1
|
Davín AA, Woodcroft BJ, Soo RM, Morel B, Murali R, Schrempf D, Clark JW, Álvarez-Carretero S, Boussau B, Moody ERR, Szánthó LL, Richy E, Pisani D, Hemp J, Fischer WW, Donoghue PCJ, Spang A, Hugenholtz P, Williams TA, Szöllősi GJ. A geological timescale for bacterial evolution and oxygen adaptation. Science 2025; 388:eadp1853. [PMID: 40179162 DOI: 10.1126/science.adp1853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 12/19/2024] [Indexed: 04/05/2025]
Abstract
Microbial life has dominated Earth's history but left a sparse fossil record, greatly hindering our understanding of evolution in deep time. However, bacterial metabolism has left signatures in the geochemical record, most conspicuously the Great Oxidation Event (GOE). We combine machine learning and phylogenetic reconciliation to infer ancestral bacterial transitions to aerobic lifestyles, linking them to the GOE to calibrate the bacterial time tree. Extant bacterial phyla trace their diversity to the Archaean and Proterozoic, and bacterial families prior to the Phanerozoic. We infer that most bacterial phyla were ancestrally anaerobic and adopted aerobic lifestyles after the GOE. However, in the cyanobacterial ancestor, aerobic metabolism likely predated the GOE, which may have facilitated the evolution of oxygenic photosynthesis.
Collapse
Affiliation(s)
- Adrián A Davín
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, Brisbane, Queensland, Australia
- Department of Biological Physics, Eötvös Loránd University, Budapest, Hungary
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
| | - Ben J Woodcroft
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, Australia
| | - Rochelle M Soo
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, Brisbane, Queensland, Australia
| | - Benoit Morel
- Computational Molecular Evolution Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
- Institute for Theoretical Informatics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Ranjani Murali
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Dominik Schrempf
- Department of Biological Physics, Eötvös Loránd University, Budapest, Hungary
- MTA-ELTE "Lendület" Evolutionary Genomics Research Group, Budapest, Hungary
| | - James W Clark
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Bristol, UK
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath, UK
| | | | - Bastien Boussau
- Laboratoire de Biométrie et Biologie Evolutive, Univ Lyon, Univ Lyon 1, CNRS, VetAgro Sup, Villeurbanne, France
| | - Edmund R R Moody
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Bristol, UK
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Lénárd L Szánthó
- Department of Biological Physics, Eötvös Loránd University, Budapest, Hungary
- Institute of Evolution, Centre for Ecological Research, Budapest, Hungary
- Model-Based Evolutionary Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Etienne Richy
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Davide Pisani
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Bristol, UK
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - James Hemp
- Metrodora Institute, West Valley City, UT, USA
| | - Woodward W Fischer
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Philip C J Donoghue
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Bristol, UK
| | - Anja Spang
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, Den Burg, Netherlands
- Department of Evolutionary & Population Biology, Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, Netherlands
| | - Philip Hugenholtz
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, Brisbane, Queensland, Australia
| | - Tom A Williams
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Gergely J Szöllősi
- Department of Biological Physics, Eötvös Loránd University, Budapest, Hungary
- MTA-ELTE "Lendület" Evolutionary Genomics Research Group, Budapest, Hungary
- Institute of Evolution, Centre for Ecological Research, Budapest, Hungary
- Model-Based Evolutionary Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| |
Collapse
|
2
|
Elling FJ, Pierrel F, Chobert SC, Abby SS, Evans TW, Reveillard A, Pelosi L, Schnoebelen J, Hemingway JD, Boumendjel A, Becker KW, Blom P, Cordes J, Nathan V, Baymann F, Lücker S, Spieck E, Leadbetter JR, Hinrichs KU, Summons RE, Pearson A. A novel quinone biosynthetic pathway illuminates the evolution of aerobic metabolism. Proc Natl Acad Sci U S A 2025; 122:e2421994122. [PMID: 39977315 PMCID: PMC11874023 DOI: 10.1073/pnas.2421994122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 01/09/2025] [Indexed: 02/22/2025] Open
Abstract
The dominant organisms in modern oxic ecosystems rely on respiratory quinones with high redox potential (HPQs) for electron transport in aerobic respiration and photosynthesis. The diversification of quinones, from low redox potential (LPQ) in anaerobes to HPQs in aerobes, is assumed to have followed Earth's surface oxygenation ~2.3 billion years ago. However, the evolutionary origins of HPQs remain unresolved. Here, we characterize the structure and biosynthetic pathway of an ancestral HPQ, methyl-plastoquinone (mPQ), that is unique to bacteria of the phylum Nitrospirota. mPQ is structurally related to the two previously known HPQs, plastoquinone from Cyanobacteriota/chloroplasts and ubiquinone from Pseudomonadota/mitochondria, respectively. We demonstrate a common origin of the three HPQ biosynthetic pathways that predates the emergence of Nitrospirota, Cyanobacteriota, and Pseudomonadota. An ancestral HPQ biosynthetic pathway evolved ≥ 3.4 billion years ago in an extinct lineage and was laterally transferred to these three phyla ~2.5 to 3.2 billion years ago. We show that Cyanobacteriota and Pseudomonadota were ancestrally aerobic and thus propose that aerobic metabolism using HPQs significantly predates Earth's surface oxygenation. Two of the three HPQ pathways were later obtained by eukaryotes through endosymbiosis forming chloroplasts and mitochondria, enabling their rise to dominance in modern oxic ecosystems.
Collapse
Affiliation(s)
- Felix J. Elling
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA02138
- Leibniz-Laboratory for Radiometric Dating and Isotope Research, Christian-Albrecht University of Kiel, Kiel24118, Germany
| | - Fabien Pierrel
- Université Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, Grenoble38000, France
| | - Sophie-Carole Chobert
- Université Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, Grenoble38000, France
| | - Sophie S. Abby
- Université Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, Grenoble38000, France
| | - Thomas W. Evans
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
- MARUM—Center for Marine Environmental Sciences and Department of Geosciences, University of Bremen, Bremen28359, Germany
| | - Arthur Reveillard
- Université Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, Grenoble38000, France
| | - Ludovic Pelosi
- Université Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, Grenoble38000, France
| | - Juliette Schnoebelen
- Université Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, Grenoble38000, France
| | - Jordon D. Hemingway
- Department of Earth and Planetary Sciences, Geological Institute, ETH Zürich, Zurich8092, Switzerland
| | | | - Kevin W. Becker
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel24148, Germany
| | - Pieter Blom
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen6525 AJ, The Netherlands
| | - Julia Cordes
- MARUM—Center for Marine Environmental Sciences and Department of Geosciences, University of Bremen, Bremen28359, Germany
| | - Vinitra Nathan
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA02138
| | - Frauke Baymann
- Laboratoire de Bioénergétique et Ingénierie des Protéines UMR 7281 CNRS/AMU, FR3479, Marseille Cedex 20F-13402, France
| | - Sebastian Lücker
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen6525 AJ, The Netherlands
| | - Eva Spieck
- Department of Microbiology and Biotechnology, University of Hamburg, Hamburg22609, Germany
| | - Jared R. Leadbetter
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA91125
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA91125
| | - Kai-Uwe Hinrichs
- MARUM—Center for Marine Environmental Sciences and Department of Geosciences, University of Bremen, Bremen28359, Germany
| | - Roger E. Summons
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Ann Pearson
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA02138
| |
Collapse
|
3
|
Chobert SC, Roger-Margueritat M, Flandrin L, Berraies S, Lefèvre CT, Pelosi L, Junier I, Varoquaux N, Pierrel F, Abby SS. Dynamic quinone repertoire accompanied the diversification of energy metabolism in Pseudomonadota. THE ISME JOURNAL 2025; 19:wrae253. [PMID: 39693360 PMCID: PMC11707229 DOI: 10.1093/ismejo/wrae253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/27/2024] [Accepted: 12/17/2024] [Indexed: 12/20/2024]
Abstract
It is currently unclear how Pseudomonadota, a phylum that originated around the time of the Great Oxidation Event, became one of the most abundant and diverse bacterial phyla on Earth, with metabolically versatile members colonizing a wide range of environments with different O2 concentrations. Here, we address this question by studying isoprenoid quinones, which are central components of energy metabolism covering a wide range of redox potentials. We demonstrate that a dynamic repertoire of quinone biosynthetic pathways accompanied the diversification of Pseudomonadota. The low potential menaquinone (MK) was lost in an ancestor of Pseudomonadota while the high potential ubiquinone (UQ) emerged. We show that the O2-dependent and O2-independent UQ pathways were both present in the last common ancestor of Pseudomonadota, and transmitted vertically. The O2-independent pathway has a conserved genetic organization and displays signs of positive regulation by the master regulator "fumarate and nitrate reductase" (FNR), suggesting a conserved role for UQ in anaerobiosis across Pseudomonadota. The O2-independent pathway was lost in some lineages but maintained in others, where it favoured a secondary reacquisition of low potential quinones (MK or rhodoquinone), which promoted diversification towards aerobic facultative and anaerobic metabolisms. Our results support that the ecological success of Pseudomonadota is linked to the acquisition of the largest known repertoire of quinones, which allowed adaptation to oxic niches as O2 levels increased on Earth, and subsequent diversification into anoxic or O2-fluctuating environments.
Collapse
Affiliation(s)
- Sophie-Carole Chobert
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, Grenoble 38000, France
| | | | - Laura Flandrin
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, Grenoble 38000, France
| | - Safa Berraies
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, Grenoble 38000, France
| | - Christopher T Lefèvre
- Aix-Marseille Université, CNRS, CEA, Institute of Biosciences and Biotechnologies of Aix-Marseille, Saint-Paul-lez-Durance 13108, France
| | - Ludovic Pelosi
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, Grenoble 38000, France
| | - Ivan Junier
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, Grenoble 38000, France
| | - Nelle Varoquaux
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, Grenoble 38000, France
| | - Fabien Pierrel
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, Grenoble 38000, France
| | - Sophie S Abby
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, Grenoble 38000, France
| |
Collapse
|
4
|
Robbins EHJ, Kelly S. Widespread adaptive evolution in angiosperm photosystems provides insight into the evolution of photosystem II repair. THE PLANT CELL 2024; 37:koae281. [PMID: 39405425 DOI: 10.1093/plcell/koae281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/09/2024] [Indexed: 12/24/2024]
Abstract
Oxygenic photosynthesis generates the initial energy source that fuels nearly all life on Earth. At the heart of the process are the photosystems, which are pigment binding multiprotein complexes that catalyze the first step of photochemical conversion of light energy into chemical energy. Here, we investigate the molecular evolution of the plastid-encoded photosystem subunits at single-residue resolution across 773 angiosperm species. We show that despite an extremely high level of conservation, 7% of residues in the photosystems, spanning all photosystem subunits, exhibit hallmarks of adaptive evolution. Through in silico modeling of these adaptive substitutions, we uncover the impact of these changes on the predicted properties of the photosystems, focusing on their effects on cofactor binding and intersubunit interface formation. By analyzing these cohorts of changes, we reveal that evolution has repeatedly altered the interaction between Photosystem II and its D1 subunit in a manner that is predicted to reduce the energetic barrier for D1 turnover and photosystem repair. Together, these results provide insight into the trajectory of photosystem adaptation during angiosperm evolution.
