1
|
Xiao S, Wang Q, Fang D, Wang Z, Ke Y, Zhang Z, Li Y, Zhong L, Huang H. Application of Bovine Pericardium and Expanded Polytetrafluoroethylene Patches in Tricuspid Valvuloplasty after Cardiac Surgery. Rev Cardiovasc Med 2024; 25:188. [PMID: 39076466 PMCID: PMC11267196 DOI: 10.31083/j.rcm2505188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/20/2023] [Accepted: 12/26/2023] [Indexed: 07/31/2024] Open
Abstract
Background Leaflet augmentation is often required to correct an inadequate leaflet size due to leaflet thickening, contracture and junctional fusion in patients with tricuspid valve regurgitation (TR) after left-side valve surgery (LSVS). However, the ideal material for leaflet augmentation remains controversial. This article aims to compare the medium- and long-term results of tricuspid valve repair with bovine pericardium (BP) and expanded Polytetrafluoroethylene (ePTFE) patches for the augmentation of tricuspid leaflets and to compare the durability of the two materials. Methods From January 2015 to April 2023, a total of 69 patients with severe isolated TR underwent tricuspid valvuloplasty (TVP) by leaflets augmentation with patches in our institute. According to the different types of patches, they were divided into the BP group (n = 44) and the ePTFE group (n = 25). Results There were 3 perioperative deaths (4.3%), one case was due to low cardiac output syndrome in the BP group, and 2 cases were due to acute respiratory dysfunction syndrome and low cardiac output syndrome in the ePTFE group, respectively. Before discharge, the area of the TR jet on echocardiography decreased from 23.5 ± 9.1 to 4.2 ± 3.4 cm 2 . One case in each group was found to have increased blood flow velocity at the tricuspid orifice. After discharge, one patient in each group underwent repeat TVP, in the BP group because of shortened chordae and in the ePTFE group because of calcification of the patch. During the entire follow-up period, there were 7 cases of severe TR (10.1%), 5 in the BP group and 2 in the ePTFE group, a total of 5 cases of tricuspid stenosis (7.2%), 4 in the BP group and 1 in the ePTFE group, and a total of 6 deaths (8.7%), 5 in the BP group and 1 in the ePTFE group. Transthoracic ultrasound in a patient with tricuspid stenosis suggests stiff leaflet movement and poor motion. Conclusions Leaflet patch enlargement can be safely used in tricuspid valve repair, but BP patches carry a risk of reduced flexibility and stiffness of movement, and ePTFE patches carries a risk of calcification.
Collapse
Affiliation(s)
- Shuo Xiao
- Medical school, South China University of Technology, 510006 Guangzhou, Guangdong, China
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 510080 Guangzhou, Guangdong, China
| | - Qiuji Wang
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 510080 Guangzhou, Guangdong, China
| | - Dou Fang
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 510080 Guangzhou, Guangdong, China
| | - Zhenzhong Wang
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 510080 Guangzhou, Guangdong, China
| | - Yingjie Ke
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 510080 Guangzhou, Guangdong, China
| | - Zhaolong Zhang
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 510080 Guangzhou, Guangdong, China
| | - Yuxin Li
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 510080 Guangzhou, Guangdong, China
| | - Lishan Zhong
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 510080 Guangzhou, Guangdong, China
| | - Huanlei Huang
- Medical school, South China University of Technology, 510006 Guangzhou, Guangdong, China
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 510080 Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Jiang Y, Zhang LL, Zhang F, Bi W, Zhang P, Yu XJ, Rao SL, Wang SH, Li Q, Ding C, Jin Y, Liu ZM, Yang HT. Dual human iPSC-derived cardiac lineage cell-seeding extracellular matrix patches promote regeneration and long-term repair of infarcted hearts. Bioact Mater 2023; 28:206-226. [PMID: 37274446 PMCID: PMC10236375 DOI: 10.1016/j.bioactmat.2023.05.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 05/21/2023] [Accepted: 05/22/2023] [Indexed: 06/06/2023] Open
Abstract
Human pluripotent stem cell-derived cardiovascular progenitor cells (hCVPCs) and cardiomyocytes (hCMs) possess therapeutic potential for infarcted hearts; however, their efficacy needs to be enhanced. Here we tested the hypotheses that the combination of decellularized porcine small intestinal submucosal extracellular matrix (SIS-ECM) with hCVPCs, hCMs, or dual of them (Mix, 1:1) could provide better therapeutic effects than the SIS alone, and dual hCVPCs with hCMs would exert synergic effects in cardiac repair. The data showed that the SIS patch well supported the growth of hCVPCs and hCMs. Epicardially implanted SIS-hCVPC, SIS-hCM, or SIS-Mix patches at 7-day post-myocardial infarction significantly ameliorated functional worsening, ventricular dilation and scar formation at 28- and 90-day post-implantation in C57/B6 mice, whereas the SIS only mildly improved function at 90-day post-implantation. Moreover, the SIS and SIS-cell patches improved vascularization and suppressed MI-induced cardiomyocyte hypertrophy and expression of Col1 and Col3, but only the SIS-hCM and the SIS-Mix patches increased the ratio of collagen III/I fibers in the infarcted hearts. Further, the SIS-cell patches stimulated cardiomyocyte proliferation via paracrine action. Notably, the SIS-Mix had better improvements in cardiac function and structure, engraftments, and cardiomyocyte proliferation. Proteomic analysis showed distinct biological functions of exclusive proteins secreted from hCVPCs and hCMs, and more exclusive proteins secreted from co-cultivated hCVPCs and hCMs than mono-cells involving in various functional processes essential for infarct repair. These findings are the first to demonstrate the efficacy and mechanisms of mono- and dual-hCVPC- and hCM-seeding SIS-ECM for repair of infarcted hearts based on the side-by-side comparison.
