1
|
Trimarchi M, Lauritano D, Ronconi G, Caraffa A, Gallenga CE, Frydas I, Kritas SK, Calvisi V, Conti P. Mast Cell Cytokines in Acute and Chronic Gingival Tissue Inflammation: Role of IL-33 and IL-37. Int J Mol Sci 2022; 23:13242. [PMID: 36362030 PMCID: PMC9654575 DOI: 10.3390/ijms232113242] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/27/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022] Open
Abstract
Much evidence suggests autoimmunity in the etiopathogenesis of periodontal disease. In fact, in periodontitis, there is antibody production against collagen, DNA, and IgG, as well as increased IgA expression, T cell dysfunction, high expression of class II MHC molecules on the surface of gingival epithelial cells in inflamed tissues, activation of NK cells, and the generation of antibodies against the azurophil granules of polymorphonuclear leukocytes. In general, direct activation of autoreactive immune cells and production of TNF can activate neutrophils to release pro-inflammatory enzymes with tissue damage in the gingiva. Gingival inflammation and, in the most serious cases, periodontitis, are mainly due to the dysbiosis of the commensal oral microbiota that triggers the immune system. This inflammatory pathological state can affect the periodontal ligament, bone, and the entire gingival tissue. Oral tolerance can be abrogated by some cytokines produced by epithelial cells and activated immune cells, including mast cells (MCs). Periodontal cells and inflammatory-immune cells, including mast cells (MCs), produce cytokines and chemokines, mediating local inflammation of the gingival, along with destruction of the periodontal ligament and alveolar bone. Immune-cell activation and recruitment can be induced by inflammatory cytokines, such as IL-1, TNF, IL-33, and bacterial products, including lipopolysaccharide (LPS). IL-1 and IL-33 are pleiotropic cytokines from members of the IL-1 family, which mediate inflammation of MCs and contribute to many key features of periodontitis and other inflammatory disorders. IL-33 activates several immune cells, including lymphocytes, Th2 cells, and MCs in both innate and acquired immunological diseases. The classic therapies for periodontitis include non-surgical periodontal treatment, surgery, antibiotics, anti-inflammatory drugs, and surgery, which have been only partially effective. Recently, a natural cytokine, IL-37, a member of the IL-1 family and a suppressor of IL-1b, has received considerable attention for the treatment of inflammatory diseases. In this article, we report that IL-37 may be an important and effective therapeutic cytokine that may inhibit periodontal inflammation. The purpose of this paper is to study the relationship between MCs, IL-1, IL-33, and IL-37 inhibition in acute and chronic inflamed gingival tissue.
Collapse
Affiliation(s)
- Matteo Trimarchi
- Centre of Neuroscience of Milan, Department of Medicine and Surgery, University of Milan, 20122 Milano, Italy;
| | - Dorina Lauritano
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy;
| | - Gianpaolo Ronconi
- Clinica dei Pazienti del Territorio, Fondazione Policlinico Gemelli, 00185 Rome, Italy;
| | | | - Carla E. Gallenga
- Section of Ophthalmology, Department of Biomedical Sciences and Specialist Surgery, University of Ferrara, 44121 Ferrara, Italy;
| | - Ilias Frydas
- Department of Parasitology, Aristotle University, 54124 Thessaloniki, Greece;
| | - Spyros K. Kritas
- Department of Microbiology and Infectious Diseases, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Macedonia, Greece;
| | - Vittorio Calvisi
- Orthopaedics Department, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Pio Conti
- Immunology Division, Postgraduate Medical School, University of Chieti, 65100 Pescara, Italy
| |
Collapse
|
2
|
Noto CN, Hoft SG, DiPaolo RJ. Mast Cells as Important Regulators in Autoimmunity and Cancer Development. Front Cell Dev Biol 2021; 9:752350. [PMID: 34712668 PMCID: PMC8546116 DOI: 10.3389/fcell.2021.752350] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/17/2021] [Indexed: 01/04/2023] Open
Abstract
Mast cells are an essential part of the immune system and are best known as important modulators of allergic and anaphylactic immune responses. Upon activation, mast cells release a multitude of inflammatory mediators with various effector functions that can be both protective and damage-inducing. Mast cells can have an anti-inflammatory or pro-inflammatory immunological effect and play important roles in regulating autoimmune diseases including rheumatoid arthritis, type 1 diabetes, and multiple sclerosis. Importantly, chronic inflammation and autoimmunity are linked to the development of specific cancers including pancreatic cancer, prostate cancer, colorectal cancer, and gastric cancer. Inflammatory mediators released from activated mast cells regulate immune responses and promote vascular permeability and the recruitment of immune cells to the site of inflammation. Mast cells are present in increased numbers in tissues affected by autoimmune diseases as well as in tumor microenvironments where they co-localize with T regulatory cells and T effector cells. Mast cells can regulate immune responses by expressing immune checkpoint molecules on their surface, releasing anti-inflammatory cytokines, and promoting vascularization of solid tumor sites. As a result of these immune modulating activities, mast cells have disease-modifying roles in specific autoimmune diseases and cancers. Therefore, determining how to regulate the activities of mast cells in different inflammatory and tumor microenvironments may be critical to discovering potential therapeutic targets to treat autoimmune diseases and cancer.
Collapse
Affiliation(s)
- Christine N Noto
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis University, St. Louis, MO, United States
| | - Stella G Hoft
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis University, St. Louis, MO, United States
| | - Richard J DiPaolo
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis University, St. Louis, MO, United States
| |
Collapse
|
3
|
Alamri RD, Elmeligy MA, Albalawi GA, Alquayr SM, Alsubhi SS, El-Ghaiesh SH. Leflunomide an immunomodulator with antineoplastic and antiviral potentials but drug-induced liver injury: A comprehensive review. Int Immunopharmacol 2021; 93:107398. [PMID: 33571819 PMCID: PMC7869628 DOI: 10.1016/j.intimp.2021.107398] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/11/2021] [Accepted: 01/11/2021] [Indexed: 12/11/2022]
Abstract
Leflunomide (LF) represents the prototype member of dihydroorotate dehydrogenase (DHODH) enzyme inhibitors. DHODH is a mitochondrial inner membrane enzyme responsible for catalytic conversion of dihydroorotate into orotate, a rate-limiting step in the de novo synthesis of the pyrimidine nucleotides. LF produces cellular depletion of pyrimidine nucleotides required for cell growth and proliferation. Based on the affected cells the outcome can be attainable as immunosuppression, antiproliferative, and/or the recently gained attention of the antiviral potentials of LF and its new congeners. Also, protein tyrosine kinase inhibition is an additional mechanistic benefit of LF, which inhibits immunological events such as cellular expansion and immunoglobulin production with an enhanced release of immunosuppressant cytokines. LF is approved for the treatment of autoimmune arthritis of rheumatoid and psoriatic pathogenesis. Also, LF has been used off-label for the treatment of relapsing-remitting multiple sclerosis. However, LF antiviral activity is repurposed and under investigation with related compounds under a phase-I trial as a SARS CoV-2 antiviral in cases with COVID-19. Despite success in improving patients' mobility and reducing joint destruction, reported events of LF-induced liver injury necessitated regulatory precautions. LF should not be used in patients with hepatic impairment or in combination with drugs elaborating a burden on the liver without regular monitoring of liver enzymes and serum bilirubin as safety biomarkers. This study aims to review the pharmacological and safety profile of LF with a focus on the LF-induced hepatic injury from the perspective of pathophysiology and possible protective agents.
Collapse
Affiliation(s)
- Raghad D Alamri
- Faculty of Medicine, University of Tabuk, Tabuk 47713, Saudi Arabia
| | | | | | - Sarah M Alquayr
- Faculty of Medicine, University of Tabuk, Tabuk 47713, Saudi Arabia
| | | | - Sabah H El-Ghaiesh
- Deaprtment of Pharmacology, Faculty of Medicine, Tanta University, Tanta 31527, Egypt; Department of Pharmacology, Faculty of Medicine, University of Tabuk, Tabuk 47713, Saudi Arabia.
| |
Collapse
|
4
|
Theoharides TC, Tsilioni I, Bawazeer M. Mast Cells, Neuroinflammation and Pain in Fibromyalgia Syndrome. Front Cell Neurosci 2019; 13:353. [PMID: 31427928 PMCID: PMC6687840 DOI: 10.3389/fncel.2019.00353] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 07/16/2019] [Indexed: 02/04/2023] Open
Abstract
Fibromyalgia Syndrome (FMS) is a disorder of chronic, generalized muscular pain, accompanied by sleep disturbances, fatigue and cognitive dysfunction. There is no definitive pathogenesis except for altered central pain pathways. We previously reported increased serum levels of the neuropeptides substance P (SP) and its structural analogue hemokinin-1 (HK-1) together with the pro-inflammatory cytokines IL-6 and TNF in FMS patients as compared to sedentary controls. We hypothesize that thalamic mast cells contribute to inflammation and pain, by releasing neuro-sensitizing molecules that include histamine, IL-1β, IL-6 and TNF, as well as calcitonin-gene related peptide (CGRP), HK-1 and SP. These molecules could either stimulate thalamic nociceptive neurons directly, or via stimulation of microglia in the diencephalon. As a result, inhibiting mast cell stimulation could be used as a novel approach for reducing pain and the symptoms of FMS.
