1
|
Saura P, Kim H, Beghiah A, Young L, Moore AL, Kaila VRI. Proton-coupled electron transfer dynamics in the alternative oxidase. Chem Sci 2024:d4sc05060f. [PMID: 39444558 PMCID: PMC11492382 DOI: 10.1039/d4sc05060f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/01/2024] [Indexed: 10/25/2024] Open
Abstract
The alternative oxidase (AOX) is a membrane-bound di-iron enzyme that catalyzes O2-driven quinol oxidation in the respiratory chains of plants, fungi, and several pathogenic protists of biomedical and industrial interest. Yet, despite significant biochemical and structural efforts over the last decades, the catalytic principles of AOX remain poorly understood. We develop here multi-scale quantum and classical molecular simulations in combination with biochemical experiments to address the proton-coupled electron transfer (PCET) reactions responsible for catalysis in AOX from Trypanosoma brucei, the causative agent of sleeping sickness. We show that AOX activates and splits dioxygen via a water-mediated PCET reaction, resulting in a high-valent ferryl/ferric species and tyrosyl radical (Tyr220˙) that drives the oxidation of the quinol via electric field effects. We identify conserved carboxylates (Glu215, Asp100) within a buried cluster of ion-pairs that act as a transient proton-loading site in the quinol oxidation process, and validate their function experimentally with point mutations that result in drastic activity reduction and pK a-shifts. Our findings provide a key mechanistic understanding of the catalytic machinery of AOX, as well as a molecular basis for rational drug design against energy transduction chains of parasites. On a general level, our findings illustrate how redox-triggered conformational changes in ion-paired networks control the catalysis via electric field effects.
Collapse
Affiliation(s)
- Patricia Saura
- Department of Biochemistry and Biophysics, Stockholm University Stockholm 10691 Sweden
| | - Hyunho Kim
- Department of Biochemistry and Biophysics, Stockholm University Stockholm 10691 Sweden
| | - Adel Beghiah
- Department of Biochemistry and Biophysics, Stockholm University Stockholm 10691 Sweden
| | - Luke Young
- Biochemistry and Biomedicine, School of Life Sciences, University of Sussex Falmer Brighton BN1 9QG UK
| | - Anthony L Moore
- Biochemistry and Biomedicine, School of Life Sciences, University of Sussex Falmer Brighton BN1 9QG UK
| | - Ville R I Kaila
- Department of Biochemistry and Biophysics, Stockholm University Stockholm 10691 Sweden
| |
Collapse
|
2
|
Li J, Yang S, Wu Y, Wang R, Liu Y, Liu J, Ye Z, Tang R, Whiteway M, Lv Q, Yan L. Alternative Oxidase: From Molecule and Function to Future Inhibitors. ACS OMEGA 2024; 9:12478-12499. [PMID: 38524433 PMCID: PMC10955580 DOI: 10.1021/acsomega.3c09339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 03/26/2024]
Abstract
In the respiratory chain of the majority of aerobic organisms, the enzyme alternative oxidase (AOX) functions as the terminal oxidase and has important roles in maintaining metabolic and signaling homeostasis in mitochondria. AOX endows the respiratory system with flexibility in the coupling among the carbon metabolism pathway, electron transport chain (ETC) activity, and ATP turnover. AOX allows electrons to bypass the main cytochrome pathway to restrict the generation of reactive oxygen species (ROS). The inhibition of AOX leads to oxidative damage and contributes to the loss of adaptability and viability in some pathogenic organisms. Although AOXs have recently been identified in several organisms, crystal structures and major functions still need to be explored. Recent work on the trypanosome alternative oxidase has provided a crystal structure of an AOX protein, which contributes to the structure-activity relationship of the inhibitors of AOX. Here, we review the current knowledge on the development, structure, and properties of AOXs, as well as their roles and mechanisms in plants, animals, algae, protists, fungi, and bacteria, with a special emphasis on the development of AOX inhibitors, which will improve the understanding of respiratory regulation in many organisms and provide references for subsequent studies of AOX-targeted inhibitors.
Collapse
Affiliation(s)
- Jiye Li
- School
of Pharmacy, Naval Medical University, Shanghai 200433, China
- Institute
of Medicinal Biotechnology, Chinese Academy
of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shiyun Yang
- School
of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Yujie Wu
- School
of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Ruina Wang
- School
of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Yu Liu
- School
of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Jiacun Liu
- School
of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Zi Ye
- School
of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Renjie Tang
- Beijing
South Medical District of Chinese PLA General Hospital, Beijing 100072, China
| | - Malcolm Whiteway
- Department
of Biology, Concordia University, Montreal, H4B 1R6 Quebec, Canada
| | - Quanzhen Lv
- School
of Pharmacy, Naval Medical University, Shanghai 200433, China
- Basic
Medicine Innovation Center for Fungal Infectious Diseases, (Naval Medical University), Ministry of Education, Shanghai 200433, China
- Key
Laboratory of Biosafety Defense (Naval Medical University), Ministry
of Education, Shanghai 200433, China
- Shanghai
Key Laboratory of Medical Biodefense, Shanghai 200433, China
| | - Lan Yan
- School
of Pharmacy, Naval Medical University, Shanghai 200433, China
- Basic
Medicine Innovation Center for Fungal Infectious Diseases, (Naval Medical University), Ministry of Education, Shanghai 200433, China
- Key
Laboratory of Biosafety Defense (Naval Medical University), Ministry
of Education, Shanghai 200433, China
- Shanghai
Key Laboratory of Medical Biodefense, Shanghai 200433, China
| |
Collapse
|
3
|
El-Khoury R, Rak M, Bénit P, Jacobs HT, Rustin P. Cyanide resistant respiration and the alternative oxidase pathway: A journey from plants to mammals. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148567. [PMID: 35500614 DOI: 10.1016/j.bbabio.2022.148567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/06/2022] [Accepted: 04/18/2022] [Indexed: 12/19/2022]
Abstract
In a large number of organisms covering all phyla, the mitochondrial respiratory chain harbors, in addition to the conventional elements, auxiliary proteins that confer adaptive metabolic plasticity. The alternative oxidase (AOX) represents one of the most studied auxiliary proteins, initially identified in plants. In contrast to the standard respiratory chain, the AOX mediates a thermogenic cyanide-resistant respiration; a phenomenon that has been of great interest for over 2 centuries in that energy is not conserved when electrons flow through it. Here we summarize centuries of studies starting from the early observations of thermogenicity in plants and the identification of cyanide resistant respiration, to the fascinating discovery of the AOX and its current applications in animals under normal and pathological conditions.
Collapse
Affiliation(s)
- Riyad El-Khoury
- American University of Beirut Medical Center, Pathology and Laboratory Medicine Department, Cairo Street, Hamra, Beirut, Lebanon
| | - Malgorzata Rak
- Université Paris Cité, Inserm, Maladies neurodéveloppementales et neurovasculaires, F-75019 Paris, France
| | - Paule Bénit
- Université Paris Cité, Inserm, Maladies neurodéveloppementales et neurovasculaires, F-75019 Paris, France
| | - Howard T Jacobs
- Faculty of Medicine and Health Technology, FI-33014, Tampere University, Finland; Institute of Biotechnology, University of Helsinki, Helsinki, Finland.
| | - Pierre Rustin
- Université Paris Cité, Inserm, Maladies neurodéveloppementales et neurovasculaires, F-75019 Paris, France.
| |
Collapse
|
4
|
Sankar TV, Saharay M, Santhosh D, Vishwakarma A, Padmasree K. Structural and Biophysical Characterization of Purified Recombinant Arabidopsis thaliana's Alternative Oxidase 1A (rAtAOX1A): Interaction With Inhibitor(s) and Activator. FRONTIERS IN PLANT SCIENCE 2022; 13:871208. [PMID: 35783971 PMCID: PMC9243770 DOI: 10.3389/fpls.2022.871208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/27/2022] [Indexed: 05/14/2023]
Abstract
In higher plants, alternative oxidase (AOX) participates in a cyanide resistant and non-proton motive electron transport pathway of mitochondria, diverging from the ubiquinone pool. The physiological significance of AOX in biotic/abiotic stress tolerance is well-documented. However, its structural and biophysical properties are poorly understood as its crystal structure is not yet revealed in plants. Also, most of the AOX purification processes resulted in a low yield/inactive/unstable form of native AOX protein. The present study aims to characterize the purified rAtAOX1A protein and its interaction with inhibitors, such as salicylhydroxamic acid (SHAM) and n-propyl gallate (n-PG), as well as pyruvate (activator), using biophysical/in silico studies. The rAtAOX1A expressed in E. coli BL21(DE3) cells was functionally characterized by monitoring the respiratory and growth sensitivity of E. coli/pAtAOX1A and E. coli/pET28a to classical mitochondrial electron transport chain (mETC) inhibitors. The rAtAOX1A, which is purified through affinity chromatography and confirmed by western blotting and MALDI-TOF-TOF studies, showed an oxygen uptake activity of 3.86 μmol min-1 mg-1 protein, which is acceptable in non-thermogenic plants. Circular dichroism (CD) studies of purified rAtAOX1A revealed that >50% of the protein content was α-helical and retained its helical absorbance signal (ellipticity) at a wide range of temperature and pH conditions. Further, interaction with SHAM, n-PG, or pyruvate caused significant changes in its secondary structural elements while retaining its ellipticity. Surface plasmon resonance (SPR) studies revealed that both SHAM and n-PG bind reversibly to rAtAOX1A, while docking studies revealed that they bind to the same hydrophobic groove (Met191, Val192, Met195, Leu196, Phe251, and Phe255), to which Duroquinone (DQ) bind in the AtAOX1A. In contrast, pyruvate binds to a pocket consisting of Cys II (Arg174, Tyr175, Gly176, Cys177, Val232, Ala233, Asn294, and Leu313). Further, the mutational docking studies suggest that (i) the Met195 and Phe255 of AtAOX1A are the potential candidates to bind the inhibitor. Hence, this binding pocket could be a 'potential gateway' for the oxidation-reduction process in AtAOX1A, and (ii) Arg174, Gly176, and Cys177 play an important role in binding to the organic acids like pyruvate.
