1
|
Matsumoto T, Matsumoto K, Tatsuno I, Sakuragawa C, Hiwatashi A, Hasegawa T, Tomita M, Iwata H. Time-dose reciprocity mechanism for the inactivation of Escherichia coli using X-ray irradiation. Sci Rep 2025; 15:14803. [PMID: 40295535 DOI: 10.1038/s41598-025-96461-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 03/28/2025] [Indexed: 04/30/2025] Open
Abstract
The time-dose reciprocity has long been a cornerstone in understanding ultraviolet (UV) sterilization. However, recent studies have demonstrated significant deviations from this law, attributed to complex mechanisms involving reactive oxygen species (ROS). This study investigates whether similar deviations occur at much shorter wavelengths of electromagnetic radiation than UV, specifically in the X-ray region, with a focus on the dose-rate dependence of bacterial inactivation. Using Escherichia coli as a model organism, it is found that dose-rate effects were highly dependent on the bacterial growth phase. In the stationary phase, lower dose rates with prolonged irradiation resulted in greater inactivation efficacy. The inactivation ratio obtained by the dose rate of 15.3 mGy/s shows more than 3 times larger than that obtained by the dose rate of 147 mGy/s at the dose of 200 Gy, which is consistent with findings from previous UV studies. On the other hand, in the exponential phase, higher dose rates with shorter irradiation durations were more effective. The inactivation ratio obtained by the dose rate of 147 mGy/s shows 40 times larger than that obtained by the dose rate of 15.3 mGy/s at the dose of 200 Gy. These results can be effectively explained by a stochastic multi-hit model that accounts for three terms of linearly proportional to dose, nonlinearly proportional to dose, and binary fission. This work bridges fundamental physical biology with practical applications, such as gamma sterilization, offering a robust framework for optimizing dose-rate strategies across diverse fields.
Collapse
Affiliation(s)
- Takahiro Matsumoto
- Graduate School of Medical Sciences, Nagoya City University, Nagoya, 467-8601, Japan.
- Graduate School of Design and Architecture, Nagoya City University, Nagoya, 464-0083, Japan.
| | - Kazuhisa Matsumoto
- Department of Radiology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, 467-8601, Japan
| | - Ichiro Tatsuno
- Department of Microbiology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, 467-8601, Japan
| | - Chiyori Sakuragawa
- Graduate School of Design and Architecture, Nagoya City University, Nagoya, 464-0083, Japan
| | - Akio Hiwatashi
- Department of Radiology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, 467-8601, Japan
| | - Tadao Hasegawa
- Department of Microbiology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, 467-8601, Japan
| | - Makoto Tomita
- Department of Physics, Faculty of Science, Shizuoka University, Shizuoka, 422-8529, Japan
| | - Hiromitsu Iwata
- Department of Radiation Oncology, Nagoya Proton Therapy Center, Nagoya City University Wese Medical Center, Nagoya, 462-8508, Japan
| |
Collapse
|
2
|
Kwon N, Weng H, Rajora MA, Zheng G. Activatable Photosensitizers: From Fundamental Principles to Advanced Designs. Angew Chem Int Ed Engl 2025; 64:e202423348. [PMID: 39899458 PMCID: PMC11976215 DOI: 10.1002/anie.202423348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/23/2025] [Accepted: 01/28/2025] [Indexed: 02/05/2025]
Abstract
Photodynamic therapy (PDT) is a promising treatment that uses light to excite photosensitizers in target tissue, producing reactive oxygen species and localized cell death. It is recognized as a minimally invasive, clinically approved cancer therapy with additional preclinical applications in arthritis, atherosclerosis, and infection control. A hallmark of ideal PDT is delivering disease-specific cytotoxicity while sparing healthy tissue. However, conventional photosensitizers often suffer from non-specific photoactivation, causing off-target toxicity. Activatable photosensitizers (aPS) have emerged as more precise alternatives, offering controlled activation. Unlike traditional photosensitizers, they remain inert and photoinactive during circulation and off-target accumulation, minimizing collateral damage. These photosensitizers are designed to "turn on" in response to disease-specific biostimuli, enhancing therapeutic selectivity and reducing off-target effects. This review explores the principles of aPS, including quenching mechanisms stemming from activatable fluorescent probes and applied to activatable photosensitizers (RET, PeT, ICT, ACQ, AIE), as well as pathological biostimuli (pH, enzymes, redox conditions, cellular internalization), and bioresponsive constructs enabling quenching and activation. We also provide a critical assessment of unresolved challenges in aPS development, including limitations in targeting precision, selectivity under real-world conditions, and potential solutions to persistent issues (dual-lock, targeting moieties, biorthogonal chemistry and artificial receptors). Additionally, it provides an in-depth discussion of essential research design considerations needed to develop translationally relevant aPS with improved therapeutic outcomes and specificity.
Collapse
Affiliation(s)
- Nahyun Kwon
- Princess Margaret Cancer CentreUniversity Health Network101 College Street, PMCRT 5–354Toronto, ONM5G1L7Canada
| | - Hanyi Weng
- Princess Margaret Cancer CentreUniversity Health Network101 College Street, PMCRT 5–354Toronto, ONM5G1L7Canada
- Department of Medical BiophysicsUniversity of TorontoToronto, ONCanada
| | - Maneesha A. Rajora
- Princess Margaret Cancer CentreUniversity Health Network101 College Street, PMCRT 5–354Toronto, ONM5G1L7Canada
- Department of MedicineUniversity of TorontoToronto, ONCanada
| | - Gang Zheng
- Princess Margaret Cancer CentreUniversity Health Network101 College Street, PMCRT 5–354Toronto, ONM5G1L7Canada
- Department of Medical BiophysicsUniversity of TorontoToronto, ONCanada
| |
Collapse
|
3
|
Chaturvedi V, Kumari R, Sharma P, Pati AK. Diverse Fluorescent Probe Concepts for Detection and Monitoring of Reactive Oxygen Species. Chem Asian J 2025; 20:e202401524. [PMID: 39924450 PMCID: PMC11980770 DOI: 10.1002/asia.202401524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/14/2025] [Accepted: 02/06/2025] [Indexed: 02/11/2025]
Abstract
World-wide research on reactive oxygen species (ROS) continues to reveal new information about the role and impact of ROS on human health and disease. ROS are generated in live cells as a byproduct of aerobic metabolism. Physiological concentrations of cellular ROS are important for signaling and homeostasis, but excessive generation of ROS causes apoptotic and necrotic cell death and various health disorders. Fluorescence technology is a powerful tool to detect, monitor, and image cellular ROS. The present review provides an overview of diverse organic dye-based fluorescent probe concepts that involve modifications of traditional fluorescent dyes utilizing basic principles of dye chemistry and photophysics. Fluorescence responses of the probes and their specificity towards ROS are discussed through analyses of their photophysical and photochemical parameters. We also provide an outlook on future directions of ROS-responsive fluorescent dyes, which could enable the design and development of advanced probes for gaining deeper insights into redox biology.
Collapse
Affiliation(s)
- Vineeta Chaturvedi
- Department of ChemistryBirla Institute of Technology and Science PilaniPilaniRajasthan333031India
| | - Ritu Kumari
- Department of ChemistryBirla Institute of Technology and Science PilaniPilaniRajasthan333031India
| | - Prakriti Sharma
- Department of ChemistryBirla Institute of Technology and Science PilaniPilaniRajasthan333031India
| | - Avik K. Pati
- Department of ChemistryBirla Institute of Technology and Science PilaniPilaniRajasthan333031India
| |
Collapse
|
4
|
Gonçalves ASC, Fernandes JR, Saavedra MJ, Guimarães NM, Pereira C, Simões M, Borges A. New insights on antibacterial mode of action of blue-light photoactivated berberine and curcumin-antibiotic combinations against Staphylococcus aureus. Photodiagnosis Photodyn Ther 2025; 52:104514. [PMID: 39920956 DOI: 10.1016/j.pdpdt.2025.104514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/29/2025] [Accepted: 02/05/2025] [Indexed: 02/10/2025]
Abstract
Antimicrobial photodynamic inactivation (aPDI), using photosensitisers in combination with antibiotics, is a promising multi-target strategy to address antibiotic resistance, particularly in wound infections. This study aimed to elucidate the antibacterial mode of action of combinations of berberine (Ber) or curcumin (Cur) with selected antibiotics (Ber-Ab or Cur-Ab) under blue light irradiation (420 nm) against Staphylococcus aureus, including methicillin-resistant (MRSA) and methicillin-susceptible (MSSA) strains. Multiple physiological parameters were assessed using complementary assays (fluorometry, epifluorescence microscopy, flame emission and atomic absorption spectroscopy, zeta potential, flow cytometry, and the plate agar method) to examine the effect on ROS production, membrane integrity, DNA damage, motility and virulence factors of S. aureus. Results indicated that blue light photoactivated Ber-Ab and Cur-Ab combinations led to substantial ROS generation, even at low concentrations, causing oxidative stress that severely impacted bacterial membrane integrity (approximately 90 % in MRSA and 40 % in MSSA). Membrane destabilization was further confirmed by elevated intercellular potassium release (≈ 2.00 and 2.40 µg/mL in MRSA and MSSA, respectively). Furthermore, significant DNA damage was observed in both strains (≈ 50 %). aPDI treatment with blue light also reduced S. aureus pathogenicity by impairing motility and inhibiting key virulence factors such as proteases, lipases, and gelatinases, all of which play key roles in the infectious process. Overall, Ber-Ab combinations demonstrated the highest efficacy across all parameters tested, highlighting for the first time the multi-target therapeutic potential of this phytochemical-based aPDI strategy to combat antibiotic-resistant S. aureus infections and improve wound infection treatment outcomes.
Collapse
Affiliation(s)
- Ariana S C Gonçalves
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465, Porto, Portugal; ALICE-Associate Laboratory for Innovation in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465, Porto, Portugal; Environmental Health Department, Portuguese National Health Institute Doutor Ricardo Jorge, Porto, Portugal
| | - José R Fernandes
- CQVR-Vila Real Chemistry Center, University of Trás-os-Montes e Alto Douro, Portugal; Physical Department, University of Trás-os-Montes and Alto Douro, Quinta dos Prados, 5000-801, Vila Real, Portugal
| | - Maria José Saavedra
- Antimicrobials, Biocides and Biofilms Unit (AB2Unit), Laboratory of Medical Microbiology, University of Trás-os-Montes e Alto Douro, 5000-801, Vila Real, Portugal; Animal and Veterinary Research Center (CECAV)-Al4AnimalS, University of Trás-os-Montes e Alto Douro, 5000-801, Vila Real, Portugal; Center Interdisciplinar of Marine and Environmental Research (CIIMAR), University of Porto, 4450-208 Matosinhos, Portugal; Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB)-Inov4Agro, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | - Nuno M Guimarães
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465, Porto, Portugal; ALICE-Associate Laboratory for Innovation in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465, Porto, Portugal
| | - Cristiana Pereira
- Environmental Health Department, Portuguese National Health Institute Doutor Ricardo Jorge, Porto, Portugal; Environmental Hygiene and Human Biomonitoring Unit, Department of Health Protection, d, Luxembourg
| | - Manuel Simões
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465, Porto, Portugal; ALICE-Associate Laboratory for Innovation in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465, Porto, Portugal; DEQB-Department of Chemical and Biological Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
| | - Anabela Borges
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465, Porto, Portugal; ALICE-Associate Laboratory for Innovation in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465, Porto, Portugal; DEQB-Department of Chemical and Biological Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal.
| |
Collapse
|
5
|
Weng Y, Wang Y, Wang K, Wu F, Wei Y, Jiang J, Zhu Y, Wang F, Xie H, Xiao Y, Cai Q, Xie H, Zhang J. OsLOX1 positively regulates seed vigor and drought tolerance in rice. PLANT MOLECULAR BIOLOGY 2025; 115:16. [PMID: 39810027 PMCID: PMC11732895 DOI: 10.1007/s11103-024-01543-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025]
Abstract
The lipoxygenase (LOX) gene family is widely distributed in plants, and its activity is closely associated with seed viability and stress tolerance. In this study, we cloned the rice(Oryza sativa)lipoxygenase gene OsLOX1, a key participant in the 13-lipoxygenase metabolic pathway. Our primary focus was to investigate its role in mediating responses to drought stress and seed germination in rice. Histochemical staining and qPCR analysis indicated that the expression level of OsLOX1 was relatively high in leaves and early germinating seeds. Our findings revealed that mutant lines with CRISPR/Cas9-induced knockout of OsLOX1 exhibited reduced tolerance to drought stress compared with the wild-type. This was accompanied by elevated levels of H2O2 and malondialdehyde, and a decrease in the expression levels of genes associated with antioxidant enzymes. Furthermore, knockout of OsLOX1 reduced the longevity of rice seeds increased H2O2 and MDA levels, and decreased the activities of the antioxidant enzymes superoxide dismutase and catalase, compared with the wild-type. These findings demonstrated that OsLOX1 positively regulated rice seed vigor and drought stress.
Collapse
Affiliation(s)
- Yahong Weng
- College of Agronomy, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350018, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Ministry of Agriculture and Affairs, Fuzhou, 350003, P.R. China
| | - Yanwen Wang
- College of Agronomy, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350018, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Ministry of Agriculture and Affairs, Fuzhou, 350003, P.R. China
| | - Kewu Wang
- College of Agronomy, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350018, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Ministry of Agriculture and Affairs, Fuzhou, 350003, P.R. China
| | - Fangxi Wu
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350018, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Ministry of Agriculture and Affairs, Fuzhou, 350003, P.R. China
| | - Yidong Wei
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350018, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Ministry of Agriculture and Affairs, Fuzhou, 350003, P.R. China
| | - Jiahuang Jiang
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350018, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Ministry of Agriculture and Affairs, Fuzhou, 350003, P.R. China
| | - Yongsheng Zhu
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350018, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Ministry of Agriculture and Affairs, Fuzhou, 350003, P.R. China
| | - Fuxiang Wang
- College of Agronomy, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350018, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Ministry of Agriculture and Affairs, Fuzhou, 350003, P.R. China
| | - Hongguang Xie
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350018, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Ministry of Agriculture and Affairs, Fuzhou, 350003, P.R. China
| | - Yanjia Xiao
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350018, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Ministry of Agriculture and Affairs, Fuzhou, 350003, P.R. China
| | - Qiuhua Cai
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350018, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Ministry of Agriculture and Affairs, Fuzhou, 350003, P.R. China
| | - Huaan Xie
- College of Agronomy, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350018, China.
