1
|
Shentu W, Kong Q, Zhang Y, Li W, Chen Q, Yan S, Wang J, Lai Q, Xu Q, Qiao S. Functional abnormalities of the glymphatic system in cognitive disorders. Neural Regen Res 2025; 20:3430-3447. [PMID: 39820293 PMCID: PMC11974647 DOI: 10.4103/nrr.nrr-d-24-01049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/30/2024] [Accepted: 11/25/2024] [Indexed: 01/19/2025] Open
Abstract
Various pathological mechanisms represent distinct therapeutic targets for cognitive disorders, but a balance between clearance and production is essential for maintaining the stability of the brain's internal environment. Thus, the glymphatic system may represent a common pathway by which to address cognitive disorders. Using the established model of the glymphatic system as our foundation, this review disentangles and analyzes the components of its clearance mechanism, including the initial inflow of cerebrospinal fluid, the mixing of cerebrospinal fluid with interstitial fluid, and the outflow of the mixed fluid and the clearance. Each section summarizes evidence from experimental animal models and human studies, highlighting the normal physiological properties of key structures alongside their pathological manifestations in cognitive disorders. The same pathologic manifestations of different cognitive disorders appearing in the glymphatic system and the same upstream influences are main points of interest of this review. We conclude this article by discussing new findings and outlining the limitations identified in current research progress.
Collapse
Affiliation(s)
- Wuyue Shentu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Qi Kong
- Department of Neurology, Zhejiang Hospital, Hangzhou, Zhejiang Province, China
| | - Yier Zhang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Wenyao Li
- Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Qiulu Chen
- Department of Neurology, Zhejiang Medical & Health Group Hangzhou Hospital, Hangzhou, Zhejiang Province, China
| | - Sicheng Yan
- Department of Neurology, Liuzhou People’s Hospital, Liuzhou, Guangxi Zhuang Autonomous Region, China
| | - Junjun Wang
- Department of Neurology, Zhejiang Hospital, Hangzhou, Zhejiang Province, China
| | - Qilun Lai
- Department of Neurology, Zhejiang Hospital, Hangzhou, Zhejiang Province, China
| | - Qi Xu
- Department of Radiology, Zhejiang Hospital, Hangzhou, Zhejiang Province, China
| | - Song Qiao
- Department of Neurology, Zhejiang Hospital, Hangzhou, Zhejiang Province, China
| |
Collapse
|
2
|
Cozza M, Boccardi V. Cognitive frailty: A comprehensive clinical paradigm beyond cognitive decline. Ageing Res Rev 2025; 108:102738. [PMID: 40122397 DOI: 10.1016/j.arr.2025.102738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 03/12/2025] [Accepted: 03/17/2025] [Indexed: 03/25/2025]
Abstract
Cognitive frailty is an emerging concept in research and clinical practice that incorporates both physical frailty and mild cognitive impairment (MCI) or subjective cognitive decline (SCD). Unlike traditional approaches that separate physical frailty and dementia, cognitive frailty treats these domains as interrelated and coexisting, with significant implications for clinical outcomes and predicting cognitive decline. Despite growing recognition of this interrelationship, a dualistic view of physical and cognitive processes persists. The paradigm of cognitive frailty holds promise as a biomarker- like amyloid plaques or neurofibrillary tangles- but with the advantage of identifying risk at a prefrail stage, before clinical signs of MCI or dementia emerge. This review examines the pathophysiological and clinical dimensions of cognitive frailty and promotes for its integration into routine assessments in memory clinics.
Collapse
Affiliation(s)
- Mariagiovanna Cozza
- UOC Intermediate Care-Long term Budrio Hospital, Ausl Bologna, Integration Department, Italy
| | - Virginia Boccardi
- Division of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, Santa Maria della Misericordia Hospital, Italy.
| |
Collapse
|
3
|
O’Brien CJ, Patterson JW, Ojo DT, Faulstich NG, Bucci KJ, Brewer PC, Imeh-Nathaniel A, Nathaniel EI, Roley L, Goodwin R, Nathaniel TI. Sex differences in risk factors for Alzheimer dementia encephalopathy patients. FRONTIERS IN DEMENTIA 2025; 4:1593788. [PMID: 40491970 PMCID: PMC12146276 DOI: 10.3389/frdem.2025.1593788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Accepted: 05/06/2025] [Indexed: 06/11/2025]
Abstract
Background The objective is to identify risk factors that contribute to sex differences in Alzheimer dementia (AD) patients with encephalopathy (ADEN) and determine whether these factors are different between male and female ADEN patients. This is the first large-scale study comparing sex-specific ADEN risk profiles. Methods Our retrospective cohort study analyzed data collected from February 2016 to August 2020. It included a total of 128,769 AD patients, among whom 41,266 AD patients also presented with encephalopathy, compared to 87,503 AD patients that did not. The univariate analysis was used to determine differences in risk factors for male and female AD patients. Multivariate analysis predicted specific risk factors associated with male and female ADEN patients. Result In the adjusted analysis, males presented with hypertension (OR = 1.144, 95% CI, 1.094-1.197, p < 0.001), peripheral vascular disease (OR = 1.606, 95% CI, 1.485-1.737, p < 0.001), atrial fibrillation (OR = 1.555, 95% CI, 1.443-1.676, p < 0.001), hallucinations (OR = 1.406, 95% CI, 1.119-1.766, p = 0.003), and traumatic head injury (OR = 3.211, 95% CI, 2.346-4.395, p < 0.001). Females presented with osteoporosis (OR = 0.307, 95% CI, 0.278-0.340, p < 0.001), unspecified cancer (OR = 0.615, 95% CI, 0.512-0.740, p < 0.001), anxiety (OR = 0.609, 95% CI, 0.565-0.655, p < 0.001), urinary tract infections (UTI) (OR = 0.451, 95% CI, 0.423-0.481, p < 0.001), upper respiratory infections (URI) (OR = 0.531, 95% CI, 0.432-0.653, p < 0.001) and gastrointestinal ulceration (OR = 0.338, 95% CI, 0.269-0.424, p < 0.001). Conclusion Our analysis identified risk factors that contribute to sex differences in ADEN. This difference was fully mediated by peripheral vascular disease, atrial fibrillation, hallucinations, and traumatic head injury for males and unspecified cancer, anxiety, urinary tract infections, upper respiratory infections, and gastrointestinal ulceration for females. These findings provide valuable insights into the risk factors that can be managed to improve the care of male and female ADEN patients.