Collapse
Affiliation(s)
- Tadiboina Veera Sankar
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Moumita Saharay
- Department of Systems and Computational Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Dharawath Santhosh
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Abhaypratap Vishwakarma
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
- Department of Botany, Deshbandhu College, University of Delhi, New Delhi, India
| | - Kollipara Padmasree
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, India
- *Correspondence: Kollipara Padmasree
| |
Collapse
|
5
|
Wright JJ, Fedor JG, Hirst J, Roessler MM. Using a chimeric respiratory chain and EPR spectroscopy to determine the origin of semiquinone species previously assigned to mitochondrial complex I. BMC Biol 2020; 18:54. [PMID: 32429970 PMCID: PMC7238650 DOI: 10.1186/s12915-020-00768-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/11/2020] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND For decades, semiquinone intermediates have been suggested to play an essential role in catalysis by one of the most enigmatic proton-pumping enzymes, respiratory complex I, and different mechanisms have been proposed on their basis. However, the difficulty in investigating complex I semiquinones, due to the many different enzymes embedded in the inner mitochondrial membrane, has resulted in an ambiguous picture and no consensus. RESULTS In this paper, we re-examine the highly debated origin of semiquinone species in mitochondrial membranes using a novel approach. Our combination of a semi-artificial chimeric respiratory chain with pulse EPR spectroscopy (HYSCORE) has enabled us to conclude, unambiguously and for the first time, that the majority of the semiquinones observed in mitochondrial membranes originate from complex III. We also identify a minor contribution from complex II. CONCLUSIONS We are unable to attribute any semiquinone signals unambiguously to complex I and, reconciling our observations with much of the previous literature, conclude that they are likely to have been misattributed to it. We note that, for this earlier work, the tools we have relied on here to deconvolute overlapping EPR signals were not available. Proposals for the mechanism of complex I based on the EPR signals of semiquinone species observed in mitochondrial membranes should thus be treated with caution until future work has succeeded in isolating any complex I semiquinone EPR spectroscopic signatures present.
Collapse
Affiliation(s)
- John J Wright
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Justin G Fedor
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Judy Hirst
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Maxie M Roessler
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London, W12 0BZ, UK.
| |
Collapse
|
6
|
Pietra F. A New Route for Dioxygen Activation Uncovered from Quantum Mechanics Investigations of X‐Ray‐Diffraction‐Captured Intermediates of the Ferroxidase Reaction of Ferritins from Gram‐Negative Bacteria. ADVANCED THEORY AND SIMULATIONS 2020. [DOI: 10.1002/adts.201900253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Francesco Pietra
- Accademia Lucchese di Scienze Lettere e ArtiClasse di Scienze, Palazzo Pretorio Via Vittorio Veneto 1 I‐55100 Lucca Italy
| |
Collapse
|
7
|
Balogun EO, Inaoka DK, Shiba T, Tsuge C, May B, Sato T, Kido Y, Nara T, Aoki T, Honma T, Tanaka A, Inoue M, Matsuoka S, Michels PAM, Watanabe YI, Moore AL, Harada S, Kita K. Discovery of trypanocidal coumarins with dual inhibition of both the glycerol kinase and alternative oxidase of Trypanosoma brucei brucei. FASEB J 2019; 33:13002-13013. [PMID: 31525300 DOI: 10.1096/fj.201901342r] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
African trypanosomiasis, sleeping sickness in humans or nagana in animals, is a potentially fatal neglected tropical disease and a threat to 65 million human lives and 100 million small and large livestock animals in sub-Saharan Africa. Available treatments for this devastating disease are few and have limited efficacy, prompting the search for new drug candidates. Simultaneous inhibition of the trypanosomal glycerol kinase (TGK) and trypanosomal alternative oxidase (TAO) is considered a validated strategy toward the development of new drugs. Our goal is to develop a TGK-specific inhibitor for coadministration with ascofuranone (AF), the most potent TAO inhibitor. Here, we report on the identification of novel compounds with inhibitory potency against TGK. Importantly, one of these compounds (compound 17) and its derivatives (17a and 17b) killed trypanosomes even in the absence of AF. Inhibition kinetics revealed that derivative 17b is a mixed-type and competitive inhibitor for TGK and TAO, respectively. Structural data revealed the molecular basis of this dual inhibitory action, which, in our opinion, will aid in the successful development of a promising drug to treat trypanosomiasis. Although the EC50 of compound 17b against trypanosome cells was 1.77 µM, it had no effect on cultured human cells, even at 50 µM.-Balogun, E. O., Inaoka, D. K., Shiba, T., Tsuge, C., May, B., Sato, T., Kido, Y., Nara, T., Aoki, T., Honma, T., Tanaka, A., Inoue, M., Matsuoka, S., Michels, P. A. M., Watanabe, Y.-I., Moore, A. L., Harada, S., Kita, K. Discovery of trypanocidal coumarins with dual inhibition of both the glycerol kinase and alternative oxidase of Trypanosoma brucei brucei.
Collapse
Affiliation(s)
- Emmanuel Oluwadare Balogun
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria.,Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Daniel Ken Inaoka
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,School of Tropical Medicine and Global Health Nagasaki University, Nagasaki, Japan.,Department of Molecular Infection Dynamics, Shionogi Global Infectious Disease Division, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Tomoo Shiba
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto, Japan
| | - Chiaki Tsuge
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Benjamin May
- Biochemistry and Medicine, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Tomohiro Sato
- Systems and Structural Biology Center, Riken, Yokohama, Japan
| | - Yasutoshi Kido
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria.,Department of Parasitology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Takeshi Nara
- Department of Molecular and Cellular Parasitology, Juntendo University School of Medicine, Tokyo, Japan
| | - Takashi Aoki
- Department of Molecular and Cellular Parasitology, Juntendo University School of Medicine, Tokyo, Japan
| | - Teruki Honma
- Systems and Structural Biology Center, Riken, Yokohama, Japan
| | - Akiko Tanaka
- Systems and Structural Biology Center, Riken, Yokohama, Japan
| | - Masayuki Inoue
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Shigeru Matsuoka
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Paul A M Michels
- Centre for Immunity, Infection, and Evolution School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom.,Centre for Translational and Chemical Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Yoh-Ichi Watanabe
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Anthony L Moore
- Biochemistry and Medicine, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Shigeharu Harada
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto, Japan
| | - Kiyoshi Kita
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,School of Tropical Medicine and Global Health Nagasaki University, Nagasaki, Japan.,Department of Molecular Infection Dynamics, Shionogi Global Infectious Disease Division, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| |
Collapse
|
8
|
Shiba T, Inaoka DK, Takahashi G, Tsuge C, Kido Y, Young L, Ueda S, Balogun EO, Nara T, Honma T, Tanaka A, Inoue M, Saimoto H, Harada S, Moore AL, Kita K. Insights into the ubiquinol/dioxygen binding and proton relay pathways of the alternative oxidase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:375-382. [PMID: 30910528 DOI: 10.1016/j.bbabio.2019.03.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/20/2019] [Indexed: 12/21/2022]
Abstract
The alternative oxidase (AOX) is a monotopic diiron carboxylate protein which catalyzes the four-electron reduction of dioxygen to water by ubiquinol. Although we have recently determined the crystal structure of Trypanosoma brucei AOX (TAO) in the presence and absence of ascofuranone (AF) derivatives (which are potent mixed type inhibitors) the mechanism by which ubiquinol and dioxygen binds to TAO remain inconclusive. In this article, ferulenol was identified as the first competitive inhibitor of AOX which has been used to probe the binding of ubiquinol. Surface plasmon resonance reveals that AF is a quasi-irreversible inhibitor of TAO whilst ferulenol binding is completely reversible. The structure of the TAO-ferulenol complex, determined at 2.7 Å, provided insights into ubiquinol binding and has also identified a potential dioxygen molecule bound in a side-on conformation to the diiron center for the first time.