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Ministry of Agriculture and Affairs, Fuzhou, 350003, P.R. China.
| | - Jianfu Zhang
- College of Agronomy, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350018, China.
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Ministry of Agriculture and Affairs, Fuzhou, 350003, P.R. China.
| |
Collapse
|
6
|
Ősz F, Nazir A, Takács-Vellai K, Farkas Z. Mutations of the Electron Transport Chain Affect Lifespan and ROS Levels in C. elegans. Antioxidants (Basel) 2025; 14:76. [PMID: 39857410 PMCID: PMC11761250 DOI: 10.3390/antiox14010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/04/2025] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
Mutations in highly conserved genes encoding components of the electron transport chain (ETC) provide valuable insights into the mechanisms of oxidative stress and mitochondrial ROS (mtROS) in a wide range of diseases, including cancer, neurodegenerative disorders, and aging. This review explores the structure and function of the ETC in the context of its role in mtROS generation and regulation, emphasizing its dual roles in cellular damage and signaling. Using Caenorhabditis elegans as a model organism, we discuss how ETC mutations manifest as developmental abnormalities, lifespan alterations, and changes in mtROS levels. We highlight the utility of redox sensors in C. elegans for in vivo studies of reactive oxygen species, offering both quantitative and qualitative insights. Finally, we examine the potential of C. elegans as a platform for testing ETC-targeting drug candidates, including OXPHOS inhibitors, which represent promising avenues in cancer therapeutics. This review underscores the translational relevance of ETC research in C. elegans, bridging fundamental biology and therapeutic innovation.
Collapse
Affiliation(s)
- Fanni Ősz
- Department of Biological Anthropology, Eötvös Loránd University, Pázmány P. stny. 1/C, H-1117 Budapest, Hungary; (F.Ő.); (Z.F.)
| | - Aamir Nazir
- Laboratory of Functional Genomics and Molecular Toxicology, Division of Toxicology, CSIR-Central Drug Research Institute, Lucknow 226031, India;
| | - Krisztina Takács-Vellai
- Department of Biological Anthropology, Eötvös Loránd University, Pázmány P. stny. 1/C, H-1117 Budapest, Hungary; (F.Ő.); (Z.F.)
| | - Zsolt Farkas
- Department of Biological Anthropology, Eötvös Loránd University, Pázmány P. stny. 1/C, H-1117 Budapest, Hungary; (F.Ő.); (Z.F.)
| |
Collapse
|
7
|
Huang Z, Xiang X, Xu W, Song L, Tang R, Chen D, Li Q, Zhou Y, Jiang CZ. The transcription factor MfbHLH104 from Myrothamnus flabellifolia promotes drought tolerance of Arabidopsis thaliana by enhancing stability of the photosynthesis system. J Biotechnol 2024; 396:89-103. [PMID: 39481548 DOI: 10.1016/j.jbiotec.2024.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/07/2024] [Accepted: 10/25/2024] [Indexed: 11/02/2024]
Abstract
The resurrection plant Myrothamnus flabellifolia can survive extreme drought and desiccation conditions, and quickly recover after rewatering. However, little is known about the mechanism underlying the drought tolerance of M. flabellifolia. In this study, MfbHLH104 was cloned and introduced into Arabidopsis thaliana due to the lack of a transgenic system for M. flabellifolia. MfbHLH104 is localized in the nucleus. Its N-terminal region has transactivation ability in yeast, and the C-terminal region may inhibit the transactivation ability. Overexpressing MfbHLH104 significantly increased drought and salt tolerance of A. thaliana at both seedling and adult stages. It enhanced leaf water retention capacity by decreasing water loss rate and increasing drought- and abscisic acid (ABA) -induced stomatal closure. Additionally, it boosted osmolyte accumulation and ROS scavenging ability by up-regulating genes associated with osmolyte biosynthesis and antioxidant enzymes, and enhancing antioxidant enzyme activities. The expression of ABA-responsive genes were also promoted by MfbHLH104. Remarkably, RNA-seq analysis indicated that MfbHLH104 significantly up-regulated 32 genes (FDR < 0.05 and fold change ≥1.5) involved in photosynthesis related pathways (KEGG pathway No: ko00195, ko00196) under drought, which account for 18.7 % of the total up-regulated genes and the most enriched KEGG pathways. This result suggested that it may help to maintain the stability of the photosynthesis system under drought conditions.
Collapse
Affiliation(s)
- Zhuo Huang
- College of Landscape Architecture, Sichuan Agricultural University, Wenjiang, Sichuan 611130, China.
| | - Xiangying Xiang
- College of Landscape Architecture, Sichuan Agricultural University, Wenjiang, Sichuan 611130, China.
| | - Wenxin Xu
- College of Landscape Architecture, Sichuan Agricultural University, Wenjiang, Sichuan 611130, China.
| | - Li Song
- College of Landscape Architecture, Sichuan Agricultural University, Wenjiang, Sichuan 611130, China.
| | - Rong Tang
- College of Landscape Architecture, Sichuan Agricultural University, Wenjiang, Sichuan 611130, China.
| | - Duoer Chen
- College of Landscape Architecture, Sichuan Agricultural University, Wenjiang, Sichuan 611130, China.
| | - Qiao Li
- College of Landscape Architecture, Sichuan Agricultural University, Wenjiang, Sichuan 611130, China.
| | - Yujue Zhou
- College of Landscape Architecture, Sichuan Agricultural University, Wenjiang, Sichuan 611130, China.
| | - Cai-Zhong Jiang
- Department of Plant Sciences, University of California Davis, Davis, CA 95616, USA; Crops Pathology and Genetics Research Unit, United States Department of Agriculture, Agricultural Research Service, Davis, CA 95616, USA.
| |
Collapse
|
8
|
Hejna M, Kapuścińska D, Aksmann A. A sensitive and reliable method for the quantitative determination of hydrogen peroxide produced by microalgae cells. JOURNAL OF PHYCOLOGY 2024; 60:1356-1370. [PMID: 39585191 DOI: 10.1111/jpy.13524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 09/19/2024] [Accepted: 10/23/2024] [Indexed: 11/26/2024]
Abstract
One of the reactive forms of oxygen is hydrogen peroxide (H2O2), which has been investigated as a key component of growth processes and stress responses. Different methods for the determination of H2O2 production by animal and bacterial cells exist; however, its detection in algal cell cultures is more complicated due to the presence of photosynthetic pigments in the cells and the complex structure of cell walls. Considering these issues, a reliable, quick, and simple method for H2O2 detection is needed in phycological research. The aim of this methodological study was to optimize an Amplex UltraRed method for the fluorometric detection of H2O2 produced by microalgae cells, using a wild-type strain of Chlamydomonas reinhardtii as a model. The results showed that (i) potassium phosphate is the most suitable reaction buffer for this method, (ii) a 560 nm wavelength variant is the most appropriate as the excitation wavelength for fluorescence spectra measurement, (iii) a 50:50 ratio for the reaction mixture to sample was the most suitable, (iv) the fluorescence signal was significantly influenced by the density of the microalgae biomass, and (v) sample fortification with H2O2 allowed for an increase of the method's reliability and repeatability. The proposed protocol of the Amplex UltraRed method for the fluorometric detection of H2O2 produced by microalgae cells can yield a sensitive and accurate determination of the content of the test compound, minimizing measurement errors, eliminating chlorophyll autofluorescence problem, and compensating for the matrix effect. This method can be applied to the study of other microalgae species.
Collapse
Affiliation(s)
- Monika Hejna
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Magdalenka, Poland
| | - Dominika Kapuścińska
- Department of Plant Physiology and Biotechnology, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Anna Aksmann
- Department of Plant Physiology and Biotechnology, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
9
|
Wang Y, Zang Y, Zhao W, Xu M, Bai J, Li L. Allelopathy and underlying mechanism of mango ( Mangifera indica) peel extracts on Alexandrium catenella. FRONTIERS IN PLANT SCIENCE 2024; 15:1510692. [PMID: 39659420 PMCID: PMC11628311 DOI: 10.3389/fpls.2024.1510692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 10/29/2024] [Indexed: 12/12/2024]
Abstract
Harmful algal blooms (HABs) have always been a worldwide environmental issue. The methods based on the principle of allelopathy provide a novel direction for controlling HABs; however, there are a few studies on the application of allelopathic algaecides to control harmful algae in marine environments. Here we examined the algicidal capacity of 15 fruit peel extracts with biological activity on Alexandrium catenella. The results displayed that the mango peel extracts (MPE) showed efficient inhibition on species growth. The algicidal rate reached 93.32 ± 0.56% at 96 h after adding 5 g/L MPE to the culture medium of A. catenella. Furthermore, we found that the expression of key genes involved in PSII and PSI was downregulated as well as obstructed the electron transportation in the light reaction process and the synthesis of organic matter. The blocked photosynthetic chain induced the accumulation of substantial reactive oxygen species, resulting in severe peroxidation of the membrane lipids. Simultaneously, the expression pattern of key genes involved in the fatty acid, amino acid, and peroxisome breakdown pathways was upregulated, which suggested that the synthesis and decomposition of intracellular organic matter may be in an imbalanced state. The results above indicated that oxidative damage and energy metabolism disequilibrium are two key pathways by which MPE induced algal cell death. Furthermore, several kinds of active substances and their proportion in MPE had been identified by liquid chromatography quadrupole time-of-flight mass spectrometry. It is speculated that esters may be the important component playing an algicidal effect. However, the specific substance that plays a key role in inhibiting the growth of A. catenella and the algicidal mechanism remain to be further studied. This study might provide a new direction in the management of HABs in the future.
Collapse
Affiliation(s)
- Yanqun Wang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
| | - Yu Zang
- Research Center of Marine Ecology, First Institute of Oceanography, MNR, Qingdao, China
| | - Wenxi Zhao
- Institute of Marine Germplasm Resources, Marine Science Research Institute of Shandong Province, Qingdao, China
| | - Mengxue Xu
- Institute of Marine Germplasm Resources, Marine Science Research Institute of Shandong Province, Qingdao, China
| | - Jie Bai
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
| | - Li Li
- Institute of Marine Germplasm Resources, Marine Science Research Institute of Shandong Province, Qingdao, China
| |
Collapse
|
10
|
Scarmelotto A, Delprat V, Michiels C, Lucas S, Heuskin AC. The oxygen puzzle in FLASH radiotherapy: A comprehensive review and experimental outlook. Clin Transl Radiat Oncol 2024; 49:100860. [PMID: 39381632 PMCID: PMC11458961 DOI: 10.1016/j.ctro.2024.100860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 10/10/2024] Open
Abstract
FLASH radiotherapy is attracting increasing interest because it maintains tumor control while inflicting less damage to normal tissues compared to conventional radiotherapy. This sparing effect, the so-called FLASH effect, is achieved when radiation is delivered at ultra-high dose rates (≥40 Gy/s). Although the FLASH effect has already been demonstrated in several preclinical models, a complete mechanistic description explaining why tumors and normal tissues respond differently is still missing. None of the current hypotheses fully explains the experimental evidence. A common point between many of these is the role of oxygen, which is described as a major factor, either through transient hypoxia in the form of dissolved molecules, or reactive oxygen species (ROS). Therefore, this review focuses on both forms of this molecule, retracing old and more recent theories, while proposing new mechanisms that could provide a complete description of the FLASH effect based on preclinical and experimental evidence. In addition, this manuscript describes a set of experiments designed to provide the FLASH community with new tools for exploring the post-irradiation fate of ROS and their potential biological implications.
Collapse
Affiliation(s)
- Andrea Scarmelotto
- Laboratory for Analysis by Nuclear Reaction (LARN), Namur Research Institute for Life Sciences (NARILIS), University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium
| | - Victor Delprat
- Laboratory for Analysis by Nuclear Reaction (LARN), Namur Research Institute for Life Sciences (NARILIS), University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium
| | - Carine Michiels
- Unité de Recherche en Biologie Cellulaire (URBC), Namur Research Institute For Life Sciences (NARILIS), University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium
| | - Stéphane Lucas
- Laboratory for Analysis by Nuclear Reaction (LARN), Namur Research Institute for Life Sciences (NARILIS), University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium
- Ion Beam Application (IBA), Chemin du Cyclotron, 6, B-1348 Louvain-La-Neuve, Belgium
| | - Anne-Catherine Heuskin
- Laboratory for Analysis by Nuclear Reaction (LARN), Namur Research Institute for Life Sciences (NARILIS), University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium
| |
Collapse
|
11
|
Ziental D, Czarczynska-Goslinska B, Wysocki M, Ptaszek M, Sobotta Ł. Advances and perspectives in use of semisolid formulations for photodynamic methods. Eur J Pharm Biopharm 2024; 204:114485. [PMID: 39255919 DOI: 10.1016/j.ejpb.2024.114485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/19/2024] [Accepted: 09/04/2024] [Indexed: 09/12/2024]
Abstract
Although nearly 30 years have passed since the introduction of the first clinically approved photosensitizer for photodynamic therapy, progress in developing new pharmaceutical formulations remains unsatisfactory. This review highlights that despite years of research, many recurring challenges and issues remain unresolved. The paper includes an analysis of selected essential studies involving aminolevulinic acid and its derivatives, as well as other photosensitizers with potential for development as medical products. Among various possible vehicles, special attention is given to gelatin, alginates, poly(ethylene oxide), polyacrylic acid, and chitosan. The focus is particularly on infectious and cancerous diseases. Key aspects of developing new semi-solid drug forms should prioritize the creation of easily manufacturable and biocompatible preparations for clinical use. At the same time, new formulations should preserve the primary function of photosensitizers, which is the generation of reactive oxygen species capable of destroying pathogenic cells or tumors. Additionally, the use of adjuvant properties of carriers, which can enhance the effectiveness of macrocycles, is emphasized, especially in chitosan-based antibacterial formulations. Current research indicates that many promising dyes and macrocyclic compounds with high potential as photosensitizers in photodynamic therapy remain unexplored in formulation and development work. This review outlines potential new and previously explored pathways for advancing photosensitizers as active pharmaceutical ingredients (APIs).
