1
|
Chakraborty S, Anand S, Numan M, Bhandari RK. Ancestral bisphenol A exposure led to non-alcoholic fatty liver disease and sex-specific alterations in proline and bile metabolism pathways in the liver. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2025; 44:958-972. [PMID: 39953842 PMCID: PMC11933882 DOI: 10.1093/etojnl/vgae081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 11/18/2024] [Accepted: 12/02/2024] [Indexed: 02/17/2025]
Abstract
Endocrine-disrupting chemicals can induce metabolic alterations, resulting in diseases such as obesity, diabetes, and fatty liver disease, which can be inherited by offspring inhabiting uncontaminated environments. Bisphenol A (BPA), a well-known endocrine disruptor, can induce endocrine disruption, leading to metabolic disorders in subsequent generations without further exposure to BPA via nongenetic transgenerational inheritance. Using medaka as an animal model, we reported that ancestral BPA exposure leads to transgenerational nonalcoholic fatty liver disease (NAFLD) in grandchildren four generations after the initial exposure. It is unclear if transgenerational NAFLD developed because ancestral BPA exposure differs from that developed due to direct and continuous BPA exposure because the transgenerational disease develops in the absence of the stressor. We induced transgenerational NAFLD in medaka with ancestral BPA exposure (10 µg/L) at the F0 generation and examined transcriptional and metabolomic alterations in the liver of the F4 generation fish that continued to develop NAFLD. To understand the etiology of NAFLD in unexposed generations, we performed nontargeted liquid chromatography-mass spectrometry-based metabolomic analysis in combination with bulk RNA sequencing and determined biomarkers, co-expressed gene networks, and sex-specific pathways triggered in the liver. An integrated analysis of metabolomic and transcriptional alterations revealed a positive association with the severity of the NAFLD disease phenotype. Females showed increased NAFLD severity and had metabolic disruption involving proline metabolism, tryptophan metabolism, and bile metabolism pathways. The present results provide the transcriptional and metabolomic underpinning of metabolic disruption caused by ancestral BPA exposure, providing avenues for further research to understand the development and progression of transgenerational NAFLD caused by ancestral bisphenol A exposure.
Collapse
Affiliation(s)
- Sourav Chakraborty
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, United States
| | - Santosh Anand
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, United States
| | - Muhammad Numan
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC 27412, United States
| | - Ramji Kumar Bhandari
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, United States
| |
Collapse
|
2
|
Gupta P, Chakroborty S, Rathod AK, Kumar KR, Bhat S, Ghosh S, Rao T P, Yele K, Bakthisaran R, Nagaraj R, Manna M, Raychaudhuri S. Kingdom-specific lipid unsaturation calibrates sequence evolution in membrane arm subunits of eukaryotic respiratory complexes. Nat Commun 2025; 16:2044. [PMID: 40016208 PMCID: PMC11868549 DOI: 10.1038/s41467-025-57295-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 02/12/2025] [Indexed: 03/01/2025] Open
Abstract
Sequence evolution of protein complexes (PCs) is constrained by protein-protein interactions (PPIs). PPI-interfaces are predominantly conserved and hotspots for disease-related mutations. How do lipid-protein interactions (LPIs) constrain sequence evolution of membrane-PCs? We explore Respiratory Complexes (RCs) as a case study as these allow to compare sequence evolution in subunits exposed to both lipids in inner-mitochondrial membrane (IMM) and lipid-free aqueous matrix. We find that lipid-exposed surfaces of the IMM-subunits but not of the matrix subunits are populated with non-PPI disease-causing mutations signifying LPIs in stabilizing RCs. Further, IMM-subunits including their exposed surfaces show high intra-kingdom sequence conservation but remarkably diverge beyond. Molecular Dynamics simulation suggests contrasting LPIs of structurally superimposable but sequence-wise diverged IMM-exposed helices of Complex I (CI) subunit Ndufa1 from human and Arabidopsis depending on kingdom-specific unsaturation of cardiolipin fatty acyl chains. in cellulo assays consolidate inter-kingdom incompatibility of Ndufa1-helices due to the lipid-exposed amino acids. Plant-specific unsaturated fatty acids in human cells also trigger CI-instability. Taken together, we posit that altered LPIs calibrate sequence evolution at the IMM-arms of eukaryotic RCs.
Collapse
Affiliation(s)
- Pooja Gupta
- CSIR- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad - 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201002, India
| | - Sristi Chakroborty
- CSIR- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad - 500007, India
| | - Arun K Rathod
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201002, India
- CSIR- Central Salt and Marine Chemical Research Institute, Bhavnagar - 364002, Gujrat, India
| | - K Ranjith Kumar
- CSIR- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad - 500007, India
| | - Shreya Bhat
- CSIR- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad - 500007, India
| | - Suparna Ghosh
- CSIR- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad - 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201002, India
| | - Pallavi Rao T
- CSIR- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad - 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201002, India
| | - Kameshwari Yele
- CSIR- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad - 500007, India
| | - Raman Bakthisaran
- CSIR- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad - 500007, India
| | - R Nagaraj
- CSIR- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad - 500007, India
| | - Moutusi Manna
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201002, India
- CSIR- Central Salt and Marine Chemical Research Institute, Bhavnagar - 364002, Gujrat, India
| | - Swasti Raychaudhuri
- CSIR- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad - 500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201002, India.
| |
Collapse
|
3
|
Salagre D, Bajit H, Fernández-Vázquez G, Dwairy M, Garzón I, Haro-López R, Agil A. Melatonin induces fiber switching by improvement of mitochondrial oxidative capacity and function via NRF2/RCAN/MEF2 in the vastus lateralis muscle from both sex Zücker diabetic fatty rats. Free Radic Biol Med 2025; 227:322-335. [PMID: 39645208 DOI: 10.1016/j.freeradbiomed.2024.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/19/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
The positive role of melatonin in obesity control and skeletal muscle (SKM) preservation is well known. We recently showed that melatonin improves vastus lateralis muscle (VL) fiber oxidative phenotype. However, fiber type characterization, mitochondrial function, and molecular mechanisms that underlie VL fiber switching by melatonin are still undefined. Our study aims to investigate whether melatonin induces fiber switching by NRF2/RCAN/MEF2 pathway activation and mitochondrial oxidative metabolism modulation in the VL of both sex Zücker diabetic fatty (ZDF) rats. 5-Weeks-old male and female ZDF rats (N = 16) and their age-matched lean littermates (ZL) were subdivided into two subgroups: control (C) and orally treated with melatonin (M) (10 mg/kg/day) for 12 weeks. Interestingly, melatonin increased oxidative fibers amounts (Types I and IIa) counteracting the decreased levels found in the VL of obese-diabetic rats, and upregulated NRF2, calcineurin and MEF2 expression. Melatonin also restored the mitochondrial oxidative capacity increasing the respiratory control ratio (RCR) in both sex and phenotype rats through the reduction of the proton leak component of respiration (state 4). Melatonin also improved the VL mitochondrial phosphorylation coefficient and modulated the total oxygen consumption by enhancing complex I, III and IV activity, and fatty acid oxidation (FAO) in both sex obese-diabetic rats, decreasing in male and increasing in female the complex II oxygen consumption. These findings suggest that melatonin treatment induces fiber switching in SKM improving mitochondrial functionality by NRF2/RCAN/MEF2 pathway activation.
Collapse
Affiliation(s)
- Diego Salagre
- Department of Pharmacology, BioHealth Institute Granada (IBs Granada), Neuroscience Institute (CIBM), School of Medicine, University of Granada, 18016, Granada, Spain
| | - Habiba Bajit
- Department of Pharmacology, BioHealth Institute Granada (IBs Granada), Neuroscience Institute (CIBM), School of Medicine, University of Granada, 18016, Granada, Spain
| | | | - Mutaz Dwairy
- Department of Civil Engineering, Yarmuk University, 21163, Irbid, Jordan
| | - Ingrid Garzón
- Tissue Engineering Group, Department of Histology, BioHealth Institute Granada (IBs Granada), School of Medicine, University of Granada, 18016, Granada, Spain
| | - Rocío Haro-López
- Department of Pharmacology, BioHealth Institute Granada (IBs Granada), Neuroscience Institute (CIBM), School of Medicine, University of Granada, 18016, Granada, Spain
| | - Ahmad Agil
- Department of Pharmacology, BioHealth Institute Granada (IBs Granada), Neuroscience Institute (CIBM), School of Medicine, University of Granada, 18016, Granada, Spain.
| |
Collapse
|
4
|
Kiraly S, Stanley J, Eden ER. Lysosome-Mitochondrial Crosstalk in Cellular Stress and Disease. Antioxidants (Basel) 2025; 14:125. [PMID: 40002312 PMCID: PMC11852311 DOI: 10.3390/antiox14020125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/23/2024] [Accepted: 01/11/2025] [Indexed: 02/27/2025] Open
Abstract
The perception of lysosomes and mitochondria as entirely separate and independent entities that degrade material and produce ATP, respectively, has been challenged in recent years as not only more complex roles for both organelles, but also an unanticipated level of interdependence are being uncovered. Coupled lysosome and mitochondrial function and dysfunction involve complex crosstalk between the two organelles which goes beyond mitochondrial quality control and lysosome-mediated clearance of damaged mitochondria through mitophagy. Our understanding of crosstalk between these two essential metabolic organelles has been transformed by major advances in the field of membrane contact sites biology. We now know that membrane contact sites between lysosomes and mitochondria play central roles in inter-organelle communication. This importance of mitochondria-lysosome contacts (MLCs) in cellular homeostasis, evinced by the growing number of diseases that have been associated with their dysregulation, is starting to be appreciated. How MLCs are regulated and how their coordination with other pathways of lysosome-mitochondria crosstalk is achieved are the subjects of ongoing scrutiny, but this review explores the current understanding of the complex crosstalk governing the function of the two organelles and its impact on cellular stress and disease.
Collapse
Affiliation(s)
| | | | - Emily R. Eden
- UCL Institute of Ophthalmology, London EC1V 9EL, UK; (S.K.); (J.S.)
| |
Collapse
|
5
|
Li S, An J, Zhang T, Chen G, Zhang Z, Guo Z, Dai Z, Cheng X, Cheng S, Xiong X, Wang N, Jiang G, Xu B, Lei H. Integration of network pharmacology, UHPLC-Q exactive orbitrap HRMS technique and metabolomics to elucidate the active ingredients and mechanisms of compound danshen pills in treating hypercholesterolemic rats. JOURNAL OF ETHNOPHARMACOLOGY 2025; 336:118759. [PMID: 39209003 DOI: 10.1016/j.jep.2024.118759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/18/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hypercholesterolemia (HLC) was a key risk factor for cardiovascular disease (CVD) characterized by elevated cholesterol levels, particularly LDL. While traditional Chinese medicine preparations Compound Danshen Pills(CDP) has been clinically used for hypercholesterolemia and coronary heart disease, its specific therapeutic effect on HLC remains understudied, necessitating further investigation into its mechanisms. AIM OF THE STUDY The aim of this study was to explore the potential of CDP in treating HLC and elucidate its underlying mechanisms and active components. MATERIALS AND METHODS A hypercholesterolemic lipemia rat model induced by a high-fat diet was employed. Network pharmacology combined with UHPLC-Q exactive orbitrap HRMS technique was used to predict the active components, targets and mechanisms of CDP for HLC. Histological analysis and serum biochemical assays were used to assess the therapeutic effect of CDP and its main active ingredient Sa B on hypercholesterolemic lipemia rat model. Immunofluorescence assays and western blotting were used to verify the mechanism of CDP and Sa B in the treatment of HLC. Metabolomics approach was used to demonstrate that CDP and Sa B affected the metabolic profile of HLC. RESULTS Our findings demonstrated that both CDP and its main active ingredient Sa B significantly ameliorated hypercholesterolemic lipemic lesions, reducing levels of TC, LDL, AST, ALT, and ALP. Histological analysis revealed a decrease in lipid droplet accumulation and collagen fiber deposition in the liver, as well as reduced collagen fiber deposition in the aorta. Network pharmacology predicted potential targets such as PPARα and CYP27A1. Immunofluorescence assays and western blotting confirmed that CDP and Sa B upregulated the expression of Adipor1, PPARα and CYP27A1. Metabolomics analyses further indicated improvements in ABC transporters metabolic pathways, with differential metabolites such as riboflavin, taurine, and choline showed regression in levels after CDP treatment and riboflavin, L-Threonine, Thiamine, L-Leucine, and Adenosine showed improved expression after Sa B treatment. CONCLUSION CDP and Sa B have been shown to alleviate high-fat diet-induced hypercholesterolemia by activating the PPAR pathway and improving hepatic lipid metabolism. Our study demonstrated, for the first time, the complex mechanism of CDP, Sa B in the treatment of hypercholesterolemia at the protein and metabolic levels and provided a new reference that could elucidate the pharmacological effects of traditional Chinese medicine on hypercholesterolemia from multiple perspectives.
Collapse
Affiliation(s)
- Shanlan Li
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102400, China
| | - Jin An
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102400, China
| | - Tong Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102400, China
| | - Guangyun Chen
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102400, China
| | - Zixuan Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102400, China
| | - Zhuoqian Guo
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102400, China
| | - Ziqi Dai
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102400, China
| | - Xuehao Cheng
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102400, China
| | - Sijin Cheng
- School of Nursing, Beijing University of Chinese Medicine, Beijing, 102488, China
| | | | - Nan Wang
- Aimin Pharmaceutical Group, Henan, 463500, China
| | | | - Bing Xu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102400, China.
| | - Haimin Lei
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102400, China.
| |
Collapse
|
6
|
López-Cervantes SP, Toledo-Pérez R, De Lira-Sánchez JA, García-Cruz G, Esparza-Perusquía M, Luna-López A, Pardo JP, Flores-Herrera O, Konigsberg M. Sedentary Lifestyles and a Hypercaloric Diets During Middle Age, are Binomial Conducive to Fatal Progression, That is Counteracted by the Hormetic Treatment of Exercise, Metformin, and Tert-Butyl Hydroquinone: An Analysis of Female Middle-Aged Rat Liver Mitochondria. Dose Response 2024; 22:15593258241272619. [PMID: 39399210 PMCID: PMC11471012 DOI: 10.1177/15593258241272619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/15/2024] [Accepted: 07/08/2024] [Indexed: 10/15/2024] Open
Abstract
The world's population continuous to shift towards older, less active and more sedentary lifestyles especially during middle age. In addition consumption of high-caloric diets, increases the risk of metabolic and cardiovascular afflictions. Developing clinical strategies to mitigate those health complications represent a difficult challenge. Our group has previously shown that combining metformin (MTF) and tert-butyl hydroquinone (tBHQ) treatments, in addition to exercise, partially prevents liver damage associated with obesity. Hence, we evaluated the role of exercise in combination with MTF and tBHQ (triple-treatment) to counteract mitochondrial damage in the liver from obese middle-aged female rats. Animals were fed a high-fat diet (HFD) starting at 21 days till 15 months of age. The treated groups performed a Fartlek-type exercise 5 days/week for 30 min/session. MTF and tBHQ were administered at a dose of 250 mg/kg/day, and 10 mg/kg/day, respectively, for 7 days/month from 10 to 15 months of age. Triple-treatment therapeutic approach promoted animal survival, and increased AMPK and PGC1α expression. Treatments increased mitochondrial ATP synthesis and OXPHOS complexes activities, recovered membrane potential, and decreased ROS production. In summary, exercise in combination with intermittent tBHQ and MTF treatments proved to be an excellent intervention to prevent mitochondrial damage caused by HFD.
