1
|
Zhong W, Chen R, Zhao J, Zhang Y, He J, Wang H, Zhu F, Fan C, Liu X. SETD7 drives diabetic endothelial dysfunction through FBXO45-mediated GPX4 ubiquitylation. Cardiovasc Diabetol 2025; 24:178. [PMID: 40275362 PMCID: PMC12023459 DOI: 10.1186/s12933-025-02740-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 04/12/2025] [Indexed: 04/26/2025] Open
Abstract
BACKGROUND Vasculopathy is the most prevalent complication of diabetes. Endothelial damage, a primary contributor to hyperglycemic vascular complications, impacts macro- and micro-vasculatures, causing functional impairment of multiple organs. SETD7 was initially identified as a transcriptional activator based on its ability to methylate histone 3 lysine 4. However, its function in the context of diabetic endothelial dysfunction remains poorly understood. This study aims to elucidate the involvement and underlying mechanisms of SETD7 in diabetic endothelial dysfunction. METHODS SETD7 knockout mice were generated to investigate the effects of SETD7 on Streptozotocin (STZ)-induced hyperglycemia and vascular endothelial injury. Endothelial-specific SETD7 interruption adeno-associated virus (AAV) system was utilized to investigate the effects of SETD7 on diabetic vascular endothelial injury in BKS-DB(Lepr) KO/KO (db/db) mice. In vitro manipulation of SETD7 activation or knockdown was conducted to assess its regulation on the lipid peroxidation, oxidative stress, and cell function of primary rat aortic endothelial cells (RAECs) under high glucose conditions. RESULTS Our study revealed that knockout and endothelial deficiency of SETD7 partially restored damaged vascular function and attenuated the inflammatory response caused by high glucose in both STZ-induced and db/db mice. Moreover, SETD7 activation aggravated oxidative stress injury and resulted in profound dysfunction through Glutathione Peroxidase 4 (GPX4)-mediated lipid peroxidation in RAECs. Mechanistically, SETD7 deficiency reduced p53 mono-methylation and blocked FBXO45 transcription, thereby inhibiting the protein degradation of GPX4 and subsequent lipid peroxidation as well as oxidative stress. CONCLUSIONS In summary, our study demonstrates that SETD7-p53-FBXO45-GPX4 is involved in high glucose-induced oxidative stress injury and exacerbated endothelial dysfunction, which offering great significance for mitigating hyperglycemia-induced endothelial damage.
Collapse
MESH Headings
- Animals
- Mice, Knockout
- Diabetes Mellitus, Experimental/enzymology
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/pathology
- Oxidative Stress
- Ubiquitination
- Endothelial Cells/enzymology
- Endothelial Cells/pathology
- Histone-Lysine N-Methyltransferase/genetics
- Histone-Lysine N-Methyltransferase/metabolism
- Histone-Lysine N-Methyltransferase/deficiency
- Male
- Glutathione Peroxidase/metabolism
- Glutathione Peroxidase/genetics
- F-Box Proteins/metabolism
- F-Box Proteins/genetics
- Diabetic Angiopathies/genetics
- Diabetic Angiopathies/enzymology
- Diabetic Angiopathies/pathology
- Diabetic Angiopathies/physiopathology
- Cells, Cultured
- Signal Transduction
- Mice, Inbred C57BL
- Rats
- Endothelium, Vascular/enzymology
- Endothelium, Vascular/physiopathology
- Endothelium, Vascular/pathology
- Lipid Peroxidation
- Blood Glucose/metabolism
Collapse
Affiliation(s)
- Wen Zhong
- Phenome Research Center of TCM, Department of Traditional Chinese Medicine, Shanghai Pudong Hospital, Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, 825, Zhangheng Road, Pudong New District, Shanghai, 201203, China
| | - Ruoxue Chen
- Phenome Research Center of TCM, Department of Traditional Chinese Medicine, Shanghai Pudong Hospital, Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, 825, Zhangheng Road, Pudong New District, Shanghai, 201203, China
| | - Jialin Zhao
- Phenome Research Center of TCM, Department of Traditional Chinese Medicine, Shanghai Pudong Hospital, Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, 825, Zhangheng Road, Pudong New District, Shanghai, 201203, China
| | - Yuyu Zhang
- Phenome Research Center of TCM, Department of Traditional Chinese Medicine, Shanghai Pudong Hospital, Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, 825, Zhangheng Road, Pudong New District, Shanghai, 201203, China
| | - Jintao He
- Phenome Research Center of TCM, Department of Traditional Chinese Medicine, Shanghai Pudong Hospital, Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, 825, Zhangheng Road, Pudong New District, Shanghai, 201203, China
| | - Huibin Wang
- Phenome Research Center of TCM, Department of Traditional Chinese Medicine, Shanghai Pudong Hospital, Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, 825, Zhangheng Road, Pudong New District, Shanghai, 201203, China
| | - Feng Zhu
- Phenome Research Center of TCM, Department of Traditional Chinese Medicine, Shanghai Pudong Hospital, Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, 825, Zhangheng Road, Pudong New District, Shanghai, 201203, China
| | - Chunxiang Fan
- Phenome Research Center of TCM, Department of Traditional Chinese Medicine, Shanghai Pudong Hospital, Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, 825, Zhangheng Road, Pudong New District, Shanghai, 201203, China.