Collapse
Affiliation(s)
- Connor John O’Brien
- School of Medicine Greenville, University of South Carolina, Greenville, SC, United States
| | - James Wayne Patterson
- School of Medicine Greenville, University of South Carolina, Greenville, SC, United States
| | - Dami Taiwo Ojo
- School of Medicine Greenville, University of South Carolina, Greenville, SC, United States
| | | | - Killian Joseph Bucci
- School of Medicine Greenville, University of South Carolina, Greenville, SC, United States
| | - Philip Cole Brewer
- School of Medicine Greenville, University of South Carolina, Greenville, SC, United States
| | | | | | | | - Richard Goodwin
- Department of Biomedical Engineering, University of South Carolina, Columbia, SC, United States
| | - Thomas I. Nathaniel
- School of Medicine Greenville, University of South Carolina, Greenville, SC, United States
| |
Collapse
|
4
|
Wang J, Gao H. Effects of repetitive transcranial magnetic stimulation on learning and memory cognitive function in rats with vascular cognitive impairment and its neural induction mechanism. BMC Neurosci 2025; 26:24. [PMID: 40102718 PMCID: PMC11916909 DOI: 10.1186/s12868-025-00933-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 02/03/2025] [Indexed: 03/20/2025] Open
Abstract
BACKGROUND The treatment of vascular cognitive impairment (VCI) is challenging, and its neurological mechanisms are not yet fully understood. Repetitive transcranial magnetic stimulation (rTMS) offers a new non-invasive treatment approach. METHODS One hundred male SD rats were grouped: intervention group (IG), model group (MG), sham group (SG), and control group (CG), to prepare the rat model of VCI. The Morris water maze (MWM) test was conducted, and oxidative stress (OS) markers, neurotrophic factors, apoptosis factors, and the amplitude of postsynaptic potential (PSP) in the hippocampus of rats were measured. RESULTS Post-intervention, IG's escape latency was lower than MG but higher than SG and CG. IG's hippocampal malondialdehyde (MDA) content, Bax, and Caspase-3 (Cas-3) were lower than MG but higher than SG and CG, while the tendency was opposite for Bcl-2 expression and the content of glutathione (GSH) and superoxide dismutase (SOD). IG's brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), and N-methyl-D-aspartate receptor 1 (NMDAR1) in the hippocampus were higher than MG but lower than SG and CG; The changes in the amplitude of PSP in the hippocampal region of IG at 10, 30, and 60 min were all higher than those in MG but lower than those in SG and CG (P < 0.05). CONCLUSION Low-frequency rTMS visibly improved the learning and memory abilities of VCI rats and reduced OS levels.
Collapse
Affiliation(s)
- Jiati Wang
- Department of Neurology, Yan'an University Xianyang Hospital, Xianyang, 712000, Shaanxi, China
| | - Huan Gao
- Department of Neurology, Yan'an University Xianyang Hospital, Xianyang, 712000, Shaanxi, China.
| |
Collapse
|
5
|
Liu D, Zhao Y, Liu R, Qiao B, Lu X, Bei Y, Niu Y, Yang X. Traditional Chinese medicine as a viable option for managing vascular cognitive impairment: A ray of hope. Medicine (Baltimore) 2025; 104:e41694. [PMID: 40101029 PMCID: PMC11922442 DOI: 10.1097/md.0000000000041694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 02/10/2025] [Indexed: 03/20/2025] Open
Abstract
Vascular cognitive impairment (VCI) is a prevalent cognitive disorder resulting from cerebrovascular disease and encompasses a spectrum of cognitive deficits, ranging from mild impairment to vascular dementia (VD). VCI is responsible for a minimum of 20% to 40% of all cases of dementia, with its prevalence ranking second only to Alzheimer's disease on a global scale. The pathogenesis of VCI is complex and includes a lack of cholinergic nerve cells, inflammation, oxidative stress, alterations in the blood-brain barrier, and cell apoptosis. Current guideline-recommended drugs have unsatisfactory therapeutic effects. However, traditional Chinese medicine (TCM) has long been associated with treating dementia, and numerous studies regarding treating dementia with TCM have been conducted. The etiology and pathogenesis of VaD are linked to deficiencies in the spleen and kidney, as well as phlegm turbidity. Treatment involves benefiting the spleen and kidney, improving blood circulation, removing blood stasis, and dispelling phlegm. Moreover, TCM presents benefits such as few adverse effects, low cost, long-term use suitability, and preventive effects. This review outlines the pathogenesis of VCI in both modern medicine and TCM, examines traditional prescriptions and single-agent ingredients with their pharmacological effects, emphasizes TCM's unique features, and explores its multi-targeted approach to treating VCI.
Collapse
Affiliation(s)
- Di Liu
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang, China
- Department of Pain, Heze Municipal Hospital, Heze, China
| | - YueYu Zhao
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang, China
| | - RunFeng Liu
- Department of Traditional Chinese Medicine, Weifang People’s Hospital, Weifang, China
| | - BaoGuang Qiao
- Department of Pain, Heze Municipal Hospital, Heze, China
| | - XinRu Lu
- College of Medical, Shandong Yingcai University, Jinan, China
| | - YuanYuan Bei
- Shandong Jiaotong College Hospital, Jinan, China
| | - Yin Niu
- Department of Endocrinology, People’s Hospital of Dingtao District, Heze, China
| | - XiaoNi Yang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| |
Collapse
|
6
|
Yang Q, Chen Q, Zhang KB, Liu Y, Zheng JC, Hu DX, Luo J. Sinomenine alleviates neuroinflammation in chronic cerebral hypoperfusion by promoting M2 microglial polarization and inhibiting neuronal pyroptosis via exosomal miRNA-223-3p. Acta Neuropathol Commun 2025; 13:48. [PMID: 40045356 PMCID: PMC11881310 DOI: 10.1186/s40478-025-01950-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 02/05/2025] [Indexed: 03/09/2025] Open
Abstract
Chronic cerebral hypoperfusion (CCH) is a major contributor to vascular dementia, with neuroinflammation playing a central role in its pathogenesis. Sinomenine (SINO), a natural alkaloid derived from traditional Chinese medicine, has shown significant anti-inflammatory and neuroprotective properties. However, its efficacy and mechanism of action in CCH remain unclear. In this study, we established a CCH rat model through bilateral common carotid artery occlusion and administered 10 mg/kg of SINO daily. Behavioral tests demonstrated that SINO significantly improved cognitive and memory functions in CCH rats. Histological analysis revealed that SINO effectively reduced neuroinflammation and damage in the hippocampal CA1, CA3, and DG regions. Mechanistically, SINO promoted microglial polarization from the M1 to M2 phenotype, markedly inhibiting the release of pro-inflammatory cytokines, including IL-1β, IL-6, and TNF-α. Further exploration of its neuroprotective mechanism showed that exosomes from SINO-treated microglia were enriched with miRNA-223-3p, which suppressed NLRP3-mediated pyroptosis in neurons. While our findings highlight the therapeutic potential of SINO, further studies are needed to validate its safety and efficacy in diverse populations and chronic settings. In summary, this study not only demonstrates SINO's regulatory effect on microglial polarization in CCH but also unveils a novel neuroprotective mechanism through exosomal miRNA-223-3p delivery, providing a solid theoretical foundation for SINO's potential as a treatment for CCH.
Collapse
Affiliation(s)
- Qu Yang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
- Jiangxi Province Key Laboratory of Precision Cell Therapy, Nanchang, Jiangxi, 330006, China
- Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
- The National Engineering Research Centre for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Qi Chen
- Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Kai-Bing Zhang
- Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Yu Liu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
- The National Engineering Research Centre for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Jia-Cheng Zheng
- Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Dong-Xia Hu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China.
- The National Engineering Research Centre for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330006, China.
| | - Jun Luo
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China.
- Jiangxi Province Key Laboratory of Precision Cell Therapy, Nanchang, Jiangxi, 330006, China.