Collapse
Affiliation(s)
- Theoharis C Theoharides
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, Boston, MA, United States.,Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, United States.,Department of Internal Medicine, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, United States.,Department of Psychiatry, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, United States
| | - Irene Tsilioni
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, Boston, MA, United States
| | - Mona Bawazeer
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, Boston, MA, United States.,Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, United States.,Department of Basic Medical Sciences, College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| |
Collapse
|
5
|
Tolefree JA, Garcia AJ, Farrell J, Meadows V, Kennedy L, Hargrove L, Demieville J, Francis N, Mirabel J, Francis H. Alcoholic liver disease and mast cells: What's your gut got to do with it? LIVER RESEARCH 2019. [DOI: 10.1016/j.livres.2019.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
6
|
Gross AR, Theoharides TC. Chondroitin sulfate inhibits secretion of TNF and CXCL8 from human mast cells stimulated by IL-33. Biofactors 2019; 45:49-61. [PMID: 30521103 DOI: 10.1002/biof.1464] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 08/14/2018] [Accepted: 08/21/2018] [Indexed: 01/19/2023]
Abstract
Glycosaminoglycans (GAGs) are linear, highly negatively charged carbohydrate chains present in connective tissues. Chondroitin sulfate (CS) and heparin (Hep) are also found in the numerous secretory granules of mast cells (MC), tissue immune cells involved in allergic and inflammatory reactions. CS and Hep may inhibit secretion of histamine from rat connective tissue MC, but their effect on human MC remains unknown. Human LAD2 MC were pre-incubated with CS, Hep, or dermatan sulfate (DS) before being stimulated by either the peptide substance P (SP, 2 μM) or the cytokine IL-33 (10 ng/mL). Preincubation with CS had no effect on MC degranulation stimulated by SP, but inhibited TNF (60%) and CXCL8 (45%) secretion from LAD2 cells stimulated by IL-33. Fluorescein-conjugated CS (CS-F) was internalized by LAD2 cells only at 37 °C, but not 4 °C, indicating it occurred by endocytosis. DS and Hep inhibited IL-33-stimulated secretion of TNF and CXCL8 to a similar extent as CS. None of the GAGs tested inhibited IL-33-stimulated gene expression of either TNF or CXCL8. There was no effect of CS on ionomycin-stimulated calcium influx. There was also no effect of CS on surface expression of the IL-33 receptor, ST2. Neutralization of the hyaluronan receptor CD44 did not affect the internalization of CS-F. The findings in this article show that CS inhibits secretion of TNF and CXCL8 from human cultured MC stimulated by IL-33. CS could be formulated for systemic or topical treatment of allergic or inflammatory diseases, such as atopic dermatitis, cutaneous mastocytosis, and psoriasis. © 2018 BioFactors, 45(1):49-61, 2019.
Collapse
Affiliation(s)
- Amanda R Gross
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
- Graduate Program in Pharmacology and Experimental Therapeutics, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| | - Theoharis C Theoharides
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
- Graduate Program in Pharmacology and Experimental Therapeutics, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
- Department of Internal Medicine, Tufts University School of Medicine and Tufts Medical Center, Boston, MA, USA
| |
Collapse
|
7
|
Neuropeptides, Inflammation, and Diabetic Wound Healing: Lessons from Experimental Models and Human Subjects. CONTEMPORARY DIABETES 2018. [DOI: 10.1007/978-3-319-89869-8_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
8
|
SP and IL-33 together markedly enhance TNF synthesis and secretion from human mast cells mediated by the interaction of their receptors. Proc Natl Acad Sci U S A 2017; 114:E4002-E4009. [PMID: 28461492 DOI: 10.1073/pnas.1524845114] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The peptide substance P (SP) and the cytokine tumor necrosis factor (TNF) have been implicated in inflammatory processes. Mast cells are recognized as important in inflammatory responses. Here, we report that IL-33 (30 ng/mL), a member of the IL-1 family of cytokines, administered in combination with SP (1 µM), markedly increase (by 1,000-fold) TNF gene expression in cultured human LAD2 and primary mast cells derived from umbilical cord blood. SP (0.01-1 μM) and IL-33 (1-100 ng/mL) in combination also greatly stimulate TNF secretion (by 4,500-fold). Pretreatment of LAD2 cells with two different neurokinin-1 (NK-1) receptor antagonists and siRNA inhibits TNF secretion by 50% (P < 0.001) when stimulated by SP and IL-33. Pretreatment of LAD2 cells with a neutralizing antibody for IL-33 receptor, ST2, inhibits TNF secretion by 50% (P < 0.001), and ST2 siRNA decreases TNF secretion by 30% (P < 0.05), when stimulated by SP and IL-33. Surprisingly, NK-1 antagonists also inhibit 50% of TNF secretion (P < 0.001) when stimulated only by IL-33, and ST2 receptor reduction also decreases SP-stimulated TNF secretion by 30% (P < 0.05), suggesting an interaction between NK-1 and ST2 receptors. Moreover, IL-33 increases NK-1 gene and surface protein expression, as well as IKβ-α phosphorylation. Pretreatment of LAD2 cells with 5,7,3',4'-tetramethoxyflavone (methoxyluteolin) (1-100 μM) inhibits (P < 0.001) TNF gene expression (98%) and secretion (64%) at 50 µM and phosphorylation of p-IKB-α at 1 μM when stimulated by SP and IL-33. These findings identify a unique amplification process of TNF synthesis and secretion via the interaction of NK-1 and ST2 receptors inhibitable by methoxyluteolin.
Collapse
|
9
|
Rivellese F, Nerviani A, Rossi FW, Marone G, Matucci-Cerinic M, de Paulis A, Pitzalis C. Mast cells in rheumatoid arthritis: friends or foes? Autoimmun Rev 2017; 16:557-563. [PMID: 28411167 DOI: 10.1016/j.autrev.2017.04.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 02/17/2017] [Indexed: 12/21/2022]
Abstract
Mast cells are tissue-resident cells of the innate immunity, implicated in the pathogenesis of many autoimmune diseases, including rheumatoid arthritis (RA). They are present in synovia and their activation has been linked to the potentiation of inflammation in the course of RA. However, recent investigations questioned the role of mast cells in arthritis. In particular, animal models generated conflicting results, so that many of their pro-inflammatory, i.e. pro-arthritogenic functions, even though supported by robust experimental evidence, have been labelled as redundant. At the same time, a growing body of evidence suggests that mast cells can act as tunable immunomodulatory cells. These characteristics, not yet fully understood in the context of RA, could partially explain the inconsistent results obtained with experimental models, which do not account for the pro- and anti-inflammatory functions exerted in more chronic heterogeneous conditions such as RA. Here we present an overview of the current knowledge on mast cell involvement in RA, including the intriguing hypothesis of mast cells acting as subtle immunomodulatory cells and the emerging concept of synovial mast cells as potential biomarkers for patient stratification.
Collapse
Affiliation(s)
- Felice Rivellese
- William Harvey Research Institute and Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | - Alessandra Nerviani
- William Harvey Research Institute and Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Francesca Wanda Rossi
- Department of Translational Medical Sciences (DiSMeT) and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences (DiSMeT) and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy; Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council (CNR), Naples, Italy
| | - Marco Matucci-Cerinic
- Department of Experimental and Clinical Medicine, Division of Rheumatology AOUC, University of Florence, Florence, Italy
| | - Amato de Paulis
- Department of Translational Medical Sciences (DiSMeT) and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
| | - Costantino Pitzalis
- William Harvey Research Institute and Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
10
|
Petra AI, Panagiotidou S, Hatziagelaki E, Stewart JM, Conti P, Theoharides TC. Gut-Microbiota-Brain Axis and Its Effect on Neuropsychiatric Disorders With Suspected Immune Dysregulation. Clin Ther 2016; 37:984-95. [PMID: 26046241 DOI: 10.1016/j.clinthera.2015.04.002] [Citation(s) in RCA: 384] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 04/04/2015] [Accepted: 04/07/2015] [Indexed: 12/15/2022]
Abstract
PURPOSE Gut microbiota regulate intestinal function and health. However, mounting evidence indicates that they can also influence the immune and nervous systems and vice versa. This article reviews the bidirectional relationship between the gut microbiota and the brain, termed the microbiota-gut-brain (MGB) axis, and discusses how it contributes to the pathogenesis of certain disorders that may involve brain inflammation. METHODS Articles were identified with a search of Medline (starting in 1980) by using the key words anxiety, attention-deficit hypersensitivity disorder (ADHD), autism, cytokines, depression, gut, hypothalamic-pituitary-adrenal (HPA) axis, inflammation, immune system, microbiota, nervous system, neurologic, neurotransmitters, neuroimmune conditions, psychiatric, and stress. FINDINGS Various afferent or efferent pathways are involved in the MGB axis. Antibiotics, environmental and infectious agents, intestinal neurotransmitters/neuromodulators, sensory vagal fibers, cytokines, and essential metabolites all convey information to the central nervous system about the intestinal state. Conversely, the hypothalamic-pituitary-adrenal axis, the central nervous system regulatory areas of satiety, and neuropeptides released from sensory nerve fibers affect the gut microbiota composition directly or through nutrient availability. Such interactions seem to influence the pathogenesis of a number of disorders in which inflammation is implicated, such as mood disorder, autism-spectrum disorders, attention-deficit hypersensitivity disorder, multiple sclerosis, and obesity. IMPLICATIONS Recognition of the relationship between the MGB axis and the neuroimmune systems provides a novel approach for better understanding and management of these disorders. Appropriate preventive measures early in life or corrective measures such as use of psychobiotics, fecal microbiota transplantation, and flavonoids are discussed.
