1
|
Zhang X, Xu X. Serotonergic Modulation of Olfactory Processing in Locust Antennae. CURRENT OPINION IN INSECT SCIENCE 2024; 66:101238. [PMID: 39043333 DOI: 10.1016/j.cois.2024.101238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/25/2024]
Abstract
Insects have sophisticated olfactory systems that enable them to detect and respond to complex exogenous chemical cues. The encoding mechanisms of these chemical signals have been studied both in their peripheral and central nervous systems (CNS). While many neuromodulators have been shown to play significant roles in olfactory processing within the antennal lobes of the brain, their roles in peripheral olfactory sensory systems, such as the antennae, are less understood. This review focuses on the role of serotonin (5-HT) receptor in the locust antenna, specifically the modulatory function of the serotonin receptor2 on odour inputs. We also review recent studies on the modulation of olfaction in the peripheral nervous systems of other insects and discuss potential directions for future research on the role of neuromodulators in insect peripheral olfactory systems.
Collapse
Affiliation(s)
- Xinyang Zhang
- Xianghu Laboratory, Hangzhou 311231, Zhejiang Province, China.
| | - Xiao Xu
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong Province, China
| |
Collapse
|
2
|
Luo Z, Zhang Y, Zhang P, Liu L, Yuan J, Yan S, Liu W, Wang G. Benzaldehyde acts as a behaviorally active component in brewer's yeast protein powder which attracts B. dorsalis through olfaction. J Chem Ecol 2024; 50:1010-1022. [PMID: 38740727 DOI: 10.1007/s10886-024-01500-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/07/2024] [Accepted: 04/25/2024] [Indexed: 05/16/2024]
Abstract
The Oriental fruit fly, Bactrocera dorsalis, is a significant pest that damages a variety of fruit crops. The effectiveness of chemical pesticides against such pests is limited, raising concerns about pesticide residues and resistance. Proteins naturally attract B. dorsalis and have led to the development of a management strategy known as protein bait attractant technology (BAT). Although the attraction of protein sources to B. dorsalis is well-documented, the biologically active components within these sources are not fully understood. This study employed analytical chemistry, behavioral tests, and electrophysiological techniques to investigate the behaviorally active components of beer yeast protein powder (BYPD), aiming to provide a basis for improving and developing protein baits. An olfactory trap assay confirmed the attractiveness of BYPD, and five components with high abundance were identified from its headspace volatiles using GC-MS. These components included ethanol, isoamyl alcohol, ethyl decanoate, benzaldehyde, and phenylethyl alcohol. Mixtures of these five components demonstrated significant attraction to B. dorsalis adults, with benzaldehyde identified as a potential key component. The attractiveness of benzaldehyde required a relatively large dose, and it was most attractive to adults that had been starved from dusk until the following morning. Attraction of adult flies to benzaldehyde appeared mainly mediated by inputs from olfactory receptors. While EAG data supports that ionotropic receptors could influence the detection of benzaldehyde in female adults, they did not affect female behavior towards benzaldehyde. These findings indicate that benzaldehyde is an important behaviorally active component in BYPD and offer insights for developing novel protein lures to control B. dorsalis in an environmentally friendly manner.
Collapse
Affiliation(s)
- Zhicai Luo
- Key Laboratory of Sustainable Management of Forest Ecosystem, Northeast Forestry University, Ministry of Education, Harbin, 150040, China
| | - Yan Zhang
- Key Laboratory of Sustainable Management of Forest Ecosystem, Northeast Forestry University, Ministry of Education, Harbin, 150040, China
| | - Panpan Zhang
- Key Laboratory of Sustainable Management of Forest Ecosystem, Northeast Forestry University, Ministry of Education, Harbin, 150040, China
| | - Leyuan Liu
- College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao, 266071, China
| | - Jinxi Yuan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Shanchun Yan
- Key Laboratory of Sustainable Management of Forest Ecosystem, Northeast Forestry University, Ministry of Education, Harbin, 150040, China.
| | - Wei Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
| | - Guirong Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| |
Collapse
|
3
|
Agricola H, Bräunig P. The complex neurochemistry of the cockroach antennal heart. Cell Tissue Res 2024; 398:139-160. [PMID: 39240336 PMCID: PMC11525290 DOI: 10.1007/s00441-024-03915-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 08/12/2024] [Indexed: 09/07/2024]
Abstract
The innervation of the antennal heart of the cockroach Periplaneta americana was studied with immunocytochemical techniques on both the light and electron microscopic levels. The antennal heart is innervated by two efferent systems, both using one biogenic amine in combination with neuropeptides. In one, we found co-localization of serotonin with proctolin and allatostatin. These fibers most likely originate from paired neurons located in the suboesophageal ganglion. In the second system, we found octopamine co-localized with the short neuropeptide F. The source of this second system is dorsal unpaired median (DUM) neurons, also located in the suboesophageal ganglion. The possible effects of these neuromediators on different targets are discussed.
Collapse
Affiliation(s)
- Hans Agricola
- Department of Cell Biology, Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine, Friedrich-Schiller University Jena, Hans-Knoell-Strasse 2, 07745, Jena, Germany.
| | - Peter Bräunig
- Department of Biology II (Zoology), RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
| |
Collapse
|
4
|
Wang Q, Smid HM, Dicke M, Haverkamp A. The olfactory system of Pieris brassicae caterpillars: from receptors to glomeruli. INSECT SCIENCE 2024; 31:469-488. [PMID: 38105530 DOI: 10.1111/1744-7917.13304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/17/2023] [Accepted: 10/30/2023] [Indexed: 12/19/2023]
Abstract
The olfactory system of adult lepidopterans is among the best described neuronal circuits. However, comparatively little is known about the organization of the olfactory system in the larval stage of these insects. Here, we explore the expression of olfactory receptors and the organization of olfactory sensory neurons in caterpillars of Pieris brassicae, a significant pest species in Europe and a well-studied species for its chemical ecology. To describe the larval olfactory system in this species, we first analyzed the head transcriptome of third-instar larvae (L3) and identified 16 odorant receptors (ORs) including the OR coreceptor (Orco), 13 ionotropic receptors (IRs), and 8 gustatory receptors (GRs). We then quantified the expression of these 16 ORs in different life stages, using qPCR, and found that the majority of ORs had significantly higher expression in the L4 stage than in the L3 and L5 stages, indicating that the larval olfactory system is not static throughout caterpillar development. Using an Orco-specific antibody, we identified all olfactory receptor neurons (ORNs) expressing the Orco protein in L3, L4, and L5 caterpillars and found a total of 34 Orco-positive ORNs, distributed among three sensilla on the antenna. The number of Orco-positive ORNs did not differ among the three larval instars. Finally, we used retrograde axon tracing of the antennal nerve and identified a mean of 15 glomeruli in the larval antennal center (LAC), suggesting that the caterpillar olfactory system follows a similar design as the adult olfactory system, although with a lower numerical redundancy. Taken together, our results provide a detailed analysis of the larval olfactory neurons in P. brassicae, highlighting both the differences as well as the commonalities with the adult olfactory system. These findings contribute to a better understanding of the development of the olfactory system in insects and its life-stage-specific adaptations.
Collapse
Affiliation(s)
- Qi Wang
- Laboratory of Entomology, Wageningen University and Research, Wageningen, the Netherlands
| | - Hans M Smid
- Laboratory of Entomology, Wageningen University and Research, Wageningen, the Netherlands
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen University and Research, Wageningen, the Netherlands
| | - Alexander Haverkamp
- Laboratory of Entomology, Wageningen University and Research, Wageningen, the Netherlands
| |
Collapse
|
5
|
Coles TA, Briggs AM, Hambly MG, Céspedes N, Fellows AM, Kaylor HL, Adams AD, Van Susteren G, Bentil RE, Robert MA, Riffell JA, Lewis EE, Luckhart S. Ingested histamine and serotonin interact to alter Anopheles stephensi feeding and flight behavior and infection with Plasmodium parasites. Front Physiol 2023; 14:1247316. [PMID: 37555020 PMCID: PMC10405175 DOI: 10.3389/fphys.2023.1247316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 07/17/2023] [Indexed: 08/10/2023] Open
Abstract
Blood levels of histamine and serotonin (5-HT) are altered in human malaria, and, at these levels, we have shown they have broad, independent effects on Anopheles stephensi following ingestion by this invasive mosquito. Given that histamine and 5-HT are ingested together under natural conditions and that histaminergic and serotonergic signaling are networked in other organisms, we examined effects of combinations of these biogenic amines provisioned to A. stephensi at healthy human levels (high 5-HT, low histamine) or levels associated with severe malaria (low 5-HT, high histamine). Treatments were delivered in water (priming) before feeding A. stephensi on Plasmodium yoelii-infected mice or via artificial blood meal. Relative to effects of histamine and 5-HT alone, effects of biogenic amine combinations were complex. Biogenic amine treatments had the greatest impact on the first oviposition cycle, with high histamine moderating low 5-HT effects in combination. In contrast, clutch sizes were similar across combination and individual treatments. While high histamine alone increased uninfected A. stephensi weekly lifetime blood feeding, neither combination altered this tendency relative to controls. The tendency to re-feed 2 weeks after the first blood meal was altered by combination treatments, but this depended on mode of delivery. For blood delivery, malaria-associated treatments yielded higher percentages of fed females relative to healthy-associated treatments, but the converse was true for priming. Female mosquitoes treated with the malaria-associated combination exhibited enhanced flight behavior and object inspection relative to controls and healthy combination treatment. Mosquitoes primed with the malaria-associated combination exhibited higher mean oocysts and sporozoite infection prevalence relative to the healthy combination, with high histamine having a dominant effect on these patterns. Compared with uninfected A. stephensi, the tendency of infected mosquitoes to take a second blood meal revealed an interaction of biogenic amines with infection. We used a mathematical model to project the impacts of different levels of biogenic amines and associated changes on outbreaks in human populations. While not all outbreak parameters were impacted the same, the sum of effects suggests that histamine and 5-HT alter the likelihood of transmission by mosquitoes that feed on hosts with symptomatic malaria versus a healthy host.