Collapse
Affiliation(s)
- Tomoo Shiba
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan.
| | - Daniel Ken Inaoka
- School of Tropical Medicine and Global Health, Nagasaki University, Sakamoto 1-12-4, Nagasaki 852-8523, Japan; Department of Host-Defense Biochemistry, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Sakamoto 1-12-4, Nagasaki 852-8523, Japan; Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Hongo 7-3-1, Tokyo 113-0033, Japan.
| | - Gen Takahashi
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan
| | - Chiaki Tsuge
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Hongo 7-3-1, Tokyo 113-0033, Japan
| | - Yasutoshi Kido
- School of Tropical Medicine and Global Health, Nagasaki University, Sakamoto 1-12-4, Nagasaki 852-8523, Japan; Department of Parasitology, Graduate School of Medicine, Osaka City University, Abeno-ku, Asahimachi 1-4-3, Osaka 545-8585, Japan
| | - Luke Young
- Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK
| | - Satoshi Ueda
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan
| | - Emmanuel Oluwadare Balogun
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan; Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Hongo 7-3-1, Tokyo 113-0033, Japan; Department of Biochemistry, Ahmadu Bello University, Zaria 2222, Nigeria
| | - Takeshi Nara
- Department of Molecular and Cellular Parasitology, Juntendo University School of Medicine, Bunkyo-ku, Hongo 2-1-1, Tokyo, 113-8421, Japan
| | - Teruki Honma
- Systems and Structural Biology Center, RIKEN, Tsurumi, Suehiro 1-7-22, Yokohama, Kanagawa 230-0045, Japan
| | - Akiko Tanaka
- Systems and Structural Biology Center, RIKEN, Tsurumi, Suehiro 1-7-22, Yokohama, Kanagawa 230-0045, Japan
| | - Masayuki Inoue
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Hongo 7-3-1, Tokyo 113-0033, Japan
| | - Hiroyuki Saimoto
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Koyamacho-Minami 4, Tottori 680-8552, Japan
| | - Shigeharu Harada
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan
| | - Anthony L Moore
- Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK
| | - Kiyoshi Kita
- School of Tropical Medicine and Global Health, Nagasaki University, Sakamoto 1-12-4, Nagasaki 852-8523, Japan; Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Hongo 7-3-1, Tokyo 113-0033, Japan; Department of Host-Defense Biochemistry, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Sakamoto 1-12-4, Nagasaki 852-8523, Japan
| |
Collapse
|
9
|
Borovik OA, Grabelnych OI. Mitochondrial alternative cyanide-resistant oxidase is involved in an increase of heat stress tolerance in spring wheat. JOURNAL OF PLANT PHYSIOLOGY 2018; 231:310-317. [PMID: 30368229 DOI: 10.1016/j.jplph.2018.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 10/04/2018] [Accepted: 10/07/2018] [Indexed: 06/08/2023]
Abstract
The aim of this study was to determine the influence of different heat treatments on the alternative cyanide-resistant oxidase (AOX) capacity and establish a relation between the heat stress tolerance of spring wheat (Triticum aestivum L.), content of water-soluble carbohydrates in leaves and the alternative respiratory pathway (AP) capacity. We identified a positive relation between these studied parameters. Heat exposure at 39 °C for 24 h increased the heat stress tolerance of seedlings, content of water-soluble carbohydrates and AOX capacity, and the AOX capacity was also high after the subsequent influence of heat shock (50 °C for 3 h). The increased AOX capacity correlated with an increased level of water-soluble carbohydrates in leaves. The content of the AOX protein increased after heat exposure at 39 °C (for 3 h and 24 h) and after the subsequent influence of heat shock (50 °C for 1 and 3 h) at 39 °C for 24 h. We also detected that the content of AOX protein isoforms depends on the duration and intensity of heat treatment. It was concluded that AOX plays an important role in the acclimation of plants to high temperatures.
Collapse
Affiliation(s)
- Olga A Borovik
- Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch, Russian Academy of Sciences, 132 Lermontov Str., 664033, Irkutsk, Russia.
| | - Olga I Grabelnych
- Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch, Russian Academy of Sciences, 132 Lermontov Str., 664033, Irkutsk, Russia
| |
Collapse
|
10
|
Araújo Castro J, Gomes Ferreira MD, Santana Silva RJ, Andrade BS, Micheli F. Alternative oxidase (AOX) constitutes a small family of proteins in Citrus clementina and Citrus sinensis L. Osb. PLoS One 2017; 12:e0176878. [PMID: 28459876 PMCID: PMC5411082 DOI: 10.1371/journal.pone.0176878] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 04/18/2017] [Indexed: 11/18/2022] Open
Abstract
The alternative oxidase (AOX) protein is present in plants, fungi, protozoa and some invertebrates. It is involved in the mitochondrial respiratory chain, providing an alternative route for the transport of electrons, leading to the reduction of oxygen to form water. The present study aimed to characterize the family of AOX genes in mandarin (Citrus clementina) and sweet orange (Citrus sinensis) at nucleotide and protein levels, including promoter analysis, phylogenetic analysis and C. sinensis gene expression. This study also aimed to do the homology modeling of one AOX isoform (CcAOXd). Moreover, the molecular docking of the CcAOXd protein with the ubiquinone (UQ) was performed. Four AOX genes were identified in each citrus species. These genes have an open reading frame (ORF) ranging from 852 bp to 1150 bp and a number of exons ranging from 4 to 9. The 1500 bp-upstream region of each AOX gene contained regulatory cis-elements related to internal and external response factors. CsAOX genes showed a differential expression in citrus tissues. All AOX proteins were predicted to be located in mitochondria. They contained the conserved motifs LET, NERMHL, LEEEA and RADE-H as well as several putative post-translational modification sites. The CcAOXd protein was modeled by homology to the AOX of Trypanosona brucei (45% of identity). The 3-D structure of CcAOXd showed the presence of two hydrophobic helices that could be involved in the anchoring of the protein in the inner mitochondrial membrane. The active site of the protein is located in a hydrophobic environment deep inside the AOX structure and contains a diiron center. The molecular docking of CcAOXd with UQ showed that the binding site is a recessed pocket formed by the helices and submerged in the membrane. These data are important for future functional studies of citrus AOX genes and/or proteins, as well as for biotechnological approaches leading to AOX inhibition using UQ homologs.
Collapse
Affiliation(s)
- Jacqueline Araújo Castro
- Universidade Estadual de Santa Cruz (UESC), Centro de Biotecnologia e Genética (CBG), Ilhéus, Bahia, Brazil
- Instituto Federal de Educação, Ciência e Tecnologia Baiano (IFBaiano), Santa Inês, Bahia, Brazil
| | | | - Raner José Santana Silva
- Universidade Estadual de Santa Cruz (UESC), Centro de Biotecnologia e Genética (CBG), Ilhéus, Bahia, Brazil
| | - Bruno Silva Andrade
- Universidade Estadual Sudoeste da Bahia (UESB), Av. José Moreira Sobrinho, Jequié, Bahia, Brazil
| | - Fabienne Micheli
- Universidade Estadual de Santa Cruz (UESC), Centro de Biotecnologia e Genética (CBG), Ilhéus, Bahia, Brazil
- CIRAD, UMR AGAP, F-34398 Montpellier, France
- * E-mail:
| |
Collapse
|
11
|
Biosynthetic approach to modeling and understanding metalloproteins using unnatural amino acids. Sci China Chem 2016. [DOI: 10.1007/s11426-016-0343-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Abstract
SUMMARYNew drugs against Trypanosoma brucei, the causative agent of Human African Trypanosomiasis, are urgently needed to replace the highly toxic and largely ineffective therapies currently used. The trypanosome alternative oxidase (TAO) is an essential and unique mitochondrial protein in these parasites and is absent from mammalian mitochondria, making it an attractive drug target. The structure and function of the protein are now well characterized, with several inhibitors reported in the literature, which show potential as clinical drug candidates. In this review, we provide an update on the functional activity and structural aspects of TAO. We then discuss TAO inhibitors reported to date, problems encountered with in vivo testing of these compounds, and discuss the future of TAO as a therapeutic target.
Collapse
|
13
|
A growing family of O2 activating dinuclear iron enzymes with key catalytic diiron(III)-peroxo intermediates: Biological systems and chemical models. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.05.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
|
15
|
Campos MD, Nogales A, Cardoso HG, Kumar SR, Nobre T, Sathishkumar R, Arnholdt-Schmitt B. Stress-Induced Accumulation of DcAOX1 and DcAOX2a Transcripts Coincides with Critical Time Point for Structural Biomass Prediction in Carrot Primary Cultures (Daucus carota L.). Front Genet 2016; 7:1. [PMID: 26858746 PMCID: PMC4731517 DOI: 10.3389/fgene.2016.00001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 01/07/2016] [Indexed: 11/18/2022] Open
Abstract
Stress-adaptive cell plasticity in target tissues and cells for plant biomass growth is important for yield stability. In vitro systems with reproducible cell plasticity can help to identify relevant metabolic and molecular events during early cell reprogramming. In carrot, regulation of the central root meristem is a critical target for yield-determining secondary growth. Calorespirometry, a tool previously identified as promising for predictive growth phenotyping has been applied to measure the respiration rate in carrot meristem. In a carrot primary culture system (PCS), this tool allowed identifying an early peak related with structural biomass formation during lag phase of growth, around the 4th day of culture. In the present study, we report a dynamic and correlated expression of carrot AOX genes (DcAOX1 and DcAOX2a) during PCS lag phase and during exponential growth. Both genes showed an increase in transcript levels until 36 h after explant inoculation, and a subsequent down-regulation, before the initiation of exponential growth. In PCS growing at two different temperatures (21°C and 28°C), DcAOX1 was also found to be more expressed in the highest temperature. DcAOX genes' were further explored in a plant pot experiment in response to chilling, which confirmed the early AOX transcript increase prior to the induction of a specific anti-freezing gene. Our findings point to DcAOX1 and DcAOX2a as being reasonable candidates for functional marker development related to early cell reprogramming. While the genomic sequence of DcAOX2a was previously described, we characterize here the complete genomic sequence of DcAOX1.
