1
|
Dsouza L, Gupta KBS, Li X, Erić V, Luo Y, Huijser A, Jansen TLC, Buda F, Holzwarth AR, Bryant DA, Gurinov A, Sevink GJA, de Groot HJM. Conformational Dynamics of Bacteriochlorophyll c in Chlorosomes from the bchQ Mutant of Chlorobaculum tepidum. J Phys Chem B 2025; 129:2129-2137. [PMID: 39957104 PMCID: PMC11873974 DOI: 10.1021/acs.jpcb.4c04731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 01/14/2025] [Accepted: 02/07/2025] [Indexed: 02/18/2025]
Abstract
In contrast to the common viewpoint that bacteriochlorophyll (BChl) motion is largely absent within the chlorosome assembly, physics-based modeling points to a crucial role of the nanoscale librational motion of the macrocycle for the transfer of excitons. To elucidate this motion experimentally, compositional uniformity and high sensitivity are required. We focused on uniformly 13C labeled chlorosome preparations from the bchQ mutant Chlorobaculum tepidum with significantly enhanced structural homogeneity. The librational motion is characterized using Rotational Echo DOuble Resonance (REDOR), and in addition, the impact of temperature on specific functionalities within BChl molecules is studied with 1-dimensional and 2-dimensional dipolar and scalar-based MAS NMR measurements. Results show the gradual freezing of the tails and side chains of the BChls with decreasing temperature. However, the librational motion analyzed by measuring the 5C-H dipolar coupling strength obtained from REDOR data sets persists at different temperatures. REDOR simulations show a close match to the experimental dephasing frequency of oscillation for a dipolar coupling strength of 17.5 ± 0.5 kHz which is considerably less than the dipolar coupling strength of 22.7 kHz in the rigid limit. Following a two-site jump model, we arrive at an estimate for BChl libration sampling at an angle of θ = 48 ± 4°, corroborating that the macrocycle indeed experiences significant librational motion on a time scale that is short compared to the NMR measurement time. This finding is in full quantitative support of the dominant rotational motion exhibited by the BChl macrocycle estimated from early MD simulations.
Collapse
Affiliation(s)
- Lolita Dsouza
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, The Netherlands
| | | | - Xinmeng Li
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, The Netherlands
- Department
of Chemistry and Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, 0315 Oslo, Norway
| | - Vesna Erić
- Zernike
Institute of Advanced Materials, University
of Groningen, Nijenborgh 3, 9747 AG Groningen, The Netherlands
| | - Yusen Luo
- MESA+
Institute for Nanotechnology, University
of Twente, 7500 AE Enschede, The Netherlands
| | - Annemarie Huijser
- MESA+
Institute for Nanotechnology, University
of Twente, 7500 AE Enschede, The Netherlands
| | - Thomas L. C. Jansen
- Zernike
Institute of Advanced Materials, University
of Groningen, Nijenborgh 3, 9747 AG Groningen, The Netherlands
| | - Francesco Buda
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, The Netherlands
| | - Alfred R. Holzwarth
- Max
Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Donald A. Bryant
- Department
of Biochemistry and Molecular Biology, The
Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Andrei Gurinov
- NMR
Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584
CH Utrecht, The Netherlands
| | - G. J. Agur Sevink
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, The Netherlands
| | - Huub J. M. de Groot
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, The Netherlands
| |
Collapse
|
2
|
Dsouza L, Li X, Erić V, Huijser A, Jansen TLC, Holzwarth AR, Buda F, Bryant DA, Bahri S, Gupta KBSS, Sevink GJA, de Groot HJM. An integrated approach towards extracting structural characteristics of chlorosomes from a bchQ mutant of Chlorobaculum tepidum. Phys Chem Chem Phys 2024; 26:15856-15867. [PMID: 38546236 DOI: 10.1039/d4cp00221k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Chlorosomes, the photosynthetic antenna complexes of green sulfur bacteria, are paradigms for light-harvesting elements in artificial designs, owing to their efficient energy transfer without protein participation. We combined magic angle spinning (MAS) NMR, optical spectroscopy and cryogenic electron microscopy (cryo-EM) to characterize the structure of chlorosomes from a bchQ mutant of Chlorobaculum tepidum. The chlorosomes of this mutant have a more uniform composition of bacteriochlorophyll (BChl) with a predominant homolog, [8Ethyl, 12Ethyl] BChl c, compared to the wild type (WT). Nearly complete 13C chemical shift assignments were obtained from well-resolved homonuclear 13C-13C RFDR data. For proton assignments heteronuclear 13C-1H (hCH) data sets were collected at 1.2 GHz spinning at 60 kHz. The CHHC experiments revealed intermolecular correlations between 132/31, 132/32, and 121/31, with distance constraints of less than 5 Å. These constraints indicate the syn-anti parallel stacking motif for the aggregates. Fourier transform cryo-EM data reveal an axial repeat of 1.49 nm for the helical tubular aggregates, perpendicular to the inter-tube separation of 2.1 nm. This axial repeat is different from WT and is in line with BChl syn-anti stacks running essentially parallel to the tube axis. Such a packing mode is in agreement with the signature of the Qy band in circular dichroism (CD). Combining the experimental data with computational insight suggests that the packing for the light-harvesting function is similar between WT and bchQ, while the chirality within the chlorosomes is modestly but detectably affected by the reduced compositional heterogeneity in bchQ.
