1
|
Liu C, Mou S, Zhang B, Pang Y, Chan L, Li J, He Q, Zheng Z, Zhao Z, Sun W, Shi X, Qiu H, Deng X, Wang W, Ge P, Zhao J. Innate Immune Cell Profiling in Peripheral Blood Mononuclear Cells of Patients with Moyamoya Disease. Inflammation 2024:10.1007/s10753-024-02201-4. [PMID: 39671077 DOI: 10.1007/s10753-024-02201-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/13/2024] [Accepted: 11/24/2024] [Indexed: 12/14/2024]
Abstract
Moyamoya disease (MMD) is a rare cerebrovascular disease characterized by stenosis or occlusion of the internal carotid artery, thus leading to ischaemic and haemorrhagic strokes. Although genetic studies have identified ring finger protein 213 (RNF213) as a susceptibility gene, the low disease penetrance suggests that a secondary trigger, such as infection, may initiate disease onset. This study aimed to characterize the innate immune cell profile of peripheral blood mononuclear cells (PBMCs) of MMD patients via mass cytometry (CyTOF). Blood samples from 10 MMD patients and 10 healthy controls were analysed, with a focus on natural killer (NK) cells, monocytes, and dendritic cells (DCs). The results revealed significant changes in the NK and monocyte subpopulations in MMD patients; specifically, there was a decrease in the CD56dimCD16- NK03 subset and an increase in CD163high classical monocytes, thus indicating compromised microbial defences and heightened inflammation. Additionally, significant changes were observed in DC subpopulations, including an increase in CCR7+ mature DCs and a decrease in CD141+ and CD1c+ DCs. Overactivation of the TLR/MyD88/NF-κB pathway was observed in most innate immune cells, thus indicating its potential role in disease progression. These findings provide novel insights into immune dysfunction in MMD and highlight potential therapeutic targets.
Collapse
Affiliation(s)
- Chenglong Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Siqi Mou
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- Medical School, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Bojian Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Yuheng Pang
- Beijing Institute of Hepatology, Beijing YouAn Hospital, Capital Medical University, Beijing, 100069, China
| | - Liujia Chan
- Beijing Institute of Hepatology, Beijing YouAn Hospital, Capital Medical University, Beijing, 100069, China
| | - Junsheng Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Qiheng He
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Zhiyao Zheng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- Research Unit of Accurate Diagnosis, Treatment, and Translational Medicine of Brain Tumors (No.2019RU011), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Zhikang Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Wei Sun
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Xiangjun Shi
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- Department of Rheumatology and Immunology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Hancheng Qiu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Xiaofeng Deng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Wenjing Wang
- Beijing Institute of Hepatology, Beijing YouAn Hospital, Capital Medical University, Beijing, 100069, China.
| | - Peicong Ge
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China.
| | - Jizong Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China.
| |
Collapse
|
2
|
Ali A, Mounika N, Nath B, Johny E, Kuladhipati I, Das R, Hussain M, Bandyopadhyay A, Adela R. Platelet-derived sTLT-1 is associated with platelet-mediated inflammation in coronary artery disease patients. Cytokine 2024; 178:156581. [PMID: 38508060 DOI: 10.1016/j.cyto.2024.156581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/09/2024] [Accepted: 03/13/2024] [Indexed: 03/22/2024]
Abstract
The development of coronary artery disease (CAD) depends heavily on platelet activation, and inflammation plays a major role in all stages of atherosclerosis. Platelet-specific soluble triggering receptor expressed on myeloid cells like transcript 1 (sTLT-1) facilitate clot formation and have been linked to chronic inflammation. In this study, we explored the role of platelet-derived sTLT-1 in platelet-mediated inflammation in CAD patients. Plasma levels of sTLT-1 were measured using enzyme-linked immunosorbent assay in CAD patients (n = 163) and healthy controls (n = 99). Correlation analysis was performed to determine the circulatory sTLT-1 levels with platelet activation markers, immune cells, and inflammatory cytokines/chemokines. Increased plasma sTLT-1 levels were observed in CAD patients compared with those in healthy controls (p < 0.0001). A positive correlation was observed between sTLT-1 and platelet activation markers (P-selectin, PAC-1), CD14++ CD16- cells (classical monocytes), Natural killer T (NKT) cells, and platelet-immune cell aggregates with monocytes, neutrophils, dendritic cells, CD11c+ cells, and NKT cells. In contrast, a significant negative correlation was observed with CD8 cells. Furthermore, a significant positive correlation was observed between sTLT-1 and inflammatory markers (TNF-α, IL-1β, IL-2, IL-6, IL-12p70, IL-18, CXCL-12, and CCL-11). Logistic regression analysis identified sTLT-1 and triglycerides as predictors of CAD. Receiver operating characteristic curve (ROC) analysis showed that sTLT-1 had a higher sensitivity and specificity for predicting CAD. Our findings suggest that platelet activation induces the release of sTLT-1 into the circulation in CAD patients, which aggregates with immune cells and enhances inflammatory responses.
Collapse
Affiliation(s)
- Amir Ali
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Guwahati, Assam, India
| | - Nadella Mounika
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Guwahati, Assam, India
| | - Bishamber Nath
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Guwahati, Assam, India
| | - Ebin Johny
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Guwahati, Assam, India; Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, PA, USA
| | | | - Rajesh Das
- Nemcare Hospital G.S. Road, Bhangagarh, Guwahati, Assam, India
| | - Monowar Hussain
- Nemcare Hospital G.S. Road, Bhangagarh, Guwahati, Assam, India
| | | | - Ramu Adela
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Guwahati, Assam, India.
| |
Collapse
|
3
|
Zimmer A, Otrante A, Zoubdane N, Nguyen M, Fülöp T, Khalil A. The Immunomodulatory Effects of a 6-Month Extra Virgin Olive Oil Intervention on Monocyte Cytokine Secretion and Plasma Cytokine Levels in Dyslipidemic and Post-Infarct Patients: A Clinical Pilot Study. Nutrients 2023; 15:3819. [PMID: 37686851 PMCID: PMC10489670 DOI: 10.3390/nu15173819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/16/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Atherosclerosis is an immuno-inflammatory process underlying cardiovascular diseases. One of the main actors of this inflammation is monocytes, with the switch in their phenotypes and irregularities in their cytokine production. OBJECTIVE This study was aimed to investigate the nutraceutical potential of extra virgin olive oil (EVOO) on the inflammatory status of monocytes in participants showing different levels of cardiovascular risk. METHODS 43 participants 65-85 years old were recruited including 14 healthy, 12 dyslipidemic patients with hypercholesterolemia recently diagnosed, and 17 post-infarct patients. Participants from all groups were supplemented with EVOO (25 mL/day) for 6 months. IL-1β, IL-6, IL-10, TNF-α cytokine production, and monocyte phenotypes were investigated both at quiescent and at stimulated state by flow cytometry. RESULTS At the baseline (pre-intervention), dyslipidemic patients, compared to healthy and post-infarct participants, showed monocytes in an inflammatory state characterized by a significantly weaker IL-10 production. Our results do not show a significant modulation of the phenotype or IL-10, IL-6, and TNF-α production following a 6-month EVOO intake whether at quiescence or under stimulation. However, IL-1β is significantly increased by the intervention of EVOO in post-infarct patients. Paradoxically after the 6-month intervention, monocytes from dyslipidemic patients showed a significantly decreased secretion of IL-1β under LPS stimulation despite the increase observed at basal state. CONCLUSION Our results show that 6-month EVOO intervention did not induce a monocyte phenotypic change or that this intervention significantly modifies cytokine production.
Collapse
Affiliation(s)
- Adrien Zimmer
- Geriatrics Unit, Department of Medicine, Faculty of Medicine and Biological Sciences, University of Sherbrooke, Sherbrooke, QC J1H 4N4, Canada; (A.Z.); (A.O.); (N.Z.); (T.F.)
| | - Alyann Otrante
- Geriatrics Unit, Department of Medicine, Faculty of Medicine and Biological Sciences, University of Sherbrooke, Sherbrooke, QC J1H 4N4, Canada; (A.Z.); (A.O.); (N.Z.); (T.F.)
| | - Nada Zoubdane
- Geriatrics Unit, Department of Medicine, Faculty of Medicine and Biological Sciences, University of Sherbrooke, Sherbrooke, QC J1H 4N4, Canada; (A.Z.); (A.O.); (N.Z.); (T.F.)
| | - Michel Nguyen
- Cardiology Unit, Department of Medicine, Faculty of Medicine and Biological Sciences, University of Sherbrooke, Sherbrooke, QC J1H 4N4, Canada;
| | - Tamàs Fülöp
- Geriatrics Unit, Department of Medicine, Faculty of Medicine and Biological Sciences, University of Sherbrooke, Sherbrooke, QC J1H 4N4, Canada; (A.Z.); (A.O.); (N.Z.); (T.F.)
| | - Abdelouahed Khalil
- Geriatrics Unit, Department of Medicine, Faculty of Medicine and Biological Sciences, University of Sherbrooke, Sherbrooke, QC J1H 4N4, Canada; (A.Z.); (A.O.); (N.Z.); (T.F.)
- Research Center on Aging, Integrated University Center for Health and Social Services of Estrie—University Hospital Center of Sherbrooke, Sherbrooke, QC J1H 4N4, Canada
- Research Center of the Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC J1H 4N4, Canada
| |
Collapse
|
4
|
Dynamic changes of monocytes subsets predict major adverse cardiovascular events and left ventricular function after STEMI. Sci Rep 2023; 13:48. [PMID: 36593308 PMCID: PMC9807564 DOI: 10.1038/s41598-022-26688-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/19/2022] [Indexed: 01/03/2023] Open
Abstract
We explored how dynamic changes in monocyte subset counts (as opposed to static values to specific time points), and their phagocytic and NFκB activity relate to major adverse cardiovascular events (MACE) and left ventricular ejection fraction (LVEF) in patients with ST-elevation myocardial infarction (STEMI). Changes in counts, phagocytic activity and intracellular levels of inhibitory κB kinase β (IKKβ) (a marker of NFκB activity) of monocyte subsets (CD14++CD16-CCR2+ [Mon1], CD14++CD16+CCR2+ [Mon2] and CD14+CD16++CCR2- [Mon3]) were measured by flow cytometry in patients with STEMI at baseline, and again after one week, two weeks, and one month. LVEF was measured by echocardiography at baseline and six months after STEMI. Baseline data included 245 patients (mean ± SD age 60 ± 12 years; 22% female), who were followed for a median of 46 (19-61) months. Multivariate Cox regression demonstrated that more prominent dynamic reduction in Mon2 by week 1 (n = 37) was independently associated with fewer MACE (HR 0.06, 95% CI 0.01-0.55, p = 0.01). Also, less prominent reduction in Mon2 at month 1 (n = 24) was independently predictive of 6-month LVEF. None of the other dynamic changes in monocyte subsets were associated with changes in survival from MACE. Neither phagocytic activity nor IKKβ were associated with survival for each monocyte subset. We showed how distinct pattern of dynamic changes in Mon2 are related to both MACE risk and recovery of cardiac contractility. Further research is needed to understand the mechanism of the monocyte effect and possibilities of their pharmacological manipulation.
Collapse
|
5
|
Filatova AY, Potekhina AV, Radyukhina NV, Ruleva NY, Provatorov SI, Arefieva TI. Circulating monocyte populations in patients with coronary atherosclerosis. Future Cardiol 2022; 18:455-460. [PMID: 35293221 DOI: 10.2217/fca-2021-0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aims: The authors examined the phenotype of circulating monocytes in patients with coronary atherosclerosis depending on age. Methods: A total of 121 patients were categorized into three groups according to the severity of coronary atherosclerosis assessed by angiography and into two groups depending on age above/below the median 60.0 (range: 56.0-66.0). Classical CD14++CD16-, intermediate CD14++CD16+ and non-classical CD14+CD16+ monocytes were analyzed via direct immunofluorescence and flow cytometry. Results and conclusions: In patients >60 years of age, the severity of atherosclerosis was associated with the decreased number of classical monocytes in the blood. In patients under 60 years of age, this relationship was not observed. The authors hypothesize that the contribution of different subtypes of blood monocytes to the development of atherosclerosis may vary with age.