- The National Engineering Research Centre for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330006, China.
| |
Collapse
|
7
|
Huang W, Liao L, Liu Q, Ma R, He X, Du X, Sha D. Blood biomarkers for vascular cognitive impairment based on neuronal function: a systematic review and meta-analysis. Front Neurol 2025; 16:1496711. [PMID: 39990267 PMCID: PMC11842260 DOI: 10.3389/fneur.2025.1496711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 01/28/2025] [Indexed: 02/25/2025] Open
Abstract
Vascular cognitive impairment (VCI) is increasingly recognized as the second most prevalent cause of dementia, primarily attributed to vascular risk factors and cerebrovascular disease. Numerous studies suggest that blood biomarkers may play a crucial role in the detection and prognosis of VCI. This study conducted a meta-analysis to evaluate the potential of various blood biomarkers associated with neuronal function as indicators of VCI. We searched four major databases-PubMed, Embase, Web of Science, and the Cochrane Library-up to December 31, 2023, for research on blood biomarkers for VCI. Of the 4,043 studies identified, 30 met the inclusion criteria for this review. The nine peripheral biomarkers analyzed for their association with neuronal function include amyloid beta 42 (Aβ42), amyloid beta 40 (Aβ40), Aβ42/Aβ40 ratio, total Tau (t-Tau), phosphorylated tau 181 (p-tau 181), neurofilament light (NfL), brain-derived neurotrophic factor (BDNF), S100B, and soluble receptor for advanced glycation end products (sRAGE). Our findings reveal that peripheral Aβ42, Aβ42/Aβ40 ratio, NfL, and S100B significantly differ between VCI and non-VCI groups, indicating their potential as blood biomarkers for VCI.
Collapse
Affiliation(s)
- Weiquan Huang
- Department of General Practice, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Libin Liao
- Department of General Practice, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qian Liu
- Department of General Practice, Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, Nanjing, Jiangsu, China
| | - Rongchao Ma
- Department of General Practice, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xuan He
- Department of General Practice, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Nanjing University, Nanjing, China
| | - Xiaoqiong Du
- Department of General Practice, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Dujuan Sha
- Department of General Practice, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of General Practice, Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, Nanjing, Jiangsu, China
- Department of General Practice, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Nanjing University, Nanjing, China
| |
Collapse
|
8
|
Yang C, Zheng C, Zhuang Y, Xu S, Li J, Hu C. Synaptic Vesicle-Related Proteins and Ubiquilin 2 in Cortical Synaptosomes Mediate Cognitive Impairment in Vascular Dementia Rats. Mol Neurobiol 2025; 62:1415-1432. [PMID: 38990251 DOI: 10.1007/s12035-024-04327-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/21/2024] [Indexed: 07/12/2024]
Abstract
Synaptic dysfunction is considered the best neuropathological correlate of cognitive decline in vascular dementia (VaD). However, the alterations of synaptic proteins at the synaptosomal level in VaD remain unclear. In this study, a VaD model was established in male rats using bilateral common carotid artery occlusion (2VO). We performed a novel object recognition task to evaluate cognitive impairment. Immunohistochemistry was used to assess the expression of neuron-specific nuclear binding protein (NeuN). Brain synaptosomes were isolated and subjected to label-free proteomic analysis to quantify and identify the synaptic features of differentially expressed proteins (DEPs). Synaptic and hub protein expression was detected in synaptosomes using western blotting. We found that male rats with VaD presented impaired memory and decreased NeuN protein expression in the cortex. Synaptosome proteomic analysis revealed 604 DEPs, with 493 and 111 markedly downregulated and upregulated proteins, respectively. KEGG analysis and SynGO annotation revealed that the synaptic vesicle (SV) cycle may be a key signaling pathway in VaD. Hub protein analysis of the main nodes in the protein network identified UBQLN2 and SV-related proteins, including CLTC, SNAP91, AP2S1, CLTA, VAMP2, EPN1, UBQLN2, AP2B1, AP2A2, and AP2M1. Western blotting showed that the levels of SV2A, CLTC, AP2S1, and VAMP2 decreased in the synaptosomes of 2VO rats, while UBQLN2 expression significantly increased. Our results suggest that the disruption in the presynaptic SV cycle is a key event in male rats with VaD, which could be characterized by the aberrant SV2A expression. SV-related proteins and UBQLN2 may be essential in synaptopathy. Thus, targeting the specific molecular markers in synaptosomes may be critical for the development of mechanism-directed therapies against VaD.
Collapse
Affiliation(s)
- Cuicui Yang
- Department of Clinical Trial Center, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Beijing, 100070, China.
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China.
| | - Cengceng Zheng
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Yuming Zhuang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Shuhong Xu
- Department of Clinical Trial Center, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Beijing, 100070, China
| | - Jian Li
- Department of Clinical Trial Center, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Beijing, 100070, China
| | - Chaoying Hu
- Phase I Clinical Trial Unit, Beijing Ditan Hospital of Capital Medical University, No. 8 East Jingshun Road, Beijing, 100015, China.
| |
Collapse
|
9
|
Marseglia A, Dartora C, Samuelsson J, Poulakis K, Mohanty R, Shams S, Lindberg O, Rydén L, Sterner TR, Skoog J, Zettergren A, Kern S, Skoog I, Westman E. Biological brain age and resilience in cognitively unimpaired 70-year-old individuals. Alzheimers Dement 2025; 21:e14435. [PMID: 39704304 PMCID: PMC11848408 DOI: 10.1002/alz.14435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/22/2024] [Accepted: 11/07/2024] [Indexed: 12/21/2024]
Abstract
INTRODUCTION This study investigated the associations of brain age gap (BAG)-a biological marker of brain resilience-with life exposures, neuroimaging measures, biological processes, and cognitive function. METHODS We derived BAG by subtracting predicted brain age from chronological age in 739 septuagenarians without dementia or neurological disorders. Robust linear regression models assessed BAG associations with life exposures, plasma inflammatory and metabolic biomarkers, magnetic resonance imaging, and cerebrospinal fluid biomarkers of neurodegeneration and vascular brain injury, and cognitive performance. RESULTS Greater BAG (older-looking brains) was associated with physical inactivity, diabetes, and stroke, while prediabetes was related to lower BAG, that is, younger-looking brains. Physical activity mitigated the link between obesity and BAG. Greater BAG was associated with greater small vessel disease burden, white-matter alterations, inflammation, high glucose, poorer vascular-related cognitive domains. Sex-specific associations were identified. DISCUSSION Vascular-related lifestyles and health shape brain appearance. Inflammation and insulin-related processes may be keys to understanding vascular cognitive disorders. HIGHLIGHTS BAG, reflecting deviations from CA, can indicate resilience. Diabetes, stroke, and low physical activity link to "older" brains (greater BAG). Physical activity yielded to "younger" brains in septuagenarians with obesity. High cerebrovascular burden, inflammation, and glucose associate with "older" brains. Sex differences were detected in all BAG-associated factors.