Collapse
Affiliation(s)
- Stefanie Paola López-Cervantes
- Departamento Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, México
- Departamento Ciencias de la Salud, Universidad Autónoma Metropolitana, Iztapalapa, México
- Posgrado en Biología Experimental, Universidad Autónoma Metropolitana, Iztapalapa, México
| | - Rafael Toledo-Pérez
- Departamento Ciencias de la Salud, Universidad Autónoma Metropolitana, Iztapalapa, México
- Posgrado en Biología Experimental, Universidad Autónoma Metropolitana, Iztapalapa, México
| | | | - Giovanni García-Cruz
- Departamento Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, México
| | - Mercedes Esparza-Perusquía
- Departamento Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, México
| | - Armando Luna-López
- Departamento de Investigación Básica, Instituto Nacional de Geriatría, Ciudad de Mexico, México
| | - Juan Pablo Pardo
- Departamento Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, México
| | - Oscar Flores-Herrera
- Departamento Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, México
| | - Mina Konigsberg
- Departamento Ciencias de la Salud, Universidad Autónoma Metropolitana, Iztapalapa, México
| |
Collapse
|
7
|
Decker ST, Funai K. Mitochondrial membrane lipids in the regulation of bioenergetic flux. Cell Metab 2024; 36:1963-1978. [PMID: 39178855 PMCID: PMC11374467 DOI: 10.1016/j.cmet.2024.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/12/2024] [Accepted: 07/31/2024] [Indexed: 08/26/2024]
Abstract
Oxidative phosphorylation (OXPHOS) occurs through and across the inner mitochondrial membrane (IMM). Mitochondrial membranes contain a distinct lipid composition, aided by lipid biosynthetic machinery localized in the IMM and class-specific lipid transporters that limit lipid traffic in and out of mitochondria. This unique lipid composition appears to be essential for functions of mitochondria, particularly OXPHOS, by its effects on direct lipid-to-protein interactions, membrane properties, and cristae ultrastructure. This review highlights the biological significance of mitochondrial lipids, with a particular spotlight on the role of lipids in mitochondrial bioenergetics. We describe pathways for the biosynthesis of mitochondrial lipids and provide evidence for their roles in physiology, their implications in human disease, and the mechanisms by which they regulate mitochondrial bioenergetics.
Collapse
Affiliation(s)
- Stephen Thomas Decker
- Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT, USA
| | - Katsuhiko Funai
- Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
8
|
Meng D, Yin G, Chen S, Zhang X, Yu W, Wang L, Liu H, Jiang W, Sun Y, Zhang F. Diosgenin attenuates nonalcoholic hepatic steatosis through the hepatic SIRT1/PGC-1α pathway. Eur J Pharmacol 2024; 977:176737. [PMID: 38866362 DOI: 10.1016/j.ejphar.2024.176737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/04/2024] [Accepted: 06/09/2024] [Indexed: 06/14/2024]
Abstract
The prevalence of nonalcoholic fatty liver disease (NAFLD) has been increasing worldwide in recent years, causing severe economic and social burdens. Therefore, the lack of currently approved drugs for anti-NAFLD has gradually gained attention. SIRT1, as a member of the sirtuins family, is now the most widely studied in the pathophysiology of many metabolic diseases, and has great potential for preventing and treating NAFLD. Natural products such as Diosgenin (DG) have the potential to be developed as clinical drugs for the treatment of NAFLD due to their excellent multi-target therapeutic effects. In this study, we found that DG can activate the SIRT1/PGC-1α pathway and upregulate the expression of its downstream targets nuclear respiratory factor 1 (NRF1), complex IV (COX IV), mitofusin-2 (MFN2), and PPARα (perox-isome proliferator-activated receptor α) in SD rats induced by high-fat diet (HFD) and HepG2 cells caused by free fatty acids (FFAs, sodium oleate: sodium palmitate = 2:1). Conversely, the levels of dynamin-related protein 1 (DRP1) and inflammatory factors, including NF-κB p65, IL6, and TNFα, were downregulated both in vitro and in vivo. This improved mitochondrial dysfunction, fatty acid oxidation (FAO), lipid accumulation, steatosis, oxidative stress, and hepatocyte inflammation. Subsequently, we applied SIRT1 inhibitor EX527 and SIRT1 agonist SRT1720 to confirm further the necessity of activating SIRT1 for DG to exert therapeutic effects on NAFLD. In summary, these results further demonstrate the potential therapeutic role of DG as a SIRT1 natural agonist for NAFLD. (Graphical Abstracts).
Collapse
Affiliation(s)
- Decheng Meng
- The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, 250011, People's Republic of China
| | - Guoliang Yin
- The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, 250011, People's Republic of China
| | - Suwen Chen
- The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, 250011, People's Republic of China
| | - Xin Zhang
- The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, 250011, People's Republic of China
| | - Wenfei Yu
- The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, 250011, People's Republic of China
| | - Linya Wang
- Traditional Chinese Medicine College of Shandong University of Traditional Chinese Medicine, Jinan, 250011, People's Republic of China
| | - Hongshuai Liu
- Traditional Chinese Medicine College of Shandong University of Traditional Chinese Medicine, Jinan, 250011, People's Republic of China
| | - Wenying Jiang
- The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, 250011, People's Republic of China
| | - Yuqing Sun
- Traditional Chinese Medicine College of Shandong University of Traditional Chinese Medicine, Jinan, 250011, People's Republic of China
| | - Fengxia Zhang
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, People's Republic of China.
| |
Collapse
|
9
|
Lee KH, Hong M, Hur HJ, Sung MJ, Lee AS, Kim MJ, Yang HJ, Kim MS. Metabolomic profiling analysis reveals the benefits of ginseng berry intake on mitochondrial function and glucose metabolism in the liver of obese mice. Metabolomics 2024; 20:96. [PMID: 39110263 DOI: 10.1007/s11306-024-02152-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 07/10/2024] [Indexed: 10/22/2024]
Abstract
INTRODUCTION Ginseng berry (GB) has previously been demonstrated to improve systemic insulin resistance and regulate hepatic glucose metabolism and steatosis in mice with diet-induced obesity (DIO). OBJECTIVES In this study, the role of GB in metabolism was assessed using metabolomics analysis on the total liver metabolites of DIO mice. METHODS Metabolomic profiling was performed using capillary electrophoresis time-of-flight mass spectrometry (CE-TOF/MS) of liver tissue from mice on a 12-wk normal chow diet (NC), high-fat diet (HFD), and HFD supplemented with 0.1% GB (HFD + GB). The detected metabolites, its pathways, and functions were analyzed through partial least square discriminant analysis (PLS-DA), the small molecular pathway database (SMPDB), and MetaboAnalyst 5.0. RESULTS The liver metabolite profiles of NC, HFD, and GB-fed mice (HFD + GB) were highly compartmentalized. Metabolites involved in major liver functions, such as mitochondrial function, gluconeogenesis/glycolysis, fatty acid metabolism, and primary bile acid biosynthesis, showed differences after GB intake. The metabolites that showed significant correlations with fasting blood glucose (FBG), insulin, and homeostatic model assessment for insulin resistance (HOMA-IR) were highly associated with mitochondrial membrane function, energy homeostasis, and glucose metabolism. Ginseng berry intake increased the levels of metabolites involved in mitochondrial membrane function, decreased the levels of metabolites related to glucose metabolism, and was highly correlated with metabolic phenotypes. CONCLUSION This study demonstrated that long-term intake of GB changed the metabolite of hepatosteatotic livers in DIO mice, normalizing global liver metabolites involved in mitochondrial function and glucose metabolism and indicating the potential mechanism of GB in ameliorating hyperglycemia in DIO mice.
Collapse
Affiliation(s)
- Kyun-Hee Lee
- Research Division of Food and Function, Korea Food Research Institute, 245 Nongsaengmyeong-ro, Wanju-gun, Jeonbuk-do, 55365, Republic of Korea
- Department of Food Biotechnology, University of Science & Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Moonju Hong
- Research Division of Food and Function, Korea Food Research Institute, 245 Nongsaengmyeong-ro, Wanju-gun, Jeonbuk-do, 55365, Republic of Korea
- Department of Food Biotechnology, University of Science & Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Haeng Jeon Hur
- Research Division of Food and Function, Korea Food Research Institute, 245 Nongsaengmyeong-ro, Wanju-gun, Jeonbuk-do, 55365, Republic of Korea
| | - Mi Jeong Sung
- Research Division of Food and Function, Korea Food Research Institute, 245 Nongsaengmyeong-ro, Wanju-gun, Jeonbuk-do, 55365, Republic of Korea
| | - Ae Sin Lee
- Research Division of Food and Function, Korea Food Research Institute, 245 Nongsaengmyeong-ro, Wanju-gun, Jeonbuk-do, 55365, Republic of Korea
| | - Min Jung Kim
- Research Division of Food and Function, Korea Food Research Institute, 245 Nongsaengmyeong-ro, Wanju-gun, Jeonbuk-do, 55365, Republic of Korea
| | - Hye Jeong Yang
- Research Division of Food and Function, Korea Food Research Institute, 245 Nongsaengmyeong-ro, Wanju-gun, Jeonbuk-do, 55365, Republic of Korea
| | - Myung-Sunny Kim
- Research Division of Food and Function, Korea Food Research Institute, 245 Nongsaengmyeong-ro, Wanju-gun, Jeonbuk-do, 55365, Republic of Korea.
- Department of Food Biotechnology, University of Science & Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
10
|
Tan S, Li Q, Guo C, Chen S, Kamal-Eldin A, Chen G. Reveal the mechanism of hepatic oxidative stress in mice induced by photo-oxidation milk using multi-omics analysis techniques. J Adv Res 2024:S2090-1232(24)00271-6. [PMID: 38986809 DOI: 10.1016/j.jare.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/06/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024] Open
Abstract
INTRODUCTION Photo-oxidation is recognized as a contributor to the deterioration of milk quality, posing potential safety hazards to human health. However, there has been limited investigation into the impact of consuming photo-oxidized milk on health. OBJECTIVES This study employs multi-omics analysis techniques to elucidate the mechanisms by which photo-oxidized milk induces oxidative stress in the liver. METHODS Mouse model was used to determine the effect of the gavage administration of milk with varying degrees of photo-oxidation on the mouse liver. The damage degree was established by measuring serum markers indicative of oxidative stress, and with a subsequent histopathological examination of liver tissues. In addition, comprehensive metabolome, lipidome, and transcriptome analyses were conducted to elucidate the underlying molecular mechanisms of hepatic damage caused by photo-oxidized milk. RESULTS A significant elevation in the oxidative stress levels and the presence of hepatocellular swelling and inflammation subsequent to the gavage administration of photo-oxidized milk to mice. Significant alterations in the levels of metabolites such as lumichrome, all-trans-retinal, L-valine, phosphatidylglycerol, and phosphatidylcholine within the hepatic tissue of mice. Moreover, photo-oxidized milk exerted a pronounced detrimental impact on the glycerophospholipid metabolism of mice liver. The peroxisome proliferator-activated receptors (PPAR) signaling pathway enrichment appreciated in the animals that consumed photo-oxidized milk further supports the substantial negative influence of photo-oxidized milk on hepatic lipid metabolism. Gene set enrichment and interaction analyses revealed that photo-oxidized milk inhibited the cytochrome P450 pathway in mice, while also affecting other pathways associated with cellular stress response and lipid biosynthesis. CONCLUSION This comprehensive study provides significant evidence regarding the potential health risks associated with photo-oxidized milk, particularly in terms of hepatic oxidative damage. It establishes a scientific foundation for assessing the safety of such milk and ensuring the quality of dairy products.
Collapse
Affiliation(s)
- Sijia Tan
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 100048, China; Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Qiangqiang Li
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100093, China.
| | - Can Guo
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Sumeng Chen
- China Agricultural University, Beijing 100193, China
| | - Afaf Kamal-Eldin
- College of Food and Agriculture, Department of Food, Nutrition and Health (CFA), United Arab Emirates University, Al Ain 10008115551, United Arab Emirates
| | - Gang Chen
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 100048, China.
| |
Collapse
|
11
|
Liang Z, Ralph-Epps T, Schmidtke MW, Kumar V, Greenberg ML. Decreased pyruvate dehydrogenase activity in Tafazzin-deficient cells is caused by dysregulation of pyruvate dehydrogenase phosphatase 1 (PDP1). J Biol Chem 2024; 300:105697. [PMID: 38301889 PMCID: PMC10884759 DOI: 10.1016/j.jbc.2024.105697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/13/2024] [Accepted: 01/19/2024] [Indexed: 02/03/2024] Open
Abstract
Cardiolipin (CL), the signature lipid of the mitochondrial inner membrane, is critical for maintaining optimal mitochondrial function and bioenergetics. Disruption of CL metabolism, caused by mutations in the CL remodeling enzyme TAFAZZIN, results in the life-threatening disorder Barth syndrome (BTHS). While the clinical manifestations of BTHS, such as dilated cardiomyopathy and skeletal myopathy, point to defects in mitochondrial bioenergetics, the disorder is also characterized by broad metabolic dysregulation, including abnormal levels of metabolites associated with the tricarboxylic acid (TCA) cycle. Recent studies have identified the inhibition of pyruvate dehydrogenase (PDH), the gatekeeper enzyme for TCA cycle carbon influx, as a key deficiency in various BTHS model systems. However, the molecular mechanisms linking aberrant CL remodeling, particularly the primary, direct consequence of reduced tetralinoleoyl-CL (TLCL) levels, to PDH activity deficiency are not yet understood. In the current study, we found that remodeled TLCL promotes PDH function by directly binding to and enhancing the activity of PDH phosphatase 1 (PDP1). This is supported by our findings that TLCL uniquely activates PDH in a dose-dependent manner, TLCL binds to PDP1 in vitro, TLCL-mediated PDH activation is attenuated in the presence of phosphatase inhibitor, and PDP1 activity is decreased in Tafazzin-knockout (TAZ-KO) C2C12 myoblasts. Additionally, we observed decreased mitochondrial calcium levels in TAZ-KO cells and treating TAZ-KO cells with calcium lactate (CaLac) increases mitochondrial calcium and restores PDH activity and mitochondrial oxygen consumption rate. Based on our findings, we conclude that reduced mitochondrial calcium levels and decreased binding of PDP1 to TLCL contribute to decreased PDP1 activity in TAZ-KO cells.