| | - Xinhua Liu
- Phenome Research Center of TCM, Department of Traditional Chinese Medicine, Shanghai Pudong Hospital, Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, 825, Zhangheng Road, Pudong New District, Shanghai, 201203, China.
| |
Collapse
|
2
|
Ali A, Kuo WW, Kuo CH, Lo JF, Hsieh DJY, Pai P, Ho TJ, Shibu MA, Lin SZ, Huang CY. Chaperone-assisted E3 ligase-engineered mesenchymal stem cells target hyperglycemia-induced p53 for ubiquitination and proteasomal degradation ameliorates self-renewal. Biol Res 2025; 58:20. [PMID: 40270049 PMCID: PMC12020092 DOI: 10.1186/s40659-025-00604-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 04/09/2025] [Indexed: 04/25/2025] Open
Abstract
BACKGROUND Stem cell therapies may potentially be used in regenerative and reconstructive medicine due to their ability for self-renewal and differentiation. Stressful conditions, such as hyperglycemia, adversely affect stem cell functions, impairing their function and promoting differentiation by opposing self-renewal. The carboxyl terminus of HSP70 interacting protein (CHIP), which is a cochaperone and E3 ligase, maintains protein homeostasis and performs quality control of the cell via ubiquitylation. However, the role of CHIP in regulating stemness remains unknown. RESULTS Hyperglycemia downregulated CHIP-induced p53, arrested the cell cycle at the gap (G1) phase, and promoted the loss of stemness in WJMSCs. Quantitative real-time polymerase chain reaction (qRT-PCR), Western blotting, immunofluorescence, and cell cycle analysis showed that CHIP-overexpressing WJMSCs downregulated the expression of phosphorylated p53 and shortened its half-life while enhancing self-renewal factors. Additionally, co-IP and Western blotting revealed that CHIP promoted the ubiquitination and proteasomal degradation of hyperglycemia-induced p53 through the chaperone system. CONCLUSIONS CHIP may promote ubiquitin-mediated proteasomal degradation of hyperglycemia-induced p53 rescues self-renewal genes, which can maintain the long-term undifferentiated state of WJMSCs. CHIP may be an alternative therapeutic option in regenerative medicine for hyperglycemic-related complications in diabetes.
Collapse
Affiliation(s)
- Ayaz Ali
- Aberdeen Cardiovascular and Diabetes Centre, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
- Department of Biological Science and Technology, China Medical University, Taichung, 404, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, 404, Taiwan
| | - Chia-Hua Kuo
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan
| | - Jeng-Feng Lo
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan
| | | | - Peiying Pai
- School of Medicine, College of Medicine, China Medical University, Taichung, 40402, Taiwan
- Division of Cardiovascular Medicine, Department of Medicine, China Medical University Hospital, Taichung, 40447, Taiwan
| | - Tsung-Jung Ho
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien, Taiwan
| | | | - Shinn-Zong Lin
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien, 970, Taiwan
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, 970, Taiwan
| | - Chih-Yang Huang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 404, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.
