroprotective potential of Z. clinopodioides and its flavonoids and establish a strong foundation for its clinical applications.
Collapse
Affiliation(s)
- Lili Gu
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou medical college, Hangzhou, Zhejiang 310013, PR China
| | - Can Wang
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou medical college, Hangzhou, Zhejiang 310013, PR China
| | - Jiayi Liu
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou medical college, Hangzhou, Zhejiang 310013, PR China
| | - Miao Zheng
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou medical college, Hangzhou, Zhejiang 310013, PR China
| | - Yilian Tan
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou medical college, Hangzhou, Zhejiang 310013, PR China
| | - Qibin Du
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou medical college, Hangzhou, Zhejiang 310013, PR China
| | - Qin Li
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou medical college, Hangzhou, Zhejiang 310013, PR China
| | - Weijun Yang
- Xinjiang Institute of Materia Medica, Urumqi, Xinjiang 830000, PR China.
| | - Xinyue Zhang
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou medical college, Hangzhou, Zhejiang 310013, PR China.
| |
Collapse
|
10
|
Wang W, Yang C, Xia J, Tan Y, Peng X, Xiong W, Li N. Novel insights into the role of quercetin and kaempferol from Carthamus tinctorius L. in the management of nonalcoholic fatty liver disease via NR1H4-mediated pathways. Int Immunopharmacol 2024; 143:113035. [PMID: 39378656 DOI: 10.1016/j.intimp.2024.113035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 08/19/2024] [Accepted: 08/26/2024] [Indexed: 10/10/2024]
Abstract
This study investigates the novel therapeutic potential of quercetin and kaempferol, two bioactive compounds derived from Carthamus tinctorius L., in treating nonalcoholic fatty liver disease (NAFLD) by modulating the bile acid receptor NR1H4 (Nuclear Receptor Subfamily 1 Group H Member 4) and its associated metabolic pathways. A rat model of NAFLD was established, and RNA sequencing and proteomics were carefully employed to identify differential gene expressions associated with the disease. The active components of Carthamus tinctorius L. were screened, followed by the construction of a comprehensive network that maps the interactions between these components, NR1H4 and NAFLD-related pathways. Both in vitro (using HepG2 cells) and in vivo experiments were conducted to evaluate the effects on NR1H4 expression levels through Western blot and RT-qPCR analyses. Our findings identify NR1H4 as a pivotal target in NAFLD. Network pharmacology analysis indicates that quercetin and kaempferol play crucial roles in combating NAFLD, with in vitro and in vivo experiments confirming their ability to mitigate hepatocyte steatosis by enhancing NR1H4 expression. Notably, the protective effects of these compounds were inhibited by the NR1H4 antagonist guggulsterone, highlighting the importance of NR1H4 upregulation. This study demonstrates the novel therapeutic efficacy of quercetin and kaempferol from Carthamus tinctorius L. in treating NAFLD through NR1H4 upregulation. This mechanism contributes to the regulation of lipid metabolism, improvement of liver function, reduction of inflammation, and alleviation of oxidative stress, offering a promising direction for future NAFLD treatment strategies.
Collapse
Affiliation(s)
- Wenxiang Wang
- Chongqing Three Gorges Medical College, Chongqing 404120, China; Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing 404120, China
| | - Ce Yang
- Chongqing Three Gorges Medical College, Chongqing 404120, China; Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing 404120, China
| | - Jing Xia
- Chongqing Three Gorges Medical College, Chongqing 404120, China; Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing 404120, China
| | - Ying Tan
- Chongqing Three Gorges Medical College, Chongqing 404120, China; Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing 404120, China
| | - Xiaoyuan Peng
- Chongqing Three Gorges Medical College, Chongqing 404120, China; Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing 404120, China
| | - Wei Xiong
- Chongqing Three Gorges Medical College, Chongqing 404120, China; Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing 404120, China.
| | - Ning Li
- Chongqing Three Gorges Medical College, Chongqing 404120, China; Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing 404120, China.
| |
Collapse
|
11
|
Subramanian A, Tamilanban T, Subramaniyan V, Sekar M, Kumar V, Janakiraman AK, Kayarohanam S. Establishing network pharmacology between natural polyphenols and Alzheimer's disease using bioinformatic tools - An advancement in Alzheimer's research. Toxicol Rep 2024; 13:101715. [PMID: 39280991 PMCID: PMC11402327 DOI: 10.1016/j.toxrep.2024.101715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/07/2024] [Accepted: 08/14/2024] [Indexed: 09/18/2024] Open
Abstract
Alzheimer's disease (AD) is a major cause of disability and one of the top causes of mortality globally. AD remains a major public health challenge due to its prevalence, impact on patients and caregivers, and the current lack of a cure. In recent years, polyphenols have garnered attention for their potential therapeutic effects on AD. The objective of the study was to establish network pharmacology between selected polyphenols of plant origin and AD. Insilico tools such as SwissADME, ProTox3.0, pkCSM, Swiss Target Prediction, DisGeNET, InterActiVenn, DAVID database, STRING database, Cytoscape/CytoHubba were employed to establish the multi-target potential of the polyphenolic compounds. The present study revealed that out of 17 polyphenols, 10 ligands were found to possess a drug-likeness nature along with desirable pharmacokinetic parameters and a lesser toxicity profile. Also, the results highlighted the possible interactions between the polyphenols and the disease targets involved in AD. Further, this study has shed light on the mTOR pathway and its impact on AD through the autophagic mechanism. Overall, this study indicated that polyphenols could be a better therapeutic option for treating AD. Hence, the consumption of polyphenolic cocktails as a part of the diet could produce more effective outcomes against the disease. Additional studies are warranted in the future to explore additional pathways and genes to provide a comprehensive understanding regarding the usage of the shortlisted polyphenols and their derivatives for the prevention and treatment of AD.
Collapse
Affiliation(s)
- Arunkumar Subramanian
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamilnadu 603203, India
| | - T. Tamilanban
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamilnadu 603203, India
| | - Vetriselvan Subramaniyan
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University Jalan University, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia
| | - Mahendran Sekar
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya, Selangor 47500, Malaysia
| | - Vipin Kumar
- Department of Pharmaceutical Sciences, Gurukul Kangri (Deemed to be University), Haridwar 249404, India
| | | | - Saminathan Kayarohanam
- Faculty of Bioeconomics and Health Sciences, University Geomatika Malaysia, Kuala Lumpur 54200, Malaysia
| |
Collapse
|
12
|
Han D, Han Z, Liu L, Xin S, Yu Z. Improved Kaempferol Solubility via Heptakis-O-(2-hydroxypropyl)-β-cyclodextrin Complexation: A Combined Spectroscopic and Theoretical Study. Int J Mol Sci 2024; 25:12492. [PMID: 39684208 DOI: 10.3390/ijms252312492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Four cyclodextrins (CDs) including heptakis-O-(2-hydroxypropyl)-β-cyclodextrin (HP-β-CD), heptakis-O-(2,6-di-O-methyl)-β-cyclodextrin (DM-β-CD), β-cyclodextrin (β-CD), and γ-cyclodextrin (γ-CD) were evaluated for their ability to enhance the aqueous solubility of kaempferol (Kae). Phase solubility studies indicated that these four CDs can form 1:1 type complexes with Kae and that HP-β-CD demonstrated the most significant solubilizing effect on Kae. Among the CDs tested, HP-β-CD demonstrated the most significant solubilizing effect on Kae. With an HP-β-CD concentration of 5.00 × 10-3 mol·L-1, the concentration of Kae reached 4.56 × 10-5 mol·L-1, which is 12.7 times greater than its solubility in water. Characterization of the HP-β-CD/Kae complex was performed using empirical methods. Molecular docking indicated that the A and C rings of Kae fit into the hydrophobic cavity of HP-β-CD, while the B ring remained at the rim. Six hydrogen bonds were found between HP-β-CD and the -OH groups of Kae. The negative complexation energy (ΔE) suggests the complex formation was exergonic. A 30-ns molecular dynamics simulation revealed no significant structural changes, with average root-mean-square deviation RMSD values of 2.230 Å for HP-β-CD and 0.786 Å for Kae, indicating high stability of the complex.
