1
|
Ntetsika T, Catrina SB, Markaki I. Understanding the link between type 2 diabetes mellitus and Parkinson's disease: role of brain insulin resistance. Neural Regen Res 2025; 20:3113-3123. [PMID: 39715083 PMCID: PMC11881720 DOI: 10.4103/nrr.nrr-d-23-01910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/22/2024] [Accepted: 03/03/2024] [Indexed: 12/25/2024] Open
Abstract
Type 2 diabetes mellitus and Parkinson's disease are chronic diseases linked to a growing pandemic that affects older adults and causes significant socio-economic burden. Epidemiological data supporting a close relationship between these two aging-related diseases have resulted in the investigation of shared pathophysiological molecular mechanisms. Impaired insulin signaling in the brain has gained increasing attention during the last decade and has been suggested to contribute to the development of Parkinson's disease through the dysregulation of several pathological processes. The contribution of type 2 diabetes mellitus and insulin resistance in neurodegeneration in Parkinson's disease, with emphasis on brain insulin resistance, is extensively discussed in this article and new therapeutic strategies targeting this pathological link are presented and reviewed.
Collapse
Affiliation(s)
- Theodora Ntetsika
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Sergiu-Bogdan Catrina
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
- Center for Diabetes, Academic Specialist Center, Stockholm, Sweden
| | - Ioanna Markaki
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
- Center for Neurology, Academic Specialist Center, Stockholm, Sweden
| |
Collapse
|
2
|
Yang C, Yu W, Dang C, Zhang J, Lu J, Xue J. FEM1B enhances TRAIL-induced apoptosis in T lymphocytes and monocytes. FEBS Open Bio 2025. [PMID: 40392678 DOI: 10.1002/2211-5463.70056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 04/07/2025] [Accepted: 05/05/2025] [Indexed: 05/22/2025] Open
Abstract
FEM1B is recognized for its significant pro-apoptotic function in colorectal cancer; however, its influence and mechanisms regarding apoptosis in immune cells remain inadequately elucidated. In this study, we demonstrated that FEM1B enhances TRAIL-induced apoptosis in Molt-4, Jurkat, THP-1, and U937 cell lines. Notably, the knockdown of FEM1B in transfected cells resulted in a reversal of the observed increase in cell apoptosis. Our findings indicate that FEM1B activates caspase-3 and caspase-8, but not caspase-9, in response to TRAIL stimulation, suggesting its involvement in the extrinsic caspase-dependent apoptotic pathway. Furthermore, we found that FEM1B interacted with TRAF2 and downregulates its expression in Molt-4 and Jurkat cells, thereby diminishing TRAF2's inhibitory effect on caspase-8. In THP-1 and U937 cells, FEM1B was found to upregulate TRAIL-R2, thereby promoting TRAIL-induced apoptosis. Knockout studies in murine models further corroborated that FEM1B facilitates TRAIL-induced apoptosis. These results demonstrate that FEM1B enhances TRAIL-induced apoptosis in T lymphocytes and monocytes through a caspase-dependent mechanism involving TRAF2 or TRAIL receptors.
Collapse
Affiliation(s)
- Chenbo Yang
- NHC Key Laboratory of Human Disease Comparative Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenhui Yu
- NHC Key Laboratory of Human Disease Comparative Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Cui Dang
- NHC Key Laboratory of Human Disease Comparative Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingjing Zhang
- NHC Key Laboratory of Human Disease Comparative Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiahan Lu
- NHC Key Laboratory of Human Disease Comparative Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Xue
- NHC Key Laboratory of Human Disease Comparative Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
3
|
Arefin TM, Börchers S, Olekanma D, Cramer SR, Sotzen MR, Zhang N, Skibicka KP. Sex-specific signatures of GLP-1 and amylin on resting state brain activity and functional connectivity in awake rats. Neuropharmacology 2025; 269:110348. [PMID: 39914619 PMCID: PMC11926989 DOI: 10.1016/j.neuropharm.2025.110348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/16/2024] [Accepted: 02/04/2025] [Indexed: 02/13/2025]
Abstract
Gut-produced glucagon-like peptide-1 (GLP-1) and pancreas-made amylin robustly reduce food intake by directly or indirectly affecting brain activity. While for both peptides a direct action in the hindbrain and the hypothalamus is likely, few studies examined their impact on whole brain activity in rodents and did so evaluating male rodents under anesthesia. However, both sex and anesthesia may significantly alter the influence of feeding controlling molecules on brain activity. Therefore, we investigated the effect of GLP-1 and amylin on brain activity and functional connectivity (FC) in awake adult male and female rats using resting-state functional magnetic resonance imaging (rsfMRI). We further examined the relationship between the altered brain activity or connectivity and subsequent food intake in response to amylin or GLP-1. We observed sex divergent effects of amylin and GLP-1 on the brain activity and FC patterns. Most importantly correlation analysis between FC and feeding behavior revealed that different brain areas potentially drive reduced food intake in male and female rats. Our findings underscore the distributed and distinctly sex divergent neural network engaged by each of these anorexic peptides and suggest that different brain areas may be the primary drivers of the feeding outcome in male and female rats. Moreover, prominent activity and connectivity alterations observed in brain areas not typically associated with feeding behavior in both sexes may either indicate novel feeding centers or alternatively suggest the involvement of these substances in behaviors beyond feeding and metabolism. The latter question is of potential translational significance as analogues of both amylin and GLP-1 are clinically utilized.
Collapse
Affiliation(s)
- Tanzil M Arefin
- Huck Institutes of Life Science, Pennsylvania State University, State College, PA, USA; Department of Biomedical Engineering, Pennsylvania State University, University Park, USA; Center for Neurotechnology in Mental Health Research, Pennsylvania State University, University Park, USA; Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, USA; Center for Advanced Brain Imaging and Neurophysiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Stina Börchers
- Nutritional Sciences, Pennsylvania State University, University Park, PA, USA; Institute of Neuroscience and Physiology, University of Gothenburg, Sweden
| | - Doris Olekanma
- Nutritional Sciences, Pennsylvania State University, University Park, PA, USA; Huck Institutes of Life Science, Pennsylvania State University, State College, PA, USA; The Neuroscience Graduate Program, Pennsylvania State University, University Park, USA
| | - Samuel R Cramer
- Huck Institutes of Life Science, Pennsylvania State University, State College, PA, USA; The Neuroscience Graduate Program, Pennsylvania State University, University Park, USA
| | - Morgan R Sotzen
- Nutritional Sciences, Pennsylvania State University, University Park, PA, USA; Huck Institutes of Life Science, Pennsylvania State University, State College, PA, USA
| | - Nanyin Zhang
- Huck Institutes of Life Science, Pennsylvania State University, State College, PA, USA; Department of Biomedical Engineering, Pennsylvania State University, University Park, USA; Center for Neurotechnology in Mental Health Research, Pennsylvania State University, University Park, USA
| | - Karolina P Skibicka
- Nutritional Sciences, Pennsylvania State University, University Park, PA, USA; Huck Institutes of Life Science, Pennsylvania State University, State College, PA, USA; Institute of Neuroscience and Physiology, University of Gothenburg, Sweden.
| |
Collapse
|
4
|
Nowell J, Gentleman S, Edison P. Cardiovascular risk and obesity impact loss of grey matter volume earlier in males than females. J Neurol Neurosurg Psychiatry 2025; 96:546-557. [PMID: 39603675 DOI: 10.1136/jnnp-2024-333675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 09/13/2024] [Indexed: 11/29/2024]
Abstract
BACKGROUND It remains imperative to discover the time course that cardiovascular risk factors influence neurodegeneration in males and females and decipher whether the apolipoprotein (APOE) genotype mediates this relationship. Here we perform a large-scale evaluation of the influence of cardiovascular risk and obesity on brain volume in males and females in different age groups. METHODS 34 425 participants between the ages of 45 and 82 years were recruited from the UK Biobank database https://www.ukbiobank.ac.uk. T1-weighted structural MR images (n=34 425) were downloaded locally for all participants, and voxel-based morphometry was performed to characterise the volumetric changes of the whole brain. The influence of Framingham cardiovascular risk (general cardiovascular risk), abdominal subcutaneous adipose tissue, and visceral adipose tissue volume (obesity) on cortical grey matter volume across different decades of life was evaluated with voxel-wise analysis. RESULTS In males, cardiovascular risk and obesity demonstrated the greatest influence on lower grey matter volume between 55-64 years of age. Female participants showed the greatest effect on lower grey matter volume between 65-74 years of age. Associations remained significant in APOE ε4 carriers and APOE ε4 non-carriers when evaluated separately. CONCLUSIONS The strongest influence of cardiovascular risk and obesity on reduced brain volume was between 55-64 years of age in males, whereas women were most susceptible to the detrimental effects of cardiovascular risk a decade later between 65-74 years of age. Here we elucidate the timing that targeting cardiovascular risk factors and obesity should be implemented in males and females to prevent neurodegeneration and Alzheimer's disease development.
Collapse
Affiliation(s)
- Joseph Nowell
- Department of Brain Sciences, Imperial College London, London, UK
| | - Steve Gentleman
- Department of Brain Sciences, Imperial College London, London, UK
| | - Paul Edison
- Department of Brain Sciences, Imperial College London, London, UK
- Cardiff University, Cardiff, UK
| |
Collapse
|
5
|
Zhou ZD, Yi L, Popławska-Domaszewicz K, Chaudhuri KR, Jankovic J, Tan EK. Glucagon-like peptide-1 receptor agonists in neurodegenerative diseases: Promises and challenges. Pharmacol Res 2025; 216:107770. [PMID: 40344943 DOI: 10.1016/j.phrs.2025.107770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/10/2025] [Accepted: 05/07/2025] [Indexed: 05/11/2025]
Abstract
Glucagon-like peptide-1 (GLP-1) receptor agonists (GRA) belong to a class of compounds that reduce blood glucose and energy intake by simulating actions of endogenous incretin hormone GLP-1 after it is released by the gut following food consumption. They are used to treat type 2 diabetes mellitus (T2DM) and obesity and have systemic effects on various organs, including the brain, liver, pancreas, heart, and the gut. Patients with T2DM have a higher risk of developing neurodegenerative diseases (NDs), including Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS) and Huntington's disease (HD), accompanied by more severe motor deficits and faster disease progression, suggesting dysregulation of insulin signaling in these diseases. Experimental studies have shown that GRA have protective effects to modulate neuroinflammation, oxidative stress, mitochondrial and autophagic functions, and protein misfolding. Hence the compounds have generated enormous interest as novel therapeutic agents against NDs. To date, clinical trials have shown that three GRA, exenatide, liraglutide and lixisenatide can improve motor deficits as an add-on therapy in PD patients and liraglutide can improve cognitive function in AD patients. The neuroprotective effects of these and other GRA, such as PT320 (a sustained-released exenatide) and semaglutide, are still under investigation. The dual GLP-1/gastric inhibitory polypeptide (GIP) receptor agonists have been demonstrated to have beneficial effects in AD and PD mice models. Overall, GRA are highly promising novel drugs, but future clinical studies should identify which subsets of patients should be targeted as potential candidates for their symptomatic and/or neuroprotective benefits, investigate whether combinations with other classes of drugs can further augment their efficacy, and evaluate their long-term disease-modifying and adverse effects.
Collapse
Affiliation(s)
- Zhi Dong Zhou
- National Neuroscience Institute of Singapore, 11 Jalan Tan Tock Seng, 308433, Singapore; Signature Research Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, 8 College Road, 169857, Singapore.
| | - Lingxiao Yi
- National Neuroscience Institute of Singapore, 11 Jalan Tan Tock Seng, 308433, Singapore.
| | - Karolina Popławska-Domaszewicz
- Department of Neurology, Poznan University of Medical Sciences, Poznan 60-355, Poland; Parkinson's Foundation Centre of Excellence, King's College Hospital, Denmark Hill, London SE5 9RS, UK.
| | - Kallol Ray Chaudhuri
- Department of Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, King's College London, Cutcombe Road, London SE5 9RT, UK.
| | - Joseph Jankovic
- Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, TX, USA.
| | - Eng King Tan
- National Neuroscience Institute of Singapore, 11 Jalan Tan Tock Seng, 308433, Singapore; Signature Research Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, 8 College Road, 169857, Singapore.
| |
Collapse
|
6
|
Kelliny S, Zhou X, Bobrovskaya L. Alzheimer's Disease and Frontotemporal Dementia: A Review of Pathophysiology and Therapeutic Approaches. J Neurosci Res 2025; 103:e70046. [PMID: 40387258 PMCID: PMC12087441 DOI: 10.1002/jnr.70046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 04/01/2025] [Accepted: 05/02/2025] [Indexed: 05/20/2025]
Abstract
Alzheimer's disease (AD) is a devastating form of dementia, with the number of affected individuals rising sharply. The main hallmarks of the disease include amyloid-beta plaque deposits and neurofibrillary tangles consisting of hyperphosphorylated tau protein, besides other pathological features that contribute to the disease's complexity. The causes of sporadic AD are multifactorial and mostly age-related and involve risk factors such as diabetes and cardiovascular or cerebrovascular disorders. Frontotemporal dementia (FTD) is another type of dementia characterized by a spectrum of behaviors, memory, and motor abnormalities and associated with abnormal depositions of protein aggregation, including tau protein. Currently approved medications are symptomatic, and no disease-modifying therapy is available to halt the disease progression. Therefore, the development of multi-targeted therapeutic approaches could hold promise for the treatment of AD and other neurodegenerative disorders, including tauopathies. In this article, we will discuss the pathophysiology of AD and FTD, the proposed hypotheses, and current therapeutic approaches, highlighting the development of novel drug candidates and the progress of clinical trials in this field of research.
Collapse
Affiliation(s)
- Sally Kelliny
- Health and Biomedical Innovation, Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
- Faculty of PharmacyAssiut UniversityAssiutEgypt
| | - Xin‐Fu Zhou
- Health and Biomedical Innovation, Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Larisa Bobrovskaya
- Health and Biomedical Innovation, Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| |
Collapse
|
7
|
Li Y, Zhou T, Liu Z, Zhu X, Wu Q, Meng C, Deng Q. Protective effect of antidiabetic drugs against male infertility: evidence from Mendelian randomization. Diabetol Metab Syndr 2025; 17:140. [PMID: 40296064 PMCID: PMC12036310 DOI: 10.1186/s13098-025-01700-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Accepted: 04/12/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND The global prevalence of diabetes has been steadily increasing, with a growing number of younger individuals being affected. Over recent decades, various antidiabetic drugs have been repurposed for treating conditions beyond diabetes. However, the effects of antidiabetic drugs on male infertility (MIF) remain inadequately elucidated. This Mendelian randomization (MR) study aims to clarify the potential impact of antidiabetic drugs on the risk of MIF. METHOD We designed a comprehensive analytical workflow involving two-sample MR and summary-based MR (SMR) to assess the causal relationship between antidiabetic drug targets and MIF. First, instrumental variables were obtained based on HbA1c levels and gene expression levels. Then, MR analysis was performed after selecting positive target genes from four blood glucose level and type 2 diabetes (T2DM) datasets. Finally, we applied SMR analysis to validate and expand upon the previous conclusions. Additionally, sensitivity analyses were conducted to evaluate the robustness of the results. RESULTS Seven drug targets associated with five antidiabetic drugs were identified as significantly related to MIF. In the two-sample MR, the following drugs were found to reduce MIF risk through their respective significant targets: metformin (GPD1: IVW OR 0.007, 95% CI 0.000-0.204, P = 0.004), SGLT2 inhibitors (SGLT2i) (SLC5A1: IVW OR 0.048, 95% CI 0.004-0.585, P = 0.017), insulin and its analogs (IGF1R: IVW OR 0.773, 95% CI 0.648-0.922, P = 0.004), and sulfonylureas (TRPM4: IVW OR 0.869, 95% CI 0.766-0.985, P = 0.028; CTPA1: IVW OR 0.838, 95% CI 0.741-0.947, P = 0.005). In SMR analysis, antidiabetic drugs targeting the genes CPE (P = 0.03, HEIDI = 0.970) and TRPM4 (P = 0.028, HEIDI = 0.746) were found to significantly reduce the risk of MIF. CONCLUSION Our study indicates that metformin, SGLT2i, insulin and its analogs, as well as sulfonylureas, may offer potential therapeutic benefits for MIF. Specifically, six antidiabetic drug target genes GPD1, SLC5A1, IGF1R, TRPM4, CPT1 A, and CPE may play a role in the progression of MIF. These findings have significant implications for the development of personalized precision therapies for MIF.