Collapse
Affiliation(s)
- Anastasia I Petra
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, Massachusetts
| | - Smaro Panagiotidou
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, Massachusetts
| | - Erifili Hatziagelaki
- Second Department of Internal Medicine, Attikon General Hospital, Athens Medical School, Athens, Greece
| | - Julia M Stewart
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, Massachusetts
| | - Pio Conti
- Department of Medical Sciences, Immunology Division, University of Chieti, Via dei Vestini, Chieti, Italy
| | - Theoharis C Theoharides
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, Massachusetts; Department of Internal Medicine, Tufts University School of Medicine and Tufts Medical Center, Boston, Massachusetts; Department of Psychiatry, Tufts University School of Medicine and Tufts Medical Center, Boston, Massachusetts.
| |
Collapse
|
11
|
Abstract
Mast cells (MCs) are ubiquitous in the body, but they have historically been associated with allergies, and most recently with regulation of immunity and inflammation. However, it remains a puzzle why so many MCs are located in the diencephalon, which regulates emotions and in the genitourinary tract, including the bladder, prostate, penis, vagina and uterus that hardly ever get allergic reactions. A number of papers have reported that MCs have estrogen, gonadotropin and corticotropin-releasing hormone (CRH) receptors. Moreover, animal experiments have shown that diencephalic MCs increase in number during courting in doves. We had reported that allergic stimulation of nasal MCs leads to hypothalamic-pituitary adrenal (HPA) activation. Interestingly, anecdotal information indicates that female patients with mastocytosis or mast cell activation syndrome may have increased libido. Preliminary evidence also suggests that MCs may have olfactory receptors. MCs may, therefore, have been retained phylogenetically not only to “smell danger”, but to promote survival and procreation.
Collapse
Affiliation(s)
- Theoharis C Theoharides
- 1 Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA, USA ; 2 Department of Internal Medicine, Tufts University School of Medicine, Boston, MA, USA
| | - Julia M Stewart
- 1 Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA, USA ; 2 Department of Internal Medicine, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
12
|
Nai W, Threapleton D, Lu J, Zhang K, Wu H, Fu Y, Wang Y, Ou Z, Shan L, Ding Y, Yu Y, Dai M. Identification of novel genes and pathways in carotid atheroma using integrated bioinformatic methods. Sci Rep 2016; 6:18764. [PMID: 26742467 PMCID: PMC4705461 DOI: 10.1038/srep18764] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 11/26/2015] [Indexed: 12/18/2022] Open
Abstract
Atherosclerosis is the primary cause of cardiovascular events and its molecular mechanism urgently needs to be clarified. In our study, atheromatous plaques (ATH) and macroscopically intact tissue (MIT) sampled from 32 patients were compared and an integrated series of bioinformatic microarray analyses were used to identify altered genes and pathways. Our work showed 816 genes were differentially expressed between ATH and MIT, including 443 that were up-regulated and 373 that were down-regulated in ATH tissues. GO functional-enrichment analysis for differentially expressed genes (DEGs) indicated that genes related to the "immune response" and "muscle contraction" were altered in ATHs. KEGG pathway-enrichment analysis showed that up-regulated DEGs were significantly enriched in the "FcεRI-mediated signaling pathway", while down-regulated genes were significantly enriched in the "transforming growth factor-β signaling pathway". Protein-protein interaction network and module analysis demonstrated that VAV1, SYK, LYN and PTPN6 may play critical roles in the network. Additionally, similar observations were seen in a validation study where SYK, LYN and PTPN6 were markedly elevated in ATH. All in all, identification of these genes and pathways not only provides new insights into the pathogenesis of atherosclerosis, but may also aid in the development of prognostic and therapeutic biomarkers for advanced atheroma.
Collapse
Affiliation(s)
- Wenqing Nai
- Department of Health Management, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Diane Threapleton
- Division of Epidemiology, School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong
| | - Jingbo Lu
- Department of Vascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Kewei Zhang
- Department of Vascular Surgery, People's hospital of Henan province, Zhengzhou university, Zhengzhou 450003, Henan, China
| | - Hongyuan Wu
- Department of Health Management, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - You Fu
- Department of Health Management, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Yuanyuan Wang
- Department of Health Management, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Zejin Ou
- Department of Health Management, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Lanlan Shan
- Department of Health Management, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Yan Ding
- Department of Health Management, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Yanlin Yu
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, MD 20892, USA
| | - Meng Dai
- Department of Health Management, Southern Medical University, Guangzhou 510515, Guangdong, China
| |
Collapse
|
13
|
Theoharides TC, Tsilioni I, Arbetman L, Panagiotidou S, Stewart JM, Gleason RM, Russell IJ. Fibromyalgia syndrome in need of effective treatments. J Pharmacol Exp Ther 2015; 355:255-63. [PMID: 26306765 PMCID: PMC4613957 DOI: 10.1124/jpet.115.227298] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 08/24/2015] [Indexed: 12/18/2022] Open
Abstract
Fibromyalgia syndrome (FMS) is a chronic, idiopathic condition of widespread musculoskeletal pain, affecting primarily women. It is clinically characterized by chronic, nonarticular pain and a heightened response to pressure along with sleep disturbances, fatigue, bowel and bladder abnormalities, and cognitive dysfunction. The diagnostic criteria have changed repeatedly, and there is neither a definitive pathogenesis nor reliable diagnostic or prognostic biomarkers. Clinical and laboratory studies have provided evidence of altered central pain pathways. Recent evidence suggests the involvement of neuroinflammation with stress peptides triggering the release of neurosenzitizing mediators. The management of FMS requires a multidimensional approach including patient education, behavioral therapy, exercise, and pain management. Here we review recent data on the pathogenesis and propose new directions for research and treatment.
Collapse
Affiliation(s)
- Theoharis C Theoharides
- Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, Massachusetts (T.C.T., I.T., L.A., S.P., J.M.S.); Department of Internal Medicine, Tufts University School of Medicine and Tufts Medical Center, Boston, Massachusetts (T.C.T.); Department of Psychiatry, Tufts University School of Medicine and Tufts Medical Center, Boston, Massachusetts (T.C.T.); Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts (T.C.T.); National Fibromyalgia and Chronic Pain Association, Logan, Utah (R.M.G.); Fibromyalgia Research and Consulting, Arthritis and Osteoporosis Center of South Texas, San Antonio, Texas (I.J.R.)
| | - Irene Tsilioni
- Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, Massachusetts (T.C.T., I.T., L.A., S.P., J.M.S.); Department of Internal Medicine, Tufts University School of Medicine and Tufts Medical Center, Boston, Massachusetts (T.C.T.); Department of Psychiatry, Tufts University School of Medicine and Tufts Medical Center, Boston, Massachusetts (T.C.T.); Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts (T.C.T.); National Fibromyalgia and Chronic Pain Association, Logan, Utah (R.M.G.); Fibromyalgia Research and Consulting, Arthritis and Osteoporosis Center of South Texas, San Antonio, Texas (I.J.R.)
| | - Lauren Arbetman
- Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, Massachusetts (T.C.T., I.T., L.A., S.P., J.M.S.); Department of Internal Medicine, Tufts University School of Medicine and Tufts Medical Center, Boston, Massachusetts (T.C.T.); Department of Psychiatry, Tufts University School of Medicine and Tufts Medical Center, Boston, Massachusetts (T.C.T.); Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts (T.C.T.); National Fibromyalgia and Chronic Pain Association, Logan, Utah (R.M.G.); Fibromyalgia Research and Consulting, Arthritis and Osteoporosis Center of South Texas, San Antonio, Texas (I.J.R.)
| | - Smaro Panagiotidou
- Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, Massachusetts (T.C.T., I.T., L.A., S.P., J.M.S.); Department of Internal Medicine, Tufts University School of Medicine and Tufts Medical Center, Boston, Massachusetts (T.C.T.); Department of Psychiatry, Tufts University School of Medicine and Tufts Medical Center, Boston, Massachusetts (T.C.T.); Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts (T.C.T.); National Fibromyalgia and Chronic Pain Association, Logan, Utah (R.M.G.); Fibromyalgia Research and Consulting, Arthritis and Osteoporosis Center of South Texas, San Antonio, Texas (I.J.R.)
| | - Julia M Stewart
- Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, Massachusetts (T.C.T., I.T., L.A., S.P., J.M.S.); Department of Internal Medicine, Tufts University School of Medicine and Tufts Medical Center, Boston, Massachusetts (T.C.T.); Department of Psychiatry, Tufts University School of Medicine and Tufts Medical Center, Boston, Massachusetts (T.C.T.); Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts (T.C.T.); National Fibromyalgia and Chronic Pain Association, Logan, Utah (R.M.G.); Fibromyalgia Research and Consulting, Arthritis and Osteoporosis Center of South Texas, San Antonio, Texas (I.J.R.)
| | - Rae M Gleason
- Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, Massachusetts (T.C.T., I.T., L.A., S.P., J.M.S.); Department of Internal Medicine, Tufts University School of Medicine and Tufts Medical Center, Boston, Massachusetts (T.C.T.); Department of Psychiatry, Tufts University School of Medicine and Tufts Medical Center, Boston, Massachusetts (T.C.T.); Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts (T.C.T.); National Fibromyalgia and Chronic Pain Association, Logan, Utah (R.M.G.); Fibromyalgia Research and Consulting, Arthritis and Osteoporosis Center of South Texas, San Antonio, Texas (I.J.R.)
| | - Irwin J Russell
- Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, Massachusetts (T.C.T., I.T., L.A., S.P., J.M.S.); Department of Internal Medicine, Tufts University School of Medicine and Tufts Medical Center, Boston, Massachusetts (T.C.T.); Department of Psychiatry, Tufts University School of Medicine and Tufts Medical Center, Boston, Massachusetts (T.C.T.); Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts (T.C.T.); National Fibromyalgia and Chronic Pain Association, Logan, Utah (R.M.G.); Fibromyalgia Research and Consulting, Arthritis and Osteoporosis Center of South Texas, San Antonio, Texas (I.J.R.)
| |
Collapse
|
14
|
|
15
|
Theoharides TC, Petra AI, Taracanova A, Panagiotidou S, Conti P. Targeting IL-33 in autoimmunity and inflammation. J Pharmacol Exp Ther 2015; 354:24-31. [PMID: 25906776 DOI: 10.1124/jpet.114.222505] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 04/22/2015] [Indexed: 12/22/2022] Open
Abstract
Interleukin-33 (IL-33) belongs to the IL-1 family of cytokines. Whereas IL-1 is processed and released by live immune cells in response to infection or other triggers, IL-33 is mostly released as a danger signal ("alarmin") from damaged cells. IL-33 may also be processed and released from activated mast cells (MCs) with subsequent autocrine and paracrine actions. IL-33 augments the stimulatory effects of IgE and substance P on MCs but can also trigger release of cytokines from MCs on its own. Blood IL-33 levels are increased in asthma, atopic dermatitis, multiple sclerosis, rheumatoid arthritis, and Sjögren's syndrome. However, prolonged elevation of IL-33 downregulates FcεRI and may be protective in atherosclerosis, suggesting different roles in immune-regulated diseases. Even though neutralizing IL-33, knocking-down its receptor, or using its soluble "decoy" receptor has resulted in anti-inflammatory effects, there appear to be different outcomes in different tissues. Hence, selective regulation of IL-33 synthesis, release, and signaling may be required to provide effective treatment options.