Collapse
Affiliation(s)
- Lolita Dsouza
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA, Leiden, The Netherlands.
| | - Xinmeng Li
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA, Leiden, The Netherlands.
- Department of Chemistry and Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, 0315, Oslo, Norway
| | - Vesna Erić
- Zernike Institute of Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, The Netherlands
| | - Annemarie Huijser
- MESA+ Institute for Nanotechnology, University of Twente, 7500 AE, The Netherlands
| | - Thomas L C Jansen
- Zernike Institute of Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, The Netherlands
| | - Alfred R Holzwarth
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Francesco Buda
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA, Leiden, The Netherlands.
| | - Donald A Bryant
- Department for Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Salima Bahri
- NMR Spectroscopy, Bijvoet center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | | | - G J Agur Sevink
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA, Leiden, The Netherlands.
| | - Huub J M de Groot
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA, Leiden, The Netherlands.
| |
Collapse
|
3
|
Pandit A. Structural dynamics of light harvesting proteins, photosynthetic membranes and cells observed with spectral editing solid-state NMR. J Chem Phys 2022; 157:025101. [DOI: 10.1063/5.0094446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Photosynthetic light-harvesting complexes have a remarkable capacity to perform robust photo physics at ambient temperatures and in fluctuating environments. Protein conformational dynamics and membrane mobility are processes that contribute to the light-harvesting efficiencies and control photoprotective responses. This short review describes the application of Magic Angle Spinning (MAS) NMR spectroscopy for characterizing the structural dynamics of pigment, protein and thylakoid membrane components related to light harvesting and photoprotection. I will discuss the use of dynamics-based spectral editing solid-state NMR for distinguishing rigid and mobile components and assessing protein, pigment and lipid dynamics on sub-nanosecond to millisecond timescales. Dynamic spectral editing NMR has been applied to investigate Light-Harvesting Complex II (LHCII) protein conformational dynamics inside lipid bilayers and in native membranes. Furthermore, we used the NMR approach to assess thylakoid membrane dynamics. Finally, it is shown that dynamics-based spectral editing NMR, for reducing spectral complexity, by filtering motion-dependent signals, enabled us to follow processes in live photosynthetic cells.
Collapse
|
4
|
van Aalst EJ, Borcik CG, Wylie BJ. Spectroscopic signatures of bilayer ordering in native biological membranes. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183891. [PMID: 35217001 PMCID: PMC10793244 DOI: 10.1016/j.bbamem.2022.183891] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
Membrane proteins and polycyclic lipids like cholesterol and hopanoids coordinate phospholipid bilayer ordering. This phenomenon manifests as partitioning of the liquid crystalline phase into liquid-ordered (Lo) and liquid-disordered (Ld) regions. In Eukaryotes, microdomains are rich in cholesterol and sphingolipids and serve as signal transduction scaffolds. In Prokaryotes, Lo microdomains increase pathogenicity and antimicrobial resistance. Previously, we identified spectroscopically distinct chemical shift signatures for all-trans (AT) and trans-gauche (TG) acyl chain conformations, cyclopropyl ring lipids (CPR), and hopanoids in prokaryotic lipid extracts and used Polarization Transfer (PT) SSNMR to investigate bilayer ordering. To investigate how these findings relate to native bilayer organization, we interrogate whole cell and whole membrane extract samples of Burkholderia thailendensis to investigate bilayer ordering in situ. In 13C-13C 2D SSNMR spectra, we assigned chemical shifts for lipid species in both samples, showing conservation of lipids of interest in our native membrane sample. A one-dimensional temperature series of PT SSNMR and transverse relaxation measurements of AT versus TG acyl conformations in the membrane sample confirm bilayer ordering and a broadened phase transition centered at a lower-than-expected temperature. Bulk protein backbone Cα dynamics and correlations consistent with lipid-protein contacts within are further indicative of microdomain formation and lipid ordering. In aggregate, these findings provide evidence for microdomain formation in vivo and provide insight into phase separation and transition mechanics in biological membranes.