Collapse
Affiliation(s)
- Daniel Ziental
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland.
| | - Beata Czarczynska-Goslinska
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| | - Marcin Wysocki
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| | - Marcin Ptaszek
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Łukasz Sobotta
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| |
Collapse
|
12
|
Didaran F, Kordrostami M, Ghasemi-Soloklui AA, Pashkovskiy P, Kreslavski V, Kuznetsov V, Allakhverdiev SI. The mechanisms of photoinhibition and repair in plants under high light conditions and interplay with abiotic stressors. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 259:113004. [PMID: 39137703 DOI: 10.1016/j.jphotobiol.2024.113004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/20/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024]
Abstract
This review comprehensively examines the phenomenon of photoinhibition in plants, focusing mainly on the intricate relationship between photodamage and photosystem II (PSII) repair and the role of PSII extrinsic proteins and protein phosphorylation in these processes. In natural environments, photoinhibition occurs together with a suite of concurrent stress factors, including extreme temperatures, drought and salinization. Photoinhibition, primarily caused by high irradiance, results in a critical imbalance between the rate of PSII photodamage and its repair. Central to this process is the generation of reactive oxygen species (ROS), which not only impair the photosynthetic apparatus first PSII but also play a signalling role in chloroplasts and other cellulular structures. ROS generated under stress conditions inhibit the repair of photodamaged PSII by suppressing D1 protein synthesis and affecting PSII protein phosphorylation. Furthermore, this review considers how environmental stressors exacerbate PSII damage by interfering with PSII repair primarily by reducing de novo protein synthesis. In addition to causing direct damage, these stressors also contribute to ROS production by restricting CO2 fixation, which also reduces the intensity of protein synthesis. This knowledge has significant implications for agricultural practices and crop improvement under stressful conditions.
Collapse
Affiliation(s)
- Fardad Didaran
- Department of Horticulture, Aburaihan Campus, University of Tehran, Iran
| | - Mojtaba Kordrostami
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute (NSTRI), Karaj, Iran.
| | - Ali Akbar Ghasemi-Soloklui
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute (NSTRI), Karaj, Iran.
| | - Pavel Pashkovskiy
- К.А. Timiryazev Institute of Plant Physiology RAS, Botanicheskaya Street 35, Moscow, 127276, Russia.
| | - Vladimir Kreslavski
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
| | - Vladimir Kuznetsov
- К.А. Timiryazev Institute of Plant Physiology RAS, Botanicheskaya Street 35, Moscow, 127276, Russia
| | - Suleyman I Allakhverdiev
- К.А. Timiryazev Institute of Plant Physiology RAS, Botanicheskaya Street 35, Moscow, 127276, Russia
| |
Collapse
|
13
|
Wei N, Hu C, Dittmann E, Song L, Gan N. The biological functions of microcystins. WATER RESEARCH 2024; 262:122119. [PMID: 39059200 DOI: 10.1016/j.watres.2024.122119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024]
Abstract
Microcystins are potent hepatotoxins predominantly produced by bloom-forming freshwater cyanobacteria (e.g., Microcystis, Planktothrix, Dolichospermum). Microcystin biosynthesis involves large multienzyme complexes and tailoring enzymes encoded by the mcy gene cluster. Mutation, recombination, and deletion events have shaped the mcy gene cluster in the course of evolution, resulting in a large diversity of microcystin congeners and the natural coexistence of toxic and non-toxic strains. The biological functions of microcystins and their association with algal bloom formation have been extensively investigated over the past decades. This review synthesizes recent advances in decoding the biological role of microcystins in carbon/nitrogen metabolism, antioxidation, colony formation, and cell-to-cell communication. Microcystins appear to adopt multifunctional roles in cyanobacteria that reflect the adaptive plasticity of toxic cyanobacteria to changing environments.
Collapse
Affiliation(s)
- Nian Wei
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Chenlin Hu
- College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | - Elke Dittmann
- Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam-Golm, Germany
| | - Lirong Song
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Nanqin Gan
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
14
|
Kupriyanova EV, Sinetova MA, Gabrielyan DA, Los DA. The Freshwater Cyanobacterium Synechococcus elongatus PCC 7942 Does Not Require an Active External Carbonic Anhydrase. PLANTS (BASEL, SWITZERLAND) 2024; 13:2323. [PMID: 39204759 PMCID: PMC11360081 DOI: 10.3390/plants13162323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Under standard laboratory conditions, Synechococcus elongatus PCC 7942 lacks EcaASyn, a periplasmic carbonic anhydrase (CA). In this study, a S. elongatus transformant was created that expressed the homologous EcaACya from Cyanothece sp. ATCC 51142. This additional external CA had no discernible effect on the adaptive responses and physiology of cells exposed to changes similar to those found in S. elongatus natural habitats, such as fluctuating CO2 and HCO3- concentrations and ratios, oxidative or light stress, and high CO2. The transformant had a disadvantage over wild-type cells under certain conditions (Na+ depletion, a reduction in CO2). S. elongatus cells lacked their own EcaASyn in all experimental conditions. The results suggest the presence in S. elongatus of mechanisms that limit the appearance of EcaASyn in the periplasm. For the first time, we offer data on the expression pattern of CCM-associated genes during S. elongatus adaptation to CO2 replacement with HCO3-, as well as cell transfer to high CO2 levels (up to 100%). An increase in CO2 concentration coincides with the suppression of the NDH-14 system, which was previously thought to function constitutively.
Collapse
Affiliation(s)
- Elena V. Kupriyanova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (M.A.S.); (D.A.G.); (D.A.L.)
| | | | | | | |
Collapse
|
15
|
Andres Garcia-Diosa J, Grundmeier G, Keller A. Highly Efficient Quenching of Singlet Oxygen by DNA Origami Nanostructures. Chemistry 2024; 30:e202402057. [PMID: 38842532 DOI: 10.1002/chem.202402057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 06/07/2024]
Abstract
DNA origami nanostructures (DONs) are able to scavenge reactive oxygen species (ROS) and their scavenging efficiency toward ROS radicals was shown to be comparable to that of genomic DNA. Herein, we demonstrate that DONs are highly efficient singlet oxygen quenchers outperforming double-stranded (ds) DNA by several orders of magnitude. To this end, a ROS mixture rich in singlet oxygen is generated by light irradiation of the photosensitizer methylene blue and its cytotoxic effect on Escherichia coli cells is quantified in the presence and absence of DONs. DONs are found to be vastly superior to dsDNA in protecting the bacteria from ROS-induced damage and even surpass established ROS scavengers. At a concentration of 15 nM, DONs are about 50 000 times more efficient ROS scavengers than dsDNA at an equivalent concentration. This is attributed to the dominant role of singlet oxygen, which has a long diffusion length and reacts specifically with guanine. The dense packing of the available guanines into the small volume of the DON increases the overall quenching probability compared to a linear dsDNA with the same number of base pairs. DONs thus have great potential to alleviate oxidative stress caused by singlet oxygen in diverse therapeutic settings.
Collapse
Affiliation(s)
- Jaime Andres Garcia-Diosa
- Technical and Macromolecular Chemistry, Paderborn University, Warburger Str. 100, Paderborn, 33098, Germany
| | - Guido Grundmeier
- Technical and Macromolecular Chemistry, Paderborn University, Warburger Str. 100, Paderborn, 33098, Germany
| | - Adrian Keller
- Technical and Macromolecular Chemistry, Paderborn University, Warburger Str. 100, Paderborn, 33098, Germany
| |
Collapse
|
16
|
Lem O, Gangurde P, Koivuniemi A, Keskinen A, Efimov A, Durandin N, Laaksonen T. Far-red light-triggered cargo release from liposomes b ound to a photosensitizer-cellulose nanofiber hydrogel. Carbohydr Polym 2024; 336:122134. [PMID: 38670761 DOI: 10.1016/j.carbpol.2024.122134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/28/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024]
Abstract
In our research we used the anionic nanofibrillar cellulose (ANFC) as a platform for far-red light-induced release of cargo from liposomes. In contrast to previous works, where photosensitizers are usually in the liposomal bilayers, we used a cellulose-binding dye. Our phthalocyanine derivative has been shown to bind very strongly to cellulose and cellulose nanofiber hydrogels, allowing us to place it outside of the liposomes. Both the sensitizer and cationic liposomes bind strongly to the ANFC after mixing, making the system easy to fabricate. Upon light activation, the photosensitizer generates reactive oxygen species (ROS) within the ANFC hydrogel, where the reactive oxygen species oxidize unsaturated lipids in the liposomal membrane, which makes the liposomes more permeable, resulting in on-demand cargo release. We were able to achieve ca. 70 % release of model hydrophilic cargo molecule calcein from the hydrogels with a relatively low dose of light (262 J/cm2) while employing the straightforward fabrication techniques. Our system was remarkably responsive to the far-red light (730 nm), enabling deep tissue penetration. Therefore, this very promising novel cellulose-immobilized photosensitizer liposomal platform could be used as a controlled drug delivery system, which can have applications in externally activated coatings or implants.
Collapse
Affiliation(s)
- Olga Lem
- Tampere University, Faculty of Engineering and Natural Sciences, Tampere, Finland
| | - Puja Gangurde
- University of Helsinki, Faculty of Pharmacy, Division of Pharmaceutical Biosciences, Helsinki, Finland
| | - Artturi Koivuniemi
- University of Helsinki, Faculty of Pharmacy, Division of Pharmaceutical Biosciences, Helsinki, Finland
| | - Aleksi Keskinen
- Tampere University, Faculty of Engineering and Natural Sciences, Tampere, Finland
| | - Alexander Efimov
- Tampere University, Faculty of Engineering and Natural Sciences, Tampere, Finland.
| | - Nikita Durandin
- Tampere University, Faculty of Engineering and Natural Sciences, Tampere, Finland.
| | - Timo Laaksonen
- Tampere University, Faculty of Engineering and Natural Sciences, Tampere, Finland; University of Helsinki, Faculty of Pharmacy, Division of Pharmaceutical Biosciences, Helsinki, Finland.
| |
Collapse
|
17
|
Schmitt FJ, Friedrich T. Adaptation processes in Halomicronema hongdechloris, an example of the light-induced optimization of the photosynthetic apparatus on hierarchical time scales. FRONTIERS IN PLANT SCIENCE 2024; 15:1359195. [PMID: 39049856 PMCID: PMC11266139 DOI: 10.3389/fpls.2024.1359195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/04/2024] [Indexed: 07/27/2024]
Abstract
Oxygenic photosynthesis in Halomicronema hongdechloris, one of a series of cyanobacteria producing red-shifted Chl f, is adapted to varying light conditions by a range of diverse processes acting over largely different time scales. Acclimation to far-red light (FRL) above 700 nm over several days is mirrored by reversible changes in the Chl f content. In several cyanobacteria that undergo FRL photoacclimation, Chl d and Chl f are directly involved in excitation energy transfer in the antenna system, form the primary donor in photosystem I (PSI), and are also involved in electron transfer within photosystem II (PSII), most probably at the ChlD1 position, with efficient charge transfer happening with comparable kinetics to reaction centers containing Chl a. In H. hongdechloris, the formation of Chl f under FRL comes along with slow adaptive proteomic shifts like the rebuilding of the D1 complex on the time scale of days. On shorter time scales, much faster adaptation mechanisms exist involving the phycobilisomes (PBSs), which mainly contain allophycocyanin upon adaptation to FRL. Short illumination with white, blue, or red light leads to reactive oxygen species-driven mobilization of the PBSs on the time scale of seconds, in effect recoupling the PBSs with Chl f-containing PSII to re-establish efficient excitation energy transfer within minutes. In summary, H. hongdechloris reorganizes PSII to act as a molecular heat pump lifting excited states from Chl f to Chl a on the picosecond time scale in combination with a light-driven PBS reorganization acting on the time scale of seconds to minutes depending on the actual light conditions. Thus, structure-function relationships in photosynthetic energy and electron transport in H. hongdechloris including long-term adaptation processes cover 10-12 to 106 seconds, i.e., 18 orders of magnitude in time.
Collapse
Affiliation(s)
- Franz-Josef Schmitt
- Department of Physics, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Thomas Friedrich
- Department of Bioenergetics, Technische Universität Berlin, Institute of Chemistry PC 14, Berlin, Germany
| |
Collapse
|
18
|
Yang X, Wang X, Zhang X, Zhang J, Lam JWY, Sun H, Yang J, Liang Y, Tang BZ. Donor-Acceptor Modulating of Ionic AIE Photosensitizers for Enhanced ROS Generation and NIR-II Emission. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402182. [PMID: 38663035 DOI: 10.1002/adma.202402182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/15/2024] [Indexed: 05/04/2024]
Abstract
Photosensitizers (PSs) with aggregation-induced emission (AIE) characteristics are competitive candidates for bioimaging and therapeutic applications. However, their short emission wavelength and nonspecific organelle targeting hinder their therapeutic effectiveness. Herein, a donor-acceptor modulation approach is reported to construct a series of ionic AIE photosensitizers with enhanced photodynamic therapy (PDT) outcomes and fluorescent emission in the second near-infrared (NIR-II) window. By employing dithieno[3,2-b:2',3'-d]pyrrole (DTP) and indolium (In) as the strong donor and acceptor, respectively, the compound DTP-In exhibits a substantial redshift in absorption and fluorescent emission reach to NIR-II region. The reduced energy gap between singlet and triplet states in DTP-In also increases the reactive oxygen species (ROS) generation rate. Further, DTP-In can self-assemble in aqueous solutions, forming positively charged nanoaggregates, which are superior to conventional encapsulated nanoparticles in cellular uptake and mitochondrial targeting. Consequently, DTP-In aggregates show efficient photodynamic ablation of 4T1 cancer cells and outstanding tumor theranostic in vivo under 660 nm laser irradiation. This work highlights the potential of molecular engineering of donor-acceptor AIE PSs with multiple functionalities, thereby facilitating the development of more effective strategies for cancer therapy.