Collapse
Affiliation(s)
| | - Steven Kelly
- Department of Biology, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| |
Collapse
|
5
|
Wittmers F, Comstock J, Poirier C, Needham DM, Schulz F, Malmstrom R, Carlson CA, Worden AZ. Non-photosynthetic lineages sibling to Cyanobacteria associate with eukaryotes in the open ocean. Curr Biol 2024; 34:R1133-R1134. [PMID: 39561704 DOI: 10.1016/j.cub.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/14/2024] [Accepted: 09/04/2024] [Indexed: 11/21/2024]
Abstract
Margulisbacteria are elusive uncultivated bacteria that have illuminated evolutionary transitions in the progenitor of Cyanobacteria, the latter being a critically important phylum that underpins oxygenic photosynthesis1,2. The non-photosynthetic Margulisbacteria were discovered in a sulfidic spring3 and later in other habitats456. Currently, this candidate phylum partitions into the Riflemargulisbacteria, primarily from sediments and groundwater, the Termititenax from insect gut microbiomes, and the Marinamargulisbacteria, from marine samples456. We found that Marinamargulisbacteria amplicons were unusually distributed in size-fractionated samples from the sunlit photic and dark twilight zones of the ocean. Further, sequencing of wild marine protists rendered genomic information for distinct marinamargulisbacterial clades co-associated with uncultivated, non-photosynthetic Stramenopila and Opisthokonta protists. Phylogenomic analyses combining these data and available metagenome-assembled genomes (MAGs) and single-amplified genomes (SAGs) from sorted bacteria revealed new Marinamargulisbacteria lineages. The lineages delineate by their environment, forming clades comprising freshwater, marine pelagic, or sediment/hypoxic taxa. The remarkable diversity of Margulisbacteria indicates success in colonizing various habitats, potentially in a conserved strategy involving eukaryotic cells.
Collapse
Affiliation(s)
- Fabian Wittmers
- Marine Biological Laboratory, Woods Hole, MA 02543, USA; Ocean EcoSystems Biology Unit, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel 24148, Germany
| | - Jacqueline Comstock
- Marine Science Institute, University of California, Santa Barbara, CA 93117, USA
| | - Camille Poirier
- Ocean EcoSystems Biology Unit, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel 24148, Germany
| | - David M Needham
- Ocean EcoSystems Biology Unit, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel 24148, Germany
| | - Frederik Schulz
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Rex Malmstrom
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Craig A Carlson
- Marine Science Institute, University of California, Santa Barbara, CA 93117, USA
| | - Alexandra Z Worden
- Marine Biological Laboratory, Woods Hole, MA 02543, USA; Ocean EcoSystems Biology Unit, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel 24148, Germany.
| |
Collapse
|
6
|
Lambreva MD, Zobnina V, Antal TK, Peeva VN, Giardi MT, Bertalan I, Johanningmeier U, Virtanen O, Ray M, Mulo P, Polticelli F, Tyystjärvi E, Rea G. Redesign of the Chlamydomonas reinhardtii Q B binding niche reveals photosynthesis works in the absence of a driving force for Q A-Q B electron transfer. PHYSIOLOGIA PLANTARUM 2024; 176:e70008. [PMID: 39673282 PMCID: PMC11645544 DOI: 10.1111/ppl.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/14/2024] [Accepted: 11/21/2024] [Indexed: 12/16/2024]
Abstract
An in silico redesign of the secondary quinone electron acceptor (QB) binding pocket of the D1 protein of Photosystem II (PSII) suggested that mutations of the F265 residue would affect atrazine binding. Chlamydomonas reinhardtii mutants F265T and F265S were produced to obtain atrazine-hypersensitive strains for biosensor applications, and the mutants were indeed found to be more atrazine-sensitive than the reference strain IL. Fluorescence and thermoluminescence data agree with a weak driving force and confirm slow electron transfer but cannot exclude an additional effect on protonation of the secondary quinone. Both mutants grow autotrophically, indicating that PSII requires strong light for optimal function, as was the case in the ancestral homodimeric reaction center.
Collapse
Affiliation(s)
- Maya D. Lambreva
- Institute for Biological Systems, National Research CouncilMonterotondo Stazione (RM)Italy
| | | | - Taras K. Antal
- Laboratory of integrated ecological researchPskov State UniversityPskovRussia
| | - Violeta N. Peeva
- Bulgarian Academy of SciencesInstitute of Plant Physiology and GeneticsSofiaBulgaria
| | - Maria Teresa Giardi
- Biosensor SrlFormelloRomeItaly
- Institute of Crystallography, National Research CouncilMonterotondo Stazione (RM)Italy
| | - Ivo Bertalan
- Institut für Pflanzenphysiologie, Martin‐Luther‐Universität Halle‐WittenbergHalle (Saale)Germany
| | - Udo Johanningmeier
- Institut für Pflanzenphysiologie, Martin‐Luther‐Universität Halle‐WittenbergHalle (Saale)Germany
| | - Olli Virtanen
- Department of Life Technologies/Molecular Plant BiologyUniversity of TurkuTurkuFinland
- Department of Physics and AstronomyVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Mithila Ray
- Department of Life Technologies/Molecular Plant BiologyUniversity of TurkuTurkuFinland
| | - Paula Mulo
- Department of Life Technologies/Molecular Plant BiologyUniversity of TurkuTurkuFinland
| | - Fabio Polticelli
- Department of SciencesUniversity Roma TreRomeItaly
- National Institute of Nuclear Physics, Roma Tre SectionRomeItaly
| | - Esa Tyystjärvi
- Department of Life Technologies/Molecular Plant BiologyUniversity of TurkuTurkuFinland
| | - Giuseppina Rea
- Institute of Crystallography, National Research CouncilMonterotondo Stazione (RM)Italy
| |
Collapse
|
7
|
Kaçar B. Reconstructing Early Microbial Life. Annu Rev Microbiol 2024; 78:463-492. [PMID: 39163590 DOI: 10.1146/annurev-micro-041522-103400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
For more than 3.5 billion years, life experienced dramatic environmental extremes on Earth. These include shifts from oxygen-less to overoxygenated atmospheres and cycling between hothouse conditions and global glaciations. Meanwhile, an ecological revolution took place. Earth evolved from one dominated by microbial life to one containing the plants and animals that are most familiar today. Many key cellular features evolved early in the history of life, collectively defining the nature of our biosphere and underpinning human survival. Recent advances in molecular biology and bioinformatics have greatly improved our understanding of microbial evolution across deep time. However, the incorporation of molecular genetics, population biology, and evolutionary biology approaches into the study of Precambrian biota remains a significant challenge. This review synthesizes our current knowledge of early microbial life with an emphasis on ancient metabolisms. It also outlines the foundations of an emerging interdisciplinary area that integrates microbiology, paleobiology, and evolutionary synthetic biology to reconstruct ancient biological innovations.
Collapse
Affiliation(s)
- Betül Kaçar
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA;
| |
Collapse
|
8
|
Bianchini G, Hagemann M, Sánchez-Baracaldo P. Stochastic Character Mapping, Bayesian Model Selection, and Biosynthetic Pathways Shed New Light on the Evolution of Habitat Preference in Cyanobacteria. Syst Biol 2024; 73:644-665. [PMID: 38934241 PMCID: PMC11505929 DOI: 10.1093/sysbio/syae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 05/08/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Cyanobacteria are the only prokaryotes to have evolved oxygenic photosynthesis paving the way for complex life. Studying the evolution and ecological niche of cyanobacteria and their ancestors is crucial for understanding the intricate dynamics of biosphere evolution. These organisms frequently deal with environmental stressors such as salinity and drought, and they employ compatible solutes as a mechanism to cope with these challenges. Compatible solutes are small molecules that help maintain cellular osmotic balance in high-salinity environments, such as marine waters. Their production plays a crucial role in salt tolerance, which, in turn, influences habitat preference. Among the 5 known compatible solutes produced by cyanobacteria (sucrose, trehalose, glucosylglycerol, glucosylglycerate, and glycine betaine), their synthesis varies between individual strains. In this study, we work in a Bayesian stochastic mapping framework, integrating multiple sources of information about compatible solute biosynthesis in order to predict the ancestral habitat preference of Cyanobacteria. Through extensive model selection analyses and statistical tests for correlation, we identify glucosylglycerol and glucosylglycerate as the most significantly correlated with habitat preference, while trehalose exhibits the weakest correlation. Additionally, glucosylglycerol, glucosylglycerate, and glycine betaine show high loss/gain rate ratios, indicating their potential role in adaptability, while sucrose and trehalose are less likely to be lost due to their additional cellular functions. Contrary to previous findings, our analyses predict that the last common ancestor of Cyanobacteria (living at around 3180 Ma) had a 97% probability of a high salinity habitat preference and was likely able to synthesize glucosylglycerol and glucosylglycerate. Nevertheless, cyanobacteria likely colonized low-salinity environments shortly after their origin, with an 89% probability of the first cyanobacterium with low-salinity habitat preference arising prior to the Great Oxygenation Event (2460 Ma). Stochastic mapping analyses provide evidence of cyanobacteria inhabiting early marine habitats, aiding in the interpretation of the geological record. Our age estimate of ~2590 Ma for the divergence of 2 major cyanobacterial clades (Macro- and Microcyanobacteria) suggests that these were likely significant contributors to primary productivity in marine habitats in the lead-up to the Great Oxygenation Event, and thus played a pivotal role in triggering the sudden increase in atmospheric oxygen.