Collapse
Affiliation(s)
- Evan J van Aalst
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79415, USA
| | - Collin G Borcik
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79415, USA
| | - Benjamin J Wylie
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79415, USA.
| |
Collapse
|
5
|
Nami F, Ferraz MJ, Bakkum T, Aerts JMFG, Pandit A. Real-Time NMR Recording of Fermentation and Lipid Metabolism Processes in Live Microalgae Cells. Angew Chem Int Ed Engl 2022; 61:e202117521. [PMID: 35103372 PMCID: PMC9305762 DOI: 10.1002/anie.202117521] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Indexed: 11/10/2022]
Abstract
Non-invasive and real-time recording of processes in living cells has been limited to detection of small cellular components such as soluble proteins and metabolites. Here we report a multiphase NMR approach using magic-angle spinning NMR to synchronously follow microbial processes of fermentation, lipid metabolism and structural dynamic changes in live microalgae cells. Chlamydomonas reinhardtii green algae were highly concentrated, introducing dark fermentation and anoxia conditions. Single-pulse NMR experiments were applied to obtain temperature-dependent kinetic profiles of the formed fermentation products. Through dynamics-based spectral editing NMR, simultaneous conversion of galactolipids into TAG and free fatty acids was observed and rapid loss of rigid lipid structures. This suggests that lipolysis under dark and anoxia conditions finally results in the breakdown of cell and organelle membranes, which could be beneficial for recovery of intracellular microbial useful products.
Collapse
Affiliation(s)
- Faezeh Nami
- Dept. of Solid-State NMRLeiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeidenThe Netherlands
| | - Maria Joao Ferraz
- Dept. of Medicinal BiochemistryLeiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeidenThe Netherlands
| | - Thomas Bakkum
- Dept. of Bio Organic SynthesisLeiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeidenThe Netherlands
| | - Johannes M. F. G. Aerts
- Dept. of Medicinal BiochemistryLeiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeidenThe Netherlands
| | - Anjali Pandit
- Dept. of Solid-State NMRLeiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeidenThe Netherlands
| |
Collapse
|
6
|
Nami F, Ferraz MJ, Bakkum T, Aerts JMFG, Pandit A. Real‐Time NMR Recording of Fermentation and Lipid Metabolism Processes in Live Microalgae Cells. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Faezeh Nami
- Dept. of Solid-State NMR Leiden Institute of Chemistry Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Maria Joao Ferraz
- Dept. of Medicinal Biochemistry Leiden Institute of Chemistry Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Thomas Bakkum
- Dept. of Bio Organic Synthesis Leiden Institute of Chemistry Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Johannes M. F. G. Aerts
- Dept. of Medicinal Biochemistry Leiden Institute of Chemistry Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Anjali Pandit
- Dept. of Solid-State NMR Leiden Institute of Chemistry Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| |
Collapse
|
7
|
Azadi-Chegeni F, Thallmair S, Ward ME, Perin G, Marrink SJ, Baldus M, Morosinotto T, Pandit A. Protein dynamics and lipid affinity of monomeric, zeaxanthin-binding LHCII in thylakoid membranes. Biophys J 2022; 121:396-409. [PMID: 34971616 PMCID: PMC8822613 DOI: 10.1016/j.bpj.2021.12.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/02/2021] [Accepted: 12/23/2021] [Indexed: 02/03/2023] Open
Abstract
The xanthophyll cycle in the antenna of photosynthetic organisms under light stress is one of the most well-known processes in photosynthesis, but its role is not well understood. In the xanthophyll cycle, violaxanthin (Vio) is reversibly transformed to zeaxanthin (Zea) that occupies Vio binding sites of light-harvesting antenna proteins. Higher monomer/trimer ratios of the most abundant light-harvesting protein, the light-harvesting complex II (LHCII), usually occur in Zea accumulating membranes and have been observed in plants after prolonged illumination and during high-light acclimation. We present a combined NMR and coarse-grained simulation study on monomeric LHCII from the npq2 mutant that constitutively binds Zea in the Vio binding pocket. LHCII was isolated from 13C-enriched npq2 Chlamydomonas reinhardtii (Cr) cells and reconstituted in thylakoid lipid membranes. NMR results reveal selective changes in the fold and dynamics of npq2 LHCII compared with the trimeric, wild-type and show that npq2 LHCII contains multiple mono- or digalactosyl diacylglycerol lipids (MGDG and DGDG) that are strongly protein bound. Coarse-grained simulations on npq2 LHCII embedded in a thylakoid lipid membrane agree with these observations. The simulations show that LHCII monomers have more extensive lipid contacts than LHCII trimers and that protein-lipid contacts are influenced by Zea. We propose that both monomerization and Zea binding could have a functional role in modulating membrane fluidity and influence the aggregation and conformational dynamics of LHCII with a likely impact on photoprotection ability.