- Department of Biotechnology, Asia University, Taichung, Taiwan.
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan.
| |
Collapse
|
3
|
Yedla P, Bhamidipati P, Syed R, Amanchy R. Working title: Molecular involvement of p53-MDM2 interactome in gastrointestinal cancers. Cell Biochem Funct 2024; 42:e4075. [PMID: 38924101 DOI: 10.1002/cbf.4075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024]
Abstract
The interaction between murine double minute 2 (MDM2) and p53, marked by transcriptional induction and feedback inhibition, orchestrates a functional loop dictating cellular fate. The functional loop comprising p53-MDM2 axis is made up of an interactome consisting of approximately 81 proteins, which are spatio-temporally regulated and involved in DNA repair mechanisms. Biochemical and genetic alterations of the interactome result in dysregulation of the p53-mdm2 axis that leads to gastrointestinal (GI) cancers. A large subset of interactome is well known and it consists of proteins that either stabilize p53 or MDM2 and proteins that target the p53-MDM2 complex for ubiquitin-mediated destruction. Upstream signaling events brought about by growth factors and chemical messengers invoke a wide variety of posttranslational modifications in p53-MDM2 axis. Biochemical changes in the transactivation domain of p53 impact the energy landscape, induce conformational switching, alter interaction potential and could change solubility of p53 to redefine its co-localization, translocation and activity. A diverse set of chemical compounds mimic physiological effectors and simulate biochemical modifications of the p53-MDM2 interactome. p53-MDM2 interactome plays a crucial role in DNA damage and repair process. Genetic aberrations in the interactome, have resulted in cancers of GI tract (pancreas, liver, colorectal, gastric, biliary, and esophageal). We present in this article a review of the overall changes in the p53-MDM2 interactors and the effectors that form an epicenter for the development of next-generation molecules for understanding and targeting GI cancers.
Collapse
Affiliation(s)
- Poornachandra Yedla
- Division of Applied Biology, CSIR-IICT (Indian Institute of Chemical Technology), Ministry of Science and Technology (GOI), Hyderabad, Telangana, India
- Department of Pharmacogenomics, Institute of Translational Research, Asian Healthcare Foundation, Hyderabad, Telangana, India
| | - Pranav Bhamidipati
- Division of Applied Biology, CSIR-IICT (Indian Institute of Chemical Technology), Ministry of Science and Technology (GOI), Hyderabad, Telangana, India
- Department of Life Sciences, Imperial College London, London, UK
| | - Riyaz Syed
- Division of Applied Biology, CSIR-IICT (Indian Institute of Chemical Technology), Ministry of Science and Technology (GOI), Hyderabad, Telangana, India
| | - Ramars Amanchy
- Division of Applied Biology, CSIR-IICT (Indian Institute of Chemical Technology), Ministry of Science and Technology (GOI), Hyderabad, Telangana, India
| |
Collapse
|
4
|
Zhang J, Fan X, Xu Y, Wang K, Xu T, Han T, Hu C, Li R, Lin X, Jin L. Association between inflammatory biomarkers and mortality in individuals with type 2 diabetes: NHANES 2005-2018. Diabetes Res Clin Pract 2024; 209:111575. [PMID: 38346591 DOI: 10.1016/j.diabres.2024.111575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/25/2024] [Accepted: 02/06/2024] [Indexed: 02/15/2024]
Abstract
PURPOSE This study aimed to examine independent association between inflammatory biomarkers and all-cause mortality as well as cardio-cerebrovascular disease (CCD) mortality among U.S. adults with diabetes. METHODS A cohort of 6412 U.S. adults aged 20 or older was followed from the start until December 31, 2019. Statistical models such as Cox proportional hazards model (Cox) and Kaplan-Meier (K-M) survival curves were employed to investigate the associations between the inflammatory biomarkers and all-cause mortality and CCD mortality. RESULTS After adjusting for confounding factors, the highest quartile of inflammatory biomarkers (NLR HR = 1.99; 95 % CI:1.54-2.57, MLR HR = 1.93; 95 % CI:1.46-2.54, SII HR = 1.49; 95 % CI:1.18-1.87, SIRI HR = 2.32; 95 % CI:1.81-2.96, nLPR HR = 2.05; 95 % CI:1.61-2.60, dNLR HR = 1.94; 95 % CI:1.51-2.49, AISI HR = 1.73; 95 % CI:1.4 1-2.12)) were positively associated with all-cause mortality compared to those in the lowest quartile. K-M survival curves indicated that participants with an inflammatory biomarker above a certain threshold had a higher risk of both all-cause mortality and CCD mortality (Log rank P < 0.05). CONCLUSION Some biomarkers such as NLR, MLR, SII, AISI, SIRI, and dNLR, are significantly associated with all-cause mortality and CCD mortality among U.S. adults with diabetes. The risk of both outcomes increased when the biomarkers surpassed a specific threshold.