Collapse
Affiliation(s)
- Yun Jiang
- Translational Medical Center for Stem Cell Therapy & Institute for Heart Failure and Regenerative Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, 200031, PR China
| | - Ling-Ling Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, 200031, PR China
| | - Fan Zhang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Wei Bi
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, 200031, PR China
| | - Peng Zhang
- Translational Medical Center for Stem Cell Therapy & Institute for Heart Failure and Regenerative Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, 200031, PR China
| | - Xiu-Jian Yu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, 200031, PR China
| | - Sen-Le Rao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, 200031, PR China
| | - Shi-Hui Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, 200031, PR China
| | - Qiang Li
- Translational Medical Center for Stem Cell Therapy & Institute for Heart Failure and Regenerative Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, 200031, PR China
| | - Chen Ding
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Yin Jin
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, 200031, PR China
| | - Zhong-Min Liu
- Translational Medical Center for Stem Cell Therapy & Institute for Heart Failure and Regenerative Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Huang-Tian Yang
- Translational Medical Center for Stem Cell Therapy & Institute for Heart Failure and Regenerative Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, 200031, PR China
- Institute for Stem Cell and Regeneration, CAS, Beijing, 100101, PR China
| |
Collapse
|
3
|
Jing W, Huang Y, Feng J, Li H, Yu X, Zhao B, Wei P. The clinical effectiveness of staple line reinforcement with different matrix used in surgery. Front Bioeng Biotechnol 2023; 11:1178619. [PMID: 37351469 PMCID: PMC10282759 DOI: 10.3389/fbioe.2023.1178619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/24/2023] [Indexed: 06/24/2023] Open
Abstract
Staplers are widely used in clinics; however, complications such as bleeding and leakage remain a challenge for surgeons. To tackle this issue, buttress materials are recommended to reinforce the staple line. This Review provides a systematic summary of the characteristics and applications of the buttress materials. First, the physical and chemical properties of synthetic polymer materials and extracellular matrix used for the buttress materials are introduced, as well as their pros and cons in clinical applications. Second, we review the clinical effects of reinforcement mesh in pneumonectomy, sleeve gastrectomy, pancreatectomy, and colorectal resection. Based on the analysis of numerous research data, we believe that buttress materials play a crucial role in increasing staple line strength and reducing the probability of complications, such as bleeding and leakage. However, considering the requirements of bioactivity, degradability, and biosafety, non-crosslinked small intestinal submucosa (SIS) matrix material is the preferred candidate. It has high research and application value, but further studies are required to confirm this. The aim of this Review is to provide comprehensive guidance on the selection of materials for staple line reinforcement.
Collapse
Affiliation(s)
| | | | | | | | | | - Bo Zhao
- *Correspondence: Bo Zhao, ; Pengfei Wei,
| | | |
Collapse
|
4
|
Nikolskiy VI, Sergatskiy KI, Sheremet DP, Shabrov AV. [Scaffold technologies in regenerative medicine: history of the issue, current state and prospects of application]. Khirurgiia (Mosk) 2022:36-41. [PMID: 36398953 DOI: 10.17116/hirurgia202211136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Development of methods for replacing human tissue defects based on scaffold technologies in regenerative surgery proves the prospects of this industry. High-tech manufacturing of scaffold matrices suggests complete replacement of obsolete methods of treatment with new developments in the near future. At the same time, additional studies devoted to these methods and their results are needed. One of the promising goals for development of scaffold technologies is creation of versatile materials used in various fields of regenerative medicine.