Collapse
Affiliation(s)
- Fatemeh Azadi-Chegeni
- Leiden Institute of Chemistry, Department of Solid-State NMR, Leiden University, Leiden, the Netherlands
| | - Sebastian Thallmair
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Groningen, the Netherlands; Frankfurt Institute for Advanced Studies, Frankfurt am Main, Germany
| | - Meaghan E Ward
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
| | - Giorgio Perin
- Department of Biology, University of Padua, Padua, Italy
| | - Siewert J Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Groningen, the Netherlands
| | - Marc Baldus
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
| | | | - Anjali Pandit
- Leiden Institute of Chemistry, Department of Solid-State NMR, Leiden University, Leiden, the Netherlands.
| |
Collapse
|
8
|
2D fluorescence correlation to visualize influence of size curvature and phase structure of silica nanoparticle-supported small unilamellar vesicle membrane. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
Nami F, Tian L, Huber M, Croce R, Pandit A. Lipid and protein dynamics of stacked and cation-depletion induced unstacked thylakoid membranes. BBA ADVANCES 2021; 1:100015. [PMID: 37082020 PMCID: PMC10074959 DOI: 10.1016/j.bbadva.2021.100015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Chloroplast thylakoid membranes in plants and green algae form 3D architectures of stacked granal membranes interconnected by unstacked stroma lamellae. They undergo dynamic structural changes as a response to changing light conditions that involve grana unstacking and lateral supramolecular reorganization of the integral membrane protein complexes. We assessed the dynamics of thylakoid membrane components and addressed how they are affected by thylakoid unstacking, which has consequences for protein mobility and the diffusion of small electron carriers. By a combined nuclear and electron paramagnetic-resonance approach the dynamics of thylakoid lipids was assessed in stacked and cation-depletion induced unstacked thylakoids of Chlamydomonas (C.) reinhardtii. We could distinguish between structural, bulk and annular lipids and determine membrane fluidity at two membrane depths: close to the lipid headgroups and in the lipid bilayer center. Thylakoid unstacking significantly increased the dynamics of bulk and annular lipids in both areas and increased the dynamics of protein helices. The unstacking process was associated with membrane reorganization and loss of long-range ordered Photosystem II- Light-Harvesting Complex II (PSII-LHCII) complexes. The fluorescence lifetime characteristics associated with membrane unstacking are similar to those associated with state transitions in intact C. reinhardtii cells. Our findings could be relevant for understanding the structural and functional implications of thylakoid unstacking that is suggested to take place during several light-induced processes, such as state transitions, photoacclimation, photoinhibition and PSII repair.