Collapse
Affiliation(s)
- Jiaqi Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, No.1163 Xinmin Street, Changchun, Jilin 130021, China.
| | - Xiaoting Fan
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, No.1163 Xinmin Street, Changchun, Jilin 130021, China.
| | - Yan Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, No.1163 Xinmin Street, Changchun, Jilin 130021, China.
| | - Kaiyuan Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, No.1163 Xinmin Street, Changchun, Jilin 130021, China.
| | - Tong Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, No.1163 Xinmin Street, Changchun, Jilin 130021, China.
| | - Tianyang Han
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, No.1163 Xinmin Street, Changchun, Jilin 130021, China.
| | - Chengxiang Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, No.1163 Xinmin Street, Changchun, Jilin 130021, China.
| | - Runhong Li
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, No.1163 Xinmin Street, Changchun, Jilin 130021, China.
| | - Xinli Lin
- Department of Child and Adolescent Health, School of Public Health, Jilin University, No.1163 Xinmin Street, Changchun, Jilin 130021, China.
| | - Lina Jin
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, No.1163 Xinmin Street, Changchun, Jilin 130021, China.
| |
Collapse
|
5
|
Ciummo SL, Sorrentino C, Fieni C, Di Carlo E. Interleukin-30 subverts prostate cancer-endothelium crosstalk by fostering angiogenesis and activating immunoregulatory and oncogenic signaling pathways. J Exp Clin Cancer Res 2023; 42:336. [PMID: 38087324 PMCID: PMC10714661 DOI: 10.1186/s13046-023-02902-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/14/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Cancer-endothelial interplay is crucial for tumor behavior, yet the molecular mechanisms involved are largely unknown. Interleukin(IL)-30, which is expressed as a membrane-anchored cytokine by human prostate cancer (PC) cells, promotes PC vascularization and progression, but the underlying mechanisms have yet to be fully explored. METHODS PC-endothelial cell (EC) interactions were investigated, after coculture, by flow cytometry, transcriptional profiling, western blot, and ELISA assays. Proteome profiler phospho-kinase array unveiled the molecular pathways involved. The role of tumor-derived IL30 on the endothelium's capacity to generate autocrine circuits and vascular budding was determined following IL30 overexpression, by gene transfection, or its deletion by CRISPR/Cas9 genome editing. Clinical value of the experimental findings was determined through immunopathological study of experimental and patient-derived PC samples, and bioinformatics of gene expression profiles from PC patients. RESULTS Contact with PC cells favors EC proliferation and production of angiogenic and angiocrine factors, which are boosted by PC expression of IL30, that feeds autocrine loops, mediated by IGF1, EDN1, ANG and CXCL10, and promotes vascular budding and inflammation, via phosphorylation of multiple signaling proteins, such as Src, Yes, STAT3, STAT6, RSK1/2, c-Jun, AKT and, primarily CREB, GSK-3α/β, HSP60 and p53. Deletion of the IL30 gene in PC cells inhibits endothelial expression of IGF1, EDN1, ANG and CXCL10 and substantially impairs tumor angiogenesis. In its interaction with IL30-overexpressing PC cells the endothelium boosts their expression of a wide range of immunity regulatory genes, including CCL28, CCL4, CCL5, CCR2, CCR7, CXCR4, IL10, IL13, IL17A, FASLG, IDO1, KITLG, TNFA, TNFSF10 and PDCD1, and cancer driver genes, including BCL2, CCND2, EGR3, IL6, VEGFA, KLK3, PTGS1, LGALS4, GNRH1 and SHBG. Immunopathological analyses of PC xenografts and in silico investigation of 1116 PC cases, from the Prostate Cancer Transcriptome Atlas, confirmed the correlation between the expression of IL30 and that of both pro-inflammatory genes, NOS2, TNFA, CXCR5 and IL12B, and cancer driver genes, LGALS4, GNRH1 and SHBG, which was validated in a cohort of 80 PC patients. CONCLUSIONS IL30 regulates the crosstalk between PC and EC and reshapes their transcriptional profiles, triggering angiogenic, immunoregulatory and oncogenic gene expression programs. These findings highlight the angiostatic and oncostatic efficacy of targeting IL30 to fight PC.