Collapse
|
5
|
Sorushanova A, Delgado LM, Wu Z, Shologu N, Kshirsagar A, Raghunath R, Mullen AM, Bayon Y, Pandit A, Raghunath M, Zeugolis DI. The Collagen Suprafamily: From Biosynthesis to Advanced Biomaterial Development. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1801651. [PMID: 30126066 DOI: 10.1002/adma.201801651] [Citation(s) in RCA: 602] [Impact Index Per Article: 100.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/03/2018] [Indexed: 05/20/2023]
Abstract
Collagen is the oldest and most abundant extracellular matrix protein that has found many applications in food, cosmetic, pharmaceutical, and biomedical industries. First, an overview of the family of collagens and their respective structures, conformation, and biosynthesis is provided. The advances and shortfalls of various collagen preparations (e.g., mammalian/marine extracted collagen, cell-produced collagens, recombinant collagens, and collagen-like peptides) and crosslinking technologies (e.g., chemical, physical, and biological) are then critically discussed. Subsequently, an array of structural, thermal, mechanical, biochemical, and biological assays is examined, which are developed to analyze and characterize collagenous structures. Lastly, a comprehensive review is provided on how advances in engineering, chemistry, and biology have enabled the development of bioactive, 3D structures (e.g., tissue grafts, biomaterials, cell-assembled tissue equivalents) that closely imitate native supramolecular assemblies and have the capacity to deliver in a localized and sustained manner viable cell populations and/or bioactive/therapeutic molecules. Clearly, collagens have a long history in both evolution and biotechnology and continue to offer both challenges and exciting opportunities in regenerative medicine as nature's biomaterial of choice.
Collapse
Affiliation(s)
- Anna Sorushanova
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Luis M Delgado
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Zhuning Wu
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Naledi Shologu
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Aniket Kshirsagar
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Rufus Raghunath
- Centre for Cell Biology and Tissue Engineering, Competence Centre Tissue Engineering for Drug Development (TEDD), Department Life Sciences and Facility Management, Institute for Chemistry and Biotechnology (ICBT), Zürich University of Applied Sciences, Wädenswil, Switzerland
| | | | - Yves Bayon
- Sofradim Production-A Medtronic Company, Trevoux, France
| | - Abhay Pandit
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Michael Raghunath
- Centre for Cell Biology and Tissue Engineering, Competence Centre Tissue Engineering for Drug Development (TEDD), Department Life Sciences and Facility Management, Institute for Chemistry and Biotechnology (ICBT), Zürich University of Applied Sciences, Wädenswil, Switzerland
| | - Dimitrios I Zeugolis
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| |
Collapse
|
6
|
Chi Ting Au-Yeung G, Sarig U, Sarig H, Bogireddi H, Bronshtein T, Baruch L, Spizzichino A, Bortman J, Freddy BYC, Machluf M, Venkatraman SS. Restoring the biophysical properties of decellularized patches through recellularization. Biomater Sci 2018; 5:1183-1194. [PMID: 28513656 DOI: 10.1039/c7bm00208d] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Various extracellular matrix (ECM) scaffolds, isolated through decellularization, were suggested as ideal biomimetic materials for 'Functional tissue engineering' (FTE). The decellularization process comprises a compromise between damaging and preserving the ultrastructure and composition of ECM-previously shown to affect cell survival, proliferation, migration, organization, differentiation and maturation. Inversely, the effects of cells on the ECM constructs' biophysical properties, under physiological-like conditions, remain still largely unknown. We hypothesized that by re-cellularizing porcine cardiac ECM (pcECM, as a model scaffold) some of the original biophysical properties of the myocardial tissue can be restored, which are related to the scaffold's surface and the bulk modifications consequent to cellularization. We performed a systematic biophysical assessment of pcECM scaffolds seeded with human mesenchymal stem cells (MSCs), a common multipotent cell source in cardiac regenerative medicine. We report a new type of FTE study in which cell interactions with a composite-scaffold were evaluated from the perspective of their contribution to the biophysical properties of the construct surface (FTIR, WETSEM™) and bulk (DSC, TGA, and mechanical testing). The results obtained were compared with acellular pcECM and native ventricular tissue serving as negative and positive controls, respectively. MSC recellularization resulted in an inter-fiber plasticization effect, increased protein density, masking of acylated glycosaminoglycans (GAGs) and active pcECM remodelling which further stabilized the reseeded construct and increased its denaturation resistance. The systematic approach presented herein, therefore, identifies cells as "biological plasticizers" and yields important methodologies, understanding, and data serving both as a reference as well as possible 'design criteria' for future studies in FTE.