Collapse
Affiliation(s)
- Zhuqing Liang
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| | - Tyler Ralph-Epps
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| | - Michael W Schmidtke
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| | - Vikalp Kumar
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| | - Miriam L Greenberg
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA.
| |
Collapse
|
12
|
Mahler CA, Snoke DB, Cole RM, Angelotti A, Sparagna GC, Baskin KK, Ni A, Belury MA. Consuming a Linoleate-Rich Diet Increases Concentrations of Tetralinoleoyl Cardiolipin in Mouse Liver and Alters Hepatic Mitochondrial Respiration. J Nutr 2024; 154:856-865. [PMID: 38160803 DOI: 10.1016/j.tjnut.2023.12.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/01/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND Hepatic mitochondrial dysfunction is a major cause of fat accumulation in the liver. Individuals with fatty liver conditions have hepatic mitochondrial structural abnormalities and a switch in the side chain composition of the mitochondrial phospholipid, cardiolipin, from poly- to monounsaturated fatty acids. Linoleic acid (LA), an essential dietary fatty acid, is required to remodel nascent cardiolipin (CL) to its tetralinoleoyl cardiolipin (L4CL, CL with 4 LA side chains) form, which is integral for mitochondrial membrane structure and function to promote fatty acid oxidation. It is unknown, however, whether increasing LA in the diet can increase hepatic L4CL concentrations and improve mitochondrial respiration in the liver compared with a diet rich in monounsaturated and saturated fatty acids. OBJECTIVES The main aim of this study was to test the ability of a diet fortified with LA-rich safflower oil (SO), compared with the one fortified with lard (LD), to increase concentrations of L4CL and improve mitochondrial respiration in the livers of mice. METHODS Twenty-four (9-wk-old) C57 BL/J6 male mice were fed either the SO or LD diets for ∼100 d, whereas food intake and body weight, fasting glucose, and glucose tolerance tests were performed to determine any changes in glycemic control. RESULTS Livers from mice fed SO diet had higher relative concentrations of hepatic L4CL species compared with LD diet-fed mice (P value = 0.004). Uncoupled mitochondria of mice fed the SO diet, compared with LD diet, had an increased baseline oxygen consumption rate (OCR) and succinate-driven respiration (P values = 0.03 and 0.01). SO diet-fed mice had increased LA content in all phospholipid classes compared with LD-fed mice (P < 0.05). CONCLUSIONS Our findings reveal that maintaining or increasing hepatic L4CL may result in increased OCR in uncoupled hepatic mitochondria in healthy mice whereas higher oleate content of CL reduced mitochondrial function shown by lower OCR in uncoupled mitochondria.
Collapse
Affiliation(s)
- Connor A Mahler
- Lilly Diabetes Research Center, Indiana Biosciences Research Institute, Indianapolis, IN, United States
| | - Deena B Snoke
- Department of Medicine, University of Vermont, Larner College of Medicine, Burlington, VT, United States; Interdisciplinary PhD Program in Nutrition, The Ohio State University, Columbus, OH, United States
| | - Rachel M Cole
- Interdisciplinary PhD Program in Nutrition, The Ohio State University, Columbus, OH, United States; Department of Food Science and Technology, The Ohio State University, Columbus, OH, United States
| | - Austin Angelotti
- Interdisciplinary PhD Program in Nutrition, The Ohio State University, Columbus, OH, United States; Department of Food Science and Technology, The Ohio State University, Columbus, OH, United States
| | - Genevieve C Sparagna
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Kedryn K Baskin
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, Diabetes and Metabolism Research Center, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Ai Ni
- Biostatistics, College of Public Health, The Ohio State University, Columbus, OH, United States
| | - Martha A Belury
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, United States.
| |
Collapse
|
13
|
Lin X, Zhang J, Chu Y, Nie Q, Zhang J. Berberine prevents NAFLD and HCC by modulating metabolic disorders. Pharmacol Ther 2024; 254:108593. [PMID: 38301771 DOI: 10.1016/j.pharmthera.2024.108593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 02/03/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a global metabolic disease with high prevalence in both adults and children. Importantly, NAFLD is becoming the main cause of hepatocellular carcinoma (HCC). Berberine (BBR), a naturally occurring plant component, has been demonstrated to have advantageous effects on a number of metabolic pathways as well as the ability to kill liver tumor cells by causing cell death and other routes. This permits us to speculate and make assumptions about the value of BBR in the prevention and defense against NAFLD and HCC by a global modulation of metabolic disorders. Herein, we briefly describe the etiology of NAFLD and NAFLD-related HCC, with a particular emphasis on analyzing the potential mechanisms of BBR in the treatment of NAFLD from aspects including increasing insulin sensitivity, controlling the intestinal milieu, and controlling lipid metabolism. We also elucidate the mechanism of BBR in the treatment of HCC. More significantly, we provided a list of clinical studies for BBR in NAFLD. Taking into account our conclusions and perspectives, we can make further progress in the treatment of BBR in NAFLD and NAFLD-related HCC.
Collapse
Affiliation(s)
- Xinyue Lin
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Juanhong Zhang
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China; College of Life Science, Northwest Normal University, Lanzhou 730070, China
| | - Yajun Chu
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Qiuying Nie
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Junmin Zhang
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
14
|
Portincasa P, Khalil M, Graziani A, Frühbeck G, Baffy G, Garruti G, Di Ciaula A, Bonfrate L. Gut microbes in metabolic disturbances. Promising role for therapeutic manipulations? Eur J Intern Med 2024; 119:13-30. [PMID: 37802720 DOI: 10.1016/j.ejim.2023.10.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/30/2023] [Accepted: 10/02/2023] [Indexed: 10/08/2023]
Abstract
The prevalence of overweight, obesity, type 2 diabetes, metabolic syndrome and steatotic liver disease is rapidly increasing worldwide with a huge economic burden in terms of morbidity and mortality. Several genetic and environmental factors are involved in the onset and development of metabolic disorders and related complications. A critical role also exists for the gut microbiota, a complex polymicrobial ecology at the interface of the internal and external environment. The gut microbiota contributes to food digestion and transformation, caloric intake, and immune response of the host, keeping the homeostatic control in health. Mechanisms of disease include enhanced energy extraction from the non-digestible dietary carbohydrates, increased gut permeability and translocation of bacterial metabolites which activate a chronic low-grade systemic inflammation and insulin resistance, as precursors of tangible metabolic disorders involving glucose and lipid homeostasis. The ultimate causative role of gut microbiota in this respect remains to be elucidated, as well as the therapeutic value of manipulating the gut microbiota by diet, pre- and pro- synbiotics, or fecal microbial transplantation.
Collapse
Affiliation(s)
- Piero Portincasa
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari "Aldo Moro" Medical School, Policlinico Hospital, Piazza G. Cesare 11, Bari 70124, Italy.
| | - Mohamad Khalil
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari "Aldo Moro" Medical School, Policlinico Hospital, Piazza G. Cesare 11, Bari 70124, Italy
| | - Annarita Graziani
- Institut AllergoSan Pharmazeutische Produkte Forschungs- und Vertriebs GmbH, Graz, Austria
| | - Gema Frühbeck
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), ISCIII, Pamplona, Spain; Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain; Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, Pamplona, Spain
| | - Gyorgy Baffy
- Department of Medicine, VA Boston Healthcare System and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02130, USA
| | - Gabriella Garruti
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Medical School, Bari 70124, Italy
| | - Agostino Di Ciaula
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari "Aldo Moro" Medical School, Policlinico Hospital, Piazza G. Cesare 11, Bari 70124, Italy.
| | - Leonilde Bonfrate
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari "Aldo Moro" Medical School, Policlinico Hospital, Piazza G. Cesare 11, Bari 70124, Italy
| |
Collapse
|
15
|
La Colla A, Cámara CA, Campisano S, Chisari AN. Mitochondrial dysfunction and epigenetics underlying the link between early-life nutrition and non-alcoholic fatty liver disease. Nutr Res Rev 2023; 36:281-294. [PMID: 35067233 DOI: 10.1017/s0954422422000038] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Early-life malnutrition plays a critical role in foetal development and predisposes to metabolic diseases later in life, according to the concept of 'developmental programming'. Different types of early nutritional imbalance, including undernutrition, overnutrition and micronutrient deficiency, have been related to long-term metabolic disorders. Accumulating evidence has demonstrated that disturbances in nutrition during the period of preconception, pregnancy and primary infancy can affect mitochondrial function and epigenetic mechanisms. Moreover, even though multiple mechanisms underlying non-alcoholic fatty liver disease (NAFLD) have been described, in the past years, special attention has been given to mitochondrial dysfunction and epigenetic alterations. Mitochondria play a key role in cellular metabolic functions. Dysfunctional mitochondria contribute to oxidative stress, insulin resistance and inflammation. Epigenetic mechanisms have been related to alterations in genes involved in lipid metabolism, fibrogenesis, inflammation and tumorigenesis. In accordance, studies have reported that mitochondrial dysfunction and epigenetics linked to early-life nutrition can be important contributing factors in the pathogenesis of NAFLD. In this review, we summarise the current understanding of the interplay between mitochondrial dysfunction, epigenetics and nutrition during early life, which is relevant to developmental programming of NAFLD.
Collapse
Affiliation(s)
- Anabela La Colla
- Departamento de Química y Bioquímica, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, 7600 Mar del Plata, Argentina
| | - Carolina Anahí Cámara
- Departamento de Química y Bioquímica, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, 7600 Mar del Plata, Argentina
| | - Sabrina Campisano
- Departamento de Química y Bioquímica, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, 7600 Mar del Plata, Argentina
| | - Andrea Nancy Chisari
- Departamento de Química y Bioquímica, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, 7600 Mar del Plata, Argentina
| |
Collapse
|
16
|
Jiang X, Hu R, Huang Y, Xu Y, Zheng Z, Shi Y, Miao J, Liu Y. Fructose aggravates copper-deficiency-induced non-alcoholic fatty liver disease. J Nutr Biochem 2023; 119:109402. [PMID: 37311490 PMCID: PMC11186518 DOI: 10.1016/j.jnutbio.2023.109402] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 05/28/2023] [Accepted: 06/07/2023] [Indexed: 06/15/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD), is the most common cause of chronic liver disease, affecting 24% of the global population. Accumulating evidence demonstrates that copper deficiency (CuD) is implicated in the development of NAFLD, besides, high fructose consumption by promoting inflammation contributes to NAFLD. However, how CuD and/or fructose (Fru) causes NAFLD is not clearly delineated. The present study aims to investigate the role of CuD and/or fructose supplement on hepatic steatosis and hepatic injury. We established a CuD rat model by feeding weaning male Sprague-Dawley rats for 4 weeks with CuD diet. Fructose was supplemented in drinking water. We found the promoting role of CuD or Fructose (Fru) in the progress of NAFLD, which was aggravated by combination of the two. Furthermore, we presented the alteration of hepatic lipid profiles (including content, composition, and saturation), especially ceramide (Cer), cardiolipin (CL), phosphatidylcholine (PC) and phosphatidylethanolamine (PE) was closely associated with CuD and/or Fru fed induced-NAFLD in rat models. In conclusion, insufficient copper intake or excessive fructose supplement resulted in adverse effects on the hepatic lipid profile, and fructose supplement causes a further hepatic injury in CuD-induced NAFLD, which illuminated a better understanding of NAFLD.
Collapse
Affiliation(s)
- Xin Jiang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, P.R. China
| | - Ruixiang Hu
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Jinan University, Guangzhou, P.R. China
| | - Yipu Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, P.R. China
| | - Yi Xu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, P.R. China
| | - Zhirui Zheng
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, P.R. China
| | - Yuansen Shi
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, P.R. China
| | - Ji Miao
- Division of Endocrinology, Boston Children's Hospital, Boston, Massachusetts, USA; Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.
| | - Yun Liu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, P.R. China.
| |
Collapse
|
17
|
Zheng Y, Wang S, Wu J, Wang Y. Mitochondrial metabolic dysfunction and non-alcoholic fatty liver disease: new insights from pathogenic mechanisms to clinically targeted therapy. J Transl Med 2023; 21:510. [PMID: 37507803 PMCID: PMC10375703 DOI: 10.1186/s12967-023-04367-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) is among the most widespread metabolic disease globally, and its associated complications including insulin resistance and diabetes have become threatening conditions for human health. Previous studies on non-alcoholic fatty liver disease (NAFLD) were focused on the liver's lipid metabolism. However, growing evidence suggests that mitochondrial metabolism is involved in the pathogenesis of NAFLD to varying degrees in several ways, for instance in cellular division, oxidative stress, autophagy, and mitochondrial quality control. Ultimately, liver function gradually declines as a result of mitochondrial dysfunction. The liver is unable to transfer the excess lipid droplets outside the liver. Therefore, how to regulate hepatic mitochondrial function to treat NAFLD has become the focus of current research. This review provides details about the intrinsic link of NAFLD with mitochondrial metabolism and the mechanisms by which mitochondrial dysfunctions contribute to NAFLD progression. Given the crucial role of mitochondrial metabolism in NAFLD progression, the application potential of multiple mitochondrial function improvement modalities (including physical exercise, diabetic medications, small molecule agonists targeting Sirt3, and mitochondria-specific antioxidants) in the treatment of NAFLD was evaluated hoping to provide new insights into NAFLD treatment.
Collapse
Affiliation(s)
- Youwei Zheng
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Shiting Wang
- Department of Cardiovascular Medicine, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Jialiang Wu
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yong Wang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China.
| |
Collapse
|
18
|
Anastasopoulos NA, Charchanti AV, Barbouti A, Mastoridou EM, Goussia AC, Karampa AD, Christodoulou D, Glantzounis GK. The Role of Oxidative Stress and Cellular Senescence in the Pathogenesis of Metabolic Associated Fatty Liver Disease and Related Hepatocellular Carcinoma. Antioxidants (Basel) 2023; 12:1269. [PMID: 37371999 DOI: 10.3390/antiox12061269] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/04/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Hepatocellular carcinoma (HCC) represents a worryingly increasing cause of malignancy-related mortality, while Metabolic Associated Fatty Liver Disease (MAFLD) is going to become its most common cause in the next decade. Understanding the complex underlying pathophysiology of MAFLD-related HCC can provide opportunities for successful targeted therapies. Of particular interest in this sequela of hepatopathology is cellular senescence, a complex process characterised by cellular cycle arrest initiated by a variety of endogenous and exogenous cell stressors. A key biological process in establishing and maintaining senescence is oxidative stress, which is present in multiple cellular compartments of steatotic hepatocytes. Oxidative stress-induced cellular senescence can change hepatocyte function and metabolism, and alter, in a paracrine manner, the hepatic microenvironment, enabling disease progression from simple steatosis to inflammation and fibrosis, as well as HCC. The duration of senescence and the cell types it affects can tilt the scale from a tumour-protective self-restricting phenotype to the creator of an oncogenic hepatic milieu. A deeper understanding of the mechanism of the disease can guide the selection of the most appropriate senotherapeutic agent, as well as the optimal timing and cell type targeting for effectively combating HCC.
