1
|
Manis C, Casula M, Roos A, Hentschel A, Vorgerd M, Pogoryelova O, Derksen A, Spendiff S, Lochmüller H, Caboni P. Ion Mobility QTOF-MS Untargeted Lipidomics of Human Serum Reveals a Metabolic Fingerprint for GNE Myopathy. Molecules 2024; 29:5211. [PMID: 39519852 PMCID: PMC11547195 DOI: 10.3390/molecules29215211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/17/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024] Open
Abstract
GNE myopathy, also known as hereditary inclusion body myopathy (HIBM), is a rare genetic muscle disorder marked by a gradual onset of muscle weakness in young adults. GNE myopathy (GNEM) is caused by bi-allelic variants in the UDP-N-acetylglucosamine 2-epimerase (UDP-GlcNAc 2-epimerase)/N-acetylmannosamine kinase (ManNAc kinase) gene (GNE), clinically resulting in the loss of ambulation within 10-20 years from the onset of the initial symptoms. The disease's mechanism is poorly understood and non-invasive biomarkers are lacking, hindering effective therapy development. Based on the available evidence, we employed a lipidomic approach to study the serum lipid profile of GNE patients. The multivariate statistical analysis revealed a downregulation of carnitines, as well as of lysophosphatidylcholines, in sera samples derived from GNEM patients. Furthermore, we identified lower levels of sphingomyelins and, concomitantly, high levels of ceramides in serum samples from GNEM patients when compared to control samples derived from healthy donors. Moreover, the GNEM serum samples showed the upregulation of Krebs cycle intermediates, in addition to a decrease in oxaloacetic acid. The correlated data gathered in this study can offer a promising diagnostic panel of complex lipids and polar metabolites that can be used in clinic for GNEM in terms of a metabolic fingerprint measurable in a minimally invasive manner.
Collapse
Affiliation(s)
- Cristina Manis
- Department of Life and Environmental Sciences, Cittadella Universitaria di Monserrato, Blocco A, Room 13, 09042 Monserrato, Italy; (C.M.); (M.C.)
| | - Mattia Casula
- Department of Life and Environmental Sciences, Cittadella Universitaria di Monserrato, Blocco A, Room 13, 09042 Monserrato, Italy; (C.M.); (M.C.)
| | - Andreas Roos
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, 45147 Essen, Germany;
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada; (A.D.); (S.S.); (H.L.)
- Department of Neurology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Andreas Hentschel
- Leibniz-Institut für Analytische Wissenschaften, 44139 Dortmund, Germany;
| | - Matthias Vorgerd
- Department of Neurology, BG-University Hospital Bergmannsheil gGmbH, Ruhr-University Bochum, 44789 Bochum, Germany;
- Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil gGmbH, Ruhr-University Bochum, 44789 Bochum, Germany
| | - Oksana Pogoryelova
- Directorate of Neurosciences, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals, NHS Foundation Trust, Newcastle upon Tyne NE7 7DN, UK;
| | - Alexa Derksen
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada; (A.D.); (S.S.); (H.L.)
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Sally Spendiff
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada; (A.D.); (S.S.); (H.L.)
| | - Hanns Lochmüller
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada; (A.D.); (S.S.); (H.L.)
- Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, ON K1H 8M5, Canada
- Brain and Mind Research Institute, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Pierluigi Caboni
- Department of Life and Environmental Sciences, Cittadella Universitaria di Monserrato, Blocco A, Room 13, 09042 Monserrato, Italy; (C.M.); (M.C.)
| |
Collapse
|
2
|
Wu MY, Zou WJ, Lee D, Mei L, Xiong WC. APP in the Neuromuscular Junction for the Development of Sarcopenia and Alzheimer's Disease. Int J Mol Sci 2023; 24:ijms24097809. [PMID: 37175515 PMCID: PMC10178513 DOI: 10.3390/ijms24097809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/18/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023] Open
Abstract
Sarcopenia, an illness condition usually characterized by a loss of skeletal muscle mass and muscle strength or function, is often associated with neurodegenerative diseases, such as Alzheimer's disease (AD), a common type of dementia, leading to memory loss and other cognitive impairment. However, the underlying mechanisms for their associations and relationships are less well understood. The App, a Mendelian gene for early-onset AD, encodes amyloid precursor protein (APP), a transmembrane protein enriched at both the neuromuscular junction (NMJ) and synapses in the central nervous system (CNS). Here, in this review, we highlight APP and its family members' physiological functions and Swedish mutant APP (APPswe)'s pathological roles in muscles and NMJ. Understanding APP's pathophysiological functions in muscles and NMJ is likely to uncover insights not only into neuromuscular diseases but also AD. We summarize key findings from the burgeoning literature, which may open new avenues to investigate the link between muscle cells and brain cells in the development and progression of AD and sarcopenia.
Collapse
Affiliation(s)
- Min-Yi Wu
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Wen-Jun Zou
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Daehoon Lee
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Louis Stokes Cleveland Veterans Affairs Medical Center, Northeast Ohio VA Healthcare System, Cleveland, OH 44106, USA
| | - Lin Mei
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Wen-Cheng Xiong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Louis Stokes Cleveland Veterans Affairs Medical Center, Northeast Ohio VA Healthcare System, Cleveland, OH 44106, USA
| |
Collapse
|
3
|
Genetic Analysis of HIBM Myopathy-Specific GNE V727M Hotspot Mutation Identifies a Novel COL6A3 Allied Gene Signature That Is Also Deregulated in Multiple Neuromuscular Diseases and Myopathies. Genes (Basel) 2023; 14:genes14030567. [PMID: 36980840 PMCID: PMC10048522 DOI: 10.3390/genes14030567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/10/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
The GNE-associated V727M mutation is one of the most prevalent ethnic founder mutations in the Asian HIBM cohort; however, its role in inducing disease phenotype remains largely elusive. In this study, the function of this hotspot mutation was profoundly investigated. For this, V727M mutation-specific altered expression profile and potential networks were explored. The relevant muscular disorder-specific in vivo studies and patient data were further analyzed, and the key altered molecular pathways were identified. Our study found that the GNEV727M mutation resulted in a deregulated lincRNA profile, the majority of which (91%) were associated with a down-regulation trend. Further, in silico analysis of associated targets showed their active role in regulating Wnt, TGF-β, and apoptotic signaling. Interestingly, COL6a3 was found as a key target of these lincRNAs. Further, GSEA analysis showed HIBM patients with variable COL6A3 transcript levels have significant alteration in many critical pathways, including epithelial-mesenchymal-transition, myogenesis, and apoptotic signaling. Interestingly, 12 of the COL6A3 coexpressed genes also showed a similar altered expression profile in HIBM. A similar altered trend in COL6A3 and coexpressed genes were found in in vivo HIBM disease models as well as in multiple other skeletal disorders. Thus, the COL6A3-specific 13 gene signature seems to be altered in multiple muscular disorders. Such deregulation could play a pivotal role in regulating many critical processes such as extracellular matrix organization, cell adhesion, and skeletal muscle development. Thus, investigating this novel COL6A3-specific 13 gene signature provides valuable information for understanding the molecular cause of HIBM and may also pave the way for better diagnosis and effective therapeutic strategies for many muscular disorders.
Collapse
|
4
|
Mullen J, Alrasheed K, Mozaffar T. GNE myopathy: History, etiology, and treatment trials. Front Neurol 2022; 13:1002310. [PMID: 36330422 PMCID: PMC9623016 DOI: 10.3389/fneur.2022.1002310] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/03/2022] [Indexed: 12/04/2022] Open
Abstract
GNE myopathy is an ultrarare muscle disease characterized by slowly progressive muscle weakness. Symptoms typically start in early adulthood, with weakness and atrophy in the tibialis anterior muscles and with slow progression over time, which largely spares the quadriceps muscles. Muscle biopsy shows atrophic fibers and rimmed vacuoles without inflammation. Inherited in an autosomal recessive manner, patients with GNE myopathy carry mutations in the GNE gene which affect the sialic acid synthesis pathway. Here, we look at the history and clinical aspects of GNE myopathy, as well as focus on prior treatment trials and challenges and unmet needs related to this disorder.
Collapse
Affiliation(s)
- Jeffrey Mullen
- Department of Neurology, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Khalid Alrasheed
- Department of Neurology, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Tahseen Mozaffar
- Department of Neurology, School of Medicine, University of California, Irvine, Irvine, CA, United States
- Pathology and Laboratory Medicine, School of Medicine, University of California, Irvine, Irvine, CA, United States
- The Institute for Immunology, School of Medicine, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
5
|
Effect of GNE Mutations on Cytoskeletal Network Proteins: Potential Gateway to Understand Pathomechanism of GNEM. Neuromolecular Med 2022; 24:452-468. [PMID: 35503500 DOI: 10.1007/s12017-022-08711-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 04/09/2022] [Indexed: 12/27/2022]
Abstract
GNE myopathy is an inherited neuromuscular disorder caused by mutations in GNE (UDP-N-acetylglucosamine 2-epimerase/N-acetyl mannosamine kinase) gene catalyzing the sialic acid biosynthesis pathway. The characteristic features include muscle weakness in upper and lower extremities, skeletal muscle wasting, and rimmed vacuole formation. More than 200 GNE mutations in either epimerase or kinase domain have been reported worldwide. In Indian subcontinent, several GNE mutations have been recently identified with unknown functional correlation. Alternate role of GNE in various cellular processes such as cell adhesion, migration, apoptosis, protein aggregation, and cytoskeletal organization have been proposed in recent studies. We aim to understand and compare the effect of various GNE mutations from Indian origin on regulation of the cytoskeletal network. In particular, F-actin dynamics was determined quantitatively by determining F/G-actin ratios in immunoblots for specific proteins. The extent of F-actin polymerization was visualized by immunostaining with Phalloidin using confocal microscopy. The proteins regulating F-actin dynamics such as RhoA, cofilin, Arp2, and alpha-actinin were studied in various GNE mutants. The altered level of cytoskeletal organization network proteins affected cell migration of GNE mutant proteins as measured by wound healing assay. The functional comparison of GNE mutations will help in better understanding of the genotypic severity of the disease in the Indian population. Our study offers a potential for identification of therapeutic molecules regulating actin dynamics in GNE specific mutations.
Collapse
|
6
|
Marini M, Tani A, Manetti M, Sgambati E. Overview of sialylation status in human nervous and skeletal muscle tissues during aging. Acta Histochem 2021; 123:151813. [PMID: 34753032 DOI: 10.1016/j.acthis.2021.151813] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/29/2021] [Accepted: 10/29/2021] [Indexed: 12/14/2022]
Abstract
Sialic acids (Sias) are a large and heterogeneous family of electronegatively charged nine-carbon monosaccharides containing a carboxylic acid and are mostly found as terminal residues in glycans of glycoproteins and glycolipids such as gangliosides. They are linked to galactose or N-acetylgalactosamine via α2,3 or α2,6 linkage, or to other Sias via α2,8 or more rarely α2,9 linkage, resulting in mono, oligo and polymeric forms. Given their characteristics, Sias play a crucial role in a multitude of human tissue biological processes in physiological and pathological conditions, ranging from development and growth to adult life until aging. Here, we review the sialylation status in human adult life focusing on the nervous and skeletal muscle tissues, which both display significant structural and functional changes during aging, strongly impacting on the whole human body and, therefore, on the quality of life. In particular, this review highlights the fundamental roles played by different types of glycoconjugates Sias in several cellular biological processes in the nervous and skeletal muscle tissues during adult life, also discussing how changes in Sia content during aging may contribute to the physiological decline of physical and nervous functions and to the development of age-related degenerative pathologies. Based on our current knowledge, further in-depth investigations could help to develop novel prophylactic strategies and therapeutic approaches that, by maintaining and/or restoring the correct sialylation status in the nervous and skeletal muscle tissues, could contribute to aging slowing and the prevention of age-related pathologies.
Collapse
|
7
|
Devi SS, Yadav R, Mashangva F, Chaudhary P, Sharma S, Arya R. Generation and Characterization of a Skeletal Muscle Cell-Based Model Carrying One Single Gne Allele: Implications in Actin Dynamics. Mol Neurobiol 2021; 58:6316-6334. [PMID: 34510381 DOI: 10.1007/s12035-021-02549-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 08/28/2021] [Indexed: 12/13/2022]
Abstract
UDP-N-Acetyl glucosamine-2 epimerase/N-acetyl mannosamine kinase (GNE) catalyzes key enzymatic reactions in the biosynthesis of sialic acid. Mutation in GNE gene causes GNE myopathy (GNEM) characterized by adult-onset muscle weakness and degeneration. However, recent studies propose alternate roles of GNE in other cellular processes beside sialic acid biosynthesis, particularly interaction of GNE with α-actinin 1 and 2. Lack of appropriate model system limits drug and treatment options for GNEM as GNE knockout was found to be embryonically lethal. In the present study, we have generated L6 rat skeletal muscle myoblast cell-based model system carrying one single Gne allele where GNE gene is knocked out at exon-3 using AAV mediated SEPT homology recombination (SKM-GNEHz). The cell line was heterozygous for GNE gene with one wild type and one truncated allele as confirmed by sequencing. The phenotype showed reduced GNE epimerase activity with little reduction in sialic acid content. In addition, the heterozygous GNE knockout cells revealed altered cytoskeletal organization with disrupted actin filament. Further, we observed increased levels of RhoA leading to reduced cofilin activity and causing reduced F-actin polymerization. The disturbed signaling cascade resulted in reduced migration of SKM-GNEHz cells. Our study indicates possible role of GNE in regulating actin dynamics and cell migration of skeletal muscle cell. The skeletal muscle cell-based system offers great potential in understanding pathomechanism and target identification for GNEM.