Collapse
Affiliation(s)
- Anna Marseglia
- Division of Clinical GeriatricsCenter for Alzheimer ResearchDepartment of Neurobiology, Care Sciences and SocietyKarolinska InstitutetHuddingeSweden
| | - Caroline Dartora
- Division of Clinical GeriatricsCenter for Alzheimer ResearchDepartment of Neurobiology, Care Sciences and SocietyKarolinska InstitutetHuddingeSweden
| | - Jessica Samuelsson
- Neuropsychiatric Epidemiology UnitDepartment of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologySahlgrenska AcademyCentre for Ageing and Health (AGECAP)University of GothenburgMölndalSweden
| | - Konstantinos Poulakis
- Division of Clinical GeriatricsCenter for Alzheimer ResearchDepartment of Neurobiology, Care Sciences and SocietyKarolinska InstitutetHuddingeSweden
- McConnell Brain Imaging Centre (BIC), MNIFaculty of MedicineMcGill UniversityMontréalQuebecCanada
| | - Rosaleena Mohanty
- Division of Clinical GeriatricsCenter for Alzheimer ResearchDepartment of Neurobiology, Care Sciences and SocietyKarolinska InstitutetHuddingeSweden
| | - Sara Shams
- Division of Clinical GeriatricsCenter for Alzheimer ResearchDepartment of Neurobiology, Care Sciences and SocietyKarolinska InstitutetHuddingeSweden
| | - Olof Lindberg
- Division of Clinical GeriatricsCenter for Alzheimer ResearchDepartment of Neurobiology, Care Sciences and SocietyKarolinska InstitutetHuddingeSweden
| | - Lina Rydén
- Neuropsychiatric Epidemiology UnitDepartment of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologySahlgrenska AcademyCentre for Ageing and Health (AGECAP)University of GothenburgMölndalSweden
| | - Therese Rydberg Sterner
- Neuropsychiatric Epidemiology UnitDepartment of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologySahlgrenska AcademyCentre for Ageing and Health (AGECAP)University of GothenburgMölndalSweden
| | - Johan Skoog
- Neuropsychiatric Epidemiology UnitDepartment of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologySahlgrenska AcademyCentre for Ageing and Health (AGECAP)University of GothenburgMölndalSweden
- Region Västra GötalandSahlgrenska University HospitalNeuropsychiatry ClinicGothenburgSweden
| | - Anna Zettergren
- Neuropsychiatric Epidemiology UnitDepartment of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologySahlgrenska AcademyCentre for Ageing and Health (AGECAP)University of GothenburgMölndalSweden
| | - Silke Kern
- Neuropsychiatric Epidemiology UnitDepartment of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologySahlgrenska AcademyCentre for Ageing and Health (AGECAP)University of GothenburgMölndalSweden
- Region Västra GötalandSahlgrenska University HospitalNeuropsychiatry ClinicGothenburgSweden
| | - Ingmar Skoog
- Neuropsychiatric Epidemiology UnitDepartment of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologySahlgrenska AcademyCentre for Ageing and Health (AGECAP)University of GothenburgMölndalSweden
| | - Eric Westman
- Division of Clinical GeriatricsCenter for Alzheimer ResearchDepartment of Neurobiology, Care Sciences and SocietyKarolinska InstitutetHuddingeSweden
- Department of NeuroimagingCentre for Neuroimaging SciencesInstitute of PsychiatryPsychology and NeuroscienceKing's College LondonLondonUK
| |
Collapse
|
10
|
García-Lluch G, Marseglia A, Royo LM, Albiach JP, Garcia-Zamora M, Baquero M, Peña-Bautista C, Álvarez L, Westman E, Cháfer-Pericás C. Associations between antidiabetic medications and cerebrospinal fluid biomarkers of Alzheimer's disease. J Alzheimers Dis 2025; 103:758-774. [PMID: 39686618 DOI: 10.1177/13872877241304995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
BACKGROUND It has been hypothesized that insulin resistance is pivotal in mediating amyloid and tau dysregulations in Alzheimer's disease (AD). OBJECTIVE To investigate the impact of different antidiabetic agents, their daily dosage intake, and treatment duration on cerebrospinal fluid (CSF) AD biomarkers among patients with type 2 diabetes. METHODS This cross-sectional study selected patients between 50 and 80 years with diabetes and CSF AD biomarkers screened between 2017 and 2023 in the VALCODIS Cohort. CSF biomarkers were total tau (t-tau), phosphorylated tau 181 (p-tau), and amyloid-β 42 (Aβ42). Analytical variables were obtained. Antidiabetic prescriptions were recorded in defined daily doses (DDD), according to the ATC/DDD 2021 system, and years of drug exposure duration before lumbar puncture. Logistic regressions were performed to establish the correlations between drug usage and AD biomarker alteration. RESULTS Among patients with diabetes, Insulin consumption was associated with lower odds of abnormal Aβ42 levels (OR 0.36 [95% CI 0.15, 0.76]) and tau pathology (OR 0.49 [95% CI 0.24-0.98]). Metformin was related to lower odds of pathological p-tau when diabetes was uncontrolled, acting on t-tau and t-tau/Aβ42 ratio when it was concomitant with insulin, and patients had controlled diabetes. Lower odds of pathological levels of tau were observed when additional oral antidiabetic drugs were added among metformin users. iSGLT2 was associated with tau pathology. CONCLUSIONS The impact of antidiabetics on AD-related pathological biomarkers may depend on diabetes management.
Collapse
Affiliation(s)
- Gemma García-Lluch
- Research Group in Alzheimer Disease, Health Research Institute La Fe, Valencia, Spain
- Cathedra DeCo MICOF-CEU UCH, University Cardenal Herrera-CEU, Valencia, Spain
- Department of Pharmacy, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Anna Marseglia
- Department of Pharmacy, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm, Sweden
| | - Lucrecia Moreno Royo
- Cathedra DeCo MICOF-CEU UCH, University Cardenal Herrera-CEU, Valencia, Spain
- Department of Pharmacy, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Juan Pardo Albiach
- Embedded Systems and Artificial Intelligence Group, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Mar Garcia-Zamora
- Research Group in Alzheimer Disease, Health Research Institute La Fe, Valencia, Spain
- Cathedra DeCo MICOF-CEU UCH, University Cardenal Herrera-CEU, Valencia, Spain
| | - Miquel Baquero
- Research Group in Alzheimer Disease, Health Research Institute La Fe, Valencia, Spain
- Cathedra DeCo MICOF-CEU UCH, University Cardenal Herrera-CEU, Valencia, Spain
- Neurology Unit, University and Polytechnic Hospital La Fe, Valencia, Spain
| | - Carmen Peña-Bautista
- Research Group in Alzheimer Disease, Health Research Institute La Fe, Valencia, Spain
| | - Lourdes Álvarez
- Research Group in Alzheimer Disease, Health Research Institute La Fe, Valencia, Spain
| | - Eric Westman
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm, Sweden
| | - Consuelo Cháfer-Pericás
- Research Group in Alzheimer Disease, Health Research Institute La Fe, Valencia, Spain
- Cathedra DeCo MICOF-CEU UCH, University Cardenal Herrera-CEU, Valencia, Spain
| |
Collapse
|
11
|
Ji L, Zhang J. Complex interactions and composite burden of risk factors in vascular cognitive impairment. J Neurol Sci 2025; 468:123367. [PMID: 39733713 DOI: 10.1016/j.jns.2024.123367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/23/2024] [Accepted: 12/22/2024] [Indexed: 12/31/2024]
Abstract
Vascular cognitive impairment (VCI) stresses the vascular contributions to cognitive decline, ranging from mild to major forms. Except for symptomatic treatment for relevant vascular diseases, the other recommended strategy is to intervene in key vascular risk factors (VRFs) as early as possible. A considerable amount of previous research delineated the association of a specific factor with dementia, involving each risk factor discussed in the present review. However, due to the heterogeneity and complexity of VCI, managing a single factor is insufficient to reduce its incidence and prevalence. Ongoing studies suggest differences in the impact of various combinations of risk factors on dementia. Here in this review, we aimed to provide an updated overview of clinical evidence and implications of complex interactions among various risk factors of VCI, including common VRFs and modifiable dementia-related risk factors. Understating the effect of comorbid risk factors on VCI and underlying mechanisms of them during VCI progression is essential for identifying high-risk population and developing preventive strategies. Furthermore, we summarized common composite risk scores and models used for risk evaluation and prediction of VCI, involving conventional risk scores, subclinical vascular composites, and novel risk models driven by intelligent algorithms. Lastly, we discussed potential gaps and research directions on searching specific clinical risk profiles, constructing effective risk scores, and implementing targeted risk interventions.