Collapse
Affiliation(s)
- Theoharis C Theoharides
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Integrative Physiology and Pathobiology (T.C.T., A.I.P., A.T., S.P.), Graduate Program in Pharmacology and Experimental Therapeutics, Sackler School of Graduate Biomedical Sciences (T.C.T., A.T.), Department of Internal Medicine (T.C.T.), Tufts University School of Medicine, and Tufts Medical Center (T.C.T.), Boston, Massachusetts; and Immunology Division, Graduate Medical School, University of Chieti-Pescara, Chieti, Italy (P.C.)
| | - Anastasia I Petra
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Integrative Physiology and Pathobiology (T.C.T., A.I.P., A.T., S.P.), Graduate Program in Pharmacology and Experimental Therapeutics, Sackler School of Graduate Biomedical Sciences (T.C.T., A.T.), Department of Internal Medicine (T.C.T.), Tufts University School of Medicine, and Tufts Medical Center (T.C.T.), Boston, Massachusetts; and Immunology Division, Graduate Medical School, University of Chieti-Pescara, Chieti, Italy (P.C.)
| | - Alexandra Taracanova
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Integrative Physiology and Pathobiology (T.C.T., A.I.P., A.T., S.P.), Graduate Program in Pharmacology and Experimental Therapeutics, Sackler School of Graduate Biomedical Sciences (T.C.T., A.T.), Department of Internal Medicine (T.C.T.), Tufts University School of Medicine, and Tufts Medical Center (T.C.T.), Boston, Massachusetts; and Immunology Division, Graduate Medical School, University of Chieti-Pescara, Chieti, Italy (P.C.)
| | - Smaro Panagiotidou
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Integrative Physiology and Pathobiology (T.C.T., A.I.P., A.T., S.P.), Graduate Program in Pharmacology and Experimental Therapeutics, Sackler School of Graduate Biomedical Sciences (T.C.T., A.T.), Department of Internal Medicine (T.C.T.), Tufts University School of Medicine, and Tufts Medical Center (T.C.T.), Boston, Massachusetts; and Immunology Division, Graduate Medical School, University of Chieti-Pescara, Chieti, Italy (P.C.)
| | - Pio Conti
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Integrative Physiology and Pathobiology (T.C.T., A.I.P., A.T., S.P.), Graduate Program in Pharmacology and Experimental Therapeutics, Sackler School of Graduate Biomedical Sciences (T.C.T., A.T.), Department of Internal Medicine (T.C.T.), Tufts University School of Medicine, and Tufts Medical Center (T.C.T.), Boston, Massachusetts; and Immunology Division, Graduate Medical School, University of Chieti-Pescara, Chieti, Italy (P.C.)
| |
Collapse
|
16
|
Mast cell and autoimmune diseases. Mediators Inflamm 2015; 2015:246126. [PMID: 25944979 PMCID: PMC4402170 DOI: 10.1155/2015/246126] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 03/25/2015] [Accepted: 03/25/2015] [Indexed: 01/04/2023] Open
Abstract
Mast cells are important in innate immune system. They have been appreciated as potent contributors to allergic reaction. However, increasing evidence implicates the important role of mast cells in autoimmune disease like rheumatoid arthritis and multiple sclerosis. Here we review the current stage of knowledge about mast cells in autoimmune diseases.
Collapse
|
17
|
Theoharides TC, Athanassiou M, Panagiotidou S, Doyle R. Dysregulated brain immunity and neurotrophin signaling in Rett syndrome and autism spectrum disorders. J Neuroimmunol 2014; 279:33-8. [PMID: 25669997 DOI: 10.1016/j.jneuroim.2014.12.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Revised: 11/18/2014] [Accepted: 12/02/2014] [Indexed: 12/21/2022]
Abstract
Rett syndrome is a neurodevelopmental disorder, which occurs in about 1:15,000 females and presents with neurologic and communication defects. It is transmitted as an X-linked dominant linked to mutations of the methyl-CpG-binding protein (MeCP2), a gene transcription suppressor, but its definitive pathogenesis is unknown thus hindering development of effective treatments. Almost half of children with Rett syndrome also have behavioral symptoms consistent with those of autism spectrum disorders (ASDs). PubMed was searched (2005-2014) using the terms: allergy, atopy, brain, brain-derived neurotrophic factor (BDNF), corticotropin-releasing hormone (CRH), cytokines, gene mutations, inflammation, mast cells (MCs), microglia, mitochondria, neurotensin (NT), neurotrophins, seizures, stress, and treatment. There are a number of intriguing differences and similarities between Rett syndrome and ASDs. Rett syndrome occurs in females, while ASDs more often in males, and the former has neurologic disabilities unlike ASDs. There is evidence of dysregulated immune system early in life in both conditions. Lack of microglial phagocytosis and decreased levels of BDNF appear to distinguish Rett syndrome from ASDs, in which there is instead microglia activation and/or proliferation and possibly defective BDNF signaling. Moreover, brain mast cell (MC) activation and focal inflammation may be more prominent in ASDs than Rett syndrome. The flavonoid luteolin blocks microglia and MC activation, provides BDNF-like activity, reverses Rett phenotype in mouse models, and has a significant benefit in children with ASDs. Appropriate formulations of luteolin or other natural molecules may be useful in the treatment of Rett syndrome.
Collapse
Affiliation(s)
- Theoharis C Theoharides
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA, USA; Department of Internal Medicine, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA, USA; Tufts Medical Center, Boston, MA, USA; Department of Psychiatry, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA, USA.
| | - Marianna Athanassiou
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA, USA
| | - Smaro Panagiotidou
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA, USA
| | - Robert Doyle
- Pediatric Psychopharmacology Unit, Massachusetts General Hospital, Boston MA, USA; Harvard Medical School, Boston MA, USA
| |
Collapse
|
18
|
Investigation of the lower resistance meridian: speculation on the pathophysiological functions of acupuncture meridians. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:107571. [PMID: 25525443 PMCID: PMC4267216 DOI: 10.1155/2014/107571] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 07/17/2014] [Indexed: 01/01/2023]
Abstract
It was pointed out in the two earlier papers of the present author that the meridians are in fact zones in the loose connective tissue containing richer interstitial fluid and thus are lower-resistance passages for diffusion of meridian-signal carriers or mediators. Moreover, a hypothesis, which incorporates the wide variety of functions of the loose connective tissue, the circulatory system, and the nervous system into the meridian function, has been proposed and in the hypothesis the mast cell plays some key roles. In the present paper, considering also the latest knowledge on cell migration along with some existing experimental results, it is further pointed out that meridians ought to be lower-resistance passages for chemotactic migration of cells and mast cells can indeed migrate longitudinally along meridians. Finally, the present paper points out that if we add the last two points to the hypothesis and keep in mind that mast cells have been known very recently to be versatile regulators of inflammation, tissue remodeling, host defense, and homeostasis, the rich pathophysiological functions of the meridian pointed out by the traditional Chinese medicine can be understood quite naturally.
Collapse
|
19
|
Xu N, Zhang L, Dong J, Zhang X, Chen YG, Bao B, Liu J. Low-dose diet supplement of a natural flavonoid, luteolin, ameliorates diet-induced obesity and insulin resistance in mice. Mol Nutr Food Res 2014; 58:1258-68. [PMID: 24668788 DOI: 10.1002/mnfr.201300830] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 01/06/2014] [Accepted: 01/21/2014] [Indexed: 12/23/2022]
Abstract
SCOPE Mast cells play important roles in diet-induced obesity and diabetes, and some synthetic mast cell stabilizers can improve related metabolic disturbances in mice. Luteolin (LU) is a potent natural mast cell stabilizer. However, a direct correlation between LU and these common metabolic diseases is not established. METHODS AND RESULTS Male C57BL/6 mice were fed low-fat diet, high-fat diet (HFD), HFD with 0.002 and 0.01% LU for 12 wk, respectively. Dietary LU suppressed HFD-induced body weight gain, fat deposition, and adipocyte hypertrophy. Meanwhile, glucose intolerance and insulin sensitivity was also improved. Interestingly, dietary LU ameliorated angiogenesis and associated cell apoptosis and cathepsin activity in epididymis adipose tissues, which is a critical mechanism that mast cells are involved in diet-induced obesity and diabetes. Further, we showed dietary LU reduced mast cell and macrophage infiltrations and inflammatory cytokine levels in epididymis adipose tissues. Finally, LU inhibited mast cell-derived IL-6 expression, which is a key cytokine that contributes to mast cell-associated metabolic derangements, and protein kinase C activator phorbol myristoyl acetate reversed the inhibitory effects. CONCLUSIONS As a natural flavonoid, low-dose diet supplement of LU ameliorates diet-induced obesity and insulin resistance in mice, suggesting a new therapeutic and interventional approach for these diseases.