Collapse
Affiliation(s)
- Nikolaos-Andreas Anastasopoulos
- HPB Unit, Department of Surgery, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
- Department of General Surgery, Croydon University Hospital, Croydon Health Services NHS Trust, London CR7 7YE, UK
| | - Antonia V Charchanti
- Department of Anatomy-Histology-Embryology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Alexandra Barbouti
- Department of Anatomy-Histology-Embryology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Eleftheria M Mastoridou
- Department of Anatomy-Histology-Embryology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Anna C Goussia
- Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Anastasia D Karampa
- HPB Unit, Department of Surgery, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Dimitrios Christodoulou
- Department of Gastroenterology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Georgios K Glantzounis
- HPB Unit, Department of Surgery, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
19
|
Trejo-Hurtado CM, Landa-Moreno CI, la Cruz JLD, Peña-Montes DJ, Montoya-Pérez R, Salgado-Garciglia R, Manzo-Avalos S, Cortés-Rojo C, Monribot-Villanueva JL, Guerrero-Analco JA, Saavedra-Molina A. An Ethyl Acetate Extract of Eryngium carlinae Inflorescences Attenuates Oxidative Stress and Inflammation in the Liver of Streptozotocin-Induced Diabetic Rats. Antioxidants (Basel) 2023; 12:1235. [PMID: 37371966 PMCID: PMC10294959 DOI: 10.3390/antiox12061235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/31/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Secondary metabolites such as flavonoids are promising in the treatment of non-alcoholic fatty liver disease (NAFLD), which is one of the complications of diabetes due to oxidative stress and inflammation. Some plants, such as Eryngium carlinae, have been investigated regarding their medicinal properties in in vitro and in vivo assays, showing favorable results for the treatment of various diseases such as diabetes and obesity. The present study examined the antioxidant and anti-inflammatory effects of the phenolic compounds present in an ethyl acetate extract of the inflorescences of Eryngium carlinae on liver homogenates and mitochondria from streptozotocin (STZ)-induced diabetic rats. Phenolic compounds were identified and quantified by UHPLC-MS. In vitro assays were carried out to discover the antioxidant potential of the extract. Male Wistar rats were administered with a single intraperitoneal injection of STZ (45 mg/kg) and were given the ethyl acetate extract at a level of 30 mg/kg for 60 days. Phytochemical assays showed that the major constituents of the extract were flavonoids; in addition, the in vitro antioxidant activity was dose dependent with IC50 = 57.97 mg/mL and IC50 = 30.90 mg/mL in the DPPH and FRAP assays, respectively. Moreover, the oral administration of the ethyl acetate extract improved the effects of NAFLD, decreasing serum and liver triacylglycerides (TG) levels and oxidative stress markers and increasing the activity of the antioxidant enzymes. Likewise, it attenuated liver damage by decreasing the expression of NF-κB and iNOS, which lead to inflammation and liver damage. We hypothesize that solvent polarity and consequently chemical composition of the ethyl acetate extract of E. carlinae, exert the beneficial effects due to phenolic compounds. These results suggest that the phenolic compounds of the ethyl acetate extract of E. carlinae have antioxidant, anti-inflammatory, hypolipidemic, and hepatoprotective activity.
Collapse
Affiliation(s)
- Cristian M. Trejo-Hurtado
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Mexico; (C.M.T.-H.); (C.I.L.-M.); (J.L.-d.l.C.); (D.J.P.-M.); (R.M.-P.); (R.S.-G.); (S.M.-A.); (C.C.-R.)
| | - Cinthia I. Landa-Moreno
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Mexico; (C.M.T.-H.); (C.I.L.-M.); (J.L.-d.l.C.); (D.J.P.-M.); (R.M.-P.); (R.S.-G.); (S.M.-A.); (C.C.-R.)
| | - Jenaro Lemus-de la Cruz
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Mexico; (C.M.T.-H.); (C.I.L.-M.); (J.L.-d.l.C.); (D.J.P.-M.); (R.M.-P.); (R.S.-G.); (S.M.-A.); (C.C.-R.)
| | - Donovan J. Peña-Montes
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Mexico; (C.M.T.-H.); (C.I.L.-M.); (J.L.-d.l.C.); (D.J.P.-M.); (R.M.-P.); (R.S.-G.); (S.M.-A.); (C.C.-R.)
| | - Rocío Montoya-Pérez
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Mexico; (C.M.T.-H.); (C.I.L.-M.); (J.L.-d.l.C.); (D.J.P.-M.); (R.M.-P.); (R.S.-G.); (S.M.-A.); (C.C.-R.)
| | - Rafael Salgado-Garciglia
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Mexico; (C.M.T.-H.); (C.I.L.-M.); (J.L.-d.l.C.); (D.J.P.-M.); (R.M.-P.); (R.S.-G.); (S.M.-A.); (C.C.-R.)
| | - Salvador Manzo-Avalos
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Mexico; (C.M.T.-H.); (C.I.L.-M.); (J.L.-d.l.C.); (D.J.P.-M.); (R.M.-P.); (R.S.-G.); (S.M.-A.); (C.C.-R.)
| | - Christian Cortés-Rojo
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Mexico; (C.M.T.-H.); (C.I.L.-M.); (J.L.-d.l.C.); (D.J.P.-M.); (R.M.-P.); (R.S.-G.); (S.M.-A.); (C.C.-R.)
| | - Juan Luis Monribot-Villanueva
- Red de Estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología, A.C., Xalapa 91073, Mexico; (J.L.M.-V.); (J.A.G.-A.)
| | - José Antonio Guerrero-Analco
- Red de Estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología, A.C., Xalapa 91073, Mexico; (J.L.M.-V.); (J.A.G.-A.)
| | - Alfredo Saavedra-Molina
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Mexico; (C.M.T.-H.); (C.I.L.-M.); (J.L.-d.l.C.); (D.J.P.-M.); (R.M.-P.); (R.S.-G.); (S.M.-A.); (C.C.-R.)
| |
Collapse
|
20
|
Gautam J, Kumari D, Aggarwal H, Gupta SK, Kasarla SS, Sarkar S, Priya MRK, Kamboj P, Kumar Y, Dikshit M. Characterization of lipid signatures in the plasma and insulin-sensitive tissues of the C57BL/6J mice fed on obesogenic diets. Biochim Biophys Acta Mol Cell Biol Lipids 2023:159348. [PMID: 37285928 DOI: 10.1016/j.bbalip.2023.159348] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 05/23/2023] [Accepted: 05/29/2023] [Indexed: 06/09/2023]
Abstract
Diet-induced obesity mouse models are widely utilized to investigate the underlying mechanisms of dyslipidemia, glucose intolerance, insulin resistance, hepatic steatosis, and type 2 diabetes mellitus (T2DM), as well as for screening potential drug compounds. However, there is limited knowledge regarding specific signature lipids that accurately reflect dietary disorders. In this study, we aimed to identify key lipid signatures using LC/MS-based untargeted lipidomics in the plasma, liver, adipose tissue (AT), and skeletal muscle tissues (SKM) of male C57BL/6J mice that were fed chow, LFD, or obesogenic diets (HFD, HFHF, and HFCD) for a duration of 20 weeks. Furthermore, we conducted a comprehensive lipid analysis to assess similarities and differences with human lipid profiles. The mice fed obesogenic diets exhibited weight gain, glucose intolerance, elevated BMI, glucose and insulin levels, and a fatty liver, resembling characteristics of T2DM and obesity in humans. In total, we identified approximately 368 lipids in plasma, 433 in the liver, 493 in AT, and 624 in SKM. Glycerolipids displayed distinct patterns across the tissues, differing from human findings. However, changes in sphingolipids, phospholipids, and the expression of inflammatory and fibrotic genes showed similarities to reported human findings. Significantly modulated pathways in the obesogenic diet-fed groups included ceramide de novo synthesis, sphingolipid remodeling, and the carboxylesterase pathway, while lipoprotein-mediated pathways were minimally affected.
Collapse
Affiliation(s)
- Jyoti Gautam
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - Deepika Kumari
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - Hobby Aggarwal
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - Sonu Kumar Gupta
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - Siva Swapna Kasarla
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - Soumalya Sarkar
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - M R Kamla Priya
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - Parul Kamboj
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - Yashwant Kumar
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India.
| | - Madhu Dikshit
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India.
| |
Collapse
|
21
|
Machado IF, Miranda RG, Dorta DJ, Rolo AP, Palmeira CM. Targeting Oxidative Stress with Polyphenols to Fight Liver Diseases. Antioxidants (Basel) 2023; 12:1212. [PMID: 37371941 DOI: 10.3390/antiox12061212] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Reactive oxygen species (ROS) are important second messengers in many metabolic processes and signaling pathways. Disruption of the balance between ROS generation and antioxidant defenses results in the overproduction of ROS and subsequent oxidative damage to biomolecules and cellular components that disturb cellular function. Oxidative stress contributes to the initiation and progression of many liver pathologies such as ischemia-reperfusion injury (LIRI), non-alcoholic fatty liver disease (NAFLD), and hepatocellular carcinoma (HCC). Therefore, controlling ROS production is an attractive therapeutic strategy in relation to their treatment. In recent years, increasing evidence has supported the therapeutic effects of polyphenols on liver injury via the regulation of ROS levels. In the current review, we summarize the effects of polyphenols, such as quercetin, resveratrol, and curcumin, on oxidative damage during conditions that induce liver injury, such as LIRI, NAFLD, and HCC.
Collapse
Affiliation(s)
- Ivo F Machado
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000 Coimbra, Portugal
- IIIUC-Institute of Interdisciplinary Research, University of Coimbra, 3000 Coimbra, Portugal
| | - Raul G Miranda
- School of Pharmaceutical Science of Ribeirão Preto, University of São Paulo, São Paulo 14040, Brazil
| | - Daniel J Dorta
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040, Brazil
| | - Anabela P Rolo
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000 Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, 3000 Coimbra, Portugal
| | - Carlos M Palmeira
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000 Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, 3000 Coimbra, Portugal
| |
Collapse
|
22
|
Li Q, Lin Y, Xu J, Liu Y, Jing Y, Huang R, Song C, Zhang L, Jin S. Diet Restriction Impact on High-Fat-Diet-Induced Obesity by Regulating Mitochondrial Cardiolipin Biosynthesis and Remodeling. Molecules 2023; 28:molecules28114522. [PMID: 37298998 DOI: 10.3390/molecules28114522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/22/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Diet restriction (DR) ameliorates obesity by regulating mitochondrial function. Cardiolipin (CL), a mitochondrial phospholipid, is closely associated with mitochondrial function. This study aimed to evaluate the anti-obesity effects of graded levels of DR based on mitochondrial CL levels in the liver. Obese mice were treated with 0%, 20%, 40%, and 60% reductions in the normal diet compared to normal animals (0 DR, 20 DR, 40 DR, and 60 DR groups, respectively). Biochemical and histopathological analyses were performed to evaluate the ameliorative effects of DR on obese mice. The altered profile of mitochondrial CL in the liver was explored using a targeted metabolomics strategy by ultra-high-pressure liquid chromatography MS/MS coupled with quadrupole time-of-flight mass spectrometry. Finally, gene expression associated with CL biosynthesis and remodeling was quantified. Tissue histopathology and biochemical index evaluations revealed significant improvements in the liver after DR, except for the 60 DR group. The variation in mitochondrial CL distribution and DR levels showed an inverted U-shape, and the CL content in the 40 DR group was the most upregulated. This result is consistent with the results of the target metabolomic analysis, which showed that 40 DR presented more variation. Furthermore, DR led to increased gene expression associated with CL biosynthesis and remodeling. This study provides new insights into the mitochondrial mechanisms underlying DR intervention in obesity.
Collapse
Affiliation(s)
- Qiaoyu Li
- College of Pharmacy, Hubei University of Chinese Medicine, 16 Huangjiahu West Road, Wuhan 430065, China
| | - Yuqi Lin
- College of Pharmacy, Hubei University of Chinese Medicine, 16 Huangjiahu West Road, Wuhan 430065, China
| | - Jinlin Xu
- College of Pharmacy, Hubei University of Chinese Medicine, 16 Huangjiahu West Road, Wuhan 430065, China
| | - Yukun Liu
- College of Pharmacy, Hubei University of Chinese Medicine, 16 Huangjiahu West Road, Wuhan 430065, China
| | - Yuxuan Jing
- College of Pharmacy, Hubei University of Chinese Medicine, 16 Huangjiahu West Road, Wuhan 430065, China
| | - Rongzeng Huang
- College of Pharmacy, Hubei University of Chinese Medicine, 16 Huangjiahu West Road, Wuhan 430065, China
| | - Chengwu Song
- College of Pharmacy, Hubei University of Chinese Medicine, 16 Huangjiahu West Road, Wuhan 430065, China
| | - Lijun Zhang
- College of Basic Medicine, Hubei University of Chinese Medicine, 16 Huangjiahu West Road, Wuhan 430065, China
| | - Shuna Jin
- College of Basic Medicine, Hubei University of Chinese Medicine, 16 Huangjiahu West Road, Wuhan 430065, China
| |
Collapse
|
23
|
Goicoechea L, Conde de la Rosa L, Torres S, García-Ruiz C, Fernández-Checa JC. Mitochondrial cholesterol: Metabolism and impact on redox biology and disease. Redox Biol 2023; 61:102643. [PMID: 36857930 PMCID: PMC9989693 DOI: 10.1016/j.redox.2023.102643] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/10/2023] [Accepted: 02/22/2023] [Indexed: 02/26/2023] Open
Abstract
Cholesterol is a crucial component of membrane bilayers by regulating their structural and functional properties. Cholesterol traffics to different cellular compartments including mitochondria, whose cholesterol content is low compared to other cell membranes. Despite the limited availability of cholesterol in the inner mitochondrial membrane (IMM), the metabolism of cholesterol in the IMM plays important physiological roles, acting as the precursor for the synthesis of steroid hormones and neurosteroids in steroidogenic tissues and specific neurons, respectively, or the synthesis of bile acids through an alternative pathway in the liver. Accumulation of cholesterol in mitochondria above physiological levels has a negative impact on mitochondrial function through several mechanisms, including the limitation of crucial antioxidant defenses, such as the glutathione redox cycle, increased generation of reactive oxygen species and consequent oxidative modification of cardiolipin, and defective assembly of respiratory supercomplexes. These adverse consequences of increased mitochondrial cholesterol trafficking trigger the onset of oxidative stress and cell death, and, ultimately, contribute to the development of diverse diseases, including metabolic liver diseases (i.e. fatty liver disease and liver cancer), as well as lysosomal disorders (i.e. Niemann-Pick type C disease) and neurodegenerative diseases (i.e. Alzheimer's disease). In this review, we summarize the metabolism and regulation of mitochondrial cholesterol and its potential impact on liver and neurodegenerative diseases.
Collapse
Affiliation(s)
- Leire Goicoechea
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic i Provincial de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red (CIBEREHD), Barcelona, Spain
| | - Laura Conde de la Rosa
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic i Provincial de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red (CIBEREHD), Barcelona, Spain
| | - Sandra Torres
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic i Provincial de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red (CIBEREHD), Barcelona, Spain
| | - Carmen García-Ruiz
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic i Provincial de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red (CIBEREHD), Barcelona, Spain; Research Center for ALPD, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| | - José C Fernández-Checa
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic i Provincial de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red (CIBEREHD), Barcelona, Spain; Research Center for ALPD, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| |
Collapse
|
24
|
Karadayian AG, Paez B, Bustamante J, Lores-Arnaiz S, Czerniczyniec A. Mitochondrial dysfunction due to in vitro exposure to atrazine and its metabolite in striatum. J Biochem Mol Toxicol 2023; 37:e23232. [PMID: 36181348 DOI: 10.1002/jbt.23232] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/28/2022] [Accepted: 09/16/2022] [Indexed: 01/18/2023]
Abstract
Atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine) has been described as a potential toxic for dopaminergic metabolism both in vivo and in vitro. Its main metabolite diamino-chloro triazine (DACT) has been shown to achieve higher levels in brain tissue than atrazine. The aim of this study was to evaluate the in vitro effects of atrazine and DACT on striatal mitochondrial function, active oxygen species generation, and nitric oxide (NO) content. Incubation of mitochondria with atrazine (10 µM) was not able to modify oxygen consumption. However, a 50% increase in malate-glutamate state 4 respiratory rates was observed after DACT treatment (100 µM) without changes in respiratory state 3. Atrazine was able to inhibit complex I-III activity by 30% and DACT induced a tendency to decrease by 17% in the striatum. Regarding reactive oxygen species (ROS), DACT increased H2 O2 production by 43%. Also, superoxide anion levels were higher (14%) after atrazine exposure than in control mitochondria. Incubation of striatal mitochondria with atrazine and DACT induced membrane depolarization by 15% and 19%, respectively. Also, atrazine increased NO content by 10% but no significant changes were observed after exposure of mitochondria to DACT. Glutathione peroxidase activity was inhibited (56%) by DACT and atrazine inhibited superoxide dismutase activity by 60%. Also, cardiolipin oxidation (15%) was observed after atrazine treatment. Summing up, the obtained results suggest that in vitro atrazine and DACT induce ROS production affecting striatal mitochondrial function. The atrazine effects would be attributed to a direct effect on the mitochondrial respiratory chain and superoxide dismutase activity while DACT appears to disturb glutathione-related enzyme system.