Collapse
Affiliation(s)
- Yuqi Li
- Department of Urology, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Public Center of Experimental Technology, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Tao Zhou
- Department of Urology, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Public Center of Experimental Technology, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Zhiyu Liu
- Department of Urology, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Public Center of Experimental Technology, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Xinyao Zhu
- Department of Urology, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Public Center of Experimental Technology, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Qilong Wu
- Department of Urology, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Public Center of Experimental Technology, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Chunyang Meng
- Department of Urology, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Public Center of Experimental Technology, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Qingfu Deng
- Department of Urology, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
8
|
Guo HH, Ou HN, Yu JS, Yau SY, Tsang HWH. Pharmacological Blocking of Adiponectin Receptors Induces Alzheimer's Disease-like Neuropathology and Impairs Hippocampal Function. Biomedicines 2025; 13:1056. [PMID: 40426884 PMCID: PMC12109274 DOI: 10.3390/biomedicines13051056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2025] [Accepted: 04/20/2025] [Indexed: 05/29/2025] Open
Abstract
Background/Objectives: Previous studies have shown that adiponectin deficiency or blocking adiponectin receptors (AdipoRs) in the brain can lead to an Alzheimer's disease (AD)-like neuropathology. While AdipoRs are abundantly expressed in peripheral tissues, the effects of blocking these receptors in the peripheral tissues on the brain are unclear. This study investigates the impacts of blocking AdipoRs with a peripheral administration of ADP400, an antagonist peptide that targets AdipoRs on cognitive performance, hippocampal adult neurogenesis, and AD-like neuropathology in mice. Methods: Adult mice were intraperitoneally administered with ADP400 peptide that blocks peripheral AdipoRs continuously for 21 days, followed by a battery of behavioral test for mood and memory performance. Results: ADP400-treated mice exhibited impaired memory performance and increased anxiety-like behaviors. Molecular analyses revealed heightened hyperphosphorylation of tau and increased β-amyloid levels, alongside decreased expression of AdipoRs and PP2A in the hippocampus, suggesting a critical role of AdipoRs in AD-like neuropathology. Furthermore, ADP400 treatment significantly reduced hippocampal adult neurogenesis, as indicated by decreased BrdU, Ki67, and DCX staining. Inhibiting peripheral adiponectin receptors could lead to tau hyperphosphorylation and accumulated β-amyloid levels. Conclusions: These findings highlight the critical role of peripheral manipulation of adiponectin receptors in modulating cognitive function and adult neurogenesis, offering insights into potential therapeutic strategies for AD and related cognitive disorders.
Collapse
Affiliation(s)
- Hui-Hui Guo
- Department of Rehabilitation Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510799, China;
- Department of Rehabilitation Medicine, Shaoxing People’s Hospital, Shaoxing 312000, China
| | - Hai-Ning Ou
- Department of Rehabilitation, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China;
- Department of Rehabilitation, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
| | - Jia-Sui Yu
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China;
- Mental Health Research Center, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Suk-Yu Yau
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China;
- Mental Health Research Center, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Hector Wing-Hong Tsang
- Department of Rehabilitation Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510799, China;
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China;
- Mental Health Research Center, The Hong Kong Polytechnic University, Hong Kong SAR, China
| |
Collapse
|
9
|
Zhou J, Sun X, Wang K, Shen M, Yu J, Yao Q, Hong H, Tang C, Wang Q. What Information do Systemic Pathological Changes Bring to the Diagnosis and Treatment of Alzheimer's Disease? Neurosci Bull 2025:10.1007/s12264-025-01399-z. [PMID: 40257662 DOI: 10.1007/s12264-025-01399-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 02/21/2025] [Indexed: 04/22/2025] Open
Abstract
Alzheimer's disease (AD) is regarded as a neurodegenerative disease, and it has been proposed that AD may be a systemic disease. Studies have reported associations between non-neurological diseases and AD. The correlations between AD pathology and systemic (non-neurological) pathological changes are intricate, and the mechanisms underlying these correlations and their causality are unclear. In this article, we review the association between AD and disorders of other systems. In addition, we summarize the possible mechanisms associated with AD and disorders of other systems, mainly from the perspective of AD pathology. Regarding the relationship between AD and systemic pathological changes, we aim to provide a new outlook on the early warning signs and treatment of AD, such as establishing a diagnostic and screening system based on more accessible peripheral samples.
Collapse
Affiliation(s)
- Jinyue Zhou
- Health Science Center, The First Affiliated Hospital, Ningbo University, Ningbo, 315010, China
| | - Xiaoli Sun
- Department of Chemistry, Lishui University, Lishui, 32300, China
| | - Keren Wang
- Health Science Center, School of Public Health, Ningbo University, Ningbo, 315211, China
| | - Min Shen
- Reference Laboratory, Medical System Biotechnology Co., Ltd, Ningbo, 315104, China
| | - Jingbo Yu
- Health Science Center, The First Affiliated Hospital, Ningbo University, Ningbo, 315010, China
| | - Qi Yao
- Health Science Center, The First Affiliated Hospital, Ningbo University, Ningbo, 315010, China
| | - Hang Hong
- Health Science Center, School of Public Health, Ningbo University, Ningbo, 315211, China.
| | - Chunlan Tang
- Health Science Center, School of Public Health, Ningbo University, Ningbo, 315211, China.
| | - Qinwen Wang
- Health Science Center, The First Affiliated Hospital, Ningbo University, Ningbo, 315010, China.
| |
Collapse
|
10
|
Liu S, Liu T, Li J, Hong J, Moosavi-Movahedi AA, Wei J. Type 2 Diabetes Mellitus Exacerbates Pathological Processes of Parkinson's Disease: Insights from Signaling Pathways Mediated by Insulin Receptors. Neurosci Bull 2025; 41:676-690. [PMID: 39754628 PMCID: PMC11978575 DOI: 10.1007/s12264-024-01342-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 10/15/2024] [Indexed: 01/06/2025] Open
Abstract
Parkinson's disease (PD), a chronic and common neurodegenerative disease, is characterized by the progressive loss of dopaminergic neurons in the dense part of the substantia nigra and abnormal aggregation of alpha-synuclein. Type 2 diabetes mellitus (T2DM) is a metabolic disease characterized by chronic insulin resistance and deficiency in insulin secretion. Extensive evidence has confirmed shared pathogenic mechanisms underlying PD and T2DM, such as oxidative stress caused by insulin resistance, mitochondrial dysfunction, inflammation, and disorders of energy metabolism. Conventional drugs for treating T2DM, such as metformin and glucagon-like peptide-1 receptor agonists, affect nerve repair. Even drugs for treating PD, such as levodopa, can affect insulin secretion. This review summarizes the relationship between PD and T2DM and related therapeutic drugs from the perspective of insulin signaling pathways in the brain.
Collapse
Affiliation(s)
- Shufen Liu
- Center for Translational Neuromedicine and Neurology, School of Life Sciences, Institute for Brain Sciences Research, Henan University, Huaihe Hospital of Henan University, Kaifeng, 475004, China
- School of Life Sciences, Institute for Brain Sciences Research, Henan University, Kaifeng, 475004, China
| | - Tingting Liu
- Center for Translational Neuromedicine and Neurology, School of Life Sciences, Institute for Brain Sciences Research, Henan University, Huaihe Hospital of Henan University, Kaifeng, 475004, China
- School of Life Sciences, Institute for Brain Sciences Research, Henan University, Kaifeng, 475004, China
| | - Jingwen Li
- School of Life Sciences, Institute for Brain Sciences Research, Henan University, Kaifeng, 475004, China
| | - Jun Hong
- School of Life Sciences, Institute for Brain Sciences Research, Henan University, Kaifeng, 475004, China
| | | | - Jianshe Wei
- Center for Translational Neuromedicine and Neurology, School of Life Sciences, Institute for Brain Sciences Research, Henan University, Huaihe Hospital of Henan University, Kaifeng, 475004, China.
- School of Life Sciences, Institute for Brain Sciences Research, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
11
|
Sun H, Hao Y, Liu H, Gao F. The immunomodulatory effects of GLP-1 receptor agonists in neurogenerative diseases and ischemic stroke treatment. Front Immunol 2025; 16:1525623. [PMID: 40134421 PMCID: PMC11932860 DOI: 10.3389/fimmu.2025.1525623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 02/19/2025] [Indexed: 03/27/2025] Open
Abstract
Glucagon-like peptide-1 (GLP-1) receptor is widely distributed in the digestive system, cardiovascular system, adipose tissue and central nervous system. Numerous GLP-1 receptor-targeting drugs have been investigated in clinical studies for various indications, including type 2 diabetes and obesity (accounts for 70% of the total studies), non-alcoholic steatohepatitis, Alzheimer's disease, and Parkinson's disease. This review presented fundamental information regarding two categories of GLP-1 receptor agonists (GLP-1RAs): peptide-based and small molecule compounds, and elaborated their potential neuroprotective effects by inhibiting neuroinflammation, reducing neuronal apoptosis, and ultimately improving cognitive function in various neurodegenerative diseases. As a new hypoglycemic drug, GLP-1RA has a unique role in reducing the concurrent risk of stroke in T2D patients. Given the infiltration of various peripheral immune cells into brain tissue, particularly in the areas surrounding the infarct lesion, we further investigated the potential immune regulatory mechanisms. GLP-1RA could not only facilitate the M2 polarization of microglia through both direct and indirect pathways, but also modulate the quantity and function of T cell subtypes, including CD4, CD8, and regulatory T cells, resulting into the inhibition of inflammatory responses and the promotion of neuronal regeneration through interleukin-10 secretion. Therefore, we believe that the "Tregs-microglia-neuron/neural precursor cells" axis is instrumental in mediating immune suppression and neuroprotection in the context of ischemic stroke. Given the benefits of rapid diffusion, favorable blood-brain barrier permeability and versatile administration routes, these small molecule compounds will be one of the important candidates of GLP-1RA. We look forward to the further clinical evidence of small molecule GLP-1RA intervention in ischemic stroke or T2D complicated by ischemic stroke.
Collapse
Affiliation(s)
| | | | - Hao Liu
- School of Basic Medical Science, School of Medicine, Ningbo University,
Ningbo, Zhejiang, China
| | | |
Collapse
|
12
|
Jiang Q, Liu J, Huang S, Wang XY, Chen X, Liu GH, Ye K, Song W, Masters CL, Wang J, Wang YJ. Antiageing strategy for neurodegenerative diseases: from mechanisms to clinical advances. Signal Transduct Target Ther 2025; 10:76. [PMID: 40059211 PMCID: PMC11891338 DOI: 10.1038/s41392-025-02145-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/29/2024] [Accepted: 01/15/2025] [Indexed: 05/13/2025] Open
Abstract
In the context of global ageing, the prevalence of neurodegenerative diseases and dementia, such as Alzheimer's disease (AD), is increasing. However, the current symptomatic and disease-modifying therapies have achieved limited benefits for neurodegenerative diseases in clinical settings. Halting the progress of neurodegeneration and cognitive decline or even improving impaired cognition and function are the clinically meaningful goals of treatments for neurodegenerative diseases. Ageing is the primary risk factor for neurodegenerative diseases and their associated comorbidities, such as vascular pathologies, in elderly individuals. Thus, we aim to elucidate the role of ageing in neurodegenerative diseases from the perspective of a complex system, in which the brain is the core and peripheral organs and tissues form a holistic network to support brain functions. During ageing, the progressive deterioration of the structure and function of the entire body hampers its active and adaptive responses to various stimuli, thereby rendering individuals more vulnerable to neurodegenerative diseases. Consequently, we propose that the prevention and treatment of neurodegenerative diseases should be grounded in holistic antiageing and rejuvenation means complemented by interventions targeting disease-specific pathogenic events. This integrated approach is a promising strategy to effectively prevent, pause or slow down the progression of neurodegenerative diseases.
Collapse
Affiliation(s)
- Qiu Jiang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Jie Liu
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Shan Huang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Xuan-Yue Wang
- Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing, China
| | - Xiaowei Chen
- Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing, China
- Brain Research Center, Third Military Medical University, Chongqing, China
| | - Guang-Hui Liu
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Keqiang Ye
- Faculty of Life and Health Sciences, and Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Weihong Song
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province. Zhejiang Clinical Research Center for Mental Disorders, School of Mental Health and The Affiliated Kangning Hospital, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Colin L Masters
- The Florey Institute, The University of Melbourne, Parkville, VIC, Australia.
| | - Jun Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China.
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China.
| | - Yan-Jiang Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China.
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China.
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing, China.
| |
Collapse
|
13
|
Krysiak R, Kowalcze K, Okopień B. Subclinical Hyperthyroidism Enhances Gonadotropin-Lowering Effects of Metformin in Postmenopausal Women. J Clin Pharmacol 2025; 65:318-327. [PMID: 39363530 DOI: 10.1002/jcph.6144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/07/2024] [Accepted: 09/17/2024] [Indexed: 10/05/2024]
Abstract
Metformin treatment decreases elevated concentrations of anterior pituitary hormones. The aim of this prospective, cohort study was to investigate whether hyperthyroidism modulates the impact of metformin on gonadotroph secretory function. The study population included 48 postmenopausal women with untreated type 2 diabetes or prediabetes, 24 of whom had coexisting grade 1 subclinical hyperthyroidism. Both groups were matched for age, insulin sensitivity, and gonadotropin levels. Over the entire study period, all participants were treated with metformin (2.55-3 g daily). Plasma glucose, insulin, thyroid-stimulating hormone (TSH), total and free thyroid hormones, follicle-stimulating hormone (FSH), luteinizing hormone (LH), estradiol, prolactin, adrenocorticotropic hormone (ACTH), and insulin-like growth factor-1 (IGF-1) were assayed at entry and 6 months later. At baseline, the study groups differed in levels of TSH and thyroid hormones but not in body mass index, blood pressure, glucose homeostasis markers (fasting glucose, homeostatic model assessment 1 of insulin resistance ratio [HOMA1-IR], and glycated hemoglobin [HbA1c]), and the remaining hormones. There were no differences between both groups in the degree of reduction in plasma glucose and HbA1c in response to metformin treatment. Although metformin decreased HOMA1-IR in both groups, this effect was stronger in women with hyperthyroidism than with normal thyroid function (-50 ± 20% vs -30 ± 15%). Similar relationships were observed for FSH (-43 ± 21% vs -21 ± 12%). Only in hyperthyroid women did the drug reduce LH concentration (by 35 ± 17%). Metformin did not affect circulating levels of TSH, total and free thyroxine, total and free triiodothyronine, estradiol, prolactin, ACTH, and IGF-1. The obtained results indicate that hyperthyroidism enhances the gonadotropin-lowering effects of metformin, as well as the fact that this agent has a neutral effect on the hypothalamic-pituitary-thyroid axis in case of its overactivity.