Collapse
Affiliation(s)
- M. Doroteia Campos
- EU Marie Curie Chair, ICAAM – Instituto de Ciências Agrárias e Ambientais Mediterrânicas, IIFA-Instituto de Formação e Investigação Avançada, Universidade de ÉvoraÉvora, Portugal
| | - Amaia Nogales
- EU Marie Curie Chair, ICAAM – Instituto de Ciências Agrárias e Ambientais Mediterrânicas, IIFA-Instituto de Formação e Investigação Avançada, Universidade de ÉvoraÉvora, Portugal
| | - Hélia G. Cardoso
- EU Marie Curie Chair, ICAAM – Instituto de Ciências Agrárias e Ambientais Mediterrânicas, IIFA-Instituto de Formação e Investigação Avançada, Universidade de ÉvoraÉvora, Portugal
| | - Sarma R. Kumar
- EU Marie Curie Chair, ICAAM – Instituto de Ciências Agrárias e Ambientais Mediterrânicas, IIFA-Instituto de Formação e Investigação Avançada, Universidade de ÉvoraÉvora, Portugal
- Molecular Plant Biology and Biotechnology Division, Council of Scientific and Industrial Research–Central Institute of Medicinal and Aromatic Plants Research CentreBangalore, India
| | - Tânia Nobre
- EU Marie Curie Chair, ICAAM – Instituto de Ciências Agrárias e Ambientais Mediterrânicas, IIFA-Instituto de Formação e Investigação Avançada, Universidade de ÉvoraÉvora, Portugal
| | - Ramalingam Sathishkumar
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar UniversityCoimbatore, India
| | - Birgit Arnholdt-Schmitt
- EU Marie Curie Chair, ICAAM – Instituto de Ciências Agrárias e Ambientais Mediterrânicas, IIFA-Instituto de Formação e Investigação Avançada, Universidade de ÉvoraÉvora, Portugal
| |
Collapse
|
16
|
Rogov AG, Sukhanova EI, Uralskaya LA, Aliverdieva DA, Zvyagilskaya RA. Alternative oxidase: distribution, induction, properties, structure, regulation, and functions. BIOCHEMISTRY (MOSCOW) 2015; 79:1615-34. [PMID: 25749168 DOI: 10.1134/s0006297914130112] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The respiratory chain in the majority of organisms with aerobic type metabolism features the concomitant existence of the phosphorylating cytochrome pathway and the cyanide- and antimycin A-insensitive oxidative route comprising a so-called alternative oxidase (AOX) as a terminal oxidase. In this review, the history of AOX discovery is described. Considerable evidence is presented that AOX occurs widely in organisms at various levels of organization and is not confined to the plant kingdom. This enzyme has not been found only in Archaea, mammals, some yeasts and protists. Bioinformatics research revealed the sequences characteristic of AOX in representatives of various taxonomic groups. Based on multiple alignments of these sequences, a phylogenetic tree was constructed to infer their possible evolution. The ways of AOX activation, as well as regulatory interactions between AOX and the main respiratory chain are described. Data are summarized concerning the properties of AOX and the AOX-encoding genes whose expression is either constitutive or induced by various factors. Information is presented on the structure of AOX, its active center, and the ubiquinone-binding site. The principal functions of AOX are analyzed, including the cases of cell survival, optimization of respiratory metabolism, protection against excess of reactive oxygen species, and adaptation to variable nutrition sources and to biotic and abiotic stress factors. It is emphasized that different AOX functions complement each other in many instances and are not mutually exclusive. Examples are given to demonstrate that AOX is an important tool to overcome the adverse aftereffects of restricted activity of the main respiratory chain in cells and whole animals. This is the first comprehensive review on alternative oxidases of various organisms ranging from yeasts and protists to vascular plants.
Collapse
Affiliation(s)
- A G Rogov
- Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, 119071, Russia.
| | | | | | | | | |
Collapse
|
17
|
Bettenbrock K, Bai H, Ederer M, Green J, Hellingwerf KJ, Holcombe M, Kunz S, Rolfe MD, Sanguinetti G, Sawodny O, Sharma P, Steinsiek S, Poole RK. Towards a systems level understanding of the oxygen response of Escherichia coli. Adv Microb Physiol 2014; 64:65-114. [PMID: 24797925 DOI: 10.1016/b978-0-12-800143-1.00002-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Escherichia coli is a facultatively anaerobic bacterium. With glucose if no external electron acceptors are available, ATP is produced by substrate level phosphorylation. The intracellular redox balance is maintained by mixed-acid fermentation, that is, the production and excretion of several organic acids. When oxygen is available, E. coli switches to aerobic respiration to achieve redox balance and optimal energy conservation by proton translocation linked to electron transfer. The switch between fermentative and aerobic respiratory growth is driven by extensive changes in gene expression and protein synthesis, resulting in global changes in metabolic fluxes and metabolite concentrations. This oxygen response is determined by the interaction of global and local genetic regulatory mechanisms, as well as by enzymatic regulation. The response is affected by basic physical constraints such as diffusion, thermodynamics and the requirement for a balance of carbon, electrons and energy (predominantly the proton motive force and the ATP pool). A comprehensive systems level understanding of the oxygen response of E. coli requires the integrated interpretation of experimental data that are pertinent to the multiple levels of organization that mediate the response. In the pan-European venture, Systems Biology of Microorganisms (SysMO) and specifically within the project Systems Understanding of Microbial Oxygen Metabolism (SUMO), regulator activities, gene expression, metabolite levels and metabolic flux datasets were obtained using a standardized and reproducible chemostat-based experimental system. These different types and qualities of data were integrated using mathematical models. The approach described here has revealed a much more detailed picture of the aerobic-anaerobic response, especially for the environmentally critical microaerobic range that is located between unlimited oxygen availability and anaerobiosis.
Collapse
Affiliation(s)
- Katja Bettenbrock
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany.
| | - Hao Bai
- Department of Computer Science, The University of Sheffield, Sheffield, United Kingdom
| | - Michael Ederer
- Institute for System Dynamics, University of Stuttgart, Stuttgart, Germany
| | - Jeffrey Green
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| | - Klaas J Hellingwerf
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Michael Holcombe
- Department of Computer Science, The University of Sheffield, Sheffield, United Kingdom
| | - Samantha Kunz
- Institute for System Dynamics, University of Stuttgart, Stuttgart, Germany
| | - Matthew D Rolfe
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| | - Guido Sanguinetti
- School of Informatics, University of Edinburgh, Edinburgh, United Kingdom
| | - Oliver Sawodny
- Institute for System Dynamics, University of Stuttgart, Stuttgart, Germany
| | - Poonam Sharma
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| | - Sonja Steinsiek
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Robert K Poole
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
18
|
The alternative oxidases: simple oxidoreductase proteins with complex functions. Biochem Soc Trans 2014; 41:1305-11. [PMID: 24059524 DOI: 10.1042/bst20130073] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The alternative oxidases are membrane-bound monotopic terminal electron transport proteins found in all plants and in some agrochemically important fungi and parasites including Trypansoma brucei, which is the causative agent of trypanosomiasis. They are integral membrane proteins and reduce oxygen to water in a four electron process. The recent elucidation of the crystal structure of the trypanosomal alternative oxidase at 2.85 Å (1 Å=0.1 nm) has revealed salient structural features necessary for its function. In the present review we compare the primary and secondary ligation spheres of the alternative oxidases with other di-iron carboxylate proteins and propose a mechanism for the reduction of oxygen to water.
Collapse
|
19
|
Purification and characterisation of recombinant DNA encoding the alternative oxidase from Sauromatum guttatum. Mitochondrion 2014; 19 Pt B:261-8. [PMID: 24632469 DOI: 10.1016/j.mito.2014.03.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 02/27/2014] [Accepted: 03/04/2014] [Indexed: 11/21/2022]
Abstract
The alternative oxidase (AOX) is a non-protonmotive ubiquinol oxidase that is found in mitochondria of all higher plants studied to date. Structural and functional characterisation of this important but enigmatic plant diiron protein has been hampered by an inability to obtain sufficient native protein from plant sources. In the present study recombinant SgAOX (rSgAOX), overexpressed in a ΔhemA-deficient Escherichia coli strain (FN102), was solubilized from E. coli membranes and purified to homogeneity in a stable and highly active form. The kinetics of ubiquinol-1 oxidation by purified rSgAOX showed typical Michaelis-Menten kinetics (K(m) of 332 μM and Vmax of 30 μmol(-1) min(-1) mg(-1)), a turnover number 20 μmol s(-1) and a remarkable stability. The enzyme was potently inhibited not only by conventional inhibitors such as SHAM and n-propyl gallate but also by the potent TAO inhibitors ascofuranone, an ascofuranone-derivative colletochlorin B and the cytochrome bc1 inhibitor ascochlorin. Circular dichroism studies revealed that AOX was approximately 50% α-helical and furthermore such studies revealed that rSgAOX and rTAO partially retained the helical absorbance signal even at 90 °C (58% and 64% respectively) indicating a high conformational stability. It is anticipated that highly purified and active AOX and its mutants will facilitate investigations into the structure and reaction mechanisms of AOXs through the provision of large amounts of purified protein for crystallography and contribute to further progress of the study on this important plant terminal oxidase.