Collapse
Affiliation(s)
- Analía G Karadayian
- Facultad de Farmacia y Bioquímica, Fisicoquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Bioquímica y Medicina Molecular (IBIMOL), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Bárbara Paez
- Facultad de Farmacia y Bioquímica, Fisicoquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Juanita Bustamante
- Facultad de Farmacia y Bioquímica, Fisicoquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Silvia Lores-Arnaiz
- Facultad de Farmacia y Bioquímica, Fisicoquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Bioquímica y Medicina Molecular (IBIMOL), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Analía Czerniczyniec
- Facultad de Farmacia y Bioquímica, Fisicoquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Bioquímica y Medicina Molecular (IBIMOL), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
25
|
Onyango AN. Excessive gluconeogenesis causes the hepatic insulin resistance paradox and its sequelae. Heliyon 2022; 8:e12294. [PMID: 36582692 PMCID: PMC9792795 DOI: 10.1016/j.heliyon.2022.e12294] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/18/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Background Hepatic insulin signaling suppresses gluconeogenesis but promotes de novo lipid synthesis. Paradoxically, hepatic insulin resistance (HIR) enhances both gluconeogenesis and de novo lipid synthesis. Elucidation of the etiology of this paradox, which participates in the pathogenesis of non-alcoholic fatty liver disease (NAFLD), cardiovascular disease, the metabolic syndrome and hepatocellular carcinoma, has not been fully achieved. Scope of review This article briefly outlines the previously proposed hypotheses on the etiology of the HIR paradox. It then discusses literature consistent with an alternative hypothesis that excessive gluconeogenesis, the direct effect of HIR, is responsible for the aberrant lipogenesis. The mechanisms involved therein are explained, involving de novo synthesis of fructose and uric acid, promotion of glutamine anaplerosis, and induction of glucagon resistance. Thus, gluconeogenesis via lipogenesis promotes hepatic steatosis, a component of NAFLD, and dyslipidemia. Gluconeogenesis-centred mechanisms for the progression of NAFLD from simple steatosis to non-alcoholic steatohepatitis (NASH) and fibrosis are suggested. That NAFLD often precedes and predicts type 2 diabetes is explained by the ability of lipogenesis to cushion against blood glucose dysregulation in the earlier stages of NAFLD. Major conclusions HIR-induced excessive gluconeogenesis is a major cause of the HIR paradox and its sequelae. Such involvement of gluconeogenesis in lipid synthesis rationalizes the fact that several types of antidiabetic drugs ameliorate NAFLD. Thus, dietary, lifestyle and pharmacological targeting of HIR and hepatic gluconeogenesis may be a most viable approach for the prevention and management of the HIR-associated network of diseases.
Collapse
|
26
|
Wimalarathne MM, Wilkerson-Vidal QC, Hunt EC, Love-Rutledge ST. The case for FAT10 as a novel target in fatty liver diseases. Front Pharmacol 2022; 13:972320. [PMID: 36386217 PMCID: PMC9665838 DOI: 10.3389/fphar.2022.972320] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 10/12/2022] [Indexed: 12/13/2022] Open
Abstract
Human leukocyte antigen F locus adjacent transcript 10 (FAT10) is a ubiquitin-like protein that targets proteins for degradation. TNFα and IFNγ upregulate FAT10, which increases susceptibility to inflammation-driven diseases like nonalcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), and hepatocellular carcinoma (HCC). It is well established that inflammation contributes to fatty liver disease, but how inflammation contributes to upregulation and what genes are involved is still poorly understood. New evidence shows that FAT10 plays a role in mitophagy, autophagy, insulin signaling, insulin resistance, and inflammation which may be directly associated with fatty liver disease development. This review will summarize the current literature regarding FAT10 role in developing liver diseases and potential therapeutic targets for nonalcoholic/alcoholic fatty liver disease and hepatocellular carcinoma.
Collapse
|
27
|
Sharma S, Sharma P, Bailey T, Bhattarai S, Subedi U, Miller C, Ara H, Kidambi S, Sun H, Panchatcharam M, Miriyala S. Electrophilic Aldehyde 4-Hydroxy-2-Nonenal Mediated Signaling and Mitochondrial Dysfunction. Biomolecules 2022; 12:1555. [PMID: 36358905 PMCID: PMC9687674 DOI: 10.3390/biom12111555] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/22/2022] [Accepted: 10/23/2022] [Indexed: 01/21/2023] Open
Abstract
Reactive oxygen species (ROS), a by-product of aerobic life, are highly reactive molecules with unpaired electrons. The excess of ROS leads to oxidative stress, instigating the peroxidation of polyunsaturated fatty acids (PUFA) in the lipid membrane through a free radical chain reaction and the formation of the most bioactive aldehyde, known as 4-hydroxynonenal (4-HNE). 4-HNE functions as a signaling molecule and toxic product and acts mainly by forming covalent adducts with nucleophilic functional groups in proteins, nucleic acids, and lipids. The mitochondria have been implicated as a site for 4-HNE generation and adduction. Several studies clarified how 4-HNE affects the mitochondria's functions, including bioenergetics, calcium homeostasis, and mitochondrial dynamics. Our research group has shown that 4-HNE activates mitochondria apoptosis-inducing factor (AIFM2) translocation and facilitates apoptosis in mice and human heart tissue during anti-cancer treatment. Recently, we demonstrated that a deficiency of SOD2 in the conditional-specific cardiac knockout mouse increases ROS, and subsequent production of 4-HNE inside mitochondria leads to the adduction of several mitochondrial respiratory chain complex proteins. Moreover, we highlighted the physiological functions of HNE and discussed their relevance in human pathophysiology and current discoveries concerning 4-HNE effects on mitochondria.
Collapse
Affiliation(s)
- Sudha Sharma
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA
| | - Papori Sharma
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA
| | - Tara Bailey
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA
| | - Susmita Bhattarai
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA
| | - Utsab Subedi
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA
| | - Chloe Miller
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA
| | - Hosne Ara
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA
| | - Srivatsan Kidambi
- Department of Chemical & Biomolecular Engineering, University of Nebraska, Lincoln, NB 68588, USA
| | - Hong Sun
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA
| | - Manikandan Panchatcharam
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA
| | - Sumitra Miriyala
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA
| |
Collapse
|
28
|
Di Ciaula A, Bonfrate L, Portincasa P. The role of microbiota in nonalcoholic fatty liver disease. Eur J Clin Invest 2022; 52:e13768. [PMID: 35294774 DOI: 10.1111/eci.13768] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/17/2022] [Accepted: 03/06/2022] [Indexed: 02/05/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most frequent liver disease worldwide. Gut microbiota can play a role in the pathogenesis of NAFLD since dysbiosis is associated with reduced bacterial diversity, altered Firmicutes/Bacteroidetes ratio, a relative abundance of alcohol-producing bacteria, or other specific genera. Changes can promote disrupted intestinal barrier and hyperpermeability, filtration of bacterial products, activation of the immune system, and pro-inflammatory changes in the intestine, in the liver, and at a systemic level. Microbiota-derived molecules can contribute to the steatogenic effects. The link between gut dysbiosis and NAFLD, however, is confused by several factors which include age, BMI, comorbidities, dietary components, and lifestyle. The role of toxic chemicals in food and water requires further studies in both gut dysbiosis and NAFLD. We can anticipate that gut microbiota manipulation will represent a potential therapeutic tool to delay or reverse the progression of NAFLD, paving the way to primary prevention measures.
Collapse
Affiliation(s)
- Agostino Di Ciaula
- Clinica Medica "A. Murri", Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, Bari, Italy
| | - Leonilde Bonfrate
- Clinica Medica "A. Murri", Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, Bari, Italy
| | - Piero Portincasa
- Clinica Medica "A. Murri", Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, Bari, Italy
| |
Collapse
|
29
|
Ramanathan R, Ali AH, Ibdah JA. Mitochondrial Dysfunction Plays Central Role in Nonalcoholic Fatty Liver Disease. Int J Mol Sci 2022; 23:ijms23137280. [PMID: 35806284 PMCID: PMC9267060 DOI: 10.3390/ijms23137280] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 12/04/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a global pandemic that affects one-quarter of the world’s population. NAFLD includes a spectrum of progressive liver disease from steatosis to nonalcoholic steatohepatitis (NASH), fibrosis, and cirrhosis and can be complicated by hepatocellular carcinoma. It is strongly associated with metabolic syndromes, obesity, and type 2 diabetes, and it has been shown that metabolic dysregulation is central to its pathogenesis. Recently, it has been suggested that metabolic- (dysfunction) associated fatty liver disease (MAFLD) is a more appropriate term to describe the disease than NAFLD, which puts increased emphasis on the important role of metabolic dysfunction in its pathogenesis. There is strong evidence that mitochondrial dysfunction plays a significant role in the development and progression of NAFLD. Impaired mitochondrial fatty acid oxidation and, more recently, a reduction in mitochondrial quality, have been suggested to play a major role in NAFLD development and progression. In this review, we provide an overview of our current understanding of NAFLD and highlight how mitochondrial dysfunction contributes to its pathogenesis in both animal models and human subjects. Further we discuss evidence that the modification of mitochondrial function modulates NAFLD and that targeting mitochondria is a promising new avenue for drug development to treat NAFLD/NASH.
Collapse
Affiliation(s)
- Raghu Ramanathan
- Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO 65212, USA; (R.R.); (A.H.A.)
- Harry S. Truman Memorial Veterans Medical Center, Columbia, MO 65201, USA
| | - Ahmad Hassan Ali
- Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO 65212, USA; (R.R.); (A.H.A.)
- Harry S. Truman Memorial Veterans Medical Center, Columbia, MO 65201, USA
| | - Jamal A. Ibdah
- Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO 65212, USA; (R.R.); (A.H.A.)
- Harry S. Truman Memorial Veterans Medical Center, Columbia, MO 65201, USA
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65212, USA
- Correspondence: ; Tel.: +573-882-7349; Fax: +573-884-4595
| |
Collapse
|
30
|
Ding N, Wang K, Jiang H, Yang M, Zhang L, Fan X, Zou Q, Yu J, Dong H, Cheng S, Xu Y, Liu J. AGK regulates the progression to NASH by affecting mitochondria complex I function. Am J Cancer Res 2022; 12:3237-3250. [PMID: 35547757 PMCID: PMC9065199 DOI: 10.7150/thno.69826] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/25/2022] [Indexed: 12/21/2022] Open
Abstract
Background: Impaired mitochondrial function contributes to non-alcoholic steatohepatitis (NASH). Acylglycerol kinase (AGK) is a subunit of the translocase of the mitochondrial inner membrane 22 (TIM22) protein import complex. AGK mutation is the leading cause of Sengers syndrome, characterized by congenital cataracts, hypertrophic cardiomyopathy, skeletal myopathy, lactic acidosis, and liver dysfunction. The potential roles and mechanisms of AGK in NASH are not yet elucidated. Methods: Hepatic-specific AGK-deficient mice and AGK G126E mutation (AGK kinase activity arrest) mice were on a choline-deficient and high-fat diet (CDAHFD) and a methionine choline-deficient diet (MCD). The mitochondrial function and the molecular mechanisms underlying AGK were investigated in the pathogenesis of NASH. Results: The levels of AGK were significantly downregulated in human NASH liver samples. AGK deficiency led to severe liver damage and lipid accumulation in mice. Aged mice lacking hepatocyte AGK spontaneously developed NASH. AGK G126E mutation did not affect the structure and function of hepatocytes. AGK deficiency, but not AGK G126E mice, aggravated CDAHFD- and MCD-induced NASH symptoms. AGK deficiency-induced liver damage could be attributed to hepatic mitochondrial dysfunction. The mechanism revealed that AGK interacts with mitochondrial respiratory chain complex I subunits, NDUFS2 and NDUFA10, and regulates mitochondrial fatty acid metabolism. Moreover, the AGK DGK domain might directly interact with NDUFS2 and NDUFA10 to maintain the hepatic mitochondrial respiratory chain complex I function. Conclusions: The current study revealed the critical roles of AGK in NASH. AGK interacts with mitochondrial respiratory chain complex I to maintain mitochondrial integrity via the kinase-independent pathway.
Collapse
Affiliation(s)
- Nan Ding
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kang Wang
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Haojie Jiang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mina Yang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lin Zhang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuemei Fan
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiang Zou
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianxiu Yu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Dong
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Shuqun Cheng
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Yanyan Xu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junling Liu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
31
|
Karkucinska-Wieckowska A, Simoes ICM, Kalinowski P, Lebiedzinska-Arciszewska M, Zieniewicz K, Milkiewicz P, Górska-Ponikowska M, Pinton P, Malik AN, Krawczyk M, Oliveira PJ, Wieckowski MR. Mitochondria, oxidative stress and nonalcoholic fatty liver disease: A complex relationship. Eur J Clin Invest 2022; 52:e13622. [PMID: 34050922 DOI: 10.1111/eci.13622] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/19/2021] [Accepted: 05/22/2021] [Indexed: 02/06/2023]
Abstract
According to the 'multiple-hit' hypothesis, several factors can act simultaneously in nonalcoholic fatty liver disease (NAFLD) progression. Increased nitro-oxidative (nitroso-oxidative) stress may be considered one of the main contributors involved in the development and risk of NAFLD progression to nonalcoholic steatohepatitis (NASH) characterized by inflammation and fibrosis. Moreover, it has been repeatedly postulated that mitochondrial abnormalities are closely related to the development and progression of liver steatosis and NAFLD pathogenesis. However, it is difficult to determine with certainty whether mitochondrial dysfunction or oxidative stress are primary events or a simple consequence of NAFLD development. On the one hand, increasing lipid accumulation in hepatocytes could cause a wide range of effects from mild to severe mitochondrial damage with a negative impact on cell fate. This can start the cascade of events, including an increase of cellular reactive nitrogen species (RNS) and reactive oxygen species (ROS) production that promotes disease progression from simple steatosis to more severe NAFLD stages. On the other hand, progressing mitochondrial bioenergetic catastrophe and oxidative stress manifestation could be considered accompanying events in the vast spectrum of abnormalities observed during the transition from NAFL to NASH and cirrhosis. This review updates our current understanding of NAFLD pathogenesis and clarifies whether mitochondrial dysfunction and ROS/RNS are culprits or bystanders of NAFLD progression.