Collapse
Affiliation(s)
- Taylor A. Coles
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, ID, United States
| | - Anna M. Briggs
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, ID, United States
| | - Malayna G. Hambly
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, ID, United States
| | - Nora Céspedes
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, ID, United States
| | - Abigail M. Fellows
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, ID, United States
| | - Hannah L. Kaylor
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, ID, United States
| | - Alexandria D. Adams
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, ID, United States
| | - Grace Van Susteren
- Department of Biology, University of Washington, Seattle, WA, United States
| | - Ronald E. Bentil
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, ID, United States
| | - Michael A. Robert
- Department of Mathematics, Center for Emerging, Zoonotic, and Arthropod-Borne Pathogens (CeZAP), Virginia Tech, Blacksburg, VA, United States
| | - Jeffrey A. Riffell
- Department of Biology, University of Washington, Seattle, WA, United States
| | - Edwin E. Lewis
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, ID, United States
| | - Shirley Luckhart
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, ID, United States
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States
| |
Collapse
|
6
|
Konopka JK, Task D, Poinapen D, Potter CJ. Neurogenetic identification of mosquito sensory neurons. iScience 2023; 26:106690. [PMID: 37182106 PMCID: PMC10172775 DOI: 10.1016/j.isci.2023.106690] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/06/2023] [Accepted: 04/13/2023] [Indexed: 05/16/2023] Open
Abstract
Anopheles mosquitoes, as vectors for the malaria parasite, are a global threat to human health. To find and bite a human, they utilize neurons within their sensory appendages. However, the identity and quantification of sensory appendage neurons are lacking. Here we use a neurogenetic approach to label all neurons in Anopheles coluzzii mosquitoes. We utilize the homology assisted CRISPR knock-in (HACK) approach to generate a T2A-QF2w knock-in of the synaptic gene bruchpilot. We use a membrane-targeted GFP reporter to visualize the neurons in the brain and to quantify neurons in all major chemosensory appendages (antenna, maxillary palp, labella, tarsi, and ovipositor). By comparing labeling of brp>GFP and Orco>GFP mosquitoes, we predict the extent of neurons expressing ionotropic receptors (IRs) or other chemosensory receptors. This work introduces a valuable genetic tool for the functional analysis of Anopheles mosquito neurobiology and initiates characterization of the sensory neurons that guide mosquito behavior.
Collapse
Affiliation(s)
- Joanna K. Konopka
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Darya Task
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Danny Poinapen
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Christopher J. Potter
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Corresponding author
| |
Collapse
|
7
|
Lv M, Xu X, Zhang X, Yuwen B, Zhang L. Serotonin/GABA receptors modulate odor input to olfactory receptor neuron in locusts. Front Cell Neurosci 2023; 17:1156144. [PMID: 37187607 PMCID: PMC10175586 DOI: 10.3389/fncel.2023.1156144] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/27/2023] [Indexed: 05/17/2023] Open
Abstract
Introduction Serotonin (5-hydroxytryptamine; 5-HT) and GABA (γ-aminobutyric acid) are involved in the regulation of behaviors in the central nervous system. However, it remains unclear whether they modulate olfaction in the peripheral nervous system, and how they modulate olfaction. Methods and results One 5-HT receptor sequence (Lmig5-HT2) and one GABA receptor sequence (LmigGABAb) were identified in locust antennae by transcriptome analysis and polymerase chain reaction experiments. In situ hybridization localized Lmig5-HT2 to accessory cells, while LmigGABAb was localized to olfactory receptor neurons (ORNs) in locust chemosensilla. Single-unit electrophysiological recordings combined with RNA interference (RNAi) experiments indicated ORNs of locusts with knockdown of Lmig5-HT2 (ds-Lmig5-HT2) and LmigGABAb (ds-LmigGABAb) to some odors had significantly higher responses than wild-type and control locusts in the dose-dependent responses. Moreover, the gaps between the responses of ORNs of RNAi ones and those of wild-type and ds-GFP enlarged with an increase in concentrations of odors. Discussion Taken together, our findings suggest that 5-HT, GABA, and their receptors exist in the insect peripheral nervous system and that they may function as negative feedback to ORNs and contribute to a fine-tuning mechanism for olfaction in the peripheral nervous system.
Collapse
Affiliation(s)
- Mingyue Lv
- Department of Agricultural Insects and Pest Control, China Agricultural University, Beijing, China
| | - Xiao Xu
- Department of Agricultural Insects and Pest Control, China Agricultural University, Beijing, China
| | - Xinyang Zhang
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Bo Yuwen
- Department of Agricultural Insects and Pest Control, China Agricultural University, Beijing, China
| | - Long Zhang
- Department of Agricultural Insects and Pest Control, China Agricultural University, Beijing, China
- Plant Protection Institute, Shandong Provincial Engineering Technology Research Center on Biocontrol for Pests, Jinan, China
| |
Collapse
|
8
|
Menacer K, Hervé MR, Marie Cortesero A, Aujames T, Anton S. Sex- and maturity-dependent antennal detection of host plant volatiles in the cabbage root fly, Delia radicum. JOURNAL OF INSECT PHYSIOLOGY 2023; 146:104500. [PMID: 36914091 DOI: 10.1016/j.jinsphys.2023.104500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Adult insect behaviour in response to plant-emitted volatile compounds varies between the sexes and as a function of maturity. These differences in behavioural responses can be due to modulation in the peripheral or central nervous system. In the cabbage root fly, Delia radicum, behavioural effects of certain host plant volatiles on mature female behaviour have been evaluated, and a large number of compounds emitted by brassicaceous host plants have been identified. We recorded here dose-dependent electroantennogram responses to all tested compounds and investigated if the antennal detection of individual volatile compounds emitted by intact and damaged host plants differs between male and female, as well as immature and mature flies. Our results showed dose-dependent responses in mature and immature males and females. Mean response amplitudes varied significantly between sexes for three compounds, and between maturity states for six compounds. For some additional compounds significant differences occurred only for high stimulus doses (interaction between dose and sex and/or dose and maturity status). Multivariate analysis revealed a significant global effect of maturity on electroantennogram response amplitudes and for one experimental session also a significant global effect of the sex. Interestingly, allyl isothiocyanate, a compound stimulating oviposition behaviour, elicited stronger responses in mature than in immature flies, whereas ethylacetophenone, an attractive flower volatile, elicited stronger responses in immature than in mature flies, which correlates with the behavioural role of these compounds. Several host-derived compounds elicited stronger responses in females than in males and, at least at high doses, stronger responses in mature than in immature flies, indicating differential antennal sensitivity to behaviourally active compounds. Six compounds did not cause any significant differences in responses between the different groups of flies. Our results thus confirm peripheral plasticity in plant volatile detection in the cabbage root fly and provide a basis for future behavioural investigations on the function of individual plant compounds.
Collapse
Affiliation(s)
- Kathleen Menacer
- IGEPP-UMR 1349, INRAE, Institut Agro, Univ Rennes, 35000 Rennes, France.
| | - Maxime R Hervé
- IGEPP-UMR 1349, INRAE, Institut Agro, Univ Rennes, 35000 Rennes, France
| | | | - Tom Aujames
- IGEPP-UMR 1349, INRAE, Institut Agro, Univ Rennes, 49045 Angers, France
| | - Sylvia Anton
- IGEPP-UMR 1349, INRAE, Institut Agro, Univ Rennes, 49045 Angers, France
| |
Collapse
|
9
|
Loh YM, Su MP, Ellis DA, Andrés M. The auditory efferent system in mosquitoes. Front Cell Dev Biol 2023; 11:1123738. [PMID: 36923250 PMCID: PMC10009176 DOI: 10.3389/fcell.2023.1123738] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/17/2023] [Indexed: 03/02/2023] Open
Abstract
Whilst acoustic communication forms an integral component of the mating behavior of many insect species, it is particularly crucial for disease-transmitting mosquitoes; swarming males rely on hearing the faint sounds of flying females for courtship initiation. That males can hear females within the din of a swarm is testament to their fabulous auditory systems. Mosquito hearing is highly frequency-selective, remarkably sensitive and, most strikingly, supported by an elaborate system of auditory efferent neurons that modulate the auditory function - the only documented example amongst insects. Peripheral release of octopamine, serotonin and GABA appears to differentially modulate hearing across major disease-carrying mosquito species, with receptors from other neurotransmitter families also identified in their ears. Because mosquito mating relies on hearing the flight tones of mating partners, the auditory efferent system offers new potential targets for mosquito control. It also represents a unique insect model for studying auditory efferent networks. Here we review current knowledge of the mosquito auditory efferent system, briefly compare it with its counterparts in other species and highlight future research directions to unravel its contribution to mosquito auditory perception.
Collapse
Affiliation(s)
- YuMin M. Loh
- Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| | - Matthew P. Su
- Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
- Institute for Advanced Research, Nagoya University, Nagoya, Aichi, Japan
| | - David A. Ellis
- UCL Ear Institute, University College London, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
| | - Marta Andrés
- UCL Ear Institute, University College London, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
| |
Collapse
|
10
|
Xu YYJ, Loh YM, Lee TT, Ohashi TS, Su MP, Kamikouchi A. Serotonin modulation in the male Aedes aegypti ear influences hearing. Front Physiol 2022; 13:931567. [PMID: 36105279 PMCID: PMC9465180 DOI: 10.3389/fphys.2022.931567] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/13/2022] [Indexed: 11/13/2022] Open
Abstract
Male Aedes aegypti (Ae. aegypti) mosquitoes rely on hearing to identify conspecific females for mating, with the male attraction to the sound of flying females (“phonotaxis”) an important behavior in the initial courtship stage. Hearing thus represents a promising target for novel methods of mosquito control, and hearing behaviors (such as male phonotaxis) can be targeted via the use of sound traps. These traps unfortunately have proven to be relatively ineffective during field deployment. Shifting the target from hearing behavior to hearing function could therefore offer a novel method of interfering with Ae. aegypti mating. Numerous neurotransmitters, including serotonin (5-hydroxytryptamine, or 5-HT) and octopamine, are expressed in the male ear, with modulation of the latter proven to influence the mechanical responses of the ear to sound. The effect of serotonin modulation however remains underexplored despite its significant role in determining many key behaviors and biological processes of animals. Here we investigated the influence of serotonin on the Ae. aegypti hearing function and behaviors. Using immunohistochemistry, we found significant expression of serotonin in the male and female Ae. aegypti ears. In the male ear, presynaptic sites identified via antibody labelling showed only partial overlap with serotonin. Next, we used RT-qPCR to identify and quantify the expression levels of three different serotonin receptor families (5-HT1, 5-HT2, and 5-HT7) in the mosquito heads and ears. Although all receptors were identified in the ears of both sexes, those from the 5-HT7 family were significantly more expressed in the ears relative to the heads. We then thoracically injected serotonin-related compounds into the mosquitoes and found a significant, reversible effect of serotonin exposure on the male ear mechanical tuning frequency. Finally, oral administration of a serotonin-synthesis inhibitor altered male phonotaxis. The mosquito serotonergic system and its receptors thus represent interesting targets for novel methods of mosquito, and thus disease, control.