Collapse
Affiliation(s)
- Xueqin Yang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Mechanical and Aerospace Engineering, Division of Life Science, State Key Laboratory of Molecular Neuroscience and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
- Bioscience and Biomedical Engineering Thrust, System Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangdong, 511400, China
| | - Xinyuan Wang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Mechanical and Aerospace Engineering, Division of Life Science, State Key Laboratory of Molecular Neuroscience and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
- Department of Materials Science and Engineering, Southern University of Science and Technology, Guangdong, 518055, China
| | - Xun Zhang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Guangdong, 518055, China
| | - Jianyu Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Mechanical and Aerospace Engineering, Division of Life Science, State Key Laboratory of Molecular Neuroscience and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Mechanical and Aerospace Engineering, Division of Life Science, State Key Laboratory of Molecular Neuroscience and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Haitao Sun
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Jinglei Yang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Mechanical and Aerospace Engineering, Division of Life Science, State Key Laboratory of Molecular Neuroscience and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Yongye Liang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Guangdong, 518055, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Mechanical and Aerospace Engineering, Division of Life Science, State Key Laboratory of Molecular Neuroscience and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, 518172, China
| |
Collapse
|
19
|
Maroudas-Sklare N, Goren N, Yochelis S, Jung G, Keren N, Paltiel Y. Probing the design principles of photosynthetic systems through fluorescence noise measurement. Sci Rep 2024; 14:13877. [PMID: 38880795 PMCID: PMC11637105 DOI: 10.1038/s41598-024-64068-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 06/05/2024] [Indexed: 06/18/2024] Open
Abstract
Elucidating the energetic processes which govern photosynthesis, the engine of life on earth, are an essential goal both for fundamental research and for cutting-edge biotechnological applications. Fluorescent signal of photosynthetic markers has long been utilised in this endeavour. In this research we demonstrate the use of fluorescent noise analysis to reveal further layers of intricacy in photosynthetic energy transfer. While noise is a common tool analysing dynamics in physics and engineering, its application in biology has thus far been limited. Here, a distinct behaviour in photosynthetic pigments across various chemical and biological environments is measured. These changes seem to elucidate quantum effects governing the generation of oxidative radicals. Although our method offers insights, it is important to note that the interpretation should be further validated expertly to support as conclusive theory. This innovative method is simple, non-invasive, and immediate, making it a promising tool to uncover further, more complex energetic events in photosynthesis, with potential uses in environmental monitoring, agriculture, and food-tech.
Collapse
Affiliation(s)
- Naama Maroudas-Sklare
- Department of Applied Physics, Hebrew University of Jerusalem, 91904, Jerusalem, Israel
- Department of Plant & Environmental Sciences, The Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Naama Goren
- Department of Applied Physics, Hebrew University of Jerusalem, 91904, Jerusalem, Israel
| | - Shira Yochelis
- Department of Applied Physics, Hebrew University of Jerusalem, 91904, Jerusalem, Israel
| | - Grzegorz Jung
- Department of Physics, Ben Gurion University of the Negev, 84105, Beer Sheva, Israel
- Instytut Fizyki PAN, 02668, Warszawa, Poland
| | - Nir Keren
- Department of Plant & Environmental Sciences, The Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yossi Paltiel
- Department of Applied Physics, Hebrew University of Jerusalem, 91904, Jerusalem, Israel.
| |
Collapse
|
20
|
Ashikhmin A, Pashkovskiy P, Kosobryukhov A, Khudyakova A, Abramova A, Vereshchagin M, Bolshakov M, Kreslavski V. The Role of Pigments and Cryptochrome 1 in the Adaptation of Solanum lycopersicum Photosynthetic Apparatus to High-Intensity Blue Light. Antioxidants (Basel) 2024; 13:605. [PMID: 38790710 PMCID: PMC11117525 DOI: 10.3390/antiox13050605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
The effects of high-intensity blue light (HIBL, 500/1000 µmol m-2s-1, 450 nm) on Solanum lycopersicum mutants with high pigment (hp) and low pigment (lp) levels and cryptochrome 1 (cry1) deficiency on photosynthesis, chlorophylls, phenols, anthocyanins, nonenzymatic antioxidant activity, carotenoid composition, and the expression of light-dependent genes were investigated. The plants, grown under white light for 42 days, were exposed to HIBL for 72 h. The hp mutant quickly adapted to 500 µmol m-2s-1 HIBL, exhibiting enhanced photosynthesis, increased anthocyanin and carotenoids (beta-carotene, zeaxanthin), and increased expression of key genes involved in pigment biosynthesis (PSY1, PAL1, CHS, ANS) and PSII proteins along with an increase in nonenzymatic antioxidant activity. At 1000 µmol m-2s-1 HIBL, the lp mutant showed the highest photosynthetic activity, enhanced expression of genes associated with PSII external proteins (psbO, psbP, psbQ), and increased in neoxanthin content. This mutant demonstrated greater resistance at the higher HIBL, demonstrating increased stomatal conductance and photosynthesis rate. The cry1 mutant exhibited the highest non-photochemical quenching (NPQ) but had the lowest pigment contents and decreased photosynthetic rate and PSII activity, highlighting the critical role of CRY1 in adaptation to HIBL. The hp and lp mutants use distinct adaptation strategies, which are significantly hindered by the cry1 mutation. The pigment content appears to be crucial for adaptation at moderate HIBL doses, while CRY1 content and stomatal activity become more critical at higher doses.
Collapse
Affiliation(s)
- Aleksandr Ashikhmin
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, Pushchino 142290, Russia; (A.A.); (A.K.); (A.K.); (M.B.)
| | - Pavel Pashkovskiy
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia; (P.P.); (A.A.); (M.V.)
| | - Anatoliy Kosobryukhov
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, Pushchino 142290, Russia; (A.A.); (A.K.); (A.K.); (M.B.)
| | - Alexandra Khudyakova
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, Pushchino 142290, Russia; (A.A.); (A.K.); (A.K.); (M.B.)
| | - Anna Abramova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia; (P.P.); (A.A.); (M.V.)
| | - Mikhail Vereshchagin
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia; (P.P.); (A.A.); (M.V.)
| | - Maksim Bolshakov
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, Pushchino 142290, Russia; (A.A.); (A.K.); (A.K.); (M.B.)
| | - Vladimir Kreslavski
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, Pushchino 142290, Russia; (A.A.); (A.K.); (A.K.); (M.B.)
| |
Collapse
|
21
|
Wang Y, Lv B, Wang H, Ren T, Jiang Q, Qu X, Ni D, Qiu J, Hua K. Ultrasound-Triggered Azo Free Radicals for Cervical Cancer Immunotherapy. ACS NANO 2024; 18:11042-11057. [PMID: 38627898 DOI: 10.1021/acsnano.3c10625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
PD-1 blockade is a first-line treatment for recurrent/metastatic cervical cancer but benefits only a small number of patients due to low preexisting tumor immunogenicity. Using immunogenic cell death (ICD) inducers is a promising strategy for improving immunotherapy, but these compounds are limited by the hypoxic environment of solid tumors. To overcome this issue, the nanosensitizer AIBA@MSNs were designed based on sonodynamic therapy (SDT), which induces tumor cell death under hypoxic conditions through azo free radicals in a method of nonoxygen radicals. Mechanistically, the azo free radicals disrupt both the structure and function of tumor mitochondria by reversing the mitochondrial membrane potential and facilitating the collapse of electron transport chain complexes. More importantly, the AIBA@MSN-based SDT serves as an effective ICD inducer and improves the antitumor immune capacity. The combination of an AIBA@MSN-based SDT with a PD-1 blockade has the potential to improve response rates and provide protection against relapse. This study provides insights into the use of azo free radicals as a promising SDT strategy for cancer treatment and establishes a basic foundation for nonoxygen-dependent SDT-triggered immunotherapy in cervical cancer treatment.
Collapse
Affiliation(s)
- Yumeng Wang
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, PR China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, PR China
| | - Bin Lv
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, PR China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, PR China
| | - Han Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Tingting Ren
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, PR China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, PR China
| | - Qian Jiang
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, PR China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, PR China
| | - Xinyu Qu
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, PR China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, PR China
| | - Dalong Ni
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215163, PR China
| | - Junjun Qiu
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, PR China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, PR China
| | - Keqin Hua
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, PR China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, PR China
| |
Collapse
|
22
|
Yanykin D, Paskhin M, Ashikhmin AA, Bolshakov MA. Carotenoid-dependent singlet oxygen photogeneration in light-harvesting complex 2 of Ectothiorhodospira haloalkaliphila leads to the formation of organic hydroperoxides and damage to both pigments and protein matrix. PeerJ 2024; 12:e16615. [PMID: 38250719 PMCID: PMC10798160 DOI: 10.7717/peerj.16615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/15/2023] [Indexed: 01/23/2024] Open
Abstract
Earlier, it was suggested that carotenoids in light-harvesting complexes 2 (LH2) can generate singlet oxygen, further oxidizing bacteriochlorophyll to 3-acetyl-chlorophyll. In the present work, it was found that illumination of isolated LH2 preparations of purple sulfur bacterium Ectothiorhodospira haloalkaliphila with light in the carotenoid absorption region leads to the photoconsumption of molecular oxygen, which is accompanied by the formation of hydroperoxides of organic molecules in the complexes. Photoformation of two types of organic hydroperoxides were revealed: highly lipophilic (12 molecules per one LH2) and relatively hydrophobic (68 per one LH2). It has been shown that illumination leads to damage to light-harvesting complexes. On the one hand, photobleaching of bacteriochlorophyll and a decrease in its fluorescence intensity are observed. On the other hand, the photoinduced increase in the hydrodynamic radius of the complexes, the reduction in their thermal stability, and the change in fluorescence intensity indicate conformational changes occurring in the protein molecules of the LH2 preparations. Inhibition of the processes described above upon the addition of singlet oxygen quenchers (L-histidine, Trolox, sodium L-ascorbate) may support the hypothesis that carotenoids in LH2 preparations are capable of generating singlet oxygen, which, in turn, damage to protein molecules.
Collapse
Affiliation(s)
- Denis Yanykin
- Institute of Basic Biological Problems, FRC PSCBR, Pushchino, Moscow, Russia
- Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow, Moscow, Russia
| | - Mark Paskhin
- Institute of Basic Biological Problems, FRC PSCBR, Pushchino, Moscow, Russia
- Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow, Moscow, Russia
| | | | | |
Collapse
|
23
|
Gurunathan S, Thangaraj P, Das J, Kim JH. Antibacterial and antibiofilm effects of Pseudomonas aeruginosa derived outer membrane vesicles against Streptococcus mutans. Heliyon 2023; 9:e22606. [PMID: 38125454 PMCID: PMC10730581 DOI: 10.1016/j.heliyon.2023.e22606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 12/23/2023] Open
Abstract
Antimicrobial resistance (AMR) is a serious and most urgent global threat to human health. AMR is one of today's biggest difficulties in the health system and has the potential to harm people at any stage of life, making it a severe public health issue. There must be fewer antimicrobial medicines available to treat diseases given the rise in antibiotic-resistant organisms. If no new drugs are created or discovered, it is predicted that there won't be any effective antibiotics accessible by 2050. In most cases, Streptococcus increased antibiotic resistance by forming biofilms, which account for around 80 % of all microbial infections in humans. This highlights the need to look for new strategies to manage diseases that are resistant to antibiotics. Therefore, development alternative, biocompatible and high efficacy new strategies are essential to overcome drug resistance. Recently, bacterial derived extracellular vesicles have been applied to tackle infection and reduce the emergence of drug resistance. Therefore, the objective of the current study was designed to assess the antibacterial and antibiofilm potential of outer membrane vesicles (OMVs) derived from Pseudomonas aeruginosa againstStreptococcus mutans. According to the findings of this investigation, the pure P. aeruginosa outer membrane vesicles (PAOMVs) display a size of 100 nm. S. mutans treated with PAOMVs showed significant antibacterial and antibiofilm activity. The mechanistic studies revealed that PAOMVs induce cell death through excessive generation of reactive oxygen species and imbalance of redox leads to lipid peroxidation, decreased level of antioxidant markers including glutathione, superoxide dismutase and catalase. Further this study confirmed that PAOMVs significantly impairs metabolic activity through inhibiting lactate dehydrogenase activity (LDH), adenosine triphosphate (ATP) production, leakage of proteins and sugars. Interestingly, combination of sub-lethal concentrations of PAOMVs and antibiotics enhances cell death and biofilm formation of S. mutans. Altogether, this work, may serve as an important basis for further evaluation of PAOMVs as novel therapeutic agents against bacterial infections.
Collapse
Affiliation(s)
- Sangiliyandi Gurunathan
- Department of Biotechnology, Rathinam College of Arts and Science, Rathinam Techzone Campus, Eachanari, Coimbatore, 641 021, Tamil Nadu, India
| | - Pratheep Thangaraj
- Department of Biotechnology, Rathinam College of Arts and Science, Rathinam Techzone Campus, Eachanari, Coimbatore, 641 021, Tamil Nadu, India
| | - Joydeep Das
- Department of Chemistry, Mizoram University, Aizawl, 796 004, Mizoram, India
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, South Korea
| |
Collapse
|
24
|
Leanse LG, dos Anjos C, Kaler KR, Hui J, Boyd JM, Hooper DC, Anderson RR, Dai T. Blue Light Potentiates Antibiotics in Bacteria via Parallel Pathways of Hydroxyl Radical Production and Enhanced Antibiotic Uptake. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303731. [PMID: 37946633 PMCID: PMC10754126 DOI: 10.1002/advs.202303731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/13/2023] [Indexed: 11/12/2023]
Abstract
In the age of antimicrobial resistance, the urgency by which novel therapeutic approaches need to be introduced into the clinical pipeline has reached critical levels. Antimicrobial blue light (aBL), as an alternative approach, has demonstrated promise as a stand-alone therapeutic method, albeit with a limited window of antimicrobial activity. Work by others indicates that treatment with antibiotics increases the production of reactive oxygen species (ROS) which may, in part, contribute to the bactericidal effects of antibiotics. These findings suggest that there may be potential for synergistic interactions with aBL, that similarly generates ROS. Therefore, in this study, the mechanism of aBL is investigated, and the potential for aBL to synergistically promote antibiotic activity is similarly evaluated. Furthermore, the translatability of using aBL and chloramphenicol in combination within a mouse model of Acinetobacter baumanii burn infection is assessed. It is concluded that porphyrins and hydroxyl radicals driven by "free iron" are paramount to the effectiveness of aBL; and aBL is effective at promoting multiple antibiotics in different multidrug-resistant bacteria. Moreover, rROS up-regulation, and promoted antibiotic uptake are observed during aBL+antibiotic exposure. Lastly, aBL combined with chloramphenicol appears to be both effective and safe for the treatment of A. baumannii burn infection. In conclusion, aBL may be a useful adjunct therapy to antibiotics to potentiate their action.