Collapse
Affiliation(s)
- Robert Krysiak
- Department of Internal Medicine and Clinical Pharmacology, Medical University of Silesia, Katowice, Poland
| | - Karolina Kowalcze
- Department of Pediatrics in Bytom, School of Health Sciences in Katowice, Medical University of Silesia, Katowice, Poland
- Department of Pathophysiology, Faculty of Medicine, Academy of Silesia, Katowice, Poland
| | - Bogusław Okopień
- Department of Internal Medicine and Clinical Pharmacology, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
14
|
Giannakis A, Sioka C, Kloufetou E, Konitsiotis S. Cognitive impairment in Parkinson's disease and other parkinsonian syndromes. J Neural Transm (Vienna) 2025; 132:341-355. [PMID: 39614911 DOI: 10.1007/s00702-024-02865-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 11/22/2024] [Indexed: 03/03/2025]
Abstract
In this narrative review, we address mild cognitive impairment, a frequent complication of Parkinson's disease (PD) and atypical parkinsonian disorders (APDs). Recent diagnostic criteria have blurred the lines between PD and dementia with Lewy bodies (DLB), particularly in the cognitive domain. Additionally, atypical parkinsonian syndromes like progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD) often present with significant cognitive decline. Even multiple system atrophy (MSA) can be associated with cognitive impairment in some cases. Several biomarkers, including imaging techniques, such brain magnetic resonance imaging (MRI) and fluorodeoxyglucose positron emission tomography (FDG-PET), as well as pathological proteins either of the cerebrospinal fluid (CSF), such as Tau, amyloid beta, and synuclein, or of the serum, such as neurofilament light chain (Nfl) are more and more often utilized in the early differential diagnosis of APDs. The complex interplay between these conditions and the evolving understanding of their underlying pathologies highlight the need for further research to refine diagnostic criteria, possibly incorporate the new findings from the biomarker's field into the diagnostic criteria and develop targeted therapeutic strategies.
Collapse
Affiliation(s)
- Alexandros Giannakis
- Department of Neurology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Stavrou Niarchou Av., University Campus, Ioannina, Greece.
| | - Chrissa Sioka
- Department of Nuclear Medicine, Faculty of Medicine, University of Ioannina, Stavrou Niarchou Av., University Campus, Ioannina, Greece
| | - Eugenia Kloufetou
- Department of Neurology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Stavrou Niarchou Av., University Campus, Ioannina, Greece
| | - Spiridon Konitsiotis
- Department of Neurology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Stavrou Niarchou Av., University Campus, Ioannina, Greece
| |
Collapse
|
15
|
Zhang D, He X, Wang Y, Wang X, Han X, Liu H, Xing Y, Jiang B, Xiu Z, Bao Y, Dong Y. Hesperetin-Enhanced Metformin to Alleviate Cognitive Impairment via Gut-Brain Axis in Type 2 Diabetes Rats. Int J Mol Sci 2025; 26:1923. [PMID: 40076550 PMCID: PMC11900253 DOI: 10.3390/ijms26051923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
Diabetes constitutes a risk factor for cognitive impairment, whereas insulin resistance serves as the shared pathogenesis underlying both diabetes and cognitive decline. The use of metformin for treating cognitive impairment remains controversial. The present study found that hesperetin, a flavanone derived from citrus peel, enhanced metformin's efficacy in reducing blood sugar levels, improving insulin sensitivity, and ameliorating cognitive impairment in diabetic rats. Additionally, it reduced the required dosage of metformin to one-third of its conventional dose. Transcriptome analysis and 16S rRNA sequencing revealed that the activation of insulin and cyclic-adenosine monophosphate response element binding protein (CREB)/brain-derived neurotrophic factor (BDNF) pathways benefited from the regulation of gut microbiota and the promotion of short-chain fatty acid (SCFA) producers such as Romboutsia. Furthermore, this study demonstrated that hesperetin supplementation counteracted the upregulation of β-site amyloid precursor protein cleaving enzyme 1 (BACE1), a pathological factor of Alzheimer's disease (AD) that was induced by metformin. Our findings reveal that hesperetin can be used in supplementary treatment for cognitive impairment associated with diabetes.
Collapse
Affiliation(s)
- Danyang Zhang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, China; (D.Z.); (X.H.); (X.W.); (X.H.); (H.L.); (Y.X.); (B.J.); (Z.X.); (Y.B.)
| | - Xiaoshi He
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, China; (D.Z.); (X.H.); (X.W.); (X.H.); (H.L.); (Y.X.); (B.J.); (Z.X.); (Y.B.)
| | - Yinbo Wang
- Dianxi Research Institute, Dalian University of Technology, Baoshan 678000, China;
| | - Xiaoyu Wang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, China; (D.Z.); (X.H.); (X.W.); (X.H.); (H.L.); (Y.X.); (B.J.); (Z.X.); (Y.B.)
| | - Xiao Han
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, China; (D.Z.); (X.H.); (X.W.); (X.H.); (H.L.); (Y.X.); (B.J.); (Z.X.); (Y.B.)
| | - Haodong Liu
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, China; (D.Z.); (X.H.); (X.W.); (X.H.); (H.L.); (Y.X.); (B.J.); (Z.X.); (Y.B.)
| | - Yan Xing
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, China; (D.Z.); (X.H.); (X.W.); (X.H.); (H.L.); (Y.X.); (B.J.); (Z.X.); (Y.B.)
| | - Bo Jiang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, China; (D.Z.); (X.H.); (X.W.); (X.H.); (H.L.); (Y.X.); (B.J.); (Z.X.); (Y.B.)
| | - Zhilong Xiu
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, China; (D.Z.); (X.H.); (X.W.); (X.H.); (H.L.); (Y.X.); (B.J.); (Z.X.); (Y.B.)
| | - Yongming Bao
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, China; (D.Z.); (X.H.); (X.W.); (X.H.); (H.L.); (Y.X.); (B.J.); (Z.X.); (Y.B.)
- School of Ocean Science and Technology, Dalian University of Technology, Panjin 124221, China
| | - Yuesheng Dong
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, China; (D.Z.); (X.H.); (X.W.); (X.H.); (H.L.); (Y.X.); (B.J.); (Z.X.); (Y.B.)
| |
Collapse
|
16
|
Zhou C, Cheng O. Associations of the Life's Essential 8 with Parkinson's disease: a population-based study. Front Aging Neurosci 2025; 17:1510411. [PMID: 40040744 PMCID: PMC11876173 DOI: 10.3389/fnagi.2025.1510411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 01/24/2025] [Indexed: 03/06/2025] Open
Abstract
Background Parkinson's disease (PD) is a progressive neurodegenerative disorder with increasing global prevalence. This study investigated the association between the American Heart Association's Life's Essential 8 (LE8) and PD prevalence using a large, nationally representative database. Methods We analyzed data from 18,277 participants aged 40 years and older from the National Health and Nutrition Examination Survey (NHANES) 2005-2018. LE8 scores were calculated based on diet, physical activity, nicotine exposure, sleep, body mass index, blood lipids, blood glucose, and blood pressure. PD cases were identified through self-reported anti-PD medication use. Multivariate logistic regression models were employed to examine the association between LE8 and PD prevalence, adjusting for various demographic and clinical factors. In addition, we performed restricted cubic splines (RCS), subgroup analyses, and weighted quantile sum (WQS) regression to verify the robustness of the study results. Results The prevalence of PD was 1.3% in the study population. After full adjustment, individuals with moderate (50-79) and high (80-100) LE8 scores showed lower odds of PD compared to those with low (0-49) scores (OR 0.53, 95% CI 0.29-0.97 and OR 0.43, 95% CI 0.17-1.04, respectively; p for trend <0.05). A dose-response relationship was observed between LE8 scores and PD prevalence. WQS regression identified dietary factors and glycemic health as the main contributors to the inverse association between LE8 and PD. Conclusion Our findings suggest a significant inverse association between Life's Essential 8 (LE8) and PD prevalence, with dietary factors and glycemic health emerging as the most influential components.
Collapse
Affiliation(s)
| | - Oumei Cheng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
17
|
Chen L, Wang C, Qin L, Zhang H. Parkinson's disease and glucose metabolism impairment. Transl Neurodegener 2025; 14:10. [PMID: 39962629 PMCID: PMC11831814 DOI: 10.1186/s40035-025-00467-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 01/02/2025] [Indexed: 02/21/2025] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder. PD patients exhibit varying degrees of abnormal glucose metabolism throughout disease stages. Abnormal glucose metabolism is closely linked to the PD pathogenesis and progression. Key glucose metabolism processes involved in PD include glucose transport, glycolysis, the tricarboxylic acid cycle, oxidative phosphorylation, the pentose phosphate pathway, and gluconeogenesis. Recent studies suggest that glucose metabolism is a potential therapeutic target for PD. In this review, we explore the connection between PD and abnormal glucose metabolism, focusing on the underlying pathophysiological mechanisms. We also summarize potential therapeutic drugs related to glucose metabolism based on results from current cellular and animal model studies.
Collapse
Affiliation(s)
- Liangjing Chen
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Clinical Medical Research Center for Stroke Prevention and Treatment of Hunan Province, Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Chunyu Wang
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Clinical Medical Research Center for Stroke Prevention and Treatment of Hunan Province, Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Lixia Qin
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, China.
- Clinical Medical Research Center for Stroke Prevention and Treatment of Hunan Province, Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| | - Hainan Zhang
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, China.
- Clinical Medical Research Center for Stroke Prevention and Treatment of Hunan Province, Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| |
Collapse
|
18
|
Wang Y, Gao P, Wu Z, Jiang B, Wang Y, He Z, Zhao B, Tian X, Gao H, Cai L, Li W. Exploring the therapeutic potential of Chinese herbs on comorbid type 2 diabetes mellitus and Parkinson's disease: A mechanistic study. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:119095. [PMID: 39537117 DOI: 10.1016/j.jep.2024.119095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/12/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Type 2 diabetes mellitus (T2DM) and Parkinson's disease (PD) are chronic conditions that affect the aging population, with increasing prevalence globally. The rising prevalence of comorbidity between these conditions, driven by demographic shifts, severely impacts the quality of life of patients, posing a significant burden on healthcare resources. Chinese herbal medicine has been used to treat T2DM and PD for millennia. Pharmacological studies have demonstrated that medicinal herbs effectively lower blood glucose levels and exert neuroprotective effects, suggesting their potential as adjunctive therapy for concurrent management of T2DM and PD. AIM OF THE STUDY To elucidate the shared mechanisms underlying T2DM and PD, particularly focusing on the potential mechanisms by which medicinal herbs (including herbal formulas, single herbs, and active compounds) may treat these diseases, to provide valuable insights for developing therapeutics targeting comorbid T2DM and PD. MATERIALS AND METHODS Studies exploring the mechanisms underlying T2DM and PD, as well as the treatment of these conditions with medicinal herbs, were extracted from several electronic databases, including PubMed, Web of Science, Google Scholar, and China National Knowledge Infrastructure (CNKI). RESULTS Numerous studies have shown that inflammation, oxidative stress, insulin resistance, impaired autophagy, gut microbiota dysbiosis, and ferroptosis are shared mechanisms underlying T2DM and PD mediated through the NLRP3 inflammasome, NF-κB, MAPK, Keap1/Nrf2/ARE, PI3K/AKT, AMPK/SIRT1, and System XC--GSH-GPX4 signaling pathways. Thirty-four medicinal herbs, including 2 herbal formulas, 4 single herbs, and 28 active compounds, have been reported to potentially exert anti-T2DM and anti-PD effects by targeting these shared mechanisms. CONCLUSIONS Traditional Chinese medicine effectively combats T2DM and PD through shared pathological mechanisms, highlighting their potential for application in treating these comorbid conditions.
Collapse
Affiliation(s)
- Yan Wang
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, China; Encephalopathy Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Pengpeng Gao
- Department of Preventive Treatment, Ningxia Integrated Chinese and Western Medicine Hospital, Yinchuan, 750004, China
| | - Zicong Wu
- Encephalopathy Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Bing Jiang
- Department of Integrated Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Yanru Wang
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Zhaxicao He
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Bing Zhao
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Xinyun Tian
- Encephalopathy Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Han Gao
- Encephalopathy Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Li Cai
- Encephalopathy Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China.
| | - Wentao Li
- Encephalopathy Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China.
| |
Collapse
|
19
|
Salvadè M, DiLuca M, Gardoni F. An update on drug repurposing in Parkinson's disease: Preclinical and clinical considerations. Biomed Pharmacother 2025; 183:117862. [PMID: 39842271 DOI: 10.1016/j.biopha.2025.117862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/13/2025] [Accepted: 01/18/2025] [Indexed: 01/24/2025] Open
Abstract
The strategy of drug repositioning has historically played a significant role in the identification of new treatments for Parkinson's disease. Still today, numerous clinical and preclinical studies are investigating drug classes, already marketed for the treatment of metabolic disorders, for their potential use in Parkinson's disease patients. While drug repurposing offers a promising, fast, and cost-effective path to new treatments, these drugs still require thorough preclinical evaluation to assess their efficacy, addressing the specific neurodegenerative mechanisms of the disease. This review explores the state-of-the-art approaches to drug repurposing for Parkinson's disease, highlighting particularly relevant aspects. Preclinical studies still predominantly rely on traditional neurotoxin-based animal models, which fail to effectively replicate disease progression and are characterized by significant variability in model severity and timing of drug treatment. Importantly, for almost all the drugs analyzed here, there is insufficient data regarding the mechanism of action responsible for the therapeutic effect. Regarding drug efficacy, these factors may obviously render results less reliable or comparable. Accordingly, future preclinical drug repurposing studies in the Parkinson's disease field should be carried out using next-generation animal models like α-synuclein-based models that, unfortunately, have to date been used mostly for studies of disease pathogenesis and only rarely in pharmacological studies.
Collapse
Affiliation(s)
- Michela Salvadè
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", University of Milan, Milan, Italy; School of Advanced Studies, Center for Neuroscience, University of Camerino, Camerino, Italy
| | - Monica DiLuca
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", University of Milan, Milan, Italy
| | - Fabrizio Gardoni
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", University of Milan, Milan, Italy.
| |
Collapse
|
20
|
Capuano AW, Sarsani V, Tasaki S, Mehta RI, Li J, Ahima R, Arnold S, Bennett DA, Petyuk V, Liang L, Arvanitakis Z. Brain phosphoproteomic analysis identifies diabetes-related substrates in Alzheimer's disease pathology in older adults. Alzheimers Dement 2025; 21:e14460. [PMID: 39732516 PMCID: PMC11848201 DOI: 10.1002/alz.14460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/07/2024] [Accepted: 11/13/2024] [Indexed: 12/30/2024]
Abstract
INTRODUCTION Type 2 diabetes increases the risk of Alzheimer's disease (AD) dementia. Insulin signaling dysfunction exacerbates tau protein phosphorylation, a hallmark of AD pathology. However, the comprehensive impact of diabetes on patterns of AD-related phosphoprotein in the human brain remains underexplored. METHODS We performed tandem mass tag-based phosphoproteome profiling in post mortem human brain prefrontal cortex samples from 191 deceased older adults with and without diabetes and pathologic AD. RESULTS Among 7874 quantified phosphosites, microtubule-associated protein tau (MAPT) phosphorylated at T529 and T534 (isoform 8 T212 and T217) were more abundant in AD and showed differential associations with diabetes. Network analysis of co-abundance patterns uncovered synergistic interactions between AD and diabetes, with one module exhibiting higher MAPT phosphorylation (15 MAPT phosphosites) and another displaying lower MAP1B phosphorylation (22 MAP1B phosphosites). DISCUSSION This study offers phosphoproteomics insights into AD in diabetes, shedding light on mechanisms that can inform the development of therapeutics for dementia. HIGHLIGHTS The risk of Alzheimer's disease (AD) dementia is increased among older adults living with diabetes. The patterns of AD-related phosphoprotein in the human brain in older adults are differential among older adults living with diabetes. Microtubule-associated protein tau phosphorylated at T529 and T534 (isoform 8 T212 and T217) showed differential associations with diabetes. Phosphosite co-abundance networks of synergistic interactions between AD and diabetes were identified.