Collapse
Affiliation(s)
- Yifeng Y. J. Xu
- Graduate School of Science, Nagoya University, Nagoya, Japan
| | - YuMin M. Loh
- Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Tai-Ting Lee
- Graduate School of Science, Nagoya University, Nagoya, Japan
| | | | - Matthew P. Su
- Graduate School of Science, Nagoya University, Nagoya, Japan
- Institute for Advanced Research, Nagoya University, Nagoya, Japan
- *Correspondence: Matthew P. Su, ; Azusa Kamikouchi,
| | - Azusa Kamikouchi
- Graduate School of Science, Nagoya University, Nagoya, Japan
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
- *Correspondence: Matthew P. Su, ; Azusa Kamikouchi,
| |
Collapse
|
11
|
Deletion of the Serotonin Receptor 7 Gene Changed the Development and Behavior of the Mosquito, Aedes aegypti. INSECTS 2022; 13:insects13080671. [PMID: 35893026 PMCID: PMC9332693 DOI: 10.3390/insects13080671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/16/2022] [Accepted: 07/20/2022] [Indexed: 12/04/2022]
Abstract
Serotonin (5-HT) plays a vital role in many physiological processes in insects, regulating physiological activities such as growth and movement through multiple 5-HT receptors (5-HTRs), which were potential targets for some new insecticides. However, the specific function of individual 5-HTRs in Ae. aegypti is still unclear. In this study, we investigated the function of the 5-HT7A receptor during Ae. aegypti development. 5-HTR7A transcripts were detected at all stages of development by real-time PCR. The results indicated that the gene expression was highest in the limbs (p < 0.01). We also generated 5-HTR7A mutant mosquitoes using CRISPR-mediated gene editing. The mutants had an abnormal phenotype at the larval stage, including an aberrant head-to-chest ratio and decreased motor activity. The mutant pupae developed abnormally, and most died (56.67%) (p < 0.0001). Using external stimuli to larvae and pupae with abnormal phenotypes, we found the mutant G1 and G2 generations responded to external stimuli in a longer time than the wild-type (WT) mosquitoes, and most of the mutants were 2 to 3 s slower than the WTs to respond to external stimuli (p < 0.01). Due to higher mortality, mutant larvae and pupae had fewer numbers than the WTs. The egg hatching rate of mutant G1 and G2 generations was lower than that of the WTs (p < 0.01). The expression level of 5-HTR7A in the mutants decreased by about 65% compared with the control group using real-time PCR (p < 0.05). In all, the 5-HT7A receptor plays an important role in the metamorphosis, development and motor function of Aedes aegypti.
Collapse
|
12
|
Gregor KM, Becker SC, Hellhammer F, Baumgärtner W, Puff C. Immunohistochemical Characterization of the Nervous System of Culex pipiens (Diptera, Culicidae). BIOLOGY 2022; 11:57. [PMID: 35053056 PMCID: PMC8772823 DOI: 10.3390/biology11010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 11/24/2022]
Abstract
Arthropod-borne diseases represent one of the greatest infection-related threats as a result of climate change and globalization. Repeatedly, arbovirus-infected mosquitoes show behavioral changes whose underlying mechanisms are still largely unknown, but might help to develop control strategies. However, in contrast to well-characterized insects such as fruit flies, little is known about neuroanatomy and neurotransmission in mosquitoes. To overcome this limitation, the study focuses on the immunohistochemical characterization of the nervous system of Culex pipiens biotype molestus in comparison to Drosophila melanogaster using 13 antibodies labeling nervous tissue, neurotransmitters or neurotransmitter-related enzymes. Antibodies directed against γ-aminobutyric acid, serotonin, tyrosine-hydroxylase and glutamine synthetase were suitable for investigations in Culex pipiens and Drosophila melanogaster, albeit species-specific spatial differences were observed. Likewise, similar staining results were achieved for neuronal glycoproteins, axons, dendrites and synaptic zones in both species. Interestingly, anti-phosphosynapsin and anti-gephyrin appear to represent novel markers for synapses and glial cells, respectively. In contrast, antibodies directed against acetylcholine, choline acetyltransferase, elav and repo failed to produce a signal in Culex pipiens comparable to that in Drosophila melanogaster. In summary, present results enable a detailed investigation of the nervous system of mosquitoes, facilitating further studies of behavioral mechanisms associated with arboviruses in the course of vector research.
Collapse
Affiliation(s)
- Katharina M. Gregor
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, Lower Saxony, 30559 Hannover, Germany; (K.M.G.); (C.P.)
| | - Stefanie C. Becker
- Institute for Parasitology, University of Veterinary Medicine Hannover, Bünteweg 17, Lower Saxony, 30559 Hannover, Germany; (S.C.B.); (F.H.)
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Bünteweg 17, Lower Saxony, 30559 Hannover, Germany
| | - Fanny Hellhammer
- Institute for Parasitology, University of Veterinary Medicine Hannover, Bünteweg 17, Lower Saxony, 30559 Hannover, Germany; (S.C.B.); (F.H.)
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Bünteweg 17, Lower Saxony, 30559 Hannover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, Lower Saxony, 30559 Hannover, Germany; (K.M.G.); (C.P.)
| | - Christina Puff
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, Lower Saxony, 30559 Hannover, Germany; (K.M.G.); (C.P.)
| |
Collapse
|
13
|
Anton S, Rössler W. Plasticity and modulation of olfactory circuits in insects. Cell Tissue Res 2020; 383:149-164. [PMID: 33275182 PMCID: PMC7873004 DOI: 10.1007/s00441-020-03329-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/27/2020] [Indexed: 12/15/2022]
Abstract
Olfactory circuits change structurally and physiologically during development and adult life. This allows insects to respond to olfactory cues in an appropriate and adaptive way according to their physiological and behavioral state, and to adapt to their specific abiotic and biotic natural environment. We highlight here findings on olfactory plasticity and modulation in various model and non-model insects with an emphasis on moths and social Hymenoptera. Different categories of plasticity occur in the olfactory systems of insects. One type relates to the reproductive or feeding state, as well as to adult age. Another type of plasticity is context-dependent and includes influences of the immediate sensory and abiotic environment, but also environmental conditions during postembryonic development, periods of adult behavioral maturation, and short- and long-term sensory experience. Finally, plasticity in olfactory circuits is linked to associative learning and memory formation. The vast majority of the available literature summarized here deals with plasticity in primary and secondary olfactory brain centers, but also peripheral modulation is treated. The described molecular, physiological, and structural neuronal changes occur under the influence of neuromodulators such as biogenic amines, neuropeptides, and hormones, but the mechanisms through which they act are only beginning to be analyzed.
Collapse
Affiliation(s)
- Sylvia Anton
- IGEPP, INRAE, Institut Agro, Univ Rennes, INRAE, 49045, Angers, France.
| | - Wolfgang Rössler
- Behavioral Physiology and Sociobiology (Zoology II), Biozentrum, University of Würzburg, Am Hubland, 97074, Würzburg, Germany.
| |
Collapse
|
14
|
Onyango MG, Attardo GM, Kelly ET, Bialosuknia SM, Stout J, Banker E, Kuo L, Ciota AT, Kramer LD. Zika Virus Infection Results in Biochemical Changes Associated With RNA Editing, Inflammatory and Antiviral Responses in Aedes albopictus. Front Microbiol 2020; 11:559035. [PMID: 33133033 PMCID: PMC7561680 DOI: 10.3389/fmicb.2020.559035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/14/2020] [Indexed: 12/11/2022] Open
Abstract
Rapid and significant range expansion of both the Zika virus (ZIKV) and its Aedes vector species has resulted in the declaration of ZIKV as a global health threat. Successful transmission of ZIKV by its vector requires a complex series of interactions between these entities including the establishment, replication and dissemination of the virus within the mosquito. The metabolic conditions within the mosquito tissues play a critical role in mediating the crucial processes of viral infection and replication and represent targets for prevention of virus transmission. In this study, we carried out a comprehensive metabolomic phenotyping of ZIKV infected and uninfected Ae. albopictus by untargeted analysis of primary metabolites, lipids and biogenic amines. We performed a comparative metabolomic study of infection state with the aim of understanding the biochemical changes resulting from the interaction between the ZIKV and its vector. We have demonstrated that ZIKV infection results in changes to the cellular metabolic environment including a significant enrichment of inosine and pseudo-uridine (Ψ) levels which may be associated with RNA editing activity. In addition, infected mosquitoes demonstrate a hypoglycemic phenotype and show significant increases in the abundance of metabolites such as prostaglandin H2, leukotriene D4 and protoporphyrinogen IX which are associated with antiviral activity. These provide a basis for understanding the biochemical response to ZIKV infection and pathology in the vector. Future mechanistic studies targeting these ZIKV infection responsive metabolites and their associated biosynthetic pathways can provide inroads to identification of mosquito antiviral responses with infection blocking potential.
Collapse
Affiliation(s)
- Maria G. Onyango
- Wadsworth Center, New York State Department of Health, Slingerlands, NY, United States
| | - Geoffrey M. Attardo
- Department of Entomology and Nematology, University of California, Davis, Davis, CA, United States
| | - Erin Taylor Kelly
- Department of Entomology and Nematology, University of California, Davis, Davis, CA, United States
| | - Sean M. Bialosuknia
- Wadsworth Center, New York State Department of Health, Slingerlands, NY, United States
- School of Public Health, State University of New York, Albany, NY, United States
| | - Jessica Stout
- Wadsworth Center, New York State Department of Health, Slingerlands, NY, United States
| | - Elyse Banker
- Wadsworth Center, New York State Department of Health, Slingerlands, NY, United States
| | - Lili Kuo
- Wadsworth Center, New York State Department of Health, Slingerlands, NY, United States
| | - Alexander T. Ciota
- Wadsworth Center, New York State Department of Health, Slingerlands, NY, United States
- School of Public Health, State University of New York, Albany, NY, United States
| | - Laura D. Kramer
- Wadsworth Center, New York State Department of Health, Slingerlands, NY, United States
- School of Public Health, State University of New York, Albany, NY, United States
| |
Collapse
|
15
|
Kemibala EE, Mafra-Neto A, Saroli J, Silva R, Philbert A, Ng'habi K, Foster WA, Dekker T, Mboera LEG. Is Anopheles gambiae attraction to floral and human skin-based odours and their combination modulated by previous blood meal experience? Malar J 2020; 19:318. [PMID: 32873302 PMCID: PMC7466419 DOI: 10.1186/s12936-020-03395-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/26/2020] [Indexed: 11/21/2022] Open
Abstract
Background Mosquitoes use odours to find energy resources, blood hosts and oviposition sites. While these odour sources are normally spatio-temporally segregated in a mosquito’s life history, here this study explored to what extent a combination of flower- and human-mimicking synthetic volatiles would attract the malaria vector Anopheles gambiae sensu stricto (s.s.) Methods In the laboratory and in large (80 m2) outdoor cages in Tanzania, nulliparous and parous A. gambiae s.s. were offered choices between a blend of human skin volatiles (Skin Lure), a blend of floral volatiles (Vectrax), or a combination thereof. The blends consisted of odours that induce distinct, non-overlapping activation patterns in the olfactory circuitry, in sensory neurons expressing olfactory receptors (ORs) and ionotropic receptors (IRs), respectively. Catches were compared between treatments. Results In the laboratory nulliparous and parous mosquitoes preferred skin odours and combinations thereof over floral odours. However, in semi-field settings nulliparous were significantly more caught with floral odours, whereas no differences were observed for parous females. Combining floral and human volatiles did not augment attractiveness. Conclusions Nulliparous and parous A. gambiae s.s. are attracted to combinations of odours derived from spatio-temporally segregated resources in mosquito life-history (floral and human volatiles). This is favourable as mosquito populations are comprised of individuals whose nutritional and developmental state steer them to diverging odours sources, baits that attract irrespective of mosquito status could enhance overall effectiveness and use in monitoring and control. However, combinations of floral and skin odours did not augment attraction in semi-field settings, in spite of the fact that these blends activate distinct sets of sensory neurons. Instead, mosquito preference appeared to be modulated by blood meal experience from floral to a more generic attraction to odour blends. Results are discussed both from an odour coding, as well as from an application perspective.