Collapse
Affiliation(s)
- Leon G. Leanse
- Wellman Center for PhotomedicineMassachusetts General Hospital, Harvard Medical SchoolBostonMA02114USA
- Health and Sports Sciences HubUniversity of Gibraltar, Europa Point CampusGibraltarGX11 1AAGibraltar
| | - Carolina dos Anjos
- Wellman Center for PhotomedicineMassachusetts General Hospital, Harvard Medical SchoolBostonMA02114USA
| | - Kylie Ryan Kaler
- Department of Biochemistry and MicrobiologyRutgers UniversityNew BrunswickNew Jersey08901USA
| | - Jie Hui
- Wellman Center for PhotomedicineMassachusetts General Hospital, Harvard Medical SchoolBostonMA02114USA
| | - Jeffrey M. Boyd
- Department of Biochemistry and MicrobiologyRutgers UniversityNew BrunswickNew Jersey08901USA
| | - David C. Hooper
- Division of Infectious DiseasesMassachusetts General Hospital, Harvard Medical SchoolBostonMA02114USA
| | - R. Rox Anderson
- Wellman Center for PhotomedicineMassachusetts General Hospital, Harvard Medical SchoolBostonMA02114USA
| | - Tianhong Dai
- Wellman Center for PhotomedicineMassachusetts General Hospital, Harvard Medical SchoolBostonMA02114USA
| |
Collapse
|
25
|
Ashikhmin A, Bolshakov M, Pashkovskiy P, Vereshchagin M, Khudyakova A, Shirshikova G, Kozhevnikova A, Kosobryukhov A, Kreslavski V, Kuznetsov V, Allakhverdiev SI. The Adaptive Role of Carotenoids and Anthocyanins in Solanum lycopersicum Pigment Mutants under High Irradiance. Cells 2023; 12:2569. [PMID: 37947647 PMCID: PMC10650732 DOI: 10.3390/cells12212569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/18/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023] Open
Abstract
The effects of high-intensity light on the pigment content, photosynthetic rate, and fluorescence parameters of photosystem II in high-pigment tomato mutants (hp 3005) and low-pigment mutants (lp 3617) were investigated. This study also evaluated the dry weight percentage of low molecular weight antioxidant capacity, expression patterns of some photoreceptor-regulated genes, and structural aspects of leaf mesophyll cells. The 3005 mutant displayed increased levels of photosynthetic pigments and anthocyanins, whereas the 3617 mutant demonstrated a heightened content of ultraviolet-absorbing pigments. The photosynthetic rate, photosystem II activity, antioxidant capacity, and carotenoid content were most pronounced in the high-pigment mutant after 72 h exposure to intense light. This mutant also exhibited an increase in leaf thickness and water content when exposed to high-intensity light, suggesting superior physiological adaptability and reduced photoinhibition. Our findings indicate that the enhanced adaptability of the high-pigment mutant might be attributed to increased flavonoid and carotenoid contents, leading to augmented expression of key genes associated with pigment synthesis and light regulation.
Collapse
Affiliation(s)
- Aleksandr Ashikhmin
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino 142290, Russia; (A.A.); (M.B.); (A.K.); (G.S.); (A.K.); (V.K.)
| | - Maksim Bolshakov
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino 142290, Russia; (A.A.); (M.B.); (A.K.); (G.S.); (A.K.); (V.K.)
| | - Pavel Pashkovskiy
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia; (P.P.); (M.V.); (A.K.); (V.K.)
| | - Mikhail Vereshchagin
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia; (P.P.); (M.V.); (A.K.); (V.K.)
| | - Alexandra Khudyakova
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino 142290, Russia; (A.A.); (M.B.); (A.K.); (G.S.); (A.K.); (V.K.)
| | - Galina Shirshikova
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino 142290, Russia; (A.A.); (M.B.); (A.K.); (G.S.); (A.K.); (V.K.)
| | - Anna Kozhevnikova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia; (P.P.); (M.V.); (A.K.); (V.K.)
| | - Anatoliy Kosobryukhov
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino 142290, Russia; (A.A.); (M.B.); (A.K.); (G.S.); (A.K.); (V.K.)
| | - Vladimir Kreslavski
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino 142290, Russia; (A.A.); (M.B.); (A.K.); (G.S.); (A.K.); (V.K.)
| | - Vladimir Kuznetsov
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia; (P.P.); (M.V.); (A.K.); (V.K.)
| | - Suleyman I. Allakhverdiev
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia; (P.P.); (M.V.); (A.K.); (V.K.)
| |
Collapse
|
26
|
Lee S, Chung MJ, Ahn M, Park HJ, Wang EK, Guon T, Kee HJ, Ku CR, Na K. Surfactant-like photosensitizer for endoscopic duodenal ablation: Modulating meal-stimulated incretin hormones in obese and type 2 diabetes. Biomaterials 2023; 302:122336. [PMID: 37778055 DOI: 10.1016/j.biomaterials.2023.122336] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 10/03/2023]
Abstract
Duodenal ablation improves glycaemic control and weight loss, so it has been applied using hydrothermal catheters in obese and type 2 diabetes patients, indicating similar mechanisms and therapeutic effects as bariatric surgeries. Endoscopic photodynamic therapy is an innovative procedure that easily accessible to endocrine or gastrointestinal organs, so it is critical for the sprayed photosensitizer (PS) to long-term interact with target tissues for enhancing its effects. Surfactant-like PS was more stable in a wide range of pH and 2.8-fold more retained in the duodenum at 1 h than hydrophilic PS due to its amphiphilic property. Endoscopic duodenal ablation using surfactant-like PS was performed in high fat diet induced rat models, demonstrating body weight loss, enhanced insulin sensitivity, and modulation of incretin hormones. Locoregional ablation of duodenum could affect the profiles of overall intestinal cells secreting meal-stimulated hormones and further the systemic glucose and lipid metabolism, regarding gut-brain axis. Our strategy suggests a potential for a treatment of minimally invasive bariatric and metabolic therapy if accompanied by detailed clinical trials.
Collapse
Affiliation(s)
- Sanghee Lee
- Department of Biotechnology, Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea.
| | - Moon Jae Chung
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Yonsei-ro 50-1, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Minji Ahn
- Department of Biotechnology, Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
| | - Hyun Jin Park
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Yonsei-ro 50-1, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Eun Kyung Wang
- Endocrinology, Institute of Endocrine Research, Department of Internal Medicine, Yonsei University College of Medicine, Yonsei-ro 50-1, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Taeeun Guon
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Yonsei-ro 50-1, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Hyun Jung Kee
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Yonsei-ro 50-1, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Cheol Ryong Ku
- Endocrinology, Institute of Endocrine Research, Department of Internal Medicine, Yonsei University College of Medicine, Yonsei-ro 50-1, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| | - Kun Na
- Department of Biotechnology, Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea.
| |
Collapse
|
27
|
Cornette R, Indo HP, Iwata KI, Hagiwara-Komoda Y, Nakahara Y, Gusev O, Kikawada T, Okuda T, Majima HJ. Oxidative stress is an essential factor for the induction of anhydrobiosis in the desiccation-tolerant midge, Polypedilum vanderplanki (Diptera, Chironomidae). Mitochondrion 2023; 73:84-94. [PMID: 37956777 DOI: 10.1016/j.mito.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 10/06/2023] [Accepted: 11/09/2023] [Indexed: 11/15/2023]
Abstract
The sleeping chironomid (Polypedilum vanderplanki) is the only insect capable of surviving complete desiccation in an ametabolic state called anhydrobiosis. Here, we focused on the role of oxidative stress and we observed the production of reactive oxygen species (ROS) in desiccating larvae and in those exposed to salinity stress. Oxidative stress occurs to some extent in desiccating larvae, inducing carbonylation of proteins. Oxidative stress overcomes the antioxidant defenses of the larvae during the first hour following rehydration of anhydrobiotic larvae. It facilitates the oxidation of DNA and cell membrane lipids; however, these damages are quickly repaired after a few hours. In addition to its deleterious effects, we demonstrated that artificial exposure to oxidative stress could induce a response similar to desiccation stress, at the transcriptome and protein levels. Furthermore, the response of anhydrobiosis-related genes to desiccation and salinity stress was inhibited by antioxidant treatment. Thus, we conclude that oxidative stress is an essential trigger for inducing the expression of protective genes during the onset of anhydrobiosis in desiccating of P. vanderplanki larvae.
Collapse
Affiliation(s)
- Richard Cornette
- Anhydrobiosis Research Group, Division of Biomaterial Sciences, Institute of Agrobiological Sciences, NARO, 1-2 Owashi, Tsukuba, Ibaraki 305-8634 Japan.
| | - Hiroko P Indo
- Department of Oncology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Ken-Ichi Iwata
- Anhydrobiosis Research Group, Division of Biomaterial Sciences, Institute of Agrobiological Sciences, NARO, 1-2 Owashi, Tsukuba, Ibaraki 305-8634 Japan
| | - Yuka Hagiwara-Komoda
- Anhydrobiosis Research Group, Division of Biomaterial Sciences, Institute of Agrobiological Sciences, NARO, 1-2 Owashi, Tsukuba, Ibaraki 305-8634 Japan; Department of Sustainable Agriculture, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - Yuichi Nakahara
- Anhydrobiosis Research Group, Division of Biomaterial Sciences, Institute of Agrobiological Sciences, NARO, 1-2 Owashi, Tsukuba, Ibaraki 305-8634 Japan; Rimco., Ltd, 12-75 Suzaki, Uruma, Okinawa 904-2234, Japan
| | - Oleg Gusev
- Intractable Disease Research Center, Juntendo University School of Medicine, Tokyo, Japan; Regulatory Genomics Research Center, Institute of Fundamental Biology and Medicine, Kazan Federal University, Kazan, 420008 Russia
| | - Takahiro Kikawada
- Anhydrobiosis Research Group, Division of Biomaterial Sciences, Institute of Agrobiological Sciences, NARO, 1-2 Owashi, Tsukuba, Ibaraki 305-8634 Japan
| | - Takashi Okuda
- Anhydrobiosis Research Group, Division of Biomaterial Sciences, Institute of Agrobiological Sciences, NARO, 1-2 Owashi, Tsukuba, Ibaraki 305-8634 Japan; NEMLI PROJECT LLC, 2756 Okijuku, Tsuchiura, Ibaraki, Japan
| | - Hideyuki J Majima
- Department of Oncology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan; Biomedical Sciences, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand; Research Excellence Center for Innovation and Health Products (RECIHP), School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand.
| |
Collapse
|
28
|
Grin IR, Petrova DV, Endutkin AV, Ma C, Yu B, Li H, Zharkov DO. Base Excision DNA Repair in Plants: Arabidopsis and Beyond. Int J Mol Sci 2023; 24:14746. [PMID: 37834194 PMCID: PMC10573277 DOI: 10.3390/ijms241914746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Base excision DNA repair (BER) is a key pathway safeguarding the genome of all living organisms from damage caused by both intrinsic and environmental factors. Most present knowledge about BER comes from studies of human cells, E. coli, and yeast. Plants may be under an even heavier DNA damage threat from abiotic stress, reactive oxygen species leaking from the photosynthetic system, and reactive secondary metabolites. In general, BER in plant species is similar to that in humans and model organisms, but several important details are specific to plants. Here, we review the current state of knowledge about BER in plants, with special attention paid to its unique features, such as the existence of active epigenetic demethylation based on the BER machinery, the unexplained diversity of alkylation damage repair enzymes, and the differences in the processing of abasic sites that appear either spontaneously or are generated as BER intermediates. Understanding the biochemistry of plant DNA repair, especially in species other than the Arabidopsis model, is important for future efforts to develop new crop varieties.
Collapse
Affiliation(s)
- Inga R. Grin
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., Novosibirsk 630090, Russia; (D.V.P.); (A.V.E.)
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia
| | - Daria V. Petrova
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., Novosibirsk 630090, Russia; (D.V.P.); (A.V.E.)
| | - Anton V. Endutkin
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., Novosibirsk 630090, Russia; (D.V.P.); (A.V.E.)
| | - Chunquan Ma
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Harbin 150080, China; (C.M.); (B.Y.); (H.L.)
- Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region, Harbin 150080, China
- School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Bing Yu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Harbin 150080, China; (C.M.); (B.Y.); (H.L.)
- Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region, Harbin 150080, China
- School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Haiying Li
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Harbin 150080, China; (C.M.); (B.Y.); (H.L.)
- Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region, Harbin 150080, China
- School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Dmitry O. Zharkov
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., Novosibirsk 630090, Russia; (D.V.P.); (A.V.E.)
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia
| |
Collapse
|
29
|
Park SH, Han S, Park S, Kim HS, Kim KM, Kim S, Lee DY, Lee J, Kim YP. Photosensitizing deep-seated cancer cells with photoprotein-conjugated upconversion nanoparticles. J Nanobiotechnology 2023; 21:279. [PMID: 37598155 PMCID: PMC10439569 DOI: 10.1186/s12951-023-02057-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 08/09/2023] [Indexed: 08/21/2023] Open
Abstract
To resolve the problem of target specificity and light transmission to deep-seated tissues in photodynamic therapy (PDT), we report a cancer cell-targeted photosensitizer using photoprotein-conjugated upconversion nanoparticles (UCNPs) with high target specificity and efficient light transmission to deep tissues. Core-shell UCNPs with low internal energy back transfer were conjugated with recombinant proteins that consists of a photosensitizer (KillerRed; KR) and a cancer cell-targeted lead peptide (LP). Under near infrared (NIR)-irradiating condition, the UCNP-KR-LP generated superoxide anion radicals as reactive oxygen species via NIR-to-green light conversion and exhibited excellent specificity to target cancer cells through receptor-mediated cell adhesion. Consequently, this photosensitizing process facilitated rapid cell death in cancer cell lines (MCF-7, MDA-MB-231, and U-87MG) overexpressing integrin beta 1 (ITGB1) receptors but not in a cell line (SK-BR-3) with reduced ITGB1 expression and a non-invasive normal breast cell line (MCF-10A). In contrast to green light irradiation, NIR light irradiation exhibited significant PDT efficacy in cancer cells located beneath porcine skin tissues up to a depth of 10 mm, as well as in vivo tumor xenograft mouse models. This finding suggests that the designed nanocomposite is useful for sensing and targeting various deep-seated tumors.