Collapse
Affiliation(s)
| | - Ines C M Simoes
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Piotr Kalinowski
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Magdalena Lebiedzinska-Arciszewska
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Krzysztof Zieniewicz
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Piotr Milkiewicz
- Liver and Internal Medicine Unit, Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
- Translational Medicine Group, Pomeranian Medical University, Szczecin, Poland
| | | | - Paolo Pinton
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies, University of Ferrara, Ferrara, Italy
| | - Afshan N Malik
- Department of Diabetes, School of Life Course, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Marcin Krawczyk
- Laboratory of Metabolic Liver Diseases, Department of General, Transplant and Liver Surgery, Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Paulo J Oliveira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, CIBB - Centre for Innovative Biomedicine and Biotechnology, Coimbra, Portugal
| | - Mariusz R Wieckowski
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
32
|
Portincasa P, Bonfrate L, Khalil M, Angelis MD, Calabrese FM, D’Amato M, Wang DQH, Di Ciaula A. Intestinal Barrier and Permeability in Health, Obesity and NAFLD. Biomedicines 2021; 10:83. [PMID: 35052763 PMCID: PMC8773010 DOI: 10.3390/biomedicines10010083] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/20/2021] [Accepted: 12/28/2021] [Indexed: 02/07/2023] Open
Abstract
The largest surface of the human body exposed to the external environment is the gut. At this level, the intestinal barrier includes luminal microbes, the mucin layer, gastrointestinal motility and secretion, enterocytes, immune cells, gut vascular barrier, and liver barrier. A healthy intestinal barrier is characterized by the selective permeability of nutrients, metabolites, water, and bacterial products, and processes are governed by cellular, neural, immune, and hormonal factors. Disrupted gut permeability (leaky gut syndrome) can represent a predisposing or aggravating condition in obesity and the metabolically associated liver steatosis (nonalcoholic fatty liver disease, NAFLD). In what follows, we describe the morphological-functional features of the intestinal barrier, the role of major modifiers of the intestinal barrier, and discuss the recent evidence pointing to the key role of intestinal permeability in obesity/NAFLD.
Collapse
Affiliation(s)
- Piero Portincasa
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (L.B.); (M.K.); (A.D.C.)
| | - Leonilde Bonfrate
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (L.B.); (M.K.); (A.D.C.)
| | - Mohamad Khalil
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (L.B.); (M.K.); (A.D.C.)
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy; (M.D.A.); (F.M.C.)
| | - Maria De Angelis
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy; (M.D.A.); (F.M.C.)
| | - Francesco Maria Calabrese
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy; (M.D.A.); (F.M.C.)
| | - Mauro D’Amato
- Gastrointestinal Genetics Lab, CIC bioGUNE-BRTA, 48160 Derio, Spain;
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| | - David Q.-H. Wang
- Department of Medicine and Genetics, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, New York, NY 10461, USA;
| | - Agostino Di Ciaula
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (L.B.); (M.K.); (A.D.C.)
| |
Collapse
|
33
|
Hyperbaric Oxygen Treatment: Effects on Mitochondrial Function and Oxidative Stress. Biomolecules 2021; 11:biom11121827. [PMID: 34944468 PMCID: PMC8699286 DOI: 10.3390/biom11121827] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 12/15/2022] Open
Abstract
Hyperbaric oxygen treatment (HBOT)—the administration of 100% oxygen at atmospheric pressure (ATA) greater than 1 ATA—increases the proportion of dissolved oxygen in the blood five- to twenty-fold. This increase in accessible oxygen places the mitochondrion—the organelle that consumes most of the oxygen that we breathe—at the epicenter of HBOT’s effects. As the mitochondrion is also a major site for the production of reactive oxygen species (ROS), it is possible that HBOT will increase also oxidative stress. Depending on the conditions of the HBO treatment (duration, pressure, umber of treatments), short-term treatments have been shown to have deleterious effects on both mitochondrial activity and production of ROS. Long-term treatment, on the other hand, improves mitochondrial activity and leads to a decrease in ROS levels, partially due to the effects of HBOT, which increases antioxidant defense mechanisms. Many diseases and conditions are characterized by mitochondrial dysfunction and imbalance between ROS and antioxidant scavengers, suggesting potential therapeutic intervention for HBOT. In the present review, we will present current views on the effects of HBOT on mitochondrial function and oxidative stress, the interplay between them and the implications for several diseases.
Collapse
|
34
|
Song B, Fu M, He F, Zhao H, Wang Y, Nie Q, Wu B. Methionine Deficiency Affects Liver and Kidney Health, Oxidative Stress, and Ileum Mucosal Immunity in Broilers. Front Vet Sci 2021; 8:722567. [PMID: 34631856 PMCID: PMC8493001 DOI: 10.3389/fvets.2021.722567] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/17/2021] [Indexed: 12/12/2022] Open
Abstract
Methionine (Met) is the first limiting amino acid in broiler diets, but its unclear physiological effects hamper its effective use in the poultry production industry. This study assessed the effect of a Met-deficient (MD) diet on chicken liver and kidney health, exploring the associated mechanisms of antioxidant capacity and ileum mucosal immunity. Seventy-two broilers were administered either the control diet (0.46% Met in starter diet, 0.36% Met in grower diet) or the MD diet (0.22% Met in starter diet, 0.24% Met in grower diet). Liver and kidney samples were collected every 14 days for anatomical, histological, and ultrastructural analyses, accompanied by oxidative stress assessment. Meanwhile, T- and B-lymphocyte abundance and essential cytokine gene expression were measured in the ileum, the center of the gut–liver–kidney axis. Signs of kidney and liver injury were observed morphologically in the MD group at 42 days of age. Furthermore, aspartate aminotransferase, alanine aminotransferase, creatinine, and uric acid levels were decreased in the MD group compared with the control group, accompanied by decreased superoxide dismutase activity, increased malondialdehyde content, decreased numbers of T and B lymphocytes, and decreased cytokine expression in the ileum, such as IL-2, IL-6, LITAF, and IFN-γ. These results suggest that MD can induce kidney and liver injury, and the injury pathway might be related to oxidative stress and intestinal immunosuppression.
Collapse
Affiliation(s)
- Baolin Song
- College of Life Sciences, China West Normal University, Nanchong, China.,Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Min Fu
- College of Life Sciences, China West Normal University, Nanchong, China
| | - Fang He
- College of Life Sciences, China West Normal University, Nanchong, China
| | - Huan Zhao
- College of Life Sciences, China West Normal University, Nanchong, China.,Key Laboratory of Southwest China Wildlife Resources Conservation, Ministry of Education P. R. China, Nanchong, China
| | - Yu Wang
- College of Life Sciences, China West Normal University, Nanchong, China
| | - Qihang Nie
- College of Life Sciences, China West Normal University, Nanchong, China
| | - Bangyuan Wu
- College of Life Sciences, China West Normal University, Nanchong, China.,Key Laboratory of Southwest China Wildlife Resources Conservation, Ministry of Education P. R. China, Nanchong, China
| |
Collapse
|
35
|
Sakurai T, Chen Z, Yamahata A, Hayasaka T, Satoh H, Sekiguchi H, Chiba H, Hui SP. A mouse model of short-term, diet-induced fatty liver with abnormal cardiolipin remodeling via downregulated Tafazzin gene expression. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:4995-5001. [PMID: 33543498 DOI: 10.1002/jsfa.11144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/20/2021] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Cardiolipin (CL) helps maintain mitochondrial structure and function. Here we investigated whether a high carbohydrate diet (HCD) fed to mice for a short period (5 days) could modulate the CL level, including that of monolysoCL (MLCL) in the liver. RESULTS Total CL in the HCD group was 22% lower than that in the normal chow diet (NCD) group (P < 0.05). The CL72:8 level strikingly decreased by 93% (P < 0.0001), whereas total nascent CLs (CLs other than CL72:8) increased (P < 0.01) in the HCD group. The total MLCL in the HCD group increased by 2.4-fold compared with that in the NCD group (P < 0.05). Tafazzin expression in the HCD group was significantly downregulated compared with that in the NCD group (P < 0.05). A strong positive correlation between nascent CL and total MLCL (r = 0.955, P < 0.0001), and a negative correlation between MLCL and Tafazzin expression (r = -0.593, P = 0.0883) were observed. CONCLUSION A HCD modulated the fatty acid composition of CL and MLCL via Tafazzin in the liver, which could lead to mitochondrial dysfunction. This model may be useful for elucidating the relationship between fatty liver and mitochondrial dysfunction. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Zhen Chen
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Arisa Yamahata
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | | | - Hiroshi Satoh
- Department of Food and Health Research, Life Science Institute Co. Ltd and Nissei Bio Co. Ltd, Center for Food and Medical Innovation, Institute for the Promotion of Business-Regional Collaboration, Hokkaido University, Sapporo, Japan
- Research and Development division, Hokkaido Research Institute, Nissei Bio Co. Ltd, Eniwa, Japan
| | - Hirotaka Sekiguchi
- Department of Food and Health Research, Life Science Institute Co. Ltd and Nissei Bio Co. Ltd, Center for Food and Medical Innovation, Institute for the Promotion of Business-Regional Collaboration, Hokkaido University, Sapporo, Japan
- R&D Planning and Administration Department, Life Science Institute Co., Ltd, Tokyo, Japan
| | - Hitoshi Chiba
- Department of Nutrition, Sapporo University of Health Sciences, Sapporo, Japan
| | - Shu-Ping Hui
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| |
Collapse
|
36
|
Middleton P, Vergis N. Mitochondrial dysfunction and liver disease: role, relevance, and potential for therapeutic modulation. Therap Adv Gastroenterol 2021; 14:17562848211031394. [PMID: 34377148 PMCID: PMC8320552 DOI: 10.1177/17562848211031394] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 06/18/2021] [Indexed: 02/04/2023] Open
Abstract
Mitochondria are key organelles involved in energy production as well as numerous metabolic processes. There is a growing interest in the role of mitochondrial dysfunction in the pathogenesis of common chronic diseases as well as in cancer development. This review will examine the role mitochondria play in the pathophysiology of common liver diseases, including alcohol-related liver disease, non-alcoholic fatty liver disease, chronic hepatitis B and hepatocellular carcinoma. Mitochondrial dysfunction is described widely in the literature in studies examining patient tissue and in disease models. Despite significant differences in pathophysiology between chronic liver diseases, common mitochondrial defects are described, including increased mitochondrial reactive oxygen species production and impaired oxidative phosphorylation. We review the current literature on mitochondrial-targeted therapies, which have the potential to open new therapeutic avenues in the management of patients with chronic liver disease.
Collapse
Affiliation(s)
| | - Nikhil Vergis
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| |
Collapse
|
37
|
Di Ciaula A, Calamita G, Shanmugam H, Khalil M, Bonfrate L, Wang DQH, Baffy G, Portincasa P. Mitochondria Matter: Systemic Aspects of Nonalcoholic Fatty Liver Disease (NAFLD) and Diagnostic Assessment of Liver Function by Stable Isotope Dynamic Breath Tests. Int J Mol Sci 2021; 22:7702. [PMID: 34299321 PMCID: PMC8305940 DOI: 10.3390/ijms22147702] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/08/2021] [Accepted: 07/14/2021] [Indexed: 02/07/2023] Open
Abstract
The liver plays a key role in systemic metabolic processes, which include detoxification, synthesis, storage, and export of carbohydrates, lipids, and proteins. The raising trends of obesity and metabolic disorders worldwide is often associated with the nonalcoholic fatty liver disease (NAFLD), which has become the most frequent type of chronic liver disorder with risk of progression to cirrhosis and hepatocellular carcinoma. Liver mitochondria play a key role in degrading the pathways of carbohydrates, proteins, lipids, and xenobiotics, and to provide energy for the body cells. The morphological and functional integrity of mitochondria guarantee the proper functioning of β-oxidation of free fatty acids and of the tricarboxylic acid cycle. Evaluation of the liver in clinical medicine needs to be accurate in NAFLD patients and includes history, physical exam, imaging, and laboratory assays. Evaluation of mitochondrial function in chronic liver disease and NAFLD is now possible by novel diagnostic tools. "Dynamic" liver function tests include the breath test (BT) based on the use of substrates marked with the non-radioactive, naturally occurring stable isotope 13C. Hepatocellular metabolization of the substrate will generate 13CO2, which is excreted in breath and measured by mass spectrometry or infrared spectroscopy. Breath levels of 13CO2 are biomarkers of specific metabolic processes occurring in the hepatocyte cytosol, microsomes, and mitochondria. 13C-BTs explore distinct chronic liver diseases including simple liver steatosis, non-alcoholic steatohepatitis, liver fibrosis, cirrhosis, hepatocellular carcinoma, drug, and alcohol effects. In NAFLD, 13C-BT use substrates such as α-ketoisocaproic acid, methionine, and octanoic acid to assess mitochondrial oxidation capacity which can be impaired at an early stage of disease. 13C-BTs represent an indirect, cost-effective, and easy method to evaluate dynamic liver function. Further applications are expected in clinical medicine. In this review, we discuss the involvement of liver mitochondria in the progression of NAFLD, together with the role of 13C-BT in assessing mitochondrial function and its potential use in the prevention and management of NAFLD.
Collapse
Affiliation(s)
- Agostino Di Ciaula
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (A.D.C.); (H.S.); (M.K.); (L.B.)
| | - Giuseppe Calamita
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari “Aldo Moro”, 70100 Bari, Italy;
| | - Harshitha Shanmugam
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (A.D.C.); (H.S.); (M.K.); (L.B.)
| | - Mohamad Khalil
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (A.D.C.); (H.S.); (M.K.); (L.B.)
| | - Leonilde Bonfrate
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (A.D.C.); (H.S.); (M.K.); (L.B.)
| | - David Q.-H. Wang
- Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Department of Medicine and Genetics, Division of Gastroenterology and Liver Diseases, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Gyorgy Baffy
- Department of Medicine, VA Boston Healthcare System and Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02130, USA;
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (A.D.C.); (H.S.); (M.K.); (L.B.)
| |
Collapse
|
38
|
Changes in Key Mitochondrial Lipids Accompany Mitochondrial Dysfunction and Oxidative Stress in NAFLD. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9986299. [PMID: 34257827 PMCID: PMC8257344 DOI: 10.1155/2021/9986299] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 05/06/2021] [Indexed: 12/30/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a dysmetabolic hepatic damage of increasing severity: simple fat accumulation (steatosis), nonalcoholic steatohepatitis (NASH), and hepatic fibrosis. Oxidative stress is considered an important factor in producing hepatocyte injury associated with NAFLD progression. Studies also suggest a link between the accumulation of specific hepatic lipid species, mitochondrial dysfunction, and the progression of NAFLD. However, it is unclear whether mitochondrial lipid modifications are involved in NAFLD progression. To gain insight into the relationship between mitochondrial lipids and disease progression through different stages of NAFLD, we performed lipidomic analyses on mouse livers at different stages of western diet-induced NAFLD, with or without hepatic fibrosis. After organelle separation, we studied separately the mitochondrial and the “nonmitochondrial” hepatic lipidomes. We identified 719 lipid species from 16 lipid families. Remarkably, the western diet triggered time-dependent changes in the mitochondrial lipidome, whereas the “nonmitochondrial” lipidome showed little difference with levels of hepatic steatosis or the presence of fibrosis. In mitochondria, the changes in the lipidome preceded hepatic fibrosis. In particular, two critical phospholipids, phosphatidic acid (PA) and cardiolipin (CL), displayed opposite responses in mitochondria. Decrease in CL and increase in PA were concurrent with an increase of coenzyme Q. Electron paramagnetic resonance spectroscopy superoxide spin trapping and Cu2+ measurement showed the progressive increase in oxidative stress in the liver. Overall, these results suggest mitochondrial lipid modifications could act as an early event in mitochondrial dysfunction and NAFLD progression.