Collapse
Affiliation(s)
- Elison E Kemibala
- Ministry of Health, Community Development, Gender, Elderly and Children, Vector Control Training Centre, P.O. Box 136, Muheza, Tanzania. .,University of Dar es Salaam, Dar es Salaam, Tanzania.
| | | | - Jesse Saroli
- ISCA Technologies, 1230, West Spring St, Riverside, CA, 92507, USA
| | - Rodrigo Silva
- ISCA Technologies, 1230, West Spring St, Riverside, CA, 92507, USA
| | | | - Kija Ng'habi
- University of Dar es Salaam, Dar es Salaam, Tanzania
| | - Woodbridge A Foster
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH, USA.,Department of Entomology, The Ohio State University, Columbus, OH, USA
| | - Teun Dekker
- Swedish University of Agricultural Sciences, Alnarp, Uppsala, Sweden.,BioInnovate AB, Lund, Sweden
| | - Leonard E G Mboera
- SACIDS Foundation for One Health, Sokoine University of Agriculture, Morogoro, Tanzania
| |
Collapse
|
16
|
Ye Z, Liu F, Sun H, Barker M, Pitts RJ, Zwiebel LJ. Heterogeneous expression of the ammonium transporter AgAmt in chemosensory appendages of the malaria vector, Anopheles gambiae. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 120:103360. [PMID: 32126276 PMCID: PMC7161093 DOI: 10.1016/j.ibmb.2020.103360] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 05/03/2023]
Abstract
Ammonia is one of the principal kairomones originating from human and other animal emanations and in that context, plays an essential role in the host-seeking behaviors of the malaria vector mosquito Anopheles gambiae. Nevertheless, despite its importance in directing host-seeking, the mechanisms underlying ammonia detection in the mosquito olfactory system remains largely unknown. In addition to ongoing efforts to identify and characterize the molecular receptors that underlie ammonia sensitivity, previous studies have revealed a prominent role for ammonium transporters (Amt) in modulating antennal and behavioral responses in Drosophila melanogaster and An. gambiae. In the former, localization of DmAmt in antennal sensilla to auxiliary cells surrounding the ammonia sensory neurons led to the hypothesis that its role was to clear excess ammonium ions in the sensillar lymph. In the latter, RT-PCR and heterologous expression have been used to examine the expression and functional characteristics of the An. gambiae ammonium transporter, AgAmt. We now employ advanced transgenic tools to comprehensively examine AgAmt spatial localization across the peripheral chemosensory appendages in larvae and adult female An. gambiae. In the larval antennae, AgAmt appears localized in both neuronal and auxiliary cells. In contrast to D. melanogaster, in the adult antennae, AgAmt-derived signals are observed in both non-neuronal auxiliary cells and in sensory neurons in ammonia-responsive basiconic and coeloconic sensilla. In the maxillary palps, labella, and tarsi, AgAmt appears restricted to sensory neurons. We have also characterized the responses to ammonia of adult antennal coeloconic sensilla and maxillary palp capitate pegs revealing a correlation between sensillar AgAmt expression and ammonia sensitivity. Taken together, these data suggest that AgAmt may play heterogeneous roles in the adult and larval chemosensory apparatus and potentially broad utility as a supra-receptor target in mosquito control.
Collapse
Affiliation(s)
- Zi Ye
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37235, USA
| | - Feng Liu
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37235, USA
| | - Huahua Sun
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37235, USA
| | | | - R Jason Pitts
- Department of Biology, Baylor University, Waco, TX, 76706, USA
| | - Laurence J Zwiebel
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37235, USA.
| |
Collapse
|
17
|
Latorre-Estivalis JM, Sterkel M, Ons S, Lorenzo MG. Transcriptomics supports local sensory regulation in the antenna of the kissing-bug Rhodnius prolixus. BMC Genomics 2020; 21:101. [PMID: 32000664 PMCID: PMC6993403 DOI: 10.1186/s12864-020-6514-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 01/20/2020] [Indexed: 12/16/2022] Open
Abstract
Background Rhodnius prolixus has become a model for revealing the molecular bases of insect sensory biology due to the publication of its genome and its well-characterized behavioural repertoire. Gene expression modulation underlies behaviour-triggering processes at peripheral and central levels. Still, the regulation of sensory-related gene transcription in sensory organs is poorly understood. Here we study the genetic bases of plasticity in antennal sensory function, using R. prolixus as an insect model. Results Antennal expression of neuromodulatory genes such as those coding for neuropeptides, neurohormones and their receptors was characterized in fifth instar larvae and female and male adults by means of RNA-Sequencing (RNA-Seq). New nuclear receptor and takeout gene sequences were identified for this species, as well as those of enzymes involved in the biosynthesis and processing of neuropeptides and biogenic amines. Conclusions We report a broad repertoire of neuromodulatory and neuroendocrine-related genes expressed in the antennae of R. prolixus and suggest that they may serve as the local basis for modulation of sensory neuron physiology. Diverse neuropeptide precursor genes showed consistent expression in the antennae of all stages studied. Future studies should characterize the role of these modulatory components acting over antennal sensory processes to assess the relative contribution of peripheral and central regulatory systems on the plastic expression of insect behaviour.
Collapse
Affiliation(s)
- Jose Manuel Latorre-Estivalis
- Vector Behaviour and Pathogen Interaction Group, Instituto René Rachou - FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil. .,Laboratorio de Neurobiología de Insectos - Centro Regional de Estudios Genómicos - CREG, Facultad de Ciencias Exactas. Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina.
| | - Marcos Sterkel
- Laboratorio de Neurobiología de Insectos - Centro Regional de Estudios Genómicos - CREG, Facultad de Ciencias Exactas. Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Sheila Ons
- Laboratorio de Neurobiología de Insectos - Centro Regional de Estudios Genómicos - CREG, Facultad de Ciencias Exactas. Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Marcelo Gustavo Lorenzo
- Vector Behaviour and Pathogen Interaction Group, Instituto René Rachou - FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
18
|
Hill SR, Ghaninia M, Ignell R. Blood Meal Induced Regulation of Gene Expression in the Maxillary Palps, a Chemosensory Organ of the Mosquito Aedes aegypti. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00336] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
19
|
Matthews BJ, Younger MA, Vosshall LB. The ion channel ppk301 controls freshwater egg-laying in the mosquito Aedes aegypti. eLife 2019; 8:e43963. [PMID: 31112133 PMCID: PMC6597239 DOI: 10.7554/elife.43963] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 05/20/2019] [Indexed: 12/31/2022] Open
Abstract
Female Aedes aegypti mosquitoes are deadly vectors of arboviral pathogens and breed in containers of freshwater associated with human habitation. Because high salinity is lethal to offspring, correctly evaluating water purity is a crucial parenting decision. We found that the DEG/ENaC channel ppk301 and sensory neurons expressing ppk301 control egg-laying initiation and choice in Ae. aegypti. Using calcium imaging, we found that ppk301-expressing cells show ppk301-dependent responses to water but, unexpectedly, also respond to salt in a ppk301-independent fashion. This suggests that ppk301 is instructive for egg-laying at low-salt concentrations, but that a ppk301-independent pathway is responsible for inhibiting egg-laying at high-salt concentrations. Water is a key resource for insect survival and understanding how mosquitoes interact with water to control different behaviors is an opportunity to study the evolution of chemosensory systems.
Collapse
Affiliation(s)
- Benjamin J Matthews
- Laboratory of Neurogenetics and BehaviorThe Rockefeller UniversityNew YorkUnited States
- Howard Hughes Medical InstituteNew YorkUnited States
| | - Meg A Younger
- Laboratory of Neurogenetics and BehaviorThe Rockefeller UniversityNew YorkUnited States
- Kavli Neural Systems InstituteNew YorkUnited States
| | - Leslie B Vosshall
- Laboratory of Neurogenetics and BehaviorThe Rockefeller UniversityNew YorkUnited States
- Howard Hughes Medical InstituteNew YorkUnited States
- Kavli Neural Systems InstituteNew YorkUnited States
| |
Collapse
|
20
|
Sparks JT, Botsko G, Swale DR, Boland LM, Patel SS, Dickens JC. Membrane Proteins Mediating Reception and Transduction in Chemosensory Neurons in Mosquitoes. Front Physiol 2018; 9:1309. [PMID: 30294282 PMCID: PMC6158332 DOI: 10.3389/fphys.2018.01309] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 08/30/2018] [Indexed: 12/17/2022] Open
Abstract
Mosquitoes use chemical cues to modulate important behaviors such as feeding, mating, and egg laying. The primary chemosensory organs comprising the paired antennae, maxillary palps and labial palps are adorned with porous sensilla that house primary sensory neurons. Dendrites of these neurons provide an interface between the chemical environment and higher order neuronal processing. Diverse proteins located on outer membranes interact with chemicals, ions, and soluble proteins outside the cell and within the lumen of sensilla. Here, we review the repertoire of chemosensory receptors and other membrane proteins involved in transduction and discuss the outlook for their functional characterization. We also provide a brief overview of select ion channels, their role in mammalian taste, and potential involvement in mosquito taste. These chemosensory proteins represent targets for the disruption of harmful biting behavior and disease transmission by mosquito vectors.