Collapse
Affiliation(s)
- Giorgio Bianchini
- School of Geographical Sciences, University of Bristol, University Road, Bristol BS81SS, UK
| | - Martin Hagemann
- Universität Rostock, Mathematisch-Naturwissenschaftliche Fakultät, Institut für Biowissenschaften, Pflanzenphysiologie, Albert-Einstein-Straße 3, 18059 Rostock, Germany
| | | |
Collapse
|
9
|
Milrad Y, Mosebach L, Buchert F. Regulation of Microalgal Photosynthetic Electron Transfer. PLANTS (BASEL, SWITZERLAND) 2024; 13:2103. [PMID: 39124221 PMCID: PMC11314055 DOI: 10.3390/plants13152103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024]
Abstract
The global ecosystem relies on the metabolism of photosynthetic organisms, featuring the ability to harness light as an energy source. The most successful type of photosynthesis utilizes a virtually inexhaustible electron pool from water, but the driver of this oxidation, sunlight, varies on time and intensity scales of several orders of magnitude. Such rapid and steep changes in energy availability are potentially devastating for biological systems. To enable a safe and efficient light-harnessing process, photosynthetic organisms tune their light capturing, the redox connections between core complexes and auxiliary electron mediators, ion passages across the membrane, and functional coupling of energy transducing organelles. Here, microalgal species are the most diverse group, featuring both unique environmental adjustment strategies and ubiquitous protective mechanisms. In this review, we explore a selection of regulatory processes of the microalgal photosynthetic apparatus supporting smooth electron flow in variable environments.
Collapse
Affiliation(s)
- Yuval Milrad
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, 48143 Münster, Germany
| | - Laura Mosebach
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, 48143 Münster, Germany
| | - Felix Buchert
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, 48143 Münster, Germany
| |
Collapse
|
10
|
Ulrich NJ, Shen G, Bryant DA, Miller SR. Ecological diversification of a cyanobacterium through divergence of its novel chlorophyll d-based light-harvesting system. Curr Biol 2024; 34:2972-2979.e4. [PMID: 38851184 DOI: 10.1016/j.cub.2024.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 06/10/2024]
Abstract
The evolution of novel traits can have important consequences for biological diversification. Novelties such as new structures are associated with changes in both genotype and phenotype that often lead to changes in ecological function.1,2 New ecological opportunities provided by a novel trait can trigger subsequent trait modification or niche partitioning3; however, the underlying mechanisms of novel trait diversification are still poorly understood. Here, we report that the innovation of a new chlorophyll (Chl) pigment, Chl d, by the cyanobacterium Acaryochloris marina was followed by the functional divergence of its light-harvesting complex. We identified three major photosynthetic spectral types based on Chl fluorescence properties for a collection of A. marina laboratory strains for which genome sequence data are available,4,5 with shorter- and longer-wavelength types more recently derived from an ancestral intermediate phenotype. Members of the different spectral types exhibited extensive variation in the Chl-binding proteins as well as the Chl energy levels of their photosynthetic complexes. This spectral-type divergence is associated with differences in the wavelength dependence of both growth rate and photosynthetic oxygen evolution. We conclude that the divergence of the light-harvesting apparatus has consequently impacted A. marina ecological diversification through specialization on different far-red photons for photosynthesis.
Collapse
Affiliation(s)
- Nikea J Ulrich
- Division of Biological Sciences, University of Montana, 32 Campus Drive, Missoula, MT 59812, USA
| | - Gaozhong Shen
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, 406 Althouse Lab, University Park, PA 16802, USA
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, 406 Althouse Lab, University Park, PA 16802, USA
| | - Scott R Miller
- Division of Biological Sciences, University of Montana, 32 Campus Drive, Missoula, MT 59812, USA.
| |
Collapse
|
11
|
Zhang YZ, Li K, Qin BY, Guo JP, Zhang QB, Zhao DL, Chen XL, Gao J, Liu LN, Zhao LS. Structure of cryptophyte photosystem II-light-harvesting antennae supercomplex. Nat Commun 2024; 15:4999. [PMID: 38866834 PMCID: PMC11169493 DOI: 10.1038/s41467-024-49453-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 06/06/2024] [Indexed: 06/14/2024] Open
Abstract
Cryptophytes are ancestral photosynthetic organisms evolved from red algae through secondary endosymbiosis. They have developed alloxanthin-chlorophyll a/c2-binding proteins (ACPs) as light-harvesting complexes (LHCs). The distinctive properties of cryptophytes contribute to efficient oxygenic photosynthesis and underscore the evolutionary relationships of red-lineage plastids. Here we present the cryo-electron microscopy structure of the Photosystem II (PSII)-ACPII supercomplex from the cryptophyte Chroomonas placoidea. The structure includes a PSII dimer and twelve ACPII monomers forming four linear trimers. These trimers structurally resemble red algae LHCs and cryptophyte ACPI trimers that associate with Photosystem I (PSI), suggesting their close evolutionary links. We also determine a Chl a-binding subunit, Psb-γ, essential for stabilizing PSII-ACPII association. Furthermore, computational calculation provides insights into the excitation energy transfer pathways. Our study lays a solid structural foundation for understanding the light-energy capture and transfer in cryptophyte PSII-ACPII, evolutionary variations in PSII-LHCII, and the origin of red-lineage LHCIIs.
Collapse
Affiliation(s)
- Yu-Zhong Zhang
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China.
| | - Kang Li
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Bing-Yue Qin
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Jian-Ping Guo
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Quan-Bao Zhang
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Dian-Li Zhao
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Xiu-Lan Chen
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Jun Gao
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China.
| | - Lu-Ning Liu
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao, China.
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.
| | - Long-Sheng Zhao
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China.
| |
Collapse
|
12
|
Viladomat Jasso M, García-Ulloa M, Zapata-Peñasco I, Eguiarte LE, Souza V. Metagenomic insight into taxonomic composition, environmental filtering and functional redundancy for shaping worldwide modern non-lithifying microbial mats. PeerJ 2024; 12:e17412. [PMID: 38827283 PMCID: PMC11144394 DOI: 10.7717/peerj.17412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 04/26/2024] [Indexed: 06/04/2024] Open
Abstract
Modern microbial mats are relictual communities mostly found in extreme environments worldwide. Despite their significance as representatives of the ancestral Earth and their important roles in biogeochemical cycling, research on microbial mats has largely been localized, focusing on site-specific descriptions and environmental change experiments. Here, we present a global comparative analysis of non-lithifying microbial mats, integrating environmental measurements with metagenomic data from 62 samples across eight sites, including two new samples from the recently discovered Archaean Domes from Cuatro Ciénegas, Mexico. Our results revealed a notable influence of environmental filtering on both taxonomic and functional compositions of microbial mats. Functional redundancy appears to confer resilience to mats, with essential metabolic pathways conserved across diverse and highly contrasting habitats. We identified six highly correlated clusters of taxa performing similar ecological functions, suggesting niche partitioning and functional specialization as key mechanisms shaping community structure. Our findings provide insights into the ecological principles governing microbial mats, and lay the foundation for future research elucidating the intricate interplay between environmental factors and microbial community dynamics.
Collapse
Affiliation(s)
- Mariette Viladomat Jasso
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | | | - Icoquih Zapata-Peñasco
- Dirección de Investigación en Transformación de Hidrocarburos, Instituto Mexicano del Petróleo, Ciudad de México, Mexico
| | - Luis E. Eguiarte
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Valeria Souza
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- Centro de Estudios del Cuaternario de Fuego-Patagonia y Antártica (CEQUA), Punta Arenas, Chile
| |
Collapse
|
13
|
Ślesak I, Ślesak H. From cyanobacteria and cyanophages to chloroplasts: the fate of the genomes of oxyphototrophs and the genes encoding photosystem II proteins. THE NEW PHYTOLOGIST 2024; 242:1055-1067. [PMID: 38439684 DOI: 10.1111/nph.19633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/02/2024] [Indexed: 03/06/2024]
Abstract
Chloroplasts are the result of endosymbiosis of cyanobacterial organisms with proto-eukaryotes. The psbA, psbD and psbO genes are present in all oxyphototrophs and encode the D1/D2 proteins of photosystem II (PSII) and PsbO, respectively. PsbO is a peripheral protein that stabilizes the O2-evolving complex in PSII. Of these genes, psbA and psbD remained in the chloroplastic genome, while psbO was transferred to the nucleus. The genomes of selected cyanobacteria, chloroplasts and cyanophages carrying psbA and psbD, respectively, were analysed. The highest density of genes and coding sequences (CDSs) was estimated for the genomes of cyanophages, cyanobacteria and chloroplasts. The synonymous mutation rate (rS) of psbA and psbD in chloroplasts remained almost unchanged and is lower than that of psbO. The results indicate that the decreasing genome size in chloroplasts is more similar to the genome reduction observed in contemporary endosymbiotic organisms than in streamlined genomes of free-living cyanobacteria. The rS of atpA, which encodes the α-subunit of ATP synthase in chloroplasts, suggests that psbA and psbD, and to a lesser extent psbO, are ancient and conservative and arose early in the evolution of oxygenic photosynthesis. The role of cyanophages in the evolution of oxyphototrophs and chloroplastic genomes is discussed.
Collapse
Affiliation(s)
- Ireneusz Ślesak
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland
| | - Halina Ślesak
- Institute of Botany, Faculty of Biology, Jagiellonian University, Gronostajowa 3, 30-387, Kraków, Poland
| |
Collapse
|
14
|
Shen L, Gao Y, Tang K, Qi R, Fu L, Chen JH, Wang W, Ma X, Li P, Chen M, Kuang T, Zhang X, Shen JR, Wang P, Han G. Structure of a unique PSII-Pcb tetrameric megacomplex in a chlorophyll d-containing cyanobacterium. SCIENCE ADVANCES 2024; 10:eadk7140. [PMID: 38394197 PMCID: PMC10889353 DOI: 10.1126/sciadv.adk7140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/22/2024] [Indexed: 02/25/2024]
Abstract
Acaryochloris marina is a unique cyanobacterium using chlorophyll d (Chl d) as its major pigment and thus can use far-red light for photosynthesis. Photosystem II (PSII) of A. marina associates with a number of prochlorophyte Chl-binding (Pcb) proteins to act as the light-harvesting system. We report here the cryo-electron microscopic structure of a PSII-Pcb megacomplex from A. marina at a 3.6-angstrom overall resolution and a 3.3-angstrom local resolution. The megacomplex is organized as a tetramer consisting of two PSII core dimers flanked by sixteen symmetrically related Pcb proteins, with a total molecular weight of 1.9 megadaltons. The structure reveals the detailed organization of PSII core consisting of 15 known protein subunits and an unknown subunit, the assembly of 4 Pcb antennas within each PSII monomer, and possible pathways of energy transfer within the megacomplex, providing deep insights into energy transfer and dissipation mechanisms within the PSII-Pcb megacomplex involved in far-red light utilization.