Collapse
Affiliation(s)
- Anastasiia Yu Filatova
- Laboratory of Cell Immunology of Institute of Experimental Cardiology of FSBO National Medical Research Center of Cardiology of Russian Ministry of Health, Moscow, Russian Federation
| | - Alexandra V Potekhina
- Department of Pulmonary Hypertension & Heart Diseases of Institute of Clinical Cardiology of FSBO National Medical Research Center of Cardiology of Russian Ministry of Health, Moscow, Russian Federation
| | - Natalya V Radyukhina
- Laboratory of Cell Immunology of Institute of Experimental Cardiology of FSBO National Medical Research Center of Cardiology of Russian Ministry of Health, Moscow, Russian Federation
| | - Natalya Y Ruleva
- Laboratory of Cell Immunology of Institute of Experimental Cardiology of FSBO National Medical Research Center of Cardiology of Russian Ministry of Health, Moscow, Russian Federation
| | - Sergey I Provatorov
- Department of Pulmonary Hypertension & Heart Diseases of Institute of Clinical Cardiology of FSBO National Medical Research Center of Cardiology of Russian Ministry of Health, Moscow, Russian Federation
| | - Tatiana I Arefieva
- Laboratory of Cell Immunology of Institute of Experimental Cardiology of FSBO National Medical Research Center of Cardiology of Russian Ministry of Health, Moscow, Russian Federation
| |
Collapse
|
6
|
Johny E, Bhaskar P, Alam MJ, Kuladhipati I, Das R, Adela R. Platelet Mediated Inflammation in Coronary Artery Disease with Type 2 Diabetes Patients. J Inflamm Res 2021; 14:5131-5147. [PMID: 34675593 PMCID: PMC8504552 DOI: 10.2147/jir.s326716] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/19/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is a well-established risk factor for the development of atherosclerotic coronary artery disease. Platelet hyperactivity and inflammation are associated with the development of coronary artery disease (CAD) in T2DM patients. We investigated the status of immune cells, platelet activation, and platelet-immune cell interactions in T2DM_CAD patients. METHODOLOGY The study population consisted of four groups of subjects, healthy control (CT, n = 20), T2DM (n = 44), CAD (n = 20) and T2DM_CAD (n = 38). Platelet activation, immunome profiling and platelet-immune cell interactions were analysed by flow cytometry. The circulatory levels of inflammatory cytokines/chemokines were assessed using multiplex assay. RESULTS Increased platelet activation and increased platelet-immune cell aggregate formation were observed in T2DM and T2DM_CAD groups compared to the control and CAD groups (p < 0.05). Our immunome profile analysis revealed, altered monocyte subpopulations and dendritic cell populations in T2DM, CAD and T2DM_CAD groups compared to the control group (p < 0.05). Furthermore, significantly increased IL-1β, IL-2, IL-4, IL-6, IL-8, IL12p70, IL-13 IL-18, CCL2, and decreased CXCL1, CCL5 levels were observed in T2DM_CAD group compared to the control group. Our ex-vivo study increased platelet-monocyte aggregate formation was observed upon D-glucose exposure in a time and concentration dependent manner. CONCLUSION Our data suggests that T2DM, CAD and T2DM_CAD are associated with altered immune cell populations. Furthermore, it has been confirmed that hyperglycemia induces platelet activation and forms platelet-immune cell aggregation which may lead to the release of inflammatory cytokines and chemokines and contribute to the complexity of CAD and type 2 diabetes.
Collapse
Affiliation(s)
- Ebin Johny
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Guwahati, Assam, 781101, India
| | - Pathoori Bhaskar
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Guwahati, Assam, 781101, India
| | - Md Jahangir Alam
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Guwahati, Assam, 781101, India
| | | | - Rupam Das
- Down Town Hospital, Guwahati, Assam, 781006, India
| | - Ramu Adela
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Guwahati, Assam, 781101, India
| |
Collapse
|
7
|
Williams H, Mack CD, Li SCH, Fletcher JP, Medbury HJ. Nature versus Number: Monocytes in Cardiovascular Disease. Int J Mol Sci 2021; 22:ijms22179119. [PMID: 34502027 PMCID: PMC8430468 DOI: 10.3390/ijms22179119] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/19/2021] [Accepted: 08/19/2021] [Indexed: 01/01/2023] Open
Abstract
Monocytes play a key role in cardiovascular disease (CVD) as their influx into the vessel wall is necessary for the development of an atherosclerotic plaque. Monocytes are, however, heterogeneous differentiating from classical monocytes through the intermediate subset to the nonclassical subset. While it is recognized that the percentage of intermediate and nonclassical monocytes are higher in individuals with CVD, accompanying changes in inflammatory markers suggest a functional impact on disease development that goes beyond the increased proportion of these ‘inflammatory’ monocyte subsets. Furthermore, emerging evidence indicates that changes in monocyte proportion and function arise in dyslipidemia, with lipid lowering medication having some effect on reversing these changes. This review explores the nature and number of monocyte subsets in CVD addressing what they are, when they arise, the effect of lipid lowering treatment, and the possible implications for plaque development. Understanding these associations will deepen our understanding of the clinical significance of monocytes in CVD.
Collapse
Affiliation(s)
- Helen Williams
- Vascular Biology Research Centre, Department of Surgery, Westmead Hospital, Westmead, Sydney, NSW 2145, Australia; (H.W.); (C.D.M.); (J.P.F.)
- Westmead Clinical School, The University of Sydney, Westmead, Sydney, NSW 2145, Australia
| | - Corinne D. Mack
- Vascular Biology Research Centre, Department of Surgery, Westmead Hospital, Westmead, Sydney, NSW 2145, Australia; (H.W.); (C.D.M.); (J.P.F.)
- Westmead Clinical School, The University of Sydney, Westmead, Sydney, NSW 2145, Australia
| | - Stephen C. H. Li
- Chemical Pathology, NSW Health Pathology, Westmead Hospital and Institute of Clinical Pathology and Medical Research, Westmead, Sydney, NSW 2145, Australia;
- Blacktown/Mt Druitt Clinical School, Blacktown Hospital, Western Sydney University, Blacktown, NSW 2148, Australia
| | - John P. Fletcher
- Vascular Biology Research Centre, Department of Surgery, Westmead Hospital, Westmead, Sydney, NSW 2145, Australia; (H.W.); (C.D.M.); (J.P.F.)
- Westmead Clinical School, The University of Sydney, Westmead, Sydney, NSW 2145, Australia
| | - Heather J. Medbury
- Vascular Biology Research Centre, Department of Surgery, Westmead Hospital, Westmead, Sydney, NSW 2145, Australia; (H.W.); (C.D.M.); (J.P.F.)
- Westmead Clinical School, The University of Sydney, Westmead, Sydney, NSW 2145, Australia
- Correspondence:
| |
Collapse
|
8
|
Omoike OE, Pack RP, Mamudu HM, Liu Y, Strasser S, Zheng S, Okoro J, Wang L. Association between per and polyfluoroalkyl substances and markers of inflammation and oxidative stress. ENVIRONMENTAL RESEARCH 2021; 196:110361. [PMID: 33131681 DOI: 10.1016/j.envres.2020.110361] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 10/09/2020] [Accepted: 10/14/2020] [Indexed: 05/24/2023]
Abstract
OBJECTIVES This study aimed to examine the association of Per and Polyfluoroalkyl substances (PFAS) and markers of chronic inflammation and oxidative stress. METHODS Using data (n = 6652) from the National Health and Nutrition Examination Survey (NHANES) 2005-2012, generalized linear models were used to examine the association between PFAS and inflammatory (ferritin, alkaline phosphatase, C-reactive protein, absolute neutrophil count and lymphocyte count) and oxidative stress (serum bilirubin, albumin and iron) per unit exposure to PFAS while adjusting for covariates. Study participants were those ≥20 years of age. Outcome variables were markers of chronic inflammation and oxidative stress and exposure variables were PFAS. RESULLTS Percentage change in Perfluorohexane sulfonic acid (PFHxS), Perfluorononanoic acid (PFNA), Perfluorooctanoic acid (PFOA), Perfluorooctane sulfonic acid (PFOS), and Perfluorodecanoic acid (PFDA) were all significantly associated with percentage increases in lymphocyte counts, beta (95% confidence interval); 0.04(0.02,0.05), 0.04(0.02,0.05), 0.05(0.03, 0.07), 0.04(0.03,0.05), 0.03(0.13,1.23) and with percentage increases in serum iron 0.07(0.05,0.09), 0.04(0.02,0.07), 0.10(0.07,0.12), 0.05(0.03,0.07), 0.04(0.02,0.06) and increased serum albumin 0.02(0.02,0.02), 0.02(0.02,0.03), 0.03(0.03,0.04), 0.02(0.017, 0.025), 0.01 (0.01, 0.05). Only PFHxS, PFNA, PFOA and PFOS were associated with percentage increases in serum total bilirubin 0.04(0.03,0.05), 0.02(0.00,0.03), 0.06(0.04,0.08), 0.03(0.02,0.05). Similar results were obtained for categorical quintile analysis with PFOA showing a significant trend (P < 0.001) with lymphocyte count, serum iron, serum total bilirubin and serum albumin. Trend for neutrophil count was not significant (p = 0.183). CONCLUSION Per and Polyfluoroalkyl substances are associated with markers of chronic inflammation and oxidative stress. Increased exposure leads to increase in serum concentration of these markers meaning these chemicals are associated with both chronic inflammation and oxidative stress.
Collapse
Affiliation(s)
- Ogbebor Enaholo Omoike
- Department of Biostatistics and Epidemiology, College of Public Health, East Tennessee State University, Johnson City, TN, USA.
| | - Robert P Pack
- Department of Community and Behavioral Health, College of Public Health, East Tennessee State University, Johnson City, TN, USA
| | - Hadii M Mamudu
- Department of Health Services Management and Policy, College of Public Health, East Tennessee State University, Johnson City, TN, USA
| | - Ying Liu
- Department of Biostatistics and Epidemiology, College of Public Health, East Tennessee State University, Johnson City, TN, USA
| | - Sheryl Strasser
- School of Public Health/Partnership for Urban Health Research, Georgia State University, Atlanta, GA, USA
| | - Shimin Zheng
- Department of Biostatistics and Epidemiology, College of Public Health, East Tennessee State University, Johnson City, TN, USA
| | - Joy Okoro
- Department of Biostatistics and Epidemiology, College of Public Health, East Tennessee State University, Johnson City, TN, USA
| | - Liang Wang
- Baylor University, Robbins College of Health and Human Sciences, USA
| |
Collapse
|
9
|
Ganta VC, Annex BH. Peripheral vascular disease: preclinical models and emerging therapeutic targeting of the vascular endothelial growth factor ligand-receptor system. Expert Opin Ther Targets 2021; 25:381-391. [PMID: 34098826 PMCID: PMC8573823 DOI: 10.1080/14728222.2021.1940139] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 06/04/2021] [Indexed: 10/21/2022]
Abstract
Introduction: Vascular endothelial growth factor (VEGF)-A is a sought therapeutic target for PAD treatment because of its potent role in angiogenesis. However, no therapeutic benefit was achieved in VEGF-A clinical trials, suggesting that our understanding of VEGF-A biology and ischemic angiogenic processes needs development. Alternate splicing in VEGF-A produces pro- and anti-angiogenic VEGF-A isoforms; the only difference being a 6-amino acid switch in the C-terminus of the final 8th exon of the gene. This finding has changed our understanding of VEGF-A biology and may explain the lack of benefit in VEGF-A clinical trials. It presents new therapeutic opportunities for peripheral arterial disease (PAD) treatment.Areas covered: Literature search was conducted to include: 1) predicted mechanism by which the anti-angiogenic VEGF-A isoform would inhibit angiogenesis, 2) unexpected mechanism of action, and 3) how this mechanism revealed novel signaling pathways that may enhance future therapeutics in PAD.Expert opinion: Inhibiting a specific anti-angiogenic VEGF-A isoform in ischemic muscle promotes perfusion recovery in preclinical PAD. Additional efforts focused on the production of these isoforms, and the pathways altered by modulating different VEGF receptor-ligand interactions, and how this new data may allow bedside progress offers new approaches to PAD are discussed.I.
Collapse
Affiliation(s)
- Vijay Chaitanya Ganta
- Department of Medicine and Vascular Biology Center, Augusta University, Augusta, GA, USA
| | - Brian H Annex
- Department of Medicine and Vascular Biology Center, Augusta University, Augusta, GA, USA
| |
Collapse
|
10
|
Oh ES, Na M, Rogers CJ. The Association Between Monocyte Subsets and Cardiometabolic Disorders/Cardiovascular Disease: A Systematic Review and Meta-Analysis. Front Cardiovasc Med 2021; 8:640124. [PMID: 33681309 PMCID: PMC7925827 DOI: 10.3389/fcvm.2021.640124] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/27/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Monocyte subsets in humans, i.e., classical (CM), intermediate (IM), and non-classical monocytes (NCM), are thought to differentially contribute to the pathogenesis of atherosclerosis, the leading cause of cardiovascular disease (CVD). However, the association between monocyte subsets and cardiometabolic disorders and CVD is not well-understood. Thus, the aim of the current systematic review and meta-analysis was to evaluate recent findings from clinical studies that examined the association between the distribution of monocyte subsets in subjects with cardiometabolic disorders and CVD compared to healthy controls. Methods: Articles were systematically searched in CINAHL, PubMed and Cochrane Library. Articles were independently screened and selected by two reviewers. Studies that reported the percentage of each monocyte subset were included in the systematic review and meta-analysis. For the meta-analysis, a random-effects model was used to generate pooled standardized mean differences (SMD) between subjects with cardiometabolic disorders and healthy controls. Results: A total of 1,693 articles were screened and 27 studies were selected for qualitative analyses. Among them, six studies were included in the meta-analysis. In total, sample size ranged from 22 to 135 and mean or median age from 22 to 70 years old. We found studies that reported higher percentage and number of IM and/or NCM in subjects with cardiometabolic disorders (9 out of 13 studies) and in subjects with CVD (11 out of 15 studies) compared to healthy controls. In the meta-analysis, the percentage of CM was lower [SMD = −1.21; 95% CI (−1.92, −0.50); P = 0.0009; I2 = 91%] and the percentage of IM [SMD = 0.56; 95% CI (0.23, 0.88); P = 0.0008; I2 = 65%] and NCM [SMD = 1.39; 95% CI (0.59, 2.19); P = 0.0007; I2 = 93%] were higher in subjects with cardiometabolic disorders compared to healthy controls. Conclusions: Individuals with cardiometabolic disorders and CVD may have a higher percentage of IM and NCM than healthy controls. Future studies are needed to evaluate the cause and biological significance of this potential altered distribution of monocyte subsets.