Collapse
Affiliation(s)
| | - Rashmi Yadav
- School of Biotechnology, Jawaharlal Nehru University, 110067, New Delhi, India
| | | | - Priyanka Chaudhary
- School of Biotechnology, Jawaharlal Nehru University, 110067, New Delhi, India
| | - Shweta Sharma
- School of Biotechnology, Jawaharlal Nehru University, 110067, New Delhi, India
| | - Ranjana Arya
- School of Biotechnology, Jawaharlal Nehru University, 110067, New Delhi, India. .,Special Centre for Systems Medicine (Concurrent Faculty), Jawaharlal Nehru University, New Mehrauli Road, 110067, New Delhi, India.
| |
Collapse
|
8
|
Treacy EP, Vencken S, Bosch AM, Gautschi M, Rubio‐Gozalbo E, Dawson C, Nerney D, Colhoun HO, Shakerdi L, Pastores GM, O'Flaherty R, Saldova R. Abnormal N-glycan fucosylation, galactosylation, and sialylation of IgG in adults with classical galactosemia, influence of dietary galactose intake. JIMD Rep 2021; 61:76-88. [PMID: 34485021 PMCID: PMC8411110 DOI: 10.1002/jmd2.12237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Classical galactosemia (CG) (OMIM #230400) is a rare disorder of carbohydrate metabolism, due to deficiency of galactose-1-phosphate uridyltransferase (EC 2.7.7.12). The pathophysiology of the long-term complications, mainly cognitive, neurological, and female infertility remains poorly understood. OBJECTIVES This study investigated (a) the association between specific IgG N-glycosylation biomarkers (glycan peaks and grouped traits) and CG patients (n = 95) identified from the GalNet Network, using hydrophilic interaction ultraperformance liquid chromatography and (b) a further analysis of a GALT c.563A-G/p.Gln188Arg homozygous cohort (n = 49) with correlation with glycan features with patient Full Scale Intelligence Quotient (FSIQ), and (c) with galactose intake. RESULTS A very significant decrease in galactosylation and sialylation and an increase in core fucosylation was noted in CG patients vs controls (P < .005). Bisected glycans were decreased in the severe GALT c.563A-G/p.Gln188Arg homozygous cohort (n = 49) (P < .05). Logistic regression models incorporating IgG glycan traits distinguished CG patients from controls. Incremental dietary galactose intake correlated positively with FSIQ for the p.Gln188Arg homozygous CG cohort (P < .005) for a dietary galactose intake of 500 to 1000 mg/d. Significant improvements in profiles with increased galactose intake were noted for monosialylated, monogalactosylated, and monoantennary glycans. CONCLUSION These results suggest that N-glycosylation abnormalities persist in CG patients on dietary galactose restriction which may be modifiable to a degree by dietary galactose intake.
Collapse
Affiliation(s)
- Eileen P. Treacy
- National Centre for Inherited Metabolic Disorders, The Mater Misericordiae University HospitalDublinIreland
- Department of PaediatricsTrinity College DublinDublinIreland
- UCD School of MedicineUniversity College DublinDublinIreland
| | | | - Annet M. Bosch
- Department of Pediatrics, Division of Metabolic DisordersEmma Children's Hospital, Amsterdam Gastroenterology, Endocrinology & Metabolism, Amsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| | - Matthias Gautschi
- Department of Paediatrics and Institute of Clinical ChemistryInselspital, University Hospital BernBernSwitzerland
| | - Estela Rubio‐Gozalbo
- Department of Pediatrics/Laboratory of Clinical GeneticsMaastricht University Medical CentreMaastrichtThe Netherlands
| | - Charlotte Dawson
- Department of EndocrinologyUniversity Hospitals Birmingham NHS Foundation TrustBirminghamUK
| | - Darragh Nerney
- National Centre for Inherited Metabolic Disorders, The Mater Misericordiae University HospitalDublinIreland
| | - Hugh Owen Colhoun
- NIBRT GlycoScience Group, National Institute for Bioprocessing, Research and TrainingDublinIreland
| | - Loai Shakerdi
- National Centre for Inherited Metabolic Disorders, The Mater Misericordiae University HospitalDublinIreland
| | - Gregory M. Pastores
- National Centre for Inherited Metabolic Disorders, The Mater Misericordiae University HospitalDublinIreland
| | - Roisin O'Flaherty
- NIBRT GlycoScience Group, National Institute for Bioprocessing, Research and TrainingDublinIreland
- Department of ChemistryMaynooth UniversityKildareIreland
| | - Radka Saldova
- NIBRT GlycoScience Group, National Institute for Bioprocessing, Research and TrainingDublinIreland
- UCD School of Medicine, College of Health and Agricultural Sciences (CHAS), University College Dublin (UCD)DublinIreland
| |
Collapse
|
9
|
Gaikwad AS, Hu J, Chapple DG, O'Bryan MK. The functions of CAP superfamily proteins in mammalian fertility and disease. Hum Reprod Update 2020; 26:689-723. [PMID: 32378701 DOI: 10.1093/humupd/dmaa016] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/11/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Members of the cysteine-rich secretory proteins (CRISPS), antigen 5 (Ag5) and pathogenesis-related 1 (Pr-1) (CAP) superfamily of proteins are found across the bacterial, fungal, plant and animal kingdoms. Although many CAP superfamily proteins remain poorly characterized, over the past decade evidence has accumulated, which provides insights into the functional roles of these proteins in various processes, including fertilization, immune defence and subversion, pathogen virulence, venom toxicology and cancer biology. OBJECTIVE AND RATIONALE The aim of this article is to summarize the current state of knowledge on CAP superfamily proteins in mammalian fertility, organismal homeostasis and disease pathogenesis. SEARCH METHODS The scientific literature search was undertaken via PubMed database on all articles published prior to November 2019. Search terms were based on following keywords: 'CAP superfamily', 'CRISP', 'Cysteine-rich secretory proteins', 'Antigen 5', 'Pathogenesis-related 1', 'male fertility', 'CAP and CTL domain containing', 'CRISPLD1', 'CRISPLD2', 'bacterial SCP', 'ion channel regulator', 'CatSper', 'PI15', 'PI16', 'CLEC', 'PRY proteins', 'ASP proteins', 'spermatogenesis', 'epididymal maturation', 'capacitation' and 'snake CRISP'. In addition to that, reference lists of primary and review article were reviewed for additional relevant publications. OUTCOMES In this review, we discuss the breadth of knowledge on CAP superfamily proteins with regards to their protein structure, biological functions and emerging significance in reproduction, health and disease. We discuss the evolution of CAP superfamily proteins from their otherwise unembellished prokaryotic predecessors into the multi-domain and neofunctionalized members found in eukaryotic organisms today. At least in part because of the rapid evolution of these proteins, many inconsistencies in nomenclature exist within the literature. As such, and in part through the use of a maximum likelihood phylogenetic analysis of the vertebrate CRISP subfamily, we have attempted to clarify this confusion, thus allowing for a comparison of orthologous protein function between species. This framework also allows the prediction of functional relevance between species based on sequence and structural conservation. WIDER IMPLICATIONS This review generates a picture of critical roles for CAP proteins in ion channel regulation, sterol and lipid binding and protease inhibition, and as ligands involved in the induction of multiple cellular processes.
Collapse
Affiliation(s)
- Avinash S Gaikwad
- School of Biological Sciences, Monash University, Clayton, Victoria, 3800, Australia
| | - Jinghua Hu
- School of Biological Sciences, Monash University, Clayton, Victoria, 3800, Australia
| | - David G Chapple
- School of Biological Sciences, Monash University, Clayton, Victoria, 3800, Australia
| | - Moira K O'Bryan
- School of Biological Sciences, Monash University, Clayton, Victoria, 3800, Australia
| |
Collapse
|
10
|
Morozzi C, Sedláková J, Serpi M, Avigliano M, Carbajo R, Sandoval L, Valles-Ayoub Y, Crutcher P, Thomas S, Pertusati F. Targeting GNE Myopathy: A Dual Prodrug Approach for the Delivery of N-Acetylmannosamine 6-Phosphate. J Med Chem 2019; 62:8178-8193. [DOI: 10.1021/acs.jmedchem.9b00833] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Chiara Morozzi
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, King Edward VII Avenue, Cardiff CF10 3NB, U.K
| | - Jana Sedláková
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, King Edward VII Avenue, Cardiff CF10 3NB, U.K
| | - Michaela Serpi
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, King Edward VII Avenue, Cardiff CF10 3NB, U.K
| | - Marialuce Avigliano
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, King Edward VII Avenue, Cardiff CF10 3NB, U.K
| | - Rosangela Carbajo
- FirmaLab Bio-Diagnostics, 21053 Devonshire Street, Suite 106, Chatsworth, California 91311, United States
| | - Lucia Sandoval
- FirmaLab Bio-Diagnostics, 21053 Devonshire Street, Suite 106, Chatsworth, California 91311, United States
| | - Yadira Valles-Ayoub
- FirmaLab Bio-Diagnostics, 21053 Devonshire Street, Suite 106, Chatsworth, California 91311, United States
| | - Patrick Crutcher
- Cerecor Inc., 540 Gaither Road, Suite 400, Rockville, Maryland 20850, United States
| | - Stephen Thomas
- Cerecor Inc., 540 Gaither Road, Suite 400, Rockville, Maryland 20850, United States
| | - Fabrizio Pertusati
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, King Edward VII Avenue, Cardiff CF10 3NB, U.K
| |
Collapse
|
11
|
Chakravorty S, Berger K, Arafat D, Nallamilli BRR, Subramanian HP, Joseph S, Anderson ME, Campbell KP, Glass J, Gibson G, Hegde M. Clinical utility of RNA sequencing to resolve unusual GNE myopathy with a novel promoter deletion. Muscle Nerve 2019; 60:98-103. [PMID: 30990900 DOI: 10.1002/mus.26486] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 04/09/2019] [Accepted: 04/12/2019] [Indexed: 02/07/2023]
Abstract
INTRODUCTION UDP N-acetylglucosamine2-epimerase/N-acetylmannosamine-kinase (GNE) gene mutations can cause mostly autosomal-recessive myopathy with juvenile-onset known as hereditary inclusion-body myopathy (HIBM). METHODS We describe a family of a patient showing an unusual HIBM with both vacuolar myopathy and myositis without quadriceps-sparing, hindering diagnosis. We show how genetic testing with functional assays, clinical transcriptome sequencing (RNA-seq) in particular, helped facilitate both the diagnosis and a better understanding of the genotype-phenotype relationship. RESULTS We identified a novel 7.08 kb pathogenic deletion upstream of GNE using array comparative genomic hybridization (aCGH) and a common Val727Met variant. Using RNA-seq, we found only monoallelic (Val727Met-allele) expression, leading to ~50% GNE reduction in muscle. Importantly, α-dystroglycan is hypoglycosylated in the patient muscle, suggesting HIBM could be a "dystroglycanopathy." CONCLUSIONS Our study shows the importance of considering aCGH for GNE-myopathies, and the potential of RNA-seq for faster, definitive molecular diagnosis of unusual myopathies. Muscle Nerve, 2019.
Collapse
Affiliation(s)
- Samya Chakravorty
- Department of Human Genetics, Emory University School of Medicine, Whitehead Building Suite 301, 615 Michael Street NE, Georgia, USA
| | - Kiera Berger
- Center for Integrative Genomics, School of Biology, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Dalia Arafat
- Center for Integrative Genomics, School of Biology, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Babi Ramesh Reddy Nallamilli
- Department of Human Genetics, Emory University School of Medicine, Whitehead Building Suite 301, 615 Michael Street NE, Georgia, USA
| | - Hari Prasanna Subramanian
- Center for Integrative Genomics, School of Biology, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Soumya Joseph
- Howard Hughes Medical Institute, Department of Molecular Physiology and Biophysics, Department of Neurology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa, 52242, USA
| | - Mary E Anderson
- Howard Hughes Medical Institute, Department of Molecular Physiology and Biophysics, Department of Neurology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa, 52242, USA
| | - Kevin P Campbell
- Howard Hughes Medical Institute, Department of Molecular Physiology and Biophysics, Department of Neurology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa, 52242, USA
| | - Jonathan Glass
- Department of Neurology and Pathology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Greg Gibson
- Center for Integrative Genomics, School of Biology, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Madhuri Hegde
- Department of Human Genetics, Emory University School of Medicine, Whitehead Building Suite 301, 615 Michael Street NE, Georgia, USA.,Global Laboratory Services/Diagnostics, Perkin Elmer, Waltham, Massachusetts, USA
| |
Collapse
|
12
|
Demina EP, Pierre WC, Nguyen ALA, Londono I, Reiz B, Zou C, Chakraberty R, Cairo CW, Pshezhetsky AV, Lodygensky GA. Persistent reduction in sialylation of cerebral glycoproteins following postnatal inflammatory exposure. J Neuroinflammation 2018; 15:336. [PMID: 30518374 PMCID: PMC6282350 DOI: 10.1186/s12974-018-1367-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 11/14/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The extension of sepsis encompassing the preterm newborn's brain is often overlooked due to technical challenges in this highly vulnerable population, yet it leads to substantial long-term neurodevelopmental disabilities. In this study, we demonstrate how neonatal neuroinflammation following postnatal E. coli lipopolysaccharide (LPS) exposure in rat pups results in persistent reduction in sialylation of cerebral glycoproteins. METHODS Male Sprague-Dawley rat pups at postnatal day 3 (P3) were injected in the corpus callosum with saline or LPS. Twenty-four hours (P4) or 21 days (P24) following injection, brains were extracted and analyzed for neuraminidase activity and expression as well as for sialylation of cerebral glycoproteins and glycolipids. RESULTS At both P4 and P24, we detected a significant increase of the acidic neuraminidase activity in LPS-exposed rats. It correlated with significantly increased neuraminidase 1 (Neu1) mRNA in LPS-treated brains at P4 and with neuraminidases 1 and 4 at P24 suggesting that these enzymes were responsible for the rise of neuraminidase activity. At both P4 and P24, sialylation of N-glycans on brain glycoproteins decreased according to both mass-spectrometry analysis and lectin blotting, but the ganglioside composition remained intact. Finally, at P24, analysis of brain tissues by immunohistochemistry showed that neurons in the upper layers (II-III) of somatosensory cortex had a reduced surface content of polysialic acid. CONCLUSIONS Together, our data demonstrate that neonatal LPS exposure results in specific and sustained induction of Neu1 and Neu4, causing long-lasting negative changes in sialylation of glycoproteins on brain cells. Considering the important roles played by sialoglycoproteins in CNS function, we speculate that observed re-programming of the brain sialome constitutes an important part of pathophysiological consequences in perinatal infectious exposure.