Collapse
Affiliation(s)
- Liangliang Shen
- Cryo-EM Centre, Southern University of Science and Technology, Shenzhen 518055, China
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Yuanzhu Gao
- Cryo-EM Centre, Southern University of Science and Technology, Shenzhen 518055, China
| | - Kailu Tang
- Department of Biophysics, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Ruxi Qi
- Cryo-EM Centre, Southern University of Science and Technology, Shenzhen 518055, China
| | - Lutang Fu
- Cryo-EM Centre, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jing-Hua Chen
- Department of Biophysics, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wenda Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Xiaomin Ma
- Cryo-EM Centre, Southern University of Science and Technology, Shenzhen 518055, China
| | - Peiyao Li
- Cryo-EM Centre, Southern University of Science and Technology, Shenzhen 518055, China
| | - Min Chen
- School of Life and Environmental Science, Faculty of Science, University of Sydney, Sydney NSW 2006, Australia
| | - Tingyun Kuang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Xing Zhang
- Department of Biophysics, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Center of Cryo-Electron Microscopy, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang Laboratory for System and Precision Medicine, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou 311121, China
| | - Jian-Ren Shen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- Institute for Interdisciplinary Science, and Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Peiyi Wang
- Cryo-EM Centre, Southern University of Science and Technology, Shenzhen 518055, China
| | - Guangye Han
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| |
Collapse
|
15
|
Li L, Huang D, Hu Y, Rudling NM, Canniffe DP, Wang F, Wang Y. Globally distributed Myxococcota with photosynthesis gene clusters illuminate the origin and evolution of a potentially chimeric lifestyle. Nat Commun 2023; 14:6450. [PMID: 37833297 PMCID: PMC10576062 DOI: 10.1038/s41467-023-42193-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
Photosynthesis is a fundamental biogeochemical process, thought to be restricted to a few bacterial and eukaryotic phyla. However, understanding the origin and evolution of phototrophic organisms can be impeded and biased by the difficulties of cultivation. Here, we analyzed metagenomic datasets and found potential photosynthetic abilities encoded in the genomes of uncultivated bacteria within the phylum Myxococcota. A putative photosynthesis gene cluster encoding a type-II reaction center appears in at least six Myxococcota families from three classes, suggesting vertical inheritance of these genes from an early common ancestor, with multiple independent losses in other lineages. Analysis of metatranscriptomic datasets indicate that the putative myxococcotal photosynthesis genes are actively expressed in various natural environments. Furthermore, heterologous expression of myxococcotal pigment biosynthesis genes in a purple bacterium supports that the genes can drive photosynthetic processes. Given that predatory abilities are thought to be widespread across Myxococcota, our results suggest the intriguing possibility of a chimeric lifestyle (combining predatory and photosynthetic abilities) in members of this phylum.
Collapse
Affiliation(s)
- Liuyang Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Danyue Huang
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Yaoxun Hu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Nicola M Rudling
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Daniel P Canniffe
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Fengping Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Yinzhao Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
16
|
Heubeck C, Reimann S, Homann M. Stromatolite-like Structures Within Microbially Laminated Sandstones of the Paleoarchean Moodies Group, Barberton Greenstone Belt, South Africa. ASTROBIOLOGY 2023; 23:926-935. [PMID: 37527187 DOI: 10.1089/ast.2023.0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
We report abundant small calcareous mounds associated with fossilized kerogenous microbial mats in tidal-facies sandstones of the predominantly siliciclastic Moodies Group (ca. 3.22 Ga) of the Barberton Greenstone Belt (BGB), South Africa and Eswatini. Most of the bulbous, internally microlaminated mounds are several centimeters in diameter and formed at the sediment-water interface contemporaneously with sedimentation. They originally consisted of Fe-Mg-Mn carbonate, which is now largely silicified; subtle internal compositional laminations are composed of organic matter and sericite. Their presence for >6 km along strike, their restriction to the inferred photic zone, and the internal structure suggest that mineral precipitation was induced by photosynthetic microorganisms. Similar calcareous mounds in this unit also occur within and on top of fluid-escape conduits, suggesting that carbonate precipitation may either have occurred abiogenically or involved chemotrophic metabolism(s) utilizing the oxidation of organic matter, methane, or hydrogen, the latter possibly generated by serpentinization of underlying ultramafic rocks. Alternatively or additionally, carbonate may have precipitated abiotically where heated subsurface fluids, sourced by the intrusion of a major Moodies-age sill, reached the tidal flats. In summary, precipitation mechanisms may have been variable; the calcareous mounds may represent "hybrid carbonates" that may have originated from the small-scale overlap of bioinduced and abiotic processes in space and time. Significantly, the widespread occurrence of these stromatolite-like structures in a fully siliciclastic, high-energy tidal setting broadens search criteria in the search for life on Mars while their possible hybrid origin challenges our ability to unambiguously identify a biogenic component.
Collapse
Affiliation(s)
- C Heubeck
- Department of Geosciences, Friedrich-Schiller-University Jena, Germany
| | - S Reimann
- Department of Geosciences, Friedrich-Schiller-University Jena, Germany
| | - M Homann
- University College London, London, UK
| |
Collapse
|
17
|
Rodrigues WFC, Lisboa ABP, Lima JE, Ricachenevsky FK, Del-Bem LE. Ferrous iron uptake via IRT1/ZIP evolved at least twice in green plants. THE NEW PHYTOLOGIST 2023; 237:1951-1961. [PMID: 36626937 DOI: 10.1111/nph.18661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Iron (Fe) is essential for virtually all organisms, being irreplaceable because of its electrochemical properties that enable many biochemical processes, including photosynthesis. Besides its abundance, Fe is generally found in the poorly soluble form of ferric iron (Fe3+ ), while most plants uptake the soluble form Fe2+ . The model angiosperm Arabidopsis thaliana, for example, captures Fe through a mechanism that lowers rhizosphere pH through proton pumping that increases Fe3+ solubility, which is then reduced by a membrane-bound reductase and transported into the cell by the zinc-regulated, iron-regulated transporter-like protein (ZIP) family protein AtIRT1. ZIP proteins are transmembrane transporters of divalent metals such as Fe2+ , Zn2+ , Mn2+ , and Cd2+ . In this work, we investigated the evolution of functional homologs of IRON-REGULATED TRANSPORTER 1/ZIP in the supergroup Archaeplastida (Viridiplantae + Rhodophyta + Glaucophyta) using 51 genomes of diverse lineages. Our analyses suggest that Fe is acquired through deeply divergent ZIP proteins in land plants and chlorophyte green algae, indicating that Fe2+ uptake by ZIP proteins evolved independently at least twice throughout green plant evolution. Our results indicate that the archetypical IRON-REGULATED TRANSPORTER (IRT) proteins from angiosperms likely emerged before the origin of land plants during early streptophyte algae terrestrialization, a process that required the evolution of Fe acquisition in terrestrial subaerial settings.
Collapse
Affiliation(s)
- Wenderson Felipe Costa Rodrigues
- Graduate Program in Bioinformatics, Institute of Biological Sciences (ICB), Federal University of Minas Gerais (UFMG), 31270-901, Belo Horizonte, Brazil
- Graduate Program in Plant Biology, Department of Botany, Institute of Biological Sciences (ICB), Federal University of Minas Gerais (UFMG), 31270-901, Belo Horizonte, Brazil
- Del-Bem Lab, Department of Botany, Institute of Biological Sciences (ICB), Federal University of Minas Gerais (UFMG), 31270-901, Belo Horizonte, Brazil
| | - Ayrton Breno P Lisboa
- Graduate Program in Bioinformatics, Institute of Biological Sciences (ICB), Federal University of Minas Gerais (UFMG), 31270-901, Belo Horizonte, Brazil
- Del-Bem Lab, Department of Botany, Institute of Biological Sciences (ICB), Federal University of Minas Gerais (UFMG), 31270-901, Belo Horizonte, Brazil
| | - Joni Esrom Lima
- Department of Botany, Institute of Biological Sciences (ICB), Federal University of Minas Gerais (UFMG), 31270-901, Belo Horizonte, Brazil
| | - Felipe Klein Ricachenevsky
- Department of Botany, Institute of Biosciences (IB), Federal University of Rio Grande do Sul (UFRGS), 91501-900, Porto Alegre, Brazil
- Graduate Program in Cellular and Molecular Biology, Center for Biotechnology, Federal University of Rio Grande do Sul (UFRGS), 91501-900, Porto Alegre, Brazil
| | - Luiz-Eduardo Del-Bem
- Graduate Program in Bioinformatics, Institute of Biological Sciences (ICB), Federal University of Minas Gerais (UFMG), 31270-901, Belo Horizonte, Brazil
- Del-Bem Lab, Department of Botany, Institute of Biological Sciences (ICB), Federal University of Minas Gerais (UFMG), 31270-901, Belo Horizonte, Brazil
- Department of Botany, Institute of Biological Sciences (ICB), Federal University of Minas Gerais (UFMG), 31270-901, Belo Horizonte, Brazil
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
18
|
Stevenson DS. A New Ecological and Evolutionary Perspective on the Emergence of Oxygenic Photosynthesis. ASTROBIOLOGY 2023; 23:230-237. [PMID: 36413050 DOI: 10.1089/ast.2021.0165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In this hypothesis article, we propose that the timing of the evolution of oxygenic photosynthesis and the diversification of cyanobacteria is firmly tied to the geological evolution of Earth in the Mesoarchean to Neoarchean. Specifically, the diversification of species capable of oxygenic photosynthesis is tied to the growth of subaerial (above sea-level/terrestrial) continental crust, which provided niches for their diversification. Moreover, we suggest that some formerly aerobic bacterial lineages evolved to become anoxygenic photosynthetic as a result of changes in selection following the reintroduction of ferruginous conditions in the oceans at 1.88 GYa. Both conclusions are fully compatible with phylogenetic evidence. The hypothesis carries with it a predictive component-at least for terrestrial organisms-that the development and expansion of photosynthesis species was dependent on the geological evolution of Earth.
Collapse
|
19
|
Cao Z, Li P, Ru J, Cao X, Wang X, Liu B, Li ZH. Physiological responses of marine Chlorella sp. exposed to environmental levels of triphenyltin. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:26387-26396. [PMID: 36367644 DOI: 10.1007/s11356-022-23992-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Triphenyltin (TPT) is a herbicide and antifouling agent that has been widely used. After TPT flows into water bodies, it will cause toxic effects on marine life. We evaluated the effect of environmental concentration level (0, 10, 100, and 200 ng/L) on the cell density, antioxidant capability, and photosynthesis-related genes in the marine Chlorella sp. The results showed that 10 and 100 ng/L TPT can promote the growth of marine Chlorella sp., 200 ng/L TPT can inhibit the growth of marine Chlorella sp., and the TPT toxicity was accumulative. The chlorophyll composition changed. The content of chlorophyll a in 100 ng/L and 200 ng/L groups was significantly higher than that in the control group (p < 0.05) in 13 days. The content of chlorophyll b in the 100 ng/L and 200 ng/L groups in 1 day and 13 days was significantly different from that in the control group (p < 0.05). The content of total chlorophyll in the 100 ng/L and 200 ng/L groups in 13 days was higher than that in the control group (p < 0.05). The 200 ng/L group began to suffer oxidative damage on the 12th day, and the pigment protein complex responded to oxidative damage through self-feedback regulation. On the 18th day, chld, cao, psy, rbcS, and rbcL genes were downregulated, and psbA gene was upregulated in the 10 ng/L and 100 ng/L groups, which may be a feedback regulation of self-oxidative damage. This paper analyzed toxicity of environmental levels of TPT to marine Chlorella sp., which provided new data support for the comprehensive evaluation of its marine ecological toxicity.