Collapse
Affiliation(s)
- Ester S Oh
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, United States
| | - Muzi Na
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, United States
| | - Connie J Rogers
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, United States.,Center for Molecular Immunology and Infectious Disease, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
11
|
Identification of Circulating lncRNA Expression Profiles in Patients with Atrial Fibrillation. DISEASE MARKERS 2020; 2020:8872142. [PMID: 33299500 PMCID: PMC7704132 DOI: 10.1155/2020/8872142] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 07/24/2020] [Accepted: 10/30/2020] [Indexed: 12/13/2022]
Abstract
Purpose To investigate the expression profiles of long noncoding RNAs (lncRNAs) in patients with atrial fibrillation (AF). Methods The peripheral blood monocytes of a total of 20 patients with AF and 20 healthy subjects were collected for gene chip technology to detect differentially expressed lncRNAs from 2017.01 to 2017.08. Reverse transcription polymerase chain reaction (RT-PCR) was applied for further verification. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to identify the functions of differentially expressed genes and related pathways. Results There were 19 lncRNAs differentially expressed (FC ≥ 2, P < 0.05), of which 6 were upregulated and 13 were downregulated. Two of three upregulated lncRNAs (P = 0.014 and 0.006 for HNRNPU-AS1 and LINC00861, respectively) and two of three downregulated lncRNAs (P = 0.028 and 0.032 for RP11-443B7.3 and CTD-2616J11.14, respectively) were randomly confirmed by RT-PCR and showed a significantly different expression with the RNA-seq results. GO analysis showed that differentially expressed genes enriched in differentially expressed transcripts in biological process were mainly involved in metabolic process, catabolic process, and biosynthetic process. Differentially expressed transcripts in cellular component were mainly involved in nuclear lumen, organelle lumen, and cytoplasm. Differentially expressed transcripts in molecular function were mainly involved in protein binding, RNA binding, and molecular function. KEGG enrichment pathway analysis showed that some of the enrichment pathways associated with differentially expressed lncRNAs include calcium signaling pathway, NF-kappa B signaling pathway, cytokine-cytokine receptor interaction, and Toll-like receptor signaling pathway. HNRNPU-AS1 was the highest positive correlated lncRNA in the networks. Conclusions The expression of lncRNA in peripheral blood of AF patients is different from that of normal people. The physiological functions of these differentially expressed lncRNAs may be related to the pathogenesis of AF, which provide experimental basis and new therapeutic target for prognosis and treatment of patients with AF. HNRNPU-AS1 may play an important role in the pathophysiology and mechanisms of AF.
Collapse
|
12
|
Xiang Y, Liang B, Zhang X, Zheng F. Lower HDL-C levels are associated with higher expressions of CD16 on monocyte subsets in coronary atherosclerosis. Int J Med Sci 2020; 17:2171-2179. [PMID: 32922178 PMCID: PMC7484662 DOI: 10.7150/ijms.47998] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 07/29/2020] [Indexed: 01/17/2023] Open
Abstract
Background: Increased expressions of CD16 on classical monocytes precede their transition to intermediate monocytes. Thus far, the influence of lipids on the expression of CD14 and CD16 on monocyte subsets in coronary atherosclerosis (CA) remains unclear. The aim of this study was to investigate the underlying association between blood lipids and the expression of CD14 and CD16 on monocyte subsets. Methods: This study enrolled 112 healthy controls and 110 CA patients. Monocyte subsets [CD14++CD16- (classical), CD14++CD16+ (intermediate) and CD14+CD16++ (non-classical)] were analyzed by flow cytometry. Median fluorescent intensity (MFI) was used to evaluate the expression levels of CD14 and CD16 on monocyte subsets. Results: Compared with the control group, the expression of CD16 was significantly increased on all three monocyte subsets in the patient group. Correlation analysis revealed that serum HDL-C was inversely associated with the expression of CD16 on intermediate monocytes after Bonferroni correction in the control group. In addition, a significant decrease in classical monocytes and an increase in intermediate monocytes were detected in patients. In linear regression analysis, intermediate monocytes showed an inverse association with serum HDL-C in the control group. Although CD14 was correlated with serum TC and HDL-C, there was no statistical difference in CD14 expression between the two groups. Conclusion: Low serum HDL-C may induce upregulation of CD16 on classical monocytes, which may in turn lead to the increase of intermediate monocytes in coronary atherosclerosis patients.
Collapse
Affiliation(s)
- Yang Xiang
- Center for Gene Diagnosis, and Clinical Lab, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan 430071, China
| | - Bin Liang
- Center for Gene Diagnosis, and Clinical Lab, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan 430071, China
| | - Xiaokang Zhang
- Center for Gene Diagnosis, and Clinical Lab, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan 430071, China
| | - Fang Zheng
- Center for Gene Diagnosis, and Clinical Lab, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan 430071, China
| |
Collapse
|
13
|
Differential expression of CCR2 and CX 3CR1 on CD16 + monocyte subsets is associated with asthma severity. Allergy Asthma Clin Immunol 2019; 15:64. [PMID: 31700522 PMCID: PMC6829828 DOI: 10.1186/s13223-019-0379-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 10/22/2019] [Indexed: 11/16/2022] Open
Abstract
Background Monocytes play an important role in immune and inflammatory diseases and monocyte subsets are predictors of disease in certain conditions. Expression of the chemokine receptors, CCR2 and CX3CR1 on monocyte subsets relates to their function and can be used in their characterization. Our objective was to determine whether CD14, CD16, CCR2 and CX3CR1 on monocyte subsets are potential indicators of asthma severity. Methods Blood samples were collected from Saudi Arabian patients with asthma and normal healthy individuals. Six-color flow-cytometry phenotypic analysis was used to identify human blood monocyte subsets, based on their expression of CD14 and CD16 following CD45 gating. Expression of CCR2 and CX3CR1 was analysed on classical (CD14++CD16−), intermediate (CD14++CD16+) and non-classical (CD14+CD16++) subsets and correlated with disease severity. Results We demonstrated a significant increase in percentage of total CD45-positive monocytes in the blood of patients with severe asthma, but the proportion of the individual monocyte subsets was not significantly changed when patients with mild, moderate and severe asthma were compared with healthy individuals. CD16 expression (mean fluorescence intensity, MFI) was decreased on intermediate and non-classical subsets in patients with severe asthma compared to healthy controls. CX3CR1 expression was also lower, with a lower percentage of cells expressing CX3CR1 in the non-classical CD14+CD16++ subset in all patients with asthma and this was inversely related to the percentage of cells expressing CCR2. Conclusions CCR2 expression on monocytes indicated a tendency toward more phagocytic monocytes in patients with asthma. The differential expression of CD16, CX3CR1 and CCR2 on monocyte subsets in peripheral blood indicates modulation of the inflammatory response and suggests a role for monocytes in asthma pathogenesis.
Collapse
|
14
|
Mueller KAL, Hanna DB, Ehinger E, Xue X, Baas L, Gawaz MP, Geisler T, Anastos K, Cohen MH, Gange SJ, Heath SL, Lazar JM, Liu C, Mack WJ, Ofotokun I, Tien PC, Hodis HN, Landay AL, Kaplan RC, Ley K. Loss of CXCR4 on non-classical monocytes in participants of the Women's Interagency HIV Study (WIHS) with subclinical atherosclerosis. Cardiovasc Res 2019; 115:1029-1040. [PMID: 30520941 PMCID: PMC6735712 DOI: 10.1093/cvr/cvy292] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 11/07/2018] [Accepted: 12/04/2018] [Indexed: 12/20/2022] Open
Abstract
AIMS To test whether human immunodeficiency virus (HIV) infection and subclinical cardiovascular disease (sCVD) are associated with expression of CXCR4 and other surface markers on classical, intermediate, and non-classical monocytes in women. METHODS AND RESULTS sCVD was defined as presence of atherosclerotic lesions in the carotid artery in 92 participants of the Women's Interagency HIV Study (WIHS). Participants were stratified into four sets (n = 23 each) by HIV and sCVD status (HIV-/sCVD-, HIV-/sCVD+, HIV+/sCVD-, and HIV+/sCVD+) matched by age, race/ethnicity, and smoking status. Three subsets of monocytes were determined from archived peripheral blood mononuclear cells. Flow cytometry was used to count and phenotype surface markers. We tested for differences by HIV and sCVD status accounting for multiple comparisons. We found no differences in monocyte subset size among the four groups. Expression of seven surface markers differed significantly across the three monocyte subsets. CXCR4 expression [median fluorescence intensity (MFI)] in non-classical monocytes was highest among HIV-/CVD- [628, interquartile range (IQR) (295-1389)], followed by HIV+/CVD- [486, IQR (248-699)], HIV-/CVD+ (398, IQR (89-901)), and lowest in HIV+/CVD+ women [226, IQR (73-519)), P = 0.006 in ANOVA. After accounting for multiple comparison (Tukey) the difference between HIV-/CVD- vs. HIV+/CVD+ remained significant with P = 0.005 (HIV-/CVD- vs. HIV+/CVD- P = 0.04, HIV-/CVD- vs. HIV-/CVD+ P = 0.06, HIV+/CVD+ vs. HIV+/CVD- P = 0.88, HIV+/CVD+ vs. HIV-/CVD+ P = 0.81, HIV+/CVD- vs. HIV-/CVD+, P = 0.99). All pairwise comparisons with HIV-/CVD- were individually significant (P = 0.050 vs. HIV-/CVD+, P = 0.028 vs. HIV+/CVD-, P = 0.009 vs. HIV+/CVD+). CXCR4 expression on non-classical monocytes was significantly higher in CVD- (501.5, IQR (249.5-887.3)) vs. CVD+ (297, IQR (81.75-626.8) individuals (P = 0.028, n = 46 per group). CXCR4 expression on non-classical monocytes significantly correlated with cardiovascular and HIV-related risk factors including systolic blood pressure, platelet and T cell counts along with duration of antiretroviral therapy (P < 0.05). In regression analyses, adjusted for education level, study site, and injection drug use, presence of HIV infection and sCVD remained significantly associated with lower CXCR4 expression on non-classical monocytes (P = 0.003), but did not differ in classical or intermediate monocytes. CONCLUSION CXCR4 expression in non-classical monocytes was significantly lower among women with both HIV infection and sCVD, suggesting a potential atheroprotective role of CXCR4 in non-classical monocytes.
Collapse
Affiliation(s)
- Karin A L Mueller
- La Jolla Institute of Immunology, Athena Circle Drive La Jolla, CA, USA
- Eberhard Karls University, Tuebingen University Hospital, Department of Cardiology, Otfried-Mueller-Strasse 10, Tuebingen, Germany
| | - David B Hanna
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Belfer 13th floor, Bronx, NY, USA
| | - Erik Ehinger
- La Jolla Institute of Immunology, Athena Circle Drive La Jolla, CA, USA
| | - Xiaonan Xue
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Belfer 13th floor, Bronx, NY, USA
| | - Livia Baas
- La Jolla Institute of Immunology, Athena Circle Drive La Jolla, CA, USA
- Eberhard Karls University, Tuebingen University Hospital, Department of Cardiology, Otfried-Mueller-Strasse 10, Tuebingen, Germany
| | - Meinrad P Gawaz
- Eberhard Karls University, Tuebingen University Hospital, Department of Cardiology, Otfried-Mueller-Strasse 10, Tuebingen, Germany
| | - Tobias Geisler
- Eberhard Karls University, Tuebingen University Hospital, Department of Cardiology, Otfried-Mueller-Strasse 10, Tuebingen, Germany
| | - Kathryn Anastos
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Belfer 13th floor, Bronx, NY, USA
| | - Mardge H Cohen
- John H. Stroger, Jr. Hospital of Cook County, 1969 Ogden Ave, Chicago, IL, USA
| | - Stephen J Gange
- Department of Epidemiology, Johns Hopkins University, 265 Garland Hall, 3400 North Charles Street, Baltimore, MD, USA
| | - Sonya L Heath
- Department of Medicine, University of Alabama at Birmingham, 908 20th Street South, Birmingham, AL, USA
| | - Jason M Lazar
- Department of Medicine, SUNY-Downstate Medical Center, 450 Clarkson Ave, Brooklyn, NY, USA
| | - Chenglong Liu
- Georgetown University Medical Center, Washington, DC, USA
| | - Wendy J Mack
- Department of Preventive Medicine, University of Southern California, 2001 N Soto St, Los Angeles, CA, USA
| | - Igho Ofotokun
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, 49 Jesse Hill Jr. Drive, Atlanta, GA, USA
| | - Phyllis C Tien
- Department of Medicine, VAMC, Infectious Disease Section, 111W 4150 Clement St., San Francisco, CA, USA
| | - Howard N Hodis
- Department of Preventive Medicine, University of Southern California, 2001 N Soto St, Los Angeles, CA, USA
| | - Alan L Landay
- Department of Internal Medicine, Rush University Medical Center, 1735 West Harrison St, Chicago, IL, USA
| | - Robert C Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Belfer 13th floor, Bronx, NY, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Klaus Ley
- La Jolla Institute of Immunology, Athena Circle Drive La Jolla, CA, USA
| |
Collapse
|
15
|
Justo-Junior A, Villarejos L, Lima X, Nadruz W, Sposito A, Mamoni R, Abdalla R, Fernandes J, Oliveira R, Blotta M. Monocytes of patients with unstable angina express high levels of chemokine and pattern-recognition receptors. Cytokine 2019; 113:61-67. [DOI: 10.1016/j.cyto.2018.06.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 11/26/2022]
|
16
|
Garofallo SB, Portal VL, Markoski MM, Dias LD, de Quadrosa AS, Marcadenti A. Correlations between Traditional and Nontraditional Indicators of Adiposity, Inflammation, and Monocyte Subtypes in Patients with Stable Coronary Artery Disease. J Obes 2019; 2019:3139278. [PMID: 31354986 PMCID: PMC6637687 DOI: 10.1155/2019/3139278] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 05/30/2019] [Accepted: 06/10/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Recruitment of monocytes and low-grade inflammation process are both involved in obesity and in atherosclerosis. Thus, the aim of this study was to evaluate the correlation among indicators of adiposity, monocyte subtypes, and inflammatory markers in patients with stable coronary artery disease (CAD). METHODS This was a cross-sectional study including 97 patients with stable CAD aged >40 years. Traditional anthropometric indicators of adiposity (body mass index (BMI); waist, hip, and neck circumferences; and waist-hip ratio) and nontraditional anthropometric indicators of adiposity (lipid accumulation product index (LAP), visceral adiposity index (VAI), and deep-abdominal-adipose-tissue index (DAAT)) were determined. Immunoprecipitation, turbidimetry, coagulometric method, and CBA were used for the evaluation of inflammatory markers (hs-CRP, IL-2, IL-4, IL-6, IL-10, and INF-γ). Monocyte subtypes were identified by flow cytometry and defined as CD14++ CD16- (Mon1), CD14++ CD16+ (Mon2), and CD14+ CD16++ (Mon3). Pearson's correlation coefficient and adjusted partial correlation were calculated. RESULTS Monocyte subtypes were correlated with inflammation regardless of nutritional status according to BMI. In overweight individuals, LAP was correlated with IL-4 and fibrinogen (P < 0.01 and P < 0.05, respectively) and VAI with IL-4 (P < 0.05). In obese patients, the BMI, waist, neck, and hip circumferences, and DAAT were correlated with IL-6 (P < 0.05), regardless of age and sex. The hip circumference was correlated positively with Mon1 (r = 0.40, P = 0.007) and negatively with Mon3 (r = -0.35, P = 0.02) in obese subjects. CONCLUSION Monocyte subtypes are correlated with inflammation in patients with stable CAD independently of BMI, whereas traditional and nontraditional indicators of adiposity are correlated differently with inflammatory markers and monocytes, according to the nutritional status.