Collapse
Affiliation(s)
- Linna Ji
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Junjian Zhang
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
12
|
Yu X, He H, Wen J, Xu X, Ruan Z, Hu R, Wang F, Ju H. Diabetes-related cognitive impairment: Mechanisms, symptoms, and treatments. Open Med (Wars) 2025; 20:20241091. [PMID: 39822993 PMCID: PMC11737369 DOI: 10.1515/med-2024-1091] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/23/2024] [Accepted: 10/18/2024] [Indexed: 01/19/2025] Open
Abstract
Background Diabetes-related cognitive impairment is increasingly recognized as a significant complication, profoundly impacting patients' quality of life. This review aims to examine the pathophysiological mechanisms, clinical manifestations, risk factors, assessment and diagnosis, management strategies, and future research directions of cognitive impairment in diabetes. Methodology A comprehensive literature search was conducted using PubMed, Medline, and other medical databases to identify, review, and evaluate published articles on cognitive impairment in diabetes. The search focused on studies examining pathophysiology, clinical presentations, risk factors, diagnostic approaches, and management strategies. Results The review of current literature revealed that chronic hyperglycemia, insulin resistance, and vascular factors are major contributing factors to cognitive deficits in diabetes. Clinical manifestations include impairments in attention, memory, executive function, visuospatial abilities, and language. Risk factors encompass disease duration, glycemic control, presence of complications, age, education level, and comorbidities. Assessment tools include cognitive screening instruments, neuropsychological testing, and neuroimaging techniques. Management strategies involve glycemic control optimization, lifestyle modifications, cognitive training, and pharmacological interventions. Conclusion This review highlights the significant prevalence and impact of cognitive impairment in diabetes, resulting from complex metabolic and vascular disturbances. Early detection and multifaceted interventions are crucial for preserving cognitive function and improving patient outcomes. Future research should focus on neuroprotective strategies, biomarker identification, and personalized approaches. Collaborative efforts between clinicians and researchers are essential to effectively address this growing healthcare challenge and enhance the quality of life for individuals with diabetes-related cognitive impairment.
Collapse
Affiliation(s)
- Xueting Yu
- Endocrine Department, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, 650000, Yunnan, China
| | - Huimei He
- Endocrine Department, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, 650000, Yunnan, China
| | - Jie Wen
- Executive Ward Department, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, 650000, Yunnan, China
| | - Xiuyuan Xu
- Endocrine Department, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, 650000, Yunnan, China
| | - Zhaojuan Ruan
- Endocrine Department, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, 650000, Yunnan, China
| | - Rui Hu
- Department of Hematology, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650000, Yunnan, China
| | - Fang Wang
- Executive Ward Department, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, 650000, Yunnan, China
| | - Haibing Ju
- Endocrine Department, 920th Hospital of Joint Logistics Support Force, PLA, No. 212 Daguan Road, Xishan District, Kunming, 650000, Yunnan, China
| |
Collapse
|
13
|
He Z, Sun J. The role of the neurovascular unit in vascular cognitive impairment: Current evidence and future perspectives. Neurobiol Dis 2025; 204:106772. [PMID: 39710068 DOI: 10.1016/j.nbd.2024.106772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 12/24/2024] Open
Abstract
Vascular cognitive impairment (VCI) is a progressive cognitive impairment caused by cerebrovascular disease or vascular risk factors. It is the second most common type of cognitive impairment after Alzheimer's disease. The pathogenesis of VCI is complex, and neurovascular unit destruction is one of its important mechanisms. The neurovascular unit (NVU) is responsible for combining blood flow with brain activity and includes endothelial cells, pericytes, astrocytes and many regulatory nerve terminals. The concept of an NVU emphasizes that interactions between different types of cells are essential for maintaining brain homeostasis. A stable NVU is the basis of normal brain function. Therefore, understanding the structure and function of the neurovascular unit and its role in VCI development is crucial for gaining insights into its pathogenesis. This article reviews the structure and function of the neurovascular unit and its contribution to VCI, providing valuable information for early diagnosis and prevention.
Collapse
Affiliation(s)
- Zhidong He
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun 130031, Jilin, China
| | - Jing Sun
- Department of Neurology, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun 130031, Jilin, China..
| |
Collapse
|
14
|
González CY, Estrada JA, Oros-Pantoja R, Colín-Ferreyra MDC, Benitez-Arciniega AD, Soto Piña AE, Aguirre-Garrido JF. The Gut Microbiota Is Involved in the Regulation of Cognitive Flexibility in Adolescent BALB/c Mice Exposed to Chronic Physical Stress and a High-Fat Diet. Microorganisms 2024; 12:2542. [PMID: 39770745 PMCID: PMC11677384 DOI: 10.3390/microorganisms12122542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/23/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
Dysfunction in the prefrontal cortex can lead to cognitive inflexibility due to multifactorial causes as included cardiometabolic disorders, stress, inadequate diets, as well as an imbalance of the gut-brain axis microbiota. However, these risk factors have not been evaluated jointly. The purpose of this study was to evaluate the effect of physical stress (MS: Male Stress and FS: Female Stress) and high-fat diet (MD: Male Diet and FD: Female Diet) supplementation on the gut microbiota and cognitive flexibility. METHODS The study was performed on 47 mice, 30 male (M) and 17 female (F) BALBc, exposed to chronic stress physical (S) and high-fat diet (D). Cognitive flexibility was evaluated using the Attentional Set-Shifting Test (ASST) and the gut microbiota composition in terms of relative abundance (%) and alpha-beta diversity. RESULTS Results showed that S and D reduced cognitive flexibility in male and female mice (p < 0.0001). Significant changes occurred in Alistipes spp. (MM vs. MS:MD; p < 0.0001), Barnesiella spp. (FC vs. FS; p = 0.0002; FC vs. FD, p = 0.0033); Dorea spp. (MC vs. MD, p = 0.0008; MM vs. MD, p < 0.0001) and Lactobacillus spp. (MC vs. MD and FM vs. FS, p < 0.0001; FM vs. MD, p = 0.0393) genera among groups. Predictive functional analysis (QIIME2 and PICRUSt2) showed a significant increase in the expression of histidine kinase, alanine dehydrogenase, glutamine synthase, glutamate synthase, arginine succinyl synthase, and tryptophan synthase genes (p < 0.05), the latter being a precursor of serotonin (5-HT). CONCLUSIONS Chronic physical stress and a high-fat diet modify cognitive flexibility and the composition and predictive function of the gut microbiota.