Collapse
Affiliation(s)
- Na Xu
- School of Biotechnology & Food Engineering, Hefei University of Technology, Hefei, P. R. China; School of Life Science, University of Anhui Science & Technology, Fengyang, P. R. China
| | | | | | | | | | | | | |
Collapse
|
20
|
Theoharides TC, Asadi S, Panagiotidou S, Weng Z. The "missing link" in autoimmunity and autism: extracellular mitochondrial components secreted from activated live mast cells. Autoimmun Rev 2013; 12:1136-42. [PMID: 23831684 DOI: 10.1016/j.autrev.2013.06.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 06/23/2013] [Indexed: 12/12/2022]
Abstract
Autoimmune diseases continue to increase, but the reason(s) remain obscure and infections have not proven to be major contributors. Mast cells are tissue immune cells responsible for allergies, but have been increasingly shown to be involved in innate and acquired immunity, as well as inflammation. This involvement is possible because of their ability to release multiple mediators in response to a great variety of triggers. We recently published that activation of mast cells is accompanied by mitochondrial fission and translocation to the cell surface from where they secrete at least ATP and DNA outside the cell without cell damage. These extracellular mitochondrial components are misconstrued by the body as "innate pathogens" leading to powerful autocrine and paracrine auto-immune/auto-inflammatory responses. We also showed that mitochondrial DNA is increased in the serum of young children with autism spectrum disorders (ASD), a condition that could involve "focal brain allergy/encephalitits". Blocking the secretion of extracellular mitochondrial components could present unique possibilities for the therapy of ASD and other autoimmune diseases. Unique formulation of the flavonoid luteolin offers unique advantages.
Collapse
Affiliation(s)
- Theoharis C Theoharides
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Molecular Physiology and Pharmacology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA, USA; Department of Biochemistry, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA, USA; Department of Internal Medicine, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA, USA; Department of Psychiatry, Tufts University School of Medicine, Tufts Medical Center, 136 Harrison Avenue, Boston, MA, USA; Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, USA.
| | | | | | | |
Collapse
|
21
|
Huang ZG, Jin Q, Fan M, Cong XL, Han SF, Gao H, Shan Y. Myocardial remodeling in diabetic cardiomyopathy associated with cardiac mast cell activation. PLoS One 2013; 8:e60827. [PMID: 23556005 PMCID: PMC3612033 DOI: 10.1371/journal.pone.0060827] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 03/03/2013] [Indexed: 12/03/2022] Open
Abstract
Diabetic cardiomyopathy is a specific disease process distinct from coronary artery disease and hypertension. The disease features cardiac remodeling stimulated by hyperglycemia of the left ventricle wall and disrupts contractile functions. Cardiac mast cells may be activated by metabolic byproducts resulted from hyperglycermia and then participate in the remodeling process by releasing a multitude of cytokines and bioactive enzymes. Nedocromil, a pharmacologic stabilizer of mast cells, has been shown to normalize cytokine levels and attenuate cardiac remodeling. In this study, we describe the activation of cardiac mast cells by inducing diabetes in normal mice using streptozotocin (STZ). Next, we treated the diabetic mice with nedocromil for 12 weeks and then examined their hearts for signs of cardiac remodeling and quantified contractile function. We observed significantly impaired heart function in diabetic mice, as well as increased cardiac mast cell density and elevated mast cell secretions that correlated with gene expression and aberrant cytokine levels associated with cardiac remodeling. Nedocromil treatment halted contractile dysfunction in diabetic mice and reduced cardiac mast cell density, which correlated with reduced bioactive enzyme secretions, reduced expression of extracellular matrix remodeling factors and collagen synthesis, and normalized cytokine levels. However, the results showed nedocromil treatments did not return diabetic mice to a normal state. We concluded that manipulation of cardiac mast cell function is sufficient to attenuate cardiomyopathy stimulated by diabetes, but other cellular pathways also contribute to the disease process.
Collapse
Affiliation(s)
- Zhi Gang Huang
- Department of Cardiology, Chang Zheng Hospital, Second Military Medical University, Shanghai, China
| | - Qun Jin
- Department of Cardiology, The General Hospital of Jinan Military Region, Jinan, China
| | - Min Fan
- Department of Cardiology, Chang Zheng Hospital, Second Military Medical University, Shanghai, China
| | - Xiao Liang Cong
- Department of Cardiology, Chang Zheng Hospital, Second Military Medical University, Shanghai, China
| | - Shu Fang Han
- Department of Cardiology, The General Hospital of Jinan Military Region, Jinan, China
| | - Hai Gao
- The Third People's Hospital of Haiyang, Haiyang, Shandong, China
| | - Yi Shan
- Department of Emergency Medicine, Chang Zheng Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
22
|
Theoharides TC, Alysandratos KD, Angelidou A, Delivanis DA, Sismanopoulos N, Zhang B, Asadi S, Vasiadi M, Weng Z, Miniati A, Kalogeromitros D. Mast cells and inflammation. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1822:21-33. [PMID: 21185371 PMCID: PMC3318920 DOI: 10.1016/j.bbadis.2010.12.014] [Citation(s) in RCA: 567] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 12/05/2010] [Accepted: 12/16/2010] [Indexed: 12/28/2022]
Abstract
Mast cells are well known for their role in allergic and anaphylactic reactions, as well as their involvement in acquired and innate immunity. Increasing evidence now implicates mast cells in inflammatory diseases where they are activated by non-allergic triggers, such as neuropeptides and cytokines, often exerting synergistic effects as in the case of IL-33 and neurotensin. Mast cells can also release pro-inflammatory mediators selectively without degranulation. In particular, IL-1 induces selective release of IL-6, while corticotropin-releasing hormone secreted under stress induces the release of vascular endothelial growth factor. Many inflammatory diseases involve mast cells in cross-talk with T cells, such as atopic dermatitis, psoriasis and multiple sclerosis, which all worsen by stress. How mast cell differential responses are regulated is still unresolved. Preliminary evidence suggests that mitochondrial function and dynamics control mast cell degranulation, but not selective release. Recent findings also indicate that mast cells have immunomodulatory properties. Understanding selective release of mediators could explain how mast cells participate in numerous diverse biologic processes, and how they exert both immunostimulatory and immunosuppressive actions. Unraveling selective mast cell secretion could also help develop unique mast cell inhibitors with novel therapeutic applications. This article is part of a Special Issue entitled: Mast cells in inflammation.
Collapse
Affiliation(s)
- Theoharis C Theoharides
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Molecular Physiology and Pharmacology, Tufts University School of Medicine, Boston, MA 02111, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Schiffer C, Lalanne AI, Cassard L, Mancardi DA, Malbec O, Bruhns P, Dif F, Daëron M. A strain of Lactobacillus casei inhibits the effector phase of immune inflammation. THE JOURNAL OF IMMUNOLOGY 2011; 187:2646-55. [PMID: 21810608 DOI: 10.4049/jimmunol.1002415] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Some nonpathogenic bacteria were found to have protective effects in mouse models of allergic and autoimmune diseases. These "probiotics" are thought to interact with dendritic cells during Ag presentation, at the initiation of adaptive immune responses. Many other myeloid cells are the effector cells of immune responses. They are responsible for inflammation that accounts for symptoms in allergic and autoimmune diseases. We investigated in this study whether probiotics might affect allergic and autoimmune inflammation by acting at the effector phase of adaptive immune responses. The effects of one strain of Lactobacillus casei were investigated in vivo on IgE-induced passive systemic anaphylaxis and IgG-induced passive arthritis, two murine models of acute allergic and autoimmune inflammation, respectively, which bypass the induction phase of immune responses, in vitro on IgE- and IgG-induced mouse mast cell activation and ex vivo on IgE-dependent human basophil activation. L. casei protected from anaphylaxis and arthritis, and inhibited mouse mast cell and human basophil activation. Inhibition required contact between mast cells and bacteria, was reversible, and selectively affected the Lyn/Syk/linker for activation of T cells pathway induced on engagement of IgE receptors, leading to decreased MAPK activation, Ca(2+) mobilization, degranulation, and cytokine secretion. Also, adoptive anaphylaxis induced on Ag challenge in mice injected with IgE-sensitized mast cells was abrogated in mice injected with IgE-sensitized mast cells exposed to bacteria. These results demonstrate that probiotics can influence the effector phase of adaptive immunity in allergic and autoimmune diseases. They might, therefore, prevent inflammation in patients who have already synthesized specific IgE or autoantibodies.
Collapse
Affiliation(s)
- Cécile Schiffer
- Institut Pasteur, Département d'Immunologie, Unité d'Allergologie Moléculaire et Cellulaire, 75015 Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Theoharides TC, Sismanopoulos N, Delivanis DA, Zhang B, Hatziagelaki EE, Kalogeromitros D. Mast cells squeeze the heart and stretch the gird: their role in atherosclerosis and obesity. Trends Pharmacol Sci 2011; 32:534-42. [PMID: 21741097 DOI: 10.1016/j.tips.2011.05.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 05/18/2011] [Accepted: 05/19/2011] [Indexed: 11/26/2022]
Abstract
Mast cells are crucial for the development of allergic and anaphylactic reactions, but they are also involved in acquired and innate immunity. Increasing evidence now implicates mast cells in inflammatory diseases through activation by non-allergic triggers such as neuropeptides and cytokines. This review discusses how mast cells contribute to the inflammatory processes associated with coronary artery disease and obesity. Animal models indicate that mast cells, through the secretion of various vasoactive mediators, cytokines and proteinases, contribute to coronary plaque progression and destabilization, as well as to diet-induced obesity and diabetes. Understanding how mast cells participate in these inflammatory processes could help in the development of unique inhibitors with novel therapeutic applications for these diseases, which constitute the greatest current threat to global human health and welfare.