Collapse
Affiliation(s)
- Silvia Bueno Garofallo
- Graduate Program in Health Sciences (Cardiology), Institute of Cardiology of Rio Grande do Sul/University Foundation of Cardiology (IC/FUC), Princesa Isabel Avenue, 395, Porto Alegre, Rio Grande do Sul 90040-371, Brazil
| | - Vera Lucia Portal
- Graduate Program in Health Sciences (Cardiology), Institute of Cardiology of Rio Grande do Sul/University Foundation of Cardiology (IC/FUC), Princesa Isabel Avenue, 395, Porto Alegre, Rio Grande do Sul 90040-371, Brazil
| | - Melissa Medeiros Markoski
- Graduate Program in Nutrition Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Sarmento Leite Street, 245, Porto Alegre, Rio Grande do Sul 90050-170, Brazil
| | - Lucinara Dadda Dias
- Graduate Program in Health Sciences (Cardiology), Institute of Cardiology of Rio Grande do Sul/University Foundation of Cardiology (IC/FUC), Princesa Isabel Avenue, 395, Porto Alegre, Rio Grande do Sul 90040-371, Brazil
| | - Alexandre Schaan de Quadrosa
- Graduate Program in Health Sciences (Cardiology), Institute of Cardiology of Rio Grande do Sul/University Foundation of Cardiology (IC/FUC), Princesa Isabel Avenue, 395, Porto Alegre, Rio Grande do Sul 90040-371, Brazil
| | - Aline Marcadenti
- Graduate Program in Health Sciences (Cardiology), Institute of Cardiology of Rio Grande do Sul/University Foundation of Cardiology (IC/FUC), Princesa Isabel Avenue, 395, Porto Alegre, Rio Grande do Sul 90040-371, Brazil
- Graduate Program in Nutrition Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Sarmento Leite Street, 245, Porto Alegre, Rio Grande do Sul 90050-170, Brazil
- Institute of Research,Coracao Hospital (HCor), Abílio Soares Street, 250, São Paulo, São Paulo 04004-05, Brazil
| |
Collapse
|
17
|
Chiu YL, Shu KH, Yang FJ, Chou TY, Chen PM, Lay FY, Pan SY, Lin CJ, Litjens NHR, Betjes MGH, Bermudez S, Kao KC, Chia JS, Wang G, Peng YS, Chuang YF. A comprehensive characterization of aggravated aging-related changes in T lymphocytes and monocytes in end-stage renal disease: the iESRD study. IMMUNITY & AGEING 2018; 15:27. [PMID: 30455721 PMCID: PMC6223078 DOI: 10.1186/s12979-018-0131-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 09/21/2018] [Indexed: 12/26/2022]
Abstract
Background Patients with end-stage renal disease (ESRD) exhibit a premature aging phenotype of the immune system. Nevertheless, the etiology and impact of these changes in ESRD patients remain unknown. Results Compared to healthy individuals, ESRD patients exhibit accelerated immunosenescence in both T cell and monocyte compartments, characterized by a dramatic reduction in naïve CD4+ and CD8+ T cell numbers but increase in CD8+ TEMRA cell and proinflammatory monocyte numbers. Notably, within ESRD patients, aging-related immune changes positively correlated not only with increasing age but also with longer dialysis vintage. In multivariable-adjusted logistic regression models, the combination of high terminally differentiated CD8+ T cell level and high intermediate monocyte level, as a composite predictive immunophenotype, was independently associated with prevalent coronary artery disease as well as cardiovascular disease, after adjustment for age, sex, systemic inflammation and presence of diabetes. Levels of terminally differentiated CD8+ T cells also positively correlated with the level of uremic toxin p-cresyl sulfate. Conclusions Aging-associated adaptive and innate immune changes are aggravated in ESRD and are associated with cardiovascular diseases. For the first time, our study demonstrates the potential link between immunosenescence in ESRD and duration of exposure to the uremic milieu. Electronic supplementary material The online version of this article (10.1186/s12979-018-0131-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yen-Ling Chiu
- 1Division of Nephrology, Department of Medicine, Far Eastern Memorial Hospital, Taipei, Taiwan.,2Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University , Taipei, Taiwan.,3Graduate Program in Biomedical Informatics, Yuan Ze University, Taoyuan, Taiwan
| | - Kai-Hsiang Shu
- 1Division of Nephrology, Department of Medicine, Far Eastern Memorial Hospital, Taipei, Taiwan.,4Graduate Institute of Immunology, College of Medicine, National Taiwan University , Taipei, Taiwan
| | - Feng-Jung Yang
- 2Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University , Taipei, Taiwan.,5Department of Medicine, National Taiwan University Hospital Yun Lin Branch, Douliu, Taiwan
| | - Tzu-Ying Chou
- 1Division of Nephrology, Department of Medicine, Far Eastern Memorial Hospital, Taipei, Taiwan
| | - Ping-Min Chen
- 1Division of Nephrology, Department of Medicine, Far Eastern Memorial Hospital, Taipei, Taiwan
| | - Fang-Yun Lay
- 1Division of Nephrology, Department of Medicine, Far Eastern Memorial Hospital, Taipei, Taiwan
| | - Szu-Yu Pan
- 1Division of Nephrology, Department of Medicine, Far Eastern Memorial Hospital, Taipei, Taiwan
| | - Cheng-Jui Lin
- 6Division of Nephrology, Department of Internal Medicine, Mackay Memorial Hospital, Taipei, Taiwan
| | - Nicolle H R Litjens
- 7Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Michiel G H Betjes
- 7Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Selma Bermudez
- 8International Health Program, National Yang Ming University School of Public Health, Taipei, Taiwan
| | - Kung-Chi Kao
- 4Graduate Institute of Immunology, College of Medicine, National Taiwan University , Taipei, Taiwan
| | - Jean-San Chia
- 4Graduate Institute of Immunology, College of Medicine, National Taiwan University , Taipei, Taiwan
| | - George Wang
- 9Biology of Healthy Aging Program, Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Yu-Sen Peng
- 1Division of Nephrology, Department of Medicine, Far Eastern Memorial Hospital, Taipei, Taiwan
| | - Yi-Fang Chuang
- 8International Health Program, National Yang Ming University School of Public Health, Taipei, Taiwan.,10Institute of Public Health, National Yang Ming University School of Public Health, Taipei, Taiwan.,11Preventive Medicine Research Center, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
18
|
Haghikia A, Li XS, Liman TG, Bledau N, Schmidt D, Zimmermann F, Kränkel N, Widera C, Sonnenschein K, Haghikia A, Weissenborn K, Fraccarollo D, Heimesaat MM, Bauersachs J, Wang Z, Zhu W, Bavendiek U, Hazen SL, Endres M, Landmesser U. Gut Microbiota-Dependent Trimethylamine N-Oxide Predicts Risk of Cardiovascular Events in Patients With Stroke and Is Related to Proinflammatory Monocytes. Arterioscler Thromb Vasc Biol 2018; 38:2225-2235. [PMID: 29976769 PMCID: PMC6202215 DOI: 10.1161/atvbaha.118.311023] [Citation(s) in RCA: 225] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 06/19/2018] [Indexed: 12/13/2022]
Abstract
Objective- Gut microbiota-dependent metabolites, in particular trimethylamine N-oxide (TMAO), have recently been reported to promote atherosclerosis and thrombosis. Here, we examined for the first time the relation of TMAO and the risk of incident cardiovascular events in patients with recent first-ever ischemic stroke in 2 independent prospective cohorts. Moreover, the link between TMAO and proinflammatory monocytes as a potential contributing factor for cardiovascular risk in stroke patients was studied. Approach and Results- In a first study (n=78), higher TMAO plasma levels were linked with an increased risk of incident cardiovascular events including myocardial infarction, recurrent stroke, and cardiovascular death (fourth quartile versus first quartile; hazard ratio, 2.31; 95% CI, 1.25-4.23; P<0.01). In the second independent validation cohort (n=593), high TMAO levels again heralded marked increased risk of adverse cardiovascular events (fourth quartile versus first quartile; hazard ratio, 5.0; 95% CI, 1.7-14.8; P<0.01), and also after adjustments for cardiovascular risk factors including hypertension, diabetes mellitus, LDL (low-density lipoprotein) cholesterol, and estimated glomerular filtration rate (hazard ratio, 3.3; 95% CI, 1.2-10.9; P=0.04). A significant correlation was also found between TMAO levels and percentage of proinflammatory intermediate CD14++CD16+ monocytes ( r=0.70; P<0.01). Moreover, in mice fed a diet enriched with choline to increase TMAO synthesis, levels of proinflammatory murine Ly6Chigh monocytes were higher than in the chow-fed control group (choline: 9.2±0.5×103 per mL versus control: 6.5±0.5×103 per mL; P<0.01). This increase was abolished in mice with depleted gut microbiota (choline+antibiotics: 5.4±0.7×103 per mL; P<0.001 versus choline). Conclusions- The present study demonstrates for the first time a graded relation between TMAO levels and the risk of subsequent cardiovascular events in patients with recent prior ischemic stroke. Our data support the notion that TMAO-related increase of proinflammatory monocytes may add to elevated cardiovascular risk of patients with increased TMAO levels.
Collapse
Affiliation(s)
- Arash Haghikia
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Xinmin S. Li
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Thomas G. Liman
- Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Nils Bledau
- Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - David Schmidt
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Friederike Zimmermann
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Nicolle Kränkel
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Christian Widera
- Department of Cardiology, Heart Center Oldenburg, European Medical School Oldenburg-Groningen, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | | | - Aiden Haghikia
- Department of Neurology, Ruhr-University Bochum, Bochum, Germany
| | | | | | - Markus M. Heimesaat
- Institute of Microbiology and Infection Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Johann Bauersachs
- Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Zeneng Wang
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Weifei Zhu
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Udo Bavendiek
- Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Stanley L. Hazen
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Matthias Endres
- DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany
- Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Ulf Landmesser
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| |
Collapse
|
19
|
Shahid F, Rahmat NA, Lip GYH, Shantsila E. Prognostic implication of monocytes in atrial fibrillation: The West Birmingham Atrial Fibrillation Project. PLoS One 2018; 13:e0200373. [PMID: 30020950 PMCID: PMC6051603 DOI: 10.1371/journal.pone.0200373] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 06/20/2018] [Indexed: 12/12/2022] Open
Abstract
Background and objectives High monocyte counts are related to adverse outcomes in cardiovascular disease. Their role in prognostication in patients with atrial fibrillation (AF) is unknown. We investigated whether monocyte counts are useful as a marker of prognosis in patients with AF. Methods Monocyte counts were obtained from blood samples in 881 AF patients. Study outcomes were (i) all-cause death; (ii) major adverse cardiovascular events; (iii) stroke, TIA or other systemic embolism (SSE); and (iv) major bleeding. Results Median follow up was 7.2 years; 44% of patients died, 48% developed MACE; 9% had SSE and 5% had major bleeding. On Cox regression, after adjustment for CHA2DS2-VASc score, the highest quartile of monocyte counts (i.e., ≥580 μL vs. other quartiles) was associated with increased risk of death (hazard ratio [HR] 1.64, 95% confidence interval [CI] 1.31–2.05, p<0.001) and MACE (HR 1.58, 95% CI 1.28–1.96, p<0.001). Persistent monocyte levels ≥580 per μL during follow up were associated with further increase in risk of death (HR 1.52, 95% CI 1.10–2.11, p = 0.01) and MACE (HR 1.54, 95% CI 1.13–2.09, p = 0.006). Persistent monocyte levels ≥580 per μL during were associated with a significant increase in major bleeding events (HR 2.77, 95% CI 1.36–5.67, p = 0.005, after adjustment for HAS-BLED score). Conclusion High monocyte counts independently predict the occurrence of MACE, major bleeding and mortality, but not SSE. Understanding the pathophysiological mechanisms involved would help understand the relationships between monocytes, and adverse thrombotic and bleeding outcomes in AF patients.