Collapse
|
39
|
Huang B, Xiong X, Zhang L, Liu X, Wang Y, Gong X, Sang Q, Lu Y, Qu H, Zheng H, Zheng Y. PSA controls hepatic lipid metabolism by regulating the NRF2 signaling pathway. J Mol Cell Biol 2021; 13:527-539. [PMID: 34048566 PMCID: PMC8530519 DOI: 10.1093/jmcb/mjab033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/26/2021] [Accepted: 03/30/2021] [Indexed: 11/30/2022] Open
Abstract
The activity of proteinase is reported to correlate with the development and progression of nonalcoholic fatty liver disease (NAFLD). Puromycin-sensitive aminopeptidase (PSA/NPEPPS) is an integral nontransmembrane enzyme that functions to catalyze the cleavage of amino acids near the N-terminus of polypeptides. A previous study suggested that this enzyme acts as a regulator of neuropeptide activity; however, the metabolic function of this enzyme in the liver has not been explored. Here, we identified the novel role of PSA in hepatic lipid metabolism. Specifically, PSA expression was lower in fatty livers from NAFLD patients and mice (HFD, ob/ob, and db/db). PSA knockdown in cultured hepatocytes exacerbated diet-induced triglyceride accumulation through enhanced lipogenesis and attenuated fatty acid β-oxidation. Moreover, PSA mediated activation of the master regulator of antioxidant response, nuclear factor erythroid 2-related factor 2 (NRF2), by stabilizing NRF2 protein expression, which further induced downstream antioxidant enzymes to protect the liver from oxidative stress and lipid overload. Accordingly, liver-specific PSA overexpression attenuated hepatic lipid accumulation and steatosis in ob/ob mice. Furthermore, in human liver tissue samples, decreased PSA expression correlated with the progression of NAFLD. Overall, our findings suggest that PSA is a pivotal regulator of hepatic lipid metabolism and its antioxidant function occurs by suppressing NRF2 ubiquitination. Moreover, PSA may be a potential biomarker and therapeutic target for treating NAFLD.
Collapse
Affiliation(s)
- Bangliang Huang
- Department of Endocrinology, Translational Research of Diabetes Key Laboratory of Chongqing Education Commission of China, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Xin Xiong
- Department of Endocrinology, Translational Research of Diabetes Key Laboratory of Chongqing Education Commission of China, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Linlin Zhang
- Department of Endocrinology, Translational Research of Diabetes Key Laboratory of Chongqing Education Commission of China, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Xiufei Liu
- Department of Endocrinology, Translational Research of Diabetes Key Laboratory of Chongqing Education Commission of China, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Yuren Wang
- Department of Endocrinology, Translational Research of Diabetes Key Laboratory of Chongqing Education Commission of China, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Xiaoli Gong
- Department of Endocrinology, Translational Research of Diabetes Key Laboratory of Chongqing Education Commission of China, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Qian Sang
- Department of Endocrinology, Translational Research of Diabetes Key Laboratory of Chongqing Education Commission of China, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Yongling Lu
- Medical Research Center, Southwest Hospital of Army Medical University, Chongqing, China
| | - Hua Qu
- Department of Endocrinology, Translational Research of Diabetes Key Laboratory of Chongqing Education Commission of China, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Hongting Zheng
- Department of Endocrinology, Translational Research of Diabetes Key Laboratory of Chongqing Education Commission of China, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Yi Zheng
- Department of Endocrinology, Translational Research of Diabetes Key Laboratory of Chongqing Education Commission of China, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| |
Collapse
|
40
|
Di Ciaula A, Passarella S, Shanmugam H, Noviello M, Bonfrate L, Wang DQH, Portincasa P. Nonalcoholic Fatty Liver Disease (NAFLD). Mitochondria as Players and Targets of Therapies? Int J Mol Sci 2021; 22:5375. [PMID: 34065331 PMCID: PMC8160908 DOI: 10.3390/ijms22105375] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease and represents the hepatic expression of several metabolic abnormalities of high epidemiologic relevance. Fat accumulation in the hepatocytes results in cellular fragility and risk of progression toward necroinflammation, i.e., nonalcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and eventually hepatocellular carcinoma. Several pathways contribute to fat accumulation and damage in the liver and can also involve the mitochondria, whose functional integrity is essential to maintain liver bioenergetics. In NAFLD/NASH, both structural and functional mitochondrial abnormalities occur and can involve mitochondrial electron transport chain, decreased mitochondrial β-oxidation of free fatty acids, excessive generation of reactive oxygen species, and lipid peroxidation. NASH is a major target of therapy, but there is no established single or combined treatment so far. Notably, translational and clinical studies point to mitochondria as future therapeutic targets in NAFLD since the prevention of mitochondrial damage could improve liver bioenergetics.
Collapse
Affiliation(s)
- Agostino Di Ciaula
- Department of Biomedical Sciences & Human Oncology, Clinica Medica “A. Murri”, University of Bari Medical School, 70124 Bari, Italy; (A.D.C.); (H.S.); (M.N.); (L.B.)
| | | | - Harshitha Shanmugam
- Department of Biomedical Sciences & Human Oncology, Clinica Medica “A. Murri”, University of Bari Medical School, 70124 Bari, Italy; (A.D.C.); (H.S.); (M.N.); (L.B.)
| | - Marica Noviello
- Department of Biomedical Sciences & Human Oncology, Clinica Medica “A. Murri”, University of Bari Medical School, 70124 Bari, Italy; (A.D.C.); (H.S.); (M.N.); (L.B.)
| | - Leonilde Bonfrate
- Department of Biomedical Sciences & Human Oncology, Clinica Medica “A. Murri”, University of Bari Medical School, 70124 Bari, Italy; (A.D.C.); (H.S.); (M.N.); (L.B.)
| | - David Q.-H. Wang
- Department of Medicine and Genetics, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Piero Portincasa
- Department of Biomedical Sciences & Human Oncology, Clinica Medica “A. Murri”, University of Bari Medical School, 70124 Bari, Italy; (A.D.C.); (H.S.); (M.N.); (L.B.)
| |
Collapse
|
41
|
Oemer G, Koch J, Wohlfarter Y, Alam MT, Lackner K, Sailer S, Neumann L, Lindner HH, Watschinger K, Haltmeier M, Werner ER, Zschocke J, Keller MA. Phospholipid Acyl Chain Diversity Controls the Tissue-Specific Assembly of Mitochondrial Cardiolipins. Cell Rep 2021; 30:4281-4291.e4. [PMID: 32209484 DOI: 10.1016/j.celrep.2020.02.115] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/23/2020] [Accepted: 02/28/2020] [Indexed: 12/16/2022] Open
Abstract
Cardiolipin (CL) is a phospholipid specific for mitochondrial membranes and crucial for many core tasks of this organelle. Its acyl chain configurations are tissue specific, functionally important, and generated via post-biosynthetic remodeling. However, this process lacks the necessary specificity to explain CL diversity, which is especially evident for highly specific CL compositions in mammalian tissues. To investigate the so far elusive regulatory origin of CL homeostasis in mice, we combine lipidomics, integrative transcriptomics, and data-driven machine learning. We demonstrate that not transcriptional regulation, but cellular phospholipid compositions are closely linked to the tissue specificity of CL patterns allowing artificial neural networks to precisely predict cross-tissue CL compositions in a consistent mechanistic specificity rationale. This is especially relevant for the interpretation of disease-related perturbations of CL homeostasis, by allowing differentiation between specific aberrations in CL metabolism and changes caused by global alterations in cellular (phospho-)lipid metabolism.
Collapse
Affiliation(s)
- Gregor Oemer
- Institute of Human Genetics, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Jakob Koch
- Institute of Human Genetics, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Yvonne Wohlfarter
- Institute of Human Genetics, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Mohammad T Alam
- Warwick Medical School, The University of Warwick, Warwick, CV4 7AL Coventry, UK
| | - Katharina Lackner
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Sabrina Sailer
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Lukas Neumann
- Department of Basic Sciences in Engineering Science, University of Innsbruck, 6020 Innsbruck, Austria
| | - Herbert H Lindner
- Institute of Clinical Biochemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Katrin Watschinger
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Markus Haltmeier
- Department of Mathematics, University of Innsbruck, 6020 Innsbruck, Austria
| | - Ernst R Werner
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Johannes Zschocke
- Institute of Human Genetics, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Markus A Keller
- Institute of Human Genetics, Medical University of Innsbruck, 6020 Innsbruck, Austria.
| |
Collapse
|
42
|
Cui P, Hu W, Ma T, Hu M, Tong X, Zhang F, Shi J, Xu X, Li X, Shao LR, Billig H, Feng Y. Long-term androgen excess induces insulin resistance and non-alcoholic fatty liver disease in PCOS-like rats. J Steroid Biochem Mol Biol 2021; 208:105829. [PMID: 33513383 DOI: 10.1016/j.jsbmb.2021.105829] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 12/15/2020] [Accepted: 01/19/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Women with polycystic ovary syndrome (PCOS) are at higher risk for metabolic disorders compared to healthy women, and about 51 % of women with PCOS suffer from non-alcoholic fatty liver disease (NAFLD). Investigation into the pathological mechanism behind this association will provide insights for the prevention and treatment of this complication. METHODS Dihydrotestosterone (DHT), a nonaromatic androgen, was used to mimic the pathological conditions of hyperandrogenism and insulin resistance. Hematoxylin and eosin staining, Oil Red O staining, immunofluorescent staining, Western blots, and qRT-PCR were used to verify the hepatic steatosis and inflammation, and the latter two methods were also used for energy and mitochondrion-related assays. ELISA was used to measure the level of reactive oxygen species. RESULTS Twelve weeks of DHT exposure led to obesity and insulin resistance as well as hepatic steatosis, lipid deposition, and different degrees of inflammation. The expression of molecules involved in respiratory chain and aerobic respiration processes, such as electron transfer complex II, pyruvate dehydrogenase, and succinate dehydrogenase complex subunit A, was inhibited. In addition, molecules associated with apoptosis and autophagy were also abnormally expressed, such as increased Bak mRNA, an increased activated caspase-3 to caspase-3 ratio, and increased Atg12 protein expression. All of these changes are associated with the mitochondria and lead to lipid deposition and inflammation in the liver. CONCLUSIONS Long-term androgen excess contributes to insulin resistance and hepatic steatosis by affecting mitochondrial function and causing an imbalance in apoptosis and autophagy, thus suggesting the pathogenesis of NAFLD in women with PCOS.
Collapse
Affiliation(s)
- Peng Cui
- Department of Integrative Medicine and Neurobiology, State Key Lab of Medical Neurobiology, Institute of Integrative Medicine of Fudan University, Institute of Brain Science, School of Basic Medical Sciences, Fudan University, 200032, Shanghai, China; Department of Obstetrics and Gynecology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China; Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Wei Hu
- Department of Integrative Medicine and Neurobiology, State Key Lab of Medical Neurobiology, Institute of Integrative Medicine of Fudan University, Institute of Brain Science, School of Basic Medical Sciences, Fudan University, 200032, Shanghai, China
| | - Tong Ma
- Department of Integrative Medicine and Neurobiology, State Key Lab of Medical Neurobiology, Institute of Integrative Medicine of Fudan University, Institute of Brain Science, School of Basic Medical Sciences, Fudan University, 200032, Shanghai, China
| | - Min Hu
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 40530, Gothenburg, Sweden; Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, 510120, Guangzhou, China
| | - Xiaoyu Tong
- Department of Integrative Medicine and Neurobiology, State Key Lab of Medical Neurobiology, Institute of Integrative Medicine of Fudan University, Institute of Brain Science, School of Basic Medical Sciences, Fudan University, 200032, Shanghai, China
| | - Feifei Zhang
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, 200011, Shanghai, China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, 200011, Shanghai, China
| | - Jiemei Shi
- Department of Integrative Medicine and Neurobiology, State Key Lab of Medical Neurobiology, Institute of Integrative Medicine of Fudan University, Institute of Brain Science, School of Basic Medical Sciences, Fudan University, 200032, Shanghai, China
| | - Xiaoqing Xu
- Department of Integrative Medicine and Neurobiology, State Key Lab of Medical Neurobiology, Institute of Integrative Medicine of Fudan University, Institute of Brain Science, School of Basic Medical Sciences, Fudan University, 200032, Shanghai, China
| | - Xin Li
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 40530, Gothenburg, Sweden; Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, 200011, Shanghai, China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, 200011, Shanghai, China
| | - Linus Ruijin Shao
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Håkan Billig
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 40530, Gothenburg, Sweden.
| | - Yi Feng
- Department of Integrative Medicine and Neurobiology, State Key Lab of Medical Neurobiology, Institute of Integrative Medicine of Fudan University, Institute of Brain Science, School of Basic Medical Sciences, Fudan University, 200032, Shanghai, China.
| |
Collapse
|
43
|
Su L, Wang R, Qiu T, Wang J, Meng J, Zhu J, Wang D, Wu Y, Liu J. The protective effect of baicalin on duck hepatitis A virus type 1-induced duck hepatic mitochondria dysfunction by activating nuclear erythroid 2-related factor 2/antioxidant responsive element signaling pathway. Poult Sci 2021; 100:101032. [PMID: 33744612 PMCID: PMC8010464 DOI: 10.1016/j.psj.2021.101032] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/09/2021] [Accepted: 01/21/2021] [Indexed: 01/21/2023] Open
Abstract
Duck hepatitis A virus type 1 (DHAV-1) is the main pathogen of duck viral hepatitis, but the efficacy of the licensed commercial vaccine needs to be further improved. Therapeutic measures of specific drugs for DHAV-1-infected ducklings need to be urgently developed. Baicalin possesses good antiviral effects. This study aims to investigate the mechanism of baicalin in protecting hepatic mitochondrial function from DHAV-1. The ELISA method was used to detect changes of hepatic and mitochondrial catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPX), inducible nitric oxide synthase (iNOS), adenosine triphosphate (ATP), and malondialdehyde (MDA) levels in vivo and vitro. Hematoxylin and eosin sections and transmission electron microscopy were used to observe liver pathological changes and mitochondrial structural changes. The changes in mitochondrial membrane potential were detected by JC-1 staining method. Western blot and quantitative real-time PCR were employed to analyze the gene and protein expressions in the nuclear erythroid 2-related factor 2 (Nrf2)/antioxidant responsive element (ARE) pathway in duck embryonic hepatocytes infected with DHAV-1. Results showed the administration of baicalin increased the survival rate of ducklings, and alleviated hepatic damage caused by DHAV-1 by enhancing the antioxidant enzyme activities of the liver and mitochondria, including SOD, GPX, CAT, and reducing lipid peroxidative damage (MDA content) and iNOS activities. The mitochondrial ultrastructure changed and the significant increase of ATP content showed that baicalin maintained the structural integrity and ameliorated mitochondrial dysfunction after DHAV-1 infection. In vitro, DHAV-1 infection led to loss of mitochondrial membrane potential and lipid peroxidation and decreased antioxidative enzyme activities (SOD, GPX) and mitochondrial respiratory chain complex activities (succinate dehydrogenase, cytochrome c oxidase). Baicalin relieved the above changes caused by DHAV-1 and activated the gene and protein expressions of Nrf2, which activated ARE-dependent genes including heme oxygenase-1 (HO-1), nicotinamide adenine dinucleotide phosphate quinone oxidoreductase 1 (NQO1), SOD-1, and GPX-1. In addition, baicalin increased the protein expressions of antioxidative enzymes (SOD, GPX). Hence, baicalin protects the liver against oxidative stress in hepatic mitochondria caused by DHAV-1 via activating the Nrf2/ARE signaling pathway.