Collapse
Affiliation(s)
- Dongxu Han
- School of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China
| | - Zhongbao Han
- School of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China
| | - Liyan Liu
- School of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China
| | - Shigang Xin
- Experimental Teaching Center, Shenyang Normal University, Shenyang 110034, China
| | - Zhan Yu
- School of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China
| |
Collapse
|
13
|
Yan C, Liu Z, Bai Y, Wang Z, Fang J, Liu A. 3DSTarPred: A Web Server for Target Prediction of Bioactive Small Molecules Based on 3D Shape Similarity. J Chem Inf Model 2024; 64:8105-8112. [PMID: 39475556 DOI: 10.1021/acs.jcim.4c01445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2024]
Abstract
Target identification plays a critical role in preclinical drug development. The in silico approach has been developed and widely applied to assist medicinal chemists and pharmacologists in drug target identification. There are many target prediction web servers available today that have revealed both advantages and shortcomings in practical applications. Here, we present 3DSTarPred, a web server for three-dimensional (3D) shape similarity-based target prediction of small molecules. A benchmark study showed that 3DSTarPred achieved a target prediction success rate of 76.27%, which was higher than that of existing target prediction web servers. In addition, the performance of 3DSTarPred in the target prediction of diverse substructures/superstructures was also better than that of the existing target prediction web servers. In case studies, 3DSTarPred was used to identify the potential targets of two small molecules, one being kaempferol, a natural lead compound for the treatment of Alzheimer's disease (AD), and the other being sildenafil, a candidate for drug repurposing in AD. The case studies further demonstrated the reliability and success of 3DSTarPred in practice. The 3DSTarPred server is freely available at http://3dstarpred.pumc.wecomput.com.
Collapse
Affiliation(s)
- Caiqin Yan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Lab of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhihong Liu
- Department of Data Science, Wecomput Technology Co., Ltd. (Guangzhou), Guangzhou 510535, China
| | - Yiming Bai
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Lab of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhe Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Lab of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jiansong Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Ailin Liu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Lab of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
14
|
Zhao X, Ding A, Chen P, Zhang L, Qu J, Bao B. Celosia cristata L.-an underutilized Chinese medicine: A review of the ethnic applications, phytochemistry, pharmacology, quality control and toxicity. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118479. [PMID: 38909823 DOI: 10.1016/j.jep.2024.118479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 05/22/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Affiliation(s)
- Xian Zhao
- Department of Pharmacy, Shaanxi Provincial Hospital of Tuberculosis Prevention and Treatment (The Fifth People's Hospital of Shaanxi Province), Xi'an, 710110, China
| | - Anwei Ding
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Centre of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Peidong Chen
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Centre of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Li Zhang
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Centre of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jian Qu
- Medical Institute, Qinghai University, Xining, 810016, China
| | - Beihua Bao
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Centre of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
15
|
Zhao L, Luo T, Zhang H, Fan X, Zhang Q, Chen H. Kaempferol enhances intestinal repair and inhibits the hyperproliferation of aging intestinal stem cells in Drosophila. Front Cell Dev Biol 2024; 12:1491740. [PMID: 39450272 PMCID: PMC11499188 DOI: 10.3389/fcell.2024.1491740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
Introduction Intestinal stem cells (ISCs) are crucial for tissue repair and homeostasis because of their ability to self-renew and differentiate. However, their functionality declines significantly with age, resulting in reduced tissue regeneration and a higher risk of age-related diseases. Addressing this decline in ISC performance during aging presents a substantial challenge. The specific impact of nutrients or dietary elements on ISC adaptive resizing is urgent to explore. Methods Drosophila ISCs are an ideal model for studying development and aging because of their genetic richness, ease of manipulation, and similarity to mammalian tissues. As the primary mitotically active cells in the Drosophila gut, ISCs are flexible in response to dietary and stress signals. Manipulating signaling pathways or dietary restrictions has shown promise in regulating ISC functions and extending lifespan in flies, these approaches face broader applications for aging research. Results Kaempferol is well-regarded for its antioxidant, anti-inflammatory, and potential anticancer effects. However, its impacts on ISCs and the associated mechanisms remain inadequately understood. Our findings indicate that Kaempferol accelerates gut recovery after damage and improves the organism's stress tolerance. Moreover, Kaempferol suppresses the hyperproliferation of aging ISCs in Drosophila. Further investigation revealed that the regulatory effects of Kaempferol on ISCs are mediated through the reduction of endoplasmic reticulum (ER) stress in aging flies and the modulation of excessive reactive oxygen species (ROS) levels via ER-stress pathways. Furthermore, Kaempferol exerts regulatory effects on the insulin signaling pathway, thereby contributing to the attenuation of ISC senescence. Discussion This study reveals that Kaempferol promotes intestinal homeostasis and longevity in aging flies by targeting ER stress and insulin signaling pathways, though the exact molecular mechanisms require further exploration. Future research will aim to dissect the downstream signaling events involved in these pathways to better understand how Kaempferol exerts its protective effects at the molecular level.