Collapse
Affiliation(s)
- Ekaterina P Demina
- Department of Paediatrics, Sainte-Justine Hospital Research Center, Université de Montréal, Montreal, H3T 1C5, QC, Canada
| | - Wyston C Pierre
- Department of Paediatrics, Sainte-Justine Hospital Research Center, Université de Montréal, Montreal, H3T 1C5, QC, Canada
| | - Annie L A Nguyen
- Department of Paediatrics, Sainte-Justine Hospital Research Center, Université de Montréal, Montreal, H3T 1C5, QC, Canada
| | - Irene Londono
- Department of Paediatrics, Sainte-Justine Hospital Research Center, Université de Montréal, Montreal, H3T 1C5, QC, Canada
| | - Bela Reiz
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, T6G 2G2, AB, Canada
| | - Chunxia Zou
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, T6G 2G2, AB, Canada
| | - Radhika Chakraberty
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, T6G 2G2, AB, Canada
| | - Christopher W Cairo
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, T6G 2G2, AB, Canada
| | - Alexey V Pshezhetsky
- Department of Paediatrics, Sainte-Justine Hospital Research Center, Université de Montréal, Montreal, H3T 1C5, QC, Canada. .,Department of Anatomy and Cell Biology, McGill University, Montreal, H3A0C7, QC, Canada. .,Centre de recherche, CHU Sainte-Justine, 3175 Côte-Sainte-Catherine, Montreal, QC, H3T 1C5, Canada.
| | - Gregory A Lodygensky
- Department of Paediatrics, Sainte-Justine Hospital Research Center, Université de Montréal, Montreal, H3T 1C5, QC, Canada. .,Department of Pharmacology and Physiology, Université de Montréal, Montreal, H3T 1J4, QC, Canada. .,Montreal Heart Institute, Montreal, H1T 1C8, QC, Canada. .,Centre de recherche, CHU Sainte-Justine, 3175 Côte-Sainte-Catherine, Montreal, QC, H3T 1C5, Canada.
| |
Collapse
|
13
|
Abstract
Sialic acids are cytoprotectors, mainly localized on the surface of cell membranes with multiple and outstanding cell biological functions. The history of their structural analysis, occurrence, and functions is fascinating and described in this review. Reports from different researchers on apparently similar substances from a variety of biological materials led to the identification of a 9-carbon monosaccharide, which in 1957 was designated "sialic acid." The most frequently occurring member of the sialic acid family is N-acetylneuraminic acid, followed by N-glycolylneuraminic acid and O-acetylated derivatives, and up to now over about 80 neuraminic acid derivatives have been described. They appeared first in the animal kingdom, ranging from echinoderms up to higher animals, in many microorganisms, and are also expressed in insects, but are absent in higher plants. Sialic acids are masks and ligands and play as such dual roles in biology. Their involvement in immunology and tumor biology, as well as in hereditary diseases, cannot be underestimated. N-Glycolylneuraminic acid is very special, as this sugar cannot be expressed by humans, but is a xenoantigen with pathogenetic potential. Sialidases (neuraminidases), which liberate sialic acids from cellular compounds, had been known from very early on from studies with influenza viruses. Sialyltransferases, which are responsible for the sialylation of glycans and elongation of polysialic acids, are studied because of their significance in development and, for instance, in cancer. As more information about the functions in health and disease is acquired, the use of sialic acids in the treatment of diseases is also envisaged.
Collapse
Affiliation(s)
- Roland Schauer
- Biochemisches Institut, Christian-Albrechts-Universität zu Kiel, Kiel, Germany.
| | - Johannis P Kamerling
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
14
|
Gutmann M, Bechold J, Seibel J, Meinel L, Lühmann T. Metabolic Glycoengineering of Cell-Derived Matrices and Cell Surfaces: A Combination of Key Principles and Step-by-Step Procedures. ACS Biomater Sci Eng 2018; 5:215-233. [DOI: 10.1021/acsbiomaterials.8b00865] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Marcus Gutmann
- Institute of Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany
| | - Julian Bechold
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074 Wuerzburg, Germany
| | - Jürgen Seibel
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074 Wuerzburg, Germany
| | - Lorenz Meinel
- Institute of Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany
| | - Tessa Lühmann
- Institute of Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany
| |
Collapse
|
15
|
Soule T, Phan C, White C, Resch L, Lacson A, Martens K, Pfeffer G. GNE Myopathy With Novel Mutations and Pronounced Paraspinal Muscle Atrophy. Front Neurol 2018; 9:942. [PMID: 30467490 PMCID: PMC6236015 DOI: 10.3389/fneur.2018.00942] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 10/17/2018] [Indexed: 11/13/2022] Open
Abstract
GNE myopathy is characterized by distal muscle weakness, and caused by recessive mutations in GNE. Its onset is characteristically in young adulthood, although a broad spectrum of onset age is known to exist. A large number of mutations in GNE are pathogenic and this clinical phenotype can be difficult to differentiate clinically from other late-onset myopathies. We describe two families with novel mutations in GNE, and describe their clinical and MRI features. We also describe the presence of striking paraspinal muscle involvement on MRI of the lumbar spine, which is an under-recognized feature of GNE myopathy.
Collapse
Affiliation(s)
- Tyler Soule
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Cecile Phan
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Chris White
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Lothar Resch
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, AB, Canada
| | - Atilano Lacson
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Kristina Martens
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Gerald Pfeffer
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
16
|
Devi S, Yadav R, Chanana P, Arya R. Fighting the Cause of Alzheimer's and GNE Myopathy. Front Neurosci 2018; 12:669. [PMID: 30374284 PMCID: PMC6196280 DOI: 10.3389/fnins.2018.00669] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 09/06/2018] [Indexed: 12/12/2022] Open
Abstract
Age is the common risk factor for both neurodegenerative and neuromuscular diseases. Alzheimer disease (AD), a neurodegenerative disorder, causes dementia with age progression while GNE myopathy (GNEM), a neuromuscular disorder, causes muscle degeneration and loss of muscle motor movement with age. Individuals with mutations in presenilin or amyloid precursor protein (APP) gene develop AD while mutations in GNE (UDP N-acetylglucosamine 2 epimerase/N-acetyl Mannosamine kinase), key sialic acid biosynthesis enzyme, cause GNEM. Although GNEM is characterized with degeneration of muscle cells, it is shown to have similar disease hallmarks like aggregation of Aβ and accumulation of phosphorylated tau and other misfolded proteins in muscle cell similar to AD. Similar impairment in cellular functions have been reported in both disorders such as disruption of cytoskeletal network, changes in glycosylation pattern, mitochondrial dysfunction, oxidative stress, upregulation of chaperones, unfolded protein response in ER, autophagic vacuoles, cell death, and apoptosis. Interestingly, AD and GNEM are the two diseases with similar phenotypic condition affecting neuron and muscle, respectively, resulting in entirely different pathology. This review represents a comparative outlook of AD and GNEM that could lead to target common mechanism to find a plausible therapeutic for both the diseases.
Collapse
Affiliation(s)
| | - Rashmi Yadav
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Pratibha Chanana
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Ranjana Arya
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
17
|
Su F, Miao J, Liu X, Wei X, Yu X. Distal myopathy with rimmed vacuoles: Spectrum of GNE gene mutations in seven Chinese patients. Exp Ther Med 2018; 16:1505-1512. [PMID: 30112071 DOI: 10.3892/etm.2018.6344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 06/04/2018] [Indexed: 11/06/2022] Open
Abstract
Distal myopathy with rimmed vacuoles (DMRV) is a rare, autosomal, recessive inherited disease caused by mutations in the GNE gene. DMRV is an adult-onset disorder characterized by progressive muscle atrophy and weakness, which initially involves the distal muscles with quadriceps sparing. To date, >150 GNE mutations have been reported in different populations from around the world. The present study investigated the clinical, pathological and genetic characteristics of seven unrelated DMRV patients from China. Genetic analysis in these patients revealed three novel mutations (c.455_456insC, p.P421L, and p.A287T) and five previously reported mutations (p.D207V, p.C44S, p.G576R, p.A669P, and p.D218G). In addition, the literature on DMRV was reviewed to provide an overview of the disease and broaden the mutational spectrum of the GNE gene in China.
Collapse
Affiliation(s)
- Feifei Su
- Department of Neurology, Neuroscience Center, The First Affiliated Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jing Miao
- Department of Neurology, Neuroscience Center, The First Affiliated Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xuemei Liu
- Department of Neurology, Neuroscience Center, The First Affiliated Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xiaojing Wei
- Department of Neurology, Neuroscience Center, The First Affiliated Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xuefan Yu
- Department of Neurology, Neuroscience Center, The First Affiliated Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
18
|
Zhang Y, Pu C, Lu X, Shi Q, Wang H, Ban R, Liu H, Wei M, Song H. Pathological findings in sporadic inclusion body myositis and GNE myopathy. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:2907-2911. [PMID: 31938415 PMCID: PMC6958237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 11/07/2017] [Indexed: 06/10/2023]
Abstract
OBJECTIVE The following study compared the pathological findings between sporadic inclusion body myositis (sIBM) and Glucosamine (UDP-N-acetyl)-2-epimerase/N-acetylmannosamine kinase myopathy (GNEM) patients. METHODS An enzyme histochemistry was used to compare the pathological characteristics between 11 patients with sIBM and 16 patients with GNEM. RESULTS There were four pathological differences observed: (1) A majority of the rimmed vacuoles found in the sIBM patients resembled cracks, whereas the GNEM patients (P=0.004) had round or oval vacuoles. (2) A majority of the rimmed vacuoles that were located in the periphery of the atrophic muscle fibers of the sIBM patients. The patients with GNEM had a majority of the rimmed vacuoles in the center of the atrophic muscle fibers (P=0.001). (3) The patients with sIBM had basophilic granules in the rimmed vacuoles, which appeared to be fine granules that were sand-like particles. The GNEM patients had coarse granules (P=0.018). (4) The proportion of mononuclear cells invasion of muscle fibers was larger in the sIBM patients than the GNEM patients (P=0.047). The GNEM patients were younger on average than the sIBM patients at the onset of symptoms (P<0.001) and at the diagnosis age (P<0.001). The electromyography (EMG) showed the presence of myogenic lesions in 10 patients with sIBM, both myogenic and neurogenic lesions in one patients with sIBM and myogenic lesions in 16 patients with GNEM. CONCLUSION There were significant differences in the morphologies of the rimmed vacuoles between sIBM patients and GNEM patients.
Collapse
Affiliation(s)
- Yutong Zhang
- Department of Neurology, PLA General HospitalBeijing, China
| | - Chuanqiang Pu
- Department of Neurology, PLA General HospitalBeijing, China
| | - Xianghui Lu
- Department of Neurology, PLA General HospitalBeijing, China
| | - Qiang Shi
- Department of Neurology, PLA General HospitalBeijing, China
| | - Huifang Wang
- Department of Neurology, PLA General HospitalBeijing, China
| | - Rui Ban
- Department of Neurology, PLA General HospitalBeijing, China
- School of Medicine, Nankai UniversityTianjin, China
| | - Huaxu Liu
- Department of Neurology, PLA General HospitalBeijing, China
| | - Miaomiao Wei
- Department of Neurology, PLA General HospitalBeijing, China
- School of Medicine, Nankai UniversityTianjin, China
| | - Haiwen Song
- Department of Neurology, PLA General HospitalBeijing, China
- School of Medicine, Nankai UniversityTianjin, China
| |
Collapse
|
19
|
Papadimas GK, Evilä A, Papadopoulos C, Kararizou E, Manta P, Udd B. GNE-Myopathy in a Greek Romani Family with Unusual Calf Phenotype and Protein Aggregation Pathology. J Neuromuscul Dis 2018; 3:283-288. [PMID: 27854221 DOI: 10.3233/jnd-160154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND GNE-myopathy is increasingly diagnosed in different ethnicities worldwide. No clear genotype-phenotype correlation has been established to date. CASE REPORTS We describe two affected members of the same family from Balkan population carrying an already known homozygous pathogenic mutation in the kinase domain of the UDP-N-acetylglucosamine 2 epimerase/N-acetylmannosamime kinase (GNE) gene. The patients presented with severe distal weakness of lower legs combined with rimmed vacuoles in muscle biopsy. However, in contrast to the typical pattern of muscle involvement, one of them showed severe involvement of posterior calf muscles with spared anterior compartment of the lower leg muscles. CONCLUSIONS These patients provide evidence for a larger variability and further extend the phenotypic spectrum of GNE-myopathy to include preferential calf involvement.