Collapse
Affiliation(s)
- Ana W. Capuano
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
- Department of Neurological SciencesRush University Medical CenterChicagoIllinoisUSA
- Department of EpidemiologyHarvard T. H. Chan School of Public HealthBostonMassachusettsUSA
| | - Vishal Sarsani
- Department of EpidemiologyHarvard T. H. Chan School of Public HealthBostonMassachusettsUSA
| | - Shinya Tasaki
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
- Department of Neurological SciencesRush University Medical CenterChicagoIllinoisUSA
| | - Rupal I. Mehta
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
- Department of PathologyRush University Medical CenterChicagoIllinoisUSA
| | - Jun Li
- Division of Preventive MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Rexford Ahima
- Division of EndocrinologyJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Steven Arnold
- Harvard Medical SchoolHarvard UniversityBostonMassachusettsUSA
| | - David A. Bennett
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
- Department of Neurological SciencesRush University Medical CenterChicagoIllinoisUSA
| | - Vladislav Petyuk
- Biological Sciences DivisionPacific Northwest National LaboratoryRichlandWashingtonUSA
| | - Liming Liang
- Department of EpidemiologyHarvard T. H. Chan School of Public HealthBostonMassachusettsUSA
- Department of BiostatisticsHarvard T. H. Chan School of Public HealthBostonMassachusettsUSA
| | - Zoe Arvanitakis
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
- Department of Neurological SciencesRush University Medical CenterChicagoIllinoisUSA
| |
Collapse
|
21
|
Ashraf T, Abunada O, Kumar A, Ahmed S, Ali Siddiqui MB, Memon U, Dev S, Meghjiani A, Turesh M, Khatri G, Rai A, Manan A, Deepak F, Kumar M, Yusuf SA, Siddiq MA, Haseeb A, Shafique MA. Trends in mortality and disparities in dilated cardiomyopathy across gender, race, and region in the United States (1999-2020). Ann Med Surg (Lond) 2025; 87:627-634. [PMID: 40110251 PMCID: PMC11918692 DOI: 10.1097/ms9.0000000000002908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 12/16/2024] [Indexed: 03/22/2025] Open
Abstract
Background Dilated cardiomyopathy (DCM) is a significant contributor to heart failure and sudden cardiac death in the United States. Understanding mortality trends associated with DCM is crucial to inform healthcare strategies and policy interventions to mitigate its burden. Objectives This study aimed to assess temporal trends in DCM-related mortality in the United States from 1999 to 2020, including an analysis of age-adjusted mortality rates (AAMRs), annual percent changes (APCs), and disparities across gender, racial/ethnic, geographic, and urbanization categories. Methods A retrospective observational study was conducted using data from the CDC WONDER database. DCM-related mortality was identified using the ICD-10 code I42.0. The study population included individuals in the United States with DCM listed as a contributing or primary cause of death from 1999 to 2020. AAMRs were calculated and standardized to the U.S. 2000 standard population. Joinpoint regression analysis was used to evaluate trends and calculate APCs and subgroup analyses were conducted to assess disparities. Results From 1999 to 2020, 168 702 deaths were attributed to DCM. The overall AAMR declined significantly from 9.33 per 100 000 individuals in 1999 to 6.61 in 2020 (APC: -3.43%, 95% CI: -4.09 to -2.70; P < 0.001). Males exhibited higher mortality rates (AAMR: 3.4) compared to females (AAMR: 1.5), with gender disparities persisting throughout the study. Blacks/African Americans and residents of the Western region experienced slower mortality declines compared to other groups. Geographic disparities were evident, with the Northeast showing the most significant drop (APC: -4.32%). In recent years, heart transplantation and advancements in Left Ventricular Assist Devices (LVADs) have significantly improved outcomes for end-stage DCM patients. Conclusions While DCM-related mortality declined significantly, persistent gender, racial, and regional disparities highlight the need for targeted interventions. The evolving role of heart transplantation and LVADs underscores the importance of equitable access to advanced therapies to reduce DCM-related mortality further.
Collapse
Affiliation(s)
| | - Omar Abunada
- Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
| | | | - Saboor Ahmed
- Dow Medical College, Dow University of Health Sciences, Karachi, Pakistan
| | | | - Umer Memon
- Jinnah Sindh Medical University, Karachi, Pakistan
| | - Shah Dev
- Ghulam Muhammad Mahar Medical College, Sukkur, Pakistan
| | - Aashish Meghjiani
- Dow Medical College, Dow University of Health Sciences, Karachi, Pakistan
| | - Muskan Turesh
- Ghulam Muhammad Mahar Medical College, Sukkur, Pakistan
| | - Govinda Khatri
- Dow Medical College, Dow University of Health Sciences, Karachi, Pakistan
| | - Aneesh Rai
- Dow Medical College, Dow University of Health Sciences, Karachi, Pakistan
| | - Abdul Manan
- Jinnah Sindh Medical University, Karachi, Pakistan
| | - Fnu Deepak
- Shaheed Mohtarma Benazir Bhutto Medical College Lyari, Karachi, Pakistan
| | - Mukesh Kumar
- Pathology Department, Shaheed Mohtarma Benazir Bhutto Medical College Lyari, Karachi, Pakistan
| | | | | | - Abdul Haseeb
- Jinnah Sindh Medical University, Karachi, Pakistan
| | | |
Collapse
|
22
|
Misra S, Rajput P, Kaur A. Tirzepatide mitigates cognitive decline in zebrafish model of type 2 diabetes mellitus induced by high-fat diet. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03827-3. [PMID: 39873719 DOI: 10.1007/s00210-025-03827-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 01/17/2025] [Indexed: 01/30/2025]
Abstract
In examining the enduring consequences of diabetes, recent research has focused on the anticipated outcomes of the condition. Specifically, cognitive impairment has been linked to diabetes mellitus dating back to the discovery of insulin. This study delves into the neuroprotective effects of TZP, i.e. tirzepatide a dual GIP and GLP-1 receptor agonist that works by mimicking these two gut hormones, against cognitive impairment associated with type 2 diabetes mellitus (T2DM). T2DM-like zebrafish model of varying age groups was created through a 6-week administration of a high-fat diet (HFD). Parameters such as body weight, body mass index, and blood glucose levels were monitored, and behavioural assessments (T-maze, novel tank diving test, and inhibitory avoidance test) were conducted at the conclusion of the protocol to assess learning and memory. Additionally, lipid profile biochemical parameters (MDA, AChEs, and GSH), molecular markers (IL-1β, IL-10, TNF-α, Bcl-2, Bax, GSK-3β, and AMPK), and histopathological examinations were performed. Treatment with the novel GLP-1 and GIP dual agonist TZP (10 nM/kg, i.p.) significantly ameliorated cognitive impairment, as evidenced by behavioural parameters, and restored antioxidant like GSH (p < 0.05) and catalase (p < 0.05) and anti-inflammatory marker levels, i.e. IL-10 (p < 0.05) compared to the HFD group. TZP also mitigated abnormal glucose (73.2 ± 5.889) and lipid profiles (TG 0.159 ± 0.0075 and TC 0.100 ± 0.0020) in hyperglycaemic zebrafish. This study suggests that the positive effects of TZP on cognition and memory may stem from its neuroprotective capabilities, potentially attributed to its antioxidant, anti-inflammatory, and anti-apoptotic properties, as well as its ability to enhance AMPK levels as GLP-1 agonist has the potential to increase the level of AMPK.
Collapse
Affiliation(s)
- Sakshi Misra
- Department of Pharmacology, ISF College of Pharmacy, Ghal Kalan, GT Road, Moga, 142001, Punjab, India
| | - Prabha Rajput
- Department of Pharmacology, ISF College of Pharmacy, Ghal Kalan, GT Road, Moga, 142001, Punjab, India.
- Department of Pharmacology, School of Pharmacy & Technology Management, SVKM's NMIMS University, Shirpur Campus, Shirpur, India.
| | - Amandeep Kaur
- Department of Pharmacology, ISF College of Pharmacy, Ghal Kalan, GT Road, Moga, 142001, Punjab, India
| |
Collapse
|
23
|
Pintado-Grima C, Ventura S. The role of amphipathic and cationic helical peptides in Parkinson's disease. Protein Sci 2025; 34:e70020. [PMID: 39720890 DOI: 10.1002/pro.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/29/2024] [Accepted: 12/16/2024] [Indexed: 12/26/2024]
Abstract
Peptides are attracting a growing interest for therapeutic applications in biomedicine. In Parkinson's disease (PD), different human endogenous peptides have been associated with beneficial effects, including protein aggregation inhibition, reduced inflammation, or the protection of dopaminergic neurons. Such effects seem to be connected to the spatial arrangement of peptide side chains, and many of these human molecules share common conformational traits, displaying a distinctive amphipathic and cationic helical structure, which is believed to be crucial for their activities. This review delves into the relationship between these structural properties and the current evidence connecting biogenic peptides to the amelioration of PD symptoms. We discuss their implications in the disease, the different mechanisms of action, their state of validation, and their therapeutic potential.
Collapse
Affiliation(s)
- Carlos Pintado-Grima
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
- Hospital Universitari Parc Taulí, Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), Universitat Autònoma de Barcelona, Sabadell, Spain
| |
Collapse
|
24
|
Montanari M, Mercuri NB, Martella G. Exceeding the Limits with Nutraceuticals: Looking Towards Parkinson's Disease and Frailty. Int J Mol Sci 2024; 26:122. [PMID: 39795979 PMCID: PMC11719863 DOI: 10.3390/ijms26010122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
One of the most pressing challenges facing society today is the rising prevalence of physical and cognitive frailty. This geriatric condition makes older adults more vulnerable to disability, illness, and a heightened risk of mortality. In this scenario, Parkinson's disease (PD) and geriatric frailty, which share several common characteristics, are becoming increasingly prevalent worldwide, underscoring the urgent need for innovative strategies. Nutraceuticals are naturally occurring bioactive compounds contained in foods, offering health benefits over and above essential nutrition. By examining the literature from the past decade, this review highlights how nutraceuticals can act as complementary therapies, addressing key processes, such as oxidative stress, inflammation, and neuroprotection. Notably, the antioxidant action of nutraceuticals appears particularly beneficial in regard to PD and geriatric frailty. For instance, antioxidant-rich nutraceuticals may mitigate the oxidative damage linked to levodopa therapy in PD, potentially reducing the side effects and enhancing treatment sustainability. Similarly, the antioxidant effects of nutraceuticals may amplify the benefits of physical activity, enhancing muscle function, cognitive health, and resilience, thereby reducing the risk of frailty. This review proposes a holistic approach integrating nutraceuticals with exercise, pharmacotherapy, and lifestyle adjustments. It promises to transform the management of ARD, prolong life, and improve the quality of life and well-being of older people.
Collapse
Affiliation(s)
- Martina Montanari
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy;
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Nicola Biagio Mercuri
- Neurology Unit, Policlinico Tor Vergata, University of Rome Tor Vergata, 00133 Rome, Italy;
- Department of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Giuseppina Martella
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
- Department of Wellbeing, Nutrition and Sport, Faculty of Humanities Educations and Sports, Pegaso Telematics University, 80145 Naples, Italy
| |
Collapse
|
25
|
Lu C, Xu C, Yang J. The Beneficial Effects of GLP-1 Receptor Agonists Other than Their Anti-Diabetic and Anti-Obesity Properties. MEDICINA (KAUNAS, LITHUANIA) 2024; 61:17. [PMID: 39858999 PMCID: PMC11767243 DOI: 10.3390/medicina61010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/18/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025]
Abstract
As an incretin hormone, Glucagon-like peptide-1 (GLP-1) has obvious effects on blood glucose regulation and weight loss. GLP-1 receptor (GLP-1R) agonists are synthetic products that have similar effects to GLP-1 but are less prone to degradation, and they are widely used in the treatment of type 2 diabetes and obesity. In recent years, different beneficial effects of GLP-1R agonists were discovered, such as reducing ischemia-reperfusion injury, improving the function of various organs, alleviating substance use disorder, affecting tumorigenesis, regulating bone metabolism, changing gut microbiota composition, and prolonging graft survival. Therefore, GLP-1R agonists have great potential for clinical application in various diseases. Here, we briefly summarized the beneficial effects of GLP-1R agonists other than the anti-diabetic and anti-obesity effects.
Collapse
Affiliation(s)
- Chenqi Lu
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China;
| | - Cong Xu
- Division of Nephrology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Jun Yang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China;
| |
Collapse
|
26
|
Sobral MVS, Soares VG, Moreira JLDML, Rodrigues LK, Rocha P, Bendaham LCAR, Gonçalves OR, Pirolla RDC, Vilela LV, de Abreu VS, Almeida KJ. The use of hypoglycemic drugs in Parkinson's disease: An updated meta-analysis of randomized controlled trials. Parkinsonism Relat Disord 2024:107210. [PMID: 39580237 DOI: 10.1016/j.parkreldis.2024.107210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/29/2024] [Accepted: 11/12/2024] [Indexed: 11/25/2024]
Abstract
INTRODUCTION Recent studies have demonstrated an association between hypoglycemic medications and neuroprotective action in neurodegenerative diseases, such as Parkinson's disease (PD). Therefore, in this meta-analysis, our objective was to evaluate the efficacy of these medications, compared to placebo, as disease-modifying therapy in patients with PD. METHODS We systematically searched PubMed, Embase, and Cochrane for studies comparing the use of hypoglycemic drugs and placebo in patients with PD. Statistical analyses were performed using R Studio 4.3.2. Mean difference (MD) with 95 % confidence intervals (CI) were pooled across trials. Outcomes of interest were change in Movement Disorders Society - Unified Parkinson's Disease Rating Scale (MDS-UPDRS) parts I, II, III, IV, and Parkinson's Disease Questionnaire 39 (PDQ-39). RESULTS This meta-analysis included six randomized controlled trials (RCT) reporting data on 787 patients. Among them, 480 (61 %) received hypoglycemic drugs. Follow-up ranged from 36 to 61 weeks. At the end of follow-up, improvement in MDS-UPDRS part III score during OFF state occurred when subjects received any hypoglycemic agents at their lowest dose (MD -1.36; 95 % IC -2.78 to -0.47; I2 = 38 %), as well as highest doses (MD -1.58; 95 % IC -3.07 to -0.09; I2 = 50 %). Changes in MDS-UPDRS part III score in patients examined in the ON state who received any dose of any hypoglycemic agents (MD -3.32; 95 % IC -5.28 to -1.36; I2 = 0 %) were significant. There was no significant difference between groups MDS-UPDRS parts I, II, IV, and PDQ-39. CONCLUSION In patients with PD, the use of hypoglycemic agents showed efficacy on symptomatic PD treatment with an improvement in MDS-UPDRS part III.