Collapse
Affiliation(s)
- Zhihan Cao
- Marine College, Shandong University, Weihai, 264209, Shandong, China
| | - Ping Li
- Marine College, Shandong University, Weihai, 264209, Shandong, China
| | - Jinchuang Ru
- Marine College, Shandong University, Weihai, 264209, Shandong, China
| | - Xuqian Cao
- Marine College, Shandong University, Weihai, 264209, Shandong, China
| | - Xu Wang
- Marine College, Shandong University, Weihai, 264209, Shandong, China
| | - Bin Liu
- Marine College, Shandong University, Weihai, 264209, Shandong, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, 264209, Shandong, China.
| |
Collapse
|
20
|
Burnap RL. Cyanobacterial Bioenergetics in Relation to Cellular Growth and Productivity. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2023; 183:25-64. [PMID: 36764956 DOI: 10.1007/10_2022_215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Cyanobacteria, the evolutionary originators of oxygenic photosynthesis, have the capability to convert CO2, water, and minerals into biomass using solar energy. This process is driven by intricate bioenergetic mechanisms that consist of interconnected photosynthetic and respiratory electron transport chains coupled. Over the last few decades, advances in physiochemical analysis, molecular genetics, and structural analysis have enabled us to gain a more comprehensive understanding of cyanobacterial bioenergetics. This includes the molecular understanding of the primary energy conversion mechanisms as well as photoprotective and other dissipative mechanisms that prevent photodamage when the rates of photosynthetic output, primarily in the form of ATP and NADPH, exceed the rates that cellular assimilatory processes consume these photosynthetic outputs. Despite this progress, there is still much to learn about the systems integration and the regulatory circuits that control expression levels for optimal cellular abundance and activity of the photosynthetic complexes and the cellular components that convert their products into biomass. With an improved understanding of these regulatory principles and mechanisms, it should be possible to optimally modify cyanobacteria for enhanced biotechnological purposes.
Collapse
Affiliation(s)
- Robert L Burnap
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA.
| |
Collapse
|
21
|
Bauwe H. Photorespiration - Rubisco's repair crew. JOURNAL OF PLANT PHYSIOLOGY 2023; 280:153899. [PMID: 36566670 DOI: 10.1016/j.jplph.2022.153899] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/11/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
The photorespiratory repair pathway (photorespiration in short) was set up from ancient metabolic modules about three billion years ago in cyanobacteria, the later ancestors of chloroplasts. These prokaryotes developed the capacity for oxygenic photosynthesis, i.e. the use of water as a source of electrons and protons (with O2 as a by-product) for the sunlight-driven synthesis of ATP and NADPH for CO2 fixation in the Calvin cycle. However, the CO2-binding enzyme, ribulose 1,5-bisphosphate carboxylase (known under the acronym Rubisco), is not absolutely selective for CO2 and can also use O2 in a side reaction. It then produces 2-phosphoglycolate (2PG), the accumulation of which would inhibit and potentially stop the Calvin cycle and subsequently photosynthetic electron transport. Photorespiration removes the 2-PG and in this way prevents oxygenic photosynthesis from poisoning itself. In plants, the core of photorespiration consists of ten enzymes distributed over three different types of organelles, requiring interorganellar transport and interaction with several auxiliary enzymes. It goes together with the release and to some extent loss of freshly fixed CO2. This disadvantageous feature can be suppressed by CO2-concentrating mechanisms, such as those that evolved in C4 plants thirty million years ago, which enhance CO2 fixation and reduce 2PG synthesis. Photorespiration itself provided a pioneer variant of such mechanisms in the predecessors of C4 plants, C3-C4 intermediate plants. This article is a review and update particularly on the enzyme components of plant photorespiration and their catalytic mechanisms, on the interaction of photorespiration with other metabolism and on its impact on the evolution of photosynthesis. This focus was chosen because a better knowledge of the enzymes involved and how they are embedded in overall plant metabolism can facilitate the targeted use of the now highly advanced methods of metabolic network modelling and flux analysis. Understanding photorespiration more than before as a process that enables, rather than reduces, plant photosynthesis, will help develop rational strategies for crop improvement.
Collapse
Affiliation(s)
- Hermann Bauwe
- University of Rostock, Plant Physiology, Albert-Einstein-Straße 3, D-18051, Rostock, Germany.
| |
Collapse
|
22
|
Farci D, Graça AT, Iesu L, de Sanctis D, Piano D. The SDBC is active in quenching oxidative conditions and bridges the cell envelope layers in Deinococcus radiodurans. J Biol Chem 2022; 299:102784. [PMID: 36502921 PMCID: PMC9823218 DOI: 10.1016/j.jbc.2022.102784] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/30/2022] [Accepted: 12/04/2022] [Indexed: 12/14/2022] Open
Abstract
Deinococcus radiodurans is known for its remarkable ability to withstand harsh stressful conditions. The outermost layer of its cell envelope is a proteinaceous coat, the S-layer, essential for resistance to and interactions with the environment. The S-layer Deinoxanthin-binding complex (SDBC), one of the main units of the characteristic multilayered cell envelope of this bacterium, protects against environmental stressors and allows exchanges with the environment. So far, specific regions of this complex, the collar and the stalk, remained unassigned. Here, these regions are resolved by cryo-EM and locally refined. The resulting 3D map shows that the collar region of this multiprotein complex is a trimer of the protein DR_0644, a Cu-only superoxide dismutase (SOD) identified here to be efficient in quenching reactive oxygen species. The same data also showed that the stalk region consists of a coiled coil that extends into the cell envelope for ∼280 Å, reaching the inner membrane. Finally, the orientation and localization of the complex are defined by in situ cryo-electron crystallography. The structural organization of the SDBC couples fundamental UV antenna properties with the presence of a Cu-only SOD, showing here coexisting photoprotective and chemoprotective functions. These features suggests how the SDBC and similar protein complexes, might have played a primary role as evolutive templates for the origin of photoautotrophic processes by combining primary protective needs with more independent energetic strategies.
Collapse
Affiliation(s)
- Domenica Farci
- Department of Plant Physiology, Warsaw University of Life Sciences - SGGW, Warsaw, Poland,Department of Chemistry, Umeå University, Umeå, Sweden,Department of Life and Environmental Sciences, Laboratory of Plant Physiology and Photobiology, University of Cagliari, Cagliari, Italy,For correspondence: Dario Piano; Domenica Farci
| | | | - Luca Iesu
- Department of Life and Environmental Sciences, Laboratory of Plant Physiology and Photobiology, University of Cagliari, Cagliari, Italy
| | - Daniele de Sanctis
- Structural Biology group, ESRF, The European Synchrotron Radiation Facility, Grenoble, France
| | - Dario Piano
- Department of Plant Physiology, Warsaw University of Life Sciences - SGGW, Warsaw, Poland,Department of Life and Environmental Sciences, Laboratory of Plant Physiology and Photobiology, University of Cagliari, Cagliari, Italy,For correspondence: Dario Piano; Domenica Farci
| |
Collapse
|
23
|
Cyanophages as an important factor in the early evolution of oxygenic photosynthesis. Sci Rep 2022; 12:20581. [PMID: 36446879 PMCID: PMC9709159 DOI: 10.1038/s41598-022-24795-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/21/2022] [Indexed: 12/02/2022] Open
Abstract
Cyanophages are viruses that infect cyanobacteria. An interesting feature of many of them is the presence of psbA and psbD, genes that encode D1 and D2 proteins, respectively. The D1 and D2 are core proteins of the photosystem II (PSII) in cyanobacteria, algae and plants and influence the proper function of oxygenic photosynthesis (OP) in all oxyphototrophs on Earth. The frequent occurrence of psbA and psbD in cyanophages raises the question whether these genes coevolved with hosts during the early stages of cyanophage and cyanobacterial evolution, or whether they are direct descendants of genes adopted from the genomes of cyanobacterial hosts. The phylogeny of D1/D2 proteins encoded in the genomes of selected cyanophages and oxyphototrophs was reconstructed. In addition, common ancestral sequences of D1 and D2 proteins were predicted for cyanophages and oxyphototrophs. Based on this, the reconstruction of the 3D structures of D1 and D2 proteins was performed. In addition, the ratio of non-synonymous to synonymous (dN/dS) nucleotide substitutions in the coding sequences (CDSs) of psbA and psbD was determined. The results of the predicted spatial structures of the D1 and D2 proteins and purifying selection for the CDSs of psbA and psbD suggest that they belong to the ancient proteins, which may have formed the primordial PSII. It cannot be ruled out that they involved in water oxidation in cyanobacteria-like organisms at early stages of the evolution of life on Earth and coevolved with ancient cyanophages. The data are also discussed in the context of the origin of viruses.
Collapse
|
24
|
Enzingmüller-Bleyl TC, Boden JS, Herrmann AJ, Ebel KW, Sánchez-Baracaldo P, Frankenberg-Dinkel N, Gehringer MM. On the trail of iron uptake in ancestral Cyanobacteria on early Earth. GEOBIOLOGY 2022; 20:776-789. [PMID: 35906866 DOI: 10.1111/gbi.12515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/28/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Cyanobacteria oxygenated Earth's atmosphere ~2.4 billion years ago, during the Great Oxygenation Event (GOE), through oxygenic photosynthesis. Their high iron requirement was presumably met by high levels of Fe(II) in the anoxic Archean environment. We found that many deeply branching Cyanobacteria, including two Gloeobacter and four Pseudanabaena spp., cannot synthesize the Fe(II) specific transporter, FeoB. Phylogenetic and relaxed molecular clock analyses find evidence that FeoB and the Fe(III) transporters, cFTR1 and FutB, were present in Proterozoic, but not earlier Archaean lineages of Cyanobacteria. Furthermore Pseudanabaena sp. PCC7367, an early diverging marine, benthic strain grown under simulated Archean conditions, constitutively expressed cftr1, even after the addition of Fe(II). Our genetic profiling suggests that, prior to the GOE, ancestral Cyanobacteria may have utilized alternative metal iron transporters such as ZIP, NRAMP, or FicI, and possibly also scavenged exogenous siderophore bound Fe(III), as they only acquired the necessary Fe(II) and Fe(III) transporters during the Proterozoic. Given that Cyanobacteria arose 3.3-3.6 billion years ago, it is possible that limitations in iron uptake may have contributed to the delay in their expansion during the Archean, and hence the oxygenation of the early Earth.