Collapse
Affiliation(s)
- G K Papadimas
- Department of Neurology, Aegintion Hospital, Medical School of Athens, Greece
| | - A Evilä
- Folkhälsan Institute of Genetics and Department of Medical Genetics, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - C Papadopoulos
- Department of Neurology, Aegintion Hospital, Medical School of Athens, Greece
| | - E Kararizou
- Department of Neurology, Aegintion Hospital, Medical School of Athens, Greece
| | - P Manta
- Department of Neurology, Aegintion Hospital, Medical School of Athens, Greece
| | - B Udd
- Folkhälsan Institute of Genetics and Department of Medical Genetics, Haartman Institute, University of Helsinki, Helsinki, Finland.,Neuromuscular Research Center, University of Tampere and Tampere University Hospital, Tampere, Finland.,Department of Neurology, Vaasa Central Hospital, Vaasa, Finland
| |
Collapse
|
20
|
Argov Z, Caraco Y, Lau H, Pestronk A, Shieh PB, Skrinar A, Koutsoukos T, Ahmed R, Martinisi J, Kakkis E. Aceneuramic Acid Extended Release Administration Maintains Upper Limb Muscle Strength in a 48-week Study of Subjects with GNE Myopathy: Results from a Phase 2, Randomized, Controlled Study. J Neuromuscul Dis 2018; 3:49-66. [PMID: 27854209 PMCID: PMC5271423 DOI: 10.3233/jnd-159900] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Background: GNE Myopathy (GNEM) is a progressive adult-onset myopathy likely caused by deficiency of sialic acid (SA) biosynthesis. Objective: Evaluate the safety and efficacy of SA (delivered by aceneuramic acid extended-release [Ace-ER]) as treatment for GNEM. Methods: A Phase 2, randomized, double-blind, placebo-controlled study evaluating Ace-ER 3 g/day or 6 g/day versus placebo was conducted in GNEM subjects (n = 47). After the first 24 weeks, placebo subjects crossed over to 3 g/day or 6 g/day for 24 additional weeks (dose pre-assigned during initial randomization). Assessments included serum SA, muscle strength by dynamometry, functional assessments, clinician- and patient-reported outcomes, and safety. Results: Dose-dependent increases in serum SA levels were observed. Supplementation with Ace-ER resulted in maintenance of muscle strength in an upper extremity composite (UEC) score at 6 g/day compared with placebo at Week 24 (LS mean difference +2.33 kg, p = 0.040), and larger in a pre-specified subgroup able to walk ≥200 m at Screening (+3.10 kg, p = 0.040). After cross-over, a combined 6 g/day group showed significantly better UEC strength than a combined 3 g/day group (+3.46 kg, p = 0.0031). A similar dose-dependent response was demonstrated within the lower extremity composite score, but was not significant (+1.06 kg, p = 0.61). The GNEM-Functional Activity Scale demonstrated a trend improvement in UE function and mobility in a combined 6 g/day group compared with a combined 3 g/day group. Patients receiving Ace-ER tablets had predominantly mild-to-moderate AEs and no serious adverse events. Conclusions: This is the first clinical study to provide evidence that supplementation with SA delivered by Ace-ER may stabilize muscle strength in individuals with GNEM and initiating treatment earlier in the disease course may lead to better outcomes.
Collapse
Affiliation(s)
- Zohar Argov
- Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Yoseph Caraco
- Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Heather Lau
- New York University School of Medicine, New York, NY, USA
| | - Alan Pestronk
- Washington University Medical Center, St. Louis, MO, USA
| | - Perry B Shieh
- University of California Los Angeles Medical Center, Los Angeles, CA, USA
| | | | | | - Ruhi Ahmed
- Ultragenyx Pharmaceutical, Novato, CA, USA
| | | | | |
Collapse
|
21
|
Mayhew J, Bonner N, Arbuckle R, Turnbull A, Bowden A, Skrinar A. Development and preliminary evidence of the psychometric properties of the GNE myopathy functional activity scale. J Comp Eff Res 2017; 7:381-395. [PMID: 29139300 DOI: 10.2217/cer-2017-0062] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM GNE myopathy, a rare, severe, progressive myopathy, presents with lower extremity distal muscle weakness. The GNE myopathy functional activity scale (GNEM-FAS) evaluates the impact of GNE myopathy on functioning in adults. This paper presents the psychometric validation of the GNEM-FAS. PATIENTS & METHODS Validation of the GNEM-FAS was performed using data from a randomized, double-blind, placebo-controlled Phase-II study (n = 46). RESULTS Domain score distributions were acceptable. Moderate inter-item correlations (typical range, 0.40-0.70), strong item convergent and discriminant validity and high internal consistency reliability (α = 0.88-0.92) supported the instrument structure. Test-retest reliability was strong (ICC range: 0.87-0.95). Scale scores distinguished among subjects with differing disease severity (p < 0.05). CONCLUSION This study provides preliminary evidence of the GNEM-FAS as a valid, reliable assessment.
Collapse
Affiliation(s)
- Jill Mayhew
- Ultragenyx Pharmaceutical, 60 Leveroni Court, Novato, CA 94949, USA
| | | | - Rob Arbuckle
- Adelphi Mill, Bollington, Cheshire, SK10 5JB, UK
| | | | - Alexandra Bowden
- Ultragenyx Pharmaceutical, 60 Leveroni Court, Novato, CA 94949, USA
| | - Alison Skrinar
- Ultragenyx Pharmaceutical, 60 Leveroni Court, Novato, CA 94949, USA
| |
Collapse
|
22
|
Pogoryelova O, Cammish P, Mansbach H, Argov Z, Nishino I, Skrinar A, Chan Y, Nafissi S, Shamshiri H, Kakkis E, Lochmüller H. Phenotypic stratification and genotype-phenotype correlation in a heterogeneous, international cohort of GNE myopathy patients: First report from the GNE myopathy Disease Monitoring Program, registry portion. Neuromuscul Disord 2017; 28:158-168. [PMID: 29305133 PMCID: PMC5857291 DOI: 10.1016/j.nmd.2017.11.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 10/16/2017] [Accepted: 11/06/2017] [Indexed: 01/25/2023]
Abstract
Patient registry is a valuable tool in international GNE myopathy research. The registry expands the knowledge of GNE myopathy genetics and epidemiology. The registry allows monitoring of the disease progression and discovering diversity. The data suggest possible genotype–phenotype correlation in GNE myopathy.
GNE myopathy is a rare distal myopathy, caused by mutations in the GNE gene, affecting sialic acid synthesis. Clinical presentation varies from asymptomatic early stage patients to severely debilitating forms. This first report describes clinical presentations and severity of the disease, using data of 150 patients collected via the on-line, patient-reported registry component of the GNE Myopathy Disease Monitoring Program (GNEM-DMP). Disease progression was prospectively analysed, over a 2-year period, using the GNE myopathy functional activity scale (GNEM-FAS). The average annual rates of decline in function were estimated at −9.6% and −3.2% in ambulant and non-ambulant patients respectively. 4.3% of participants became non-ambulant within one year. The mean time from onset to required use of a wheelchair was 11.9 years. Mean delay of genetic diagnosis from symptom onset was 5.2 years. Mutation specific analysis demonstrated genotype–phenotype relationships; i.e. p.Ala662Val may be associated with a more severe phenotype, compared to p.Val727Met. Patients with compound heterozygous mutation in epimerase and kinase domain appeared to have a more severe phenotype compared to patients with both mutations located within one domain. Acknowledging the limitations of the study, these findings suggest that the severity of the GNE mutations affects disease severity. The GNEM-DMP is a useful data collection tool, prospectively measuring the progression of GNE myopathy, which could play an important role in translational and clinical research and further understanding of genotype–phenotype correlations.
Collapse
Affiliation(s)
- Oksana Pogoryelova
- The John Walton Muscular Dystrophy Research Centre, Newcastle University, UK.
| | - Phillip Cammish
- The John Walton Muscular Dystrophy Research Centre, Newcastle University, UK
| | | | - Zohar Argov
- Department of Neurology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | | | - Yiumo Chan
- Ultragenyx Pharmaceutical Inc. Novato, CA, USA
| | - Shahriar Nafissi
- Department of Neurology, Tehran University of Medical Sciences, Tehran, Iran
| | - Hosein Shamshiri
- Department of Neurology, Tehran University of Medical Sciences, Tehran, Iran
| | - Emil Kakkis
- Ultragenyx Pharmaceutical Inc. Novato, CA, USA
| | - Hanns Lochmüller
- The John Walton Muscular Dystrophy Research Centre, Newcastle University, UK
| |
Collapse
|
23
|
Callan A, Capkun G, Vasanthaprasad V, Freitas R, Needham M. A Systematic Review and Meta-Analysis of Prevalence Studies of Sporadic Inclusion Body Myositis. J Neuromuscul Dis 2017; 4:127-137. [DOI: 10.3233/jnd-160198] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
| | | | | | - Rita Freitas
- Wellmera AG, Basel (at time of research), Switzerland
| | - Merrilee Needham
- IIID Murdoch University, Notre Dame University and Department of Neurology, Fiona Stanley Hospital, Western Australia, Australia
| |
Collapse
|
24
|
Substantial deficiency of free sialic acid in muscles of patients with GNE myopathy and in a mouse model. PLoS One 2017; 12:e0173261. [PMID: 28267778 PMCID: PMC5340369 DOI: 10.1371/journal.pone.0173261] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 02/17/2017] [Indexed: 12/22/2022] Open
Abstract
GNE myopathy (GNEM), also known as hereditary inclusion body myopathy (HIBM), is a late- onset, progressive myopathy caused by mutations in the GNE gene encoding the enzyme responsible for the first regulated step in the biosynthesis of sialic acid (SA). The disease is characterized by distal muscle weakness in both the lower and upper extremities, with the quadriceps muscle relatively spared until the late stages of disease. To explore the role of SA synthesis in the disease, we conducted a comprehensive and systematic analysis of both free and total SA levels in a large cohort of GNEM patients and a mouse model. A sensitive LC/MS/MS assay was developed to quantify SA in serum and muscle homogenates. Mean serum free SA level was 0.166 μg/mL in patients and 18% lower (p<0.001) than that of age-matched control samples (0.203 μg/mL). In biopsies obtained from patients, mean free SA levels of different muscles ranged from 0.046–0.075 μg/μmol Cr and were markedly lower by 72–85% (p<0.001) than free SA from normal controls. Free SA was shown to constitute a small fraction (3–7%) of the total SA pool in muscle tissue. Differences in mean total SA levels in muscle from patients compared with normal controls were less distinct and more variable between different muscles, suggesting a small subset of sialylation targets could be responsible for the pathogenesis of GNEM. Normal quadriceps had significantly lower levels of free SA (reduced by 39%) and total SA (reduced by 53%) compared to normal gastrocnemius. A lower SA requirement for quadriceps may be linked to the reported quadriceps sparing in GNEM. Analysis of SA levels in GneM743T/M743T mutant mice corroborated the human study results. These results show that serum and muscle free SA is severely reduced in GNEM, which is consistent with the biochemical defect in SA synthesis associated with GNE mutations. These results therefore support the approach of reversing SA depletion as a potential treatment for GNEM patients.
Collapse
|
25
|
Chen T, Lu XH, Wang HF, Ban R, Liu HX, Shi Q, Wang Q, Yin X, Pu CQ. Oculopharyngeal Weakness, Hypophrenia, Deafness, and Impaired Vision: A Novel Autosomal Dominant Myopathy with Rimmed Vacuoles. Chin Med J (Engl) 2016; 129:1805-10. [PMID: 27453229 PMCID: PMC4976568 DOI: 10.4103/0366-6999.186642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Background: Myopathies with rimmed vacuoles are a heterogeneous group of muscle disorders with progressive muscle weakness and varied clinical manifestations but similar features in muscle biopsies. Here, we describe a novel autosomal dominant myopathy with rimmed vacuoles in a large family with 11 patients of three generations affected. Methods: A clinical study including family history, obstetric, pediatric, and development history was recorded. Clinical examinations including physical examination, electromyography (EMG), serum creatine kinase (CK), bone X-rays, and brain magnetic resonance imaging (MRI) were performed in this family. Open muscle biopsies were performed on the proband and his mother. To find the causative gene, the whole-exome sequencing was carried out. Results: Disease onset was from adolescence to adulthood, but the affected patients of the third generation presented an earlier onset and more severe clinical manifestations than the older generations. Clinical features were characterized as dysarthria, dysphagia, external ophthalmoplegia, limb weakness, hypophrenia, deafness, and impaired vision. However, not every patient manifested all symptoms. Serum CK was mildly elevated and EMG indicated a myopathic pattern. Brain MRI showed cerebellum and brain stem mildly atrophy. Rimmed vacuoles and inclusion bodies were observed in muscle biopsy. The whole-exome sequencing was performed, but the causative gene has not been found. Conclusions: We reported a novel autosomal dominant myopathy with rimmed vacuoles characterized by dysarthria, dysphagia, external ophthalmoplegia, limb weakness, hypophrenia, deafness, and impaired vision, but the causative gene has not been found and needs further study.