Collapse
|
27
|
Shafieinouri M, Hong S, Schuh A, Makarious MB, Sandon R, Lee PS, Simmonds E, Iwaki H, Hill G, Blauwendraat C, Escott-Price V, Qi YA, Noyce AJ, Reyes-Palomares A, Leonard HL, Tansey M, Singleton A, Nalls MA, Levine KS, Bandres-Ciga S. Gut-Brain Nexus: Mapping Multi-Modal Links to Neurodegeneration at Biobank Scale. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.12.24313490. [PMID: 39371139 PMCID: PMC11451806 DOI: 10.1101/2024.09.12.24313490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) are influenced by genetic and environmental factors. Using data from UK Biobank, SAIL Biobank, and FinnGen, we conducted an unbiased, population-scale study to: 1) Investigate how 155 endocrine, nutritional, metabolic, and digestive system disorders are associated with AD and PD risk prior to their diagnosis, considering known genetic influences; 2) Assess plasma biomarkers' specificity for AD or PD in individuals with these conditions; 3) Develop a multi-modal classification model integrating genetics, proteomics, and clinical data relevant to conditions affecting the gut-brain axis. Our findings show that certain disorders elevate AD and PD risk before AD and PD diagnosis including: insulin and non-insulin dependent diabetes mellitus, noninfective gastro-enteritis and colitis, functional intestinal disorders, and bacterial intestinal infections, among others. Polygenic risk scores revealed lower genetic predisposition to AD and PD in individuals with co-occurring disorders in the study categories, underscoring the importance of regulating the gut-brain axis to potentially prevent or delay the onset of neurodegenerative diseases. The proteomic profile of AD/PD cases was influenced by comorbid endocrine, nutritional, metabolic, and digestive systems conditions. Importantly, we developed multi-modal prediction models integrating clinical, genetic, proteomic and demographic data, the combination of which performs better than any single paradigm approach in disease classification. This work aims to illuminate the intricate interplay between various physiological factors involved in the gut-brain axis and the development of AD and PD, providing a multifactorial systemic understanding that goes beyond traditional approaches. Further, we have developed an interactive resource for the scientific community [https://gut-brain-nexus.streamlit.app/] where researchers can investigate components of the predictive model and can investigate feature effects on a sample level.
Collapse
Affiliation(s)
- Mohammad Shafieinouri
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA 20892
| | - Samantha Hong
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA 20892
| | - Artur Schuh
- Departamento de Farmacologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Serviço de Neurologia, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Mary B Makarious
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA 20892
- DataTecnica LLC, Washington, DC, USA 20037
| | - Rodrigo Sandon
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA 20892
| | - Paul Suhwan Lee
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA 20892
| | - Emily Simmonds
- UK Dementia Research Institute (UK DRI) at Cardiff University, Cardiff, UK
| | - Hirotaka Iwaki
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA 20892
- DataTecnica LLC, Washington, DC, USA 20037
| | - Gracelyn Hill
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA 20892
- DataTecnica LLC, Washington, DC, USA 20037
| | - Cornelis Blauwendraat
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA 20892
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Valentina Escott-Price
- UK Dementia Research Institute (UK DRI) at Cardiff University, Cardiff, UK
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Yue A Qi
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA 20892
| | - Alastair J Noyce
- Centre for Preventive Neurology, Wolfson Institute of Population Health, Queen Mary University of London, London, UK
| | - Armando Reyes-Palomares
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, University of Málaga, Málaga, Spain
| | - Hampton L Leonard
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA 20892
- DataTecnica LLC, Washington, DC, USA 20037
| | - Malu Tansey
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, FL, USA
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, USA
| | - Andrew Singleton
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA 20892
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Mike A Nalls
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA 20892
- DataTecnica LLC, Washington, DC, USA 20037
| | - Kristin S Levine
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA 20892
- DataTecnica LLC, Washington, DC, USA 20037
| | - Sara Bandres-Ciga
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA 20892
| |
Collapse
|
28
|
Tang H, Lu Y, Okun MS, Donahoo WT, Ramirez-Zamora A, Wang F, Huang Y, Armstrong M, Svensson M, Virnig BA, DeKosky ST, Bian J, Guo J. Glucagon-Like Peptide-1 Receptor Agonists and Risk of Parkinson's Disease in Patients with Type 2 Diabetes: A Population-Based Cohort Study. Mov Disord 2024; 39:1960-1970. [PMID: 39189078 PMCID: PMC11568939 DOI: 10.1002/mds.29992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/31/2024] [Accepted: 08/07/2024] [Indexed: 08/28/2024] Open
Abstract
BACKGROUND Previous studies have suggested that glucagon-like peptide-1 receptor agonists (GLP-1RAs) may have a disease-modifying effect in the development of Parkinson's disease (PD), but population studies yielded inconsistent results. OBJECTIVE The aim was to compare the risk of PD associated with GLP-1RAs compared to dipeptidyl peptidase 4 inhibitors (DPP4i) among older adults with type 2 diabetes (T2D). METHODS Using U.S. Medicare administrative data from 2016 to 2020, we conducted a population-based cohort study comparing the new use of GLP-1RA with the new use of DPP4i among adults aged ≥66 years with T2D. The primary endpoint was a new diagnosis of PD. A stabilized inverse probability of treatment weighting (sIPTW)-adjusted Cox proportional hazards regression model was employed to estimate the hazard ratio (HR) and 95% confidence intervals (CI) for PD between GLP-1RA and DPP4i users. RESULTS This study included 89,074 Medicare beneficiaries who initiated either GLP-1RA (n = 30,091) or DPP4i (n = 58,983). The crude incidence rate of PD was lower among GLP-1RA users than DPP4i users (2.85 vs. 3.92 patients per 1000 person-years). An sIPTW-adjusted Cox model showed that GLP-1RA users were associated with a 23% lower risk of PD than DPP4i users (HR, 0.77; 95% CI, 0.63-0.95). Our findings were largely consistent across different subgroup analyses such as sex, race, and molecular structure of GLP-1RA. CONCLUSION Among Medicare beneficiaries with T2D, the new use of GLP-1RAs was significantly associated with a decreased risk of PD compared to the new use of DPP4i. © 2024 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Huilin Tang
- Department of Pharmaceutical Outcomes and Policy, University of Florida College of Pharmacy, Gainesville, Florida, USA
| | - Ying Lu
- Department of Pharmaceutical Outcomes and Policy, University of Florida College of Pharmacy, Gainesville, Florida, USA
| | - Michael S Okun
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida College of Medicine, Gainesville, Florida, USA
| | - William T Donahoo
- Division of Endocrinology, Diabetes and Metabolism, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Adolfo Ramirez-Zamora
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Fei Wang
- Department of Population Health Sciences, Weill Cornell Medicine, Cornell University, New York, New York, USA
| | - Yu Huang
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Melissa Armstrong
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Mikael Svensson
- Department of Pharmaceutical Outcomes and Policy, University of Florida College of Pharmacy, Gainesville, Florida, USA
- Center for Drug Evaluation and Safety, University of Florida, Gainesville, Florida, USA
| | - Beth A Virnig
- College of Public Health and Health Professions Dean’s Office, University of Florida, Gainesville, Florida, USA
| | - Steven T. DeKosky
- Department of Neurology and McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida USA
- 1Florida Alzheimer’s Disease Research Center (ADRC), University of Florida, Gainesville, Florida, USA
| | - Jiang Bian
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Jingchuan Guo
- Department of Pharmaceutical Outcomes and Policy, University of Florida College of Pharmacy, Gainesville, Florida, USA
- Center for Drug Evaluation and Safety, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
29
|
Toledano A, Rodríguez-Casado A, Älvarez MI, Toledano-Díaz A. Alzheimer's Disease, Obesity, and Type 2 Diabetes: Focus on Common Neuroglial Dysfunctions (Critical Review and New Data on Human Brain and Models). Brain Sci 2024; 14:1101. [PMID: 39595866 PMCID: PMC11591712 DOI: 10.3390/brainsci14111101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/17/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Obesity, type 2 diabetes (T2D), and Alzheimer's disease (AD) are pathologies that affect millions of people worldwide. They have no effective therapy and are difficult to prevent and control when they develop. It has been known for many years that these diseases have many pathogenic aspects in common. We highlight in this review that neuroglial cells (astroglia, oligodendroglia, and microglia) play a vital role in the origin, clinical-pathological development, and course of brain neurodegeneration. Moreover, we include the new results of a T2D-AD mouse model (APP+PS1 mice on a high-calorie diet) that we are investigating. METHODS Critical bibliographic revision and biochemical neuropathological study of neuroglia in a T2D-AD model. RESULTS T2D and AD are not only "connected" by producing complex pathologies in the same individual (obesity, T2D, and AD), but they also have many common pathogenic mechanisms. These include insulin resistance, hyperinsulinemia, hyperglycemia, oxidative stress, mitochondrial dysfunction, and inflammation (both peripheral and central-or neuroinflammation). Cognitive impairment and AD are the maximum exponents of brain neurodegeneration in these pathological processes. both due to the dysfunctions induced by metabolic changes in peripheral tissues and inadequate neurotoxic responses to changes in the brain. In this review, we first analyze the common pathogenic mechanisms of obesity, T2D, and AD (and/or cerebral vascular dementia) that induce transcendental changes and responses in neuroglia. The relationships between T2D and AD discussed mainly focus on neuroglial responses. Next, we present neuroglial changes within their neuropathological context in diverse scenarios: (a) aging involution and neurodegenerative disorders, (b) human obesity and diabetes and obesity/diabetes models, (c) human AD and in AD models, and (d) human AD-T2D and AD-T2D models. An important part of the data presented comes from our own studies on humans and experimental models over the past few years. In the T2D-AD section, we included the results of a T2D-AD mouse model (APP+PS1 mice on a high-calorie diet) that we investigated, which showed that neuroglial dysfunctions (astrocytosis and microgliosis) manifest before the appearance of amyloid neuropathology, and that the amyloid pathology is greater than that presented by mice fed a normal, non-high-caloric diet A broad review is finally included on pharmacological, cellular, genic, and non-pharmacological (especially diet and lifestyle) neuroglial-related treatments, as well as clinical trials in a comparative way between T2D and AD. These neuroglial treatments need to be included in the multimodal/integral treatments of T2D and AD to achieve greater therapeutic efficacy in many millions of patients. CONCLUSIONS Neuroglial alterations (especially in astroglia and microglia, cornerstones of neuroinflammation) are markedly defining brain neurodegeneration in T2D and A, although there are some not significant differences between each of the studied pathologies. Neuroglial therapies are a very important and p. promising tool that are being developed to prevent and/or treat brain dysfunction in T2D-AD. The need for further research in two very different directions is evident: (a) characterization of the phenotypic changes of astrocytes and microglial cells in each region of the brain and in each phase of development of each isolated and associated pathology (single-cell studies are mandatory) to better understand the pathologies and define new therapeutic targets; (b) studying new therapeutic avenues to normalize the function of neuroglial cells (preventing neurotoxic responses and/or reversing them) in these pathologies, as well as the phenotypic characteristics in each moment of the course and place of the neurodegenerative process.
Collapse
Affiliation(s)
- Adolfo Toledano
- Instituto Cajal, CSIC, 28002 Madrid, Spain; (A.R.-C.); (M.I.Ä.)
| | | | | | | |
Collapse
|
30
|
Zimmermann M, Fandrich M, Jakobi M, Röben B, Wurster I, Lerche S, Schulte C, Zimmermann S, Deuschle C, Schneiderhan-Marra N, Gasser T, Brockmann K. Association of elevated cerebrospinal fluid levels of the longevity protein α-Klotho with a delayed onset of cognitive impairment in Parkinson's disease patients. Eur J Neurol 2024; 31:e16388. [PMID: 38946703 DOI: 10.1111/ene.16388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 07/02/2024]
Abstract
BACKGROUND AND PURPOSE Parkinson's disease (PD) is an age-related condition characterized by substantial phenotypic variability. Consequently, pathways and proteins involved in biological aging, such as the central aging pathway comprising insulin-like growth factor 1-α-Klotho-sirtuin 1-forkhead box O3-peroxisome proliferator-activated receptor γ, may potentially influence disease progression. METHODS Cerebrospinal fluid (CSF) levels of α-Klotho in 471 PD patients were examined. Of the 471 patients, 96 carried a GBA1 variant (PD GBA1), whilst the 375 non-carriers were classified as PD wild-type (PD WT). Each patient was stratified into a CSF α-Klotho tertile group based on the individual level. Kaplan-Meier survival curves and Cox regression analysis stratified by tertile groups were conducted. These longitudinal data were available for 255 patients. Follow-up times reached from 8.4 to 12.4 years. The stratification into PD WT and PD GBA1 was undertaken to evaluate potential continuum patterns, particularly in relation to CSF levels. RESULTS Higher CSF levels of α-Klotho were associated with a significant later onset of cognitive impairment. Elevated levels of α-Klotho in CSF were linked to higher Montreal Cognitive Assessment scores in male PD patients with GBA1 mutations. CONCLUSIONS Our results indicate that higher CSF levels of α-Klotho are associated with a delayed cognitive decline in PD. Notably, this correlation is more prominently observed in PD patients with GBA1 mutations, potentially reflecting the accelerated biological aging profile characteristic of individuals harboring GBA1 variants.
Collapse
Affiliation(s)
- Milan Zimmermann
- Center of Neurology, Department of Neurodegeneration and Hertie-Institute for Clinical Brain Research, University of Tuebingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), University of Tuebingen, Germany
| | - Madeleine Fandrich
- Natural and Medical Sciences Institute, University of Tuebingen, Reutlingen, Germany
| | - Meike Jakobi
- Natural and Medical Sciences Institute, University of Tuebingen, Reutlingen, Germany
| | - Benjamin Röben
- Center of Neurology, Department of Neurodegeneration and Hertie-Institute for Clinical Brain Research, University of Tuebingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), University of Tuebingen, Germany
| | - Isabel Wurster
- Center of Neurology, Department of Neurodegeneration and Hertie-Institute for Clinical Brain Research, University of Tuebingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), University of Tuebingen, Germany
| | - Stefanie Lerche
- Center of Neurology, Department of Neurodegeneration and Hertie-Institute for Clinical Brain Research, University of Tuebingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), University of Tuebingen, Germany
| | - Claudia Schulte
- Center of Neurology, Department of Neurodegeneration and Hertie-Institute for Clinical Brain Research, University of Tuebingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), University of Tuebingen, Germany
| | - Shahrzad Zimmermann
- Center of Neurology, Department of Neurodegeneration and Hertie-Institute for Clinical Brain Research, University of Tuebingen, Germany
| | - Christian Deuschle
- Center of Neurology, Department of Neurodegeneration and Hertie-Institute for Clinical Brain Research, University of Tuebingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), University of Tuebingen, Germany
| | | | - Thomas Gasser
- Center of Neurology, Department of Neurodegeneration and Hertie-Institute for Clinical Brain Research, University of Tuebingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), University of Tuebingen, Germany
| | - Kathrin Brockmann
- Center of Neurology, Department of Neurodegeneration and Hertie-Institute for Clinical Brain Research, University of Tuebingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), University of Tuebingen, Germany
| |
Collapse
|
31
|
Li QR, Xu HY, Ma RT, Ma YY, Chen MJ. Targeting Autophagy: A Promising Therapeutic Strategy for Diabetes Mellitus and Diabetic Nephropathy. Diabetes Ther 2024; 15:2153-2182. [PMID: 39167303 PMCID: PMC11410753 DOI: 10.1007/s13300-024-01641-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/09/2024] [Indexed: 08/23/2024] Open
Abstract
Diabetes mellitus (DM) significantly impairs patients' quality of life, primarily because of its complications, which are the leading cause of mortality among individuals with the disease. Autophagy has emerged as a key process closely associated with DM, including its complications such as diabetic nephropathy (DN). DN is a major complication of DM, contributing significantly to chronic kidney disease and renal failure. The intricate connection between autophagy and DM, including DN, highlights the potential for new therapeutic targets. This review examines the interplay between autophagy and these conditions, aiming to uncover novel approaches to treatment and enhance our understanding of their underlying pathophysiology. It also explores the role of autophagy in maintaining renal homeostasis and its involvement in the development and progression of DM and DN. Furthermore, the review discusses natural compounds that may alleviate these conditions by modulating autophagy.