Collapse
Affiliation(s)
- Faezeh Nami
- Institute of Chemistry, Leiden University, 2333 CC, Leiden, The Netherlands
| | - Lijin Tian
- Institute of Chemistry, Leiden University, 2333 CC, Leiden, The Netherlands
| | - Martina Huber
- Department of Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, 2300 RA, Leiden, The Netherlands
| | - Roberta Croce
- Department of Physics and Astronomy, VU University Amsterdam, 1081 HV, Amsterdam, The Netherlands
| | - Anjali Pandit
- Institute of Chemistry, Leiden University, 2333 CC, Leiden, The Netherlands
- Corresponding author:
| |
Collapse
|
10
|
Conformational Dynamics of Light-Harvesting Complex II in a Native Membrane Environment. Biophys J 2020; 120:270-283. [PMID: 33285116 DOI: 10.1016/j.bpj.2020.11.2265] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/17/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022] Open
Abstract
Photosynthetic light-harvesting complexes (LHCs) of higher plants, moss, and green algae can undergo dynamic conformational transitions, which have been correlated to their ability to adapt to fluctuations in the light environment. Herein, we demonstrate the application of solid-state NMR spectroscopy on native, heterogeneous thylakoid membranes of Chlamydomonas reinhardtii (Cr) and on Cr light-harvesting complex II (LHCII) in thylakoid lipid bilayers to detect LHCII conformational dynamics in its native membrane environment. We show that membrane-reconstituted LHCII contains selective sites that undergo fast, large-amplitude motions, including the phytol tails of two chlorophylls. Protein plasticity is also observed in the N-terminal stromal loop and in protein fragments facing the lumen, involving sites that stabilize the xanthophyll-cycle carotenoid violaxanthin and the two luteins. The results report on the intrinsic flexibility of LHCII pigment-protein complexes in a membrane environment, revealing putative sites for conformational switching. In thylakoid membranes, fast dynamics of protein and pigment sites is significantly reduced, which suggests that in their native organelle membranes, LHCII complexes are locked in specific conformational states.
Collapse
|
11
|
Tietz S, Leuenberger M, Höhner R, Olson AH, Fleming GR, Kirchhoff H. A proteoliposome-based system reveals how lipids control photosynthetic light harvesting. J Biol Chem 2020; 295:1857-1866. [PMID: 31929108 DOI: 10.1074/jbc.ra119.011707] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/09/2020] [Indexed: 11/06/2022] Open
Abstract
Integral membrane proteins are exposed to a complex and dynamic lipid environment modulated by nonbilayer lipids that can influence protein functions by lipid-protein interactions. The nonbilayer lipid monogalactosyldiacylglycerol (MGDG) is the most abundant lipid in plant photosynthetic thylakoid membranes, but its impact on the functionality of energy-converting membrane protein complexes is unknown. Here, we optimized a detergent-based reconstitution protocol to develop a proteoliposome technique that incorporates the major light-harvesting complex II (LHCII) into compositionally well-defined large unilamellar lipid bilayer vesicles to study the impact of MGDG on light harvesting by LHCII. Using steady-state fluorescence spectroscopy, CD spectroscopy, and time-correlated single-photon counting, we found that both chlorophyll fluorescence quantum yields and fluorescence lifetimes clearly indicate that the presence of MGDG in lipid bilayers switches LHCII from a light-harvesting to a more energy-quenching mode that dissipates harvested light into heat. It is hypothesized that in the in vitro system developed here, MGDG controls light harvesting of LHCII by modulating the hydrostatic lateral membrane pressure profile in the lipid bilayer sensed by LHCII-bound peripheral pigments.
Collapse
Affiliation(s)
- Stefanie Tietz
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, 99164-6340
| | - Michelle Leuenberger
- Department of Chemistry, University of California, Berkeley, California 94720; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Ricarda Höhner
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, 99164-6340
| | - Alice H Olson
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, 99164-6340
| | - Graham R Fleming
- Department of Chemistry, University of California, Berkeley, California 94720; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Helmut Kirchhoff
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, 99164-6340.