Collapse
Affiliation(s)
- Theoharis C Theoharides
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Molecular Physiology and Pharmacology, Tufts University School of Medicine, Boston, MA 02111, USA.
| | | | | | | | | | | |
Collapse
|
25
|
Van Nguyen H, Di Girolamo N, Jackson N, Hampartzoumian T, Bullpitt P, Tedla N, Wakefield D. Ultraviolet radiation-induced cytokines promote mast cell accumulation and matrix metalloproteinase production: potential role in cutaneous lupus erythematosus. Scand J Rheumatol 2011; 40:197-204. [DOI: 10.3109/03009742.2010.528020] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
26
|
JNK1 controls mast cell degranulation and IL-1{beta} production in inflammatory arthritis. Proc Natl Acad Sci U S A 2010; 107:22122-7. [PMID: 21135226 DOI: 10.1073/pnas.1016401107] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease marked by bone and cartilage destruction. Current biologic therapies are beneficial in only a portion of patients; hence small molecules targeting key pathogenic signaling cascades represent alternative therapeutic strategies. Here we show that c-Jun N-terminal kinase (JNK) 1, but not JNK2, is critical for joint swelling and destruction in a serum transfer model of arthritis. The proinflammatory function of JNK1 requires bone marrow-derived cells, particularly mast cells. Without JNK1, mast cells fail to degranulate efficiently and release less IL-1β after stimulation via Fcγ receptors (FcγRs). Pharmacologic JNK inhibition effectively prevents arthritis onset and abrogates joint swelling in established disease. Hence, JNK1 controls mast cell degranulation and FcγR-triggered IL-1β production, in addition to regulating cytokine and matrix metalloproteinase biosynthesis, and is an attractive therapeutic target in inflammatory arthritis.
Collapse
|
27
|
Menzies FM, Shepherd MC, Nibbs RJ, Nelson SM. The role of mast cells and their mediators in reproduction, pregnancy and labour. Hum Reprod Update 2010; 17:383-96. [DOI: 10.1093/humupd/dmq053] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
28
|
Abstract
Allergy and autoimmunity are complex inflammatory processes caused by dysregulation of the immune system. There are select situations in which allergy and autoimmunity coexist pathologically. Traditionally considered unrelated, recent evidence suggests unexpected roles for allergic mediators in several autoimmune diseases. This review presents updated evidence for allergic mediators in several autoimmune diseases, as well as autoimmune phenomena in mast cell-related conditions. We will describe the concomitant manifestation of these conditions in patients and in animal models. The involvement of the main effectors of the immune system - mast cells, T lymphocytes, antibodies and cytokines - in both conditions is also discussed.
Collapse
Affiliation(s)
- Eyal Reinstein
- Department of Medicine B, Meir General Hospital, Kfar-Saba 44281, Israel.
| | | | | |
Collapse
|
29
|
Al-Mezaine HS, Al-Obeidan S, Al-Hakeem MM, Abu El-Asrar AM. Refractory Noninfectious Anterior Uveitis Associated With Systemic Mastocytosis. J Pediatr Ophthalmol Strabismus 2009. [PMID: 19791718 DOI: 10.3928/01913913-20090918-01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2008] [Accepted: 04/13/2009] [Indexed: 11/20/2022]
Abstract
A 10-year-old boy with biopsy-proven systemic mastocytosis presented with bilateral nongranulomatous anterior uveitis associated with high intraocular pressure. Anterior chamber paracentesis was performed for cytological evaluation, which demonstrated monocytes and macrophages but no evidence of mast cells. His uveitis was partially controlled with frequent topical steroid drops and weekly oral methotrexate therapy. The glaucoma was controlled with topical antiglaucoma medications in the right eye. Deep sclerectomy was required in the left eye to control the intraocular pressure. To the best of the authors' knowledge, this is the first report of such an association.
Collapse
|
30
|
Inoue T, Suzuki Y, Yoshimaru T, Ra C. Nitric oxide positively regulates Ag (I)-induced Ca2+
influx and mast cell activation: role of a nitric oxide synthase-independent pathway. J Leukoc Biol 2009; 86:1365-75. [DOI: 10.1189/jlb.0609387] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
31
|
Abstract
Mast cells are still generally viewed as mediators of type I allergic or pseudoallergic reactions. Research over the past 10 years revealed that our view was too small and that mast cells are of key importance in innate immunity and also types II, III and IV adaptive immune reactions. Understanding their role in modulating and amplifying of inflammatory responses provides important insights into the pathogenesis of skin diseases such as psoriasis, atopic dermatitis, bullous pemphigoid or the control of infections. This helps us to understand the course of these diseases, their trigger mechanisms, and, the new role of agents, which can modulate the function of mast cells. These insights will help to develop new therapeutic approaches.
Collapse
Affiliation(s)
- Manfred Kneilling
- Department of Dermatology, Eberhard Karls University, Tübingen, Germany
| | | |
Collapse
|
32
|
Inoue T, Suzuki Y, Yoshimaru T, Ra C. Ca2+-dependent mast cell death induced by Ag (I) via cardiolipin oxidation and ATP depletion. J Leukoc Biol 2009; 86:167-79. [PMID: 19401388 DOI: 10.1189/jlb.1108691] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
In genetically susceptible humans and/or experimental animals, ions of heavy metals, Hg (II), Au (III), and Ag (I) have been shown to strongly induce autoimmunity, in which mast cells have been implicated to play a role. Here, we demonstrate that Ag (I) application results in mast cell death through a unique Ca(2+)- and mitochondria-dependent pathway. As cellular susceptibilities to Ag (I) cytotoxicity varied considerably, we analyzed the cell death pathway in the low and high responding cells. In the low responding cells, long application (e.g., 20 h) of Ag (I) at concentrations (>or=30 microM) induced cell death, which was accompanied by mitochondrial membrane depolarization, cyt c release, and caspase-3/7 activation but was not prevented by selective inhibitors of caspase-3/7 and the mitochondrial permeability transition. The cell death was preceded by elevations in the cytoplasmic and mitochondrial Ca(2+) levels, and Ca(2+) responses and cell death were prevented by thiol reagents, including DTT, N-acetylcysteine, and reduced glutathione monoethyl ester. In the high responding cells, Ag (I) evoked considerable cell death by necrosis within 1 h, without inducing caspase activation, and this cell death was reduced significantly by depleting extracellular but not intracellular Ca(2+). Moreover, Ag (I) strongly induced Ca(2+)-dependent CL oxidation and intracellular ATP depletion, both of which were blocked by thiol reagents. These results suggest that Ag (I) activates thiol-dependent Ca(2+) channels, thereby promoting Ca(2+)-dependent CL oxidation, cyt c release, and ATP depletion. This necrotic cell death may play roles in Ag-induced inflammation and autoimmune disorders.
Collapse
Affiliation(s)
- Toshio Inoue
- Division of Molecular Cell Immunology and Allergology, Nihon University Graduate School of Medical Science, Tokyo, Japan
| | | | | | | |
Collapse
|
33
|
Linking allergy to autoimmune disease. Trends Immunol 2009; 30:109-16. [PMID: 19231288 DOI: 10.1016/j.it.2008.12.004] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Revised: 12/15/2008] [Accepted: 12/17/2008] [Indexed: 12/17/2022]
Abstract
Type I allergy is a classical Th2-driven hypersensitivity disease based on IgE recognition of environmental allergens. Exposure of allergic individuals to exogenous allergens leads to immediate type inflammation caused by degranulation of mast cells via IgE-allergen immune complexes and the release of inflammatory mediators, proteases and pro-inflammatory cytokines. However, allergic inflammation can occur and persist in the absence of exposure to exogenous allergens and might paradoxically resemble a Th1-mediated chronic inflammatory reaction. We summarize evidence supporting the view that autoimmune mechanisms might contribute to these processes. IgE recognition of autoantigens might augment allergic inflammation in the absence of exogenous allergen exposure. Moreover, autoantigens that activate Th1-immune responses could contribute to chronic inflammation in allergy, thus linking allergy to autoimmunity.
Collapse
|
34
|
Rao KN, Brown MA. Mast cells: multifaceted immune cells with diverse roles in health and disease. Ann N Y Acad Sci 2009; 1143:83-104. [PMID: 19076346 DOI: 10.1196/annals.1443.023] [Citation(s) in RCA: 184] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mast cells were discovered more than 100 years ago and until recently, have been considered renegades of the host with the sole purpose of perpetuating allergy. The discovery of mast cell-deficient mice that could be reconstituted with mast cells (the so called "mast cell knock-in" mice) has allowed the study of the in vivo functions of mast cells and revealed several new facets of these cells. It is now evident that mast cells have a much broader impact on many physiological and pathologic processes. Mast cells, particularly through their dynamic interaction with the nervous system, have been implicated in wound healing, tissue remodeling, and homeostasis. Perhaps the most progress has been made in our understanding of the role of mast cells in immunity outside the realm of allergy, and host defense. Mast cells play critical roles in both innate and adaptive immunity, including immune tolerance. Greater insight into mast cell biology has prompted studies probing the additional consequences of mast cell dysfunction, which reveal a central role for mast cells in the pathogenesis of autoimmune disorders, cardiovascular disorders, and cancer. Here, we review recent developments in the study of mast cells, which present a complex picture of mast cell functions.
Collapse
Affiliation(s)
- Kavitha N Rao
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | |
Collapse
|
35
|
Furukawa F, Yoshimasu T, Yamamoto Y, Kanazawa N, Tachibana T. Mast cells and histamine metabolism in skin lesions from MRL/MP-lpr/lpr mice. Autoimmun Rev 2009; 8:495-9. [PMID: 19162242 DOI: 10.1016/j.autrev.2008.12.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
It is likely that mast cell and histamine metabolism are involved in autoimmune tissue injury such as cutaneous lupus erythematosus (LE) because different histamine receptors can regulate Th1 and Th2 cells. In order to verify the role of the axis of mast cell-histamine metabolism-histamine receptor, the autoimmune mouse has been investigated. The MRL/Mp-lpr/lpr (MRL/lpr) mouse is a good model for the spontaneous development of skin lesions similar to those seen in human LE. In skin lesions from MRL/l mice, there are many infiltrating T cells and mast cells in the dermis and impaired histamine metabolism, in which the low activity of histamine-N-methyltransferase and the related prolonged effects of histamine in the skin tissue seem to play a definite pathological role in the development of spontaneous lupus-like eruptions. The expression of H2R on the mast cell decreases within these skin lesions at 5 months of age. It is interesting that the activity of HMT runs in parallel with the expression of H2R over the time course of the skin changes in MRL/l mice, but the relationship between these two observations remains obscure. The accumulation of mast cells expressing H2R and prolonged effects of histamine may occur to regulate the production of Th1 and Th2 cytokines in the skin lesions of MRL/l mice.