Collapse
Affiliation(s)
- Sung Hyun Park
- Department of HY-KIST Bio-Convergence, Hanyang University, Seoul, 04763, Republic of Korea
| | - Soohyun Han
- Department of HY-KIST Bio-Convergence, Hanyang University, Seoul, 04763, Republic of Korea
| | - Sangwoo Park
- Department of Life Science, Hanyang University, Seoul, 04763, Republic of Korea
- Research Institute for Convergence of Basic Science, Hanyang University, Seoul, 04763, Republic of Korea
| | - Hyung Shik Kim
- Department of Bioengineering, College of Engineering, BK FOUR Biopharmaceutical Innovation Leader for Education and Research Group, Hanyang University, Seoul, 04763, Republic of Korea
| | - Kyung-Min Kim
- Department of Life Science, Hanyang University, Seoul, 04763, Republic of Korea
| | - Suyeon Kim
- Department of Chemistry, Hanyang University, Seoul, 04763, Republic of Korea
| | - Dong Yun Lee
- Department of Bioengineering, College of Engineering, BK FOUR Biopharmaceutical Innovation Leader for Education and Research Group, Hanyang University, Seoul, 04763, Republic of Korea.
- Institute of Nano Science and Technology, Hanyang University, Seoul, 04763, Republic of Korea.
- Institute for Bioengineering and Biopharmaceutical Research, Hanyang University, Seoul, 04763, Republic of Korea.
- Elixir Pharmatech Inc, Seoul, 04763, Republic of Korea.
| | - Joonseok Lee
- Research Institute for Convergence of Basic Science, Hanyang University, Seoul, 04763, Republic of Korea.
- Department of Chemistry, Hanyang University, Seoul, 04763, Republic of Korea.
- Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea.
| | - Young-Pil Kim
- Department of HY-KIST Bio-Convergence, Hanyang University, Seoul, 04763, Republic of Korea.
- Department of Life Science, Hanyang University, Seoul, 04763, Republic of Korea.
- Research Institute for Convergence of Basic Science, Hanyang University, Seoul, 04763, Republic of Korea.
- Institute of Nano Science and Technology, Hanyang University, Seoul, 04763, Republic of Korea.
- Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea.
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
30
|
Smythers AL, Crislip JR, Slone DR, Flinn BB, Chaffins JE, Camp KA, McFeeley EW, Kolling DRJ. Excess manganese increases photosynthetic activity via enhanced reducing center and antenna plasticity in Chlorella vulgaris. Sci Rep 2023; 13:11301. [PMID: 37438371 DOI: 10.1038/s41598-023-35895-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 05/25/2023] [Indexed: 07/14/2023] Open
Abstract
Photosynthesis relies on many easily oxidizable/reducible transition metals found in the metalloenzymes that make up much of the photosynthetic electron transport chain (ETC). One of these is manganese, an essential cofactor of photosystem II (PSII) and a component of the oxygen-evolving complex, the only biological entity capable of oxidizing water. Additionally, manganese is a cofactor in enzymatic antioxidants, notably the superoxide dismutases-which are localized to the chloroplastic membrane. However, unlike other metals found in the photosynthetic ETC, previous research has shown exposure to excess manganese enhances photosynthetic activity rather than diminishing it. In this study, the impact of PSII heterogeneity on overall performance was investigated using chlorophyll fluorescence, a rapid, non-invasive technique that probed for overall photosynthetic efficiency, reducing site activity, and antenna size and distribution. These measurements unveiled an enhanced plasticity of PSII following excess manganese exposure, in which overall performance and reducing center activity increased while antenna size and proportion of PSIIβ centers decreased. This enhanced activity suggests manganese may hold the key to improving photosynthetic efficiency beyond that which is observed in nature.
Collapse
Affiliation(s)
- Amanda L Smythers
- Department of Chemistry, Marshall University, Huntington, WV, USA
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Danielle R Slone
- Department of Chemistry, Marshall University, Huntington, WV, USA
| | - Brendin B Flinn
- Department of Chemistry, Marshall University, Huntington, WV, USA
| | | | - Kristen A Camp
- Department of Chemistry, Marshall University, Huntington, WV, USA
| | - Eli W McFeeley
- Department of Chemistry, Marshall University, Huntington, WV, USA
| | | |
Collapse
|
31
|
Zou J, Wang L, Sun G. Mechanisms and Performances of Physically and Chemically Crosslinked Gelatin-Based Hydrogels as Advanced Sustainable and Reusable "Jelly Ice Cube" Coolants. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37428710 DOI: 10.1021/acsami.3c06658] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
A novel reusable, plastic-free, and stable cooling medium, Jelly Ice Cubes (JIC), is developed based on crosslinked gelatin hydrogels for sustainable temperature control. A novel process involving a rapid-freezing-slow-thawing treatment and a subsequent photo-crosslinking reaction induced by menadione sodium bisulfite, a newly discovered photosensitizer, is able to effectively consolidate a three-dimensional (3-D) hydrogel network to survive repeated application freeze-thaw cycles (AFTCs). This study reveals the mechanisms and evidence of the synergistic effects of the physical and chemical crosslinking reactions. The results experimentally prove that the rapid-freezing-slow-thawing treatment induces the generation of gelatin microcrystalline domains, refines the protein polymeric network, and reduces the intervening distance for subsequent photo-crosslinking sites. The refined hydrogel 3-D network is consolidated by the photo-crosslinking reaction occurring at the intersectional areas of the gelatin microcrystalline domains. The proposed crosslinking approach yields JICs with superior mechanical properties, robustness, and consistent water content, even after repeated AFTCs, all the while retaining cooling efficiency and biodegradability. The proposed crosslinked hydrogel structure is potentially applicable to engineering other hydrogel materials, offering sustainble and biodegradable solutions with enhanced resilience against phase changes.
Collapse
Affiliation(s)
- Jiahan Zou
- Department of Biological and Agricultural Engineering, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Luxin Wang
- Department of Food Science and Technology, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Gang Sun
- Department of Biological and Agricultural Engineering, University of California, One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
32
|
Caverzán MD, Oliveda PM, Beaugé L, Palacios RE, Chesta CA, Ibarra LE. Metronomic Photodynamic Therapy with Conjugated Polymer Nanoparticles in Glioblastoma Tumor Microenvironment. Cells 2023; 12:1541. [PMID: 37296661 PMCID: PMC10252555 DOI: 10.3390/cells12111541] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/02/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023] Open
Abstract
Alternative therapies such as photodynamic therapy (PDT) that combine light, oxygen and photosensitizers (PSs) have been proposed for glioblastoma (GBM) management to overcome conventional treatment issues. An important disadvantage of PDT using a high light irradiance (fluence rate) (cPDT) is the abrupt oxygen consumption that leads to resistance to the treatment. PDT metronomic regimens (mPDT) involving administering light at a low irradiation intensity over a relatively long period of time could be an alternative to circumvent the limitations of conventional PDT protocols. The main objective of the present work was to compare the effectiveness of PDT with an advanced PS based on conjugated polymer nanoparticles (CPN) developed by our group in two irradiation modalities: cPDT and mPDT. The in vitro evaluation was carried out based on cell viability, the impact on the macrophage population of the tumor microenvironment in co-culture conditions and the modulation of HIF-1α as an indirect indicator of oxygen consumption. mPDT regimens with CPNs resulted in more effective cell death, a lower activation of molecular pathways of therapeutic resistance and macrophage polarization towards an antitumoral phenotype. Additionally, mPDT was tested in a GBM heterotopic mouse model, confirming its good performance with promising tumor growth inhibition and apoptotic cell death induction.
Collapse
Affiliation(s)
- Matías Daniel Caverzán
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto (UNRC) y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Río Cuarto X5800BIA, Argentina
- Departamento de Patología Animal, Facultad de Agronomía y Veterinaria, Universidad Nacional de Río Cuarto, Río Cuarto X5800BIA, Argentina
| | - Paula Martina Oliveda
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, UNRC, Río Cuarto X5800BIA, Argentina
- Instituto de Biotecnología Ambiental y Salud (INBIAS), Universidad Nacional de Río Cuarto (UNRC) y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Río Cuarto X5800BIA, Argentina
| | - Lucía Beaugé
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto (UNRC) y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Río Cuarto X5800BIA, Argentina
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, UNRC, Río Cuarto X5800BIA, Argentina
| | - Rodrigo Emiliano Palacios
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto (UNRC) y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Río Cuarto X5800BIA, Argentina
- Departamento de Química, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, UNRC, Río Cuarto X5800BIA, Argentina
| | - Carlos Alberto Chesta
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto (UNRC) y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Río Cuarto X5800BIA, Argentina
- Departamento de Química, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, UNRC, Río Cuarto X5800BIA, Argentina
| | - Luis Exequiel Ibarra
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, UNRC, Río Cuarto X5800BIA, Argentina
- Instituto de Biotecnología Ambiental y Salud (INBIAS), Universidad Nacional de Río Cuarto (UNRC) y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Río Cuarto X5800BIA, Argentina
| |
Collapse
|
33
|
Xia Y, Tsim KWK, Wang WX. How fish cells responded to zinc challenges: Insights from bioimaging. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162538. [PMID: 36898541 DOI: 10.1016/j.scitotenv.2023.162538] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/11/2023] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
Zinc ion (Zn) is an essential nutrition element and it is important to understand its regulation and distribution among different cellular organelles. Here, subcellular trafficking of Zn in rabbitfish fin cells was investigated through bioimaging, and the results showed that the toxicity and bioaccumulation of Zn were both dose- and time-dependent. Cytotoxicity of Zn only occurred when the Zn concentration reached 200-250 μM after 3 h of exposure when the cellular quota of Zn:P reached a threshold level around 0.7. Remarkably, the cells were able to maintain homeostasis at a low Zn exposure concentration or within the first 4-h exposure. Zn homeostasis was mainly regulated by the lysosomes which stored Zn within the short exposure period, during which the number and size of lysosomes as well as the lysozyme activity increased in response to incoming Zn. However, with increasing Zn concentration beyond a threshold concentration (> 200 μM) and an exposure time > 3 h, homeostasis was disrupted, leading to an Zn spillover to cytoplasm and other cellular organelles. At the same time, cell viability decreased due to the Zn damage on mitochondria which caused morphological changes (smaller and rounder dots) and over production of reactive oxygen species, indicating the dysfunction of mitochondria. By further purifying the cellular organelles, cell viability was found to be consistent with the mitochondrial Zn amount. This study suggested that the amount of mitochondrial Zn was an excellent predictor of Zn toxicity on fish cells.
Collapse
Affiliation(s)
- Yiteng Xia
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Karl W K Tsim
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China.
| |
Collapse
|
34
|
Makarenko ES, Shesterikova EM, Kazakova EA, Bitarishvili SV, Volkova PY, Blinova YA, Lychenkova MA. White clover from the exclusion zone of the Chernobyl NPP: Morphological, biochemical, and genetic characteristics. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2023; 262:107152. [PMID: 36933462 DOI: 10.1016/j.jenvrad.2023.107152] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 02/20/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
A comprehensive study of the biological effects of chronic radiation exposure (8 μGy/h) in populations of white clover (Trifolium repens L.) from the Chernobyl exclusion zone was carried out. White clover is one of the most important pasture legumes, having many agricultural applications. Studies at two reference and three radioactively contaminated plots showed no stable morphological effects in white clover at this level of radiation exposure. Increased activities of catalase and peroxidases were found in some impacted plots. Auxin concentration was enhanced in the radioactively contaminated plots. Genes involved in the maintenance of water homeostasis and photosynthetic processes (TIP1 and CAB1) were upregulated at radioactively contaminated plots.
Collapse
Affiliation(s)
- Ekaterina S Makarenko
- Russian Institute of Radiology and Agroecology, Kievskoe shosse, 109 km, 249032, Obninsk, Russia.
| | - Ekaterina M Shesterikova
- Russian Institute of Radiology and Agroecology, Kievskoe shosse, 109 km, 249032, Obninsk, Russia
| | - Elizaveta A Kazakova
- Russian Institute of Radiology and Agroecology, Kievskoe shosse, 109 km, 249032, Obninsk, Russia
| | - Sofia V Bitarishvili
- Russian Institute of Radiology and Agroecology, Kievskoe shosse, 109 km, 249032, Obninsk, Russia
| | | | - Yana A Blinova
- Russian Institute of Radiology and Agroecology, Kievskoe shosse, 109 km, 249032, Obninsk, Russia
| | - Maria A Lychenkova
- Russian Institute of Radiology and Agroecology, Kievskoe shosse, 109 km, 249032, Obninsk, Russia
| |
Collapse
|
35
|
Casatejada A, Puerto-Galán L, Pérez-Ruiz JM, Cejudo FJ. The contribution of glutathione peroxidases to chloroplast redox homeostasis in Arabidopsis. Redox Biol 2023; 63:102731. [PMID: 37245286 DOI: 10.1016/j.redox.2023.102731] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/20/2023] [Accepted: 05/03/2023] [Indexed: 05/30/2023] Open
Abstract
Oxidizing signals mediated by the thiol-dependent peroxidase activity of 2-Cys peroxiredoxins (PRXs) plays an essential role in fine-tuning chloroplast redox balance in response to changes in light intensity, a function that depends on NADPH-dependent thioredoxin reductase C (NTRC). In addition, plant chloroplasts are equipped with glutathione peroxidases (GPXs), thiol-dependent peroxidases that rely on thioredoxins (TRXs). Despite having a similar reaction mechanism than 2-Cys PRXs, the contribution of oxidizing signals mediated by GPXs to the chloroplast redox homeostasis remains poorly known. To address this issue, we have generated the Arabidopsis (Arabidopsis thaliana) double mutant gpx1gpx7, which is devoid of the two GPXs, 1 and 7, localized in the chloroplast. Furthermore, to analyze the functional relationship of chloroplast GPXs with the NTRC-2-Cys PRXs redox system, the 2cpab-gpx1gpx7 and ntrc-gpx1gpx7 mutants were generated. The gpx1gpx7 mutant displayed wild type-like phenotype indicating that chloroplast GPXs are dispensable for plant growth at least under standard conditions. However, the 2cpab-gpx1gpx7 showed more retarded growth than the 2cpab mutant. The simultaneous lack of 2-Cys PRXs and GPXs affected PSII performance and caused higher delay of enzyme oxidation in the dark. In contrast, the ntrc-gpx1gpx7 mutant combining the lack of NTRC and chloroplast GPXs behaved like the ntrc mutant indicating that the contribution of GPXs to chloroplast redox homeostasis is independent of NTRC. Further supporting this notion, in vitro assays showed that GPXs are not reduced by NTRC but by TRX y2. Based on these results, we propose a role for GPXs in the chloroplast redox hierarchy.