Collapse
Affiliation(s)
- Jackson T Sparks
- Biology Department, High Point University, High Point, NC, United States
| | - Gina Botsko
- Biology Department, High Point University, High Point, NC, United States
| | - Daniel R Swale
- Department of Entomology, Louisiana State University AgCenter, Baton Rouge, LA, United States
| | - Linda M Boland
- Department of Biology, University of Richmond, Richmond, VA, United States
| | - Shriraj S Patel
- Department of Biology, University of Richmond, Richmond, VA, United States
| | - Joseph C Dickens
- Department of Biology, University of Richmond, Richmond, VA, United States
| |
Collapse
|
21
|
Zhukovskaya MI, Polyanovsky AD. Biogenic Amines in Insect Antennae. Front Syst Neurosci 2017; 11:45. [PMID: 28701930 PMCID: PMC5487433 DOI: 10.3389/fnsys.2017.00045] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 06/06/2017] [Indexed: 11/25/2022] Open
Abstract
Insect antenna is a multisensory organ, each modality of which can be modulated by biogenic amines. Octopamine (OA) and its metabolic precursor tyramine (TA) affect activity of antennal olfactory receptor neurons. There is some evidence that dopamine (DA) modulates gustatory neurons. Serotonin can serve as a neurotransmitter in some afferent mechanosensory neurons and both as a neurotransmitter and neurohormone in efferent fibers targeted at the antennal vessel and mechanosensory organs. As a neurohormone, serotonin affects the generation of the transepithelial potential by sensillar accessory cells. Other possible targets of biogenic amines in insect antennae are hygro- and thermosensory neurons and epithelial cells. We suggest that the insect antenna is partially autonomous in the sense that biologically active substances entering its hemolymph may exert their effects and be cleared from this compartment without affecting other body parts.
Collapse
Affiliation(s)
- Marianna I Zhukovskaya
- Laboratory of Evolution of Sense Organs, Sechenov Institute of Evolutionary Biochemistry and Physiology, Russian Academy of SciencesSaint Petersburg, Russia
| | - Andrey D Polyanovsky
- Laboratory of Evolution of Sense Organs, Sechenov Institute of Evolutionary Biochemistry and Physiology, Russian Academy of SciencesSaint Petersburg, Russia
| |
Collapse
|
22
|
Lutz EK, Lahondère C, Vinauger C, Riffell JA. Olfactory learning and chemical ecology of olfaction in disease vector mosquitoes: a life history perspective. CURRENT OPINION IN INSECT SCIENCE 2017; 20:75-83. [PMID: 28602240 PMCID: PMC5492930 DOI: 10.1016/j.cois.2017.03.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 02/28/2017] [Accepted: 03/07/2017] [Indexed: 06/07/2023]
Abstract
Mosquitoes transmit many debilitating diseases including malaria, dengue and Zika. Odors mediate behaviors that directly impact disease transmission (blood-feeding) as well as life history events that contribute to mosquito survival and fitness (mating and oviposition, nectar foraging, larval foraging and predator avoidance). In addition to innate olfaction-mediated behaviors, mosquitoes rely on olfactory experience throughout their life to inform advantageous choices in many of these important behaviors. Previous reviews have addressed either the chemical ecology of mosquitoes, or olfactory-driven behaviors including host-feeding or oviposition. Adding to this literature, we use a holistic life history perspective to integrate and compare innate and learned olfactory behavior at various stages of mosquito development.
Collapse
Affiliation(s)
- Eleanor K Lutz
- Department of Biology, University of Washington, Seattle, WA 98195, United States
| | - Chloé Lahondère
- Department of Biology, University of Washington, Seattle, WA 98195, United States
| | - Clément Vinauger
- Department of Biology, University of Washington, Seattle, WA 98195, United States
| | - Jeffrey A Riffell
- Department of Biology, University of Washington, Seattle, WA 98195, United States.
| |
Collapse
|
23
|
Benton R. The neurobiology of gustation in insect disease vectors: progress and potential. CURRENT OPINION IN INSECT SCIENCE 2017; 20:19-27. [PMID: 28602232 DOI: 10.1016/j.cois.2017.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/06/2017] [Accepted: 02/17/2017] [Indexed: 06/07/2023]
Abstract
For insect vectors of human diseases, mealtimes are a key moment of infection. Understanding how and when such species decide on what to feed is both an interesting problem in sensory neurobiology and a source of information for intervention of these behaviors to control spread of infectious agents. Here I review the current knowledge of the molecular and cellular mechanisms of gustation in insect disease vectors, covering blood-feeders as well as scavengers that spread pathogens indirectly. I also consider how these behaviors are modulated over short and long timescales, and describe efforts to artificially modulate them. Though a relatively nascent field, gustatory neurobiology in insect vectors has much promise for future fundamental discoveries and practical applications.
Collapse
Affiliation(s)
- Richard Benton
- Center for Integrative Genomics, Faculty of Biology and Medicine, Génopode Building, University of Lausanne, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
24
|
Pitts RJ, Derryberry SL, Zhang Z, Zwiebel LJ. Variant Ionotropic Receptors in the Malaria Vector Mosquito Anopheles gambiae Tuned to Amines and Carboxylic Acids. Sci Rep 2017; 7:40297. [PMID: 28067294 PMCID: PMC5220300 DOI: 10.1038/srep40297] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 12/01/2016] [Indexed: 01/24/2023] Open
Abstract
The principal Afrotropical human malaria vector mosquito, Anopheles gambiae, remains a significant threat to global health. A critical component in the transmission of malaria is the ability of An. gambiae females to detect and respond to human-derived chemical kairomones in their search for blood meal hosts. The basis for host odor responses resides in olfactory receptor neurons (ORNs) that express chemoreceptors encoded by large gene families, including the odorant receptors (ORs) and the variant ionotropic receptors (IRs). While ORs have been the focus of extensive investigation, functional IR complexes and the chemical compounds that activate them have not been identified in An. gambiae. Here we report the transcriptional profiles and functional characterization of three An. gambiae IR (AgIr) complexes that specifically respond to amines or carboxylic acids - two classes of semiochemicals that have been implicated in mediating host-seeking by adult females but are not known to activate An. gambiae ORs (AgOrs). Our results suggest that AgIrs play critical roles in the detection and behavioral responses to important classes of host odors that are underrepresented in the AgOr chemical space.
Collapse
Affiliation(s)
- R Jason Pitts
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA.,Vanderbilt Institute for Global Health, Nashville, Tennessee, USA
| | - Stephen L Derryberry
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Zhiwei Zhang
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA.,College of Forestry, Shanxi Agricultural University, Shanxi, P. R. China
| | - Laurence J Zwiebel
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA.,Vanderbilt Institute for Global Health, Nashville, Tennessee, USA.,Department of Pharmacology, Vanderbilt Brain Institute, Program in Developmental Biology and Institute of Chemical Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
25
|
Riabinina O, Task D, Marr E, Lin CC, Alford R, O'Brochta DA, Potter CJ. Organization of olfactory centres in the malaria mosquito Anopheles gambiae. Nat Commun 2016; 7:13010. [PMID: 27694947 PMCID: PMC5063964 DOI: 10.1038/ncomms13010] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 08/25/2016] [Indexed: 02/01/2023] Open
Abstract
Mosquitoes are vectors for multiple infectious human diseases and use a variety of sensory cues (olfactory, temperature, humidity and visual) to locate a human host. A comprehensive understanding of the circuitry underlying sensory signalling in the mosquito brain is lacking. Here we used the Q-system of binary gene expression to develop transgenic lines of Anopheles gambiae in which olfactory receptor neurons expressing the odorant receptor co-receptor (Orco) gene are labelled with GFP. These neurons project from the antennae and maxillary palps to the antennal lobe (AL) and from the labella on the proboscis to the suboesophageal zone (SEZ), suggesting integration of olfactory and gustatory signals occurs in this brain region. We present detailed anatomical maps of olfactory innervations in the AL and the SEZ, identifying glomeruli that may respond to human body odours or carbon dioxide. Our results pave the way for anatomical and functional neurogenetic studies of sensory processing in mosquitoes.
Collapse
Affiliation(s)
- Olena Riabinina
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, 434 Rangos Building, Baltimore, Maryland 21205, USA
| | - Darya Task
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, 434 Rangos Building, Baltimore, Maryland 21205, USA
| | - Elizabeth Marr
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, 434 Rangos Building, Baltimore, Maryland 21205, USA
| | - Chun-Chieh Lin
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, 434 Rangos Building, Baltimore, Maryland 21205, USA
| | - Robert Alford
- University of Maryland College Park, 9600 Gudelsky Drive, Rockville, Maryland 20850, USA
| | - David A O'Brochta
- University of Maryland College Park, 9600 Gudelsky Drive, Rockville, Maryland 20850, USA
| | - Christopher J Potter
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, 434 Rangos Building, Baltimore, Maryland 21205, USA
| |
Collapse
|
26
|
Andrés M, Seifert M, Spalthoff C, Warren B, Weiss L, Giraldo D, Winkler M, Pauls S, Göpfert M. Auditory Efferent System Modulates Mosquito Hearing. Curr Biol 2016; 26:2028-2036. [DOI: 10.1016/j.cub.2016.05.077] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 05/13/2016] [Accepted: 05/31/2016] [Indexed: 11/30/2022]
|
27
|
Leucokinin mimetic elicits aversive behavior in mosquito Aedes aegypti (L.) and inhibits the sugar taste neuron. Proc Natl Acad Sci U S A 2016; 113:6880-5. [PMID: 27274056 DOI: 10.1073/pnas.1520404113] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Insect kinins (leucokinins) are multifunctional peptides acting as neurohormones and neurotransmitters. In females of the mosquito vector Aedes aegypti (L.), aedeskinins are known to stimulate fluid secretion from the renal organs (Malpighian tubules) and hindgut contractions by activating a G protein-coupled kinin receptor designated "Aedae-KR." We used protease-resistant kinin analogs 1728, 1729, and 1460 to evaluate their effects on sucrose perception and feeding behavior. In no-choice feeding bioassays (capillary feeder and plate assays), the analog 1728, which contains α-amino isobutyric acid, inhibited females from feeding on sucrose. It further induced quick fly-away or walk-away behavior following contact with the tarsi and the mouthparts. Electrophysiological recordings from single long labellar sensilla of the proboscis demonstrated that mixing the analog 1728 at 1 mM with sucrose almost completely inhibited the detection of sucrose. Aedae-KR was immunolocalized in contact chemosensory neurons in prothoracic tarsi and in sensory neurons and accessory cells of long labellar sensilla in the distal labellum. Silencing Aedae-KR by RNAi significantly reduced gene expression and eliminated the feeding-aversion behavior resulting from contact with the analog 1728, thus directly implicating the Aedae-KR in the aversion response. To our knowledge, this is the first report that kinin analogs modulate sucrose perception in any insect. The aversion to feeding elicited by analog 1728 suggests that synthetic molecules targeting the mosquito Aedae-KR in the labellum and tarsi should be investigated for the potential to discover novel feeding deterrents of mosquito vectors.