Collapse
|
20
|
Young L, May B, Pendlebury-Watt A, Shearman J, Elliott C, Albury MS, Shiba T, Inaoka DK, Harada S, Kita K, Moore AL. Probing the ubiquinol-binding site of recombinant Sauromatum guttatum alternative oxidase expressed in E. coli membranes through site-directed mutagenesis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:1219-25. [PMID: 24530866 DOI: 10.1016/j.bbabio.2014.01.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 01/23/2014] [Accepted: 01/28/2014] [Indexed: 11/16/2022]
Abstract
In the present paper we have investigated the effect of mutagenesis of a number of highly conserved residues (R159, D163, L177 and L267) which we have recently shown to line the hydrophobic inhibitor/substrate cavity in the alternative oxidases (AOXs). Measurements of respiratory activity in rSgAOX expressed in Escherichia coli FN102 membranes indicate that all mutants result in a decrease in maximum activity of AOX and in some cases (D163 and L177) a decrease in the apparent Km (O2). Of particular importance was the finding that when the L177 and L267 residues, which appear to cause a bottleneck in the hydrophobic cavity, are mutated to alanine the sensitivity to AOX antagonists is reduced. When non-AOX anti-malarial inhibitors were also tested against these mutants widening the bottleneck through removal of isobutyl side chain allowed access of these bulkier inhibitors to the active-site and resulted in inhibition. Results are discussed in terms of how these mutations have altered the way in which the AOX's catalytic cycle is controlled and since maximum activity is decreased we predict that such mutations result in an increase in the steady state level of at least one O2-derived AOX intermediate. Such mutations should therefore prove to be useful in future stopped-flow and electron paramagnetic resonance experiments in attempts to understand the catalytic cycle of the alternative oxidase which may prove to be important in future rational drug design to treat diseases such as trypanosomiasis. Furthermore since single amino acid mutations in inhibitor/substrate pockets have been found to be the cause of multi-drug resistant strains of malaria, the decrease in sensitivity to main AOX antagonists observed in the L-mutants studied in this report suggests that an emergence of drug resistance to trypanosomiasis may also be possible. Therefore we suggest that the design of future AOX inhibitors should have structures that are less reliant on the orientation by the two-leucine residues. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference.
Collapse
Affiliation(s)
- Luke Young
- Biochemistry and Molecular Sciences, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Benjamin May
- Biochemistry and Molecular Sciences, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Alice Pendlebury-Watt
- Biochemistry and Molecular Sciences, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Julia Shearman
- Biochemistry and Molecular Sciences, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Catherine Elliott
- Biochemistry and Molecular Sciences, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Mary S Albury
- Biochemistry and Molecular Sciences, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Tomoo Shiba
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Daniel Ken Inaoka
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Shigeharu Harada
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Kiyoshi Kita
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Anthony L Moore
- Biochemistry and Molecular Sciences, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK.
| |
Collapse
|
21
|
|
22
|
Mallo N, Lamas J, Leiro JM. Evidence of an alternative oxidase pathway for mitochondrial respiration in the scuticociliate Philasterides dicentrarchi. Protist 2013; 164:824-36. [PMID: 24211656 DOI: 10.1016/j.protis.2013.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 09/25/2013] [Accepted: 09/28/2013] [Indexed: 11/17/2022]
Abstract
The presence of an alternative oxidase (AOX) in the mitochondria of the scuticociliate P. dicentrarchi was investigated. The mitochondrial oxygen consumption was measured in the presence of KCN, an inhibitor of cytochrome pathway (CP) respiration and salicylhydroxamic acid (SHAM), a specific inhibitor of alternative pathway (AP) respiration. AOX expression was monitored by western blotting with an AOX polyclonal antibody. The results showed that P. dicentrarchi possesses a branched mitochondrial electron transport chain with both cyanide-sensitive and -insensitive oxygen consumption. Mitochondrial respiration was partially inhibited by cyanide and completely inhibited by the combination of cyanide and SHAM, which is direct evidence for the existence of an AP in this ciliate. SHAM significantly inhibited in vitro growth of trophozoites both under normoxic and hypoxic conditions. AOX is a 42kD monomeric protein inducible by hypoxic conditions in experimental infections and by CP inhibitors such as cyanide and antimycin A, or by AP inhibitors such as SHAM. CP respiration was greatly stimulated during the exponential growth phase, while AP respiration increased during the stationary phase, in which AOX expression is induced. As the host does not possess AOX, and because during infection P. dicentrarchi respires via AP, it may be possible to develop inhibitors targeting the AP as a novel anti-scuticociliate therapy.
Collapse
Affiliation(s)
- Natalia Mallo
- Laboratorio de Parasitología, Departamento de Microbiología y Parasitología, Instituto de Investigación y Análisis Alimentarios, c/ Constantino Candeira s/n, 15782, Universidad de Santiago de Compostela; Santiago de Compostela (La Coruña, Spain)
| | - Jesús Lamas
- Departamento de Biología Celular y Ecología; Universidad de Santiago de Compostela; Santiago de Compostela, (La Coruña, Spain)
| | - José Manuel Leiro
- Laboratorio de Parasitología, Departamento de Microbiología y Parasitología, Instituto de Investigación y Análisis Alimentarios, c/ Constantino Candeira s/n, 15782, Universidad de Santiago de Compostela; Santiago de Compostela (La Coruña, Spain).
| |
Collapse
|
23
|
Neimanis K, Staples JF, Hüner NP, McDonald AE. Identification, expression, and taxonomic distribution of alternative oxidases in non-angiosperm plants. Gene 2013; 526:275-86. [DOI: 10.1016/j.gene.2013.04.072] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 04/23/2013] [Accepted: 04/24/2013] [Indexed: 10/26/2022]
|
24
|
Vanlerberghe GC. Alternative oxidase: a mitochondrial respiratory pathway to maintain metabolic and signaling homeostasis during abiotic and biotic stress in plants. Int J Mol Sci 2013; 14:6805-47. [PMID: 23531539 PMCID: PMC3645666 DOI: 10.3390/ijms14046805] [Citation(s) in RCA: 437] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Revised: 03/08/2013] [Accepted: 03/12/2013] [Indexed: 02/07/2023] Open
Abstract
Alternative oxidase (AOX) is a non-energy conserving terminal oxidase in the plant mitochondrial electron transport chain. While respiratory carbon oxidation pathways, electron transport, and ATP turnover are tightly coupled processes, AOX provides a means to relax this coupling, thus providing a degree of metabolic homeostasis to carbon and energy metabolism. Beside their role in primary metabolism, plant mitochondria also act as "signaling organelles", able to influence processes such as nuclear gene expression. AOX activity can control the level of potential mitochondrial signaling molecules such as superoxide, nitric oxide and important redox couples. In this way, AOX also provides a degree of signaling homeostasis to the organelle. Evidence suggests that AOX function in metabolic and signaling homeostasis is particularly important during stress. These include abiotic stresses such as low temperature, drought, and nutrient deficiency, as well as biotic stresses such as bacterial infection. This review provides an introduction to the genetic and biochemical control of AOX respiration, as well as providing generalized examples of how AOX activity can provide metabolic and signaling homeostasis. This review also examines abiotic and biotic stresses in which AOX respiration has been critically evaluated, and considers the overall role of AOX in growth and stress tolerance.
Collapse
Affiliation(s)
- Greg C Vanlerberghe
- Department of Biological Sciences and Department of Cell and Systems Biology, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C1A4, Canada.
| |
Collapse
|
25
|
Shiba T, Kido Y, Sakamoto K, Inaoka DK, Tsuge C, Tatsumi R, Takahashi G, Balogun EO, Nara T, Aoki T, Honma T, Tanaka A, Inoue M, Matsuoka S, Saimoto H, Moore AL, Harada S, Kita K. Structure of the trypanosome cyanide-insensitive alternative oxidase. Proc Natl Acad Sci U S A 2013; 110:4580-5. [PMID: 23487766 PMCID: PMC3607012 DOI: 10.1073/pnas.1218386110] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In addition to haem copper oxidases, all higher plants, some algae, yeasts, molds, metazoans, and pathogenic microorganisms such as Trypanosoma brucei contain an additional terminal oxidase, the cyanide-insensitive alternative oxidase (AOX). AOX is a diiron carboxylate protein that catalyzes the four-electron reduction of dioxygen to water by ubiquinol. In T. brucei, a parasite that causes human African sleeping sickness, AOX plays a critical role in the survival of the parasite in its bloodstream form. Because AOX is absent from mammals, this protein represents a unique and promising therapeutic target. Despite its bioenergetic and medical importance, however, structural features of any AOX are yet to be elucidated. Here we report crystal structures of the trypanosomal alternative oxidase in the absence and presence of ascofuranone derivatives. All structures reveal that the oxidase is a homodimer with the nonhaem diiron carboxylate active site buried within a four-helix bundle. Unusually, the active site is ligated solely by four glutamate residues in its oxidized inhibitor-free state; however, inhibitor binding induces the ligation of a histidine residue. A highly conserved Tyr220 is within 4 Å of the active site and is critical for catalytic activity. All structures also reveal that there are two hydrophobic cavities per monomer. Both inhibitors bind to one cavity within 4 Å and 5 Å of the active site and Tyr220, respectively. A second cavity interacts with the inhibitor-binding cavity at the diiron center. We suggest that both cavities bind ubiquinol and along with Tyr220 are required for the catalytic cycle for O2 reduction.