Collapse
Affiliation(s)
- Gigi Chi Ting Au-Yeung
- NTU-Technion Biomedical labs, School of Materials and Science Engineering, Nanyang Technological University, Singapore.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Benedek I, Benedek T. Modern Hematology — a Complex Interdisciplinary Tool. JOURNAL OF INTERDISCIPLINARY MEDICINE 2017. [DOI: 10.1515/jim-2017-0102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- István Benedek
- University of Medicine and Pharmacy , Tîrgu Mureș , Romania
| | | |
Collapse
|
8
|
Lee C, Shim S, Jang H, Myung H, Lee J, Bae CH, Myung JK, Kim MJ, Lee SB, Jang WS, Lee SJ, Kim HY, Lee SS, Park S. Human umbilical cord blood-derived mesenchymal stromal cells and small intestinal submucosa hydrogel composite promotes combined radiation-wound healing of mice. Cytotherapy 2017; 19:1048-1059. [PMID: 28751152 DOI: 10.1016/j.jcyt.2017.06.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 05/19/2017] [Accepted: 06/19/2017] [Indexed: 01/16/2023]
Abstract
BACKGROUND AIMS Mesenchymal stromal cells (MSCs) are a promising agent for treating impaired wound healing, and their therapeutic potential may be enhanced by employing extracellular matrix scaffolds as cell culture scaffolds or transplant cell carriers. Here, we evaluated the effect of human umbilical cord blood-derived (hUCB)-MSCs and a porcine small intestinal submucosa (SIS)-derived extracellular matrix scaffold in a combined radiation-wound mouse model of impaired wound healing. METHODS hUCB-MSCs and SIS hydrogel composite was applied to the excisional wound of whole-body irradiated mice. Assessment of wound closing and histological evaluation were performed in vivo. We also cultured hUCB-MSCs on SIS gel and examined the angiogenic effect of conditioned medium on irradiated human umbilical vein endothelial cells (HUVECs) in vitro. RESULTS hUCB-MSCs and SIS hydrogel composite treatment enhanced wound healing and angiogenesis in the wound site of mice. Conditioned medium from hUCB-MSCs cultured on SIS hydrogel promoted the chemotaxis of irradiated HUVECs more than their proliferation. The secretion of angiogenic growth factors hepatocyte growth factor, vascular endothelial growth factor-A and angiopoietin-1 from hUCB-MSCs was significantly increased by SIS hydrogel, with HGF being the predominant angiogenic factor of irradiated HUVECs. CONCLUSIONS Our results suggest that the wound healing effect of hUCB-MSCs is enhanced by SIS hydrogel via a paracrine factor-mediated recruitment of vascular endothelial cells in a combined radiation-wound mouse model.
Collapse
Affiliation(s)
- Changsun Lee
- Laboratory of Radiation Exposure and Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea; Department of Veterinary Surgery, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Sehwan Shim
- Laboratory of Radiation Exposure and Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Hyosun Jang
- Laboratory of Radiation Exposure and Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Hyunwook Myung
- Laboratory of Radiation Exposure and Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea; Department of Veterinary Surgery, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Janet Lee
- Laboratory of Radiation Exposure and Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Chang-Hwan Bae
- Laboratory of Radiation Exposure and Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Jae Kyung Myung
- Laboratory of Radiation Exposure and Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea; Department of Pathology, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Min-Jung Kim
- Laboratory of Radiation Exposure and Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Seung Bum Lee
- Laboratory of Radiation Exposure and Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Won-Suk Jang
- Laboratory of Radiation Exposure and Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Sun-Joo Lee
- Laboratory of Radiation Exposure and Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Hwi-Yool Kim
- Department of Veterinary Surgery, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Seung-Sook Lee
- Laboratory of Radiation Exposure and Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea; Department of Pathology, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Sunhoo Park
- Laboratory of Radiation Exposure and Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea; Department of Pathology, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea.