Collapse
Affiliation(s)
- Liusha Zhao
- Center of Gerontology and Geriatrics and Laboratory of Stem Cell and Anti-Aging Research, National Clinical Research Center for Geriatrics and State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ting Luo
- Center of Gerontology and Geriatrics and Laboratory of Stem Cell and Anti-Aging Research, National Clinical Research Center for Geriatrics and State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hong Zhang
- Department of Gastroenterology and Hepatology and Laboratory of Inflammatory Bowel, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Xinxin Fan
- Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qiaoqiao Zhang
- Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Haiyang Chen
- Center of Gerontology and Geriatrics and Laboratory of Stem Cell and Anti-Aging Research, National Clinical Research Center for Geriatrics and State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
16
|
Li J, Yu Y, Zhang Y, Zhou Y, Ding S, Dong S, Jin S, Li Q. Flavonoids Derived from Chinese Medicine: Potential Neuroprotective Agents. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:1613-1640. [PMID: 39343989 DOI: 10.1142/s0192415x24500630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Due to their complex pathological mechanisms, neurodegenerative diseases have brought great challenges to drug development and clinical treatment. Studies have shown that many traditional Chinese medicines have neuroprotective pharmacological activities such as anti-inflammatory and anti-oxidation properties and have certain effects on improving the symptoms of neurodegenerative diseases and delaying disease progression. Flavonoids are the main active components of many traditional Chinese medicines for the treatment of neurodegenerative diseases. These compounds have a wide range of biological activities, including anti-inflammatory, anti-oxidative stress, regulation of autophagy balance, inhibition of apoptosis, and promotion of neuronal regeneration. This paper focuses on the neuroprotective effects of six common flavonoids: quercetin, rutin, luteolin, kaempferol, baicalein, and puerarin. It then systematically reviews their characteristics, mechanisms, and key signaling pathways, summarizes the common characteristics and laws of their neuroprotective effects, and discusses the significance of strengthening the research on the neuroprotective effects of these compounds, aiming to provide reference for more research and drug development of these substances as neuroprotective drugs.
Collapse
Affiliation(s)
- Jinhua Li
- Hangzhou Medical College, Xihu District, Hangzhou, Zhejiang, 310013, P. R. China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, 310013, P. R. China
| | - Ye Yu
- Hangzhou Medical College, Xihu District, Hangzhou, Zhejiang, 310013, P. R. China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, 310013, P. R. China
| | - Yanjie Zhang
- Hangzhou Medical College, Xihu District, Hangzhou, Zhejiang, 310013, P. R. China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, 310013, P. R. China
| | - Yilin Zhou
- Hangzhou Medical College, Xihu District, Hangzhou, Zhejiang, 310013, P. R. China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, 310013, P. R. China
| | - Shuxian Ding
- Hangzhou Medical College, Xihu District, Hangzhou, Zhejiang, 310013, P. R. China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, 310013, P. R. China
| | - Shuze Dong
- Hangzhou Medical College, Xihu District, Hangzhou, Zhejiang, 310013, P. R. China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, 310013, P. R. China
| | - Sainan Jin
- Hangzhou Medical College, Xihu District, Hangzhou, Zhejiang, 310013, P. R. China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, 310013, P. R. China
| | - Qin Li
- Hangzhou Medical College, Xihu District, Hangzhou, Zhejiang, 310013, P. R. China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, 310013, P. R. China
| |
Collapse
|
17
|
Tang R, Lin L, Liu Y, Li H. Bibliometric and visual analysis of global publications on kaempferol. Front Nutr 2024; 11:1442574. [PMID: 39221164 PMCID: PMC11362042 DOI: 10.3389/fnut.2024.1442574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction Kaempferol, a flavonoid found in numerous foods and medicinal plants, offers a range of health benefits such as anti-inflammatory, antioxidant, antiviral, anticancer, cardioprotective, and neuroprotective effects. Methods Herein, a bibliometric and visual analysis of global publications on kaempferol was performed to map the evolution of frontiers and hotspots in the field. Using the search string TS = kaempferol, bibliometric data for this analysis was extracted from the Web of Science Core Collection database and analyzed using the VOSviewer, CiteSpace, and Scimago Graphica software. Results As a result, by February 26, 2024, 11,214 publications were identified, comprising articles (n = 10,746, 96%) and review articles (n = 468, 4%). Globally, the annual number of kaempferol publications surpassed 100 per year since 2000, exceeded 500 per year since 2018, and further crossed the threshold of 1,000 per year starting in 2022. The major contributing countries were China, the United States of America, and India, while the top three institutes of the citations of kaempferol were the Chinese Academy of Sciences, Consejo Superio de Investigaciones Cientficas, and Uniersidade do Porto. These publications were mainly published in agricultural and food chemistry journals, food chemistry, and phytochemistry. Discussion The keywords frequently mentioned include phenolic compounds, antioxidant activity, flavonoids, NF-kappa B, inflammation, bioactive compounds, etc. Anti-inflammation, anti-oxidation, and anti-cancer have consistently been the focus of kaempferol research, while cardiovascular protection, neuroprotection, antiviral, and anti-bacterial effects have emerged as recent highlights. The field of kaempferol research is thriving.
Collapse
Affiliation(s)
- Ruying Tang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Longfei Lin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuling Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hui Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang, China
| |
Collapse
|
18
|
Yang J, Yu B, Zheng J. Natural herbal extract roles and mechanisms in treating cerebral ischemia: A systematic review. Front Pharmacol 2024; 15:1424146. [PMID: 39156109 PMCID: PMC11327066 DOI: 10.3389/fphar.2024.1424146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/03/2024] [Indexed: 08/20/2024] Open
Abstract
Background Stroke has been the focus of medical research due to its serious consequences and sequelae. Among the tens of millions of new stroke patients every year, cerebral ischemia patients account for the vast majority. While cerebral ischemia drug research and development is still ongoing, most drugs are terminated at preclinical stages due to their unacceptable toxic side effects. In recent years, natural herbs have received considerable attention in the pharmaceutical research and development field due to their low toxicity levels. Numerous studies have shown that natural herbs exert actions that cannot be ignored when treating cerebral ischemia. Methods We reviewed and summarized the therapeutic effects and mechanisms of different natural herbal extracts on cerebral ischemia to promote their application in this field. We used keywords such as "natural herbal extract," "herbal medicine," "Chinese herbal medicine" and "cerebral ischemia" to comprehensively search PubMed, ScienceDirect, ScienceNet, CNKI, and Wanfang databases, after which we conducted a detailed screening and review strategy. Results We included 120 high-quality studies up to 10 January 2024. Natural herbal extracts had significant roles in cerebral ischemia treatments via several molecular mechanisms, such as improving regional blood flow disorders, protecting the blood-brain barrier, and inhibiting neuronal apoptosis, oxidative stress and inflammatory responses. Conclusion Natural herbal extracts are represented by low toxicity and high curative effects, and will become indispensable therapeutic options in the cerebral ischemia treatment field.