Collapse
|
28
|
Matthews BJ, McBride CS, DeGennaro M, Despo O, Vosshall LB. The neurotranscriptome of the Aedes aegypti mosquito. BMC Genomics 2016; 17:32. [PMID: 26738925 PMCID: PMC4704297 DOI: 10.1186/s12864-015-2239-0] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 11/24/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND A complete genome sequence and the advent of genome editing open up non-traditional model organisms to mechanistic genetic studies. The mosquito Aedes aegypti is an important vector of infectious diseases such as dengue, chikungunya, and yellow fever and has a large and complex genome, which has slowed annotation efforts. We used comprehensive transcriptomic analysis of adult gene expression to improve the genome annotation and to provide a detailed tissue-specific catalogue of neural gene expression at different adult behavioral states. RESULTS We carried out deep RNA sequencing across all major peripheral male and female sensory tissues, the brain and (female) ovary. Furthermore, we examined gene expression across three important phases of the female reproductive cycle, a remarkable example of behavioral switching in which a female mosquito alternates between obtaining blood-meals from humans and laying eggs. Using genome-guided alignments and de novo transcriptome assembly, our re-annotation includes 572 new putative protein-coding genes and updates to 13.5 and 50.3 % of existing transcripts within coding sequences and untranslated regions, respectively. Using this updated annotation, we detail gene expression in each tissue, identifying large numbers of transcripts regulated by blood-feeding and sexually dimorphic transcripts that may provide clues to the biology of male- and female-specific behaviors, such as mating and blood-feeding, which are areas of intensive study for those interested in vector control. CONCLUSIONS This neurotranscriptome forms a strong foundation for the study of genes in the mosquito nervous system and investigation of sensory-driven behaviors and their regulation. Furthermore, understanding the molecular genetic basis of mosquito chemosensory behavior has important implications for vector control.
Collapse
Affiliation(s)
- Benjamin J Matthews
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY, 10065, USA.
| | - Carolyn S McBride
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY, 10065, USA.
- Present Address: Department of Ecology and Evolutionary Biology, Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08544, USA.
| | - Matthew DeGennaro
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY, 10065, USA.
- Present Address: Department of Biological Sciences, Biomolecular Sciences Institute, Florida International University, Miami, FL, 33199, USA.
| | - Orion Despo
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY, 10065, USA.
- Present address: Stanford University, Stanford, CA, 94305, USA.
| | - Leslie B Vosshall
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY, 10065, USA.
- Howard Hughes Medical Institute, New York, NY, 10065, USA.
| |
Collapse
|
29
|
Gadenne C, Barrozo RB, Anton S. Plasticity in Insect Olfaction: To Smell or Not to Smell? ANNUAL REVIEW OF ENTOMOLOGY 2016; 61:317-333. [PMID: 26982441 DOI: 10.1146/annurev-ento-010715-023523] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In insects, olfaction plays a crucial role in many behavioral contexts, such as locating food, sexual partners, and oviposition sites. To successfully perform such behaviors, insects must respond to chemical stimuli at the right moment. Insects modulate their olfactory system according to their physiological state upon interaction with their environment. Here, we review the plasticity of behavioral responses to different odor types according to age, feeding state, circadian rhythm, and mating status. We also summarize what is known about the underlying neural and endocrinological mechanisms, from peripheral detection to central nervous integration, and cover neuromodulation from the molecular to the behavioral level. We describe forms of olfactory plasticity that have contributed to the evolutionary success of insects and have provided them with remarkable tools to adapt to their ever-changing environment.
Collapse
Affiliation(s)
- Christophe Gadenne
- Neuroéthologie-RCIM, INRA-Université d'Angers, UPRES EA 2647 USC INRA 1330, 49071 Beaucouzé cedex, France; ,
| | - Romina B Barrozo
- Laboratorio de Fisiología de Insectos, DBBE, FCEyN, Universidad de Buenos Aires, IBBEA, CONICET-UBA, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina;
| | - Sylvia Anton
- Neuroéthologie-RCIM, INRA-Université d'Angers, UPRES EA 2647 USC INRA 1330, 49071 Beaucouzé cedex, France; ,
| |
Collapse
|
30
|
Paluzzi JPV, Bhatt G, Wang CHJ, Zandawala M, Lange AB, Orchard I. Identification, functional characterization, and pharmacological profile of a serotonin type-2b receptor in the medically important insect, Rhodnius prolixus. Front Neurosci 2015; 9:175. [PMID: 26041983 PMCID: PMC4436800 DOI: 10.3389/fnins.2015.00175] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 04/28/2015] [Indexed: 11/13/2022] Open
Abstract
In the Chagas disease vector, Rhodnius prolixus, two diuretic hormones act synergistically to dramatically increase fluid secretion by the Malpighian tubules (MTs) during the rapid diuresis that is initiated upon engorgement of vertebrate blood. One of these diuretic hormones is the biogenic amine, serotonin (5-hydroxytryptamine, 5-HT), which controls a variety of additional activities including cuticle plasticization, salivary gland secretion, anterior midgut absorption, cardioacceleratory activity, and myotropic activities on a number of visceral tissues. To better understand the regulatory mechanisms linked to these various physiological actions of serotonin, we have isolated and characterized a serotonin type 2b receptor in R. prolixus, Rhopr5HTR2b, which shares sequence similarity to the vertebrate serotonin type 2 receptors. Rhopr5HTR2b transcript is enriched in well-recognized physiological targets of serotonin, including the MTs, salivary glands and dorsal vessel (i.e., insect heart). Notably, Rhopr5HTR2b was not enriched in the anterior midgut where serotonin stimulates absorption and elicits myotropic control. Using a heterologous functional receptor assay, we examined Rhopr5HTR2b activation characteristics and its sensitivity to potential agonists, antagonists, and other biogenic amines. Rhopr5HTR2b is dose-dependently activated by serotonin with an EC50 in the nanomolar range. Rhopr5HTR2b is sensitive to alpha-methyl serotonin and is inhibited by a variety of serotonin receptor antagonists, including propranolol, spiperone, ketanserin, mianserin, and cyproheptadine. In contrast, the cardioacceleratory activity of serotonin revealed a unique pharmacological profile, with no significant response induced by alpha-methyl serotonin and insensitivity to ketanserin and mianserin. This distinct agonist/antagonist profile indicates that a separate serotonin receptor type may mediate cardiomodulatory effects controlled by serotonin in R. prolixus.
Collapse
Affiliation(s)
| | - Garima Bhatt
- Department of Biology, York University Toronto, ON, Canada ; Department of Biology, University of Toronto Mississauga Mississauga, ON, Canada
| | - Chang-Hui J Wang
- Department of Biology, University of Toronto Mississauga Mississauga, ON, Canada
| | - Meet Zandawala
- Department of Biology, University of Toronto Mississauga Mississauga, ON, Canada
| | - Angela B Lange
- Department of Biology, University of Toronto Mississauga Mississauga, ON, Canada
| | - Ian Orchard
- Department of Biology, University of Toronto Mississauga Mississauga, ON, Canada
| |
Collapse
|
31
|
Siju KP, Reifenrath A, Scheiblich H, Neupert S, Predel R, Hansson BS, Schachtner J, Ignell R. Neuropeptides in the antennal lobe of the yellow fever mosquito, Aedes aegypti. J Comp Neurol 2014; 522:592-608. [PMID: 23897410 PMCID: PMC4265797 DOI: 10.1002/cne.23434] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 06/14/2013] [Accepted: 07/11/2013] [Indexed: 12/25/2022]
Abstract
For many insects, including mosquitoes, olfaction is the dominant modality regulating their behavioral repertoire. Many neurochemicals modulate olfactory information in the central nervous system, including the primary olfactory center of insects, the antennal lobe. The most diverse and versatile neurochemicals in the insect nervous system are found in the neuropeptides. In the present study, we analyzed neuropeptides in the antennal lobe of the yellow fever mosquito, Aedes aegypti, a major vector of arboviral diseases. Direct tissue profiling of the antennal lobe by matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry indicated the presence of 28 mature products from 10 different neuropeptide genes. In addition, immunocytochemical techniques were used to describe the cellular location of the products of up to seven of these genes within the antennal lobe. Allatostatin A, allatotropin, SIFamide, FMRFamide-related peptides, short neuropeptide F, myoinhibitory peptide, and tachykinin-related peptides were found to be expressed in local interneurons and extrinsic neurons of the antennal lobe. Building on these results, we discuss the possible role of neuropeptide signaling in the antennal lobe of Ae. aegypti. J. Comp. Neurol. 522:592–608, 2014.
Collapse
Affiliation(s)
- K P Siju
- Unit of Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, 230 53, Alnarp, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Bohbot JD, Sparks JT, Dickens JC. The maxillary palp of Aedes aegypti, a model of multisensory integration. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2014; 48:29-39. [PMID: 24613607 DOI: 10.1016/j.ibmb.2014.02.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 02/19/2014] [Accepted: 02/24/2014] [Indexed: 06/03/2023]
Abstract
Female yellow-fever mosquitoes, Aedes aegypti, are obligate blood-feeders and vectors of the pathogens that cause dengue fever, yellow fever and Chikungunya. This feeding behavior concludes a series of multisensory events guiding the mosquito to its host from a distance. The antennae and maxillary palps play a major role in host detection and other sensory-mediated behaviors. Compared to the antennae, the maxillary palps are a relatively simple organ and thus an attractive model for exploration of the neuromolecular networks underlying chemo- and mechanosensation. In this study, we surveyed the expressed genetic components and examined their potential involvement with these sensory modalities. Using Illumina sequencing, we identified the transcriptome of the maxillary palps of physiologically mature female Ae. aegypti. Genes expressed in the maxillary palps included those involved in sensory reception, signal transduction and neuromodulation. In addition to previously reported chemosensory genes, we identified candidate transcripts potentially involved in mechanosensation and thermosensation. This survey lays the groundwork to explore sensory networks in an insect appendage. The identification of genes involved in thermosensation provides prospective molecular targets for the development of chemicals aimed at disrupting the behavior of this medically important insect.