| |
Collapse
|
9
|
Lankford L, Chen YJ, Saenz Z, Kumar P, Long C, Farmer D, Wang A. Manufacture and preparation of human placenta-derived mesenchymal stromal cells for local tissue delivery. Cytotherapy 2017; 19:680-688. [PMID: 28438482 DOI: 10.1016/j.jcyt.2017.03.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 03/02/2017] [Accepted: 03/03/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND In this study we describe the development of a Current Good Manufacturing Practice (CGMP)-compliant process to isolate, expand and bank placenta-derived mesenchymal stromal cells (PMSCs) for use as stem cell therapy. We characterize the viability, proliferation and neuroprotective secretory profile of PMSCs seeded on clinical-grade porcine small intestine submucosa extracellular matrix (SIS-ECM; Cook Biotech). METHODS PMSCs were isolated from early gestation placenta chorionic villus tissue via explant culture. Cells were expanded, banked and screened. Purity and expression of markers of pluripotency were determined using flow cytometry. Optimal loading density and viability of PMSCs on SIS-ECM were determined using 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) cell proliferation and fluorescent live/dead assays, respectively. Growth factors secretion was analyzed using enzyme-linked immunosorbent assays (ELISA). RESULTS PMSCs were rapidly expanded and banked. Viable Master and Working Cell Banks were stable with minimal decrease in viability at 6 months. All PMSCs were sterile, free from Mycoplasma species, karyotypically normal and had low endotoxin levels. PMSCs were homogeneous by immunophenotyping and expressed little to no pluripotency markers. Optimal loading density on SIS-ECM was 3-5 × 105 cells/cm2, and seeded cells were >95% viable. Neurotrophic factor secretion was detectable from PMSCs seeded on plastic and SIS-ECM with variability between donor lots. DISCUSSION PMSCs from early gestation placental tissues can be rapidly expanded and banked in stable, viable cell banks that are free from contaminating agents, genetically normal and pure. PMSC delivery can be accomplished by using SIS-ECM, which maintains cell viability and protein secretion. Future work in vivo is necessary to optimize cell seeding and transplantation to maximize therapeutic capabilities.
Collapse
Affiliation(s)
- Lee Lankford
- Surgical Bioengineering Laboratory, Department of Surgery, University of California, Davis School of Medicine, Sacramento, California, USA
| | - Y Julia Chen
- Surgical Bioengineering Laboratory, Department of Surgery, University of California, Davis School of Medicine, Sacramento, California, USA
| | - Zoe Saenz
- Surgical Bioengineering Laboratory, Department of Surgery, University of California, Davis School of Medicine, Sacramento, California, USA
| | - Priyadarsini Kumar
- Surgical Bioengineering Laboratory, Department of Surgery, University of California, Davis School of Medicine, Sacramento, California, USA
| | - Connor Long
- Surgical Bioengineering Laboratory, Department of Surgery, University of California, Davis School of Medicine, Sacramento, California, USA
| | - Diana Farmer
- Surgical Bioengineering Laboratory, Department of Surgery, University of California, Davis School of Medicine, Sacramento, California, USA
| | - Aijun Wang
- Surgical Bioengineering Laboratory, Department of Surgery, University of California, Davis School of Medicine, Sacramento, California, USA.
| |
Collapse
|
10
|
Sang J, Wang S, Zhang J, Ding W, Luo J. [Effect of porcine small intestinal submucosa extracellular matrix in promoting vitality and functional gene expression of hepatocyte]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2017; 31:607-613. [PMID: 29798552 DOI: 10.7507/1002-1892.201702072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Objective To investigate the effect of porcine small intestinal submucosa extracellular matrix (PSISM) on the vitality and gene regulation of hepatocyte so as to lay the experimental foundation for the application of PSISM in liver tissue engineering. Methods The experiment was divided into two parts: ① BRL cells were cultured with 50, 100, and 200 μg/mL PSISM-medium which were prepared by adding PSISM into the H-DMEM-medium containing 10%FBS in groups A1, B1, and C1, and simple H-DMEM-medium served as a control (group D1); ② BRL cells were seeded on 1%, 2%, and 3% PSISM hydrogel which were prepared by dissolving PSISM in sterile PBS solution containing 0.1 mol/L NaOH in groups A2, B2, and C2, and collagen type I gel served as a control (group D2). At 1, 3, and 5 days after culture, the morphology and survival of liver cells were detected by the Live/Dead fluorescent staining. The cell vitality was tested by cell counting kit-8 (CCK-8) assay. And the relative expressions of albumin (ALB), cytokeratin 18 (CK18), and alpha-fetoprotein (AFP) in hepatocytes were determined by real-time fluorescent quantitative PCR (RT-qPCR). Results The Live/Dead fluorescent staining showed the cells survived well in all groups. CCK-8 results displayed that the absorbance ( A) value of group C1 was significantly higher than that of group D1 at 5 days after culture with PSISM-medium, and there was no significant difference between groups at other time points ( P>0.05). After cultured with PSISM hydrogels, the A values of groups A2, B2, and C2 were significantly higher than those of group D2 at 3 and 5 days ( P<0.05), the A value of group A2 was significantly higher than that of groups B2 and C2 at 5 days ( P<0.05), but there was no significant difference between groups at other time points ( P>0.05). RT-qPCR showed that the relative expressions of ALB and CK18 mRNA significantly increased and the relative expression of AFP mRNA significantly decreased in groups A1, B1, and C1 when compared with group D1 ( P<0.05). The relative expression of CK18 mRNA in group C1 was significantly lower than that in groups A1 and B1 ( P<0.05). The relative expressions of ALB and CK18 mRNA were significantly higher and the relative expression of AFP mRNA was significantly lower in groups A2, B2, and C2 than group D2 ( P<0.05); the relative expression of CK18 mRNA in group A2 was significantly higher than that in group B2 ( P<0.05), and the relative expression of AFP mRNA in group A2 was significantly lower than that in group C2 ( P<0.05), but no significant difference was found between other groups ( P>0.05). Conclusion PSISM has good compatibility with hepatocyte and can promote the vitality and functional gene expression of hepatocyte. PSISM is expected to be used as culture medium supplement or cell carrier for liver tissue engineering.