Collapse
Affiliation(s)
- Ting Chen
- Department of Neurology, Chinese PLA General Hospital, Beijing 100853; Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiang-Hui Lu
- Department of Neurology, Chinese PLA General Hospital, Beijing 100853; Department of Neurology, Hainan Branch of Chinese PLA General Hospital, Sanya, Hainan Province, China
| | - Hui-Fang Wang
- Department of Neurology, Chinese PLA General Hospital, Beijing 100853, China
| | - Rui Ban
- Department of Neurology, Chinese PLA General Hospital, Beijing 100853, China
| | - Hua-Xu Liu
- Department of Neurology, Chinese PLA General Hospital, Beijing 100853, China
| | - Qiang Shi
- Department of Neurology, Chinese PLA General Hospital, Beijing 100853, China
| | - Qian Wang
- Department of Neurology, Chinese PLA General Hospital, Beijing 100853, China
| | - Xi Yin
- Department of Neurology, Chinese PLA General Hospital, Beijing 100853, China
| | - Chuan-Qiang Pu
- Department of Neurology, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
26
|
Bennmann D, Weidemann W, Thate A, Kreuzmann D, Horstkorte R. Aberrant O-GlcNAcylation disrupts GNE enzyme activity in GNE myopathy. FEBS J 2016; 283:2285-94. [PMID: 27037841 DOI: 10.1111/febs.13729] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 02/08/2016] [Accepted: 04/01/2016] [Indexed: 12/13/2022]
Abstract
UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE) is the key enzyme for the biosynthesis of sialic acids. Sialic acids are terminal monosaccharides of glycoconjugates and gangliosides, which have an essential influence on various cell interactions. The sialylation of proteins varies during development, aging, and pathogenesis of degenerative diseases such as Morbus Alzheimer, diabetes mellitus type II, or myopathies. Mutation of methionine 743 in the GNE leads to a 30% reduction of the enzyme activity and is responsible for an aggressive form of GNE myopathy. GNE myopathy or hereditary inclusion body myopathy (HIBM) is an age-dependent muscular dystrophy. Here, we analyzed the impact of the exchange of methionine to threonine at position 743 which introduces an additional potential phosphorylation/O-GlcNAcylation site. We found increased O-GlcNAcylation of the M743T variant compared to the wild-type GNE. In addition, removal of the O-GlcNAc of the M743T variant resulted in an increased activity comparable to activity of the wild-type GNE. Furthermore, the half-life of the M743T variant is two times longer than for the wild-type GNE protein. This study provides that the balance of phosphorylation and O-GlcNAcylation is decisive involved in efficiency and regulation of GNE.
Collapse
Affiliation(s)
- Dorit Bennmann
- Institute for Physiological Chemistry, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Wenke Weidemann
- Institute for Physiological Chemistry, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Annett Thate
- Institute for Physiological Chemistry, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Denise Kreuzmann
- Institute for Physiological Chemistry, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Rüdiger Horstkorte
- Institute for Physiological Chemistry, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
27
|
Das B, Goyal MK, Bhatkar SR, Vinny PW, Modi M, Lal V, Gayathri N, Mahadevan A, Radotra BD. Hereditary inclusion body myopathy: A myopathy with unique topography of weakness, yet frequently misdiagnosed: Case series and review of literature. Ann Indian Acad Neurol 2016; 19:119-22. [PMID: 27011643 PMCID: PMC4782528 DOI: 10.4103/0972-2327.167709] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Background: Hereditary inclusion body myopathy (HIBM) continues to be underrecognized clinically despite a characteristic topography of weakness with total sparing of quadriceps muscles and patient being wheelchair bound. We report seven patients of HIBM from four families in North India. Methods and Results: Seven patients from four different families were diagnosed to have HIBM. There was no consanguinity in any of the families. While one patient had two affected siblings, another had one affected siblings and the family history was noncontributory in two patients. Two of the siblings were available for examination and confirmed clinically to be suffering from HIBM. Among the seven patients, only one was still ambulatory at the time of diagnosis. Discussion: This is the first case report of occurrence of HIBM in North Indian population. Despite its unique clinical presentation, HIBM is frequently misdiagnosed resulting in unnecessary diagnostic and therapeutic interventions. A high index of suspicion of this rare myopathy along with proper clinical examination may go a long way in accurate prognostication and management of these patients.
Collapse
Affiliation(s)
- Biplab Das
- Department of Neurology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Manoj Kumar Goyal
- Department of Neurology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Sanat Ramchandra Bhatkar
- Department of Neurology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Pulikottil Wilson Vinny
- Department of Neurology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Manish Modi
- Department of Neurology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Vivek Lal
- Department of Neurology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - N Gayathri
- Department of Neuropathology, National Institute of Mental Health and Neuro Sciences, Bangalore, Karnataka, India
| | - Anitha Mahadevan
- Department of Neuropathology, National Institute of Mental Health and Neuro Sciences, Bangalore, Karnataka, India
| | - Bishan Dass Radotra
- Department of Hisopathology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
28
|
Chamova T, Guergueltcheva V, Gospodinova M, Krause S, Cirak S, Kaprelyan A, Angelova L, Mihaylova V, Bichev S, Chandler D, Naydenov E, Grudkova M, Djukmedzhiev P, Voit T, Pogoryelova O, Lochmüller H, Goebel HH, Bahlo M, Kalaydjieva L, Tournev I. GNE myopathy in Roma patients homozygous for the p.I618T founder mutation. Neuromuscul Disord 2015; 25:713-8. [DOI: 10.1016/j.nmd.2015.07.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Revised: 06/07/2015] [Accepted: 07/07/2015] [Indexed: 02/02/2023]
|
29
|
Shi Y, Xu X, Fang M, Zhang M, Li Y, Gillespie B, Yorke S, Yang N, McKew JC, Gahl WA, Huizing M, Carrillo-Carrasco N, Wang AQ. Quantitative hydrophilic interaction chromatography-mass spectrometry analysis of N-acetylneuraminic acid and N-acetylmannosamine in human plasma. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 1000:105-11. [PMID: 26218770 PMCID: PMC4544686 DOI: 10.1016/j.jchromb.2015.07.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 07/01/2015] [Accepted: 07/06/2015] [Indexed: 01/27/2023]
Abstract
N-acetylneuraminic acid (Neu5Ac or NANA) is the most predominant sialic acid in mammals. As a terminal component in many glycoproteins and glycolipids, sialic acid is believed to be an important biomarker related to various diseases. Its precursor, N-acetylmannosamine (ManNAc), is being investigated as a potential treatment for GNE myopathy. In this work, we developed two highly sensitive and selective liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods for the quantitation of ManNAc and free Neu5Ac in human plasma. A fit-for-purpose approach was adopted during method validation and sample analysis. To measure the endogenous compounds and overcome the interference from plasma samples, a surrogate matrix that contained 5% bovine serum albumin (BSA) was used for the preparation of calibration standards and certain levels of quality control (QC) samples. QC samples at higher concentrations were prepared in the authentic matrix (human plasma) to best mimic incurred samples. For both methods, an Ostro 96-well phospholipid removal plate was used for sample extraction, which efficiently removed the phospholipids from the plasma samples prior to LC injection, eliminated matrix effect, and improved sensitivity. Chromatographic separation was achieved using hydrophilic interaction chromatography (HILIC) and gradient elution in order to retain the two polar compounds. The lower limit of quantitation (LLOQ) for ManNAc and Neu5Ac was 10.0 and 25.0ng/mL, respectively. The overall accuracy of the two assays was within 100%±8.3% based on three levels of QC samples. Inter- and intra-run precision (coefficient of variation (%CV)) across three analytical runs was less than 6.7% for ManNAc and less than 10.8% for Neu5Ac. These methods have been validated to support clinical studies.
Collapse
Affiliation(s)
- Yifan Shi
- Alliance Pharma, 17 Lee Boulevard, Malvern, PA 19355, USA.
| | - Xin Xu
- Therapeutics for Rare and Neglected Diseases, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Meng Fang
- Alliance Pharma, 17 Lee Boulevard, Malvern, PA 19355, USA
| | - Michael Zhang
- Alliance Pharma, 17 Lee Boulevard, Malvern, PA 19355, USA
| | - Yinghe Li
- Alliance Pharma, 17 Lee Boulevard, Malvern, PA 19355, USA
| | - Brad Gillespie
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Selwyn Yorke
- New Zealand Pharmaceuticals, 68 Weld Street, RD2, Palmerston North 4472, New Zealand
| | - Nora Yang
- Therapeutics for Rare and Neglected Diseases, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - John C McKew
- Therapeutics for Rare and Neglected Diseases, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - William A Gahl
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20895, USA
| | - Marjan Huizing
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20895, USA
| | - Nuria Carrillo-Carrasco
- Therapeutics for Rare and Neglected Diseases, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Amy Qiu Wang
- Therapeutics for Rare and Neglected Diseases, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| |
Collapse
|
30
|
Leoyklang P, Malicdan MC, Yardeni T, Celeste F, Ciccone C, Li X, Jiang R, Gahl WA, Carrillo-Carrasco N, He M, Huizing M. Sialylation of Thomsen-Friedenreich antigen is a noninvasive blood-based biomarker for GNE myopathy. Biomark Med 2015; 8:641-52. [PMID: 25123033 DOI: 10.2217/bmm.14.2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM The exact pathomechanism of GNE myopathy remains elusive, but likely involves aberrant sialylation. We explored sialylation status of blood-based glycans as potential disease markers. METHODS We employed immunoblotting, lectin histochemistry and mass spectrometry. RESULTS GNE myopathy muscle showed hyposialylation of predominantly O-linked glycans. The O-linked glycome of patients' plasma compared with controls showed increased amounts of desialylated Thomsen-Friedenreich (T)-antigen, and/or decreased amounts of its sialylated form, ST-antigen. Importantly, all patients had increased T/ST ratios compared with controls. These ratios were normalized in a patient treated with intravenous immunoglobulins as a source of sialic acid. DISCUSSION GNE myopathy clinical trial data will reveal whether T/ST ratios correlate to muscle function. CONCLUSION Plasma T/ST ratios are a robust blood-based biomarker for GNE myopathy, and may also help explain the pathology and course of the disease.
Collapse
Affiliation(s)
- Petcharat Leoyklang
- Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Activation of the Unfolded Protein Response in Sporadic Inclusion-Body Myositis but Not in Hereditary GNE Inclusion-Body Myopathy. J Neuropathol Exp Neurol 2015; 74:538-46. [PMID: 25978849 DOI: 10.1097/nen.0000000000000196] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Muscle fibers in patients with sporadic inclusion-body myositis (s-IBM),the most common age-associated myopathy, are characterized by autophagic vacuoles and accumulation of ubiquitinated and congophilic multiprotein aggregates that contain amyloid-β and phosphorylated tau. Muscle fibers of autosomal-recessive hereditary inclusion-body myopathy caused by the GNE mutation (GNE-h-IBM) display similar pathologic features, except with less pronounced congophilia. Accumulation of unfolded/misfolded proteins inside the endoplasmic reticulum (ER) lumen leads to ER stress, which elicits the unfolded protein response (UPR) as a protective mechanism. Here we demonstrate for the first time that UPR is activated in s-IBM muscle biopsies, since there was 1) increased activating transcription factor 4 (ATF4) protein and increased mRNA of its target C/EBP homologous protein; 2) cleavage of the ATF6 and increased mRNA of its target glucose-regulated protein 78; and 3) an increase of the spliced form of X-box binding protein 1 and increased mRNA of ER degradation-enhancing α-mannosidase-like protein, target of heterodimer of cleaved ATF6 and spliced X-box binding protein 1. In contrast, we did not find similar evidence of the UPR induction in GNE-h-IBM patient muscle, suggesting that different intracellular mechanisms might lead to similar pathologic phenotypes. Interestingly, cultured GNE-h-IBM muscle fibers had a robust UPR response to experimental ER stress stimuli, suggesting that the GNE mutation per se is not responsible for the lack of UPR in GNE-h-IBM biopsied muscle.
Collapse
|
32
|
Rose MR, Jones K, Leong K, Walter MC, Miller J, Dalakas MC, Brassington R, Griggs R. Treatment for inclusion body myositis. Cochrane Database Syst Rev 2015; 7:CD001555. [PMID: 35658164 PMCID: PMC9645777 DOI: 10.1002/14651858.cd001555.pub5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Inclusion body myositis (IBM) is a late-onset inflammatory muscle disease (myopathy) associated with progressive proximal and distal limb muscle atrophy and weakness. Treatment options have attempted to target inflammatory and atrophic features of this condition (for example with immunosuppressive and immunomodulating drugs, anabolic steroids, and antioxidant treatments), although as yet there is no known effective treatment for reversing or minimising the progression of inclusion body myositis. In this review we have considered the benefits, adverse effects, and costs of treatment in targeting cardinal effects of the condition, namely muscle atrophy, weakness, and functional impairment. OBJECTIVES To assess the effects of treatment for IBM. SEARCH METHODS On 7 October 2014 we searched the Cochrane Neuromuscular Disease Group Specialized Register, the Cochrane Central Register for Controlled Trials (CENTRAL), MEDLINE, and EMBASE. Additionally in November 2014 we searched clinical trials registries for ongoing or completed but unpublished trials. SELECTION CRITERIA We considered randomised or quasi-randomised trials, including cross-over trials, of treatment for IBM in adults compared to placebo or any other treatment for inclusion in the review. We specifically excluded people with familial IBM and hereditary inclusion body myopathy, but we included people who had connective tissue and autoimmune diseases associated with IBM, which may or may not be identified in trials. We did not include studies of exercise therapy or dysphagia management, which are topics of other Cochrane systematic reviews. DATA COLLECTION AND ANALYSIS We used standard Cochrane methodological procedures. MAIN RESULTS The review included 10 trials (249 participants) using different treatment regimens. Seven of the 10 trials assessed single agents, and 3 assessed combined agents. Many of the studies did not present adequate data for the reporting of the primary outcome of the review, which was the percentage change in muscle strength score at six months. Pooled data from two trials of interferon beta-1a (n = 58) identified no important difference in normalised manual muscle strength sum scores from baseline to six months (mean difference (MD) -0.06, 95% CI -0.15 to 0.03) between IFN beta-1a and placebo (moderate-quality evidence). A single trial of methotrexate (MTX) (n = 44) provided moderate-quality evidence that MTX did not arrest or slow disease progression, based on reported percentage change in manual muscle strength sum scores at 12 months. None of the fully published trials were adequately powered to detect a treatment effect. We assessed six of the nine fully published trials as providing very low-quality evidence in relation to the primary outcome measure. Three trials (n = 78) compared intravenous immunoglobulin (combined in one trial with prednisone) to a placebo, but we were unable to perform meta-analysis because of variations in study analysis and presentation of trial data, with no access to the primary data for re-analysis. Other comparisons were also reported in single trials. An open trial of anti-T lymphocyte immunoglobulin (ATG) combined with MTX versus MTX provided very low-quality evidence in favour of the combined therapy, based on percentage change in quantitative muscle strength sum scores at 12 months (MD 12.50%, 95% CI 2.43 to 22.57). Data from trials of oxandrolone versus placebo, azathioprine (AZA) combined with MTX versus MTX, and arimoclomol versus placebo did not allow us to report either normalised or percentage change in muscle strength sum scores. A complete analysis of the effects of arimoclomol is pending data publication. Studies of simvastatin and bimagrumab (BYM338) are ongoing. All analysed trials reported adverse events. Only 1 of the 10 trials interpreted these for statistical significance. None of the trials included prespecified criteria for significant adverse events. AUTHORS' CONCLUSIONS Trials of interferon beta-1a and MTX provided moderate-quality evidence of having no effect on the progression of IBM. Overall trial design limitations including risk of bias, low numbers of participants, and short duration make it difficult to say whether or not any of the drug treatments included in this review were effective. An open trial of ATG combined with MTX versus MTX provided very low-quality evidence in favour of the combined therapy based on the percentage change data given. We were unable to draw conclusions from trials of IVIg, oxandrolone, and AZA plus MTX versus MTX. We need more randomised controlled trials that are larger, of longer duration, and that use fully validated, standardised, and responsive outcome measures.