Collapse
Affiliation(s)
| | - Joanne S Boden
- School of Geographical Sciences, Faculty of Science, University of Bristol, Bristol, UK
- School of Earth and Environmental Sciences, University of St. Andrews, St. Andrews, UK
| | - Achim J Herrmann
- Department of Microbiology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Katharina W Ebel
- Department of Microbiology, University of Kaiserslautern, Kaiserslautern, Germany
| | | | | | - Michelle M Gehringer
- Department of Microbiology, University of Kaiserslautern, Kaiserslautern, Germany
| |
Collapse
|
25
|
Ślesak I, Mazur Z, Ślesak H. Genes encoding the photosystem II proteins are under purifying selection: an insight into the early evolution of oxygenic photosynthesis. PHOTOSYNTHESIS RESEARCH 2022; 153:163-175. [PMID: 35648248 DOI: 10.1007/s11120-022-00917-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/28/2022] [Indexed: 06/15/2023]
Abstract
The molecular evolution concerns coding sequences (CDSs) of genes and may affect the structure and function of proteins. Non-uniform use of synonymous codons during translation, known as codon usage bias (CUB), depends on the balance between mutations bias and natural selection. We estimated different CUB indices, i.e. the effective number of codons (ENC), G + C content in the 3rd codon positions (GC3), and codon adaptation index for CDSs of intrinsic proteins of photosystem II (PSII), such as psbA (D1), psbD (D2), psbB (CP47), psbC (CP43), and CDSs of the extrinsic protein psbO (PsbO). These genes occur in all organisms that perform oxygenic photosynthesis (OP) on Earth: cyanobacteria, algae and plants. Comparatively, a similar analysis of codon bias for CDSs of L and M subunits that constitute the core proteins of the type II reaction centre (RCII) in anoxygenic bacteria was performed. Analysis of CUB indices and determination of the number of synonymous (dS) and nonsynonymous substitutions (dN) in all analysed CDSs indicated that the crucial PSII and RCII proteins were under strong purifying (negative) selection in course of evolution. Purifying selection was also estimated for CDSs of atpA, the α subunit of ATP synthase, an enzyme that was most likely already present in the last universal common ancestor (LUCA). The data obtained point to an ancient origin of OP, even in the earliest stages of the evolution of life on Earth.
Collapse
Affiliation(s)
- Ireneusz Ślesak
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland.
| | - Zofia Mazur
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland
| | - Halina Ślesak
- Institute of Botany, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387, Kraków, Poland
| |
Collapse
|
26
|
Post-translational amino acid conversion in photosystem II as a possible origin of photosynthetic oxygen evolution. Nat Commun 2022; 13:4211. [PMID: 35864123 PMCID: PMC9304363 DOI: 10.1038/s41467-022-31931-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/08/2022] [Indexed: 12/18/2022] Open
Abstract
Photosynthetic oxygen evolution is performed at the Mn cluster in photosystem II (PSII). The advent of this reaction on ancient Earth changed its environment by generating an oxygenic atmosphere. However, how oxygen evolution originated during the PSII evolution remains unknown. Here, we characterize the site-directed mutants at the carboxylate ligands to the Mn cluster in cyanobacterial PSII. A His residue replaced for D1-D170 is found to be post-translationally converted to the original Asp to recover oxygen evolution. Gln/Asn residues in the mutants at D1-E189/D1-D342 are also converted to Glu/Asp, suggesting that amino-acid conversion is a common phenomenon at the ligand sites of the Mn cluster. We hypothesize that post-translational generation of carboxylate ligands in ancestral PSII could have led to the formation of a primitive form of the Mn cluster capable of partial water oxidation, which could have played a crucial role in the evolutionary process of photosynthetic oxygen evolution. How photosynthetic oxygen evolution is originated on ancient Earth is unknown. Here, the authors find that some amino acid residues at the ligand sites of the Mn cluster can be posttranslationally converted to the original carboxylate residues, which could have contributed to the evolutionary process of photosynthetic oxygen evolution.
Collapse
|
27
|
Competitive interaction of Mn(II) and Fe(II) cations with the high-affinity Mn-binding site of the photosystem II: evolutionary aspect. ORIGINS LIFE EVOL B 2022; 52:113-128. [PMID: 35796895 DOI: 10.1007/s11084-022-09625-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/16/2022] [Indexed: 10/17/2022]
Abstract
The evolutionary origin of the oxygen-evolving complex (OEC) in the photosystem II (PSII) is still unclear, as is the nature of electron source for the photosystem before the OEC had appeared. Johnson et al. (in PNAS 110:11238, 2013) speculated that Mn(II) cations were the source of electrons for transitional photosystems. However, Archean oceans also contained Fe(II) cations at concentrations comparable or higher than that of Mn(II). Fe(II) cations can bind to the high-affinity (НА) Mn-binding site in the OEC (Semin et al. in Biochemistry 41:5854, 2002). Now we have investigated the competitive interaction of Mn(II) and Fe(II) cations with the HA site in the Mn-depleted PSII membranes (PSII[-Mn]). Fe cations, oxidized under illumination, bind strongly to the HA site and, thus, prevent the interaction of Mn(II) with this site. If the Mn(II) and Fe(II) cations, at relatively equal concentration, are simultaneously present in the buffer, together with PSII(-Mn) membranes, there is competition between these two cations for the binding site, which manifests itself in partial inhibition of the Mn(II) oxidation and the blocking of the HA site by Fe(II) cations. If the concentration of Fe(II) cations is several times higher than the concentration of Mn(II), the HA site is completely blocked and the oxidation of Mn(II) cations is inhibited; under saturating light, the effectiveness of this inhibitory effect increases. This may be due to the generation of H2O2 on the acceptor side of the photosystem, which significantly accelerates the rate of the turnover reaction of Mn(II) on the HA site.
Collapse
|
28
|
Gisriel CJ, Cardona T, Bryant DA, Brudvig GW. Molecular Evolution of Far-Red Light-Acclimated Photosystem II. Microorganisms 2022; 10:1270. [PMID: 35888987 PMCID: PMC9325196 DOI: 10.3390/microorganisms10071270] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/17/2022] [Accepted: 06/18/2022] [Indexed: 12/10/2022] Open
Abstract
Cyanobacteria are major contributors to global carbon fixation and primarily use visible light (400-700 nm) to drive oxygenic photosynthesis. When shifted into environments where visible light is attenuated, a small, but highly diverse and widespread number of cyanobacteria can express modified pigments and paralogous versions of photosystem subunits and phycobiliproteins that confer far-red light (FRL) absorbance (700-800 nm), a process termed far-red light photoacclimation, or FaRLiP. During FaRLiP, alternate photosystem II (PSII) subunits enable the complex to bind chlorophylls d and f, which absorb at lower energy than chlorophyll a but still support water oxidation. How the FaRLiP response arose remains poorly studied. Here, we report ancestral sequence reconstruction and structure-based molecular evolutionary studies of the FRL-specific subunits of FRL-PSII. We show that the duplications leading to the origin of two PsbA (D1) paralogs required to make chlorophyll f and to bind chlorophyll d in water-splitting FRL-PSII are likely the first to have occurred prior to the diversification of extant cyanobacteria. These duplications were followed by those leading to alternative PsbC (CP43) and PsbD (D2) subunits, occurring early during the diversification of cyanobacteria, and culminating with those leading to PsbB (CP47) and PsbH paralogs coincident with the radiation of the major groups. We show that the origin of FRL-PSII required the accumulation of a relatively small number of amino acid changes and that the ancestral FRL-PSII likely contained a chlorophyll d molecule in the electron transfer chain, two chlorophyll f molecules in the antenna subunits at equivalent positions, and three chlorophyll a molecules whose site energies were altered. The results suggest a minimal model for engineering far-red light absorbance into plant PSII for biotechnological applications.
Collapse
Affiliation(s)
| | - Tanai Cardona
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK;
| | - Donald A. Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA;
| | - Gary W. Brudvig
- Department of Chemistry, Yale University, New Haven, CT 06520, USA;
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
29
|
Sephus CD, Fer E, Garcia AK, Adam ZR, Schwieterman EW, Kaçar B. Earliest photic zone niches probed by ancestral microbial rhodopsins. Mol Biol Evol 2022; 39:6582242. [PMID: 35524714 PMCID: PMC9117797 DOI: 10.1093/molbev/msac100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
For billions of years, life has continuously adapted to dynamic physical conditions near the Earth’s surface. Fossils and other preserved biosignatures in the paleontological record are the most direct evidence for reconstructing the broad historical contours of this adaptive interplay. However, biosignatures dating to Earth’s earliest history are exceedingly rare. Here, we combine phylogenetic inference of primordial rhodopsin proteins with modeled spectral features of the Precambrian Earth environment to reconstruct the paleobiological history of this essential family of photoactive transmembrane proteins. Our results suggest that ancestral microbial rhodopsins likely acted as light-driven proton pumps and were spectrally tuned toward the absorption of green light, which would have enabled their hosts to occupy depths in a water column or biofilm where UV wavelengths were attenuated. Subsequent diversification of rhodopsin functions and peak absorption frequencies was enabled by the expansion of surface ecological niches induced by the accumulation of atmospheric oxygen. Inferred ancestors retain distinct associations between extant functions and peak absorption frequencies. Our findings suggest that novel information encoded by biomolecules can be used as “paleosensors” for conditions of ancient, inhabited niches of host organisms not represented elsewhere in the paleontological record. The coupling of functional diversification and spectral tuning of this taxonomically diverse protein family underscores the utility of rhodopsins as universal testbeds for inferring remotely detectable biosignatures on inhabited planetary bodies.