Collapse
Affiliation(s)
- Farhan Shahid
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Nur A. Rahmat
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Gregory Y. H. Lip
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Eduard Shantsila
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
- * E-mail:
| |
Collapse
|
20
|
Cignarella A, Tedesco S, Cappellari R, Fadini GP. The continuum of monocyte phenotypes: Experimental evidence and prognostic utility in assessing cardiovascular risk. J Leukoc Biol 2018; 103:1021-1028. [PMID: 29603382 DOI: 10.1002/jlb.5ru1217-477rr] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 02/23/2018] [Accepted: 02/23/2018] [Indexed: 12/15/2022] Open
Abstract
The monocyte-macrophage cell lineage represents a major player in innate immunity, and is involved in many physiologic and pathologic conditions. Particularly, monocyte-macrophages play a very important role in atherosclerosis and cardiovascular disease. Monocyte heterogeneity is well recognized but the biologic and clinical meaning of the various monocyte subtypes is not entirely understood. Traditionally, monocytes can be divided in classical, intermediate, and nonclassical based on expression of the surface antigens CD14 and CD16. While macrophage diversity is now well recognized to organize as a continuum, monocyte subsets have long been considered as separated entities. However, mounting evidence obtained by tracking the ontology of human monocytes help clarifying that monocytes mature from classical to nonclassical ones, through an intermediate phenotype. This concept is therefore best depicted as a continuum, whereas the subdivision into discrete CD14/CD16 subsets appears an oversimplification. In this review, we discuss the evidence supporting the existence of a monocyte continuum along with the technical challenges of monocyte characterization. In particular, we describe the advantage of considering monocytes along a continuous distribution for the evaluation of cardiovascular risk. We make the point that small transition along the monocyte continuum better reflects cardiovascular risk than a simplified analysis of discrete monocyte subsets. Recognizing the monocyte continuum can be helpful to model other pathophysiologic conditions where these cells are involved.
Collapse
Affiliation(s)
| | | | | | - Gian Paolo Fadini
- Department of Medicine, University of Padova, Padova, Italy
- Venetian Institute of Molecular Medicine, Padova, Italy
| |
Collapse
|
21
|
Gong J, Qiu C, Huang D, Zhang Y, Yu S, Zeng C. Integrative functional analysis of super enhancer SNPs for coronary artery disease. J Hum Genet 2018; 63:627-638. [PMID: 29491472 DOI: 10.1038/s10038-018-0422-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 01/13/2018] [Accepted: 01/29/2018] [Indexed: 12/31/2022]
Abstract
Clinical research in coronary artery disease (CAD) primarily focused on genetic variants located in protein-coding regions. Recently, mutations fall within non-coding regions have been suggested to be essential to the pathogenesis of human complex disease. Super enhancer is a densely spaced cluster of transcriptional enhancers located in non-coding regions, which is critical for regulating cell-type specific gene expression. However, the underlying mechanism of the super enhancer single-nucleotide polymorphisms (SNPs) affecting the risk of CAD remains unclear. By integrating genome-wide association study (GWAS) meta-analysis of CAD and cell/tissue-specific histone modification data set, we identified 366 potential CAD-associated super enhancer SNPs in 67 loci, including 94 SNPs that are involved in regulating chromatin interactive and/or affecting the transcription factors binding affinity. Interestingly, we found 7 novel functional loci (CBFA2T3, ZMIZ1, DIP2B, SCNN1D/ACAP3, TMEM105, CAMK2G, and MAPK1) that CAD-associated super enhancer SNPs were clustered into the same or neighboring super enhancers. Pathway analysis showed a significant enrichment in several well-known signaling and regulatory processes, e.g., cAMP signaling pathway and ErbB signaling pathway, which play a key role in CAD metabolism. Our results highlight the potential functional importance of CAD-associated super enhancer SNPs and provide the targets for further insights on the pathogenesis of CAD.
Collapse
Affiliation(s)
- Juexiao Gong
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Chuan Qiu
- Center for Bioinformatics and Genomics, Department of Global Biostatistics and Data Science, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - Dan Huang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Yiyan Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Shengyong Yu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China. .,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China.
| | - Chunping Zeng
- Department of Endocrinology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
22
|
Affiliation(s)
- Farhan Shahid
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Gregory Y H Lip
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom.,Aalborg Thrombosis Research Unit, Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Eduard Shantsila
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
23
|
Comparison of circulating dendritic cell and monocyte subsets at different stages of atherosclerosis: insights from optical coherence tomography. BMC Cardiovasc Disord 2017; 17:270. [PMID: 29047360 PMCID: PMC5648428 DOI: 10.1186/s12872-017-0702-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 10/10/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND While specific patterns of circulating dendritic cells (DCs) and monocytes are associated with the incidence of coronary artery disease, the characterization of circulating DC and monocyte subsets in patients with different stages of atherosclerosis remains unclear. METHODS Forty-eight patients with unstable angina pectoris (UAP) diagnosed by angiography were enrolled. Likewise, 31 patients with ST-segment elevation myocardial infarction (STEMI) were enrolled and confirmed with the presence of thrombosis by angiography. Plaque features of 48 UAP patients were evaluated at the culprit lesions by OCT. Circulating myeloid DCs (mDCs), plasmacytoid DCs (pDCs) and monocyte subsets were analyzed using flow cytometry. RESULTS The proportions and absolute counts of mDC2s, which specifically express CD141 and possess the ability to activate CD8+ T lymphocytes, significantly decreased in patients with UAP and STEMI when compared with controls (0.08 × 104 ± 0.05 × 104/ml and 0.08 × 104 ± 0.06 × 104/ml vs. 0.11 × 104 ± 0.06 × 104/ml, p = 0.027). On the other hand, patients with UAP and STEMI had significantly higher proportions and counts of Mon2 subsets. In the OCT subgroup, patients with thin-cap fibroatheroma (TCFA) had higher proportions and absolute number of Mon2 (11.96% ± 4.27% vs. 9.42% ± 4.05%, p = 0.034; 5.17 × 104/ml ± 1.92 × 104/ml vs. 3.53 × 104/ml ± 2.65 × 104/ml, p = 0.045) than those without TCFA. However, there was no remarkable difference in mDC2s between patients with and without TCFA. CONCLUSIONS Circulating Mon2 appears to be a promising marker for the severity of atherosclerotic plaque.
Collapse
|
24
|
Veenstra M, Williams DW, Calderon TM, Anastos K, Morgello S, Berman JW. Frontline Science: CXCR7 mediates CD14 +CD16 + monocyte transmigration across the blood brain barrier: a potential therapeutic target for NeuroAIDS. J Leukoc Biol 2017; 102:1173-1185. [PMID: 28754798 DOI: 10.1189/jlb.3hi0517-167r] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/22/2017] [Accepted: 07/06/2017] [Indexed: 12/11/2022] Open
Abstract
CD14+CD16+ monocytes transmigrate into the CNS of HIV-positive people in response to chemokines elevated in the brains of infected individuals, including CXCL12. Entry of these cells leads to viral reservoirs, neuroinflammation, and neuronal damage. These may eventually lead to HIV-associated neurocognitive disorders. Although antiretroviral therapy (ART) has significantly improved the lives of HIV-infected people, the prevalence of cognitive deficits remains unchanged despite ART, still affecting >50% of infected individuals. There are no therapies to reduce these deficits or to prevent CNS entry of CD14+CD16+ monocytes. The goal of this study was to determine whether CXCR7, a receptor for CXCL12, is expressed on CD14+CD16+ monocytes and whether a small molecule CXCR7 antagonist (CCX771) can prevent CD14+CD16+ monocyte transmigration into the CNS. We showed for the first time that CXCR7 is on CD14+CD16+ monocytes and that it may be a therapeutic target to reduce their entry into the brain. We demonstrated that CD14+CD16+ monocytes and not the more abundant CD14+CD16- monocytes or T cells transmigrate to low homeostatic levels of CXCL12. This may be a result of increased CXCR7 on CD14+CD16+ monocytes. We showed that CCX771 reduced transmigration of CD14+CD16+ monocytes but not of CD14+CD16- monocytes from uninfected and HIV-infected individuals and that it reduced CXCL12-mediated chemotaxis of CD14+CD16+ monocytes. We propose that CXCR7 is a therapeutic target on CD14+CD16+ monocytes to limit their CNS entry, thereby reducing neuroinflammation, neuronal damage, and HIV-associated neurocognitive disorders. Our data also suggest that CCX771 may reduce CD14+CD16+ monocyte-mediated inflammation in other disorders.
Collapse
Affiliation(s)
- Mike Veenstra
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Dionna W Williams
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tina M Calderon
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Kathryn Anastos
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York, USA.,Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Susan Morgello
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York, USA; and
| | - Joan W Berman
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, USA; .,Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
25
|
Thomas GD, Hamers AAJ, Nakao C, Marcovecchio P, Taylor AM, McSkimming C, Nguyen AT, McNamara CA, Hedrick CC. Human Blood Monocyte Subsets: A New Gating Strategy Defined Using Cell Surface Markers Identified by Mass Cytometry. Arterioscler Thromb Vasc Biol 2017; 37:1548-1558. [PMID: 28596372 DOI: 10.1161/atvbaha.117.309145] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 05/01/2017] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Human monocyte subsets are defined as classical (CD14++CD16-), intermediate (CD14++CD16+), and nonclassical (CD14+CD16+). Alterations in monocyte subset frequencies are associated with clinical outcomes, including cardiovascular disease, in which circulating intermediate monocytes independently predict cardiovascular events. However, delineating mechanisms of monocyte function is hampered by inconsistent results among studies. APPROACH AND RESULTS We use cytometry by time-of-flight mass cytometry to profile human monocytes using a panel of 36 cell surface markers. Using the dimensionality reduction approach visual interactive stochastic neighbor embedding (viSNE), we define monocytes by incorporating all cell surface markers simultaneously. Using viSNE, we find that although classical monocytes are defined with high purity using CD14 and CD16, intermediate and nonclassical monocytes defined using CD14 and CD16 alone are frequently contaminated, with average intermediate and nonclassical monocyte purity of ≈86.0% and 87.2%, respectively. To improve the monocyte purity, we devised a new gating scheme that takes advantage of the shared coexpression of cell surface markers on each subset. In addition to CD14 and CD16, CCR2, CD36, HLA-DR, and CD11c are the most informative markers that discriminate among the 3 monocyte populations. Using these additional markers as filters, our revised gating scheme increases the purity of both intermediate and nonclassical monocyte subsets to 98.8% and 99.1%, respectively. We demonstrate the use of this new gating scheme using conventional flow cytometry of peripheral blood mononuclear cells from subjects with cardiovascular disease. CONCLUSIONS Using cytometry by time-of-flight mass cytometry, we have identified a small panel of surface markers that can significantly improve monocyte subset identification and purity in flow cytometry. Such a revised gating scheme will be useful for clinical studies of monocyte function in human cardiovascular disease.
Collapse
Affiliation(s)
- Graham D Thomas
- From the Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, CA (G.D.T., A.A.J.H., C.N., P.M., C.C.H.); and Division of Cardiology and Robert M. Berne Cardiovascular Center, University of Virginia, Charlottesville (A.M.T., C.M., A.T.N., C.A.M.).
| | - Anouk A J Hamers
- From the Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, CA (G.D.T., A.A.J.H., C.N., P.M., C.C.H.); and Division of Cardiology and Robert M. Berne Cardiovascular Center, University of Virginia, Charlottesville (A.M.T., C.M., A.T.N., C.A.M.)
| | - Catherine Nakao
- From the Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, CA (G.D.T., A.A.J.H., C.N., P.M., C.C.H.); and Division of Cardiology and Robert M. Berne Cardiovascular Center, University of Virginia, Charlottesville (A.M.T., C.M., A.T.N., C.A.M.)
| | - Paola Marcovecchio
- From the Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, CA (G.D.T., A.A.J.H., C.N., P.M., C.C.H.); and Division of Cardiology and Robert M. Berne Cardiovascular Center, University of Virginia, Charlottesville (A.M.T., C.M., A.T.N., C.A.M.)
| | - Angela M Taylor
- From the Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, CA (G.D.T., A.A.J.H., C.N., P.M., C.C.H.); and Division of Cardiology and Robert M. Berne Cardiovascular Center, University of Virginia, Charlottesville (A.M.T., C.M., A.T.N., C.A.M.)
| | - Chantel McSkimming
- From the Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, CA (G.D.T., A.A.J.H., C.N., P.M., C.C.H.); and Division of Cardiology and Robert M. Berne Cardiovascular Center, University of Virginia, Charlottesville (A.M.T., C.M., A.T.N., C.A.M.)
| | - Anh Tram Nguyen
- From the Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, CA (G.D.T., A.A.J.H., C.N., P.M., C.C.H.); and Division of Cardiology and Robert M. Berne Cardiovascular Center, University of Virginia, Charlottesville (A.M.T., C.M., A.T.N., C.A.M.)
| | - Coleen A McNamara
- From the Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, CA (G.D.T., A.A.J.H., C.N., P.M., C.C.H.); and Division of Cardiology and Robert M. Berne Cardiovascular Center, University of Virginia, Charlottesville (A.M.T., C.M., A.T.N., C.A.M.)
| | - Catherine C Hedrick
- From the Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, CA (G.D.T., A.A.J.H., C.N., P.M., C.C.H.); and Division of Cardiology and Robert M. Berne Cardiovascular Center, University of Virginia, Charlottesville (A.M.T., C.M., A.T.N., C.A.M.).
| |
Collapse
|
26
|
The Effect of Regular Intake of Dry-Cured Ham Rich in Bioactive Peptides on Inflammation, Platelet and Monocyte Activation Markers in Humans. Nutrients 2017; 9:nu9040321. [PMID: 28333093 PMCID: PMC5409660 DOI: 10.3390/nu9040321] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 03/13/2017] [Accepted: 03/17/2017] [Indexed: 12/28/2022] Open
Abstract
Background and aims: Dietary studies have shown that active biopeptides provide protective health benefits, although the mediating pathways are somewhat uncertain. To throw light on this situation, we studied the effects of consuming Spanish dry-cured ham on platelet function, monocyte activation markers and the inflammatory status of healthy humans with pre-hypertension. Methods: Thirty-eight healthy volunteers with systolic blood pressure of >125 mmHg were enrolled in a two-arm crossover randomized controlled trial. Participants received 80 g/day dry-cured pork ham of >11 months proteolysis or 100 g/day cooked ham (control product) for 4 weeks followed by a 2-week washout before “crossing over” to the other treatment for 4 more weeks. Soluble markers and cytokines were analyzed by ELISA. Platelet function was assessed by measuring P-selectin expression and PAC-1 binding after ADP (adenosine diphosphate) stimulation using whole blood flow cytometry. Monocyte markers of the pathological status (adhesion, inflammatory and scavenging receptors) were also measured by flow cytometry in the three monocyte subsets after the interventional period. Results: The mean differences between dry-cured ham and cooked ham followed by a time period adjustment for plasmatic P-selectin and interleukin 6 proteins slightly failed (p = 0.062 and p = 0.049, respectively), notably increased for MCP-1 levels (p = 0.023) while VCAM-1 was not affected. Platelet function also decreased after ADP stimulation. The expression of adhesion and scavenging markers (ICAM1R, CXCR4 and TLR4) in the three subsets of monocytes was significantly higher (all p < 0.05). Conclusions: The regular consumption of biopeptides contained in the dry-cured ham but absent in cooked ham impaired platelet and monocyte activation and the levels of plasmatic P-selectin, MCP-1 and interleukin 6 in healthy subjects. This study strongly suggests the existence of a mechanism that links dietary biopeptides and beneficial health effects.