Collapse
Affiliation(s)
- Tomoo Shiba
- Department of Biomedical Chemistry, Graduate School of Medicine, and
| | - Yasutoshi Kido
- Department of Biomedical Chemistry, Graduate School of Medicine, and
| | | | - Daniel Ken Inaoka
- Department of Biomedical Chemistry, Graduate School of Medicine, and
| | - Chiaki Tsuge
- Department of Biomedical Chemistry, Graduate School of Medicine, and
| | - Ryoko Tatsumi
- Department of Biomedical Chemistry, Graduate School of Medicine, and
| | - Gen Takahashi
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Emmanuel Oluwadare Balogun
- Department of Biomedical Chemistry, Graduate School of Medicine, and
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
- Department of Biochemistry, Ahmadu Bello University, Zaria 2222, Nigeria
| | - Takeshi Nara
- Department of Molecular and Cellular Parasitology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Takashi Aoki
- Department of Molecular and Cellular Parasitology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Teruki Honma
- Systems and Structural Biology Center, RIKEN, Tsurumi, Yokohama 230-0045, Japan;
| | - Akiko Tanaka
- Systems and Structural Biology Center, RIKEN, Tsurumi, Yokohama 230-0045, Japan;
| | - Masayuki Inoue
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Shigeru Matsuoka
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hiroyuki Saimoto
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori 680-8552, Japan; and
| | - Anthony L. Moore
- Biochemistry and Molecular Biology, School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom
| | - Shigeharu Harada
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Kiyoshi Kita
- Department of Biomedical Chemistry, Graduate School of Medicine, and
| |
Collapse
|
26
|
Moore AL, Shiba T, Young L, Harada S, Kita K, Ito K. Unraveling the heater: new insights into the structure of the alternative oxidase. ANNUAL REVIEW OF PLANT BIOLOGY 2013; 64:637-63. [PMID: 23638828 DOI: 10.1146/annurev-arplant-042811-105432] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The alternative oxidase is a membrane-bound ubiquinol oxidase found in the majority of plants as well as many fungi and protists, including pathogenic organisms such as Trypanosoma brucei. It catalyzes a cyanide- and antimycin-A-resistant oxidation of ubiquinol and the reduction of oxygen to water, short-circuiting the mitochondrial electron-transport chain prior to proton translocation by complexes III and IV, thereby dramatically reducing ATP formation. In plants, it plays a key role in cellular metabolism, thermogenesis, and energy homeostasis and is generally considered to be a major stress-induced protein. We describe recent advances in our understanding of this protein's structure following the recent successful crystallization of the alternative oxidase from T. brucei. We focus on the nature of the active site and ubiquinol-binding channels and propose a mechanism for the reduction of oxygen to water based on these structural insights. We also consider the regulation of activity at the posttranslational and retrograde levels and highlight challenges for future research.
Collapse
Affiliation(s)
- Anthony L Moore
- Biochemistry and Molecular Biology, School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom.
| | | | | | | | | | | |
Collapse
|
27
|
Ito K, Ogata T, Kakizaki Y, Elliott C, Albury MS, Moore AL. Identification of a gene for pyruvate-insensitive mitochondrial alternative oxidase expressed in the thermogenic appendices in Arum maculatum. PLANT PHYSIOLOGY 2011; 157:1721-32. [PMID: 21988877 PMCID: PMC3327184 DOI: 10.1104/pp.111.186932] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 10/09/2011] [Indexed: 05/09/2023]
Abstract
Heat production in thermogenic plants has been attributed to a large increase in the expression of the alternative oxidase (AOX). AOX acts as an alternative terminal oxidase in the mitochondrial respiratory chain, where it reduces molecular oxygen to water. In contrast to the mitochondrial terminal oxidase, cytochrome c oxidase, AOX is nonprotonmotive and thus allows the dramatic drop in free energy between ubiquinol and oxygen to be dissipated as heat. Using reverse transcription-polymerase chain reaction-based cloning, we reveal that, although at least seven cDNAs for AOX exist (AmAOX1a, -1b, -1c, -1d, -1e, -1f, and -1g) in Arum maculatum, the organ and developmental regulation for each is distinct. In particular, the expression of AmAOX1e transcripts appears to predominate in thermogenic appendices among the seven AmAOXs. Interestingly, the amino acid sequence of AmAOX1e indicates that the ENV element found in almost all other AOX sequences, including AmAOX1a, -1b, -1c, -1d, and -1f, is substituted by QNT. The existence of a QNT motif in AmAOX1e was confirmed by nano-liquid chromatography-tandem mass spectrometry analysis of mitochondrial proteins from thermogenic appendices. Further functional analyses with mitochondria prepared using a yeast heterologous expression system demonstrated that AmAOX1e is insensitive to stimulation by pyruvate. These data suggest that a QNT type of pyruvate-insensitive AOX, AmAOX1e, plays a crucial role in stage- and organ-specific heat production in the appendices of A. maculatum.
Collapse
Affiliation(s)
- Kikukatsu Ito
- Cryobiofrontier Research Center, Faculty of Agriculture, Iwate University, Ueda, Morioka, Iwate 020-8550, Japan.
| | | | | | | | | | | |
Collapse
|
28
|
Active site intermediates in the reduction of O(2) by cytochrome oxidase, and their derivatives. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:468-75. [PMID: 22079200 DOI: 10.1016/j.bbabio.2011.10.010] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 10/27/2011] [Accepted: 10/29/2011] [Indexed: 11/22/2022]
Abstract
The mechanism of dioxygen activation and reduction in cell respiration, as catalysed by cytochrome c oxidase, has a long history. The work by Otto Warburg, David Keilin and Britton Chance defined the dioxygen-binding heme iron centre, viz. das Atmungsferment, or cytochrome a(3). Chance brought the field further in the mid-1970's by ingenious low-temperature studies that for the first time identified the primary enzyme-substrate (ES) Michaelis complex of cell respiration, the dioxygen adduct of heme a(3), which he termed Compound A. Further work using optical, resonance Raman, EPR, and other sophisticated spectroscopic techniques, some of which with microsecond time resolution, has brought us to the situation today, where major principles of how O(2) reduction occurs in respiration are well understood. Nonetheless, some questions have remained open, for example concerning the precise structures, catalytic roles, and spectroscopic properties of the breakdown products of Compound A that have been called P, F (for peroxy and ferryl), and O (oxidised). This nomenclature has been known to be inadequate for some time already, and an alternative will be suggested here. In addition, the multiple forms of P, F and O states have been confusing, a situation that we endeavour to help clarifying. The P and F states formed artificially by reacting cytochrome oxidase with hydrogen peroxide are especially scrutinised, and some novel interpretations will be given that may account for previously unexplained observations.
Collapse
|
29
|
Silverstein TP. Photosynthetic water oxidation vs. mitochondrial oxygen reduction: distinct mechanistic parallels. J Bioenerg Biomembr 2011; 43:437-46. [DOI: 10.1007/s10863-011-9370-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Wu ML, de Vries S, van Alen TA, Butler MK, Op den Camp HJM, Keltjens JT, Jetten MSM, Strous M. Physiological role of the respiratory quinol oxidase in the anaerobic nitrite-reducing methanotroph ‘Candidatus Methylomirabilis oxyfera’. Microbiology (Reading) 2011; 157:890-898. [DOI: 10.1099/mic.0.045187-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The anaerobic nitrite-reducing methanotroph ‘Candidatus Methylomirabilis oxyfera’ (‘Ca. M. oxyfera’) produces oxygen from nitrite by a novel pathway. The major part of the O2 is used for methane activation and oxidation, which proceeds by the route well known for aerobic methanotrophs. Residual oxygen may serve other purposes, such as respiration. We have found that the genome of ‘Ca. M. oxyfera’ harbours four sets of genes encoding terminal respiratory oxidases: two cytochrome c oxidases, a third putative bo-type ubiquinol oxidase, and a cyanide-insensitive alternative oxidase. Illumina sequencing of reverse-transcribed total community RNA and quantitative real-time RT-PCR showed that all four sets of genes were transcribed, albeit at low levels. Oxygen-uptake and inhibition experiments, UV–visible absorption spectral characteristics and EPR spectroscopy of solubilized membranes showed that only one of the four oxidases is functionally produced by ‘Ca. M. oxyfera’, notably the membrane-bound bo-type terminal oxidase. These findings open a new role for terminal respiratory oxidases in anaerobic systems, and are an additional indication of the flexibility of terminal oxidases, of which the distribution among anaerobic micro-organisms may be largely underestimated.
Collapse
Affiliation(s)
- Ming L. Wu
- Department of Microbiology, Institute of Wetland and Water Research (IWWR), Radboud University Nijmegen, Heyendaalsweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Simon de Vries
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Theo A. van Alen
- Department of Microbiology, Institute of Wetland and Water Research (IWWR), Radboud University Nijmegen, Heyendaalsweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Margaret K. Butler
- Department of Microbiology, Institute of Wetland and Water Research (IWWR), Radboud University Nijmegen, Heyendaalsweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Huub J. M. Op den Camp
- Department of Microbiology, Institute of Wetland and Water Research (IWWR), Radboud University Nijmegen, Heyendaalsweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Jan T. Keltjens
- Department of Microbiology, Institute of Wetland and Water Research (IWWR), Radboud University Nijmegen, Heyendaalsweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Mike S. M. Jetten
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
- Department of Microbiology, Institute of Wetland and Water Research (IWWR), Radboud University Nijmegen, Heyendaalsweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Marc Strous
- Centre for Biotechnology, University of Bielefeld, Postfach 10 01 31, D-33501 Bielefeld, Germany
- Max Planck Institute for Marine Microbiology, Celsiusstr. 1, D-28359 Bremen, Germany
- Department of Microbiology, Institute of Wetland and Water Research (IWWR), Radboud University Nijmegen, Heyendaalsweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
31
|
Carré JE, Affourtit C, Moore AL. Interaction of purified alternative oxidase from thermogenic Arum maculatum with pyruvate. FEBS Lett 2011; 585:397-401. [PMID: 21187094 DOI: 10.1016/j.febslet.2010.12.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 12/06/2010] [Accepted: 12/16/2010] [Indexed: 10/18/2022]
Abstract
Plant alternative oxidase (AOX) activity in isolated mitochondria is regulated by carboxylic acids, but reaction and regulatory mechanisms remain unclear. We show that activity of AOX protein purified from thermogenic Arum maculatum spadices is sensitive to pyruvate and glyoxylate but not succinate. Rapid, irreversible AOX inactivation occurs in the absence of pyruvate, whether or not duroquinol oxidation has been initiated, and is insensitive to duroquinone. Our data indicate that pyruvate stabilises an active conformation of AOX, increasing the population of active protein in a manner independent of reducing substrate and product, and are thus consistent with an exclusive effect of pyruvate on the enzyme's apparent V(max).