| |
Collapse
|
12
|
Mazur R, Gieczewska K, Kowalewska Ł, Kuta A, Proboszcz M, Gruszecki WI, Mostowska A, Garstka M. Specific Composition of Lipid Phases Allows Retaining an Optimal Thylakoid Membrane Fluidity in Plant Response to Low-Temperature Treatment. FRONTIERS IN PLANT SCIENCE 2020; 11:723. [PMID: 32582253 PMCID: PMC7291772 DOI: 10.3389/fpls.2020.00723] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/06/2020] [Indexed: 05/15/2023]
Abstract
Thylakoid membranes isolated from leaves of two plant species, the chilling tolerant (CT) pea and chilling sensitive (CS) runner bean, were assessed for the composition of lipids, carotenoids as well as for the arrangement of photosynthetic complexes. The response to stress conditions was investigated in dark-chilled and subsequently photo-activated detached leaves of pea and bean. Thylakoids of both species have a similar level of monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG), but different sulfoquinovosyldiacylglycerol to phosphatidylglycerol (PG) ratio. In pea thylakoid fraction, the MGDG, DGDG and PG, have a higher double bond index (DBI), whereas bean thylakoids contain higher levels of high melting point PG. Furthermore, the lutein to the β-carotene ratio is higher in bean thylakoids. Smaller protein/lipid ratio in pea than in bean thylakoids suggests different lipid-protein interactions in both species. The differences between species are also reflected by the course of temperature-dependent plots of chlorophyll fluorescence pointing various temperatures of the lipid phase transitions of pea and bean thylakoids. Our results showed higher fluidity of the thylakoid membrane network in pea than in bean in optimal temperature conditions. Dark-chilling decreases the photochemical activity and induces significant degradation of MGDG in bean but not in pea leaves. Similarly, substantial changes in the arrangement of photosynthetic complexes with increase in LHCII phosphorylation and disturbances of the thylakoid structure take place in bean thylakoids only. Changes in the physical properties of bean thylakoids are manifested by the conversion of a three-phase temperature-dependent plot to a one-phase plot. Subsequent photo-activation of chilled bean leaves caused a partial restoration of the photochemistry and of membrane physical properties, but not of the photosynthetic complexes arrangement nor the thylakoid network structure. Summarizing, the composition of the thylakoid lipid matrix of CT pea allows retaining the optimal fluidity of its chloroplast membranes under low temperatures. In contrast, the fluidity of CS bean thylakoids is drastically changed, leading to the reorganization of the supramolecular structure of the photosynthetic complexes and finally results in structural remodeling of the CS bean thylakoid network.
Collapse
Affiliation(s)
- Radosław Mazur
- Department of Metabolic Regulation, Faculty of Biology, Institute of Biochemistry, University of Warsaw, Warsaw, Poland
- *Correspondence: Radosław Mazur,
| | - Katarzyna Gieczewska
- Department of Plant Anatomy and Cytology, Faculty of Biology, Institute of Plant Experimental Biology and Biotechnology, University of Warsaw, Warsaw, Poland
| | - Łucja Kowalewska
- Department of Plant Anatomy and Cytology, Faculty of Biology, Institute of Plant Experimental Biology and Biotechnology, University of Warsaw, Warsaw, Poland
| | - Anna Kuta
- Department of Metabolic Regulation, Faculty of Biology, Institute of Biochemistry, University of Warsaw, Warsaw, Poland
| | - Małgorzata Proboszcz
- Department of Metabolic Regulation, Faculty of Biology, Institute of Biochemistry, University of Warsaw, Warsaw, Poland
| | - Wieslaw I. Gruszecki
- Department of Biophysics, Institute of Physics, Maria Curie-Skłodowska University, Lublin, Poland
| | - Agnieszka Mostowska
- Department of Plant Anatomy and Cytology, Faculty of Biology, Institute of Plant Experimental Biology and Biotechnology, University of Warsaw, Warsaw, Poland
| | - Maciej Garstka
- Department of Metabolic Regulation, Faculty of Biology, Institute of Biochemistry, University of Warsaw, Warsaw, Poland
- Maciej Garstka,
| |
Collapse
|
13
|
Bennett DIG, Amarnath K, Park S, Steen CJ, Morris JM, Fleming GR. Models and mechanisms of the rapidly reversible regulation of photosynthetic light harvesting. Open Biol 2019; 9:190043. [PMID: 30966997 PMCID: PMC6501642 DOI: 10.1098/rsob.190043] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 03/07/2019] [Indexed: 02/02/2023] Open
Abstract
The rapid response of photosynthetic organisms to fluctuations in ambient light intensity is incompletely understood at both the molecular and membrane levels. In this review, we describe research from our group over a 10-year period aimed at identifying the photophysical mechanisms used by plants, algae and mosses to control the efficiency of light harvesting by photosystem II on the seconds-to-minutes time scale. To complement the spectroscopic data, we describe three models capable of describing the measured response at a quantitative level. The review attempts to provide an integrated view that has emerged from our work, and briefly looks forward to future experimental and modelling efforts that will refine and expand our understanding of a process that significantly influences crop yields.