Collapse
|
27
|
Wildgruber M, Aschenbrenner T, Wendorff H, Czubba M, Glinzer A, Haller B, Schiemann M, Zimmermann A, Berger H, Eckstein HH, Meier R, Wohlgemuth WA, Libby P, Zernecke A. The "Intermediate" CD14 ++CD16 + monocyte subset increases in severe peripheral artery disease in humans. Sci Rep 2016; 6:39483. [PMID: 27991581 PMCID: PMC5171878 DOI: 10.1038/srep39483] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 11/23/2016] [Indexed: 11/20/2022] Open
Abstract
Monocytes are key players in atherosclerotic. Human monocytes display a considerable heterogeneity and at least three subsets can be distinguished. While the role of monocyte subset heterogeneity has already been well investigated in coronary artery disease (CAD), the knowledge about monocytes and their heterogeneity in peripheral artery occlusive disease (PAOD) still is limited. Therefore, we aimed to investigate monocyte subset heterogeneity in patients with PAOD. Peripheral blood was obtained from 143 patients suffering from PAOD (Rutherford stage I to VI) and three monocyte subsets were identified by flow cytometry: CD14++CD16− classical monocytes, CD14+CD16++ non-classical monocytes and CD14++CD16+ intermediate monocytes. Additionally the expression of distinct surface markers (CD106, CD162 and myeloperoxidase MPO) was analyzed. Proportions of CD14++CD16+ intermediate monocyte levels were significantly increased in advanced stages of PAOD, while classical and non-classical monocytes displayed no such trend. Moreover, CD162 and MPO expression increased significantly in intermediate monocyte subsets in advanced disease stages. Likewise, increased CD162 and MPO expression was noted in CD14++CD16− classical monocytes. These data suggest substantial dynamics in monocyte subset distributions and phenotypes in different stages of PAOD, which can either serve as biomarkers or as potential therapeutic targets to decrease the inflammatory burden in advanced stages of atherosclerosis.
Collapse
Affiliation(s)
- Moritz Wildgruber
- Institut für diagnostische und interventionelle Radiologie, Klinikum rechts der Isar, Technische Universität München, Germany.,Institut für Klinische Radiologie, Universitätsklinikum Münster, Germany
| | - Teresa Aschenbrenner
- Institut für diagnostische und interventionelle Radiologie, Klinikum rechts der Isar, Technische Universität München, Germany
| | - Heiko Wendorff
- Klinik für vaskuläre und endovaskuläre Chirurgie, Klinikum rechts der Isar, Technische Universität München, Germany
| | - Maria Czubba
- Institut für diagnostische und interventionelle Radiologie, Klinikum rechts der Isar, Technische Universität München, Germany
| | - Almut Glinzer
- Institut für diagnostische und interventionelle Radiologie, Klinikum rechts der Isar, Technische Universität München, Germany.,Klinik für vaskuläre und endovaskuläre Chirurgie, Klinikum rechts der Isar, Technische Universität München, Germany
| | - Bernhard Haller
- Institut für medizinische Statistik und Epidemiologie, Klinikum rechts der Isar, Technische Universität München, Germany
| | - Matthias Schiemann
- Institut für medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Germany.,Klinische Kooperationsgemeinschaft "Immunmonitoring", Helmholtz Zentrum München (Neuherberg) und Technische Universität München, Germany
| | - Alexander Zimmermann
- Klinik für vaskuläre und endovaskuläre Chirurgie, Klinikum rechts der Isar, Technische Universität München, Germany
| | - Hermann Berger
- Institut für diagnostische und interventionelle Radiologie, Klinikum rechts der Isar, Technische Universität München, Germany
| | - Hans-Henning Eckstein
- Klinik für vaskuläre und endovaskuläre Chirurgie, Klinikum rechts der Isar, Technische Universität München, Germany
| | - Reinhard Meier
- Institut für Radiologie, Universitätsklinikum Ulm, Germany
| | | | - Peter Libby
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Alma Zernecke
- Institut für Klinische Biochemie und Pathobiochemie, Universitätsklinikum Würzburg, Germany
| |
Collapse
|
28
|
Lean MEJ, Te Morenga L. Sugar and Type 2 diabetes. Br Med Bull 2016; 120:43-53. [PMID: 27707695 DOI: 10.1093/bmb/ldw037] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 07/27/2016] [Accepted: 09/30/2016] [Indexed: 01/03/2023]
Abstract
BACKGROUND Consumption of sugar, specifically sugar-sweetened beverages, has been widely held responsible by the media for the global rise in Type 2 diabetes (T2DM). SOURCES OF DATA Systematic reviews and dietary guidelines relating dietary sugars to T2DM. AREAS OF AGREEMENT Weight gain and T2DM incidence are associated with diet and lifestyle patterns characterized by high consumptions of any sweetened beverages. High sugar intakes impair risk factors for macrovascular complications of T2DM. AREAS OF CONTROVERSY Much of the association between sugars and T2DM is eliminated by adjusting data for body mass index (BMI). However, BMI adjustment does not fully account for adiposity (r2=0.65-0.75). Excess sugar can promote weight gain, thus T2DM, through extra calories, but has no unique diabetogenic effect at physiological levels. GROWING POINTS Ethical concerns about caffeine added to sweetened beverages, undetectable by consumers, to increase consumption. AREAS TIMELY FOR DEVELOPING RESEARCH Evidence needed for limiting dietary sugar below 10% energy intake.
Collapse
Affiliation(s)
- Michael E J Lean
- Department of Human Nutrition, School of Medicine, Glasgow Royal Infirmary, University of Glasgow, Glasgow G31 2ER, UK
| | - Lisa Te Morenga
- Department of Human Nutrition and Edgar Institute for Diabetes and Obesity Research, Otago University, Dunedin 9016, New Zealand
| |
Collapse
|
29
|
Percutaneous Transluminal Angioplasty in Patients with Peripheral Arterial Disease Does Not Affect Circulating Monocyte Subpopulations. BIOMED RESEARCH INTERNATIONAL 2016; 2016:2708957. [PMID: 27818999 PMCID: PMC5081453 DOI: 10.1155/2016/2708957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 07/30/2016] [Accepted: 09/20/2016] [Indexed: 11/29/2022]
Abstract
Monocytes are mononuclear cells characterized by distinct morphology and expression of CD14 and CD16 surface receptors. Classical, quiescent monocytes are positive for CD14 (lipopolysaccharide receptor) but do not express Fc gamma receptor III (CD16). Intermediate monocytes coexpress CD16 and CD14. Nonclassical monocytes with low expression of CD14 represent mature macrophage-like monocytes. Monocyte behavior in peripheral arterial disease (PAD) and during vessel wall directed treatment is not well defined. This observation study aimed at monitoring of acute changes in monocyte subpopulations during percutaneous transluminal angioplasty (PTA) in PAD patients. Patients with Rutherford 3 and 4 PAD with no signs of inflammatory process underwent PTA of iliac, femoral, or popliteal segments. Flow cytometry for CD14, CD16, HLA-DR, CD11b, CD11c, and CD45RA antigens allowed characterization of monocyte subpopulations in blood sampled before and after PTA (direct angioplasty catheter sampling). Patients were clinically followed up for 12 months. All 61 enrolled patients completed 12-month follow-up. Target vessel failure occurred in 12 patients. While absolute counts of monocyte were significantly lower after PTA, only subtle monocyte activation after PTA (CD45RA and β-integrins) occurred. None of the monocyte parameters correlated with long-term adverse clinical outcome. Changes in absolute monocyte counts and subtle changes towards an activation phenotype after PTA may reflect local cell adhesion phenomenon in patients with Rutherford 3 or 4 peripheral arterial disease.
Collapse
|
30
|
Brown RA, Shantsila E, Varma C, Lip GYH. Epidemiology and pathogenesis of diffuse obstructive coronary artery disease: the role of arterial stiffness, shear stress, monocyte subsets and circulating microparticles. Ann Med 2016; 48:444-455. [PMID: 27282244 DOI: 10.1080/07853890.2016.1190861] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Despite falling age-adjusted mortality rates coronary artery disease (CAD) remains the leading cause of death worldwide. Advanced diffuse CAD is becoming an important entity of modern cardiology as more patients with historical revascularisation no longer have suitable anatomy for additional procedures. Advances in the treatment of diffuse obstructive CAD are hampered by a poor understanding of its development. Although the likelihood of developing clinically significant (obstructive) CAD is linked to traditional risk factors, the morphology of obstructive CAD among individuals is highly variable - some patients have diffuse stenotic disease, while others have a focal stenosis. This is challenging to explain in mechanistic terms as vascular endothelium is equally exposed to injury stimulants. Patients with diffuse disease are at high risk of adverse outcomes, particularly if unsuitable for revascularisation. We searched multiple electronic databases (MEDLINE, EMBASE and the Cochrane Database) and reviewed the epidemiology, pathogenesis and prognosis relating to advanced diffuse CAD with particular focus on the role of endothelial shear stress, large artery stiffness, monocyte subsets and circulating microparticles. Key messages Although traditional CAD risk factors correlate strongly with disease severity, significant individual variation in disease morphology exists. Advanced, diffuse CAD is difficult to treat effectively and can significantly impair quality of life and increases mortality. The pathophysiology associated with the progression of CAD is the result of complex maladaptive interaction between the endothelium, cells of the immune system and patterns of blood flow.
Collapse
Affiliation(s)
- Richard A Brown
- a University of Birmingham Institute of Cardiovascular Sciences, City Hospital , Birmingham , UK
| | - Eduard Shantsila
- a University of Birmingham Institute of Cardiovascular Sciences, City Hospital , Birmingham , UK.,b Cardiology Department, City Hospital , Birmingham , UK
| | - Chetan Varma
- b Cardiology Department, City Hospital , Birmingham , UK
| | - Gregory Y H Lip
- a University of Birmingham Institute of Cardiovascular Sciences, City Hospital , Birmingham , UK.,b Cardiology Department, City Hospital , Birmingham , UK
| |
Collapse
|
31
|
Shahid F, Lip GYH, Shantsila E. Chronic Osteomyelitis and Atrial Fibrillation: Revisiting the Link Between Inflammation Burden and Arrhythmia. Can J Cardiol 2016; 32:1366-1368. [PMID: 27496779 DOI: 10.1016/j.cjca.2016.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 05/03/2016] [Indexed: 12/01/2022] Open
Affiliation(s)
- Farhan Shahid
- University of Birmingham Institute of Cardiovascular Sciences, City Hospital, Birmingham, United Kingdom
| | - Gregory Y H Lip
- University of Birmingham Institute of Cardiovascular Sciences, City Hospital, Birmingham, United Kingdom; Aalborg Thrombosis Research Unit, Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.
| | - Eduard Shantsila
- University of Birmingham Institute of Cardiovascular Sciences, City Hospital, Birmingham, United Kingdom
| |
Collapse
|
32
|
Weber C, Shantsila E, Hristov M, Caligiuri G, Guzik T, Heine GH, Hoefer IE, Monaco C, Peter K, Rainger E, Siegbahn A, Steffens S, Wojta J, Lip GYH. Role and analysis of monocyte subsets in cardiovascular disease. Joint consensus document of the European Society of Cardiology (ESC) Working Groups "Atherosclerosis & Vascular Biology" and "Thrombosis". Thromb Haemost 2016; 116:626-37. [PMID: 27412877 DOI: 10.1160/th16-02-0091] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 06/02/2016] [Indexed: 12/21/2022]
Abstract
Monocytes as cells of the innate immunity are prominently involved in the development of atherosclerotic lesions. The heterogeneity of blood monocytes has widely been acknowledged by accumulating experimental and clinical data suggesting a differential, subset-specific contribution of the corresponding subpopulations to the pathology of cardiovascular and other diseases. This document re-evaluates current nomenclature and summarises key findings on monocyte subset biology to propose a consensus statement about phenotype, separation and quantification of the individual subsets.