Collapse
Affiliation(s)
| | | | - Jian Zheng
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
19
|
Zhou ZY, Ma J, Zhao WR, Shi WT, Zhang J, Hu YY, Yue MY, Zhou WL, Yan H, Tang JY, Wang Y. Qiangxinyin formula protects against isoproterenol-induced cardiac hypertrophy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155717. [PMID: 38810550 DOI: 10.1016/j.phymed.2024.155717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/08/2024] [Accepted: 05/05/2024] [Indexed: 05/31/2024]
Abstract
Heart failure is a life-threatening cardiovascular disease and characterized by cardiac hypertrophy, inflammation and fibrosis. The traditional Chinese medicine formula Qiangxinyin (QXY) is effective for the treatment of heart failure while the underlying mechanism is not clear. This study aims to identify the active ingredients of QXY and explore its mechanisms protecting against cardiac hypertrophy. We found that QXY significantly protected against isoproterenol (ISO)-induced cardiac hypertrophy and dysfunction in zebrafish. Eight compounds, including benzoylmesaconine (BMA), atractylenolide I (ATL I), icariin (ICA), quercitrin (QUE), psoralen (PRN), kaempferol (KMP), ferulic acid (FA) and protocatechuic acid (PCA) were identified from QXY. PRN, KMP and icaritin (ICT), an active pharmaceutical ingredient of ICA, prevented ISO-induced cardiac hypertrophy and dysfunction in zebrafish. In H9c2 cardiomyocyte treated with ISO, QXY significantly blocked the calcium influx, reduced intracellular lipid peroxidative product MDA, stimulated ATP production and increased mitochondrial membrane potential. QXY also inhibited ISO-induced cardiomyocyte hypertrophy and cytoskeleton reorganization. Mechanistically, QXY enhanced the phosphorylation of Smad family member 2 (SMAD2) and myosin phosphatase target subunit-1 (MYPT1), and suppressed the phosphorylation of myosin light chain (MLC). In conclusion, PRN, KMP and ICA are the main active ingredients of QXY that protect against ISO-induced cardiac hypertrophy and dysfunction largely via the blockage of calcium influx and inhibition of mitochondrial dysfunction as well as cytoskeleton reorganization.
Collapse
Affiliation(s)
- Zhong-Yan Zhou
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong Special Administrative Regions of China; State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong Special Administrative Regions of China
| | - Jie Ma
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Wai-Rong Zhao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wen-Ting Shi
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Zhang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan-Yan Hu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mei-Yan Yue
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wen-Long Zhou
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hua Yan
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing-Yi Tang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Yu Wang
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong Special Administrative Regions of China; State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong Special Administrative Regions of China.
| |
Collapse
|
20
|
Yang Y, Du Y, Cui B. Polyphenols targeting multiple molecular targets and pathways for the treatment of vitiligo. Front Immunol 2024; 15:1387329. [PMID: 39119340 PMCID: PMC11306171 DOI: 10.3389/fimmu.2024.1387329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
Vitiligo, a pigmentary autoimmune disorder, is marked by the selective loss of melanocytes in the skin, leading to the appearance of depigmented patches. The principal pathological mechanism is the melanocyte destruction mediated by CD8+ T cells, modulated by oxidative stress and immune dysregulation. Vitiligo affects both physical health and psychological well-being, diminishing the quality of life. Polyphenols, naturally occurring compounds with diverse pharmacological properties, including antioxidant and anti-inflammatory activities, have demonstrated efficacy in managing various dermatological conditions through multiple pathways. This review provides a comprehensive analysis of vitiligo and the therapeutic potential of natural polyphenolic compounds. We examine the roles of various polyphenols in vitiligo management through antioxidant and immunomodulatory effects, melanogenesis promotion, and apoptosis reduction. The review underscores the need for further investigation into the precise molecular mechanisms of these compounds in vitiligo treatment and the exploration of their combination with current therapies to augment therapeutic outcomes.
Collapse
Affiliation(s)
| | | | - Bingnan Cui
- Department of Dermatology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
21
|
Lv S, Zhang G, Lu Y, Zhong X, Huang Y, Ma Y, Yan W, Teng J, Wei S. Pharmacological mechanism of natural antidepressants: The role of mitochondrial quality control. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155669. [PMID: 38696923 DOI: 10.1016/j.phymed.2024.155669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/15/2024] [Accepted: 04/21/2024] [Indexed: 05/04/2024]
Abstract
BACKGROUND Depression is a mental illness characterized by persistent sadness and a reduced capacity for pleasure. In clinical practice, SSRIs and other medications are commonly used for therapy, despite their various side effects. Natural products present distinct advantages, including synergistic interactions among multiple components and targeting multiple pathways, suggesting their tremendous potential in depression treatment. Imbalance in mitochondrial quality control (MQC) plays a significant role in the pathology of depression, emphasizing the importance of regulating MQC as a potential intervention strategy in addressing the onset and progression of depression. However, the role and mechanism through which natural products regulate MQC in depression treatments still need to be comprehensively elucidated, particularly in clinical and preclinical settings. PURPOSE This review was aimed to summarize the findings of recent studies and outline the pharmacological mechanisms by which natural products modulate MQC to exert antidepressant effects. Additionally, it evaluated current research limitations and proposed new strategies for future preclinical and clinical applications in the depression domain. METHODS To study the main pharmacological mechanisms underlying the regulation of MQC by natural products in the treatment of depression, we conducted a thorough search across databases such as PubMed, Web of Science, and ScienceDirect databases to classify and summarize the relationship between MQC and depression, as well as the regulatory mechanisms of natural products. RESULTS Numerous studies have shown that irregularities in the MQC system play an important role in the pathology of depression, and the regulation of the MQC system is involved in antidepressant treatments. Natural products mainly regulate the MQC system to induce antidepressant effects by alleviating oxidative stress, balancing ATP levels, promoting mitophagy, maintaining calcium homeostasis, optimizing mitochondrial dynamics, regulating mitochondrial membrane potential, and enhancing mitochondrial biogenesis. CONCLUSIONS We comprehensively summarized the regulation of natural products on the MQC system in antidepressants, providing a unique perspective for the application of natural products within antidepressant therapy. However, extensive efforts are imperative in clinical and preclinical investigations to delve deeper into the mechanisms underlying how antidepressant medications impact MQC, which is crucial for the development of effective antidepressant treatments.
Collapse
Affiliation(s)
- Shimeng Lv
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Guangheng Zhang
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Yitong Lu
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Xia Zhong
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing 100191, China
| | - Yufei Huang
- Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Yuexiang Ma
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355,China
| | - Wei Yan
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Jing Teng
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Sheng Wei
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; High Level Key Disciplines of Traditional Chinese Medicine: Basic Theory of Traditional Chinese Medicine, National Administration of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Shandong Provincial Engineering Research Center for the Prevention and Treatment of Major Brain Diseases with Traditional Chinese Medicine (PTMBD), Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| |
Collapse
|
22
|
Liu P, Tang L, Li G, Wu X, Hu F, Peng W. Association between consumption of flavonol and its subclasses and chronic kidney disease in US adults: an analysis based on National Health and Nutrition Examination Survey data from 2007-2008, 2009-2010, and 2017-2018. Front Nutr 2024; 11:1399251. [PMID: 38957868 PMCID: PMC11217562 DOI: 10.3389/fnut.2024.1399251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/05/2024] [Indexed: 07/04/2024] Open
Abstract
Background There is little research on the relationship between flavonol consumption and chronic kidney disease (CKD). This study aimed to examine the link between flavonol consumption and the risk of CKD among US adults, using data from the 2007-2008, 2009-2010 and 2017-2018 National Health and Nutrition Examination Survey (NHANES). Methods A cross-sectional approach was used, drawing on data from three NHANES cycles. The flavonol consumption of the participants in this study was assessed using a 48 h dietary recall interview. CKD was diagnosed based on an estimated glomerular filtration rate below 60 mL/min/1.73 m2 or a urine albumin-to-creatinine ratio of 30 mg/g or higher. Results Compared to the lowest quartile of flavonol intake (Q1), the odds ratios for CKD were 0.598 (95% CI: 0.349, 1.023) for the second quartile (Q2), 0.679 (95% CI: 0.404, 1.142) for the third quartile (Q3), and 0.628 (95% CI: 0.395, 0.998) for the fourth quartile (Q4), with a p value for trend significance of 0.190. In addition, there was a significant trend in CKD risk with isorhamnetin intake, with the odds ratios for CKD decreasing to 0.860 (95% CI: 0.546, 1.354) in the second quartile, 0.778 (95% CI: 0.515, 1.177) in the third quartile, and 0.637 (95% CI: 0.515, 1.177) in the fourth quartile (p for trend = 0.013). Conclusion Our analysis of the NHANES data spanning 2007-2008, 2009-2010, and 2017-2018 suggests that high consumption of dietary flavonol, especially isorhamnetin, might be linked to a lower risk of CKD in US adults. These findings offer new avenues for exploring strategies for managing CKD.