Collapse
Affiliation(s)
- Cathryn D Sephus
- NASA Center for Early Life and Evolution, University of Wisconsin-Madison, Madison, WI, USA
| | - Evrim Fer
- NASA Center for Early Life and Evolution, University of Wisconsin-Madison, Madison, WI, USA.,Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.,Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Amanda K Garcia
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Zachary R Adam
- Department of Geoscience, University of Wisconsin-Madison, Madison, WI, USA.,Blue Marble Space Institute of Science, Seattle, WA, USA
| | - Edward W Schwieterman
- Blue Marble Space Institute of Science, Seattle, WA, USA.,Department of Earth and Planetary Sciences, University of California, Riverside, CA, USA
| | - Betül Kaçar
- NASA Center for Early Life and Evolution, University of Wisconsin-Madison, Madison, WI, USA.,Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
30
|
Oliver N, Avramov AP, Nürnberg DJ, Dau H, Burnap RL. From manganese oxidation to water oxidation: assembly and evolution of the water-splitting complex in photosystem II. PHOTOSYNTHESIS RESEARCH 2022; 152:107-133. [PMID: 35397059 DOI: 10.1007/s11120-022-00912-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
The manganese cluster of photosystem II has been the focus of intense research aiming to understand the mechanism of H2O-oxidation. Great effort has also been applied to investigating its oxidative photoassembly process, termed photoactivation that involves the light-driven incorporation of metal ions into the active Mn4CaO5 cluster. The knowledge gained on these topics has fundamental scientific significance, but may also provide the blueprints for the development of biomimetic devices capable of splitting water for solar energy applications. Accordingly, synthetic chemical approaches inspired by the native Mn cluster are actively being explored, for which the native catalyst is a useful benchmark. For both the natural and artificial catalysts, the assembly process of incorporating Mn ions into catalytically active Mn oxide complexes is an oxidative process. In both cases this process appears to share certain chemical features, such as producing an optimal fraction of open coordination sites on the metals to facilitate the binding of substrate water, as well as the involvement of alkali metals (e.g., Ca2+) to facilitate assembly and activate water-splitting catalysis. This review discusses the structure and formation of the metal cluster of the PSII H2O-oxidizing complex in the context of what is known about the formation and chemical properties of different Mn oxides. Additionally, the evolutionary origin of the Mn4CaO5 is considered in light of hypotheses that soluble Mn2+ was an ancient source of reductant for some early photosynthetic reaction centers ('photomanganotrophy'), and recent evidence that PSII can form Mn oxides with structural resemblance to the geologically abundant birnessite class of minerals. A new functional role for Ca2+ to facilitate sustained Mn2+ oxidation during photomanganotrophy is proposed, which may explain proposed physiological intermediates during the likely evolutionary transition from anoxygenic to oxygenic photosynthesis.
Collapse
Affiliation(s)
- Nicholas Oliver
- Physics Department, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Anton P Avramov
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Dennis J Nürnberg
- Physics Department, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Holger Dau
- Physics Department, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Robert L Burnap
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, 74078, USA.
| |
Collapse
|
31
|
Probing the Role of Cysteine Thiyl Radicals in Biology: Eminently Dangerous, Difficult to Scavenge. Antioxidants (Basel) 2022; 11:antiox11050885. [PMID: 35624747 PMCID: PMC9137623 DOI: 10.3390/antiox11050885] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/21/2022] [Accepted: 04/23/2022] [Indexed: 11/17/2022] Open
Abstract
Thiyl radicals are exceptionally interesting reactive sulfur species (RSS), but rather rarely considered in a biological or medical context. We here review the reactivity of protein thiyl radicals in aqueous and lipid phases and provide an overview of their most relevant reaction partners in biological systems. We deduce that polyunsaturated fatty acids (PUFAs) are their preferred reaction substrates in lipid phases, whereas protein side chains arguably prevail in aqueous phases. In both cellular compartments, a single, dominating thiyl radical-specific antioxidant does not seem to exist. This conclusion is rationalized by the high reaction rate constants of thiyl radicals with several highly concentrated substrates in the cell, precluding effective interception by antioxidants, especially in lipid bilayers. The intractable reactivity of thiyl radicals may account for a series of long-standing, but still startling biochemical observations surrounding the amino acid cysteine: (i) its global underrepresentation on protein surfaces, (ii) its selective avoidance in aerobic lipid bilayers, especially the inner mitochondrial membrane, (iii) the inverse correlation between cysteine usage and longevity in animals, (iv) the mitochondrial synthesis and translational incorporation of cysteine persulfide, and potentially (v) the ex post introduction of selenocysteine into the genetic code.
Collapse
|
32
|
Loh D, Reiter RJ. Melatonin: Regulation of Prion Protein Phase Separation in Cancer Multidrug Resistance. Molecules 2022; 27:705. [PMID: 35163973 PMCID: PMC8839844 DOI: 10.3390/molecules27030705] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 12/13/2022] Open
Abstract
The unique ability to adapt and thrive in inhospitable, stressful tumor microenvironments (TME) also renders cancer cells resistant to traditional chemotherapeutic treatments and/or novel pharmaceuticals. Cancer cells exhibit extensive metabolic alterations involving hypoxia, accelerated glycolysis, oxidative stress, and increased extracellular ATP that may activate ancient, conserved prion adaptive response strategies that exacerbate multidrug resistance (MDR) by exploiting cellular stress to increase cancer metastatic potential and stemness, balance proliferation and differentiation, and amplify resistance to apoptosis. The regulation of prions in MDR is further complicated by important, putative physiological functions of ligand-binding and signal transduction. Melatonin is capable of both enhancing physiological functions and inhibiting oncogenic properties of prion proteins. Through regulation of phase separation of the prion N-terminal domain which targets and interacts with lipid rafts, melatonin may prevent conformational changes that can result in aggregation and/or conversion to pathological, infectious isoforms. As a cancer therapy adjuvant, melatonin could modulate TME oxidative stress levels and hypoxia, reverse pH gradient changes, reduce lipid peroxidation, and protect lipid raft compositions to suppress prion-mediated, non-Mendelian, heritable, but often reversible epigenetic adaptations that facilitate cancer heterogeneity, stemness, metastasis, and drug resistance. This review examines some of the mechanisms that may balance physiological and pathological effects of prions and prion-like proteins achieved through the synergistic use of melatonin to ameliorate MDR, which remains a challenge in cancer treatment.
Collapse
Affiliation(s)
- Doris Loh
- Independent Researcher, Marble Falls, TX 78654, USA
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, UT Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
33
|
Lichman BR. Ancestral Sequence Reconstruction for Exploring Alkaloid Evolution. Methods Mol Biol 2022; 2505:165-179. [PMID: 35732944 DOI: 10.1007/978-1-0716-2349-7_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The complex and bioactive monoterpene indole alkaloids (MIAs) found in Catharanthus roseus and related species are the products of many millions of years of evolution through mutation and natural selection. Ancestral sequence reconstruction (ASR) is a method that combines phylogenetic analysis and experimental biochemistry to infer details about past events in protein evolution. Here, I propose that ASR could be leveraged to understand how enzymes catalyzing the formation of complex alkaloids arose over evolutionary time. I discuss the steps of ASR, including sequence selection, multiple sequence alignment, tree inference, and the generation and characterization of inferred ancestral enzymes.
Collapse
Affiliation(s)
- Benjamin R Lichman
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, UK.
| |
Collapse
|
34
|
Saw JH, Cardona T, Montejano G. Complete Genome Sequencing of a Novel Gloeobacter Species from a Waterfall Cave in Mexico. Genome Biol Evol 2021; 13:6446517. [PMID: 34850891 PMCID: PMC8691054 DOI: 10.1093/gbe/evab264] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2021] [Indexed: 12/18/2022] Open
Abstract
Only two complete genomes of the cyanobacterial genus Gloeobacter from two very different regions of the world currently exist. Here, we present the complete genome sequence of a third member of the genus isolated from a waterfall cave in Mexico. Analysis of the average nucleotide identities (ANIs) between published Gloeobacter genomes revealed that the complete genome of this new member is only 92.7% similar to Gloeobacter violaceus and therefore we determined it to be a new species. We propose to name this new species Gloeobacter morelensis after the location in Mexico where it was isolated. The complete genome consists of one circular chromosome (4,921,229 bp), one linear plasmid (172,328 bp), and one circular plasmid (8,839 bp). Its genome is the largest of all completely sequenced genomes of Gloeobacter species. Pangenomic comparisons revealed that G. morelensis encodes 759 genes not shared with other Gloeobacter species. Despite being more closely related to G. violaceus, it features an extremely divergent psbA gene encoding an atypical D1 core subunit of Photosystem II previously only found within the genome of Gloeobacter kilaueensis. In addition, we detected evidence of concerted evolution of psbA genes encoding identical D1 in all three Gloeobacter genomes, a characteristic that seems widespread in cyanobacteria and may therefore be traced back to their last common ancestor.
Collapse
Affiliation(s)
- Jimmy H Saw
- Department of Biological Sciences, The George Washington University, District of Columbia, USA
| | - Tanai Cardona
- Department of Life Sciences, Imperial College London, United Kingdom
| | - Gustavo Montejano
- Facultad de Ciencias, Laboratorio de Ficología, National Autonomous University of Mexico, Ciudad de México, Mexico
| |
Collapse
|
35
|
ORPER: A Workflow for Constrained SSU rRNA Phylogenies. Genes (Basel) 2021; 12:genes12111741. [PMID: 34828348 PMCID: PMC8623055 DOI: 10.3390/genes12111741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/24/2021] [Accepted: 10/28/2021] [Indexed: 11/29/2022] Open
Abstract
The continuous increase in sequenced genomes in public repositories makes the choice of interesting bacterial strains for future sequencing projects ever more complicated, as it is difficult to estimate the redundancy between these strains and the already available genomes. Therefore, we developed the Nextflow workflow “ORPER”, for “ORganism PlacER”, containerized in Singularity, which allows the determination the phylogenetic position of a collection of organisms in the genomic landscape. ORPER constrains the phylogenetic placement of SSU (16S) rRNA sequences in a multilocus reference tree based on ribosomal protein genes extracted from public genomes. We demonstrate the utility of ORPER on the Cyanobacteria phylum, by placing 152 strains of the BCCM/ULC collection.
Collapse
|
36
|
Yilimulati M, Jin J, Wang X, Wang X, Shevela D, Wu B, Wang K, Zhou L, Jia Y, Pan B, Govindjee G, Zhang S. Regulation of Photosynthesis in Bloom-Forming Cyanobacteria with the Simplest β-Diketone. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:14173-14184. [PMID: 34590827 DOI: 10.1021/acs.est.1c04683] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Selective inhibition of photosynthesis is a fundamental strategy to solve the global challenge caused by harmful cyanobacterial blooms. However, there is a lack of specificity of the currently used cyanocides, because most of them act on cyanobacteria by generating nontargeted oxidative stress. Here, for the first time, we find that the simplest β-diketone, acetylacetone, is a promising specific cyanocide, which acts on Microcystis aeruginosa through targeted binding on bound iron species in the photosynthetic electron transport chain, rather than by oxidizing the components of the photosynthetic apparatus. The targeted binding approach outperforms the general oxidation mechanism in terms of specificity and eco-safety. Given the essential role of photosynthesis in both natural and artificial systems, this finding not only provides a unique solution for the selective control of cyanobacteria but also sheds new light on the ways to modulate photosynthesis.