Collapse
Affiliation(s)
- Jonathan D Bohbot
- United States Department of Agriculture, Agricultural Research Service, Henry A. Wallace Beltsville Agricultural Research Center, Invasive Insect Biocontrol and Behavior Laboratory, Beltsville, MD, USA
| | - Jackson T Sparks
- United States Department of Agriculture, Agricultural Research Service, Henry A. Wallace Beltsville Agricultural Research Center, Invasive Insect Biocontrol and Behavior Laboratory, Beltsville, MD, USA
| | - Joseph C Dickens
- United States Department of Agriculture, Agricultural Research Service, Henry A. Wallace Beltsville Agricultural Research Center, Invasive Insect Biocontrol and Behavior Laboratory, Beltsville, MD, USA.
| |
Collapse
|
33
|
Watanabe H, Shimohigashi M, Yokohari F. Serotonin-immunoreactive sensory neurons in the antenna of the cockroachPeriplaneta americana. J Comp Neurol 2013; 522:414-34. [DOI: 10.1002/cne.23419] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 06/24/2013] [Accepted: 07/03/2013] [Indexed: 11/11/2022]
Affiliation(s)
- Hidehiro Watanabe
- Division of Biology, Department of Earth System Science; Fukuoka University; Fukuoka Japan
| | - Miki Shimohigashi
- Division of Biology, Department of Earth System Science; Fukuoka University; Fukuoka Japan
| | - Fumio Yokohari
- Division of Biology, Department of Earth System Science; Fukuoka University; Fukuoka Japan
| |
Collapse
|
34
|
Liu SS, Li AY, Witt CM, Pérez de León AA. Effects of reserpine on reproduction and serotonin immunoreactivity in the stable fly Stomoxys calcitrans (L.). JOURNAL OF INSECT PHYSIOLOGY 2013; 59:974-982. [PMID: 23321479 PMCID: PMC4407495 DOI: 10.1016/j.jinsphys.2012.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Revised: 12/19/2012] [Accepted: 12/28/2012] [Indexed: 06/01/2023]
Abstract
Biogenic amines are known to play critical roles in key insect behaviors such as feeding and reproduction. This study documents the effects of reserpine on mating and egg-laying behaviors of the stable fly, Stomoxys calcitrans (L.) (Diptera: Muscidae), which is one of the most significant biting fly pests affecting cattle. Two sperm staining techniques were adapted successfully to reveal the morphology of stable fly sperm, for the first time, and determine successful mating in females through the assessment of sperm transfer. This approach was also applied to assess sperm transfer by males treated with different doses of reserpine. Mating or sperm transfer did not occur in flies during the first 3 days after emergence. Thereafter, the percentage of females that mated increased with age. Reserpine treatment of males reduced sperm transfer in a dose-dependent manner. Older males were more sensitive to reserpine treatment than younger flies. Reserpine treatment of 5 days old females reduced the number of eggs laid, but had no effect on egg-hatching rates. Results of immunoreactivity (IR) experiments indicated that serotonin in the neuronal processes innervating male testes was completely depleted by reserpine within 5h after treatment. This effect was transient as the serotonin immunoreactive signal was recovered in 33.3% of the males at 1 day post-treatment and in 94.4% of the flies at 3 days post-treatment. The results of this study concur with previous findings in other insect species and extend our knowledge of the critical roles biogenic amines play in mating and oviposition behaviors of the stable fly. The work could provide a foundation to further characterize the specific roles of individual biogenic amines and their receptors in stable fly reproduction.
Collapse
Affiliation(s)
- Samuel S. Liu
- USDA, ARS, Knipling-Bushland U.S. Livestock Insects Research Laboratory, Kerrville, TX 78028, USA
| | - Andrew Y. Li
- USDA, ARS, Knipling-Bushland U.S. Livestock Insects Research Laboratory, Kerrville, TX 78028, USA
| | - Colleen M. Witt
- Department of Biology, RCMI Advanced Imaging Core, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | | |
Collapse
|
35
|
Falibene A, Rössler W, Josens R. Serotonin depresses feeding behaviour in ants. JOURNAL OF INSECT PHYSIOLOGY 2012; 58:7-17. [PMID: 21893064 DOI: 10.1016/j.jinsphys.2011.08.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 08/17/2011] [Accepted: 08/18/2011] [Indexed: 05/31/2023]
Abstract
Feeding behaviour is a complex functional system that relies on external signals and the physiological state of the animal. This is also the case in ants as they vary their feeding behaviour according to food characteristics, environmental conditions and - as they are social insects - to the colony's requirements. The biogenic amine serotonin (5-HT) was shown to be involved in the control and modulation of many actions and processes related to feeding in both vertebrates and invertebrates. In this study, we investigated whether 5-HT affects nectar feeding in ants by analysing its effect on the sucking-pump activity. Furthermore, we studied 5-HT association with tissues and neuronal ganglia involved in feeding regulation. Our results show that 5-HT promotes a dose-dependent depression of sucrose feeding in Camponotus mus ants. Orally administered 5-HT diminished the intake rate by mainly decreasing the volume of solution taken per pump contraction, without modifying the sucrose acceptance threshold. Immunohistochemical studies all along the alimentary canal revealed 5-HT-like immunoreactive processes on the foregut (oesophagus, crop and proventriculus), while the midgut and hindgut lacked 5-HT innervation. Although the frontal and suboesophageal ganglia contained 5-HT immunoreactive cell bodies, serotonergic innervation in the sucking-pump muscles was absent. The results are discussed in the frame of a role of 5-HT in feeding control in ants.
Collapse
Affiliation(s)
- Agustina Falibene
- Grupo de Estudio de Insectos Sociales, Departamento de Biodiversidad y Biología Experimental, IFIBYNE, CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pab. II, (C1428 EHA) Buenos Aires, Argentina
| | | | | |
Collapse
|
36
|
Mysore K, Flister S, Müller P, Rodrigues V, Reichert H. Brain development in the yellow fever mosquito Aedes aegypti: a comparative immunocytochemical analysis using cross-reacting antibodies from Drosophila melanogaster. Dev Genes Evol 2011; 221:281-96. [PMID: 21956584 DOI: 10.1007/s00427-011-0376-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 09/14/2011] [Indexed: 12/23/2022]
Abstract
Considerable effort has been directed towards understanding the organization and function of peripheral and central nervous system of disease vector mosquitoes such as Aedes aegypti. To date, all of these investigations have been carried out on adults but none of the studies addressed the development of the nervous system during the larval and pupal stages in mosquitoes. Here, we first screen a set of 30 antibodies, which have been used to study brain development in Drosophila, and identify 13 of them cross-reacting and labeling epitopes in the developing brain of Aedes. We then use the identified antibodies in immunolabeling studies to characterize general neuroanatomical features of the developing brain and compare them with the well-studied model system, Drosophila melanogaster, in larval, pupal, and adult stages. Furthermore, we use immunolabeling to document the development of specific components of the Aedes brain, namely the optic lobes, the subesophageal neuropil, and serotonergic system of the subesophageal neuropil in more detail. Our study reveals prominent differences in the developing brain in the larval stage as compared to the pupal (and adult) stage of Aedes. The results also uncover interesting similarities and marked differences in brain development of Aedes as compared to Drosophila. Taken together, this investigation forms the basis for future cellular and molecular investigations of brain development in this important disease vector.
Collapse
Affiliation(s)
- Keshava Mysore
- Biozentrum, University of Basel, Klinglebergstrasse 50, CH-4056 Basel, Switzerland
| | | | | | | | | |
Collapse
|
37
|
Martin JP, Beyerlein A, Dacks AM, Reisenman CE, Riffell JA, Lei H, Hildebrand JG. The neurobiology of insect olfaction: sensory processing in a comparative context. Prog Neurobiol 2011; 95:427-47. [PMID: 21963552 DOI: 10.1016/j.pneurobio.2011.09.007] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2011] [Revised: 09/10/2011] [Accepted: 09/19/2011] [Indexed: 10/17/2022]
Abstract
The simplicity and accessibility of the olfactory systems of insects underlie a body of research essential to understanding not only olfactory function but also general principles of sensory processing. As insect olfactory neurobiology takes advantage of a variety of species separated by millions of years of evolution, the field naturally has yielded some conflicting results. Far from impeding progress, the varieties of insect olfactory systems reflect the various natural histories, adaptations to specific environments, and the roles olfaction plays in the life of the species studied. We review current findings in insect olfactory neurobiology, with special attention to differences among species. We begin by describing the olfactory environments and olfactory-based behaviors of insects, as these form the context in which neurobiological findings are interpreted. Next, we review recent work describing changes in olfactory systems as adaptations to new environments or behaviors promoting speciation. We proceed to discuss variations on the basic anatomy of the antennal (olfactory) lobe of the brain and higher-order olfactory centers. Finally, we describe features of olfactory information processing including gain control, transformation between input and output by operations such as broadening and sharpening of tuning curves, the role of spiking synchrony in the antennal lobe, and the encoding of temporal features of encounters with an odor plume. In each section, we draw connections between particular features of the olfactory neurobiology of a species and the animal's life history. We propose that this perspective is beneficial for insect olfactory neurobiology in particular and sensory neurobiology in general.
Collapse
Affiliation(s)
- Joshua P Martin
- Department of Neuroscience, College of Science, University of Arizona, 1040 East Fourth Street, Tucson, AZ 85721-0077, USA.
| | | | | | | | | | | | | |
Collapse
|
38
|
Liu SS, Li AY, Witt CM, Pérez de León AA. Immunohistological localization of serotonin in the CNS and feeding system of the stable fly Stomoxys calcitrans L. (Diptera: Muscidae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2011; 77:199-219. [PMID: 21678485 DOI: 10.1002/arch.20434] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2010] [Revised: 04/29/2011] [Accepted: 05/02/2011] [Indexed: 05/28/2023]
Abstract
Serotonin, or 5-hydroxytryptamine (5-HT), plays critical roles as a neurotransmitter and neuromodulator that control or modulate many behaviors in insects, such as feeding. Neurons immunoreactive (IR) to 5-HT were detected in the central nervous system (CNS) of the larval and adult stages of the stable fly, Stomoxys calcitrans, using an immunohistological technique. The location and pattern of the 5-HT IR neurons are described and compared for these two different developmental stages. Anatomical features of the fly feeding system were analyzed in third instar larvae and adult flies using a combination of histological and immunohistological techniques. In third instar larvae, the cibarial dilator muscles were observed within the cibarial pump skeleton and innervated by 5-HT IR neurons in nerves arising from the brain. There were four pairs of nerves arising from the frontal surface of the larval brain that innervate the cibarial pump muscles, pharynx, and muscles controlling the mouth hooks. A strong serotoninergic innervation of the anterior stomatogastric system was observed, which suggests 5-HT may play a role in the coordination of different phases of food ingestion by larvae. Similarly, many 5-HT IR neurons were found in both the brain and the thoracico-abdominal ganglia in the adult, some of which innervate the cibarial pump dilator muscles and the stomatogastric muscles. This is tnhe first report describing neuromuscular structures of the stable fly feeding system. The results reported here suggest 5-HT may play a critical role in feeding behaviors of stable fly larvae and adults.