Collapse
Affiliation(s)
- Michael R Rose
- King's College Hospital NHS Foundation TrustDepartment of NeurologyAcademic Neuroscience CentreDenmark HillLondonUKSE5 9RS
| | - Katherine Jones
- King's College Hospital NHS Foundation TrustDepartment of NeurologyAcademic Neuroscience CentreDenmark HillLondonUKSE5 9RS
| | - Kevin Leong
- NHLI, Imperial College LondonICTEM Builiding; 4th FloorHammersmith CampusW12 0HSUK
| | - Maggie C Walter
- Ludwig‐Maximilians‐UniversityDepartment of Neurology, Friedrich‐Baur‐Institute, Laboratory for Molecular MyologyZiemssenstr.1MunichGermany80336
| | - James Miller
- Royal Victoria Infirmaryc/o Department of Neurology, Newcastle upon Tyne Hospitals TrustQueen Victoria RoadNewcastle Upon TyneUKNE1 4LP
| | - Marinos C Dalakas
- Thomas Jefferson UniversityDepartment of Neurology, Sidney Kimmel Medical College901 Walnut Street4th FloorPhiladelphiaPAUSA19107
| | - Ruth Brassington
- National Hospital for Neurology and NeurosurgeryMRC Centre for Neuromuscular DiseasesPO Box 114LondonUKWC1N 3BG
| | - Robert Griggs
- University of RochesterDepartment of Neurology601 Elmwood AvenueRochesterNYUSA14642
| | | |
Collapse
|
33
|
Singh R, Arya R. GNE Myopathy and Cell Apoptosis: A Comparative Mutation Analysis. Mol Neurobiol 2015; 53:3088-3101. [PMID: 25976366 DOI: 10.1007/s12035-015-9191-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 04/22/2015] [Indexed: 10/23/2022]
Abstract
In a number of genetic disorders such as GNE myopathy, it is not clear how mutations in target genes result in disease phenotype. GNE myopathy is a progressive neuro-degenerative disorder associated with homozygous or compound heterozygous missense mutations in either epimerase or kinase domain of UDP-GlcNAc 2-epimerase/ManNAc kinase (GNE). This bifunctional enzyme catalyses the rate limiting step in sialic acid biosynthesis. Many mechanisms have been suggested as possible cause of muscle degeneration. These include hyposialylation of critical proteins, defects in cytoskeletal network, sarcomere organization and apoptosis. In order to elucidate the role of GNE in cell apoptosis, we have used HEK cell-based model system overexpressing pathologically relevant GNE mutations. These cells display a reduction in the levels of sialic acid-bound glycoconjugates. These mutants GNE overexpressing cells have defect in cell proliferation as compared to vector or wild-type GNE (wtGNE) controls. Moreover, effect of different GNE mutations on cell apoptosis was also observed using staining with annexin V-FITC and TUNEL assay. The downstream apoptosis signalling pathway involving activation of caspases and increased PARP cleavage were observed in all GNE mutant cell lines. In addition, morpho-structural changes in mitochondria in cells overexpressing different GNE mutants were noticed by transmission electron microscopy, and mitochondrial transmembrane potential was found to be altered in absence of functional GNE. Our results clearly indicate role of GNE in mitochondria-dependent cell apoptosis and provide insights into the pathomechanism of GNE myopathy.
Collapse
Affiliation(s)
- Reema Singh
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ranjana Arya
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
34
|
Haghighi A, Nafissi S, Qurashi A, Tan Z, Shamshiri H, Nilipour Y, Haghighi A, Desnick RJ, Kornreich R. Genetics of GNE myopathy in the non-Jewish Persian population. Eur J Hum Genet 2015; 24:243-51. [PMID: 25966635 DOI: 10.1038/ejhg.2015.78] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 12/27/2014] [Accepted: 01/07/2015] [Indexed: 12/31/2022] Open
Abstract
GNE myopathy is an autosomal recessive adult-onset disorder characterized by progressive muscle atrophy and weakness, initially involving the distal muscles, while often sparing the quadriceps. It is caused by variants in the GNE gene that encodes a key bifunctional enzyme in the sialic acid biosynthetic pathway. We investigated the clinical and molecular characteristics of 18 non-Jewish Persian patients from 11 unrelated GNE myopathy families. In addition, we reviewed the previously reported cases and suggest genotype-phenotype correlations for the identified variants. Comprehensive clinical and laboratory evaluations were carried out. Sequencing of the GNE gene was performed using genomic DNA from the patients. Screening of the identified variants was performed in all relevant family members. Molecular analyses identified three causative homozygous GNE variants in 11 families: c.2228T>C (p. M743T) in 7, c.830G>A (p.R277Q) in 2, and one novel variation (c.804G>A) in 2 families that results in a synonymous codon change (p.L268=) and likely creates a novel splice site affecting the protein function. This study confirms that c.2228T>C (p.M743T) is the most prevalent disease-causing variant in the non-Jewish Persian population, but other GNE variants can cause GNE myopathy in this population. The patients with all three different variants had similar ages of onset. The youngest patient was an 18-year-old girl in whom the c.830G>A (p.R277Q) variant was identified, whereas the oldest onset age (31 years) was seen in a male patient with c.804G>A (p.L268=). The results of this investigation expand our knowledge about the genotype-phenotype correlations in GNE myopathy and aid in clinical management and therapeutic interventions.
Collapse
Affiliation(s)
- Alireza Haghighi
- Department of Genetics, Harvard Medical School, Boston, MA, USA.,Department of Medicine and the Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, MA, USA.,Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Shahriar Nafissi
- Department of Neurology, Iranian Center of Neurological Research, Tehran University of Medical Sciences, Shariati Hospital, Tehran, Iran
| | - Abrar Qurashi
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zheng Tan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hosein Shamshiri
- Department of Neurology, Iranian Center of Neurological Research, Tehran University of Medical Sciences, Shariati Hospital, Tehran, Iran
| | - Yalda Nilipour
- Department of Pathology, Pediatric Pathology Research Center, Mofid Children Hospital, Shahid Beheshti Medical University, Tehran, Iran
| | | | - Robert J Desnick
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ruth Kornreich
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
35
|
Abstract
GNE myopathy is an autosomal recessive muscle disease caused by biallelic mutations in GNE, a gene encoding for a single protein with key enzymatic activities, UDP-N-acetylglucosamine 2-epimerase and N-acetylmannosamine kinase, in sialic acid biosynthetic pathway. The diagnosis should be considered primarily in patients presenting with distal weakness (foot drop) in early adulthood (other onset symptoms are possible too). The disease slowly progresses to involve other lower and upper extremities' muscles, with marked sparing of the quadriceps. Characteristic findings on biopsies of affected muscles include 'rimmed' (autophagic) vacuoles, aggregation of various proteins and fibre size variation. The diagnosis is confirmed by sequencing of the GNE gene. Note that we use a new mutation nomenclature based on the longest transcript (GenBank: NM_001128227), which encodes a 31-amino acid longer protein than the originally described one (GenBank: NM_005476), which has been used previously in most papers. Based upon the pathophysiology of the disease, recent clinical trials as well as early gene therapy trials have evaluated the use of sialic acid or N-acetylmannosamine (a precursor of sialic acid) in patients with GNE myopathy. Now that therapies are under investigation, it is critical that a timely and accurate diagnosis is made in patients with GNE myopathy.
Collapse
Affiliation(s)
- Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | - Nuria Carrillo-Carrasco
- Therapeutics for Rare and Neglected Diseases, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA
| | - Zohar Argov
- Department of Neurology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
36
|
Celeste FV, Vilboux T, Ciccone C, de Dios JK, Malicdan MCV, Leoyklang P, McKew JC, Gahl WA, Carrillo-Carrasco N, Huizing M. Mutation update for GNE gene variants associated with GNE myopathy. Hum Mutat 2015; 35:915-26. [PMID: 24796702 DOI: 10.1002/humu.22583] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 04/23/2014] [Indexed: 12/31/2022]
Abstract
The GNE gene encodes the rate-limiting, bifunctional enzyme of sialic acid biosynthesis, uridine diphosphate-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE). Biallelic GNE mutations underlie GNE myopathy, an adult-onset progressive myopathy. GNE myopathy-associated GNE mutations are predominantly missense, resulting in reduced, but not absent, GNE enzyme activities. The exact pathomechanism of GNE myopathy remains unknown, but likely involves aberrant (muscle) sialylation. Here, we summarize 154 reported and novel GNE variants associated with GNE myopathy, including 122 missense, 11 nonsense, 14 insertion/deletions, and seven intronic variants. All variants were deposited in the online GNE variation database (http://www.dmd.nl/nmdb2/home.php?select_db=GNE). We report the predicted effects on protein function of all variants well as the predicted effects on epimerase and/or kinase enzymatic activities of selected variants. By analyzing exome sequence databases, we identified three frequently occurring, unreported GNE missense variants/polymorphisms, important for future sequence interpretations. Based on allele frequencies, we estimate the world-wide prevalence of GNE myopathy to be ∼4-21/1,000,000. This previously unrecognized high prevalence confirms suspicions that many patients may escape diagnosis. Awareness among physicians for GNE myopathy is essential for the identification of new patients, which is required for better understanding of the disorder's pathomechanism and for the success of ongoing treatment trials.
Collapse
Affiliation(s)
- Frank V Celeste
- Therapeutics for Rare and Neglected Diseases, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Chaouch A, Brennan KM, Hudson J, Longman C, McConville J, Morrisson PJ, Farrugia ME, Petty R, Stewart W, Norwood F, Horvath R, Chinnery PF, Costigan D, Winer J, Polvikoski T, Healey E, Sarkozy A, Guglieri M, Evangelista T, Pogoryelova O, Eagle M, Bushby K, Straub V, Lochmüller H. Two recurrent mutations are associated with GNE myopathy in the North of Britain. J Neurol Neurosurg Psychiatry 2014; 85:1359-65. [PMID: 24695763 PMCID: PMC6625961 DOI: 10.1136/jnnp-2013-306314] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
OBJECTIVE GNE myopathy is a rare recessive myopathy associated with inclusion bodies on muscle biopsy. The clinical phenotype is associated with distal muscle weakness with quadriceps sparing. Most of the current information on GNE myopathy has been obtained through studies of Jewish and Japanese patient cohorts carrying founder mutations in the GNE gene. However, little is known about GNE myopathy in Europe where the prevalence is thought to be very low. METHODS Patients were referred through the National Specialist Commissioning Team service for limb-girdle muscular dystrophies at Newcastle (UK). All patients harbouring mutations in the GNE gene were recruited for our study. Detailed clinical and genetic data as well as muscle MRIs and muscle biopsies were reviewed. RESULTS We identified 26 patients harbouring mutations in the GNE gene. Two previously reported mutations (c.1985C>T, p.Ala662Val and c.1225G>T, p.Asp409Tyr) were prevalent in the Scottish, Northern Irish and Northern English populations; with 90% of these patients carrying at least one of the two mutations. Clinically, we confirmed the homogenous pattern of selective quadriceps sparing but noted additional features like asymmetry of weakness at disease onset. CONCLUSIONS GNE myopathy is an important diagnosis to consider in patients presenting with distal leg muscle weakness. We report, for the first time, two common mutations in the north of Britain and highlight the broader spectrum of clinical phenotypes. We also propose that the prevalence of GNE myopathy may be underestimated due to the frequent absence of rimmed vacuoles in the muscle biopsy.