Collapse
Affiliation(s)
- Qi-Rui Li
- School of Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing, 210023, China
| | - Hui-Ying Xu
- School of Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing, 210023, China
| | - Rui-Ting Ma
- Inner Mongolia Autonomous Region Mental Health Center, Hohhot, 010010, China
| | - Yuan-Yuan Ma
- The Affiliated Hospital of Inner Mongolia Medical University, No. 1 Tongdao Street, Hohhot, 010050, China.
| | - Mei-Juan Chen
- School of Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing, 210023, China.
| |
Collapse
|
32
|
Cai C, Gu C, Meng C, He S, Thashi L, Deji D, Zheng Z, Qiu Q. Therapeutic Effects of Metformin on Central Nervous System Diseases: A Focus on Protection of Neurovascular Unit. Pharm Res 2024; 41:1907-1920. [PMID: 39375240 DOI: 10.1007/s11095-024-03777-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 09/26/2024] [Indexed: 10/09/2024]
Abstract
Metformin is one of the most commonly used oral hypoglycemic drugs in clinical practice, with unique roles in neurodegeneration and vascular lesions. Neurodegeneration and vasculopathy coexist in many diseases and typically affect the neurovascular unit (NVU), a minimal structural and functional unit in the central nervous system. Its components interact with one another and are indispensable for maintaining tissue homeostasis. This review focuses on retinal (diabetic retinopathy, retinitis pigmentosa) and cerebral (ischemic stroke, Alzheimer's disease) diseases to explore the effects of metformin on the NVU. Metformin has a preliminarily confirmed therapeutic effect on the retinal NUV, affecting many of its components, such as photoreceptors (cones and rods), microglia, ganglion, Müller, and vascular endothelial cells. Since it rapidly penetrates the blood-brain barrier (BBB) and accumulates in the brain, metformin also has an extensively studied neuronal protective effect in neuronal diseases. Its mechanism affects various NVU components, including pericytes, astrocytes, microglia, and vascular endothelial cells, mainly serving to protect the BBB. Regulating the inflammatory response in NVU (especially neurons and microglia) may be the main mechanism of metformin in improving central nervous system related diseases. Metformin may be a potential drug for treating diseases associated with NVU deterioration, however, more trials are needed to validate its timing, duration, dose, clinical effects, and side effects.
Collapse
Affiliation(s)
- Chunyang Cai
- Department of Ophthalmology, Tong Ren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, No. 1111 Xianxia Road, Changning District, Shanghai, 200050, PR China
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photomedicine; Shanghai engineering center for precise diagnosis and treatment of eye diseases, Shanghai, PR China
| | - Chufeng Gu
- Department of Ophthalmology, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, Shengli Clinical College of Fujian Medical University, Fuzhou, Fujian, PR China
| | - Chunren Meng
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Shuai He
- Department of Ophthalmology, Tong Ren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, No. 1111 Xianxia Road, Changning District, Shanghai, 200050, PR China
| | - Lhamo Thashi
- Department of Ophthalmology, Shigatse People's Hospital, Shigatse, Tibet, PR China
| | - Draga Deji
- Department of Ophthalmology, Shigatse People's Hospital, Shigatse, Tibet, PR China
| | - Zhi Zheng
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
- National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photomedicine; Shanghai engineering center for precise diagnosis and treatment of eye diseases, Shanghai, PR China.
| | - Qinghua Qiu
- Department of Ophthalmology, Tong Ren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, No. 1111 Xianxia Road, Changning District, Shanghai, 200050, PR China.
- Department of Ophthalmology, Shigatse People's Hospital, Shigatse, Tibet, PR China.
- High Altitude Ocular Disease Research Center of People's Hospital of Shigatse City and Tongren Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| |
Collapse
|
33
|
Santucci L, Bernardi S, Vivarelli R, Santorelli FM, Marchese M. Glucose metabolism impairment as a hallmark of progressive myoclonus epilepsies: a focus on neuronal ceroid lipofuscinoses. Front Cell Neurosci 2024; 18:1445003. [PMID: 39364042 PMCID: PMC11447523 DOI: 10.3389/fncel.2024.1445003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/12/2024] [Indexed: 10/05/2024] Open
Abstract
Glucose is the brain's main fuel source, used in both energy and molecular production. Impaired glucose metabolism is associated with adult and pediatric neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), GLUT1 deficiency syndrome, and progressive myoclonus epilepsies (PMEs). PMEs, a group of neurological disorders typical of childhood and adolescence, account for 1% of all epileptic diseases in this population worldwide. Diffuse glucose hypometabolism is observed in the brains of patients affected by PMEs such as Lafora disease (LD), dentatorubral-pallidoluysian (DRPLA) atrophy, Unverricht-Lundborg disease (ULD), and myoclonus epilepsy with ragged red fibers (MERRFs). PMEs also include neuronal ceroid lipofuscinoses (NCLs), a subgroup in which lysosomal and autophagy dysfunction leads to progressive loss of vision, brain atrophy, and cognitive decline. We examine the role of impaired glucose metabolism in neurodegenerative diseases, particularly in the NCLs. Our literature review, which includes findings from case reports and animal studies, reveals that glucose hypometabolism is still poorly characterized both in vitro and in vivo in the different NCLs. Better identification of the glucose metabolism pathway impaired in the NCLs may open new avenues for evaluating the therapeutic potential of anti-diabetic agents in this population and thus raise the prospect of a therapeutic approach able to delay or even halt disease progression.
Collapse
Affiliation(s)
- Lorenzo Santucci
- Neurobiology and Molecular Medicine Unit, IRCCS Fondazione Stella Maris, Calambrone, Italy
| | - Sara Bernardi
- Neurobiology and Molecular Medicine Unit, IRCCS Fondazione Stella Maris, Calambrone, Italy
- Department of Biology, University of Pisa, Pisa, Italy
| | - Rachele Vivarelli
- Neurobiology and Molecular Medicine Unit, IRCCS Fondazione Stella Maris, Calambrone, Italy
| | | | - Maria Marchese
- Neurobiology and Molecular Medicine Unit, IRCCS Fondazione Stella Maris, Calambrone, Italy
| |
Collapse
|
34
|
Zheng Z, Zong Y, Ma Y, Tian Y, Pang Y, Zhang C, Gao J. Glucagon-like peptide-1 receptor: mechanisms and advances in therapy. Signal Transduct Target Ther 2024; 9:234. [PMID: 39289339 PMCID: PMC11408715 DOI: 10.1038/s41392-024-01931-z] [Citation(s) in RCA: 109] [Impact Index Per Article: 109.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/17/2024] [Accepted: 07/16/2024] [Indexed: 09/19/2024] Open
Abstract
The glucagon-like peptide-1 (GLP-1) receptor, known as GLP-1R, is a vital component of the G protein-coupled receptor (GPCR) family and is found primarily on the surfaces of various cell types within the human body. This receptor specifically interacts with GLP-1, a key hormone that plays an integral role in regulating blood glucose levels, lipid metabolism, and several other crucial biological functions. In recent years, GLP-1 medications have become a focal point in the medical community due to their innovative treatment mechanisms, significant therapeutic efficacy, and broad development prospects. This article thoroughly traces the developmental milestones of GLP-1 drugs, from their initial discovery to their clinical application, detailing the evolution of diverse GLP-1 medications along with their distinct pharmacological properties. Additionally, this paper explores the potential applications of GLP-1 receptor agonists (GLP-1RAs) in fields such as neuroprotection, anti-infection measures, the reduction of various types of inflammation, and the enhancement of cardiovascular function. It provides an in-depth assessment of the effectiveness of GLP-1RAs across multiple body systems-including the nervous, cardiovascular, musculoskeletal, and digestive systems. This includes integrating the latest clinical trial data and delving into potential signaling pathways and pharmacological mechanisms. The primary goal of this article is to emphasize the extensive benefits of using GLP-1RAs in treating a broad spectrum of diseases, such as obesity, cardiovascular diseases, non-alcoholic fatty liver disease (NAFLD), neurodegenerative diseases, musculoskeletal inflammation, and various forms of cancer. The ongoing development of new indications for GLP-1 drugs offers promising prospects for further expanding therapeutic interventions, showcasing their significant potential in the medical field.
Collapse
Affiliation(s)
- Zhikai Zheng
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yao Zong
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, 6009, Australia
| | - Yiyang Ma
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yucheng Tian
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yidan Pang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Changqing Zhang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Junjie Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| |
Collapse
|
35
|
Poblano J, Castillo-Tobías I, Berlanga L, Tamayo-Ordoñez MC, Del Carmen Rodríguez-Salazar M, Silva-Belmares SY, Aguayo-Morales H, Cobos-Puc LE. Drugs targeting APOE4 that regulate beta-amyloid aggregation in the brain: Therapeutic potential for Alzheimer's disease. Basic Clin Pharmacol Toxicol 2024; 135:237-249. [PMID: 39020526 DOI: 10.1111/bcpt.14055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/21/2024] [Accepted: 07/05/2024] [Indexed: 07/19/2024]
Abstract
Alzheimer's disease is characterized by progressive cognitive decline, and behavioural and psychological symptoms of dementia are common. The APOE ε4 allele, a genetic risk factor, significantly increases susceptibility to the disease. Despite efforts to effectively treat the disease, only seven drugs are approved for its treatment, and only two of these prevent its progression. This highlights the need to identify new pharmacological options. This review focuses on mimetic peptides, small molecule correctors and HAE-4 antibodies that target ApoE. These drugs reduce β-amyloid-induced neurodegeneration in preclinical models. In addition, loop diuretics such as bumetanide and furosemide show the potential to reduce the prevalence of Alzheimer's disease in humans, and antidepressants such as imipramine improve cognitive function in individuals diagnosed with Alzheimer's disease. Consistent with this, both classes of drugs have been shown to exert neuroprotective effects by inhibiting ApoE4-catalysed Aβ aggregation in preclinical models. Moreover, peroxisome proliferator-activated receptor ligands, particularly pioglitazone and rosiglitazone, reduce ApoE4-induced neurodegeneration in animal models. However, they do not prevent the cognitive decline in APOE ε4 allele carriers. Finally, ApoE4 impairs the integrity of the blood-brain barrier and haemostasis. On this basis, ApoE4 modulation is a promising avenue for the treatment of late-onset Alzheimer's disease.
Collapse
Affiliation(s)
- Joan Poblano
- Faculty of Chemical Sciences, Autonomous University of Coahuila, Saltillo, Coahuila, Mexico
| | - Ileana Castillo-Tobías
- Faculty of Chemical Sciences, Autonomous University of Coahuila, Saltillo, Coahuila, Mexico
| | - Lia Berlanga
- Faculty of Chemical Sciences, Autonomous University of Coahuila, Saltillo, Coahuila, Mexico
| | | | | | | | - Hilda Aguayo-Morales
- Faculty of Chemical Sciences, Autonomous University of Coahuila, Saltillo, Coahuila, Mexico
| | - Luis E Cobos-Puc
- Faculty of Chemical Sciences, Autonomous University of Coahuila, Saltillo, Coahuila, Mexico
| |
Collapse
|
36
|
Chen Z, Wang X, Teng Z, Huang J, Mo J, Qu C, Wu Y, Liu Z, Liu F, Xia K. A comprehensive assessment of the association between common drugs and psychiatric disorders using Mendelian randomization and real-world pharmacovigilance database. EBioMedicine 2024; 107:105314. [PMID: 39191171 PMCID: PMC11400609 DOI: 10.1016/j.ebiom.2024.105314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND Medications prescribed for chronic diseases can lead to short-term neuropsychiatric symptoms, but their long-term effects on brain structures and psychiatric conditions remain unclear. METHODS We comprehensively analyzed the FDA Adverse Event Reporting System database and conducted drug target Mendelian Randomization (MR) studies on six categories of common drugs, 477 brain imaging-derived phenotypes (IDPs) and eight psychiatric disorders. Genetic instruments were extracted from expression quantitative trait loci (eQTLs) in blood, brain, and other target tissues, protein quantitative trait loci (pQTLs) in blood, and genome-wide association studies (GWAS) of hemoglobin and cholesterol. Summary statistics for brain IDPs, psychiatric disorders, and gut microbiome were obtained from the BIG40, Psychiatric Genomics Consortium, and MiBioGen. A two-step MR and mediation analysis were employed to screen possible mediators of drug-IDP effects from 119 gut microbiota genera and identify their mediation proportions. FINDINGS Among 19 drug classes, six drugs were found to be associated with higher risks of psychiatric adverse events, while 11 drugs were associated with higher risks of gastrointestinal adverse events in the FAERS analysis. We identified ten drug-psychiatric disorder associations, 202 drug-IDP associations, 16 drug-microbiota associations, and four drug-microbiota-IDP causal links. For example, PPARG activation mediated HbA1c reduction caused a higher risk of bipolar disorder (BD) II. Genetically proxied GLP-1R agonists were significantly associated with an increase in the volume of the CA3-head of the right hippocampus and the area of the left precuneus cortex, both of which have been shown to correlate with cognition in previous studies. INTERPRETATION Common drugs may affect brain structure and risk of psychiatric disorder. Oral medications in particular may exert some of these effects by influencing gut microbiota. This study calls for greater attention to be paid to the neuropsychiatric adverse effects of drugs and encourages drug repurposing. FUNDING National Natural Science Foundation of China (grant No. 82330035, 82130043, 82172685, and 82001223), National Natural Science Foundation of Hunan Province (grant No. 2021SK1010), and the Science Foundation for Distinguished Young Scholars of Changsha (grant No. kq2209006).
Collapse
Affiliation(s)
- Zhuohui Chen
- MOE Key Laboratory of Pediatric Rare Diseases, Hengyang Medical School, University of South China, Hengyang, China; Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, China; Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China; Hypothalamic Pituitary Research Centre, Xiangya Hospital, Central South University, Changsha, China
| | - Xiang Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, China
| | - Ziwei Teng
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Department of Psychiatry, Hunan Brain Hospital (Hunan Second People's Hospital), Changsha, China
| | - Jing Huang
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jianzhong Mo
- The Third Hospital of Changsha, Changsha, Hunan, China
| | - Chunrun Qu
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, China
| | - Yinghua Wu
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, China; Hypothalamic Pituitary Research Centre, Xiangya Hospital, Central South University, Changsha, China.
| | - Fangkun Liu
- MOE Key Laboratory of Pediatric Rare Diseases, Hengyang Medical School, University of South China, Hengyang, China; Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, China; Hypothalamic Pituitary Research Centre, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Kun Xia
- MOE Key Laboratory of Pediatric Rare Diseases, Hengyang Medical School, University of South China, Hengyang, China; Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China.
| |
Collapse
|
37
|
Ríos JA, Bórquez JC, Godoy JA, Zolezzi JM, Furrianca MC, Inestrosa NC. Emerging role of Metformin in Alzheimer's disease: A translational view. Ageing Res Rev 2024; 100:102439. [PMID: 39074563 DOI: 10.1016/j.arr.2024.102439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 07/31/2024]
Abstract
Alzheimer's disease (AD) constitutes a major public-health issue of our time. Regrettably, despite our considerable understanding of the pathophysiological aspects of this disease, current interventions lead to poor outcomes. Furthermore, experimentally promising compounds have continuously failed when translated to clinical trials. Along with increased population ageing, Type 2 Diabetes Mellitus (T2DM) has become an extremely common condition, mainly due to unbalanced dietary habits. Substantial epidemiological evidence correlates T2DM with cognitive impairment as well. Considering that brain insulin resistance, mitochondrial dysfunction, oxidative stress, and amyloidogenesis are common phenomena, further approaching the common features among these pathological conditions. Metformin constitutes the first-choice drug to preclude insulin resistance in T2DM clinical management. Experimental evidence suggests that its functions might include neuroprotective effects, in addition to its hypoglycemic activity. This review aims to summarize and discuss current knowledge of experimental data on metformin on this path towards translational medicine. Finally, we discuss the controversial data of responses to metformin in vitro, and in vivo, animal models and human studies.