Collapse
Affiliation(s)
- Doran I. G. Bennett
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Kapil Amarnath
- Department of Physics, University of California San Diego, La Jolla, CA 92093, USA
| | - Soomin Park
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Labs, Berkeley, CA 94720, USA
| | - Collin J. Steen
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Labs, Berkeley, CA 94720, USA
| | - Jonathan M. Morris
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Labs, Berkeley, CA 94720, USA
| | - Graham R. Fleming
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Labs, Berkeley, CA 94720, USA
| |
Collapse
|
14
|
Bojko M, Olchawa-Pajor M, Goss R, Schaller-Laudel S, Strzałka K, Latowski D. Diadinoxanthin de-epoxidation as important factor in the short-term stabilization of diatom photosynthetic membranes exposed to different temperatures. PLANT, CELL & ENVIRONMENT 2019; 42:1270-1286. [PMID: 30362127 DOI: 10.1111/pce.13469] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 10/17/2018] [Indexed: 05/25/2023]
Abstract
The importance of diadinoxanthin (Ddx) de-epoxidation in the short-term modulation of the temperature effect on photosynthetic membranes of the diatom Phaeodactylum tricornutum was demonstrated by electron paramagnetic resonance (EPR), Laurdan fluorescence spectroscopy, and high-performance liquid chromatography. The 5-SASL spin probe employed for the EPR measurements and Laurdan provided information about the membrane area close to the polar head groups of the membrane lipids, whereas with the 16-SASL spin probe, the hydrophobic core, where the fatty acid residues are located, was probed. The obtained results indicate that Ddx de-epoxidation induces a two component mechanism in the short-term regulation of the membrane fluidity of diatom thylakoids during changing temperatures. One component has been termed the "dynamic effect" and the second the "stable effect" of Ddx de-epoxidation. The "dynamic effect" includes changes of the membrane during the time course of de-epoxidation whereas the "stable effect" is based on the rigidifying properties of Dtx. The combination of both effects results in a temporary increase of the rigidity of both peripheral and internal parts of the membrane whereas the persistent increase of the rigidity of the hydrophobic core of the membrane is solely based on the "stable effect."
Collapse
Affiliation(s)
- Monika Bojko
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Monika Olchawa-Pajor
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Reimund Goss
- Institute of Biology, University of Leipzig, Leipzig, Germany
| | | | - Kazimierz Strzałka
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | - Dariusz Latowski
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
15
|
Golub M, Rusevich L, Irrgang KD, Pieper J. Rigid versus Flexible Protein Matrix: Light-Harvesting Complex II Exhibits a Temperature-Dependent Phonon Spectral Density. J Phys Chem B 2018; 122:7111-7121. [DOI: 10.1021/acs.jpcb.8b02948] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Maksym Golub
- Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411 Tartu, Estonia
| | - Leonid Rusevich
- Institute of Physical Energetics, Krivu 11, LV-1006 Riga, Latvia
- Institute of Solid State Physics, University of Latvia, Kengaraga 8, LV-1063 Riga, Latvia
| | - Klaus-Dieter Irrgang
- Department of Life Science & Technology, Laboratory of Biochemistry, University for Applied Sciences, 10318 Berlin, Germany
| | - Jörg Pieper
- Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411 Tartu, Estonia
| |
Collapse
|
16
|
Azadi-Chegeni F, Schiphorst C, Pandit A. In vivo NMR as a tool for probing molecular structure and dynamics in intact Chlamydomonas reinhardtii cells. PHOTOSYNTHESIS RESEARCH 2018; 135:227-237. [PMID: 28646418 PMCID: PMC5783995 DOI: 10.1007/s11120-017-0412-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 06/07/2017] [Indexed: 06/14/2023]
Abstract
We report the application of NMR dynamic spectral editing for probing the structure and dynamics of molecular constituents in fresh, intact cells and in freshly prepared thylakoid membranes of Chlamydomonas reinhardtii (Cr.) green algae. For isotope labeling, wild-type Cr. cells were grown on 13C acetate-enriched minimal medium. 1D 13C J-coupling based and dipolar-based MAS NMR spectra were applied to distinguish 13C resonances of different molecular components. 1D spectra were recorded over a physiological temperature range, and whole-cell spectra were compared to those taken from thylakoid membranes, evaluating their composition and dynamics. A theoretical model for NMR polarization transfer was used to simulate the relative intensities of direct, J-coupling, and dipolar-based polarization from which the degree of lipid segmental order and rotational dynamics of the lipid acyl chains were estimated. We observe that thylakoid lipid signals dominate the lipid spectral profile of whole algae cells, demonstrating that with our novel method, thylakoid membrane characteristics can be detected with atomistic precision inside intact photosynthetic cells. The experimental procedure is rapid and applicable to fresh cell cultures, and could be used as an original approach for detecting chemical profiles, and molecular structure and dynamics of photosynthetic membranes in vivo in functional states.