Collapse
Affiliation(s)
- Peijia Liu
- Department of Nephrology, Shenzhen Third People’s Hospital, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Leile Tang
- Department of Cardiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Guixia Li
- Department of Nephrology, Shenzhen Third People’s Hospital, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Xiaoyu Wu
- Department of Nephrology, Shenzhen Third People’s Hospital, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Feng Hu
- Department of Nephrology, Shenzhen Third People’s Hospital, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Wujian Peng
- Department of Nephrology, Shenzhen Third People’s Hospital, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
23
|
Dutta A, Bhattacharya P, Chutia P, Borah A. Targeting of wnt signalling pathway by small bioactive molecules for the treatment of Alzheimer's disease. In Silico Pharmacol 2024; 12:50. [PMID: 38840665 PMCID: PMC11147993 DOI: 10.1007/s40203-024-00226-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 05/28/2024] [Indexed: 06/07/2024] Open
Abstract
Alzheimer's disease (AD) is the most occurring neurodegenerative disorder that destroys learning, memory, and thinking skills. Although the pathophysiology of the disease is least understood, the post-mortem brain of AD patients as well as animal models revealed the part of down regulated Wnt signalling in progression of the disease. The deficit in the Wnt signalling leads to the accumulation of amyloid beta peptides, phosphorylation of tau proteins, and synaptic dysfunctions, which are regarded as the major pathological features of AD. As the available drugs for AD are only able to mitigate the symptoms and are also associated with several side effects, the therapeutic potential of the bioactive compounds is being explored for their efficacies in managing the major pathologies. Consequently, a few bioactive compounds fundamentally isolated from Garcinia species are established as promising neuroprotective agents in AD, however; their potential to regulate the Wnt signalling pathway is yet to be discovered. Considering the neuroprotective properties, in the present study efficiency of six small bioactive compounds viz., amentoflavone, isovitexin, orientin, apigenin, kaempferol, and garcinol have been investigated in modulating the receptor proteins (LRP6, DKK1, WIF1 and GSK3β) of the Wnt signalling pathway by molecular docking technique. While all the bioactive compounds could efficiently interact with the target proteins, amentoflavone, orientin, and isovitexin interact with all the target proteins viz., LRP6, DKK1, WIF1, and GSK3β with higher free energy of binding, more number of interactions, and similar mode of binding in comparison to their known or reported modulators. Thus, the present study set forth the investigated small bioactive molecules as potential drug candidates in AD therapeutics.
Collapse
Affiliation(s)
- Ankumoni Dutta
- Department of Life Science and Bioinformatics, Cellular and Molecular Neurobiology Laboratory, Assam University, Silchar, Assam 788011 India
- Department of Zoology, Pandit Deendayal Upadhyaya Adarsha Mahavidyalaya (PDUAM), Behali, Biswanath, Assam 784184 India
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355 India
| | - Pavitra Chutia
- Department of Life Sciences, Debraj Roy College, Golaghat, Assam 785621 India
| | - Anupom Borah
- Department of Life Science and Bioinformatics, Cellular and Molecular Neurobiology Laboratory, Assam University, Silchar, Assam 788011 India
| |
Collapse
|
24
|
Madhubala D, Patra A, Khan MR, Mukherjee AK. Phytomedicine for neurodegenerative diseases: The road ahead. Phytother Res 2024; 38:2993-3019. [PMID: 38600725 DOI: 10.1002/ptr.8192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/14/2024] [Accepted: 03/10/2024] [Indexed: 04/12/2024]
Abstract
Neurodegenerative disorders (NDs) are among the most common causes of death across the globe. NDs are characterized by progressive damage to CNS neurons, leading to defects in specific brain functions such as memory, cognition, and movement. The most common NDs are Parkinson's, Alzheimer's, Huntington's, and amyotrophic lateral sclerosis (ALS). Despite extensive research, no therapeutics or medications against NDs have been proven to be effective. The current treatment of NDs involving symptom-based targeting of the disease pathogenesis has certain limitations, such as drug resistance, adverse side effects, poor blood-brain barrier permeability, and poor bioavailability of drugs. Some studies have shown that plant-derived natural compounds hold tremendous promise for treating and preventing NDs. Therefore, the primary objective of this review article is to critically analyze the properties and potency of some of the most studied phytomedicines, such as quercetin, curcumin, epigallocatechin gallate (EGCG), apigenin, and cannabinoids, and highlight their advantages and limitations for developing next-generation alternative treatments against NDs. Further extensive research on pre-clinical and clinical studies for developing plant-based drugs against NDs from bench to bedside is warranted.
Collapse
Affiliation(s)
- Dev Madhubala
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
- Division of Life Sciences, Institute of Advanced Study in Science and Technology, Guwahati, Assam, India
| | - Aparup Patra
- Division of Life Sciences, Institute of Advanced Study in Science and Technology, Guwahati, Assam, India
| | - Mojibur R Khan
- Division of Life Sciences, Institute of Advanced Study in Science and Technology, Guwahati, Assam, India
| | - Ashis K Mukherjee
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
- Division of Life Sciences, Institute of Advanced Study in Science and Technology, Guwahati, Assam, India
| |
Collapse
|
25
|
Malarz J, Michalska K, Stojakowska A. Polyphenols of the Inuleae-Inulinae and Their Biological Activities: A Review. Molecules 2024; 29:2014. [PMID: 38731504 PMCID: PMC11085778 DOI: 10.3390/molecules29092014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Polyphenols are ubiquitous plant metabolites that demonstrate biological activities essential to plant-environment interactions. They are of interest to plant food consumers, as well as to the food, pharmaceutical and cosmetic industry. The class of the plant metabolites comprises both widespread (chlorogenic acids, luteolin, quercetin) and unique compounds of diverse chemical structures but of the common biosynthetic origin. Polyphenols next to sesquiterpenoids are regarded as the major class of the Inuleae-Inulinae metabolites responsible for the pharmacological activity of medicinal plants from the subtribe (Blumea spp., Dittrichia spp., Inula spp., Pulicaria spp. and others). Recent decades have brought a rapid development of molecular and analytical techniques which resulted in better understanding of the taxonomic relationships within the Inuleae tribe and in a plethora of data concerning the chemical constituents of the Inuleae-Inulinae. The current taxonomical classification has introduced changes in the well-established botanical names and rearranged the genera based on molecular plant genetic studies. The newly created chemical data together with the earlier phytochemical studies may provide some complementary information on biochemical relationships within the subtribe. Moreover, they may at least partly explain pharmacological activities of the plant preparations traditionally used in therapy. The current review aimed to systematize the knowledge on the polyphenols of the Inulae-Inulinae.