Collapse
Affiliation(s)
- Samuel S Liu
- USDA, ARS, Knipling-Bushland U.S. Livestock Insects Research Laboratory, Kerrville, Texas 78028, USA
| | | | | | | |
Collapse
|
39
|
Pitts RJ, Rinker DC, Jones PL, Rokas A, Zwiebel LJ. Transcriptome profiling of chemosensory appendages in the malaria vector Anopheles gambiae reveals tissue- and sex-specific signatures of odor coding. BMC Genomics 2011; 12:271. [PMID: 21619637 PMCID: PMC3126782 DOI: 10.1186/1471-2164-12-271] [Citation(s) in RCA: 149] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 05/27/2011] [Indexed: 11/10/2022] Open
Abstract
Background Chemosensory signal transduction guides the behavior of many insects, including Anopheles gambiae, the major vector for human malaria in sub-Saharan Africa. To better understand the molecular basis of mosquito chemosensation we have used whole transcriptome RNA sequencing (RNA-seq) to compare transcript expression profiles between the two major chemosensory tissues, the antennae and maxillary palps, of adult female and male An. gambiae. Results We compared chemosensory tissue transcriptomes to whole body transcriptomes of each sex to identify chemosensory enhanced genes. In the six data sets analyzed, we detected expression of nearly all known chemosensory genes and found them to be highly enriched in both olfactory tissues of males and females. While the maxillary palps of both sexes demonstrated strict chemosensory gene expression overlap, we observed acute differences in sensory specialization between male and female antennae. The relatively high expression levels of chemosensory genes in the female antennae reveal its role as an organ predominately assigned to chemosensation. Remarkably, the expression of these genes was highly conserved in the male antennae, but at much lower relative levels. Alternatively, consistent with a role in mating, the male antennae displayed significant enhancement of genes involved in audition, while the female enhancement of these genes was observed, but to a lesser degree. Conclusions These findings suggest that the chemoreceptive spectrum, as defined by gene expression profiles, is largely similar in female and male An. gambiae. However, assuming sensory receptor expression levels are correlated with sensitivity in each case, we posit that male and female antennae are perceptive to the same stimuli, but possess inverse receptive prioritizations and sensitivities. Here we have demonstrated the use of RNA-seq to characterize the sensory specializations of an important disease vector and grounded future studies investigating chemosensory processes.
Collapse
Affiliation(s)
- R Jason Pitts
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | | | | | | | | |
Collapse
|
40
|
Maekawa E, Aonuma H, Nelson B, Yoshimura A, Tokunaga F, Fukumoto S, Kanuka H. The role of proboscis of the malaria vector mosquito Anopheles stephensi in host-seeking behavior. Parasit Vectors 2011; 4:10. [PMID: 21272298 PMCID: PMC3041766 DOI: 10.1186/1756-3305-4-10] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 01/27/2011] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The proboscis is an essential head appendage in insects that processes gustatory code during food intake, particularly useful considering that blood-sucking arthropods routinely reach vessels under the host skin using this proboscis as a probe. RESULTS Here, using an automated device able to quantify CO(2)-activated thermo (35°C)-sensing behavior of the malaria vector Anopheles stephensi, we uncovered that the protruding proboscis of mosquitoes contributes unexpectedly to host identification from a distance. Ablation experiments indicated that not only antennae and maxillary palps, but also proboscis were required for the identification of pseudo-thermo targets. Furthermore, the function of the proboscis during this behavior can be segregated from CO(2) detection required to evoke mosquito activation, suggesting that the proboscis of mosquitoes divide the proboscis into a "thermo-antenna" in addition to a "thermo-probe". CONCLUSIONS Our findings support an emerging view with a possible role of proboscis as important equipment during host-seeking, and give us an insight into how these appendages likely evolved from a common origin in order to function as antenna organs.
Collapse
Affiliation(s)
- Emi Maekawa
- National Research Center of Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | | | | | | | | | | | | |
Collapse
|
41
|
Shao QM, Fouda MMA, Takeda M. Serotonin- and two putative serotonin receptors-like immunohistochemical reactivities in the ground crickets Dianemobius nigrofasciatus and Allonemobius allardi. JOURNAL OF INSECT PHYSIOLOGY 2010; 56:1576-1586. [PMID: 20685356 DOI: 10.1016/j.jinsphys.2010.05.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 05/18/2010] [Accepted: 05/18/2010] [Indexed: 05/29/2023]
Abstract
Serotonin (5-hydroxytryptamine; 5-HT)- and two putative serotonin receptors, 5-HT1A- and 5-HT1B-like, immunohistochemical reactivities were investigated in the cephalic ganglia of two ground crickets, Dianemobius nigrofasciatus and Allonemobius allardi. 5-HT-ir was strongly expressed in the central body, accessory medulla region of the optic lobe, frontal ganglion, posterior cortex of the protocerebrum, dorsolateral region of the protocerebrum, and the suboesphageal ganglion (SOG) in both crickets. However, 5-HT1A-ir and 5-HT1B-ir showed quite mutually distinct patterns that were also distinct from 5-HT-ir. 5-HT1A-ir was located in the pars intercerebralis, dorsolateral region of the protocerebrum, optic tract, optic lobe, and the midline of the SOG in both crickets. 5-HT1B-ir was located in the pars intercerebralis and dorsolateral region of the protocerebrum, and detected weakly in the optic lobe, tritocerebrum, and the midline of the SOG in both crickets. Interspecific differences were observed with 5-HT1A-ir. 5-HT1A-ir was expressed weakly in two neurons in the mandibular neuromere of the SOG in D. nigrofasciatus, while it was expressed strongly in the tritocerebrum, mandibular neuromere, and maxillary neuromere of the SOG in A. allardi and co-localized with CLOCK-ir (CLK-ir). 5HT-1B-ir was co-localized with CLK-ir in the tritocerebrum, mandibular neuromere, and maxillary neuromere of the SOG when double-labeling was conducted in both crickets. These results indicated that 5-HT and both types of 5-HT receptors may regulate circadian photo-entrainment or photoperiodism in A. allardi, while only 5-HT1B may be involved in circadian photo-entrainment or photoperiodism in D. nigrofasciatus.
Collapse
Affiliation(s)
- Qi-Miao Shao
- Graduate School of Agriculture Science, Kobe University, Kobe, Japan
| | | | | |
Collapse
|
42
|
Immunohistochemical mapping of histamine, dopamine, and serotonin in the central nervous system of the copepod Calanus finmarchicus (Crustacea; Maxillopoda; Copepoda). Cell Tissue Res 2010; 341:49-71. [PMID: 20532915 DOI: 10.1007/s00441-010-0974-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Accepted: 03/30/2010] [Indexed: 01/08/2023]
Abstract
Calanoid copepods constitute an important group of marine planktonic crustaceans that often dominate the metazoan biomass of the world's oceans. In proportion to their ecological importance, little is known about their nervous systems. We have used immunohistochemical techniques in a common North Atlantic calanoid to localize re-identifiable neurons that putatively contain the biogenic amines histamine, dopamine, and serotonin. We have found low numbers of such cells and cell groups (approximately 37 histamine pairs, 22 dopamine pairs, and 12 serotonin pairs) compared with those in previously described crustaceans. These cells are concentrated in the anterior part of the central nervous system, the majority for each amine being located in the three neuromeres that constitute the brain (protocerebrum, deutocerebrum, and tritocerebrum). Extensive histamine labeling occurs in several small compact protocerebral neuropils, three pairs of larger, more posterior, paired, dense neuropils, and one paired diffuse tritocerebral neuropil. The most concentrated neuropil showing dopamine labeling lies in the putative deutocerebrum, associated with heavily labeled commissural connections between the two sides of the brain. The most prominent serotonin neuropil is present in the anterior medial part of the brain. Tracts of immunoreactive fibers of all three amines are prominent in the cephalic region of the nervous system, but some projections into the most posterior thoracic regions have also been noted.
Collapse
|
43
|
Siju KP, Hill SR, Hansson BS, Ignell R. Influence of blood meal on the responsiveness of olfactory receptor neurons in antennal sensilla trichodea of the yellow fever mosquito, Aedes aegypti. JOURNAL OF INSECT PHYSIOLOGY 2010; 56:659-665. [PMID: 20153749 DOI: 10.1016/j.jinsphys.2010.02.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 02/03/2010] [Accepted: 02/03/2010] [Indexed: 05/28/2023]
Abstract
In female Aedes aegypti L. mosquitoes, a blood meal induces physiological and behavioral changes. Previous studies have shown that olfactory receptor neurons (ORNs) housed in grooved peg sensilla on the antennae of Ae. aegypti down-regulate their sensitivity to lactic acid, a key component driving host-seeking behavior, which correlates with observed changes in the host-seeking behavior of this species. In the present study, we performed electrophysiological recordings from the most abundant antennal sensillum type, sensilla trichodea. Our results indicate that the response spectra of ORNs contained within most trichoid sensilla do not change in response to blood feeding. However, we observe an increase in sensitivity to primarily indole and phenolic compounds in neurons housed within four of the five functional types of short blunt tipped II trichoid sensilla, both at 24 and 72h post-blood feeding, which was more pronounced at 24h than 72h. Furthermore, sensitivity to undecanone, acetic acid and propionic acid was observed to increase 72h post-blood meal. Considering the timing of these changes, we believe that these neurons may be involved in driving the orientation behavior of female mosquitoes to oviposition sites, which are known to release these compounds.
Collapse
Affiliation(s)
- K P Siju
- Division of Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 102, SE-230 53 Alnarp, Sweden.
| | | | | | | |
Collapse
|
44
|
Localization of serotonin/tryptophan-hydroxylase-immunoreactive cells in the brain and suboesophageal ganglion of Drosophila melanogaster. Cell Tissue Res 2010; 340:51-9. [PMID: 20177707 DOI: 10.1007/s00441-010-0932-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Accepted: 01/15/2010] [Indexed: 10/19/2022]
Abstract
We previously demonstrated that tryptophan hydroxylase (TPH), the rate-limiting enzyme of serotonin (5-HT) synthesis, was commonly present in the brains of some insects. The current study was aimed at determining the number of serotonergic neurons in the brain and suboesophageal ganglion of adult Drosophila melanogaster and to investigate further the differences in immunoreactivity between 5-HT and TPH. Brain sections of Drosophila were immunostaind with sheep anti-TPH polyclonal antibody and rabbit anti-5-HT antiserum. The 5-HT-like immunoreactive neurons were also immunoreactive for TPH and bilaterally symmetrical; 83 neurons were found in each hemisphere of the brain and suboesophageal ganglion of adult Drosophila. This technique of colocalizing 5-HT and TPH revealed a larger number of serotonergic neurons in the brain and suboesophageal ganglion than that previous reported, thus updating our knowledge of the 5-HT neuronal system of Drosophila.
Collapse
|