Collapse
Affiliation(s)
- Jiangwei Sang
- Division of Stem Cell and Tissue Engineering, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Suya Wang
- Division of Stem Cell and Tissue Engineering, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Jie Zhang
- Division of Stem Cell and Tissue Engineering, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Wei Ding
- Division of Stem Cell and Tissue Engineering, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Jingcong Luo
- Division of Stem Cell and Tissue Engineering, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu Sichuan, 610041,
| |
Collapse
|
11
|
Rubessa M, Polkoff K, Bionaz M, Monaco E, Milner DJ, Holllister SJ, Goldwasser MS, Wheeler MB. Use of Pig as a Model for Mesenchymal Stem Cell Therapies for Bone Regeneration. Anim Biotechnol 2017; 28:275-287. [PMID: 28267421 DOI: 10.1080/10495398.2017.1279169] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Bone is a plastic tissue with a large healing capability. However, extensive bone loss due to disease or trauma requires extreme therapy such as bone grafting or tissue-engineering applications. Presently, bone grafting is the gold standard for bone repair, but presents serious limitations including donor site morbidity, rejection, and limited tissue regeneration. The use of stem cells appears to be a means to overcome such limitations. Bone marrow mesenchymal stem cells (BMSC) have been the choice thus far for stem cell therapy for bone regeneration. However, adipose-derived stem cells (ASC) have similar immunophenotype, morphology, multilineage potential, and transcriptome compared to BMSC, and both types have demonstrated extensive osteogenic capacity both in vitro and in vivo in several species. The use of scaffolds in combination with stem cells and growth factors provides a valuable tool for guided bone regeneration, especially for complex anatomic defects. Before translation to human medicine, regenerative strategies must be developed in animal models to improve effectiveness and efficiency. The pig presents as a useful model due to similar macro- and microanatomy and favorable logistics of use. This review examines data that provides strong support for the clinical translation of the pig model for bone regeneration.
Collapse
Key Words
- ASC, adipose-derived stem cells
- BMP, bone morphogenetic protein
- BMSC, bone marrow mesenchymal stem cells
- Bone
- DEG, differentially expressed genes
- FDR, false-discovery rate
- HA, hydroxyapatite
- HA/TCP, hydroxyapatite/tricalcium phosphate
- MRI, magnetic resonance imaging
- MSC, mesenchymal stem cells
- ONFH, osteonecrosis of the femoral head
- PCL, Poly (ϵ-caprolactone)
- PEG, polyethylene glycol
- PLGA, polylactic-coglycolic acid
- TCP, beta tri-calcium phosphate
- USSC, unrestricted somatic stem cell
- scaffolds
- stem cells
- swine
- tissue engineering
Collapse
Affiliation(s)
- Marcello Rubessa
- a University of Illinois at Urbana-Champaign , Urbana , Illinois , USA
| | - Kathryn Polkoff
- a University of Illinois at Urbana-Champaign , Urbana , Illinois , USA
| | | | - Elisa Monaco
- b Oregon State University , Corvallis , Oregon , USA
| | - Derek J Milner
- a University of Illinois at Urbana-Champaign , Urbana , Illinois , USA
| | | | - Michael S Goldwasser
- a University of Illinois at Urbana-Champaign , Urbana , Illinois , USA.,d New Hanover Regional Medical Center , Wilmington , North Carolina , USA
| | - Matthew B Wheeler
- a University of Illinois at Urbana-Champaign , Urbana , Illinois , USA
| |
Collapse
|
12
|
Guo X, Xia B, Lu XB, Zhang ZJ, Li Z, Li WL, Xiong AB, Deng L, Tan MY, Huang YC. Grafting of mesenchymal stem cell-seeded small intestinal submucosa to repair the deep partial-thickness burns. Connect Tissue Res 2016; 57:388-397. [PMID: 27485758 DOI: 10.1080/03008207.2016.1193173] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 05/18/2016] [Indexed: 02/05/2023]
Abstract