Collapse
Affiliation(s)
- Fukumi Furukawa
- Department of Dermatology, Wakayama Medical University, Wakayama City, Japan.
| | | | | | | | | |
Collapse
|
36
|
Shimizu T, Owsianik G, Freichel M, Flockerzi V, Nilius B, Vennekens R. TRPM4 regulates migration of mast cells in mice. Cell Calcium 2008; 45:226-32. [PMID: 19046767 DOI: 10.1016/j.ceca.2008.10.005] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Accepted: 10/18/2008] [Indexed: 11/25/2022]
Abstract
We demonstrate here that the transient receptor potential melastatin subfamily channel, TRPM4, controls migration of bone marrow-derived mast cells (BMMCs), triggered by dinitrophenylated human serum albumin (DNP-HSA) or stem cell factor (SCF). Wild-type BMMCs migrate after stimulation with DNP-HSA or SCF whereas both stimuli do not induce migration in BMMCs derived from TRPM4 knockout mice (trpm4(-/-)). Mast cell migration is a Ca(2+)-dependent process, and TRPM4 likely controls this process by setting the intracellular Ca(2+) level upon cell stimulation. Cell migration depends on filamentous actin (F-actin) rearrangement, since pretreatment with cytochalasin B, an inhibitor of F-actin formation, prevented both DNP-HSA- and SCF-induced migration in wild-type BMMC. Immunocytochemical experiments using fluorescence-conjugated phalloidin demonstrate a reduced level of F-actin formation in DNP-HSA-stimulated BMMCs from trpm4(-/-) mice. Thus, our results suggest that TRPM4 is critically involved in migration of BMMCs by regulation of Ca(2+)-dependent actin cytoskeleton rearrangements.
Collapse
Affiliation(s)
- Takahiro Shimizu
- Department of Molecular Cell Biology, Laboratory of Ion Channel Research, KU Leuven, Campus Gasthuisberg, Herestraat 49, bus 802, B-3000 Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
37
|
|
38
|
Yoshizaki A, Iwata Y, Komura K, Ogawa F, Hara T, Muroi E, Takenaka M, Shimizu K, Hasegawa M, Fujimoto M, Tedder TF, Sato S. CD19 regulates skin and lung fibrosis via Toll-like receptor signaling in a model of bleomycin-induced scleroderma. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 172:1650-63. [PMID: 18467694 DOI: 10.2353/ajpath.2008.071049] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Mice subcutaneously injected with bleomycin, in an experimental model of human systemic sclerosis, develop cutaneous and lung fibrosis with autoantibody production. CD19 is a general "rheostat" that defines signaling thresholds critical for humoral immune responses, autoimmunity, and cytokine production. To determine the role of CD19 in the bleomycin-induced systemic sclerosis model, we investigated the development of fibrosis and autoimmunity in CD19-deficient mice. Bleomycin-treated wild-type mice exhibited dermal and lung fibrosis, hyper-gamma-globulinemia, autoantibody production, and enhanced serum and skin expression of various cytokines, including fibrogenic interleukin-4, interleukin-6, and transforming growth factor-beta1, all of which were inhibited by CD19 deficiency. Bleomycin treatment enhanced hyaluronan production in the skin, lung, and sera. Addition of hyaluronan, an endogenous ligand for Toll-like receptor (TLR) 2 and TLR4, stimulated B cells to produce various cytokines, primarily through TLR4; CD19 deficiency suppressed this stimulation. These results suggest that bleomycin induces fibrosis by enhancing hyaluronan production, which activates B cells to produce fibrogenic cytokines mainly via TLR4 and induce autoantibody production, and that CD19 deficiency suppresses fibrosis and autoantibody production by inhibiting TLR4 signals.
Collapse
Affiliation(s)
- Ayumi Yoshizaki
- Department of Dermatology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
|
40
|
Sawamukai N, Saito K, Yamaoka K, Nakayamada S, Ra C, Tanaka Y. Leflunomide Inhibits PDK1/Akt Pathway and Induces Apoptosis of Human Mast Cells. THE JOURNAL OF IMMUNOLOGY 2007; 179:6479-84. [DOI: 10.4049/jimmunol.179.10.6479] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
41
|
Jiang Y, Borrelli LA, Kanaoka Y, Bacskai BJ, Boyce JA. CysLT2 receptors interact with CysLT1 receptors and down-modulate cysteinyl leukotriene dependent mitogenic responses of mast cells. Blood 2007; 110:3263-70. [PMID: 17693579 PMCID: PMC2200919 DOI: 10.1182/blood-2007-07-100453] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cysteinyl leukotrienes (cys-LTs) induce inflammation through 2 G protein-coupled receptors (GPCRs), CysLT(1) and CysLT(2), which are coexpressed by most myeloid cells. Cys-LTs induce proliferation of mast cells (MCs), transactivate c-Kit, and phosphorylate extracellular signal-regulated kinase (ERK). Although MCs express CysLT(2), their responses to cys-LTs are blocked by antagonists of CysLT(1). We demonstrate that CysLT(2) interacts with CysLT(1), and that knockdown of CysLT(2) increases CysLT(1) surface expression and CysLT(1)-dependent proliferation of cord blood-derived human MCs (hMCs). Cys-LT-mediated responses were absent in MCs from mice lacking CysLT(1) receptors, but enhanced by the absence of CysLT(2) receptors. CysLT(1) and CysLT(2) receptors colocalized to the plasma membranes and nuclei of a human MC line, LAD2. Antibody-based fluorescent lifetime imaging microscopy confirmed complexes containing both receptors based on fluorescence energy transfer. Negative regulation of CysLT(1)-induced mitogenic signaling responses of MCs by CysLT(2) demonstrates physiologically relevant functions for GPCR heterodimers on primary cells central to inflammation.
Collapse
Affiliation(s)
- Yongfeng Jiang
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | | | | | | | | |
Collapse
|
42
|
Theoharides TC, Kempuraj D, Tagen M, Conti P, Kalogeromitros D. Differential release of mast cell mediators and the pathogenesis of inflammation. Immunol Rev 2007; 217:65-78. [PMID: 17498052 DOI: 10.1111/j.1600-065x.2007.00519.x] [Citation(s) in RCA: 319] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mast cells are well known for their involvement in allergic and anaphylactic reactions, during which immunoglobulin E (IgE) receptor (Fc epsilon RI) aggregation leads to exocytosis of the content of secretory granules (1000 nm), commonly known as degranulation, and secretion of multiple mediators. Recent findings implicate mast cells also in inflammatory diseases, such as multiple sclerosis, where mast cells appear to be intact by light microscopy. Mast cells can be activated by bacterial or viral antigens, cytokines, growth factors, and hormones, leading to differential release of distinct mediators without degranulation. This process appears to involve de novo synthesis of mediators, such as interleukin-6 and vascular endothelial growth factor, with release through secretory vesicles (50 nm), similar to those in synaptic transmission. Moreover, the signal transduction steps necessary for this process appear to be largely distinct from those known in Fc epsilon RI-dependent degranulation. How these differential mast cell responses are controlled is still unresolved. No clinically available pharmacological agents can inhibit either degranulation or mast cell mediator release. Understanding this process could help develop mast cell inhibitors of selective mediator release with novel therapeutic applications.
Collapse
Affiliation(s)
- Theoharis C Theoharides
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Pharmacology and Experimental Therapeutics, Tufts University School of Medicine, Tufts - New England Medical Center, Boston, MA, USA.
| | | | | | | | | |
Collapse
|
43
|
Abstract
Mast cells are effector cells of the innate immune system, but because they express Fc receptors (FcRs), they can be engaged in adaptive immunity by antibodies. Mast cell FcRs include immunoglobulin E (IgE) and IgG receptors and, among these, activating and inhibitory receptors. The engagement of mast cell IgG receptors by immune complexes may or may not trigger cell activation, depending on the type of mast cell. The coengagement of IgG and IgE receptors results in inhibition of mast cell activation. The Src homology-2 domain-containing inositol 5-phosphatase-1 is a major effector of negative regulation. Biological responses of mast cells depend on the balance between positive and negative signals that are generated in FcR complexes. The contribution of human mast cell IgG receptors in allergies remains to be clarified. Increasing evidence indicates that mast cells play critical roles in IgG-dependent tissue-specific autoimmune diseases. Convincing evidence was obtained in murine models of multiple sclerosis, rheumatoid arthritis, bullous pemphigoid, and glomerulonephritis. In these models, the intensity of lesions depended on the relative engagement of activating and inhibitory IgG receptors. In vitro models of mature tissue-specific murine mast cells are needed to investigate the roles of mast cells in these diseases. One such model unraveled unique differentiation/maturation-dependent biological responses of serosal-type mast cells.
Collapse
Affiliation(s)
- Odile Malbec
- Unité d'Allergologie Moléculaire et Cellulaire, Département d'Immunologie, Institut Pasteur, Paris, France
| | | |
Collapse
|
44
|
Sant GR, Kempuraj D, Marchand JE, Theoharides TC. The Mast Cell in Interstitial Cystitis: Role in Pathophysiology and Pathogenesis. Urology 2007; 69:34-40. [PMID: 17462477 DOI: 10.1016/j.urology.2006.08.1109] [Citation(s) in RCA: 218] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Revised: 06/29/2006] [Accepted: 08/24/2006] [Indexed: 12/21/2022]
Abstract
Current evidence from clinical and laboratory studies confirms that mast cells play a central role in the pathogenesis and pathophysiology of interstitial cystitis (IC). In this article, we focus on the role of the mast cell in IC and examine the ways in which mast cells and other pathophysiologic mechanisms are interrelated in this disease. Identifying the patients with IC who have mast cell proliferation and activation will enable us to address this aspect of disease pathophysiology in these individuals with targeted pharmacotherapy to inhibit mast cell activation and mediator release.