Collapse
Affiliation(s)
- Juvenal A Ríos
- Facultad de Medicina y Ciencia, Escuela de Medicina, Universidad San Sebastián, Santiago, Chile
| | - Juan Carlos Bórquez
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Escuela de Medicina, Universidad de Magallanes, Punta Arenas, Chile; Facultad de Ciencias de la Salud, Universidad de Magallanes, Punta Arenas, Chile
| | - Juan A Godoy
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan M Zolezzi
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Escuela de Medicina, Universidad de Magallanes, Punta Arenas, Chile
| | | | - Nibaldo C Inestrosa
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile; Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Escuela de Medicina, Universidad de Magallanes, Punta Arenas, Chile.
| |
Collapse
|
38
|
Zhang J, Zhang Y, Wang J, Xia Y, Zhang J, Chen L. Recent advances in Alzheimer's disease: Mechanisms, clinical trials and new drug development strategies. Signal Transduct Target Ther 2024; 9:211. [PMID: 39174535 PMCID: PMC11344989 DOI: 10.1038/s41392-024-01911-3] [Citation(s) in RCA: 140] [Impact Index Per Article: 140.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/18/2024] [Accepted: 07/02/2024] [Indexed: 08/24/2024] Open
Abstract
Alzheimer's disease (AD) stands as the predominant form of dementia, presenting significant and escalating global challenges. Its etiology is intricate and diverse, stemming from a combination of factors such as aging, genetics, and environment. Our current understanding of AD pathologies involves various hypotheses, such as the cholinergic, amyloid, tau protein, inflammatory, oxidative stress, metal ion, glutamate excitotoxicity, microbiota-gut-brain axis, and abnormal autophagy. Nonetheless, unraveling the interplay among these pathological aspects and pinpointing the primary initiators of AD require further elucidation and validation. In the past decades, most clinical drugs have been discontinued due to limited effectiveness or adverse effects. Presently, available drugs primarily offer symptomatic relief and often accompanied by undesirable side effects. However, recent approvals of aducanumab (1) and lecanemab (2) by the Food and Drug Administration (FDA) present the potential in disrease-modifying effects. Nevertheless, the long-term efficacy and safety of these drugs need further validation. Consequently, the quest for safer and more effective AD drugs persists as a formidable and pressing task. This review discusses the current understanding of AD pathogenesis, advances in diagnostic biomarkers, the latest updates of clinical trials, and emerging technologies for AD drug development. We highlight recent progress in the discovery of selective inhibitors, dual-target inhibitors, allosteric modulators, covalent inhibitors, proteolysis-targeting chimeras (PROTACs), and protein-protein interaction (PPI) modulators. Our goal is to provide insights into the prospective development and clinical application of novel AD drugs.
Collapse
Affiliation(s)
- Jifa Zhang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yinglu Zhang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, 38163, TN, USA
| | - Yilin Xia
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxian Zhang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Lei Chen
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
39
|
Xing C, Liu S, Wang L, Ma H, Zhou M, Zhong H, Zhu S, Wu Q, Ning G. Metformin enhances endogenous neural stem cells proliferation, neuronal differentiation, and inhibits ferroptosis through activating AMPK pathway after spinal cord injury. J Transl Med 2024; 22:723. [PMID: 39103875 PMCID: PMC11302024 DOI: 10.1186/s12967-024-05436-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/25/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND Inadequate nerve regeneration and an inhibitory local microenvironment are major obstacles to the repair of spinal cord injury (SCI). The activation and differentiation fate regulation of endogenous neural stem cells (NSCs) represent one of the most promising repair approaches. Metformin has been extensively studied for its antioxidative, anti-inflammatory, anti-aging, and autophagy-regulating properties in central nervous system diseases. However, the effects of metformin on endogenous NSCs remains to be elucidated. METHODS The proliferation and differentiation abilities of NSCs were evaluated using CCK-8 assay, EdU/Ki67 staining and immunofluorescence staining. Changes in the expression of key proteins related to ferroptosis in NSCs were detected using Western Blot and immunofluorescence staining. The levels of reactive oxygen species, glutathione and tissue iron were measured using corresponding assay kits. Changes in mitochondrial morphology and membrane potential were observed using transmission electron microscopy and JC-1 fluorescence probe. Locomotor function recovery after SCI in rats was assessed through BBB score, LSS score, CatWalk gait analysis, and electrophysiological testing. The expression of the AMPK pathway was examined using Western Blot. RESULTS Metformin promoted the proliferation and neuronal differentiation of NSCs both in vitro and in vivo. Furthermore, a ferroptosis model of NSCs using erastin treatment was established in vitro, and metformin treatment could reverse the changes in the expression of key ferroptosis-related proteins, increase glutathione synthesis, reduce reactive oxygen species production and improve mitochondrial membrane potential and morphology. Moreover, metformin administration improved locomotor function recovery and histological outcomes following SCI in rats. Notably, all the above beneficial effects of metformin were completely abolished upon addition of compound C, a specific inhibitor of AMP-activated protein kinase (AMPK). CONCLUSION Metformin, driven by canonical AMPK-dependent regulation, promotes proliferation and neuronal differentiation of endogenous NSCs while inhibiting ferroptosis, thereby facilitating recovery of locomotor function following SCI. Our study further elucidates the protective mechanism of metformin in SCI, providing new mechanistic insights for its candidacy as a therapeutic agent for SCI.
Collapse
Affiliation(s)
- Cong Xing
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
- International Science and Technology Cooperation Base of Spinal Cord lnjury, Tianjin, China
- Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China
| | - Song Liu
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
- International Science and Technology Cooperation Base of Spinal Cord lnjury, Tianjin, China
- Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China
| | - Liyue Wang
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
- International Science and Technology Cooperation Base of Spinal Cord lnjury, Tianjin, China
- Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China
| | - Hongpeng Ma
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
- International Science and Technology Cooperation Base of Spinal Cord lnjury, Tianjin, China
- Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China
| | - Mi Zhou
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
- International Science and Technology Cooperation Base of Spinal Cord lnjury, Tianjin, China
- Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China
| | - Hao Zhong
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
- International Science and Technology Cooperation Base of Spinal Cord lnjury, Tianjin, China
- Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China
| | - Shibo Zhu
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
- International Science and Technology Cooperation Base of Spinal Cord lnjury, Tianjin, China
- Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China
| | - Qiang Wu
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
- International Science and Technology Cooperation Base of Spinal Cord lnjury, Tianjin, China
- Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China
| | - Guangzhi Ning
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China.
- International Science and Technology Cooperation Base of Spinal Cord lnjury, Tianjin, China.
- Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China.
| |
Collapse
|
40
|
Drake ES, Marino AB, Theroux JD, Roberts K. GLP-1 RAs: The newest powerhouse in metabolic medicine. Nurse Pract 2024; 49:34-40. [PMID: 39049152 DOI: 10.1097/01.npr.0000000000000216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
ABSTRACT In the last decade, the glucagon-like peptide-1 (GLP-1) receptor agonist (RA) drug class has revolutionized treatment for type 2 diabetes mellitus and some of its comorbidities, including obesity and cardiovascular disease. Continued advancements in the GLP-1 RA space show clinical promise for patients, though challenges-including barriers to care such as drug expense and availability-exist. This article provides an overview of available GLP-1 RAs and their mechanisms of action, indications, adverse reactions, and risks, providing practical pearls for providers along the way.
Collapse
|
41
|
Peng Y, Yao SY, Chen Q, Jin H, Du MQ, Xue YH, Liu S. True or false? Alzheimer's disease is type 3 diabetes: Evidences from bench to bedside. Ageing Res Rev 2024; 99:102383. [PMID: 38955264 DOI: 10.1016/j.arr.2024.102383] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024]
Abstract
Globally, Alzheimer's disease (AD) is the most widespread chronic neurodegenerative disorder, leading to cognitive impairment, such as aphasia and agnosia, as well as mental symptoms, like behavioral abnormalities, that place a heavy psychological and financial burden on the families of the afflicted. Unfortunately, no particular medications exist to treat AD, as the current treatments only impede its progression.The link between AD and type 2 diabetes (T2D) has been increasingly revealed by research; the danger of developing both AD and T2D rises exponentially with age, with T2D being especially prone to AD. This has propelled researchers to investigate the mechanism(s) underlying this connection. A critical review of the relationship between insulin resistance, Aβ, oxidative stress, mitochondrial hypothesis, abnormal phosphorylation of Tau protein, inflammatory response, high blood glucose levels, neurotransmitters and signaling pathways, vascular issues in AD and diabetes, and the similarities between the two diseases, is presented in this review. Grasping the essential mechanisms behind this detrimental interaction may offer chances to devise successful therapeutic strategies.
Collapse
Affiliation(s)
- Yong Peng
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China.
| | - Shun-Yu Yao
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| | - Quan Chen
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| | - Hong Jin
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| | - Miao-Qiao Du
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| | - Ya-Hui Xue
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| | - Shu Liu
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| |
Collapse
|
42
|
Abdulhameed N, Babin A, Hansen K, Weaver R, Banks WA, Talbot K, Rhea EM. Comparing regional brain uptake of incretin receptor agonists after intranasal delivery in CD-1 mice and the APP/PS1 mouse model of Alzheimer's disease. Alzheimers Res Ther 2024; 16:173. [PMID: 39085976 PMCID: PMC11293113 DOI: 10.1186/s13195-024-01537-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/17/2024] [Indexed: 08/02/2024]
Abstract
Targeting brain insulin resistance (BIR) has become an attractive alternative to traditional therapeutic treatments for Alzheimer's disease (AD). Incretin receptor agonists (IRAs), targeting either or both of the glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) receptors, have proven to reverse BIR and improve cognition in mouse models of AD. We previously showed that many, but not all, IRAs can cross the blood-brain barrier (BBB) after intravenous (IV) delivery. Here we determined if widespread brain uptake of IRAs could be achieved by circumventing the BBB using intranasal (IN) delivery, which has the added advantage of minimizing adverse gastrointestinal effects of systemically delivered IRAs. Of the 5 radiolabeled IRAs tested (exenatide, dulaglutide, semaglutide, DA4-JC, and DA5-CH) in CD-1 mice, exenatide, dulaglutide, and DA4-JC were successfully distributed throughout the brain following IN delivery. We observed significant sex differences in uptake for DA4-JC. Dulaglutide and DA4-JC exhibited high uptake by the hippocampus and multiple neocortical areas. We further tested and found the presence of AD-associated Aβ pathology minimally affected uptake of dulaglutide and DA4-JC. Of the 5 tested IRAs, dulaglutide and DA4-JC are best capable of accessing brain regions most vulnerable in AD (neocortex and hippocampus) after IN administration. Future studies will need to be performed to determine if IN IRA delivery can reduce BIR in AD or animal models of that disorder.
Collapse
Affiliation(s)
- Noor Abdulhameed
- Veterans Affairs Puget Sound Health Care System, Geriatrics Research Education and Clinical Center, 1660 S. Columbian Way, Seattle, WA, 98108, USA
| | - Alice Babin
- Veterans Affairs Puget Sound Health Care System, Geriatrics Research Education and Clinical Center, 1660 S. Columbian Way, Seattle, WA, 98108, USA
| | - Kim Hansen
- Veterans Affairs Puget Sound Health Care System, Geriatrics Research Education and Clinical Center, 1660 S. Columbian Way, Seattle, WA, 98108, USA
| | - Riley Weaver
- Veterans Affairs Puget Sound Health Care System, Geriatrics Research Education and Clinical Center, 1660 S. Columbian Way, Seattle, WA, 98108, USA
| | - William A Banks
- Veterans Affairs Puget Sound Health Care System, Geriatrics Research Education and Clinical Center, 1660 S. Columbian Way, Seattle, WA, 98108, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA, 98498, USA
| | - Konrad Talbot
- Departments of Neurosurgery, Pathology and Human Anatomy, and Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA.
| | - Elizabeth M Rhea
- Veterans Affairs Puget Sound Health Care System, Geriatrics Research Education and Clinical Center, 1660 S. Columbian Way, Seattle, WA, 98108, USA.
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA, 98498, USA.
| |
Collapse
|
43
|
Gao X, Li Q, Hao J, Sun K, Feng H, Guo K, Gao C. Therapeutic effects of exendin-4 on spinal cord injury via restoring autophagy function and decreasing necroptosis in neuron. CNS Neurosci Ther 2024; 30:e14835. [PMID: 39004783 PMCID: PMC11246977 DOI: 10.1111/cns.14835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/07/2024] [Accepted: 06/18/2024] [Indexed: 07/16/2024] Open
Abstract
AIMS Necroptosis is one of programmed death that may aggravate spinal cord injury (SCI). We aimed to investigate the effect and mechanism of exendin-4 (EX-4) on the recovery of motor function and necroptosis after SCI. METHODS The SD rats with left hemisection in the T10 spinal cord as SCI model were used. The behavior tests were measured within 4 weeks. The effects of EX-4 on necroptosis-associated proteins and autophagy flux were explored. In addition, the SHSY5Y cell model was introduced to explore the direct effect of EX-4 on neurons. The effect of lysosome was explored using mTOR activator and AO staining. RESULTS EX-4 could improve motor function and limb strength, promote the recovery of autophagy flux, and accelerate the degradation of necroptosis-related protein at 3 d after injury in rats. EX-4 reduced lysosome membrane permeability, promoted the recovery of lysosome function and autophagy flux, and accelerated the degradation of necroptosis-related proteins by inhibiting the phosphorylation level of mTOR in the SHSY5Y cell model. CONCLUSION Our results demonstrated that EX-4 may improve motor function after SCI via inhibiting mTOR phosphorylation level and accelerating the degradation of necroptosis-related proteins in neurons. Our findings may provide new therapeutic targets for clinical treatment after SCI.