Collapse
Affiliation(s)
- J E Carré
- Biochemistry and Biomedical Sciences Division, School of Life Sciences, University of Sussex, Falmer, Brighton, UK
| | | | | |
Collapse
|
32
|
Albury MS, Elliott C, Moore AL. Ubiquinol-binding site in the alternative oxidase: Mutagenesis reveals features important for substrate binding and inhibition. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1933-9. [DOI: 10.1016/j.bbabio.2010.01.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 01/11/2010] [Accepted: 01/12/2010] [Indexed: 11/16/2022]
|
33
|
McDonald AE, Ivanov AG, Bode R, Maxwell DP, Rodermel SR, Hüner NPA. Flexibility in photosynthetic electron transport: the physiological role of plastoquinol terminal oxidase (PTOX). BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1807:954-67. [PMID: 21056542 DOI: 10.1016/j.bbabio.2010.10.024] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 10/27/2010] [Accepted: 10/29/2010] [Indexed: 11/27/2022]
Abstract
Oxygenic photosynthesis depends on a highly conserved electron transport system, which must be particularly dynamic in its response to environmental and physiological changes, in order to avoid an excess of excitation energy and subsequent oxidative damage. Apart from cyclic electron flow around PSII and around PSI, several alternative electron transport pathways exist including a plastoquinol terminal oxidase (PTOX) that mediates electron flow from plastoquinol to O(2). The existence of PTOX was first hypothesized in 1982 and this was verified years later based on the discovery of a non-heme, di-iron carboxylate protein localized to thylakoid membranes that displayed sequence similarity to the mitochondrial alternative oxidase. The absence of this protein renders higher plants susceptible to excitation pressure dependant variegation combined with impaired carotenoid synthesis. Chloroplasts, as well as other plastids (i.e. etioplasts, amyloplasts and chromoplasts), fail to assemble organized internal membrane structures correctly, when exposed to high excitation pressure early in development. While the role of PTOX in plastid development is established, its physiological role under stress conditions remains equivocal and we postulate that it serves as an alternative electron sink under conditions where the acceptor side of PSI is limited. The aim of this review is to provide an overview of the past achievements in this field and to offer directions for future investigative efforts. Plastoquinol terminal oxidase (PTOX) is involved in an alternative electron transport pathway that mediates electron flow from plastoquinol to O(2). This article is part of a Special Issue entitled: Regulation of Electron Transport in Chloroplasts.
Collapse
Affiliation(s)
- Allison E McDonald
- Department of Biology, Wilfrid Laurier University, Science Building, 75 University Avenue West, Waterloo, Ontario, Canada N2L 3C5.
| | | | | | | | | | | |
Collapse
|
34
|
Crichton PG, Albury MS, Affourtit C, Moore AL. Mutagenesis of the Sauromatum guttatum alternative oxidase reveals features important for oxygen binding and catalysis. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1797:732-7. [PMID: 20026041 DOI: 10.1016/j.bbabio.2009.12.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 12/10/2009] [Accepted: 12/14/2009] [Indexed: 11/19/2022]
Abstract
The alternative oxidase (AOX) is a non-protonmotive ubiquinol oxidase that is found in mitochondria of all higher plants studied to date. To investigate the role of highly conserved amino acid residues in catalysis we have expressed site-directed mutants of Cys-172, Thr-179, Trp-206, Tyr-253, and Tyr-299 in AOX in the yeast Schizosaccharomyces pombe. Assessment of AOX activity in isolated yeast mitochondria reveals that mutagenesis of Trp-206 to phenylalanine or tyrosine abolishes activity, in contrast to that observed with either Tyr-253 or 299 both mutants of which retained activity. None of the mutants exhibited sensitivity to Q-like inhibitors that differed significantly from the wild type AOX. Interestingly, however, mutagenesis of Thr-179 or Cys-172 (a residue implicated in AOX regulation by alpha-keto acids) to alanine not only resulted in a decrease of maximum AOX activity but also caused a significant increase in the enzyme's affinity for oxygen (4- and 2-fold, respectively). These results provide important new insights in the mechanism of AOX catalysis and regulation by pyruvate.
Collapse
Affiliation(s)
- Paul G Crichton
- Department of Biochemistry and Biomedical Sciences, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | | | | | | |
Collapse
|
35
|
Kido Y, Sakamoto K, Nakamura K, Harada M, Suzuki T, Yabu Y, Saimoto H, Yamakura F, Ohmori D, Moore A, Harada S, Kita K. Purification and kinetic characterization of recombinant alternative oxidase from Trypanosoma brucei brucei. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:443-50. [DOI: 10.1016/j.bbabio.2009.12.021] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Revised: 12/23/2009] [Accepted: 12/25/2009] [Indexed: 10/20/2022]
|
36
|
Igamberdiev AU, Bykova NV, Shah JK, Hill RD. Anoxic nitric oxide cycling in plants: participating reactions and possible mechanisms. PHYSIOLOGIA PLANTARUM 2010; 138:393-404. [PMID: 19929898 DOI: 10.1111/j.1399-3054.2009.01314.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
At sufficiently low oxygen concentrations, hemeproteins are deoxygenated and become capable of reducing nitrite to nitric oxide (NO), in a reversal of the reaction in which NO is converted to nitrate or nitrite by oxygenated hemeproteins. The maximum rates of NO production depend on the oxygen avidity. The hemeproteins with the highest avidity, such as hexacoordinate hemoglobins, retain oxygen even under anoxic conditions resulting in their being extremely effective NO scavengers but essentially incapable of producing NO. Deoxyhemeprotein-related NO production can be observed in mitochondria (at the levels of cytochrome c oxidase, cytochrome c, complex III and possibly other sites), in plasma membrane, cytosol, endoplasmic reticulum and peroxisomes. In mitochondria, the use of nitrite as an alternative electron acceptor can contribute to a limited rate of ATP synthesis. Non-heme metal-containing proteins such as nitrate reductase and xanthine oxidase can also be involved in NO production. This will result in a strong anoxic redox flux of nitrogen through the hemoglobin-NO cycle involving nitrate reductase, nitrite: NO reductase, and NO dioxygenase. In normoxic conditions, NO is produced in very low quantities, mainly for signaling purposes and this nitrogen cycling is inoperative.
Collapse
Affiliation(s)
- Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada.
| | | | | | | |
Collapse
|
37
|
Williams BAP, Elliot C, Burri L, Kido Y, Kita K, Moore AL, Keeling PJ. A broad distribution of the alternative oxidase in microsporidian parasites. PLoS Pathog 2010; 6:e1000761. [PMID: 20169184 PMCID: PMC2820529 DOI: 10.1371/journal.ppat.1000761] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Accepted: 01/11/2010] [Indexed: 11/19/2022] Open
Abstract
Microsporidia are a group of obligate intracellular parasitic eukaryotes that were considered to be amitochondriate until the recent discovery of highly reduced mitochondrial organelles called mitosomes. Analysis of the complete genome of Encephalitozoon cuniculi revealed a highly reduced set of proteins in the organelle, mostly related to the assembly of iron-sulphur clusters. Oxidative phosphorylation and the Krebs cycle proteins were absent, in keeping with the notion that the microsporidia and their mitosomes are anaerobic, as is the case for other mitosome bearing eukaryotes, such as Giardia. Here we provide evidence opening the possibility that mitosomes in a number of microsporidian lineages are not completely anaerobic. Specifically, we have identified and characterized a gene encoding the alternative oxidase (AOX), a typically mitochondrial terminal oxidase in eukaryotes, in the genomes of several distantly related microsporidian species, even though this gene is absent from the complete genome of E. cuniculi. In order to confirm that these genes encode functional proteins, AOX genes from both A. locustae and T. hominis were over-expressed in E. coli and AOX activity measured spectrophotometrically using ubiquinol-1 (UQ-1) as substrate. Both A. locustae and T. hominis AOX proteins reduced UQ-1 in a cyanide and antimycin-resistant manner that was sensitive to ascofuranone, a potent inhibitor of the trypanosomal AOX. The physiological role of AOX microsporidia may be to reoxidise reducing equivalents produced by glycolysis, in a manner comparable to that observed in trypanosomes.