Collapse
Affiliation(s)
| | | | - Anna Stojakowska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna Street 12, 31-343 Kraków, Poland; (J.M.); (K.M.)
| |
Collapse
|
26
|
Kakarla R, Karuturi P, Siakabinga Q, Kasi Viswanath M, Dumala N, Guntupalli C, Nalluri BN, Venkateswarlu K, Prasanna VS, Gutti G, Yadagiri G, Gujjari L. Current understanding and future directions of cruciferous vegetables and their phytochemicals to combat neurological diseases. Phytother Res 2024; 38:1381-1399. [PMID: 38217095 DOI: 10.1002/ptr.8122] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 12/15/2023] [Accepted: 12/27/2023] [Indexed: 01/15/2024]
Abstract
Neurological disorders incidences are increasing drastically due to complex pathophysiology, and the nonavailability of disease-modifying agents. Several attempts have been made to identify new potential chemicals to combat these neurological abnormalities. At present, complete abolishment of neurological diseases is not attainable except for symptomatic relief. However, dietary recommendations to help brain development or improvement have increased over the years. In recent times, cruciferous vegetables and their phytochemicals have been identified from preclinical and clinical investigations as potential neuroprotective agents. The present review highlights the beneficial effects and molecular mechanisms of phytochemicals such as indole-3-carbinol, diindolylmethane, sulforaphane, kaempferol, selenium, lutein, zeaxanthin, and vitamins of cruciferous vegetables against neurological diseases including Parkinson's disease, Alzheimer's disease, stroke, Huntington's disease, autism spectra disorders, anxiety, depression, and pain. Most of these cruciferous phytochemicals protect the brain by eliciting antioxidant, anti-inflammatory, and antiapoptotic properties. Regular dietary intake of cruciferous vegetables may benefit the prevention and treatment of neurological diseases. The present review suggests that there is a lacuna in identifying the clinical efficacy of these phytochemicals. Therefore, high-quality future studies should firmly establish the efficacy of the above-mentioned cruciferous phytochemicals in clinical settings.
Collapse
Affiliation(s)
- Ramakrishna Kakarla
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Guntur, India
| | - Praditha Karuturi
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Guntur, India
| | - Queen Siakabinga
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Guntur, India
| | | | - Naresh Dumala
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Guntur, India
| | | | - Buchi N Nalluri
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Guntur, India
| | - Kojja Venkateswarlu
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Varanasi, India
| | - Vani Sai Prasanna
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Kolkata, Kolkata, India
| | - Gopichand Gutti
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Ganesh Yadagiri
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Lohitha Gujjari
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
27
|
Nezhad Salari AM, Rasoulizadeh Z, Shabgah AG, Vakili-Ghartavol R, Sargazi G, Gholizadeh Navashenaq J. Exploring the mechanisms of kaempferol in neuroprotection: Implications for neurological disorders. Cell Biochem Funct 2024; 42:e3964. [PMID: 38439154 DOI: 10.1002/cbf.3964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/06/2024]
Abstract
Kaempferol, a flavonoid compound found in various fruits, vegetables, and medicinal plants, has garnered increasing attention due to its potential neuroprotective effects in neurological diseases. This research examines the existing literature concerning the involvement of kaempferol in neurological diseases, including stroke, Parkinson's disease, Alzheimer's disease, neuroblastoma/glioblastoma, spinal cord injury, neuropathic pain, and epilepsy. Numerous in vitro and in vivo investigations have illustrated that kaempferol possesses antioxidant, anti-inflammatory, and antiapoptotic properties, contributing to its neuroprotective effects. Kaempferol has been shown to modulate key signaling pathways involved in neurodegeneration and neuroinflammation, such as the PI3K/Akt, MAPK/ERK, and NF-κB pathways. Moreover, kaempferol exhibits potential therapeutic benefits by enhancing neuronal survival, attenuating oxidative stress, enhancing mitochondrial calcium channel activity, reducing neuroinflammation, promoting neurogenesis, and improving cognitive function. The evidence suggests that kaempferol holds promise as a natural compound for the prevention and treatment of neurological diseases. Further research is warranted to elucidate the underlying mechanisms of action, optimize dosage regimens, and evaluate the safety and efficacy of this intervention in human clinical trials, thereby contributing to the advancement of scientific knowledge in this field.
Collapse
Affiliation(s)
| | - Zahra Rasoulizadeh
- Student Research Committee, Bam University of Medical Sciences, Bam, Iran
| | | | - Roghayyeh Vakili-Ghartavol
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ghasem Sargazi
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran
| | | |
Collapse
|
28
|
Zhou L, Yang C, Liu Z, Chen L, Wang P, Zhou Y, Yuan M, Zhou LT, Wang X, Zhu LQ. Neuroprotective effect of the traditional decoction Tian-Si-Yin against Alzheimer's disease via suppression of neuroinflammation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117569. [PMID: 38086513 DOI: 10.1016/j.jep.2023.117569] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/27/2023] [Accepted: 12/06/2023] [Indexed: 12/20/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Alzheimer's disease (AD) is the most prevalent neurodegenerative disease among old adults. As a traditional Chinese medicine, the herbal decoction Tian-Si-Yin consists of Morinda officinalis How. and Cuscuta chinensis Lam., which has been widely used to nourish kidney. Interestingly, Tian-Si-Yin has also been used to treat dementia, depression and other neurological conditions. However, its therapeutic potential for neurodegenerative diseases such as AD and the underlying mechanisms remain unclear. AIM OF THE STUDY To evaluate the therapeutic effect of the herbal formula Tian-Si-Yin against AD and to explore the underlying mechanisms. MATERIALS AND METHODS The N2a cells treated with amyloid β (Aβ) peptide or overexpressing amyloid precursor protein (APP) were used to establish cellular models of AD. The in vivo anti-AD effects were evaluated by using Caenorhabditis elegans and 3 × Tg-AD mouse models. Tian-Si-Yin was orally administered to the mice for 8 weeks at a dose of 10, 15 or 20 mg/kg/day, respectively. Its protective role on memory deficits of mice was examined using the Morris water maze and fear conditioning tests. Network pharmacology, proteomic analysis and ultra-high performance liquid chromatography-mass spectrometry/mass spectrometry (UHPLC-MS/MS) were used to explore the underlying molecular mechanisms, which were further investigated by Western blotting and immunohistochemistry. RESULTS Tian-Si-Yin was shown to improve cell viability of Aβ-treated N2a cells and APP-expressing N2a-APP cells. Tian-Si-Yin was also found to reduce ROS level and extend lifespan of transgenic AD-like C. elegans model. Oral administration of Tian-Si-Yin at medium dose was able to effectively rescue memory impairment in 3 × Tg mice. Tian-Si-Yin was further shown to suppress neuroinflammation by inhibition of glia cell activation and downregulation of inflammatory cytokines, diminishing tau phosphoralytion and Aβ deposition in the mice. Using UHPLC-MS/MS and network pharmacology technologies, 17 phytochemicals from 68 components of Tian-Si-Yin were identified as potential anti-AD components. MAPK1, BRAF, TTR and Fyn were identified as anti-AD targets of Tian-Si-Yin from network pharmacology and mass spectrum. CONCLUSIONS This study has established the protective effect of Tian-Si-Yin against AD and demonstrates that Tian-Si-Yin is capable of improving Aβ level, tau pathology and synaptic disorder by regulating inflammatory response.