Collapse
Affiliation(s)
- Christian Weber
- Dr. Christian Weber, LMU Munich - Cardiovascular Prevention, Pettenkoferstr. 9, 80336 Munich, Germany, Tel.: +49 89 4400 54350, Fax: +49 89 4400 54352, E-mail:
| | | | - Michael Hristov
- Dr. Michael Hristov, LMU Munich - Cardiovascular Prevention, Pettenkoferstr. 9, 80336 Munich, Germany, Tel.: +49 89 4400 54350, Fax: +49 89 4400 54352, E-mail:
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Hulsmans M, Sam F, Nahrendorf M. Monocyte and macrophage contributions to cardiac remodeling. J Mol Cell Cardiol 2016; 93:149-55. [PMID: 26593722 PMCID: PMC4846552 DOI: 10.1016/j.yjmcc.2015.11.015] [Citation(s) in RCA: 212] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 11/12/2015] [Accepted: 11/14/2015] [Indexed: 01/10/2023]
Abstract
The mammalian heart contains a population of resident macrophages that expands in response to myocardial infarction and hemodynamic stress. This expansion occurs likely through both local macrophage proliferation and monocyte recruitment. Given the role of macrophages in tissue remodeling, their contribution to adaptive processes in the heart is conceivable but currently poorly understood. In this review, we discuss monocyte and macrophage heterogeneity associated with cardiac stress, the cell's potential contribution to the pathogenesis of cardiac fibrosis, and describe different tools to study and characterize these innate immune cells. Finally, we highlight their potential role as therapeutic targets.
Collapse
Affiliation(s)
- Maarten Hulsmans
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, 185 Cambridge Street, Boston, MA 02114, USA
| | - Flora Sam
- Whitaker Cardiovascular Institute, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118, USA
| | - Matthias Nahrendorf
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, 185 Cambridge Street, Boston, MA 02114, USA.
| |
Collapse
|
34
|
Moderate Increase of Indoxyl Sulfate Promotes Monocyte Transition into Profibrotic Macrophages. PLoS One 2016; 11:e0149276. [PMID: 26925780 PMCID: PMC4771744 DOI: 10.1371/journal.pone.0149276] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 01/29/2016] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVE The uremic toxin Indoxyl-3-sulphate (IS), a ligand of Aryl hydrocarbon Receptor (AhR), raises in blood during early renal dysfunction as a consequence of tubular damage, which may be present even when eGFR is normal or only moderately reduced, and promotes cardiovascular damage and monocyte-macrophage activation. We previously found that patients with abdominal aortic aneurysms (AAAs) have higher CD14+CD16+ monocyte frequency and prevalence of moderate chronic kidney disease (CKD) than age-matched control subjects. Here we aimed to evaluate the IS levels in plasma from AAA patients and to investigate in vitro the effects of IS concentrations corresponding to mild-to-moderate CKD on monocyte polarization and macrophage differentiation. METHODS Free IS plasma levels, monocyte subsets and laboratory parameters were evaluated on blood from AAA patients and eGFR-matched controls. THP-1 monocytes, treated with IS 1, 10, 20 μM were evaluated for CD163 expression, AhR signaling and then induced to differentiate into macrophages by PMA. Their phenotype was evaluated both at the stage of semi-differentiated and fully differentiated macrophages. AAA and control sera were similarly used to treat THP-1 monocytes and the resulting macrophage phenotype was analyzed. RESULTS IS plasma concentration correlated positively with CD14+CD16+ monocytes and was increased in AAA patients. In THP-1 cells, IS promoted CD163 expression and transition to macrophages with hallmarks of classical (IL-6, CCL2, COX2) and alternative phenotype (IL-10, PPARγ, TGF-β, TIMP-1), via AhR/Nrf2 activation. Analogously, AAA sera induced differentiation of macrophages with enhanced IL-6, MCP1, TGF-β, PPARγ and TIMP-1 expression. CONCLUSION IS skews monocyte differentiation toward low-inflammatory, profibrotic macrophages and may contribute to sustain chronic inflammation and maladaptive vascular remodeling.
Collapse
|
35
|
Gregersen I, Holm S, Dahl TB, Halvorsen B, Aukrust P. A focus on inflammation as a major risk factor for atherosclerotic cardiovascular diseases. Expert Rev Cardiovasc Ther 2015; 14:391-403. [PMID: 26641944 DOI: 10.1586/14779072.2016.1128828] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Atherosclerosis is a dynamic, pathogenic process in the artery wall, with potential adverse outcome for the host. Acute events such as myocardial infarction and ischemic stroke often result from rupture of unstable atherosclerotic lesions. Understanding the underlying pathology of such lesions and why and when they rupture, is therefore of great interest for the development of new diagnostics and treatment. Inflammation is one of the key drivers of atherosclerotic plaque development and the interplay between inflammation and lipids constitutes the hallmark of atherosclerotic disease. This review summarizes the role of inflammation in atherosclerosis and presents some of the latest discoveries as well as unmet needs regarding the role of inflammation as major risk factor in atherosclerotic disease.
Collapse
Affiliation(s)
- Ida Gregersen
- a Research Institute of Internal Medicine , Oslo University Hospital Rikshospitalet , Oslo , Norway.,b Faculty of Medicine , University of Oslo , Oslo , Norway
| | - Sverre Holm
- a Research Institute of Internal Medicine , Oslo University Hospital Rikshospitalet , Oslo , Norway.,c Hospital for Rheumatic Diseases , Lillehammer , Norway
| | - Tuva B Dahl
- a Research Institute of Internal Medicine , Oslo University Hospital Rikshospitalet , Oslo , Norway.,b Faculty of Medicine , University of Oslo , Oslo , Norway
| | - Bente Halvorsen
- a Research Institute of Internal Medicine , Oslo University Hospital Rikshospitalet , Oslo , Norway.,b Faculty of Medicine , University of Oslo , Oslo , Norway.,d K.G. Jebsen Inflammatory Research Center , University of Oslo , Oslo , Norway
| | - Pål Aukrust
- a Research Institute of Internal Medicine , Oslo University Hospital Rikshospitalet , Oslo , Norway.,b Faculty of Medicine , University of Oslo , Oslo , Norway.,d K.G. Jebsen Inflammatory Research Center , University of Oslo , Oslo , Norway.,e Section of Clinical Immunology and Infectious Diseases , Oslo University Hospital Rikshospitalet , Oslo , Norway
| |
Collapse
|
36
|
Micropartículas de pequeño tamaño como indicadores del estado agudo en la insuficiencia cardiaca sistólica. Rev Esp Cardiol 2015. [DOI: 10.1016/j.recesp.2014.11.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
37
|
Rubio-Navarro A, Amaro Villalobos JM, Lindholt JS, Buendía I, Egido J, Blanco-Colio LM, Samaniego R, Meilhac O, Michel JB, Martín-Ventura JL, Moreno JA. Hemoglobin induces monocyte recruitment and CD163-macrophage polarization in abdominal aortic aneurysm. Int J Cardiol 2015; 201:66-78. [PMID: 26296046 DOI: 10.1016/j.ijcard.2015.08.053] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 07/21/2015] [Accepted: 08/02/2015] [Indexed: 11/28/2022]
Abstract
BACKGROUND Increased hemoglobin (Hb) accumulation was reported in abdominal aortic aneurysms (AAAs). CD163 is a macrophage receptor involved in tissue Hb clearance, however its role in AAA has not been reported. We investigated the role of Hb on monocyte recruitment and differentiation towards CD163 expressing macrophages ex vivo, in vitro and in human AAA. METHODS AND RESULTS CD163 mRNA and protein expression was significantly higher in human AAA (n=7) vs. healthy wall (n=6). CD163 was predominantly found in adventitia of AAA, coinciding with areas rich in hemosiderin and adjacent to neoangiogenic microvessels. Dual CD14/CD163 expression was observed in recently infiltrated monocytes surrounding microvessels. A higher release of soluble CD163 was observed in the conditioned medium from AAA (AAA-CM, n=10), mainly in the adventitial layer. Similar to Hb, AAA-CM induced CD163-dependent monocyte chemotaxis, especially on circulating monocytes from AAA patients. Hb or AAA-CM promoted differentiation towards CD163(high)/HLA-DR(low)-expressing macrophages, with enhanced Hb uptake, increased anti-inflammatory IL-10 secretion and decreased pro-inflammatory IL-12p40 release. All these effects were partially suppressed when Hb was removed from AAA-CM. Separate analysis on circulating monocytes reported increased percentage of pre-infiltrating CD14(++)CD16(+) monocytes in patients with AAA (n=21), as compared to controls (n=14). A significant increase in CD163 expression in CD14(++)CD16(+) monocyte subpopulation was observed in AAA patients. CONCLUSIONS The presence of Hb in the adventitial AAA-wall promotes the migration and differentiation of activated circulating monocytes in AAA patients, explaining the existence of a protective CD163-macrophage phenotype that could take up the Hb present in the AAA-wall, avoiding its injurious effects.
Collapse
Affiliation(s)
- Alfonso Rubio-Navarro
- Vascular, Renal and Diabetes Research Lab., IIS-Fundación Jiménez Díaz, Autónoma University, Madrid, Spain
| | | | - Jes S Lindholt
- Elitary Research Centre of Individualized Medicine in Arterial Disease (CIMA), Department of Cardiothoracic and Vascular Surgery, Odense University Hospital, Denmark
| | - Irene Buendía
- Vascular, Renal and Diabetes Research Lab., IIS-Fundación Jiménez Díaz, Autónoma University, Madrid, Spain
| | - Jesús Egido
- Vascular, Renal and Diabetes Research Lab., IIS-Fundación Jiménez Díaz, Autónoma University, Madrid, Spain; Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Spain
| | - Luis Miguel Blanco-Colio
- Vascular, Renal and Diabetes Research Lab., IIS-Fundación Jiménez Díaz, Autónoma University, Madrid, Spain
| | - Rafael Samaniego
- Confocal Microscopy Unit, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Olivier Meilhac
- INSERM U1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion, CHU de La Réunion, Saint-Denis, France
| | - Jean Baptiste Michel
- INSERM UMRS 1148 Laboratory for Vascular Translational Science, Bichat Hospital, Paris, France
| | - José Luis Martín-Ventura
- Vascular, Renal and Diabetes Research Lab., IIS-Fundación Jiménez Díaz, Autónoma University, Madrid, Spain
| | - Juan Antonio Moreno
- Vascular, Renal and Diabetes Research Lab., IIS-Fundación Jiménez Díaz, Autónoma University, Madrid, Spain.
| |
Collapse
|
38
|
Mikołajczyk TP, Osmenda G, Batko B, Wilk G, Krezelok M, Skiba D, Sliwa T, Pryjma JR, Guzik TJ. Heterogeneity of peripheral blood monocytes, endothelial dysfunction and subclinical atherosclerosis in patients with systemic lupus erythematosus. Lupus 2015; 25:18-27. [PMID: 26251402 DOI: 10.1177/0961203315598014] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 06/29/2015] [Indexed: 11/16/2022]
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) is characterized by increased cardiovascular morbidity and mortality. SLE patients have increased prevalence of subclinical atherosclerosis, although the mechanisms of this observation remain unclear. Considering the emerging role of monocytes in atherosclerosis, we aimed to investigate the relationship between subclinical atherosclerosis, endothelial dysfunction and the phenotype of peripheral blood monocytes in SLE patients. METHODS We characterized the phenotype of monocyte subsets defined by the expression of CD14 and CD16 in 42 patients with SLE and 42 non-SLE controls. Using ultrasonography, intima-media thickness (IMT) of carotid arteries and brachial artery flow-mediated dilation (FMD) as well as nitroglycerin-induced dilation (NMD) were assessed. RESULTS Patients with SLE had significantly, but only modestly, increased IMT when compared with non-SLE controls (median (25th/75th percentile) 0.65 (0.60/0.71) mm vs 0.60 (0.56/0.68) mm; p < 0.05). Importantly, in spite of early atherosclerotic complications in the studied SLE group, marked endothelial dysfunction was observed. CD14dimCD16+proinflammatory cell subpopulation was positively correlated with IMT in SLE patients. This phenomenon was not observed in control individuals. Interestingly, endothelial dysfunction assessed by FMD was not correlated with any of the studied monocyte subsets. CONCLUSIONS Our observations suggest that CD14dimCD16+monocytes are associated with subclinical atherosclerosis in SLE, although the mechanism appears to be independent of endothelial dysfunction.
Collapse
Affiliation(s)
- T P Mikołajczyk
- Translational Medicine Laboratory, Department of Internal Medicine, Jagiellonian University School of Medicine, Krakow, Poland
| | - G Osmenda
- Translational Medicine Laboratory, Department of Internal Medicine, Jagiellonian University School of Medicine, Krakow, Poland
| | - B Batko
- Division of Rheumatology, J Dietl Clinical Hospital, Krakow, Poland
| | - G Wilk
- Translational Medicine Laboratory, Department of Internal Medicine, Jagiellonian University School of Medicine, Krakow, Poland
| | - M Krezelok
- Division of Rheumatology, J Dietl Clinical Hospital, Krakow, Poland
| | - D Skiba
- Translational Medicine Laboratory, Department of Internal Medicine, Jagiellonian University School of Medicine, Krakow, Poland Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK
| | - T Sliwa
- Translational Medicine Laboratory, Department of Internal Medicine, Jagiellonian University School of Medicine, Krakow, Poland
| | - J R Pryjma
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - T J Guzik
- Translational Medicine Laboratory, Department of Internal Medicine, Jagiellonian University School of Medicine, Krakow, Poland Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK
| |
Collapse
|
39
|
Brenner C, Franz WM, Kühlenthal S, Kuschnerus K, Remm F, Gross L, Theiss HD, Landmesser U, Kränkel N. DPP-4 inhibition ameliorates atherosclerosis by priming monocytes into M2 macrophages. Int J Cardiol 2015. [PMID: 26197403 DOI: 10.1016/j.ijcard.2015.07.044] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Glipitins are widely used for the treatment of type 2 diabetic patients. In addition to their improvement of glycemic control, animal studies have suggested an independent anti-atherosclerotic effect of gliptins. Nevertheless, recent clinical trials regarding long-term effects of gliptin therapy on vascular events have been disappointing. This discrepancy led us to better dissect the functional role of SDF-1/CXCR4 signaling as a potential mechanism underlying gliptin action. The study should give improved understanding of the potential of gliptin therapy in the prevention and treatment of atherosclerosis. METHODS AND RESULTS In an ApoE-/- mouse model on high cholesterol diet, long-term treatment with the DPP-4 inhibitor Sitagliptin significantly reduced atherosclerosic plaque load in the aorta. Flow cytometry analyses showed an enrichment of M2 macrophages in the aortic wall under gliptin therapy. Importantly, the number of recruited CD206+ macrophages was inversely correlated with total plaque area while no correlation was found for the overall macrophage population or M1 macrophages. Blockade of CXCR4/SDF-1 signaling by AMD3100 inhibited aortic M2 accumulation and the therapeutic effect of Sitagliptin. Correspondingly, Sitagliptin shifted the polarization profile of macrophages towards a M2-like phenotype. CONCLUSION Sitagliptin-mediated inhibition of early atherosclerosis is based on M2-polarization during monocyte differentiation via the SDF-1/CXCR4 signaling. In contrast to earlier assumptions gliptin treatment might be especially effective in prevention of atherosclerosis.