Collapse
Affiliation(s)
- Bryony A. P. Williams
- School of Biosciences, Geoffrey Pope Building, University of Exeter, Exeter, Devon, United Kingdom
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Catherine Elliot
- Department of Biochemistry and Biomedical Sciences, School of Life Sciences, University of Sussex, Falmer, Brighton, United Kingdom
| | - Lena Burri
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yasutoshi Kido
- Department of Biomedical Chemistry, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Kiyoshi Kita
- Department of Biomedical Chemistry, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Anthony L. Moore
- Department of Biochemistry and Biomedical Sciences, School of Life Sciences, University of Sussex, Falmer, Brighton, United Kingdom
| | - Patrick J. Keeling
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
38
|
Albury MS, Elliott C, Moore AL. Towards a structural elucidation of the alternative oxidase in plants. PHYSIOLOGIA PLANTARUM 2009; 137:316-27. [PMID: 19719482 DOI: 10.1111/j.1399-3054.2009.01270.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
In addition to the conventional cytochrome c oxidase, mitochondria of all plants studied to date contain a second cyanide-resistant terminal oxidase or alternative oxidase (AOX). The AOX is located in the inner mitochondrial membrane and branches from the cytochrome pathway at the level of the quinone pool. It is non-protonmotive and couples the oxidation of ubiquinone to the reduction of oxygen to water. For many years, the AOX was considered to be confined to plants, fungi and a small number of protists. Recently, it has become apparent that the AOX occurs in wide range of organisms including prokaryotes and a moderate number of animal species. In this paper, we provide an overview of general features and current knowledge available about the AOX with emphasis on structure, the active site and quinone-binding site. Characterisation of the AOX has advanced considerably over recent years with information emerging about the role of the protein, regulatory regions and functional sites. The large number of sequences available is now enabling us to obtain a clearer picture of evolutionary origins and diversity.
Collapse
Affiliation(s)
- Mary S Albury
- Division of Biochemistry and Biomedical Sciences, School of Life Sciences, University of Sussex, Falmer, Brighton BN19QG, UK
| | | | | |
Collapse
|
39
|
McDonald AE. Alternative oxidase: what information can protein sequence comparisons give us? PHYSIOLOGIA PLANTARUM 2009; 137:328-341. [PMID: 19493309 DOI: 10.1111/j.1399-3054.2009.01242.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The finding that alternative oxidase (AOX) is present in most kingdoms of life has resulted in a large number of AOX sequences that are available for analyses. Multiple sequence alignments of AOX proteins from evolutionarily divergent organisms represent a valuable tool and can be used to identify amino acids and domains that may play a role in catalysis, membrane association and post-translational regulation, especially when these data are coupled with the structural model for the enzyme. I validate the use of this approach by demonstrating that it detects the conserved glutamate and histidine residues in AOX that initially led to its identification as a di-iron carboxylate protein and the generation of a structural model for the protein. A comparative analysis using a larger dataset identified 35 additional amino acids that are conserved in all AOXs examined, 30 of which have not been investigated to date. I hypothesize that these residues will be involved in the quinol terminal oxidase activity or membrane association of AOX. Major differences in AOX protein sequences between kingdoms are revealed, and it is hypothesized that two angiosperm-specific domains may be responsible for the non-covalent dimerization of AOX, whereas two indels in the aplastidic AOXs may play a role in their post-translational regulation. A scheme for predicting whether a particular AOX protein will be recognized by the alternative oxidase monoclonal antibody generated against the AOX of Sauromatum guttatum (Voodoo lily) is presented. The number of functional sites in AOX is greater than expected, and determining the structure of AOX will prove extremely valuable to future research.
Collapse
Affiliation(s)
- Allison E McDonald
- Department of Biology, The University of Western Ontario, 1151 Richmond St. N., London, Ontario N6A5B7, Canada.
| |
Collapse
|
40
|
Maréchal A, Kido Y, Kita K, Moore AL, Rich PR. Three redox states of Trypanosoma brucei alternative oxidase identified by infrared spectroscopy and electrochemistry. J Biol Chem 2009; 284:31827-33. [PMID: 19767647 DOI: 10.1074/jbc.m109.059980] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Electrochemistry coupled with Fourier transform infrared (IR) spectroscopy was used to investigate the redox properties of recombinant alternative ubiquinol oxidase from Trypanosoma brucei, the organism responsible for African sleeping sickness. Stepwise reduction of the fully oxidized resting state of recombinant alternative ubiquinol oxidase revealed two distinct IR redox difference spectra. The first of these, signal 1, titrates in the reductive direction as an n = 2 Nernstian component with an apparent midpoint potential of 80 mV at pH 7.0. However, reoxidation of signal 1 in the same potential range under anaerobic conditions did not occur and only began with potentials in excess of 500 mV. Reoxidation by introduction of oxygen was also unsuccessful. Signal 1 contained clear features that can be assigned to protonation of at least one carboxylate group, further perturbations of carboxylic and histidine residues, bound ubiquinone, and a negative band at 1554 cm(-1) that might arise from a radical in the fully oxidized protein. A second distinct IR redox difference spectrum, signal 2, appeared more slowly once signal 1 had been reduced. This component could be reoxidized with potentials above 100 mV. In addition, when both signals 1 and 2 were reduced, introduction of oxygen caused rapid oxidation of both components. These data are interpreted in terms of the possible active site structure and mechanism of oxygen reduction to water.
Collapse
Affiliation(s)
- Amandine Maréchal
- Glynn Laboratory of Bioenergetics, Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | | | | | | | | |
Collapse
|
41
|
Moore AL, Albury MS. Further insights into the structure of the alternative oxidase: from plants to parasites. Biochem Soc Trans 2008; 36:1022-6. [PMID: 18793182 DOI: 10.1042/bst0361022] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The AOX (alternative oxidase) is a non-protonmotive ubiquinol-oxygen oxidoreductase that couples the oxidation of ubiquinol with the complete reduction of water. Although it has long been recognized that it is ubiquitous among the plant kingdom, it has only recently become apparent that it is also widely found in other organisms including some human parasites. In this paper, we review experimental studies that have contributed to our current understanding of its structure, with particular reference to the catalytic site. Furthermore, we propose a model for the ubiquinol-binding site which identifies a hydrophobic pocket, between helices II and III, leading from a proposed membrane-binding domain to the catalytic domain.
Collapse
Affiliation(s)
- Anthony L Moore
- Biochemistry and Biomedical Sciences, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK.
| | | |
Collapse
|
42
|
McDonald AE. Alternative oxidase: an inter-kingdom perspective on the function and regulation of this broadly distributed 'cyanide-resistant' terminal oxidase. FUNCTIONAL PLANT BIOLOGY : FPB 2008; 35:535-552. [PMID: 32688810 DOI: 10.1071/fp08025] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2008] [Accepted: 07/11/2008] [Indexed: 06/11/2023]
Abstract
Alternative oxidase (AOX) is a terminal quinol oxidase located in the respiratory electron transport chain that catalyses the oxidation of quinol and the reduction of oxygen to water. However, unlike the cytochrome c oxidase respiratory pathway, the AOX pathway moves fewer protons across the inner mitochondrial membrane to generate a proton motive force that can be used to synthesise ATP. The energy passed to AOX is dissipated as heat. This appears to be very wasteful from an energetic perspective and it is likely that AOX fulfils some physiological function(s) that makes up for its apparent energetic shortcomings. An examination of the known taxonomic distribution of AOX and the specific organisms in which AOX has been studied has been used to explore themes pertaining to AOX function and regulation. A comparative approach was used to examine AOX function as it relates to the biochemical function of the enzyme as a quinol oxidase and associated topics, such as enzyme structure, catalysis and transcriptional expression and post-translational regulation. Hypotheses that have been put forward about the physiological function(s) of AOX were explored in light of some recent discoveries made with regard to species that contain AOX. Fruitful areas of research for the AOX community in the future have been highlighted.
Collapse
Affiliation(s)
- Allison E McDonald
- Department of Biology, The University of Western Ontario, Biological and Geological Sciences Building, London, Ontario N6A 5B7, Canada. Email
| |
Collapse
|
43
|
Wagner AM, Krab K, Wagner MJ, Moore AL. Regulation of thermogenesis in flowering Araceae: the role of the alternative oxidase. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1777:993-1000. [PMID: 18440298 DOI: 10.1016/j.bbabio.2008.04.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2008] [Revised: 03/31/2008] [Accepted: 04/01/2008] [Indexed: 11/24/2022]
Abstract
The inflorescences of several members of the Arum lily family warm up during flowering and are able to maintain their temperature at a constant level, relatively independent of the ambient temperature. The heat is generated via a mitochondrial respiratory pathway that is distinct from the cytochrome chain and involves a cyanide-resistant alternative oxidase (AOX). In this paper we have used flux control analysis to investigate the influence of temperature on the rate of respiration through both cytochrome and alternative oxidases in mitochondria isolated from the appendices of intact thermogenic Arum maculatum inflorescences. Results are presented which indicate that at low temperatures, the dehydrogenases are almost in full control of respiration but as the temperature increases flux control shifts to the AOX. On the basis of these results a simple model of thermoregulation is presented that is applicable to all species of thermogenic plants. The model takes into account the temperature characteristics of the separate components of the plant mitochondrial respiratory chain and the control of each process. We propose that 1) in all aroid flowers AOX assumes almost complete control over respiration, 2) the temperature profile of AOX explains the reversed relationship between ambient temperature and respiration in thermoregulating Arum flowers, 3) the thermoregulation process is the same in all species and 4) variations in inflorescence temperatures can easily be explained by variations in AOX protein concentrations.
Collapse
Affiliation(s)
- Anneke M Wagner
- Institute of Molecular Cell Biology, VU Universiteit, de Boelelaan 1087, 1081 HV Amsterdam, The Netherlands
| | | | | | | |
Collapse
|