Collapse
Affiliation(s)
- Amina Chaouch
- Institute of Genetic Medicine, MRC Centre for Neuromuscular Disease,
Newcastle University, Newcastle upon Tyne, UK
| | - Kathryn M Brennan
- Institute of Genetic Medicine, MRC Centre for Neuromuscular Disease,
Newcastle University, Newcastle upon Tyne, UK
- Institute of Neurological Sciences, Glasgow, UK
| | - Judith Hudson
- Institute of Genetic Medicine, MRC Centre for Neuromuscular Disease,
Newcastle University, Newcastle upon Tyne, UK
| | - Cheryl Longman
- West of Scotland Regional Genetics Service, Southern General
Hospital, Glasgow, UK
| | | | | | | | | | | | - Fiona Norwood
- Department of Neurology, King’s College Hospital, London,
UK
| | - Rita Horvath
- Institute of Genetic Medicine, MRC Centre for Neuromuscular Disease,
Newcastle University, Newcastle upon Tyne, UK
| | - Patrick F Chinnery
- Institute of Genetic Medicine, MRC Centre for Neuromuscular Disease,
Newcastle University, Newcastle upon Tyne, UK
| | - Donald Costigan
- National Institute for Neurology and Neurosurgery, Beaumont
Hospital, Dublin, Ireland
| | - John Winer
- Birmingham Muscle and Nerve Centre, Queen Elizabeth, Hospital,
Birmingham, UK
| | - Tuomo Polvikoski
- Institute of Genetic Medicine, MRC Centre for Neuromuscular Disease,
Newcastle University, Newcastle upon Tyne, UK
| | - Estelle Healey
- Institute of Pathology, Royal Victoria Hospital, Belfast, UK
| | - Anna Sarkozy
- Institute of Genetic Medicine, MRC Centre for Neuromuscular Disease,
Newcastle University, Newcastle upon Tyne, UK
| | - Michela Guglieri
- Institute of Genetic Medicine, MRC Centre for Neuromuscular Disease,
Newcastle University, Newcastle upon Tyne, UK
| | - Teresinha Evangelista
- Institute of Genetic Medicine, MRC Centre for Neuromuscular Disease,
Newcastle University, Newcastle upon Tyne, UK
| | - Oksana Pogoryelova
- Institute of Genetic Medicine, MRC Centre for Neuromuscular Disease,
Newcastle University, Newcastle upon Tyne, UK
| | - Michelle Eagle
- Institute of Genetic Medicine, MRC Centre for Neuromuscular Disease,
Newcastle University, Newcastle upon Tyne, UK
| | - Kate Bushby
- Institute of Genetic Medicine, MRC Centre for Neuromuscular Disease,
Newcastle University, Newcastle upon Tyne, UK
| | - Volker Straub
- Institute of Genetic Medicine, MRC Centre for Neuromuscular Disease,
Newcastle University, Newcastle upon Tyne, UK
| | - Hanns Lochmüller
- Institute of Genetic Medicine, MRC Centre for Neuromuscular Disease,
Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
38
|
Rose MR, Dalakas M, Griggs R, Leong K, Miller J, Walter MC, Jones K. Treatment for inclusion body myositis. THE COCHRANE DATABASE OF SYSTEMATIC REVIEWS 2014. [DOI: 10.1002/14651858.cd001555.pub4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
39
|
de Dios JKL, Shrader JA, Joe GO, McClean JC, Williams K, Evers R, Malicdan MCV, Ciccone C, Mankodi A, Huizing M, McKew JC, Bluemke DA, Gahl WA, Carrillo-Carrasco N. Atypical presentation of GNE myopathy with asymmetric hand weakness. Neuromuscul Disord 2014; 24:1063-7. [PMID: 25182749 DOI: 10.1016/j.nmd.2014.07.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 07/09/2014] [Accepted: 07/24/2014] [Indexed: 01/13/2023]
Abstract
GNE myopathy is a rare autosomal recessive muscle disease caused by mutations in GNE, the gene encoding the rate-limiting enzyme in sialic acid biosynthesis. GNE myopathy usually manifests in early adulthood with distal myopathy that progresses slowly and symmetrically, first involving distal muscles of the lower extremities, followed by proximal muscles with relative sparing of the quadriceps. Upper extremities are typically affected later in the disease. We report a patient with GNE myopathy who presented with asymmetric hand weakness. He had considerably decreased left grip strength, atrophy of the left anterior forearm and fibro-fatty tissue replacement of left forearm flexor muscles on T1-weighted magnetic resonance imaging. The patient was an endoscopist and thus the asymmetric hand involvement may be associated with left hand overuse in daily repetitive pinching and gripping movements, highlighting the possible impact of environmental factors on the progression of genetic muscle conditions.
Collapse
Affiliation(s)
- John Karl L de Dios
- Medical Genetics Branch (MGB), National Human Genome Research Institute (NHGRI), National Institutes of Health (NIH), USA
| | | | - Galen O Joe
- Department of Rehabilitation Medicine, NIH Clinical Center, USA
| | | | - Kayla Williams
- Department of Rehabilitation Medicine, NIH Clinical Center, USA
| | - Robert Evers
- Radiology and Imaging Sciences, NIH Clinical Center, USA
| | - May Christine V Malicdan
- Medical Genetics Branch (MGB), National Human Genome Research Institute (NHGRI), National Institutes of Health (NIH), USA
| | - Carla Ciccone
- Medical Genetics Branch (MGB), National Human Genome Research Institute (NHGRI), National Institutes of Health (NIH), USA
| | - Ami Mankodi
- National Institute of Neurological Disorders and Stroke (NINDS), NIH, USA
| | - Marjan Huizing
- Medical Genetics Branch (MGB), National Human Genome Research Institute (NHGRI), National Institutes of Health (NIH), USA
| | - John C McKew
- Therapeutics for Rare and Neglected Diseases (TRND), National Center for Advancing Translational Sciences (NCATS), NIH, USA
| | | | - William A Gahl
- Medical Genetics Branch (MGB), National Human Genome Research Institute (NHGRI), National Institutes of Health (NIH), USA
| | - Nuria Carrillo-Carrasco
- Therapeutics for Rare and Neglected Diseases (TRND), National Center for Advancing Translational Sciences (NCATS), NIH, USA.
| |
Collapse
|
40
|
Behnam M, Jin-Hong S, Kim DS, Basiri K, Nilipour Y, Sedghi M. A novel missense mutation in the GNE gene in an Iranian patient with hereditary inclusion body myopathy. JOURNAL OF RESEARCH IN MEDICAL SCIENCES : THE OFFICIAL JOURNAL OF ISFAHAN UNIVERSITY OF MEDICAL SCIENCES 2014; 19:792-4. [PMID: 25422667 PMCID: PMC4235102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Revised: 08/05/2013] [Accepted: 10/10/2013] [Indexed: 11/16/2022]
Abstract
Hereditary inclusion body myopathy (hIBM) is an adult-onset hereditary myopathy, usually with distal onset and quadriceps sparing. This myopathy is autosomal recessive and associated to UPD-N-acetylglucosamine-2-epimerase/N-acetylmannosamine kinase (GNE) gene mutations. In this study, we report a novel GNE homozygous point mutation c.1834T>G that results in amino acid substitution of cysteine 612 to glutamine in an Iranian patient. This mutation is located in exon 10 within the kinase domain of the protein.
Collapse
Affiliation(s)
- Mahdiyeh Behnam
- Medical Genetics Laboratory, Alzahra University Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shin Jin-Hong
- Department of Neurology, Yangsan Hospital, Pusan National University, Yangsan, Republic of Korea
| | - Dae-Seong Kim
- Department of Neurology, Yangsan Hospital, Pusan National University, Yangsan, Republic of Korea
| | - Keivan Basiri
- Neurology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Yalda Nilipour
- Neurology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran,Neuropathology Lab, Toos Hospital, Tehran, Iran
| | - Maryam Sedghi
- Medical Genetics Laboratory, Alzahra University Hospital, Isfahan University of Medical Sciences, Isfahan, Iran,Address for correspondence: Ms. Maryam Sedghi, Medical Genetics Laboratory, Alzahra University Hospital, Isfahan University of Medical Sciences, Isfahan, Iran. E-mail:
| |
Collapse
|
41
|
Expression of sialic acids in human adult skeletal muscle tissue. Acta Histochem 2014; 116:926-35. [PMID: 24703356 DOI: 10.1016/j.acthis.2014.03.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 03/06/2014] [Accepted: 03/11/2014] [Indexed: 12/20/2022]
Abstract
Investigations mostly in animal models have shown a role of sialic acid in the morphology and functionality of skeletal muscle during development and adult life. Several studies in humans have been performed regarding changes in sialic acid expression in a particular pathology, hereditary inclusion body myopathy, leading to muscular weakness and atrophy, with a similar phenomenon appearing also in sarcopenia of aging. In this study the expression of monomeric and polymeric sialic acids was evaluated in human skeletal muscle during adult life. Surgical biopsies of the Quadriceps femoris muscle from men aged 18-25 years (young group; n=8) and men aged 72-78 (elderly group; n=10) were collected for analysis. Expression of sialic acids was evaluated using lectin histochemistry, associated with enzymatic and chemical treatments to characterize monomeric and polymeric sialic acids. The polysialic acid expression was also evaluated by immunohistochemistry. Various types of sialic acid in the muscle tissue, in different amounts in the study groups, were detected. Monomeric sialic acids decreased in the elderly group compared with the young group, whereas polysialic acid increased. Sialic acid acetylation was present only in the young group. These findings demonstrated that changes in the expression of sialic acids in skeletal muscle tissue may be related to morphofunctional modifications occurring during aging.
Collapse
|
42
|
Schnaar RL, Gerardy-Schahn R, Hildebrandt H. Sialic acids in the brain: gangliosides and polysialic acid in nervous system development, stability, disease, and regeneration. Physiol Rev 2014; 94:461-518. [PMID: 24692354 DOI: 10.1152/physrev.00033.2013] [Citation(s) in RCA: 539] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Every cell in nature carries a rich surface coat of glycans, its glycocalyx, which constitutes the cell's interface with its environment. In eukaryotes, the glycocalyx is composed of glycolipids, glycoproteins, and proteoglycans, the compositions of which vary among different tissues and cell types. Many of the linear and branched glycans on cell surface glycoproteins and glycolipids of vertebrates are terminated with sialic acids, nine-carbon sugars with a carboxylic acid, a glycerol side-chain, and an N-acyl group that, along with their display at the outmost end of cell surface glycans, provide for varied molecular interactions. Among their functions, sialic acids regulate cell-cell interactions, modulate the activities of their glycoprotein and glycolipid scaffolds as well as other cell surface molecules, and are receptors for pathogens and toxins. In the brain, two families of sialoglycans are of particular interest: gangliosides and polysialic acid. Gangliosides, sialylated glycosphingolipids, are the most abundant sialoglycans of nerve cells. Mouse genetic studies and human disorders of ganglioside metabolism implicate gangliosides in axon-myelin interactions, axon stability, axon regeneration, and the modulation of nerve cell excitability. Polysialic acid is a unique homopolymer that reaches >90 sialic acid residues attached to select glycoproteins, especially the neural cell adhesion molecule in the brain. Molecular, cellular, and genetic studies implicate polysialic acid in the control of cell-cell and cell-matrix interactions, intermolecular interactions at cell surfaces, and interactions with other molecules in the cellular environment. Polysialic acid is essential for appropriate brain development, and polymorphisms in the human genes responsible for polysialic acid biosynthesis are associated with psychiatric disorders including schizophrenia, autism, and bipolar disorder. Polysialic acid also appears to play a role in adult brain plasticity, including regeneration. Together, vertebrate brain sialoglycans are key regulatory components that contribute to proper development, maintenance, and health of the nervous system.
Collapse
|
43
|
A family with distal myopathy with rimmed vacuoles associated with thrombocytopenia. Neurol Sci 2014; 35:1479-81. [DOI: 10.1007/s10072-014-1790-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 04/02/2014] [Indexed: 11/25/2022]
|
44
|
Tanboon J, Rongsa K, Pithukpakorn M, Boonyapisit K, Limwongse C, Sangruchi T. A Novel Mutation of the GNE Gene in Distal Myopathy with Rimmed Vacuoles: A Case with Inflammation. Case Rep Neurol 2014; 6:55-9. [PMID: 24707269 PMCID: PMC3975748 DOI: 10.1159/000360730] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Distal myopathy with rimmed vacuoles (DMRV) is an autosomal recessive or sporadic early adult-onset myopathy caused by mutations in the UDP-N-acetylglucosamine 2-epimerase and N-acetylmannosamine kinase (GNE) gene. Characteristic pathologic features of DMRV are rimmed vacuoles on muscle biopsy and tubulofilamentous inclusion in ultrastructural study. Presence of inflammation in DMRV is unusual. We report a sporadic case of DMRV in a 40-year-old Thai man who presented with slowly progressive distal muscle weakness. Gene analysis revealed a compound heterozygous mutation of the GNE gene including a novel mutation c.1057A>G (p.K353E) and a known mutation c.2086G>A (p.V696M). The latter is the most common mutation in Thai DMRV patients. The muscle pathology was compatible with DMRV except for focal inflammation.