Collapse
Affiliation(s)
- C Brenner
- Department of Internal Medicine III, Medical University of Innsbruck, Innsbruck, Austria; Department of Internal Medicine I, University of Munich, Munich, Germany.
| | - W M Franz
- Department of Internal Medicine III, Medical University of Innsbruck, Innsbruck, Austria
| | - S Kühlenthal
- Department of Internal Medicine I, University of Munich, Munich, Germany
| | - K Kuschnerus
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland; Department of Cardiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - F Remm
- Department of Internal Medicine III, Medical University of Innsbruck, Innsbruck, Austria; Department of Internal Medicine I, University of Munich, Munich, Germany
| | - L Gross
- Department of Internal Medicine I, University of Munich, Munich, Germany
| | - H D Theiss
- Department of Internal Medicine I, University of Munich, Munich, Germany
| | - U Landmesser
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland; Department of Cardiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - N Kränkel
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland; Department of Cardiology, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
40
|
Jiang S, Li D, Li J, An Y. Correlation Between High-Density Lipoprotein and Monocyte Subsets in Patients with Stable Coronary Heart Disease. Med Sci Monit 2015; 21:3129-35. [PMID: 26474031 PMCID: PMC4612145 DOI: 10.12659/msm.894485] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Background High-density lipoprotein (HDL) consists of heterogeneous particles with a variety of structures and functions. Its role in atherosclerosis has been gradually recognized. Studies have shown dysfunction of small HDL in patients with coronary artery disease (CAD). Monocytes play an important role in atherosclerosis, which can be divided into 3 subgroups based on the expression of surface markers CD14 and CD16. This study aimed to investigate the association between HDL and monocyte subsets in CAD patients. Material/Methods A total of 90 patients with stable CAD were selected in this study. Monocytes were divided into classical monocytes (CM, CD14++CD16−), intermediate monocytes (IM, CD14++CD16+), and non-classical monocytes (NCM, CD14+CD16++). HDL components in serum were determined by high-resolution polyacrylamide gel electrophoresis (detected by Quantimetrix HDL Lipoprint system, referring to HDL subfractions analysis: A new laboratory diagnostic assay for patients with cardiovascular diseases and dyslipoproteinemia). Results Serum level of small HDL was positively correlated with circulating proinflammatory NCM (r=0.30; p=0.004), negatively correlated with CM, and not correlated with IM. We also found that disease severity was not associated with diabetes mellitus, glycosylated hemoglobin, hypertension, smoking history, or statin dosage. Conclusions Our study confirmed that small HDL level is associated with an increase in NCM and a decrease in CM, suggesting the proinflammatory relationship between small HDL and intrinsic immune function during the progression of stable CAD.
Collapse
Affiliation(s)
- Shaoyan Jiang
- Department of Cardiology, The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Dan Li
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Jian Li
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Yi An
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| |
Collapse
|
41
|
Monocyte subset distribution in patients with stable atherosclerosis and elevated levels of lipoprotein(a). J Clin Lipidol 2015; 9:533-41. [PMID: 26228671 PMCID: PMC4533224 DOI: 10.1016/j.jacl.2015.04.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 03/27/2015] [Accepted: 04/21/2015] [Indexed: 12/15/2022]
Abstract
Background Lipoprotein(a) (Lp(a)) is a proatherogenic plasma lipoprotein currently established as an independent risk factor for the development of atherosclerotic disease and as a predictor for acute thrombotic complications. In addition, Lp(a) is the major carrier of proinflammatory oxidized phospholipids (OxPL). Today, atherosclerosis is considered to be an inflammatory disease of the vessel wall in which monocytes and monocyte-derived macrophages are crucially involved. Circulating monocytes can be divided according to their surface expression pattern of CD14 and CD16 into at least 3 subsets with distinct inflammatory and atherogenic potential. Objective The aim of this study was to examine whether elevated levels of Lp(a) and OxPL on apolipoprotein B-100–containing lipoproteins (OxPL/apoB) are associated with changes in monocyte subset distribution. Methods We included 90 patients with stable coronary artery disease. Lp(a) and OxPL/apoB were measured, and monocyte subsets were identified as classical monocytes (CMs; CD14++CD16−), intermediate monocytes (IMs; CD14++CD16+), and nonclassical monocytes (NCMs; CD14+CD16++) by flow cytometry. Results In patients with elevated levels of Lp(a) (>50 mg/dL), monocyte subset distribution was skewed toward an increase in the proportion of IM (7.0 ± 3.8% vs 5.2 ± 3.0%; P = .026), whereas CM (82.6 ± 6.5% vs 82.0 ± 6.8%; P = .73) and NCM (10.5 ± 5.3 vs 12.8 ± 6.0; P = .10) were not significantly different. This association was independent of clinical risk factors, choice of statin treatment regime, and inflammatory markers. In addition, OxPL/apoB was higher in patients with elevated Lp(a) and correlated with IM but not CM and NCM. Conclusions In conclusion, we provide a potential link between elevated levels of Lp(a) and a proatherogenic distribution of monocyte subtypes in patients with stable atherosclerotic disease. Lipoprotein(a) serves as an independent risk factor in atherosclerotic disease. Monocyte subsets exhibit distinct inflammatory and atherogenic properties. Patients with elevated levels of Lp(a) show a shift towards intermediate monocytes. This association was independent of clinical properties and inflammatory markers. Those patients also exhibited higher OxPL/apoB concentrations.
Collapse
|
42
|
Montoro-García S, Shantsila E, Wrigley BJ, Tapp LD, Abellán Alemán J, Lip GYH. Small-size Microparticles as Indicators of Acute Decompensated State in Ischemic Heart Failure. ACTA ACUST UNITED AC 2015; 68:951-8. [PMID: 25819989 DOI: 10.1016/j.rec.2014.11.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 11/14/2014] [Indexed: 01/26/2023]
Abstract
INTRODUCTION AND OBJECTIVES Microparticles are markers for cell activation and apoptosis and could provide valuable information that is not available from clinical data. This study assesses the clinical and biological relationship of small-sized microparticles in different forms of ischemic systolic heart failure and their relation to markers of inflammation and repair. METHODS We compared 49 patients with acute heart failure, 39 with stable heart failure and 25 patients with stable coronary artery disease. Small-size microparticles counts were determined by high-resolution flow cytometry. Moreover, 3 different monocyte subpopulations and their expression of inflammatory and adhesive scavenger receptors were analyzed using a conventional flow cytometer. RESULTS Endothelial CD144+ microparticle counts were decreased in heart failure groups (P=.008). Annexin V-binding microparticle counts were found increased in heart failure (P=.024) and in patients with lower functional class (P=.013). Platelet CD42b+ microparticle counts positively correlated with left ventricular ejection fraction (P=.006), and annexin V-binding microparticle counts with interleukin-6 levels in stable heart failure (P=.034). Annexin V-binding microparticle counts in the acute status strongly correlated with toll-like receptor-4 expression on all monocyte subsets (all P<.01). Three months after admission with acute heart failure, annexin V-binding microparticle counts were positively correlated with receptors for interleukin-6, CD163 and CD204 (all P<.05). CONCLUSIONS Annexin V-binding microparticle counts constitute valuable hallmarks of acute decompensated state in systolic heart failure. The observed relationship between small-size annexin V-binding microparticles and scavenger receptors supports their involvement in the progression of the acute response to injury, and thus their contribution to the pathogenesis of acute decompensated heart failure.
Collapse
Affiliation(s)
- Silvia Montoro-García
- University of Birmingham Centre for Cardiovascular Sciences, City Hospital, Birmingham, United Kingdom; Departamento de Riesgo Cardiovascular, Facultad de Ciencias de la Salud, Universidad Católica San Antonio de Murcia (UCAM), Guadalupe, Murcia, Spain
| | - Eduard Shantsila
- University of Birmingham Centre for Cardiovascular Sciences, City Hospital, Birmingham, United Kingdom
| | - Benjamin J Wrigley
- University of Birmingham Centre for Cardiovascular Sciences, City Hospital, Birmingham, United Kingdom
| | - Luke D Tapp
- University of Birmingham Centre for Cardiovascular Sciences, City Hospital, Birmingham, United Kingdom
| | - José Abellán Alemán
- Departamento de Riesgo Cardiovascular, Facultad de Ciencias de la Salud, Universidad Católica San Antonio de Murcia (UCAM), Guadalupe, Murcia, Spain
| | - Gregory Y H Lip
- University of Birmingham Centre for Cardiovascular Sciences, City Hospital, Birmingham, United Kingdom.
| |
Collapse
|
43
|
Krychtiuk KA, Kastl SP, Pfaffenberger S, Pongratz T, Hofbauer SL, Wonnerth A, Katsaros KM, Goliasch G, Gaspar L, Huber K, Maurer G, Dostal E, Oravec S, Wojta J, Speidl WS. Small high-density lipoprotein is associated with monocyte subsets in stable coronary artery disease. Atherosclerosis 2014; 237:589-96. [PMID: 25463093 PMCID: PMC4270455 DOI: 10.1016/j.atherosclerosis.2014.10.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 08/12/2014] [Accepted: 10/13/2014] [Indexed: 12/13/2022]
Abstract
Objective: High-density lipoprotein (HDL) particles are heterogeneous in structure and function and the role of HDL subfractions in atherogenesis is not well understood. It has been suggested that small HDL may be dysfunctional in patients with coronary artery disease (CAD). Monocytes are considered to play a key role in atherosclerotic diseases. Circulating monocytes can be divided into three subtypes according to their surface expression of CD14 and CD16. Our aim was to examine whether monocyte subsets are associated with HDL subfractions in patients with atherosclerosis. Methods: We included 90 patients with angiographically stable CAD. Monocyte subsets were defined as classical monocytes (CD14++CD16-; CM), intermediate monocytes (CD14++CD16+; IM) and non-classical monocytes (CD14+CD16++; NCM). HDL subfractions were measured by electrophoresis on polyacrylamide gel. Results: Serum levels of small HDL correlated with circulating pro-inflammatory NCM and showed an inverse relationship to circulating CM independently from other lipid parameters, risk factors, inflammatory parameters or statin treatment regime, respectively. IM were not associated with small HDL. In particular, patients with small HDL levels in the highest tertile showed dramatically increased levels of NCM (14.7 ± 7% vs. 10.7 ± 5% and 10.8 ± 5%; p = 0.006) and a decreased proportion of CM (79.3 ± 7% vs. 83.7 ± 6% and 83.9 ± 6%; p = 0.004) compared to patients in the two lower tertiles. In contrast, intermediate HDL, large HDL and total HDL were not associated with monocyte subset distribution. Conclusion: Small HDL levels are associated with pro-inflammatory NCM and inversely correlated with CM. This may suggest that small HDL could have dysfunctional anti-inflammatory properties in patients with established CAD. Small HDL levels are associated with non-classical monocytes in stable CAD. Classical monocytes are inversely associated with small HDL levels. Associations are independent of other lipid parameters, risk factors, inflammatory parameters or statin treatment regime. Inflammatory markers do not vary according to small HDL levels.
Collapse
Affiliation(s)
- Konstantin A Krychtiuk
- Department of Internal Medicine II - Division of Cardiology, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Cluster for Cardiovascular Research, Vienna, Austria
| | - Stefan P Kastl
- Department of Internal Medicine II - Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Stefan Pfaffenberger
- Department of Internal Medicine II - Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | | | - Sebastian L Hofbauer
- Department of Internal Medicine II - Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Anna Wonnerth
- Department of Internal Medicine II - Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Katharina M Katsaros
- Department of Internal Medicine II - Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Georg Goliasch
- Department of Internal Medicine II - Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Ludovit Gaspar
- 2nd Department of Internal Medicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Kurt Huber
- Ludwig Boltzmann Cluster for Cardiovascular Research, Vienna, Austria; 3rd Medical Department, Wilhelminenhospital, Vienna, Austria
| | - Gerald Maurer
- Department of Internal Medicine II - Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | | | - Stanislav Oravec
- Krankenanstalten Dr. Dostal, Vienna, Austria; 2nd Department of Internal Medicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Johann Wojta
- Department of Internal Medicine II - Division of Cardiology, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Cluster for Cardiovascular Research, Vienna, Austria; Core Facilities, Medical University of Vienna, Vienna, Austria.
| | - Walter S Speidl
- Department of Internal Medicine II - Division of Cardiology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
44
|
|