Collapse
Affiliation(s)
- Azahara Casatejada
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and CSIC, Avda. Américo Vespucio 49, 41092-Sevilla, Spain
| | - Leonor Puerto-Galán
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and CSIC, Avda. Américo Vespucio 49, 41092-Sevilla, Spain
| | - Juan M Pérez-Ruiz
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and CSIC, Avda. Américo Vespucio 49, 41092-Sevilla, Spain.
| | - Francisco J Cejudo
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and CSIC, Avda. Américo Vespucio 49, 41092-Sevilla, Spain.
| |
Collapse
|
36
|
Yu J, Zhu H, Wang H, Shutes B, Niu T. Effect of butachlor on Microcystis aeruginosa: Cellular and molecular mechanisms of toxicity. JOURNAL OF HAZARDOUS MATERIALS 2023; 449:131042. [PMID: 36827725 DOI: 10.1016/j.jhazmat.2023.131042] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
The rapid development of agriculture increases the release of butachlor into aquatic environments. As a dominant species causing cyanobacterial blooms, Microcystis aeruginosa (M. aeruginosa) can produce microcystin and poses threats to aquatic ecosystems and human health. However, the impact of butachlor on M. aeruginosa remains unclarified. Therefore, the physiochemical responses of M. aeruginosa to butachlor were investigated, and the relevant underlying molecular mechanism was highlighted. There were no significant changes (P > 0.05) in the growth and physiology of M. aeruginosa at the low concentrations of butachlor (0-0.1 mg/L), which evidenced a high level of butachlor tolerance in Microcystis aeruginosa. For the high concentrations of butachlor (4-30 mg/L), the inhibition of photosynthetic activity, disruption of cell ultrastructure, and oxidative stress were dominant toxic effects on M. aeruginosa. Additionally, the impaired cellular integrity and lipid peroxidation may be attributed to the substantial elevations of extracellular microcystin-LR concentration. Downregulation of genes associated with photosynthesis, energy metabolism, and oxidative stress was inferred to be responsible for the growth suppression of M. aeruginosa in 30 mg/L butachlor treatment. The upregulation of gene sets involved in nitrogen metabolism may illustrate the specific effort to sustain the steady concentration of intracellular microcystin-LR. These findings dissect the response mechanism of M. aeruginosa to butachlor toxicity and provide valuable reference for the evaluation of potential risk caused by butachlor in aquatic environments.
Collapse
Affiliation(s)
- Jing Yu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
| | - Hui Zhu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| | - Heli Wang
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| | - Brian Shutes
- Department of Natural Sciences, Middlesex University, Hendon, London NW4 4BT, UK
| | - Tingting Niu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| |
Collapse
|
37
|
Rajpal A, Huart L, Nicolas C, Chevallard C, Guigner JM, Dasilva P, Mercere P, Gervais B, Hervé du Penhoat MA, Renault JP. Superoxide Production under Soft X-ray Irradiation of Liquid Water. J Phys Chem B 2023; 127:4277-4285. [PMID: 37140453 DOI: 10.1021/acs.jpcb.3c00932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Soft X-rays behave like particles with high linear energy transfer, as they deposit a large amount of their energy in the nanometric range, triggered by inner-shell ionization. In water, this can lead to the formation of a doubly ionized water molecule (H2O2+) and the emission of two secondary electrons (photoelectron and Auger electron). Our focus lies on detecting and quantifying the superoxide (HO2°) production via the direct pathway, i.e., from the reaction between the dissociation product of H2O2+, i.e., the oxygen atom (∼4 fs), and the °OH radicals present in the secondary electron tracks. The HO2° yield for 1620 eV photons, via this reaction pathway, was found to be 0.005 (±0.0007) μmol/J (formed within the ∼ps range). Experiments were also performed to determine the yield of HO2° production via another (indirect) pathway, involving solvated electrons. The indirect HO2° yield, measured experimentally as a function of photon energy (from 1700 to 350 eV), resulted in a steep decrease at around 1280 eV and a minimum close to zero at 800 eV. This behavior in contradiction with the theoretical prediction reveals the complexity hidden in the intratrack reactions.
Collapse
Affiliation(s)
- Aashini Rajpal
- Université Paris-Saclay, CEA, CNRS, NIMBE, Gif-sur-Yvette 91191, France
- Sorbonne Université, IMPMC, UMR CNRS 7590, IMPMC, 75005 Paris, France
- Synchrotron SOLEIL, Saint Aubin 91190, France
| | - Lucie Huart
- Université Paris-Saclay, CEA, CNRS, NIMBE, Gif-sur-Yvette 91191, France
- Sorbonne Université, IMPMC, UMR CNRS 7590, IMPMC, 75005 Paris, France
- Synchrotron SOLEIL, Saint Aubin 91190, France
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Si Y, Fan H, Lu H, Li Y, Guo Y, Liu C, Chai L, Du C. Cucumis sativus PHLOEM PROTEIN 2-A1 like gene positively regulates salt stress tolerance in cucumber seedlings. PLANT MOLECULAR BIOLOGY 2023; 111:493-504. [PMID: 37016105 DOI: 10.1007/s11103-023-01336-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/27/2023] [Indexed: 06/19/2023]
Abstract
PHLOEM PROTEIN 2-A1 like (PP2-A1) gene is a member of the PP2 multigene family, and the protein encoded by which has the function of stress defense. Based on our previous proteomic study of cucumber phloem sap, CsPP2-A1 protein expression was significantly enriched under salt stress. In this paper, we obtained CsPP2-A1 interfering (CsPP2-A1-RNAi) cucumber by Agrobacterium tumefaciens-mediated method. The phenotypic changes of wild-type (WT) cucumber, CsPP2-A1-overexpressing (OE) cucumber, and CsPP2-A1-RNAi cucumber under salt treatment were observed and compared. Furthermore, physiological indicators were measured in four aspects: osmoregulation, membrane permeability, antioxidant system, and photosynthetic system. The analysis of contribution and correlation for each variable were conducted by principal component analysis (PCA) and Pearson's correlation coefficient. The above results showed that CsPP2-A1-RNAi cucumber plants exhibited weaker salt tolerance compared to WT cucumber and CsPP2-A1-OE cucumber plants in terms of phenotype and physiological indicators in response to salt stress, while CsPP2-A1-OE cucumber always showed the robust salt tolerance. Together, these results indicated that CsPP2-A1 brought a salinity tolerance ability to cucumber through osmoregulation and reactive oxygen species (ROS) homeostasis. The results of the study provided evidence for the function of CsPP2-A1 in plant salt tolerance enhancement, and they will serve as a reference for future salt-tolerant cucumber genetic manipulation.
Collapse
Affiliation(s)
- Yuyang Si
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Huaifu Fan
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Hongjie Lu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Yapeng Li
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Yuting Guo
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Chen Liu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Li'ang Chai
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Changxia Du
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China.
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China.
| |
Collapse
|
39
|
Rai GK, Kumar P, Choudhary SM, Singh H, Adab K, Kosser R, Magotra I, Kumar RR, Singh M, Sharma R, Corrado G, Rouphael Y. Antioxidant Potential of Glutathione and Crosstalk with Phytohormones in Enhancing Abiotic Stress Tolerance in Crop Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:1133. [PMID: 36903992 PMCID: PMC10005112 DOI: 10.3390/plants12051133] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/19/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Glutathione (GSH) is an abundant tripeptide that can enhance plant tolerance to biotic and abiotic stress. Its main role is to counter free radicals and detoxify reactive oxygen species (ROS) generated in cells under unfavorable conditions. Moreover, along with other second messengers (such as ROS, calcium, nitric oxide, cyclic nucleotides, etc.), GSH also acts as a cellular signal involved in stress signal pathways in plants, directly or along with the glutaredoxin and thioredoxin systems. While associated biochemical activities and roles in cellular stress response have been widely presented, the relationship between phytohormones and GSH has received comparatively less attention. This review, after presenting glutathione as part of plants' feedback to main abiotic stress factors, focuses on the interaction between GSH and phytohormones, and their roles in the modulation of the acclimatation and tolerance to abiotic stress in crops plants.
Collapse
Affiliation(s)
- Gyanendra Kumar Rai
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu 180009, India
| | - Pradeep Kumar
- Division of Integrated Farming System, ICAR—Central Arid Zone Research Institute, Jodhpur 342003, India
| | - Sadiya M. Choudhary
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu 180009, India
| | - Hira Singh
- Department of Vegetable Science, Punjab Agricultural University, Ludhiana 141004, India
| | - Komal Adab
- Department of Biotechnology, BGSB University, Rajouri 185131, India
| | - Rafia Kosser
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu 180009, India
| | - Isha Magotra
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu 180009, India
| | - Ranjeet Ranjan Kumar
- Division of Biochemistry, ICAR—Indian Agricultural Research Institute, New Delhi 110001, India
| | - Monika Singh
- GLBajaj Institute of Technology and Management, Greater Noida 201306, India
| | - Rajni Sharma
- Department of Agronomy, Punjab Agricultural University, Ludhiana 141004, India
| | - Giandomenico Corrado
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| |
Collapse
|
40
|
Transcriptome and Metabolome Reveal the Molecular Mechanism of Barley Genotypes Underlying the Response to Low Nitrogen and Resupply. Int J Mol Sci 2023; 24:ijms24054706. [PMID: 36902137 PMCID: PMC10003240 DOI: 10.3390/ijms24054706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/16/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023] Open
Abstract
Nitrogen is one of the most important mineral elements for plant growth and development. Excessive nitrogen application not only pollutes the environment, but also reduces the quality of crops. However, are few studies on the mechanism of barley tolerance to low nitrogen at both the transcriptome and metabolomics levels. In this study, the nitrogen-efficient genotype (W26) and the nitrogen-sensitive genotype (W20) of barley were treated with low nitrogen (LN) for 3 days and 18 days, then treated with resupplied nitrogen (RN) from 18 to 21 days. Later, the biomass and the nitrogen content were measured, and RNA-seq and metabolites were analyzed. The nitrogen use efficiency (NUE) of W26 and W20 treated with LN for 21 days was estimated by nitrogen content and dry weight, and the values were 87.54% and 61.74%, respectively. It turned out to have a significant difference in the two genotypes under the LN condition. According to the transcriptome analysis, 7926 differentially expressed genes (DEGs) and 7537 DEGs were identified in the leaves of W26 and W20, respectively, and 6579 DEGs and 7128 DEGs were found in the roots of W26 and W20, respectively. After analysis of the metabolites, 458 differentially expressed metabolites (DAMs) and 425 DAMs were found in the leaves of W26 and W20, respectively, and 486 DAMs and 368 DAMs were found in the roots of W26 and W20, respectively. According to the KEGG joint analysis of DEGs and DAMs, it was discovered that glutathione (GSH) metabolism was the pathway of significant enrichment in the leaves of both W26 and W20. In this study, the metabolic pathways of nitrogen metabolism and GSH metabolism of barley under nitrogen were constructed based on the related DAMs and DEGs. In leaves, GSH, amino acids, and amides were the main identified DAMs, while in roots, GSH, amino acids, and phenylpropanes were mainly found DAMs. Finally, some nitrogen-efficient candidate genes and metabolites were selected based on the results of this study. The responses of W26 and W20 to low nitrogen stress were significantly different at the transcriptional and metabolic levels. The candidate genes that have been screened will be verified in future. These data not only provide new insights into how barley responds to LN, but also provide new directions for studying the molecular mechanisms of barley under abiotic stress.
Collapse
|
41
|
TiO2-based photocatalyst Generated Reactive Oxygen Species cause cell membrane disruption of Staphylococcus aureus and Escherichia coli O157:H7. Food Microbiol 2023; 109:104119. [DOI: 10.1016/j.fm.2022.104119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/16/2022] [Accepted: 08/16/2022] [Indexed: 11/22/2022]
|
42
|
Song Y, Zhang B, Si M, Chen Z, Geng J, Liang F, Xi M, Liu X, Wang R. Roles of extracellular polymeric substances on Microcystis aeruginosa exposed to different sizes of polystyrene microplastics. CHEMOSPHERE 2023; 312:137225. [PMID: 36375605 DOI: 10.1016/j.chemosphere.2022.137225] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/29/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Extracellular polymeric substances (EPS) are important shields for microalgae when confronting with external stresses. However, the underlying roles of EPS in the interactions between microplastics (MPs) and microalgae remain poorly understood. In this study, three sizes of polystyrene (PS) MPs (20 nm, 100 nm, and 1 μm) were chosen for evaluating the compositions of EPS, secreted by Microcystis aeruginosa during exposure. The results indicated that the EPS compositions were different when M. aeruginosa was exposed to PS MPs of different sizes. The presence of EPS is helpful for alleviating the adverse effects of PS MPs on M. aeruginosa cell growth, photosynthesis, and oxidative stress. With the exception of the shading effect, insufficient EPS cause direct adsorption of unstable 1 μm PS MPs to the algal surface, which could destroy the cell wall. In contrast, aromatic proteins and fulvic acids are representative EPS components stimulated by 100 nm PS MPs, contributing to the self-aggregation and encapsulation of algal cells and availability of nutrients for algal growth, respectively. High amounts of polysaccharides were secreted by M. aeruginosa along with humic acids during exposure to 20 nm PS MPs, both of which are crucial in the homo-aggregation of 20 nm PS MPs toward minimize its adverse effects on M. aeruginosa. Together, these findings revealed the differences in EPS under the stimulation of PS MPs of different sizes and clarified the roles of different EPS components in resisting the adverse effects of PS MPs on M. aeruginosa.