Collapse
Affiliation(s)
- Grannum R Sant
- Department of Urology, Tufts University School of Medicine, Boston, Massachusetts, USA.
| | | | | | | |
Collapse
|
45
|
Theoharides TC, Kempuraj D, Tagen M, Vasiadi M, Cetrulo CL. Human umbilical cord blood-derived mast cells: a unique model for the study of neuro-immuno-endocrine interactions. ACTA ACUST UNITED AC 2007; 2:143-54. [PMID: 17237553 DOI: 10.1007/s12015-006-0021-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 11/24/2022]
Abstract
Findings obtained using animal models have often failed to reflect the processes involved in human disease. Moreover, human cultured cells do not necessarily function as their actual tissue counterparts. Therefore, there is great demand for sources of human progenitor cells that may be directed to acquire specific tissue characteristics and be available in sufficient quantities to carry out functional and pharmacological studies. Acase in point is the mast cell, well known for its involvement in allergic reactions, but also implicated in inflammatory diseases. Mast cells can be activated by allergens, anaphylatoxins, immunoglobulin-free light chains, superantigens, neuropeptides, and cytokines, leading to selective release of mediators. These could be involved in many inflammatory diseases, such as asthma and atopic dermatitis, which worsen by stress, through activation by local release of corticotropin-releasing hormone or related peptides. Umbilical cord blood and cord matrix-derived mast cell progenitors can be separated magnetically and grown in the presence of stem cell factor, interleukin-6, interleukin-4, and other cytokines to yield distinct mast cell populations. The recent use of live cell array, with its ability to study such interactions rapidly at the single-cell level, provides unique new opportunities for fast output screening of mast cell triggers and inhibitors.
Collapse
Affiliation(s)
- T C Theoharides
- Department of Laboratory of Molecular Immunopharmacology and Drug Discovery, Pharmacology and Experimental Therapeutics, Tufts University School of Medicine, Boston, MA, USA.
| | | | | | | | | |
Collapse
|
46
|
Theoharides TC, Kalogeromitros D. The critical role of mast cells in allergy and inflammation. Ann N Y Acad Sci 2007; 1088:78-99. [PMID: 17192558 DOI: 10.1196/annals.1366.025] [Citation(s) in RCA: 213] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Mast cells are well known for their involvement in allergic and anaphylactic reactions, but recent findings implicate them in a variety of inflammatory diseases affecting different organs, including the heart, joints, lungs, and skin. In these cases, mast cells appear to be activated by triggers other than aggregation of their IgE receptors (FcepsilonRI), such as anaphylatoxins, immunoglobulin-free light chains, superantigens, neuropeptides, and cytokines leading to selective release of mediators without degranulation. These findings could explain inflammatory diseases, such as asthma, atopic dermatitis, coronary inflammation, and inflammatory arthritis, all of which worsen by stress. It is proposed that the pathogenesis of these diseases involve mast cell activation by local release of corticotropin-releasing hormone (CRH) or related peptides. Combination of CRH receptor antagonists and mast cell inhibitors may present novel therapeutic interventions.
Collapse
Affiliation(s)
- Theoharis C Theoharides
- Department of Pharmacology and Experimental Therapeutics, Tufts University School of Medicine, Boston, MA 02111, USA.
| | | |
Collapse
|
47
|
Zhang M, Thurmond RL, Dunford PJ. The histamine H4 receptor: A novel modulator of inflammatory and immune disorders. Pharmacol Ther 2007; 113:594-606. [PMID: 17275092 DOI: 10.1016/j.pharmthera.2006.11.008] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2006] [Revised: 11/29/2006] [Accepted: 11/29/2006] [Indexed: 02/01/2023]
Abstract
All 4 known histamine receptors (H(1)R, H(2)R, H(3)R and H(4)R) have been used or proposed as therapeutic targets for varied diseases. This article reviews the recent progress in understanding the function of the recently described histamine receptor H(4)R in a variety of immune responses and the potential therapeutic value of H(4)R antagonists. The H(4)R is expressed primarily on cells involved in inflammation and immune response. It has effects on chemotaxis, as well as cytokine and chemokine production of mast cells, eosinophils, dendritic cells, and T cells. H(4)R antagonists, JNJ 7777120 and JNJ 10191584 (also known as VUF 6002) have been developed with excellent affinity and selectivity towards human and rodent H(4)R. These antagonists also demonstrate efficacy as anti-inflammatory agents in vivo. H(4)R antagonists have shown promising activity in down-regulating immune responses in a range of animal disease models including acute inflammation, hapten-mediated colitis, and allergic airway inflammation. Due to its distribution on immune cells and its proven role in inflammatory functions, the H(4)R appears to be a therapeutic target for the treatment of a variety of immune disorders.
Collapse
Affiliation(s)
- Mai Zhang
- Johnson & Johnson Pharmaceutical Research and Development L.L.C., 3210 Merryfield Row, San Diego, CA 92121, USA
| | | | | |
Collapse
|
48
|
Zaidi AK, Thangam ERRB, Ali H. Distinct roles of Ca2+ mobilization and G protein usage on regulation of Toll-like receptor function in human and murine mast cells. Immunology 2007; 119:412-20. [PMID: 17067316 PMCID: PMC1819569 DOI: 10.1111/j.1365-2567.2006.02450.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Toll-like receptors (TLRs) expressed in mast cells play important roles in orchestrating host defence against bacterial pathogens. Previous studies demonstrated that TLR2 agonist tripalmitoyl-S-glycero-Cys-(Lys)4 (Pam3Cys) stimulates both degranulation and cytokine production in human mast cells but only induces cytokine production in murine mast cells. To determine the molecular basis for this difference, we utilized a human mast cell line LAD 2, murine lung and bone marrow-derived mast cells (MLMC and BMMC). We found that Pam3Cys caused a sustained Ca2+ mobilization and degranulation in LAD 2 mast cells but not in MLMC or BMMC. Despite these differences, Pam3Cys stimulated equivalent chemokine CCL2 generation in all mast cell types tested. Cyclosporin A (CsA), an inhibitor of Ca2+/calcineurin-mediated nuclear factor of activated T cells (NFAT) activation, blocked chemokine production in LAD 2 but not in MLMC or BMMC. In contrast, inhibitors of nuclear factor kappa B (NF-kappaB) completely blocked CCL2 production in MLMC and BMMC but not in LAD 2 mast cells. Pertussis toxin and U0126, which, respectively, inhibit Galphai, extracellular signal-regulated kinase (ERK) phosphorylation substantially inhibited Pam3Cys-induced CCL2 generation in LAD 2 mast cells but had little or no effect on chemokine generation in MLMC and BMMC. These findings suggest that TLR2 activation in human LAD 2 mast cells and MLMC/BMMC promotes the release of different classes of mediators via distinct signalling pathways that depend on Ca2+ mobilization and G protein usage.
Collapse
Affiliation(s)
- Asifa K Zaidi
- Department of Pathology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
49
|
Abstract
The Tec family of tyrosine kinases consists of five members (Itk, Rlk, Tec, Btk, and Bmx) that are expressed predominantly in hematopoietic cells. The exceptions, Tec and Bmx, are also found in endothelial cells. Tec kinases constitute the second largest family of cytoplasmic protein tyrosine kinases. While B cells express Btk and Tec, and T cells express Itk, Rlk, and Tec, all four of these kinases (Btk, Itk, Rlk, and Tec) can be detected in mast cells. This chapter will focus on the biochemical and cell biological data that have been accumulated regarding Itk, Rlk, Btk, and Tec. In particular, distinctions between the different Tec kinase family members will be highlighted, with a goal of providing insight into the unique functions of each kinase. The known functions of Tec kinases in T cell and mast cell signaling will then be described, with a particular focus on T cell receptor and mast cell Fc epsilon RI signaling pathways.
Collapse
Affiliation(s)
- Martin Felices
- Department of Pathology, University of Massachusetts Medical School, Massachusetts, USA
| | | | | | | |
Collapse
|
50
|
Klemm S, Ruland J. Inflammatory signal transduction from the FcεRI to NF-κB. Immunobiology 2006; 211:815-20. [PMID: 17113919 DOI: 10.1016/j.imbio.2006.07.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2006] [Accepted: 07/07/2006] [Indexed: 11/30/2022]
Abstract
Mast cells are essential effector cells in IgE-associated immune responses. The major receptor for mast cell activation is the high affinity IgE receptor Fc epsilon RI. Fc epsilon RI crosslinking induces mast cell degranulation and de novo synthesis of potent proinflammatory mediators. Recent work identified Bcl10 and Malt1 as central regulators of a specific signaling pathway that controls NF-kappaB activation and proinflammatory cytokine production upon Fc epsilon RI ligation on mast cells. Bcl10 and Malt1 cooperate for the activation of this signaling cascade and selectively function downstream of PKC isoforms. However, Bcl10 and Malt1 are not involved in Fc epsilon RI- or PKC-induced signaling events that control degranulation or leukotriene synthesis. Thus, the Bcl10/Malt1 complex specifically uncouples the pathway for cytokine production from degranulation events. This review will summarize our current knowledge of the regulation of Fc epsilon RI-induced NF-kappaB activation in mast cells and discuss potential implications for allergic inflammatory diseases.
Collapse
Affiliation(s)
- Stefanie Klemm
- Third Medical Department, Technical University of Munich, Klinikum rechts der Isar, Ismaninger Street 22, 81675 Munich, Germany
| | | |
Collapse
|