Collapse
Affiliation(s)
- Fatemeh Azadi-Chegeni
- Department of Solid State NMR, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands
| | - Christo Schiphorst
- Department of Solid State NMR, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Anjali Pandit
- Department of Solid State NMR, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands.
| |
Collapse
|
17
|
Grudzinski W, Nierzwicki L, Welc R, Reszczynska E, Luchowski R, Czub J, Gruszecki WI. Localization and Orientation of Xanthophylls in a Lipid Bilayer. Sci Rep 2017; 7:9619. [PMID: 28852075 PMCID: PMC5575131 DOI: 10.1038/s41598-017-10183-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 08/07/2017] [Indexed: 02/05/2023] Open
Abstract
Xanthophylls (polar carotenoids) play diverse biological roles, among which are modulation of the physical properties of lipid membranes and protection of biomembranes against oxidative damage. Molecular mechanisms underlying these functions are intimately related to the localization and orientation of xanthophyll molecules in lipid membranes. In the present work, we address the problem of localization and orientation of two xanthophylls present in the photosynthetic apparatus of plants and in the retina of the human eye, zeaxanthin and lutein, in a single lipid bilayer membrane formed with dimyristoylphosphatidylcholine. By using fluorescence microscopic analysis and Raman imaging of giant unilamellar vesicles, as well as molecular dynamics simulations, we show that lutein and zeaxanthin adopt a very similar transmembrane orientation within a lipid membrane. In experimental and computational approach, the average tilt angle of xanthophylls relative to the membrane normal is independently found to be ~40 deg, and results from hydrophobic mismatch between the membrane thickness and the distance between the terminal hydroxyl groups of the xanthophylls. Consequences of such a localization and orientation for biological activity of xanthophylls are discussed.
Collapse
Affiliation(s)
- Wojciech Grudzinski
- Department of Biophysics, Institute of Physics, Maria Curie-Sklodowska University, 20-031, Lublin, Poland
| | - Lukasz Nierzwicki
- Department of Physical Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233, Gdansk, Poland
| | - Renata Welc
- Department of Biophysics, Institute of Physics, Maria Curie-Sklodowska University, 20-031, Lublin, Poland
| | - Emilia Reszczynska
- Department of Biophysics, Institute of Physics, Maria Curie-Sklodowska University, 20-031, Lublin, Poland
| | - Rafal Luchowski
- Department of Biophysics, Institute of Physics, Maria Curie-Sklodowska University, 20-031, Lublin, Poland
| | - Jacek Czub
- Department of Physical Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233, Gdansk, Poland.
| | - Wieslaw I Gruszecki
- Department of Biophysics, Institute of Physics, Maria Curie-Sklodowska University, 20-031, Lublin, Poland.
| |
Collapse
|
18
|
Zeaxanthin and echinenone modify the structure of photosystem I trimer in Synechocystis sp. PCC 6803. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1858:510-518. [DOI: 10.1016/j.bbabio.2017.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 04/27/2017] [Accepted: 05/01/2017] [Indexed: 01/26/2023]
|
19
|
Yang D, Zou H, Wu Y, Shi J, Zhang S, Wang X, Han P, Tong Z, Jiang Z. Constructing Quantum Dots@Flake Graphitic Carbon Nitride Isotype Heterojunctions for Enhanced Visible-Light-Driven NADH Regeneration and Enzymatic Hydrogenation. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.7b00912] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
| | | | | | - Jiafu Shi
- State
Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 10090, China
| | | | - Xiaodong Wang
- School
of Engineering, University of Aberdeen, Aberdeen AB24 3UE, Scotland U.K
| | | | | | - Zhongyi Jiang
- State
Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 10090, China
- Collaborative
Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| |
Collapse
|