Collapse
Affiliation(s)
- Ling Zhou
- Department of Pathophysiology, Key Laboratory of Neurological Disorders of the Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Chunqing Yang
- Department of Pathophysiology, Key Laboratory of Neurological Disorders of the Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Zhiqiang Liu
- Department of Pathophysiology, Key Laboratory of Neurological Disorders of the Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Linlin Chen
- School of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, PR China
| | - Ping Wang
- School of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, PR China
| | - Yuan Zhou
- The Second Affiliated Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang, PR China
| | - Mei Yuan
- The Second Affiliated Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang, PR China
| | - Lan-Ting Zhou
- School of Basic Medicine, Hubei University of Arts and Science, Xiangyang, PR China; Neuroscience and Brainscience Institute of Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, PR China.
| | - Xueren Wang
- Department of Anesthesiology, Shanxi Bethune Hospital, Taiyuan, PR China; Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.
| | - Ling-Qiang Zhu
- Department of Pathophysiology, Key Laboratory of Neurological Disorders of the Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China; The Institute of Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, PR China.
| |
Collapse
|
29
|
Lin H, Wang W, Peng M, Kong Y, Zhang X, Wei X, Shang H. Pharmacological properties of Polygonatum and its active ingredients for the prevention and treatment of cardiovascular diseases. Chin Med 2024; 19:1. [PMID: 38163901 PMCID: PMC10759625 DOI: 10.1186/s13020-023-00871-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024] Open
Abstract
Despite continued advances in prevention and treatment strategies, cardiovascular diseases (CVDs) remain the leading cause of death worldwide, and more effective therapeutic methods are urgently needed. Polygonatum is a traditional Chinese herbal medicine with a variety of pharmacological applications and biological activities, such as antioxidant activity, anti-inflammation, antibacterial effect, immune-enhancing effect, glucose regulation, lipid-lowering and anti-atherosclerotic effects, treatment of diabetes and anticancer effect. There has also been more and more evidence to support the cardioprotective effect of Polygonatum in recent years. However, up to now, there has been a lack of comprehensive studies on the active ingredients and their pharmacotoxicological effects related to cardiovascular diseases. Therefore, the main active components of Polygonatum (including Polysaccharides, Flavonoids, Saponins) and their biological activities were firstly reviewed in this paper. Furthermore, we summarized the pharmacological effects of Polygonatum's active components in preventing and treating CVDs, and its relevant toxicological investigations. Finally, we emphasize the potential of Polygonatum in the prevention and treatment of CVDs.
Collapse
Affiliation(s)
- Hongyuan Lin
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Wenhui Wang
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Mengqi Peng
- Weifang Medical University, Weifang, 261000, China
| | - Yifan Kong
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Xiaowei Zhang
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Xiaohong Wei
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Hongcai Shang
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China.
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
| |
Collapse
|
30
|
Singh B, Semwal BC. A Compressive Review on Source, Toxicity and Biological Activity of Flavonoid. Curr Top Med Chem 2024; 24:2093-2116. [PMID: 39108008 DOI: 10.2174/0115680266316032240718050055] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/05/2024] [Accepted: 06/25/2024] [Indexed: 10/22/2024]
Abstract
Flavonoids are biologically active chemicals in various fruits, plants, vegetables, and leaves, which have promising uses in medicinal science. The health properties of these natural chemicals are widely accepted, and efforts are underway to extract the specific components referred to as flavonoids. Flavonoids demonstrate a diverse range of bio-activities, anticancer, antioxidant activity, anti-cholinesterase activity, antiinflammatory activity, antimalarial activity, antidiabetic activity, neurodegenerative disease, cardiovascular effect, hepatoprotective effects, and antiviral and antimicrobial activity. This study aims to examine the prevailing trends in flavonoid investigation studies, elucidate the activity of flavonoids, examine their various functions and uses, assess the potential of flavonoids as preventive medications for chronic diseases, and outline future research opportunities in this field. This review explores the diverse functions of flavonoids in preventing and managing various diseases.
Collapse
Affiliation(s)
- Bhoopendra Singh
- Department of Pharmacology, GLA University, NH#2 Delhi Mathura Highway, Uttar Pradesh, India
| | - Bhupesh Chander Semwal
- Department of Pharmacology, GLA University, NH#2 Delhi Mathura Highway, Uttar Pradesh, India
| |
Collapse
|
31
|
Du YY, Sun T, Yang Q, Liu QQ, Li JM, Yang L, Luo LX. Therapeutic Potential of Kaempferol against Sleep Deprivation-Induced Cognitive Impairment: Modulation of Neuroinflammation and Synaptic Plasticity Disruption in Mice. ACS Pharmacol Transl Sci 2023; 6:1934-1944. [PMID: 38093836 PMCID: PMC10714427 DOI: 10.1021/acsptsci.3c00226] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 12/02/2024]
Abstract
Sleep deprivation (SD) has led to a rise in cognitive impairment (CI) cases. Kaempferol (KMP), known for its anti-inflammatory and antiapoptotic properties, holds promise in countering SD-induced CI. Experimental validation using a sleep-deprived CI model confirmed KMP's efficacy in mitigating CI. Immunofluorescence investigations emphasized diminished activation of astrocytes and reduced the proliferation of microglia in the hippocampus of mice subjected to SD. Subsequently, network pharmacological analyses were conducted and found that KMP may be closely related to the mitogen-activated protein kinase (MAPK) pathway in SD-induced CI. The influence of KMP on the MAPK pathway was verified by the observed decrease in the expression of phosphorylated JNK (p-JNK) and p38 (p-p38). Analyzing hippocampal AMPARS and NMDARS expression indicated KMP's ability to enhance GluA1 phosphorylation (Ser831 and Ser845) and GluN2A levels. Patch clamp assays demonstrated heightened excitatory transmitter transmission in the hippocampus, suggesting KMP's positive influence. Overall, KMP combats neuroinflammation via MAPK inhibition, augments synaptic function, and addresses learning and memory dysfunction in sleep-deprived mice.