Collapse
Affiliation(s)
- Linglin Su
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P R China
| | - Rui Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P R China
| | - Tianxin Qiu
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P R China
| | - Jinli Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P R China
| | - Jinwu Meng
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P R China
| | - Jinyue Zhu
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P R China
| | - Deyun Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P R China
| | - Yi Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P R China
| | - Jiaguo Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P R China.
| |
Collapse
|
44
|
Grattagliano I, Di Ciaula A, Baj J, Molina-Molina E, Shanmugam H, Garruti G, Wang DQH, Portincasa P. Protocols for Mitochondria as the Target of Pharmacological Therapy in the Context of Nonalcoholic Fatty Liver Disease (NAFLD). Methods Mol Biol 2021; 2310:201-246. [PMID: 34096005 PMCID: PMC8580566 DOI: 10.1007/978-1-0716-1433-4_12] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the most frequent metabolic chronic liver diseases in developed countries and puts the populations at risk of progression to liver necro-inflammation, fibrosis, cirrhosis, and hepatocellular carcinoma. Mitochondrial dysfunction is involved in the onset of NAFLD and contributes to the progression from NAFLD to nonalcoholic steatohepatitis (NASH). Thus, liver mitochondria could become the target for treatments for improving liver function in NAFLD patients. This chapter describes the most important steps used for potential therapeutic interventions in NAFLD patients, discusses current options gathered from both experimental and clinical evidence, and presents some novel options for potentially improving mitochondrial function in NAFLD.
Collapse
Affiliation(s)
- Ignazio Grattagliano
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
- Italian College of General Practitioners and Primary Care, Bari, Italy
| | - Agostino Di Ciaula
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
| | - Jacek Baj
- Department of Anatomy, Medical University of Lublin, Lublin, Poland
| | - Emilio Molina-Molina
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
| | - Harshitha Shanmugam
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
| | - Gabriella Garruti
- Section of Endocrinology, Department of Emergency and Organ Transplantations, University of Bari "Aldo Moro" Medical School, Bari, Italy
| | - David Q-H Wang
- Division of Gastroenterology and Liver Diseases, Department of Medicine and Genetics, Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Piero Portincasa
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy.
| |
Collapse
|
45
|
Tu C, Xiong H, Hu Y, Wang W, Mei G, Wang H, Li Y, Zhou Z, Meng F, Zhang P, Mei Z. Cardiolipin Synthase 1 Ameliorates NASH Through Activating Transcription Factor 3 Transcriptional Inactivation. Hepatology 2020; 72:1949-1967. [PMID: 32096565 DOI: 10.1002/hep.31202] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 01/18/2020] [Accepted: 02/04/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS NASH is an increasingly prevalent disease that is the major cause of liver dysfunction. Previous research has indicated that adipose cardiolipin synthase 1 (CRLS1) levels are associated with insulin sensitivity; however, the precise roles of CRLS1 and underlying mechanisms involving CRLS1 in the pathological process of NASH have not been elucidated. APPROACH AND RESULTS Here, we discovered that CRLS1 was significantly down-regulated in genetically obese and diet-induced mice models. In vitro studies demonstrated that overexpression of CRLS1 markedly attenuated hepatic steatosis and inflammation in hepatocytes, whereas short hairpin RNA-mediated CRLS1 knockdown aggravated these abnormalities. Moreover, high-fat diet-induced insulin resistance and hepatic steatosis were significantly exacerbated in hepatocyte-specific Crls1-knockout (Crls1-HKO) mice. It is worth noting that Crls1 depletion significantly aggravated high-fat and high-cholesterol diet-induced inflammatory response and fibrosis during NASH development. RNA-sequencing analysis systematically demonstrated a prominently aggravated lipid metabolism disorder in which inflammation and fibrosis resulted from Crls1 deficiency. Mechanically, activating transcription factor 3 (ATF3) was identified as the key differentially expressed gene in Crls1-HKO mice through transcriptomic analysis, and our investigation further showed that CRLS1 suppresses ATF3 expression and inhibits its activity in palmitic acid-stimulated hepatocytes, whereas ATF3 partially reverses lipid accumulation and inflammation inhibited by CRLS1 overexpression under metabolic stress. CONCLUSIONS In conclusion, CRLS1 ameliorates insulin resistance, hepatic steatosis, inflammation, and fibrosis during the pathological process of NASH by inhibiting the expression and activity of ATF3.
Collapse
Affiliation(s)
- Chuyue Tu
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Hui Xiong
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Yufeng Hu
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wen Wang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Gui Mei
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Hua Wang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Ya Li
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Zelin Zhou
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Fengping Meng
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Peng Zhang
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhinan Mei
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| |
Collapse
|
46
|
Di Ciaula A, Baj J, Garruti G, Celano G, De Angelis M, Wang HH, Di Palo DM, Bonfrate L, Wang DQH, Portincasa P. Liver Steatosis, Gut-Liver Axis, Microbiome and Environmental Factors. A Never-Ending Bidirectional Cross-Talk. J Clin Med 2020; 9:2648. [PMID: 32823983 PMCID: PMC7465294 DOI: 10.3390/jcm9082648] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/07/2020] [Accepted: 08/12/2020] [Indexed: 02/07/2023] Open
Abstract
The prevalence of non-alcoholic fatty liver disease (NAFLD) is increasing worldwide and parallels comorbidities such as obesity, metabolic syndrome, dyslipidemia, and diabetes. Recent studies describe the presence of NAFLD in non-obese individuals, with mechanisms partially independent from excessive caloric intake. Increasing evidences, in particular, point towards a close interaction between dietary and environmental factors (including food contaminants), gut, blood flow, and liver metabolism, with pathways involving intestinal permeability, the composition of gut microbiota, bacterial products, immunity, local, and systemic inflammation. These factors play a critical role in the maintenance of intestinal, liver, and metabolic homeostasis. An anomalous or imbalanced gut microbial composition may favor an increased intestinal permeability, predisposing to portal translocation of microorganisms, microbial products, and cell wall components. These components form microbial-associated molecular patterns (MAMPs) or pathogen-associated molecular patterns (PAMPs), with potentials to interact in the intestine lamina propria enriched in immune cells, and in the liver at the level of the immune cells, i.e., Kupffer cells and stellate cells. The resulting inflammatory environment ultimately leads to liver fibrosis with potentials to progression towards necrotic and fibrotic changes, cirrhosis. and hepatocellular carcinoma. By contrast, measures able to modulate the composition of gut microbiota and to preserve gut vascular barrier might prevent or reverse NAFLD.
Collapse
Affiliation(s)
- Agostino Di Ciaula
- Clinica Medica “A. Murri”, Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (A.D.C.); (D.M.D.P.); (L.B.)
| | - Jacek Baj
- Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Gabriella Garruti
- Section of Endocrinology, Department of Emergency and Organ Transplantations, University of Bari “Aldo Moro” Medical School, Piazza G. Cesare 11, 70124 Bari, Italy;
| | - Giuseppe Celano
- Dipartimento di Scienze del Suolo, della Pianta e Degli Alimenti, Università degli Studi di Bari Aldo Moro, 70124 Bari, Italy; (G.C.); (M.D.A.)
| | - Maria De Angelis
- Dipartimento di Scienze del Suolo, della Pianta e Degli Alimenti, Università degli Studi di Bari Aldo Moro, 70124 Bari, Italy; (G.C.); (M.D.A.)
| | - Helen H. Wang
- Department of Medicine and Genetics, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (H.H.W.); (D.Q.-H.W.)
| | - Domenica Maria Di Palo
- Clinica Medica “A. Murri”, Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (A.D.C.); (D.M.D.P.); (L.B.)
- Dipartimento di Scienze del Suolo, della Pianta e Degli Alimenti, Università degli Studi di Bari Aldo Moro, 70124 Bari, Italy; (G.C.); (M.D.A.)
| | - Leonilde Bonfrate
- Clinica Medica “A. Murri”, Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (A.D.C.); (D.M.D.P.); (L.B.)
| | - David Q-H Wang
- Department of Medicine and Genetics, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (H.H.W.); (D.Q.-H.W.)
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (A.D.C.); (D.M.D.P.); (L.B.)
| |
Collapse
|
47
|
Cortés-Rojo C, Vargas-Vargas MA, Olmos-Orizaba BE, Rodríguez-Orozco AR, Calderón-Cortés E. Interplay between NADH oxidation by complex I, glutathione redox state and sirtuin-3, and its role in the development of insulin resistance. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165801. [PMID: 32305451 DOI: 10.1016/j.bbadis.2020.165801] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 03/16/2020] [Accepted: 04/09/2020] [Indexed: 12/13/2022]
Abstract
Metabolic diseases are characterized by high NADH/NAD+ ratios due to excessive electron supply, causing defective mitochondrial function and impaired sirtuin-3 (SIRT-3) activity, the latter driving to oxidative stress and altered fatty acid β-oxidation. NADH is oxidized by the complex I in the electron transport chain, thereby factors inhibiting complex I like acetylation, cardiolipin peroxidation, and glutathionylation by low GSH/GSSG ratios affects SIRT3 function by increasing the NADH/NAD+ ratio. In this review, we summarized the evidence supporting a role of the above events in the development of insulin resistance, which is relevant in the pathogenesis of obesity and diabetes. We propose that maintenance of proper NADH/NAD+ and GSH/GSSG ratios are central to ameliorate insulin resistance, as alterations in these redox couples lead to complex I dysfunction, disruption of SIRT-3 activity, ROS production and impaired β-oxidation, the latter two being key effectors of insulin resistance.
Collapse
Affiliation(s)
- Christian Cortés-Rojo
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mich 58030, México.
| | - Manuel Alejandro Vargas-Vargas
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mich 58030, México
| | - Berenice Eridani Olmos-Orizaba
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mich 58030, México
| | - Alain Raimundo Rodríguez-Orozco
- Facultad de Ciencias Médicas y Biológicas "Dr. Ignacio Chávez", Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mich 58020, México
| | - Elizabeth Calderón-Cortés
- Facultad de Enfermería, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mich 58260, México
| |
Collapse
|
48
|
Er R, Aydın B, Şekeroğlu V, Atlı Şekeroğlu Z. Protective effect of Argan oil on mitochondrial function and oxidative stress against acrylamide-induced liver and kidney injury in rats. Biomarkers 2020; 25:458-467. [PMID: 32683986 DOI: 10.1080/1354750x.2020.1797877] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
CONTEXT Acrylamide (ACR) is now a risk for general public health. Argan oil (AO) is harvested from the fruits of Argania spinosa and its rich source of antioxidant and phenolic compounds. OBJECTIVE The aim of present study was to investigate the protective effect of AO against ACR-induced liver and kidney injury in rats. MATERIALS AND METHODS Rats were exposed to ACR (50 mg/kg/day three times per week), AO (6 ml/kg/day per day) and ACR together with AO for 30 days. Oxidative status and mitochondrial functions were evaluated in liver and kidney. RESULTS Although ALT, AST, urea and creatine levels in serum, myeloperoxidase and total nitrite (NOx) levels in the tissues, lipid peroxidation and protein carbonyls levels were increased in the ACR-treated rats, cytosolic glucose-6-phosphate dehydrogenase and glutathione-S-transferase activities, mitochondrial antioxidant enzyme activities, glutathione levels, oxidative phosphorylation enzymes, TCA cycle enzymes, mitochondrial metabolic function and ATP level were decreased. The administration of ACR together with AO normalised almost all these parameters. CONCLUSION Over recent years, compounds that specifically target mitochondria have emerged as promising therapeutic options for patients with hepatic and renal diseases. We think that AO oil is one of these compounds due to its unique content.
Collapse
Affiliation(s)
- Rahime Er
- Department of Biology, Faculty of Science and Letters, Amasya University, Amasya, Turkey
| | - Birsen Aydın
- Department of Biology, Faculty of Science and Letters, Amasya University, Amasya, Turkey
| | - Vedat Şekeroğlu
- Department of Biology, Faculty of Science and Letters, Amasya University, Amasya, Turkey
| | - Zülal Atlı Şekeroğlu
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Ordu University, Ordu, Turkey
| |
Collapse
|
49
|
Mnatsakanyan N, Jonas EA. The new role of F 1F o ATP synthase in mitochondria-mediated neurodegeneration and neuroprotection. Exp Neurol 2020; 332:113400. [PMID: 32653453 DOI: 10.1016/j.expneurol.2020.113400] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/23/2020] [Accepted: 07/07/2020] [Indexed: 02/08/2023]
Abstract
The mitochondrial F1Fo ATP synthase is one of the most abundant proteins of the mitochondrial inner membrane, which catalyzes the final step of oxidative phosphorylation to synthesize ATP from ADP and Pi. ATP synthase uses the electrochemical gradient of protons (ΔμH+) across the mitochondrial inner membrane to synthesize ATP. Under certain pathophysiological conditions, ATP synthase can run in reverse to hydrolyze ATP and build the necessary ΔμH+ across the mitochondrial inner membrane. Tight coupling between these two processes, proton translocation and ATP synthesis, is achieved by the unique rotational mechanism of ATP synthase and is necessary for efficient cellular metabolism and cell survival. The uncoupling of these processes, dissipation of mitochondrial inner membrane potential, elevated levels of ROS, low matrix content of ATP in combination with other cellular malfunction trigger the opening of the mitochondrial permeability transition pore in the mitochondrial inner membrane. In this review we will discuss the new role of ATP synthase beyond oxidative phosphorylation. We will highlight its function as a unique regulator of cell life and death and as a key target in mitochondria-mediated neurodegeneration and neuroprotection.
Collapse
Affiliation(s)
- Nelli Mnatsakanyan
- Section of Endocrinology, Department of Internal Medicine, Yale University, New Haven, CT, USA.
| | - Elizabeth Ann Jonas
- Section of Endocrinology, Department of Internal Medicine, Yale University, New Haven, CT, USA
| |
Collapse
|
50
|
Yan J, Jiang J, He L, Chen L. Mitochondrial superoxide/hydrogen peroxide: An emerging therapeutic target for metabolic diseases. Free Radic Biol Med 2020; 152:33-42. [PMID: 32160947 DOI: 10.1016/j.freeradbiomed.2020.02.029] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 02/22/2020] [Accepted: 02/27/2020] [Indexed: 12/11/2022]
Abstract
Mitochondria are well known for their roles as energy and metabolic factory. Mitochondrial reactive oxygen species (mtROS) refer to superoxide anion radical (•O2-) and hydrogen peroxide (H2O2). They are byproducts of electron transport in mitochondrial respiratory chain and are implicated in the regulation of physiological and pathological signal transduction. Especially when mitochondrial •O2-/H2O2 production is disturbed, this disturbance is closely related to the occurrence and development of metabolic diseases. In this review, the sources of mitochondrial •O2-/H2O2 as well as mitochondrial antioxidant mechanisms are summarized. Furthermore, we particularly emphasize the essential role of mitochondrial •O2-/H2O2 in metabolic diseases. Specifically, perturbed mitochondrial •O2-/H2O2 regulation aggravates the progression of metabolic diseases, including diabetes, gout and nonalcoholic fatty liver disease (NAFLD). Given the deleterious effect of mitochondrial •O2-/H2O2 in the development of metabolic diseases, antioxidants targeting mitochondrial •O2-/H2O2 might be an attractive therapeutic approach for the prevention and treatment of metabolic diseases.
Collapse
Affiliation(s)
- Jialong Yan
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, China
| | - Jinyong Jiang
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, China
| | - Lu He
- Department of Pharmacy, The First Affiliated Hospital, University of South China, Hengyang, China.
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, China.
| |
Collapse
|