Collapse
Affiliation(s)
- Yuhao Song
- School of Life Sciences, Qufu Normal University, Qufu, 273165, China.
| | - Baoxin Zhang
- School of Life Sciences, Qufu Normal University, Qufu, 273165, China
| | - Mengying Si
- School of Life Sciences, Qufu Normal University, Qufu, 273165, China
| | - Zixuan Chen
- School of Life Sciences, Qufu Normal University, Qufu, 273165, China
| | - Jinyu Geng
- School of Life Sciences, Qufu Normal University, Qufu, 273165, China
| | - Fei Liang
- School of Life Sciences, Qufu Normal University, Qufu, 273165, China
| | - Muchen Xi
- School of Life Sciences, Qufu Normal University, Qufu, 273165, China
| | - Xiaomei Liu
- School of Life Sciences, Qufu Normal University, Qufu, 273165, China
| | - Renjun Wang
- School of Life Sciences, Qufu Normal University, Qufu, 273165, China
| |
Collapse
|
43
|
Aguilera A, Distéfano A, Jauzein C, Correa-Aragunde N, Martinez D, Martin MV, Sueldo DJ. Do photosynthetic cells communicate with each other during cell death? From cyanobacteria to vascular plants. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7219-7242. [PMID: 36179088 DOI: 10.1093/jxb/erac363] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
As in metazoans, life in oxygenic photosynthetic organisms relies on the accurate regulation of cell death. During development and in response to the environment, photosynthetic cells activate and execute cell death pathways that culminate in the death of a specific group of cells, a process known as regulated cell death (RCD). RCD control is instrumental, as its misregulation can lead to growth penalties and even the death of the entire organism. Intracellular molecules released during cell demise may act as 'survival' or 'death' signals and control the propagation of cell death to surrounding cells, even in unicellular organisms. This review explores different signals involved in cell-cell communication and systemic signalling in photosynthetic organisms, in particular Ca2+, reactive oxygen species, lipid derivates, nitric oxide, and eATP. We discuss their possible mode-of-action as either 'survival' or 'death' molecules and their potential role in determining cell fate in neighbouring cells. By comparing the knowledge available across the taxonomic spectrum of this coherent phylogenetic group, from cyanobacteria to vascular plants, we aim at contributing to the identification of conserved mechanisms that control cell death propagation in oxygenic photosynthetic organisms.
Collapse
Affiliation(s)
- Anabella Aguilera
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, 39231 Kalmar, Sweden
| | - Ayelén Distéfano
- Instituto de Investigaciones Biológicas-CONICET, Universidad Nacional de Mar del Plata, 7600 Mar del Plata, Argentina
| | - Cécile Jauzein
- Ifremer, Centre de Brest, DYNECO-Pelagos, F-29280 Plouzané, France
| | - Natalia Correa-Aragunde
- Instituto de Investigaciones Biológicas-CONICET, Universidad Nacional de Mar del Plata, 7600 Mar del Plata, Argentina
| | - Dana Martinez
- Instituto de Fisiología Vegetal (INFIVE-CONICET), Universidad Nacional de La Plata, 1900 La Plata, Argentina
| | - María Victoria Martin
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET), Fundación para Investigaciones Biológicas Aplicadas (FIBA), Universidad Nacional de Mar del Plata,7600 Mar del Plata, Argentina
| | - Daniela J Sueldo
- Norwegian University of Science and Technology, 7491 Trondheim, Norway
| |
Collapse
|
44
|
Yan Q, Xiao P, Li J, He Y, Shao J. Physiological Responses of a Diazotrophic Cyanobacterium to Acidification of Paddy Floodwater: N 2 Fixation, Photosynthesis, and Oxidative-Antioxidative Characteristics. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15070. [PMID: 36429787 PMCID: PMC9690652 DOI: 10.3390/ijerph192215070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/04/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
Long-term of excessive fertilization using nitrogen (N) chemical fertilizer caused the acidification of paddy soils. Presently, the impacts of soil acidification on physiological characteristics of diazotrophic cyanobacteria remain unknown. In order to elucidate this issue, the effects of paddy floodwater acidification on activities of respiration, photosynthetic oxygen evolution, and N2 fixation of a paddy diazotrophic cyanobacterium Aliinostoc sp. YYLX235 were investigated in this study. In addition, the origination and quenching of intracellular reactive oxygen species (ROS) were analyzed. The acidification of paddy floodwater decreased intracellular pH and interfered in energy flux from light-harvesting chlorophyll antenna to the reaction center of photosystem II (PS II). Activities of respiration, photosynthetic oxygen evolution, and N2 fixation were decreased by the acidification of paddy floodwater. Accompanied with an increase in ROS, the level of antioxidative system increased. Superoxide dismutase (SOD) and catalase (CAT) were the main enzymatic ROS scavengers in the cells of YYLX235; reduced glutathione (GSH) was the main non-enzymatic antioxidant. Antioxidants and oxidants in the cells of YYLX235 lost balance when the pH of paddy floodwater fell to 5.0 and 4.0, and lipid oxidative damage happened. The results presented in this study suggest that the acidification of paddy soil severely interfered in the photosynthesis of diazotrophic cyanobacteria and induced the production of ROS, which in turn resulted in oxidative damage on diazotrophic cyanobacteria and a decrease in cell vitality.
Collapse
Affiliation(s)
- Qiong Yan
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Peng Xiao
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Jun Li
- National Engineering Research Center for Agrochemicals/Hunan Provincial Key Laboratory of Agrochemicals, Hunan Research Institute of Chemical Industry, Changsha 410014, China
| | - Yaxian He
- Zhuzhou Ecology and Environment Monitoring Center, Zhuzhou 412000, China
| | - Jihai Shao
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
45
|
Antibacterial effect of singlet oxygen depending on bacteria surface charge. Photodiagnosis Photodyn Ther 2022; 39:102975. [PMID: 35724937 DOI: 10.1016/j.pdpdt.2022.102975] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/13/2022] [Accepted: 06/16/2022] [Indexed: 11/21/2022]
Abstract
Here, we investigated the bactericidal effects of two types of photoinduced reactive oxygen species (ROS), superoxide anion and singlet oxygen, on bacteria with distinct surface charges. We fabricated photofunctional polymer films (PFPFs) capable of generating both types of ROS, and they were subjected to photodynamic inactivation tests for 12 various strains of Acinetobacter baumannii. The results showed that the type I ROS (superoxide anion) was significantly dependent on the surface charge of the bacteria owing to charge-charge repulsion, while the type II ROS (singlet oxygen) was independent of the surface charge of the bacteria. These results would be significant in enhancing treatment efficiency in the clinical field.
Collapse
|
46
|
Pospíšil P, Kumar A, Prasad A. Reactive oxygen species in photosystem II: relevance for oxidative signaling. PHOTOSYNTHESIS RESEARCH 2022; 152:245-260. [PMID: 35644020 DOI: 10.1007/s11120-022-00922-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 04/30/2022] [Indexed: 06/15/2023]
Abstract
Reactive oxygen species (ROS) are formed in photosystem II (PSII) under various types of abiotic and biotic stresses. It is considered that ROS play a role in chloroplast-to-nucleus retrograde signaling, which changes the nuclear gene expression. However, as ROS lifetime and diffusion are restricted due to the high reactivity towards biomolecules (lipids, pigments, and proteins) and the spatial specificity of signal transduction is low, it is not entirely clear how ROS might transduce signal from the chloroplasts to the nucleus. Biomolecule oxidation was formerly connected solely with damage; nevertheless, the evidence appears that oxidatively modified lipids and pigments are be involved in chloroplast-to-nucleus retrograde signaling due to their long diffusion distance. Moreover, oxidatively modified proteins show high spatial specificity; however, their role in signal transduction from chloroplasts to the nucleus has not been proven yet. The review attempts to summarize and evaluate the evidence for the involvement of ROS in oxidative signaling in PSII.
Collapse
Affiliation(s)
- Pavel Pospíšil
- Department of Biophysics, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic.
| | - Aditya Kumar
- Department of Biophysics, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Ankush Prasad
- Department of Biophysics, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| |
Collapse
|
47
|
Omar NM, Prášil O, McCain JSP, Campbell DA. Diffusional Interactions among Marine Phytoplankton and Bacterioplankton: Modelling H 2O 2 as a Case Study. Microorganisms 2022; 10:821. [PMID: 35456871 PMCID: PMC9030875 DOI: 10.3390/microorganisms10040821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 02/04/2023] Open
Abstract
Marine phytoplankton vary widely in size across taxa, and in cell suspension densities across habitats and growth states. Cell suspension density and total biovolume determine the bulk influence of a phytoplankton community upon its environment. Cell suspension density also determines the intercellular spacings separating phytoplankton cells from each other, or from co-occurring bacterioplankton. Intercellular spacing then determines the mean diffusion paths for exchanges of solutes among co-occurring cells. Marine phytoplankton and bacterioplankton both produce and scavenge reactive oxygen species (ROS), to maintain intracellular ROS homeostasis to support their cellular processes, while limiting damaging reactions. Among ROS, hydrogen peroxide (H2O2) has relatively low reactivity, long intracellular and extracellular lifetimes, and readily crosses cell membranes. Our objective was to quantify how cells can influence other cells via diffusional interactions, using H2O2 as a case study. To visualize and constrain potentials for cell-to-cell exchanges of H2O2, we simulated the decrease of [H2O2] outwards from representative phytoplankton taxa maintaining internal [H2O2] above representative seawater [H2O2]. [H2O2] gradients outwards from static cell surfaces were dominated by volumetric dilution, with only a negligible influence from decay. The simulated [H2O2] fell to background [H2O2] within ~3.1 µm from a Prochlorococcus cell surface, but extended outwards 90 µm from a diatom cell surface. More rapid decays of other, less stable ROS, would lower these threshold distances. Bacterioplankton lowered simulated local [H2O2] below background only out to 1.2 µm from the surface of a static cell, even though bacterioplankton collectively act to influence seawater ROS. These small diffusional spheres around cells mean that direct cell-to-cell exchange of H2O2 is unlikely in oligotrophic habits with widely spaced, small cells; moderate in eutrophic habits with shorter cell-to-cell spacing; but extensive within phytoplankton colonies.
Collapse
Affiliation(s)
- Naaman M. Omar
- Department of Biology, Mount Allison University, Sackville, NB E4L1G7, Canada;
| | - Ondřej Prášil
- Center Algatech, Laboratory of Photosynthesis, Novohradska 237, CZ 37981 Trebon, Czech Republic;
| | - J. Scott P. McCain
- Department of Biology, Massachusetts Institute of Technology, Boston, MA 02142, USA;
| | - Douglas A. Campbell
- Department of Biology, Mount Allison University, Sackville, NB E4L1G7, Canada;
| |
Collapse
|
48
|
Brainina KZ, Shpigun LK. State‐of‐the‐art electrochemistry for the assessment of oxidative stress and integral antioxidant activity of biological environments. ELECTROCHEMICAL SCIENCE ADVANCES 2022. [DOI: 10.1002/elsa.202100219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Khiena Z. Brainina
- Laboratory of analytical chemisty and separation methods N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences Moscow Russia
| | - Liliya K. Shpigun
- Laboratory of analytical chemisty and separation methods N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences Moscow Russia
| |
Collapse
|
49
|
Modulating the Antioxidant Response for Better Oxidative Stress-Inducing Therapies: How to Take Advantage of Two Sides of the Same Medal? Biomedicines 2022; 10:biomedicines10040823. [PMID: 35453573 PMCID: PMC9029215 DOI: 10.3390/biomedicines10040823] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 01/17/2023] Open
Abstract
Oxidative stress-inducing therapies are characterized as a specific treatment that involves the production of reactive oxygen and nitrogen species (RONS) by external or internal sources. To protect cells against oxidative stress, cells have evolved a strong antioxidant defense system to either prevent RONS formation or scavenge them. The maintenance of the redox balance ensures signal transduction, development, cell proliferation, regulation of the mechanisms of cell death, among others. Oxidative stress can beneficially be used to treat several diseases such as neurodegenerative disorders, heart disease, cancer, and other diseases by regulating the antioxidant system. Understanding the mechanisms of various endogenous antioxidant systems can increase the therapeutic efficacy of oxidative stress-based therapies, leading to clinical success in medical treatment. This review deals with the recent novel findings of various cellular endogenous antioxidant responses behind oxidative stress, highlighting their implication in various human diseases, such as ulcers, skin pathologies, oncology, and viral infections such as SARS-CoV-2.
Collapse
|
50
|
Bruno S, Margiotta M, Cozzolino M, Bianchini P, Diaspro A, Cavanna L, Tognolini M, Abbruzzetti S, Viappiani C. A photosensitizing fusion protein with targeting capabilities. Biomol Concepts 2022; 13:175-182. [DOI: 10.1515/bmc-2022-0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/10/2022] [Indexed: 11/15/2022] Open
Abstract
Abstract
The photodynamic treatment for antimicrobial applications or anticancer therapy relies on reactive oxygen species generated by photosensitizing molecules after absorption of visible or near-infrared light. If the photosensitizing molecule is in close vicinity of the microorganism or the malignant cell, a photocytotoxic action is exerted. Therefore, the effectiveness of photosensitizing compounds strongly depends on their capability to target microbial or cancer-specific proteins. In this study, we report on the preparation and preliminary characterization of human recombinant myoglobin fused to the vasoactive intestinal peptide to target vasoactive intestinal peptide receptor (VPAC) receptors. Fe-protoporphyrin IX was replaced by the photosensitizing compound Zn-protoporphyrin IX. Taking advantage of the fluorescence emission by Zn-protoporphyrin IX, we show that the construct can bind prostate cancer cells where the VPAC receptors are expressed.
Collapse
Affiliation(s)
- Stefano Bruno
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma , Parma , Italy
| | - Marilena Margiotta
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma , Parma , Italy
| | - Marco Cozzolino
- DIFILAB, Dipartimento di Fisica, Università di Genova , Genova , Italy
- Department of Nanophysics, Nanoscopy, Istituto Italiano di Tecnologia , Genova , Italy
| | - Paolo Bianchini
- DIFILAB, Dipartimento di Fisica, Università di Genova , Genova , Italy
- Department of Nanophysics, Nanoscopy, Istituto Italiano di Tecnologia , Genova , Italy
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università degli Studi di Parma , Parma , Italy
| | - Alberto Diaspro
- DIFILAB, Dipartimento di Fisica, Università di Genova , Genova , Italy
- Department of Nanophysics, Nanoscopy, Istituto Italiano di Tecnologia , Genova , Italy
| | - Luigi Cavanna
- Dipartimento di Oncologia-Ematologia, Azienda USL di Piacenza , Piacenza , Italy
| | - Massimiliano Tognolini
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma , Parma , Italy
| | - Stefania Abbruzzetti
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università degli Studi di Parma , Parma , Italy
| | - Cristiano Viappiani
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università degli Studi di Parma , Parma , Italy
| |
Collapse
|