Collapse
Affiliation(s)
- Xiao Gao
- Nanjing Medical UniversityNanjingChina
- Department of OrthopedicsThe Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical UniversityXuzhouChina
| | - Qu‐Peng Li
- Department of OrthopedicsThe Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical UniversityXuzhouChina
| | - Jing‐Ru Hao
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia ApplicationXuzhou Medical UniversityXuzhouChina
| | - Kai Sun
- Nanjing Medical UniversityNanjingChina
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia ApplicationXuzhou Medical UniversityXuzhouChina
| | - Hu Feng
- Department of OrthopedicsThe Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical UniversityXuzhouChina
| | - Kai‐Jin Guo
- Nanjing Medical UniversityNanjingChina
- Department of OrthopedicsThe Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical UniversityXuzhouChina
| | - Can Gao
- Nanjing Medical UniversityNanjingChina
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia ApplicationXuzhou Medical UniversityXuzhouChina
| |
Collapse
|
44
|
Muleiro Alvarez M, Cano-Herrera G, Osorio Martínez MF, Vega Gonzales-Portillo J, Monroy GR, Murguiondo Pérez R, Torres-Ríos JA, van Tienhoven XA, Garibaldi Bernot EM, Esparza Salazar F, Ibarra A. A Comprehensive Approach to Parkinson's Disease: Addressing Its Molecular, Clinical, and Therapeutic Aspects. Int J Mol Sci 2024; 25:7183. [PMID: 39000288 PMCID: PMC11241043 DOI: 10.3390/ijms25137183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Parkinson's disease (PD) is a gradually worsening neurodegenerative disorder affecting the nervous system, marked by a slow progression and varied symptoms. It is the second most common neurodegenerative disease, affecting over six million people in the world. Its multifactorial etiology includes environmental, genomic, and epigenetic factors. Clinical symptoms consist of non-motor and motor symptoms, with motor symptoms being the classic presentation. Therapeutic approaches encompass pharmacological, non-pharmacological, and surgical interventions. Traditional pharmacological treatment consists of administering drugs (MAOIs, DA, and levodopa), while emerging evidence explores the potential of antidiabetic agents for neuroprotection and gene therapy for attenuating parkinsonian symptoms. Non-pharmacological treatments, such as exercise, a calcium-rich diet, and adequate vitamin D supplementation, aim to slow disease progression and prevent complications. For those patients who have medically induced side effects and/or refractory symptoms, surgery is a therapeutic option. Deep brain stimulation is the primary surgical option, associated with motor symptom improvement. Levodopa/carbidopa intestinal gel infusion through percutaneous endoscopic gastrojejunostomy and a portable infusion pump succeeded in reducing "off" time, where non-motor and motor symptoms occur, and increasing "on" time. This article aims to address the general aspects of PD and to provide a comparative comprehensive review of the conventional and the latest therapeutic advancements and emerging treatments for PD. Nevertheless, further studies are required to optimize treatment and provide suitable alternatives.
Collapse
Affiliation(s)
- Mauricio Muleiro Alvarez
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac Campus México Norte, Huixquilucan 52786, Mexico
| | - Gabriela Cano-Herrera
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac Campus México Norte, Huixquilucan 52786, Mexico
| | - María Fernanda Osorio Martínez
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac Campus México Norte, Huixquilucan 52786, Mexico
| | | | - Germán Rivera Monroy
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac Campus México Norte, Huixquilucan 52786, Mexico
| | - Renata Murguiondo Pérez
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac Campus México Norte, Huixquilucan 52786, Mexico
| | - Jorge Alejandro Torres-Ríos
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac Campus México Norte, Huixquilucan 52786, Mexico
| | - Ximena A. van Tienhoven
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac Campus México Norte, Huixquilucan 52786, Mexico
| | - Ernesto Marcelo Garibaldi Bernot
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac Campus México Norte, Huixquilucan 52786, Mexico
| | - Felipe Esparza Salazar
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac Campus México Norte, Huixquilucan 52786, Mexico
| | - Antonio Ibarra
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac Campus México Norte, Huixquilucan 52786, Mexico
- Secretaria de la Defensa Nacional, Escuela Militar de Graduados en Sanidad, Ciudad de México 11200, Mexico
| |
Collapse
|
45
|
Tong B, Ba Y, Li Z, Yang C, Su K, Qi H, Zhang D, Liu X, Wu Y, Chen Y, Ling J, Zhang J, Yin X, Yu P. Targeting dysregulated lipid metabolism for the treatment of Alzheimer's disease and Parkinson's disease: Current advancements and future prospects. Neurobiol Dis 2024; 196:106505. [PMID: 38642715 DOI: 10.1016/j.nbd.2024.106505] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/02/2024] [Accepted: 04/14/2024] [Indexed: 04/22/2024] Open
Abstract
Alzheimer's and Parkinson's diseases are two of the most frequent neurological diseases. The clinical features of AD are memory decline and cognitive dysfunction, while PD mainly manifests as motor dysfunction such as limb tremors, muscle rigidity abnormalities, and slow gait. Abnormalities in cholesterol, sphingolipid, and glycerophospholipid metabolism have been demonstrated to directly exacerbate the progression of AD by stimulating Aβ deposition and tau protein tangles. Indirectly, abnormal lipids can increase the burden on brain vasculature, induce insulin resistance, and affect the structure of neuronal cell membranes. Abnormal lipid metabolism leads to PD through inducing accumulation of α-syn, dysfunction of mitochondria and endoplasmic reticulum, and ferroptosis. Great progress has been made in targeting lipid metabolism abnormalities for the treatment of AD and PD in recent years, like metformin, insulin, peroxisome proliferator-activated receptors (PPARs) agonists, and monoclonal antibodies targeting apolipoprotein E (ApoE). This review comprehensively summarizes the involvement of dysregulated lipid metabolism in the pathogenesis of AD and PD, the application of Lipid Monitoring, and emerging lipid regulatory drug targets. A better understanding of the lipidological bases of AD and PD may pave the way for developing effective prevention and treatment methods for neurodegenerative disorders.
Collapse
Affiliation(s)
- Bin Tong
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang 330006, China; School of Ophthalmology and Optometry of Nanchang University, Jiangxi, Nanchang 330006, China
| | - Yaoqi Ba
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang 330006, China; School of Ophthalmology and Optometry of Nanchang University, Jiangxi, Nanchang 330006, China
| | - Zhengyang Li
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang 330006, China; The First Clinical Medical College of Nanchang University, Jiangxi, Nanchang 330006, China
| | - Caidi Yang
- The First Clinical Medical College of Nanchang University, Jiangxi, Nanchang 330006, China
| | - Kangtai Su
- The First Clinical Medical College of Nanchang University, Jiangxi, Nanchang 330006, China
| | - Haodong Qi
- The First Clinical Medical College of Nanchang University, Jiangxi, Nanchang 330006, China
| | - Deju Zhang
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang, China; Center for Clinical Precision Medicine, Jiujiang University, Jiujiang, China; Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Xiao Liu
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang, China; Department of Cardiology, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yuting Wu
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang 330006, China
| | - Yixuan Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang 330006, China
| | - Jitao Ling
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang 330006, China
| | - Jing Zhang
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang, China; Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang 330006, China.
| | - Xiaoping Yin
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang, China; Center for Clinical Precision Medicine, Jiujiang University, Jiujiang, China.
| | - Peng Yu
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang 330006, China.
| |
Collapse
|
46
|
Irfan H, Muneer SU, Maheshwari AB, Kumar N, Iftikhar S. Lixisenatide in early parkinson's disease: efficacy, safety, and future directions: a correspondence. Neurosurg Rev 2024; 47:232. [PMID: 38787469 DOI: 10.1007/s10143-024-02475-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/11/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024]
Abstract
Parkinson's disease (PD) presents as a complex neurodegenerative disorder characterized by motor and non-motor symptoms, resulting from dopaminergic neuron degeneration. Current treatment strategies primarily aim to alleviate symptoms through pharmacotherapy and supportive therapies. However, emerging research explores novel therapeutic avenues, including the repurposing of drugs like lixisenatide, a GLP-1 receptor agonist initially developed for type 2 diabetes. This correspondence summarizes a phase 2 clinical trial investigating lixisenatide's efficacy in early PD, demonstrating a potential for mitigating motor disability progression. Findings reveal a marginal improvement or stabilization in motor function among lixisenatide-treated individuals compared to placebo, emphasizing its therapeutic promise. Nonetheless, the emergence of gastrointestinal adverse events underscores the need for careful monitoring and management. Further extensive trials are warranted to delineate lixisenatide's efficacy and safety profile, fostering collaborative efforts towards precision treatments in PD.
Collapse
Affiliation(s)
- Hamza Irfan
- Department of Medicine, Shaikh Khalifa Bin Zayed Al Nahyan Medical and Dental College, G855 + XRM, Sheikh Zayed Medical Complex, Khayaban-e-Jamia Punjab, Block D Muslim Town, Lahore, Punjab, Pakistan.
| | - Siraj Ul Muneer
- Department of Medicine, Shaikh Khalifa Bin Zayed Al Nahyan Medical and Dental College, G855 + XRM, Sheikh Zayed Medical Complex, Khayaban-e-Jamia Punjab, Block D Muslim Town, Lahore, Punjab, Pakistan
| | - Ashoney Bai Maheshwari
- Liaquat University of Medical and Health Sciences, C7P9 + 4W6, Jamshoro, Sindh, Pakistan
| | - Nikil Kumar
- Jinnah Medical and Dental College, 22-23 Shaheed-e-Millat Rd, Bihar Muslim Society BMCHS Sharafabad, Karachi City, Sindh, 74800, Pakistan
| | - Sana Iftikhar
- Department of Medicine, Shaikh Khalifa Bin Zayed Al Nahyan Medical and Dental College, G855 + XRM, Sheikh Zayed Medical Complex, Khayaban-e-Jamia Punjab, Block D Muslim Town, Lahore, Punjab, Pakistan
| |
Collapse
|
47
|
Kim AY, Al Jerdi S, MacDonald R, Triggle CR. Alzheimer's disease and its treatment-yesterday, today, and tomorrow. Front Pharmacol 2024; 15:1399121. [PMID: 38868666 PMCID: PMC11167451 DOI: 10.3389/fphar.2024.1399121] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/25/2024] [Indexed: 06/14/2024] Open
Abstract
Alois Alzheimer described the first patient with Alzheimer's disease (AD) in 1907 and today AD is the most frequently diagnosed of dementias. AD is a multi-factorial neurodegenerative disorder with familial, life style and comorbidity influences impacting a global population of more than 47 million with a projected escalation by 2050 to exceed 130 million. In the USA the AD demographic encompasses approximately six million individuals, expected to increase to surpass 13 million by 2050, and the antecedent phase of AD, recognized as mild cognitive impairment (MCI), involves nearly 12 million individuals. The economic outlay for the management of AD and AD-related cognitive decline is estimated at approximately 355 billion USD. In addition, the intensifying prevalence of AD cases in countries with modest to intermediate income countries further enhances the urgency for more therapeutically and cost-effective treatments and for improving the quality of life for patients and their families. This narrative review evaluates the pathophysiological basis of AD with an initial focus on the therapeutic efficacy and limitations of the existing drugs that provide symptomatic relief: acetylcholinesterase inhibitors (AChEI) donepezil, galantamine, rivastigmine, and the N-methyl-D-aspartate receptor (NMDA) receptor allosteric modulator, memantine. The hypothesis that amyloid-β (Aβ) and tau are appropriate targets for drugs and have the potential to halt the progress of AD is critically analyzed with a particular focus on clinical trial data with anti-Aβ monoclonal antibodies (MABs), namely, aducanumab, lecanemab and donanemab. This review challenges the dogma that targeting Aβ will benefit the majority of subjects with AD that the anti-Aβ MABs are unlikely to be the "magic bullet". A comparison of the benefits and disadvantages of the different classes of drugs forms the basis for determining new directions for research and alternative drug targets that are undergoing pre-clinical and clinical assessments. In addition, we discuss and stress the importance of the treatment of the co-morbidities, including hypertension, diabetes, obesity and depression that are known to increase the risk of developing AD.
Collapse
Affiliation(s)
- A. Y. Kim
- Medical Education, Weill Cornell Medicine—Qatar, Doha, Qatar
| | | | - R. MacDonald
- Health Sciences Library, Weill Cornell Medicine—Qatar, Doha, Qatar
| | - C. R. Triggle
- Department of Pharmacology and Medical Education, Weill Cornell Medicine—Qatar, Doha, Qatar
| |
Collapse
|
48
|
Yin H, Liu R, Bie L. Gastrodin ameliorates neuroinflammation in Alzheimer's disease mice by inhibiting NF-κB signaling activation via PPARγ stimulation. Aging (Albany NY) 2024; 16:8657-8666. [PMID: 38752930 PMCID: PMC11164526 DOI: 10.18632/aging.205831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/28/2024] [Indexed: 06/06/2024]
Abstract
AIM We investigated the effects and targets of gastrodin (GAS) for improving cognitive ability in Alzheimer's disease (AD). METHODS The targets and mechanisms of GAS were analyzed by network pharmacology. Morris water and eight-arm radial mazes were used to detect the behaviors of 7-months-old APP/PS1 mice. The levels of IBA-1 and PPARγ were examined by histochemical staining, nerve cells were detected by Nissl staining, inflammatory cytokines were measured by ELISA, and protein expressions were monitored by Western blotting. The neurobehavioral effects of GAS on mice were detected after siRNA silencing of PPARγ. Microglia were cultured in vitro and Aβ1-42 was used to simulate the pathology of AD. After treatment with GAS, the levels of inflammatory cytokines and proteins were assayed. RESULTS Network pharmacological analysis revealed that PPARγ was the action target of GAS. By stimulating PPARγ, GAS inhibited NF-κB signaling activation and decreased neuroinflammation and microglial activation, thereby ameliorating the cognitive ability of AD mice. After silencing PPARγ, GAS could not further improve such cognitive ability. Cellular-level results demonstrated that GAS inhibited microglial injury, reduced tissue inflammation, and activated PPARγ. CONCLUSIONS GAS can regulate microglia-mediated inflammatory response by stimulating PPARγ and inhibiting NF-κB activation, representing a mechanism whereby it improves the cognitive behavior of AD.
Collapse
Affiliation(s)
- Haoyuan Yin
- Department of Neurovascular Surgery, Bethune First Hospital, Jilin University, Changchun 130021, Jilin, China
| | - Renjie Liu
- Department of Neurovascular Surgery, The First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Li Bie
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun 130021, Jilin, China
| |
Collapse
|
49
|
Gunturu S. The Potential Role of GLP-1 Agonists in Psychiatric Disorders: A Paradigm Shift in Mental Health Treatment. Indian J Psychol Med 2024; 46:193-195. [PMID: 38699771 PMCID: PMC11062310 DOI: 10.1177/02537176241246744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/05/2024] Open
Affiliation(s)
- Sasidhar Gunturu
- Dept. of Psychiatry, BronxCare Health System, Bronx, New York, USA
| |
Collapse
|
50
|
Tamayo-Trujillo R, Ruiz-Pozo VA, Cadena-Ullauri S, Guevara-Ramírez P, Paz-Cruz E, Zambrano-Villacres R, Simancas-Racines D, Zambrano AK. Molecular mechanisms of semaglutide and liraglutide as a therapeutic option for obesity. Front Nutr 2024; 11:1398059. [PMID: 38742021 PMCID: PMC11090168 DOI: 10.3389/fnut.2024.1398059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/12/2024] [Indexed: 05/16/2024] Open
Abstract
Obesity, a chronic global health problem, is associated with an increase in various comorbidities, such as cardiovascular disease, type 2 diabetes mellitus, hypertension, and certain types of cancer. The increasing global prevalence of obesity requires research into new therapeutic strategies. Glucagon-like peptide-1 receptor agonists, specifically semaglutide and liraglutide, designed for type 2 diabetes mellitus treatment, have been explored as drugs for the treatment of obesity. This minireview describes the molecular mechanisms of semaglutide and liraglutide in different metabolic pathways, and its mechanism of action in processes such as appetite regulation, insulin secretion, glucose homeostasis, energy expenditure, and lipid metabolism. Finally, several clinical trial outcomes are described to show the safety and efficacy of these drugs in obesity management.
Collapse
Affiliation(s)
- Rafael Tamayo-Trujillo
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Viviana A. Ruiz-Pozo
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Santiago Cadena-Ullauri
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Patricia Guevara-Ramírez
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Elius Paz-Cruz
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | | | - Daniel Simancas-Racines
- Centro de Investigación de Salud Pública y Epidemiología Clínica (CISPEC), Universidad UTE, Quito, Ecuador
| | - Ana Karina Zambrano
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| |
Collapse
|