Collapse
Affiliation(s)
- Mihebai Yilimulati
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China
| | - Jiyuan Jin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China
| | - Xin Wang
- School of Life Science, Nanjing University, Nanjing 210023, People's Republic of China
| | - Xiaomeng Wang
- Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Dmitry Shevela
- Department of Chemistry, Chemical Biological Centre, Umeå University, 90187 Umeå, Sweden
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China
| | - Kai Wang
- Hansha Scientific Instruments Limited, Tai'an 271099, People's Republic of China
| | - Lang Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China
| | - Yunlu Jia
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, People's Republic of China
| | - Bingcai Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China
| | - Govindjee Govindjee
- Department of Biochemistry, Department of Plant Biology, and the Center of Biophysics & Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Shujuan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China
| |
Collapse
|
37
|
Fournier GP, Moore KR, Rangel LT, Payette JG, Momper L, Bosak T. The Archean origin of oxygenic photosynthesis and extant cyanobacterial lineages. Proc Biol Sci 2021; 288:20210675. [PMID: 34583585 PMCID: PMC8479356 DOI: 10.1098/rspb.2021.0675] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 09/06/2021] [Indexed: 12/21/2022] Open
Abstract
The record of the coevolution of oxygenic phototrophs and the environment is preserved in three forms: genomes of modern organisms, diverse geochemical signals of surface oxidation and diagnostic Proterozoic microfossils. When calibrated by fossils, genomic data form the basis of molecular clock analyses. However, different interpretations of the geochemical record, fossil calibrations and evolutionary models produce a wide range of age estimates that are often conflicting. Here, we show that multiple interpretations of the cyanobacterial fossil record are consistent with an Archean origin of crown-group Cyanobacteria. We further show that incorporating relative dating information from horizontal gene transfers greatly improves the precision of these age estimates, by both providing a novel empirical criterion for selecting evolutionary models, and increasing the stringency of sampling of posterior age estimates. Independent of any geochemical evidence or hypotheses, these results support oxygenic photosynthesis evolving at least several hundred million years before the Great Oxygenation Event (GOE), a rapid diversification of major cyanobacterial lineages around the time of the GOE, and a post-Cryogenian origin of extant marine picocyanobacterial diversity.
Collapse
Affiliation(s)
- G. P. Fournier
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - K. R. Moore
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Planetary Science Section, NASA Jet Propulsion Laboratory, Pasadena, CA, USA
| | - L. T. Rangel
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - J. G. Payette
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - L. Momper
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Exponent, Inc., Pasadena, CA, USA
| | - T. Bosak
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
38
|
Loh D, Reiter RJ. Melatonin: Regulation of Biomolecular Condensates in Neurodegenerative Disorders. Antioxidants (Basel) 2021; 10:1483. [PMID: 34573116 PMCID: PMC8465482 DOI: 10.3390/antiox10091483] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022] Open
Abstract
Biomolecular condensates are membraneless organelles (MLOs) that form dynamic, chemically distinct subcellular compartments organizing macromolecules such as proteins, RNA, and DNA in unicellular prokaryotic bacteria and complex eukaryotic cells. Separated from surrounding environments, MLOs in the nucleoplasm, cytoplasm, and mitochondria assemble by liquid-liquid phase separation (LLPS) into transient, non-static, liquid-like droplets that regulate essential molecular functions. LLPS is primarily controlled by post-translational modifications (PTMs) that fine-tune the balance between attractive and repulsive charge states and/or binding motifs of proteins. Aberrant phase separation due to dysregulated membrane lipid rafts and/or PTMs, as well as the absence of adequate hydrotropic small molecules such as ATP, or the presence of specific RNA proteins can cause pathological protein aggregation in neurodegenerative disorders. Melatonin may exert a dominant influence over phase separation in biomolecular condensates by optimizing membrane and MLO interdependent reactions through stabilizing lipid raft domains, reducing line tension, and maintaining negative membrane curvature and fluidity. As a potent antioxidant, melatonin protects cardiolipin and other membrane lipids from peroxidation cascades, supporting protein trafficking, signaling, ion channel activities, and ATPase functionality during condensate coacervation or dissolution. Melatonin may even control condensate LLPS through PTM and balance mRNA- and RNA-binding protein composition by regulating N6-methyladenosine (m6A) modifications. There is currently a lack of pharmaceuticals targeting neurodegenerative disorders via the regulation of phase separation. The potential of melatonin in the modulation of biomolecular condensate in the attenuation of aberrant condensate aggregation in neurodegenerative disorders is discussed in this review.
Collapse
Affiliation(s)
- Doris Loh
- Independent Researcher, Marble Falls, TX 78654, USA
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX 78229, USA
| |
Collapse
|
39
|
Kořený L, Oborník M, Horáková E, Waller RF, Lukeš J. The convoluted history of haem biosynthesis. Biol Rev Camb Philos Soc 2021; 97:141-162. [PMID: 34472688 DOI: 10.1111/brv.12794] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 08/12/2021] [Accepted: 08/19/2021] [Indexed: 01/14/2023]
Abstract
The capacity of haem to transfer electrons, bind diatomic gases, and catalyse various biochemical reactions makes it one of the essential biomolecules on Earth and one that was likely used by the earliest forms of cellular life. Since the description of haem biosynthesis, our understanding of this multi-step pathway has been almost exclusively derived from a handful of model organisms from narrow taxonomic contexts. Recent advances in genome sequencing and functional studies of diverse and previously neglected groups have led to discoveries of alternative routes of haem biosynthesis that deviate from the 'classical' pathway. In this review, we take an evolutionarily broad approach to illuminate the remarkable diversity and adaptability of haem synthesis, from prokaryotes to eukaryotes, showing the range of strategies that organisms employ to obtain and utilise haem. In particular, the complex evolutionary histories of eukaryotes that involve multiple endosymbioses and horizontal gene transfers are reflected in the mosaic origin of numerous metabolic pathways with haem biosynthesis being a striking case. We show how different evolutionary trajectories and distinct life strategies resulted in pronounced tensions and differences in the spatial organisation of the haem biosynthesis pathway, in some cases leading to a complete loss of a haem-synthesis capacity and, rarely, even loss of a requirement for haem altogether.
Collapse
Affiliation(s)
- Luděk Kořený
- Department of Biochemistry, University of Cambridge, Hopkins Building, Tennis Court Road, Cambridge, CB2 1QW, U.K
| | - Miroslav Oborník
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, České Budějovice (Budweis), 370 05, Czech Republic.,Faculty of Sciences, University of South Bohemia, Branišovská, České Budějovice (Budweis), 31, Czech Republic
| | - Eva Horáková
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, České Budějovice (Budweis), 370 05, Czech Republic
| | - Ross F Waller
- Department of Biochemistry, University of Cambridge, Hopkins Building, Tennis Court Road, Cambridge, CB2 1QW, U.K
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, České Budějovice (Budweis), 370 05, Czech Republic.,Faculty of Sciences, University of South Bohemia, Branišovská, České Budějovice (Budweis), 31, Czech Republic
| |
Collapse
|
40
|
Gisriel CJ, Azai C, Cardona T. Recent advances in the structural diversity of reaction centers. PHOTOSYNTHESIS RESEARCH 2021; 149:329-343. [PMID: 34173168 PMCID: PMC8452559 DOI: 10.1007/s11120-021-00857-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/10/2021] [Indexed: 06/13/2023]
Abstract
Photosynthetic reaction centers (RC) catalyze the conversion of light to chemical energy that supports life on Earth, but they exhibit substantial diversity among different phyla. This is exemplified in a recent structure of the RC from an anoxygenic green sulfur bacterium (GsbRC) which has characteristics that may challenge the canonical view of RC classification. The GsbRC structure is analyzed and compared with other RCs, and the observations reveal important but unstudied research directions that are vital for disentangling RC evolution and diversity. Namely, (1) common themes of electron donation implicate a Ca2+ site whose role is unknown; (2) a previously unidentified lipid molecule with unclear functional significance is involved in the axial ligation of a cofactor in the electron transfer chain; (3) the GsbRC features surprising structural similarities with the distantly-related photosystem II; and (4) a structural basis for energy quenching in the GsbRC can be gleaned that exemplifies the importance of how exposure to oxygen has shaped the evolution of RCs. The analysis highlights these novel avenues of research that are critical for revealing evolutionary relationships that underpin the great diversity observed in extant RCs.
Collapse
Affiliation(s)
| | - Chihiro Azai
- College of Life Sciences, Ritsumeikan University, Kusatsu, 525-8577, Japan
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, 525-8577, Japan
| | - Tanai Cardona
- Department of Life Sciences, Imperial College London, London, UK
| |
Collapse
|
41
|
Abstract
The ancestors of cyanobacteria generated Earth's first biogenic molecular oxygen, but how they dealt with oxidative stress remains unconstrained. Here we investigate when superoxide dismutase enzymes (SODs) capable of removing superoxide free radicals evolved and estimate when Cyanobacteria originated. Our Bayesian molecular clocks, calibrated with microfossils, predict that stem Cyanobacteria arose 3300-3600 million years ago. Shortly afterwards, we find phylogenetic evidence that ancestral cyanobacteria used SODs with copper and zinc cofactors (CuZnSOD) during the Archaean. By the Paleoproterozoic, they became genetically capable of using iron, nickel, and manganese as cofactors (FeSOD, NiSOD, and MnSOD respectively). The evolution of NiSOD is particularly intriguing because it corresponds with cyanobacteria's invasion of the open ocean. Our analyses of metalloenzymes dealing with reactive oxygen species (ROS) now demonstrate that marine geochemical records alone may not predict patterns of metal usage by phototrophs from freshwater and terrestrial habitats.
Collapse
|
42
|
Cyanobacteria and biogeochemical cycles through Earth history. Trends Microbiol 2021; 30:143-157. [PMID: 34229911 DOI: 10.1016/j.tim.2021.05.008] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/13/2022]
Abstract
Cyanobacteria are the only prokaryotes to have evolved oxygenic photosynthesis, transforming the biology and chemistry of our planet. Genomic and evolutionary studies have revolutionized our understanding of early oxygenic phototrophs, complementing and dramatically extending inferences from the geologic record. Molecular clock estimates point to a Paleoarchean origin (3.6-3.2 billion years ago, bya) of the core proteins of Photosystem II (PSII) involved in oxygenic photosynthesis and a Mesoarchean origin (3.2-2.8 bya) for the last common ancestor of modern cyanobacteria. Nonetheless, most extant cyanobacteria diversified after the Great Oxidation Event (GOE), an environmental watershed ca. 2.45 bya made possible by oxygenic photosynthesis. Throughout their evolutionary history, cyanobacteria have played a key role in the global carbon cycle.
Collapse
|