Collapse
Affiliation(s)
- Ya-Ya Du
- Precision
Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu
Hospital, The Fourth Military Medical University, Xi’an 710038, China
| | - Ting Sun
- Precision
Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu
Hospital, The Fourth Military Medical University, Xi’an 710038, China
| | - Qi Yang
- Precision
Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu
Hospital, The Fourth Military Medical University, Xi’an 710038, China
| | - Qing-Qing Liu
- Precision
Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu
Hospital, The Fourth Military Medical University, Xi’an 710038, China
| | - Jia-Min Li
- School
of Pharmacy, Shaanxi University of Chinese
Medicine, Xianyang 712046, China
| | - Le Yang
- Precision
Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu
Hospital, The Fourth Military Medical University, Xi’an 710038, China
| | - Lan-Xin Luo
- Precision
Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu
Hospital, The Fourth Military Medical University, Xi’an 710038, China
| |
Collapse
|
32
|
Alexander C, Parsaee A, Vasefi M. Polyherbal and Multimodal Treatments: Kaempferol- and Quercetin-Rich Herbs Alleviate Symptoms of Alzheimer's Disease. BIOLOGY 2023; 12:1453. [PMID: 37998052 PMCID: PMC10669725 DOI: 10.3390/biology12111453] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/08/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023]
Abstract
Alzheimer's Disease (AD) is a progressive neurodegenerative disorder impairing cognition and memory in the elderly. This disorder has a complex etiology, including senile plaque and neurofibrillary tangle formation, neuroinflammation, oxidative stress, and damaged neuroplasticity. Current treatment options are limited, so alternative treatments such as herbal medicine could suppress symptoms while slowing cognitive decline. We followed PRISMA guidelines to identify potential herbal treatments, their associated medicinal phytochemicals, and the potential mechanisms of these treatments. Common herbs, including Ginkgo biloba, Camellia sinensis, Glycyrrhiza uralensis, Cyperus rotundus, and Buplerum falcatum, produced promising pre-clinical results. These herbs are rich in kaempferol and quercetin, flavonoids with a polyphenolic structure that facilitate multiple mechanisms of action. These mechanisms include the inhibition of Aβ plaque formation, a reduction in tau hyperphosphorylation, the suppression of oxidative stress, and the modulation of BDNF and PI3K/AKT pathways. Using pre-clinical findings from quercetin research and the comparatively limited data on kaempferol, we proposed that kaempferol ameliorates the neuroinflammatory state, maintains proper cellular function, and restores pro-neuroplastic signaling. In this review, we discuss the anti-AD mechanisms of quercetin and kaempferol and their limitations, and we suggest a potential alternative treatment for AD. Our findings lead us to conclude that a polyherbal kaempferol- and quercetin-rich cocktail could treat AD-related brain damage.
Collapse
Affiliation(s)
- Claire Alexander
- Department of Biology, Lamar University, Beaumont, TX 77705, USA
| | - Ali Parsaee
- Biological Science, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Maryam Vasefi
- Department of Biology, Lamar University, Beaumont, TX 77705, USA
| |
Collapse
|
33
|
Wu W, Huang J, Han P, Zhang J, Wang Y, Jin F, Zhou Y. Research Progress on Natural Plant Molecules in Regulating the Blood-Brain Barrier in Alzheimer's Disease. Molecules 2023; 28:7631. [PMID: 38005352 PMCID: PMC10674591 DOI: 10.3390/molecules28227631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder. With the aging population and the continuous development of risk factors associated with AD, it will impose a significant burden on individuals, families, and society. Currently, commonly used therapeutic drugs such as Cholinesterase inhibitors, N-methyl-D-aspartate antagonists, and multiple AD pathology removal drugs have been shown to have beneficial effects on certain pathological conditions of AD. However, their clinical efficacy is minimal and they are associated with certain adverse reactions. Furthermore, the underlying pathological mechanism of AD remains unclear, posing a challenge for drug development. In contrast, natural plant molecules, widely available, offer multiple targeting pathways and demonstrate inherent advantages in modifying the typical pathologic features of AD by influencing the blood-brain barrier (BBB). We provide a comprehensive review of recent in vivo and in vitro studies on natural plant molecules that impact the BBB in the treatment of AD. Additionally, we analyze their specific mechanisms to offer novel insights for the development of safe and effective targeted drugs as well as guidance for experimental research and the clinical application of drugs for the prevention and treatment of AD.
Collapse
Affiliation(s)
- Weidong Wu
- Basic Theory of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (W.W.); (J.Z.); (Y.W.)
| | - Jiahao Huang
- Department of Chinese Pharmacology, Heilongjiang University of Chinese Medicine, Harbin 150040, China;
| | - Pengfei Han
- Science and Education Section, Zhangjiakou First Hospital, Zhangjiakou 075041, China;
| | - Jian Zhang
- Basic Theory of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (W.W.); (J.Z.); (Y.W.)
| | - Yuxin Wang
- Basic Theory of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (W.W.); (J.Z.); (Y.W.)
| | - Fangfang Jin
- Department of Internal Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Yanyan Zhou
- Basic Theory of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (W.W.); (J.Z.); (Y.W.)
| |
Collapse
|
34
|
Dergunova LV, Filippenkov IB, Limborska SA, Myasoedov NF. Neuroprotective Peptides and New Strategies for Ischemic Stroke Drug Discoveries. Genes (Basel) 2023; 14:genes14050953. [PMID: 37239313 DOI: 10.3390/genes14050953] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/15/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
Ischemic stroke continues to be one of the leading causes of death and disability in the adult population worldwide. The currently used pharmacological methods for the treatment of ischemic stroke are not effective enough and require the search for new tools and approaches to identify therapeutic targets and potential neuroprotectors. Today, in the development of neuroprotective drugs for the treatment of stroke, special attention is paid to peptides. Namely, peptide action is aimed at blocking the cascade of pathological processes caused by a decrease in blood flow to the brain tissues. Different groups of peptides have therapeutic potential in ischemia. Among them are small interfering peptides that block protein-protein interactions, cationic arginine-rich peptides with a combination of various neuroprotective properties, shuttle peptides that ensure the permeability of neuroprotectors through the blood-brain barrier, and synthetic peptides that mimic natural regulatory peptides and hormones. In this review, we consider the latest achievements and trends in the development of new biologically active peptides, as well as the role of transcriptomic analysis in identifying the molecular mechanisms of action of potential drugs aimed at the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Lyudmila V Dergunova
- Institute of Molecular Genetics, National Research Center "Kurchatov Institute", Kurchatov Sq. 2, 123182 Moscow, Russia
| | - Ivan B Filippenkov
- Institute of Molecular Genetics, National Research Center "Kurchatov Institute", Kurchatov Sq. 2, 123182 Moscow, Russia
| | - Svetlana A Limborska
- Institute of Molecular Genetics, National Research Center "Kurchatov Institute", Kurchatov Sq. 2, 123182 Moscow, Russia
| | - Nikolay F Myasoedov
- Institute of Molecular Genetics, National Research Center "Kurchatov Institute", Kurchatov Sq. 2, 123182 Moscow, Russia
| |
Collapse
|