Collapse
Affiliation(s)
- Jantima Tanboon
- Department of Pathology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand ; Siriraj Neurogenetic Network, Department of Research and Development, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kanjana Rongsa
- Siriraj Neurogenetic Network, Department of Research and Development, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Manop Pithukpakorn
- Siriraj Neurogenetic Network, Department of Research and Development, Siriraj Hospital, Mahidol University, Bangkok, Thailand ; Department of Internal Medicine, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kanokwan Boonyapisit
- Siriraj Neurogenetic Network, Department of Research and Development, Siriraj Hospital, Mahidol University, Bangkok, Thailand ; Department of Internal Medicine, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chanin Limwongse
- Siriraj Neurogenetic Network, Department of Research and Development, Siriraj Hospital, Mahidol University, Bangkok, Thailand ; Department of Internal Medicine, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Tumtip Sangruchi
- Department of Pathology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand ; Siriraj Neurogenetic Network, Department of Research and Development, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
45
|
Patzel KA, Yardeni T, Poëc-Celic EL, Leoyklang P, Dorward H, Alonzi DS, Kukushkin NV, Xu B, Zhang Y, Sollogoub M, Blériot Y, Gahl WA, Huizing M, Butters TD. Non-specific accumulation of glycosphingolipids in GNE myopathy. J Inherit Metab Dis 2014; 37:297-308. [PMID: 24136589 PMCID: PMC3979983 DOI: 10.1007/s10545-013-9655-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 07/30/2013] [Accepted: 09/11/2013] [Indexed: 01/06/2023]
Abstract
BACKGROUND UDP-GlcNAc 2-epimerase/ManNAc 6-kinase (GNE) is a bifunctional enzyme responsible for the first committed steps in the synthesis of sialic acid, a common terminal monosaccharide in both protein and lipid glycosylation. GNE mutations are responsible for a rare autosomal recessive neuromuscular disorder, GNE myopathy (also called hereditary inclusion body myopathy). The connection between the impairment of sialic acid synthesis and muscle pathology in GNE myopathy remains poorly understood. METHODS Glycosphingolipid (GSL) analysis was performed by HPLC in multiple models of GNE myopathy, including patients' fibroblasts and plasma, control fibroblasts with inhibited GNE epimerase activity through a novel imino sugar, and tissues of Gne(M712T/M712T) knock-in mice. RESULTS Not only neutral GSLs, but also sialylated GSLs, were significantly increased compared to controls in all tested models of GNE myopathy. Treatment of GNE myopathy fibroblasts with N-acetylmannosamine (ManNAc), a sialic acid precursor downstream of GNE epimerase activity, ameliorated the increased total GSL concentrations. CONCLUSION GNE myopathy models have increased total GSL concentrations. ManNAc supplementation results in decrease of GSL levels, linking abnormal increase of total GSLs in GNE myopathy to defects in the sialic acid biosynthetic pathway. These data advocate for further exploring GSL concentrations as an informative biomarker, not only for GNE myopathy, but also for other disorders of sialic acid metabolism.
Collapse
Affiliation(s)
- Katherine A. Patzel
- Oxford Glycobiology Institute, Department of Biochemistry,
University of Oxford, Oxford, OX1 3QU, United Kingdom
- Medical Genetics Branch, National Human Genome Research
Institute, National Institutes of Health, Bethesda MD, 20892, USA
| | - Tal Yardeni
- Oxford Glycobiology Institute, Department of Biochemistry,
University of Oxford, Oxford, OX1 3QU, United Kingdom
- Graduate Partner Program, Sackler School of Medicine, Tel
Aviv University, Tel Aviv, 69978, Israel
| | - Erell Le Poëc-Celic
- Institut National Des Sciences Appliquées de
Toulouse, Toulouse, 31400, France
| | - Petcharat Leoyklang
- Medical Genetics Branch, National Human Genome Research
Institute, National Institutes of Health, Bethesda MD, 20892, USA
| | - Heidi Dorward
- Medical Genetics Branch, National Human Genome Research
Institute, National Institutes of Health, Bethesda MD, 20892, USA
| | - Dominic S. Alonzi
- Oxford Glycobiology Institute, Department of Biochemistry,
University of Oxford, Oxford, OX1 3QU, United Kingdom
| | - Nikolay V. Kukushkin
- Oxford Glycobiology Institute, Department of Biochemistry,
University of Oxford, Oxford, OX1 3QU, United Kingdom
| | - Bixue Xu
- UPMC Université Paris 06, Institut Parisien de
Chimie Monléculaire, Paris, 75005, France
| | - Yongmin Zhang
- UPMC Université Paris 06, Institut Parisien de
Chimie Monléculaire, Paris, 75005, France
| | - Matthieu Sollogoub
- UPMC Université Paris 06, Institut Parisien de
Chimie Monléculaire, Paris, 75005, France
| | - Yves Blériot
- UPMC Université Paris 06, Institut Parisien de
Chimie Monléculaire, Paris, 75005, France
- IC2MP, UMR, CNRS 7285, Université de Poitiers,
Poitiers Cedex, 86022, France
| | - William A. Gahl
- Medical Genetics Branch, National Human Genome Research
Institute, National Institutes of Health, Bethesda MD, 20892, USA
- Office of Rare Diseases Research, Office of the Director,
National Institutes of Health, Bethesda MD, 20892, USA
| | - Marjan Huizing
- Medical Genetics Branch, National Human Genome Research
Institute, National Institutes of Health, Bethesda MD, 20892, USA
- To whom correspondence should be addressed.
. Tel. (++1)
301 4022797. Fax (++1) 301 4807825.
. Tel.
(++44) 1865 275725. Fax. (44) (0) 1865 275216
| | - Terry D. Butters
- Oxford Glycobiology Institute, Department of Biochemistry,
University of Oxford, Oxford, OX1 3QU, United Kingdom
- To whom correspondence should be addressed.
. Tel. (++1)
301 4022797. Fax (++1) 301 4807825.
. Tel.
(++44) 1865 275725. Fax. (44) (0) 1865 275216
| |
Collapse
|
46
|
Daya A, Vatine GD, Becker-Cohen M, Tal-Goldberg T, Friedmann A, Gothilf Y, Du SJ, Mitrani-Rosenbaum S. Gne depletion during zebrafish development impairs skeletal muscle structure and function. Hum Mol Genet 2014; 23:3349-61. [PMID: 24488768 DOI: 10.1093/hmg/ddu045] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
GNE Myopathy is a rare recessively inherited neuromuscular disorder caused by mutations in the GNE gene, which codes for the key enzyme in the metabolic pathway of sialic acid synthesis. The process by which GNE mutations lead to myopathy is not well understood. By in situ hybridization and gne promoter-driven fluorescent transgenic fish generation, we have characterized the spatiotemporal expression pattern of the zebrafish gne gene and have shown that it is highly conserved compared with the human ortholog. We also show the deposition of maternal gne mRNA and maternal GNE protein at the earliest embryonic stage, emphasizing the critical role of gne in embryonic development. Injection of morpholino (MO)-modified antisense oligonucleotides specifically designed to knockdown gne, into one-cell embryos lead to a variety of phenotypic severity. Characterization of the gne knockdown morphants showed a significantly reduced locomotor activity as well as distorted muscle integrity, including a reduction in the number of muscle myofibers, even in mild or intermediate phenotype morphants. These findings were further confirmed by electron microscopy studies, where large gaps between sarcolemmas were visualized, although normal sarcomeric structures were maintained. These results demonstrate a critical novel role for gne in embryonic development and particularly in myofiber development, muscle integrity and activity.
Collapse
Affiliation(s)
- Alon Daya
- Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Medical Center, Jerusalem 91240, Israel, School of Marine Sciences, Ruppin Academic Center, Michmoret 40297, Israel
| | - Gad David Vatine
- Department of Neurobiology, The George S. Wise Faculty of Life Sciences and
| | - Michal Becker-Cohen
- Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Medical Center, Jerusalem 91240, Israel
| | - Tzukit Tal-Goldberg
- Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Medical Center, Jerusalem 91240, Israel
| | - Adam Friedmann
- School of Marine Sciences, Ruppin Academic Center, Michmoret 40297, Israel
| | - Yoav Gothilf
- Department of Neurobiology, The George S. Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Shao Jun Du
- Institute of Marine and Environmental Technology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Stella Mitrani-Rosenbaum
- Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Medical Center, Jerusalem 91240, Israel,
| |
Collapse
|
47
|
Correction of the Middle Eastern M712T mutation causing GNE myopathy by trans-splicing. Neuromolecular Med 2013; 16:322-31. [PMID: 24264357 DOI: 10.1007/s12017-013-8278-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 11/11/2013] [Indexed: 12/11/2022]
Abstract
GNE myopathy is a rare neuromuscular autosomal recessive disease, resulting from mutations in the gene UDP N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE). The most frequent mutation is the single homozygous missense mutation, M712T-the Middle Eastern mutation-located ten amino acids before the end of the protein. We have used an adeno-associated virus (AAV)-based trans-splicing (TS) vector as a gene therapy tool to overcome this mutation by replacing the mutated last exon of GNE by the wild-type exon while preserving the natural endogenous regulatory machinery. We have designed relevant plasmids directed either to mouse or to human GNE. Following transfection of C2C12 murine muscle cells with the mouse TS vectors, we have been able to detect by nested RT-PCR trans-spliced molecules carrying the wild-type exon 12 of GNE. Similarly, transfection of HEK293 human cells with the human-directed TS vectors resulted in the generation of trans-spliced human GNE RNA molecules. Furthermore, infection of primary muscle cells from a GNE myopathy patient carrying the homozygous M712T mutation, with an AAV8-based viral vector carrying a human-directed TS construct, resulted in the generation of wild-type GNE transcripts in addition to the mutated ones. These studies provide a proof of concept that the TS approach could be used to partially correct the Middle Eastern mutation in GNE myopathy patients. These results provide the basis for in vivo research in animal models using the AAV platform with TS plasmids as a potential genetic therapy for GNE myopathy.
Collapse
|
48
|
Clerici AM, Bono G, Delodovici ML, Azan G, Cafasso G, Micieli G. A rare association of early-onset inclusion body myositis, rheumatoid arthritis and autoimmune thyroiditis: a case report and literature review. FUNCTIONAL NEUROLOGY 2013; 28:127-32. [PMID: 24125563 DOI: 10.11138/fneur/2013.28.2.127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Sporadic inclusion body myositis (sIBM) is a slowly progressive, red-rimmed vacuolar myopathy leading to muscular atrophy and progressive weakness; it predominantly affects males older than fifty years, and is resistant to immunotherapy. It has been described in association with immuno-mediated thrombocytopenic purpura, multiple sclerosis, connective tissue disorders and, occasionally, rheumatoid arthritis. A 37-year-old man with longstanding rheumatoid arthritis and autoimmune thyroiditis with hypothyroidism was referred to us with slowly progressive, diffuse muscle weakness and wasting, which had initially involved the volar finger flexors, and subsequently also the ankle dorsiflexors and knee extensors. Needle electromyography showed typical myopathic motor unit potentials, fibrillation and positive sharp waves with normal nerve conduction studies. Quadriceps muscle biopsy was suggestive of sIBM. Considering data published in the literature, this case may be classified as an early-onset form. The patient was treated with long-term intravenous immunoglobulin and obtained a substantial stabilization of his muscle strength.
Collapse
|
49
|
Yardeni T, Jacobs K, Niethamer TK, Ciccone C, Anikster Y, Kurochkina N, Gahl WA, Huizing M. Murine isoforms of UDP-GlcNAc 2-epimerase/ManNAc kinase: Secondary structures, expression profiles, and response to ManNAc therapy. Glycoconj J 2013; 30:609-18. [PMID: 23266873 PMCID: PMC3622838 DOI: 10.1007/s10719-012-9459-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 11/27/2012] [Accepted: 11/28/2012] [Indexed: 11/25/2022]
Abstract
The bifunctional enzyme UDP-GlcNAc 2-epimerase/ManNAc kinase (GNE) catalyzes the first two committed steps in sialic acid synthesis. Non-allosteric GNE gene mutations cause the muscular disorder GNE myopathy (also known as hereditary inclusion body myopathy), whose exact pathology remains unknown. Increased knowledge of GNE regulation, including isoform regulation, may help elucidate the pathology of GNE myopathy. While eight mRNA transcripts encoding human GNE isoforms are described, we only identified two mouse Gne mRNA transcripts, encoding mGne1 and mGne2, homologous to human hGNE1 and hGNE2. Orthologs of the other human isoforms were not identified in mice. mGne1 appeared as the ubiquitously expressed, major mouse isoform. The mGne2 encoding transcript is differentially expressed and may act as a tissue-specific regulator of sialylation. mGne2 expression appeared significantly increased the first 2 days of life, possibly reflecting the high sialic acid demand during this period. Tissues of the knock-in Gne p.M712T mouse model had similar mGne transcript expression levels among genotypes, indicating no effect of the mutation on mRNA expression. However, upon treatment of these mice with N-acetylmannosamine (ManNAc, a Gne substrate, sialic acid precursor, and proposed therapy for GNE myopathy), Gne transcript expression, in particular mGne2, increased significantly, likely resulting in increased Gne enzymatic activities. This dual effect of ManNAc supplementation (increased flux through the sialic acid pathway and increased Gne activity) needs to be considered when treating GNE myopathy patients with ManNAc. In addition, the existence and expression of GNE isoforms needs consideration when designing other therapeutic strategies for GNE myopathy.
Collapse
Affiliation(s)
- Tal Yardeni
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20895, USA
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978 Israel
| | - Katherine Jacobs
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20895, USA
| | - Terren K. Niethamer
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20895, USA
| | - Carla Ciccone
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20895, USA
| | - Yair Anikster
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978 Israel
| | - Natalya Kurochkina
- The School of Theoretical Modeling, Department of Biophysics, Chevy Chase, MD 20825, USA
| | - William A. Gahl
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20895, USA
| | - Marjan Huizing
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20895, USA
| |
Collapse
|
50
|
Miryounesi M, Soltanzadeh P, Modarressi MH. Hereditary inclusion body myopathy in Persian Jews: a case report from Iran. Clin Genet 2013; 85:595-7. [PMID: 23841835 DOI: 10.1111/cge.12220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 06/19/2013] [Accepted: 06/19/2013] [Indexed: 11/28/2022]
Affiliation(s)
- M Miryounesi
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | |
Collapse
|