Collapse
Affiliation(s)
- Cristian Yuriana González
- School of Medicine, Autonomous University of the State of Mexico, Paseo Tollocan and Jesús Carranza, Toluca de Lerdo 50180, State of Mexico, Mexico; (C.Y.G.); (J.A.E.); (R.O.-P.); (M.d.C.C.-F.); (A.D.B.-A.)
| | - José Antonio Estrada
- School of Medicine, Autonomous University of the State of Mexico, Paseo Tollocan and Jesús Carranza, Toluca de Lerdo 50180, State of Mexico, Mexico; (C.Y.G.); (J.A.E.); (R.O.-P.); (M.d.C.C.-F.); (A.D.B.-A.)
| | - Rigoberto Oros-Pantoja
- School of Medicine, Autonomous University of the State of Mexico, Paseo Tollocan and Jesús Carranza, Toluca de Lerdo 50180, State of Mexico, Mexico; (C.Y.G.); (J.A.E.); (R.O.-P.); (M.d.C.C.-F.); (A.D.B.-A.)
| | - María del Carmen Colín-Ferreyra
- School of Medicine, Autonomous University of the State of Mexico, Paseo Tollocan and Jesús Carranza, Toluca de Lerdo 50180, State of Mexico, Mexico; (C.Y.G.); (J.A.E.); (R.O.-P.); (M.d.C.C.-F.); (A.D.B.-A.)
| | - Alejandra Donaji Benitez-Arciniega
- School of Medicine, Autonomous University of the State of Mexico, Paseo Tollocan and Jesús Carranza, Toluca de Lerdo 50180, State of Mexico, Mexico; (C.Y.G.); (J.A.E.); (R.O.-P.); (M.d.C.C.-F.); (A.D.B.-A.)
| | - Alexandra Estela Soto Piña
- School of Medicine, Autonomous University of the State of Mexico, Paseo Tollocan and Jesús Carranza, Toluca de Lerdo 50180, State of Mexico, Mexico; (C.Y.G.); (J.A.E.); (R.O.-P.); (M.d.C.C.-F.); (A.D.B.-A.)
| | - José Félix Aguirre-Garrido
- Department of Biotechnology and Environmental Microbiology, Autonomous Metropolitan University-Lerma, Hidalgo Pte. 46, Lerma 52006, State of Mexico, Mexico;
| |
Collapse
|
15
|
Cui M, Jin Z, Wang Y, Jiang J, Peng S, Wei Q, Zhang S, Tuo Q, Xie J, Leng H, Wang H, Zhao Y, Lei P, Xu J, Wang K, Zhang J, Jiang Y, Ding D, Xie F, Yu J, Dong Q. Imaging, biomarkers, and vascular cognitive impairment in China: Rationale and design for the VICA study. Alzheimers Dement 2024; 20:8898-8909. [PMID: 39535340 DOI: 10.1002/alz.14352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 11/16/2024]
Abstract
INTRODUCTION Vascular cognitive impairment (VCI) is highly heterogeneous, with unclear pathogenesis. Individuals with vascular risk factors (VRF), cerebral small vessel disease (CSVD), and stroke are all at risk of developing VCI. To address the growing challenges posed by VCI, the "Vascular, Imaging and Cognition Association of China" (VICA) was established. METHODS VICA aims to recruit 10,000 participants, including 2000 with VRF, 3000 with CSVD, and 5000 stroke patients, to form a nationwide multicenter cohort. The study integrates clinical, neuroimaging, and multi-omics data to better understand VCI heterogeneity, improve disease prediction, and ensure timely diagnosis. RESULTS VICA has screened 2045 eligible VRF participants from six communities in Wuhan, Shanghai, and Taizhou, along with 602 CSVD and 1269 stroke patients from 135 hospitals nationwide. Baseline enrollment and follow-up work are still ongoing. DISCUSSION Establishing a high-quality longitudinal cohort is crucial for understanding VCI pathogenesis and developing novel markers for early screening and diagnosis. HIGHLIGHTS Establish a large-scale prospective longitudinal cohort comprising 10,000 participants, focusing on the high-risk population of vascular cognitive impairment (VCI) in China. Establish a nationwide three-tier medical network, make full use of resources, and achieve extensive enrollment of patients with cerebral small vessel disease and stroke patients. Utilize multimodal imaging and biomarkers to lay the foundation for constructing more-precise risk models. Introduce eye movement and gait analysis as new methods for assessing cognitive function. Use positron emission tomography to further investigate the interaction between vascular factors and neurodegeneration.
Collapse
Affiliation(s)
- Mei Cui
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- MOE Frontiers Center for Brain Science, National Center for Neurological Disorders, Shanghai, China
| | - Zishuo Jin
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yingzhe Wang
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiwei Jiang
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Sisi Peng
- Department of Neuropsychology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Qiang Wei
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Shuting Zhang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qingzhang Tuo
- Department of Geriatrics and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Junchao Xie
- Department of Neurology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Haixia Leng
- Division of Neuropsychiatry and Psychosomatics, Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Hongxing Wang
- Division of Neuropsychiatry and Psychosomatics, Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yanxin Zhao
- Department of Neurology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Peng Lei
- Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jun Xu
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Kai Wang
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Junjian Zhang
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yanfeng Jiang
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, China
| | - Ding Ding
- Institute of Neurology, National Center for Neurological Disorders, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Fang Xie
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Jintai Yu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qiang Dong
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- MOE Frontiers Center for Brain Science, National Center for Neurological Disorders, Shanghai, China
| |
Collapse
|
16
|
Erb C, Erb C, Kazakov A, Kapanova G, Weisser B. Lifestyle Changes in Aging and their Potential Impact on POAG. Klin Monbl Augenheilkd 2024. [PMID: 39191386 DOI: 10.1055/a-2372-3505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Primary open angle glaucoma is a primary mitochondrial disease with oxidative stress triggering neuroinflammation, eventually resulting in neurodegeneration. This affects many other areas of the brain in addition to the visual system. Aging also leads to inflammaging - a low-grade chronic inflammatory reaction in mitochondrial dysfunction, so these inflammatory processes overlap in the aging process and intensify pathophysiological processes associated with glaucoma. Actively counteracting these inflammatory events involves optimising treatment for any manifest systemic diseases while maintaining chronobiology and improving the microbiome. Physical and mental activity also provides support. This requires a holistic approach towards optimising neurodegeneration treatment in primary open angle glaucoma in addition to reducing intraocular pressure according personalised patient targets.