PURPOSE Regenerative medicine provides many treatments for burn wounds, of which cell-seeded substitutes are encouraging for large and deep burns. To assess the feasibility of mesenchymal stem cell (MSC)-seeded small intestinal submucosa (SIS) to repair the deep partial-thickness burns, a rat study was performed. MATERIALS & METHODS The burn model was created by contacting the dorsal surface directly with boiled water for 10 seconds. MSCs at passage 3 were seeded on the SIS before implantation. Three days after burn injury, the grafts were implanted onto the burn area. At 3, 7, 14 and 21 days post implantation, gross observation and histological assessments were performed. RESULTS SIS alone and MSC-seeded SIS were able to accelerate the burn wound closure by enhancing granulation tissue formation, increasing wound maturity, improving revascularization, and inducing the proliferation of neo-epidermal cells. Additionally, MSC-seeded SIS was much more effective than SIS alone for the repair of deep partial-thickness burns. CONCLUSION Both SIS and MSC-seeded SIS were able to repair the large and deep burn wounds and the loaded MSCs possessed positive effects to accelerate the wound closure in a rat model.
Collapse
Affiliation(s)
- Xing Guo
- a Department of Burns and Plastic Surgery , The Affiliated Hospital of Southwest Medical University , Luzhou , China
| | - Bo Xia
- b Department of Bone and Joint Surgery , The Affiliated Hospital of Southwest Medical University , Luzhou , China
| | - Xiao-Bo Lu
- b Department of Bone and Joint Surgery , The Affiliated Hospital of Southwest Medical University , Luzhou , China
| | - Zhong-Jie Zhang
- b Department of Bone and Joint Surgery , The Affiliated Hospital of Southwest Medical University , Luzhou , China
| | - Zhong Li
- b Department of Bone and Joint Surgery , The Affiliated Hospital of Southwest Medical University , Luzhou , China
| | - Wei-Ling Li
- c Department of Oncology , The Affiliated Hospital of Southwest Medical University , Luzhou , China
| | - Ai-Bing Xiong
- a Department of Burns and Plastic Surgery , The Affiliated Hospital of Southwest Medical University , Luzhou , China
| | - Li Deng
- d Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy , West China Hospital, Sichuan University , Chengdu , China
| | - Mei-Yun Tan
- b Department of Bone and Joint Surgery , The Affiliated Hospital of Southwest Medical University , Luzhou , China
| | - Yong-Can Huang
- e Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine , The University of Hong Kong , Hong Kong SAR , China
- f Shenzhen Engineering Laboratory of Orthopaedic Regenerative Technologies , Orthopaedics Research Center, Peking University Shenzhen Hospital , Shenzhen , China
| |
Collapse
|
13
|
Chery J, Wong J, Huang S, Wang S, Si MS. Regenerative Medicine Strategies for Hypoplastic Left Heart Syndrome. TISSUE ENGINEERING PART B-REVIEWS 2016; 22:459-469. [PMID: 27245633 DOI: 10.1089/ten.teb.2016.0136] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hypoplastic left heart syndrome (HLHS), the most severe and common form of single ventricle congenital heart lesions, is characterized by hypoplasia of the mitral valve, left ventricle (LV), and all LV outflow structures. While advances in surgical technique and medical management have allowed survival into adulthood, HLHS patients have severe morbidities, decreased quality of life, and a shortened lifespan. The single right ventricle (RV) is especially prone to early failure because of its vulnerability to chronic pressure overload, a mode of failure distinct from ischemic cardiomyopathy encountered in acquired heart disease. As these patients enter early adulthood, an emerging epidemic of RV failure has become evident. Regenerative medicine strategies may help preserve or boost RV function in children and adults with HLHS by promoting angiogenesis and mitigating oxidative stress. Rescuing a RV in decompensated failure may also require the creation of new, functional myocardium. Although considerable hurdles remain before their clinical translation, stem cell therapy and cardiac tissue engineering possess revolutionary potential in the treatment of pediatric and adult patients with HLHS who currently have very limited long-term treatment options.