Collapse
Affiliation(s)
- Carl Erb
- Augenklinik am Wittenbergplatz, Berlin, Deutschland
| | | | - Avaz Kazakov
- External Relations and Development, Salymbekov University, Bishkek, Kyrgyzstan
| | - Gulnara Kapanova
- Medical Faculty of Medicine, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | | |
Collapse
|
17
|
Wei Q, Du B, Liu Y, Cao S, Yin S, Zhang Y, Ye R, Bai T, Wu X, Tian Y, Hu P, Wang K. The Montreal cognitive assessment: normative data from a large, population-based sample of Chinese healthy adults and validation for detecting vascular cognitive impairment. Front Neurosci 2024; 18:1455129. [PMID: 39145298 PMCID: PMC11322342 DOI: 10.3389/fnins.2024.1455129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 07/22/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND The Montreal Cognitive Assessment (MoCA) is a valuable tool for detecting cognitive impairment, widely used in many countries. However, there is still a lack of large sample normative data and whose cut-off values for detecting cognitive impairment is considerable controversy. METHODS The assessment conducted in this study utilizes the MoCA scale, specifically employing the Mandarin-8.1 version. This study recruited a total of 3,097 healthy adults aged over 20 years. We performed multiple linear regression analysis, incorporating age, gender, and education level as predictor variables, to examine their associations with the MoCA total score and subdomain scores. Subsequently, we established normative values stratified by age and education level. Finally, we included 242 patients with vascular cognitive impairment (VCI) and 137 controls with normal cognition, and determined the optimal cut-off value of VCI through ROC curves. RESULTS The participants in this study exhibit a balanced gender distribution, with an average age of 54.46 years (SD = 14.38) and an average education period of 9.49 years (SD = 4.61). The study population demonstrates an average MoCA score of 23.25 points (SD = 4.82). The multiple linear regression analysis indicates that MoCA total score is influenced by age and education level, collectively accounting for 46.8% of the total variance. Higher age and lower education level are correlated with lower MoCA total scores. A score of 22 is the optimal cut-off value for diagnosing vascular cognitive impairment (VCI). CONCLUSION This study offered normative MoCA values specific to the Chinese adults. Furthermore, this study indicated that a score of 26 may not represent the most optimal cut-off value for VCI. And for detecting VCI, a score of 22 may be a better cut-off value.
Collapse
Affiliation(s)
- Qiang Wei
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China
| | - Baogen Du
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
| | | | - Shanshan Cao
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China
| | - Shanshan Yin
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
| | - Ying Zhang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
| | - Rong Ye
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China
- The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
| | - Tongjian Bai
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China
| | - Xingqi Wu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China
| | - Yanghua Tian
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China
- Department of Psychology and Sleep Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Panpan Hu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China
| | - Kai Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China
- The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
| |
Collapse
|
18
|
Fang Z, Zhang Q. Association between cognitive impairment and cardiovascular mortality in mature and older adults: A meta-analysis. Exp Gerontol 2024; 192:112440. [PMID: 38679351 DOI: 10.1016/j.exger.2024.112440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/10/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Cognitive impairment contributes significantly to negative health outcomes. This meta-analysis aimed to investigate the association between cognitive impairment and cardiovascular mortality in mature and older adults. METHODS PubMed, Web of Science, and Embase databases were searched until February 10, 2024, to identify the association between cognitive impairment and cardiovascular mortality in mature and older adults (aged 50 years and older) from the general population. The adjusted risk estimates from the included studies were extracted and pooled using a random effects model. RESULTS Ten studies were included in the meta-analysis, involving 16,765 participants. The pooled hazard ratio (HR) of cardiovascular mortality was 1.75 (95 % confidence interval [CI] 1.44-2.14; I2 = 48.2 %) for individuals with cognitive impairment compared to those without, even after adjusting for common confounding factors. Subgroup analysis revealed that the prognostic value of cognitive impairment may be influenced by the assessment tools used for measuring cognition. Additionally, cognitive impairment significantly predicted cardiovascular mortality in women (HR 2.40; 95 % CI 1.54-3.74; I2 = 45.4 %) but not in men (HR 1.49; 95 % CI 0.99-2.24; I2 = 44.8 %). CONCLUSIONS Cognitive impairment is a significant predictor of cardiovascular mortality in mature and older adults from the general population. However, future studies are needed to evaluate the specific impact of cognitive impairment on different genders.
Collapse
Affiliation(s)
- Ze Fang
- Department of Geriatrics, Zhongjiang County People's Hospital, Zhongjiang County, Deyang City, Sichuan Province 618100, China.
| | - Qiongfang Zhang
- Department of Infection Management, Zhongjiang County People's Hospital, Zhongjiang County, Deyang City, Sichuan Province 618100, China
| |
Collapse
|
19
|
Li Z, Wu M, Yin C, Wang Z, Wang J, Chen L, Zhao W. Machine learning based on the EEG and structural MRI can predict different stages of vascular cognitive impairment. Front Aging Neurosci 2024; 16:1364808. [PMID: 38646447 PMCID: PMC11026635 DOI: 10.3389/fnagi.2024.1364808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/22/2024] [Indexed: 04/23/2024] Open
Abstract
Background Vascular cognitive impairment (VCI) is a major cause of cognitive impairment in the elderly and a co-factor in the development and progression of most neurodegenerative diseases. With the continuing development of neuroimaging, multiple markers can be combined to provide richer biological information, but little is known about their diagnostic value in VCI. Methods A total of 83 subjects participated in our study, including 32 patients with vascular cognitive impairment with no dementia (VCIND), 21 patients with vascular dementia (VD), and 30 normal controls (NC). We utilized resting-state quantitative electroencephalography (qEEG) power spectra, structural magnetic resonance imaging (sMRI) for feature screening, and combined them with support vector machines to predict VCI patients at different disease stages. Results The classification performance of sMRI outperformed qEEG when distinguishing VD from NC (AUC of 0.90 vs. 0,82), and sMRI also outperformed qEEG when distinguishing VD from VCIND (AUC of 0.8 vs. 0,0.64), but both underperformed when distinguishing VCIND from NC (AUC of 0.58 vs. 0.56). In contrast, the joint model based on qEEG and sMRI features showed relatively good classification accuracy (AUC of 0.72) to discriminate VCIND from NC, higher than that of either qEEG or sMRI alone. Conclusion Patients at varying stages of VCI exhibit diverse levels of brain structure and neurophysiological abnormalities. EEG serves as an affordable and convenient diagnostic means to differentiate between different VCI stages. A machine learning model that utilizes EEG and sMRI as composite markers is highly valuable in distinguishing diverse VCI stages and in individually tailoring the diagnosis.
Collapse
Affiliation(s)
- Zihao Li
- Department of Neurology, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, China
- Department of Neurology, Taizhou Second People’s Hospital, Taizhou, Zhejiang, China
| | - Meini Wu
- Department of Neurology, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, China
- Department of Neurology, Taizhou Second People’s Hospital, Taizhou, Zhejiang, China
| | - Changhao Yin
- Department of Neurology, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, China
| | - Zhenqi Wang
- Department of Neurology, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, China
| | - Jianhang Wang
- Department of Neurology, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, China
- Mudanjiang Medical College, Mudanjiang, China
| | - Lingyu Chen
- Department of Neurology, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, China
- Mudanjiang Medical College, Mudanjiang, China
| | - Weina Zhao
- Department of Neurology, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, China
- Center for Mudanjiang North Medicine Resource Development and Application Collaborative Innovation, Mudanjiang, China
| |
Collapse
|
20
|
Li B, Gu Z, Wang W, Du B, Wu C, Li B, Wang T, Yin G, Gao X, Chen J, Bi X, Zhang H, Sun X. The associations between peripheral inflammatory and lipid parameters, white matter hyperintensity, and cognitive function in patients with non-disabling ischemic cerebrovascular events. BMC Neurol 2024; 24:86. [PMID: 38438839 PMCID: PMC10910845 DOI: 10.1186/s12883-024-03591-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 02/27/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND The global prevalence of VCI has increased steadily in recent years, but diagnostic biomarkers for VCI in patients with non-disabling ischemic cerebrovascular incidents (NICE) remain indefinite. The primary objective of this research was to investigate the relationship between peripheral serological markers, white matter damage, and cognitive function in individuals with NICE. METHODS We collected clinical data, demographic information, and medical history from 257 patients with NICE. Using the MoCA upon admission, patients were categorized into either normal cognitive function (NCF) or VCI groups. Furthermore, they were classified as having mild white matter hyperintensity (mWMH) or severe WMH based on Fazekas scores. We then compared the levels of serological markers between the cognitive function groups and the WMH groups. RESULTS Among 257 patients with NICE, 165 were male and 92 were female. Lymphocyte count (OR = 0.448, P < 0.001) and LDL-C/HDL-C (OR = 0.725, P = 0.028) were protective factors for cognitive function in patients with NICE. The sWMH group had a higher age and inflammation markers but a lower MoCA score, and lymphocyte count than the mWMH group. In the mWMH group, lymphocyte count (AUC = 0.765, P < 0.001) and LDL-C/HDL-C (AUC = 0.740, P < 0.001) had an acceptable diagnostic value for the diagnosis of VCI. In the sWMH group, no significant differences were found in serological markers between the NCF and VCI groups. CONCLUSION Lymphocyte count, LDL-C/HDL-C were independent protective factors for cognitive function in patients with NICE; they can be used as potential biological markers to distinguish VCI in patients with NICE and are applicable to subgroups of patients with mWMH.
Collapse
Affiliation(s)
- Binghan Li
- Department of Neurology, Shanghai Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Zhengsheng Gu
- Department of Neurology, Shanghai Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Weisen Wang
- Department of Neurology, Shanghai Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Bingying Du
- Department of Neurology, Shanghai Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Chenghao Wu
- Department of Neurology, Shanghai Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Bin Li
- Department of Neurology, Shanghai Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Tianren Wang
- Department of Neurology, Shanghai Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Ge Yin
- Department of Neurology, Shanghai Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Xin Gao
- Department of Neurology, Shanghai Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Jingjing Chen
- Department of Neurology, Shanghai Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Xiaoying Bi
- Department of Neurology, Shanghai Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Hailing Zhang
- Department of Neurology, Shanghai Changhai Hospital, The Second Military Medical University, Shanghai, China.
| | - Xu Sun
- Department of Neurology, Shanghai Changhai Hospital, The Second Military Medical University, Shanghai, China.
| |
Collapse
|
21
|
Gao X, Chen J, Yin G, Liu Y, Gu Z, Sun R, Sun X, Jiao X, Wang L, Wang N, Zhang Y, Kan Y, Bi X, Du B. Hyperforin ameliorates neuroinflammation and white matter lesions by regulating microglial VEGFR 2 /SRC pathway in vascular cognitive impairment mice. CNS Neurosci Ther 2024; 30:e14666. [PMID: 38468126 PMCID: PMC10927933 DOI: 10.1111/cns.14666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/03/2024] [Accepted: 02/19/2024] [Indexed: 03/13/2024] Open
Abstract
AIM To explore the neuroprotective potential of hyperforin and elucidate its underlying molecular mechanisms involved in its therapeutic effects against vascular cognitive impairment (VCI). METHODS The active compounds and possible targets of Hypericum perforatum L. that may be effective against VCI were found by network pharmacology in this research. We utilized bilateral common carotid artery occlusion (BCCAO) surgery to induce a VCI mouse model. Morris water maze (MWM) and Y-maze tests were used to assess VCI mice's cognitive abilities following treatment with hyperforin. To evaluate white matter lesions (WMLs), we utilized Luxol fast blue (LFB) stain and immunofluorescence (IF). Neuroinflammation was assessed using IF, western blot (WB), and enzyme-linked immunosorbent assay (ELISA). The effects of hyperforin on microglia were investigated by subjecting the BV2 microglial cell line to oxygen-glucose deprivation/reperfusion (OGD/R) stimulation. The expressions of VEGFR2 , p-SRC, SRC, VEGFA, and inflammatory markers including IL-10, IL-1β, TNF-α, and IL-6 were subsequently assessed. RESULTS The VEGFR2 /SRC signaling pathway is essential for mediating the protective properties of hyperforin against VCI according to network pharmacology analysis. In vivo findings demonstrated that hyperforin effectively improved BCCAO-induced cognitive impairment. Furthermore, staining results showed that hyperforin attenuated WMLs and reduced microglial activation in VCI mice. The hyperforin treatment group's ELISA results revealed a substantial decrease in IL-1β, IL-6, and TNF-α levels. According to the results of in vitro experiments, hyperforin decreased the release of pro-inflammatory mediators (TNF-α, IL-6, and IL-1β) and blocked microglial M1-polarization by modulating the VEGFR2 /SRC signaling pathway. CONCLUSION Hyperforin effectively modulated microglial M1 polarization and neuroinflammation by inhibiting the VEGFR2 /SRC signaling pathways, thereby ameliorating WMLs and cognitive impairment in VCI mice.
Collapse
Affiliation(s)
- Xin Gao
- Department of Neurology, Shanghai Changhai HospitalSecond Military Medical University/Naval Medical UniversityShanghaiChina
| | - Jingjing Chen
- Department of Neurology, Shanghai Changhai HospitalSecond Military Medical University/Naval Medical UniversityShanghaiChina
| | - Ge Yin
- Department of Neurology, Shanghai Changhai HospitalSecond Military Medical University/Naval Medical UniversityShanghaiChina
| | - Yanqun Liu
- Department of Neurology, Shanghai Changhai HospitalSecond Military Medical University/Naval Medical UniversityShanghaiChina
| | - Zhengsheng Gu
- Department of Neurology, Shanghai Changhai HospitalSecond Military Medical University/Naval Medical UniversityShanghaiChina
| | - Rui Sun
- Department of Neurology, Shanghai Changhai HospitalSecond Military Medical University/Naval Medical UniversityShanghaiChina
| | - Xu Sun
- Department of Neurology, Shanghai Changhai HospitalSecond Military Medical University/Naval Medical UniversityShanghaiChina
| | - Xuehao Jiao
- Department of Neurology, Shanghai Changhai HospitalSecond Military Medical University/Naval Medical UniversityShanghaiChina
| | - Ling Wang
- Department of Neurology, Shanghai Changhai HospitalSecond Military Medical University/Naval Medical UniversityShanghaiChina
| | - Nuo Wang
- Department of Neurology, Shanghai Changhai HospitalSecond Military Medical University/Naval Medical UniversityShanghaiChina
| | - Yanbo Zhang
- Department of Psychiatry, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonAlbertaCanada
| | - Yuting Kan
- Department of Neurology, Shanghai Changhai HospitalSecond Military Medical University/Naval Medical UniversityShanghaiChina
| | - Xiaoying Bi
- Department of Neurology, Shanghai Changhai HospitalSecond Military Medical University/Naval Medical UniversityShanghaiChina
| | - Bingying Du
- Department of Neurology, Shanghai Changhai HospitalSecond Military Medical University/Naval Medical UniversityShanghaiChina
| |
Collapse
|