Collapse
Affiliation(s)
- Josue Chery
- 1 Department of Cardiac Surgery, University of Michigan , Ann Arbor, Michigan
| | - Joshua Wong
- 2 Department of Pediatric Cardiology, University of Michigan , Ann Arbor, Michigan
| | - Shan Huang
- 1 Department of Cardiac Surgery, University of Michigan , Ann Arbor, Michigan
| | - Shuyun Wang
- 1 Department of Cardiac Surgery, University of Michigan , Ann Arbor, Michigan
| | - Ming-Sing Si
- 1 Department of Cardiac Surgery, University of Michigan , Ann Arbor, Michigan
| |
Collapse
|
14
|
Singh A, Singh A, Sen D. Mesenchymal stem cells in cardiac regeneration: a detailed progress report of the last 6 years (2010-2015). Stem Cell Res Ther 2016; 7:82. [PMID: 27259550 PMCID: PMC4893234 DOI: 10.1186/s13287-016-0341-0] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cells have been used for cardiovascular regenerative therapy for decades. These cells have been established as one of the potential therapeutic agents, following several tests in animal models and clinical trials. In the process, various sources of mesenchymal stem cells have been identified which help in cardiac regeneration by either revitalizing the cardiac stem cells or revascularizing the arteries and veins of the heart. Although mesenchymal cell therapy has achieved considerable admiration, some challenges still remain that need to be overcome in order to establish it as a successful technique. This in-depth review is an attempt to summarize the major sources of mesenchymal stem cells involved in myocardial regeneration, the significant mechanisms involved in the process with a focus on studies (human and animal) conducted in the last 6 years and the challenges that remain to be addressed.
Collapse
Affiliation(s)
- Aastha Singh
- School of Bio Sciences and Technology, VIT University, Vellore, India
| | - Abhishek Singh
- School of Bio Sciences and Technology, VIT University, Vellore, India
| | - Dwaipayan Sen
- School of Bio Sciences and Technology, VIT University, Vellore, India. .,Cellular and Molecular Therapeutics Laboratory, Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), VIT University, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
15
|
Chang CW, Petrie T, Clark A, Lin X, Sondergaard CS, Griffiths LG. Mesenchymal Stem Cell Seeding of Porcine Small Intestinal Submucosal Extracellular Matrix for Cardiovascular Applications. PLoS One 2016; 11:e0153412. [PMID: 27070546 PMCID: PMC4829265 DOI: 10.1371/journal.pone.0153412] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 03/29/2016] [Indexed: 01/16/2023] Open
Abstract
In this study, we investigate the translational potential of a novel combined construct using an FDA-approved decellularized porcine small intestinal submucosa extracellular matrix (SIS-ECM) seeded with human or porcine mesenchymal stem cells (MSCs) for cardiovascular indications. With the emerging success of individual component in various clinical applications, the combination of SIS-ECM with MSCs could provide additional therapeutic potential compared to individual components alone for cardiovascular repair. We tested the in vitro effects of MSC-seeding on SIS-ECM on resultant construct structure/function properties and MSC phenotypes. Additionally, we evaluated the ability of porcine MSCs to modulate recipient graft-specific response towards SIS-ECM in a porcine cardiac patch in vivo model. Specifically, we determined: 1) in vitro loading-capacity of human MSCs on SIS-ECM, 2) effect of cell seeding on SIS-ECM structure, compositions and mechanical properties, 3) effect of SIS-ECM seeding on human MSC phenotypes and differentiation potential, and 4) optimal orientation and dose of porcine MSCs seeded SIS-ECM for an in vivo cardiac application. In this study, histological structure, biochemical compositions and mechanical properties of the FDA-approved SIS-ECM biomaterial were retained following MSCs repopulation in vitro. Similarly, the cellular phenotypes and differentiation potential of MSCs were preserved following seeding on SIS-ECM. In a porcine in vivo patch study, the presence of porcine MSCs on SIS-ECM significantly reduced adaptive T cell response regardless of cell dose and orientation compared to SIS-ECM alone. These findings substantiate the clinical translational potential of combined SIS-ECM seeded with MSCs as a promising therapeutic candidate for cardiac applications.
Collapse
Affiliation(s)
- Chia Wei Chang
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, Davis, California, United States of America
| | - Tye Petrie
- Department of Surgery, School of Medicine, University of California, Davis, Sacramento, California, United States of America
| | - Alycia Clark
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, Davis, California, United States of America
| | - Xin Lin
- Department of Surgery, School of Medicine, University of California, Davis, Sacramento, California, United States of America
| | - Claus S. Sondergaard
- Department of Surgery, School of Medicine, University of California, Davis, Sacramento, California, United States of America
| | - Leigh G. Griffiths
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|