Collapse
Affiliation(s)
- Stefania Livia Ciummo
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University" of Chieti-Pescara, Chieti, Italy
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Via L. Polacchi 11, 66100, Chieti, Italy
| | - Carlo Sorrentino
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University" of Chieti-Pescara, Chieti, Italy
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Via L. Polacchi 11, 66100, Chieti, Italy
| | - Cristiano Fieni
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University" of Chieti-Pescara, Chieti, Italy
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Via L. Polacchi 11, 66100, Chieti, Italy
| | - Emma Di Carlo
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University" of Chieti-Pescara, Chieti, Italy.
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Via L. Polacchi 11, 66100, Chieti, Italy.
| |
Collapse
|
6
|
Foury A, Mach N, Ruet A, Lansade L, Moisan MP. Transcriptomic signature related to poor welfare of sport horses. COMPREHENSIVE PSYCHONEUROENDOCRINOLOGY 2023; 16:100201. [PMID: 37655309 PMCID: PMC10465861 DOI: 10.1016/j.cpnec.2023.100201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/12/2023] [Accepted: 08/09/2023] [Indexed: 09/02/2023] Open
Abstract
The improvement of horse welfare through housing conditions has become a real issue in recent years and have highlighted the detrimental effect of individual housing of horses on their health and behaviour. In this new study, we analysed the blood transcriptome of 45 sport horses housed individually that were previously examined for their behaviour and gut microbiota. We performed differential and regression analyses of gene expression, followed by downstream bioinformatic analyses, to unveil the molecular pathways related to the behavioural changes associated with welfare impairment in these sport horses. We found that aggressiveness towards humans was the behavioural indicator the most correlated to blood gene expression and that the pathways involved belonged mainly to systemic inflammation. In contrast, the correlations between genes, alert postures and unresponsiveness towards the environment were weak. When blood gene expression profiling was combined with faecal microbiota of a sub-population of horses, stereotypies came out as the most correlated to blood gene expression. This study shows that aggressiveness towards humans and stereotypies are behavioural indicators that covary with physiological alterations. Further studies are needed regarding the biological correlates of unresponsiveness to the environment and alert postures.
Collapse
Affiliation(s)
- A. Foury
- Univ. Bordeaux, INRAE, INP, UMR 1286 Nutrineuro, Team Nutripsy, 33076, Bordeaux, France
| | - N. Mach
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - A. Ruet
- INRAE, UMR 85 PRC, CNRS, UMR 7247, IFCE, University of Tours, Nouzilly, France
| | - L. Lansade
- INRAE, UMR 85 PRC, CNRS, UMR 7247, IFCE, University of Tours, Nouzilly, France
| | - M.-P. Moisan
- Univ. Bordeaux, INRAE, INP, UMR 1286 Nutrineuro, Team Nutripsy, 33076, Bordeaux, France
| |
Collapse
|
7
|
Zhang Q, Liu J, Shen J, Ou J, Wong YK, Xie L, Huang J, Zhang C, Fu C, Chen J, Chen J, He X, Shi F, Luo P, Gong P, Liu X, Wang J. Single-cell RNA sequencing reveals the effects of capsaicin in the treatment of sepsis-induced liver injury. MedComm (Beijing) 2023; 4:e395. [PMID: 37808269 PMCID: PMC10556204 DOI: 10.1002/mco2.395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/31/2023] [Accepted: 09/06/2023] [Indexed: 10/10/2023] Open
Abstract
Sepsis is a difficult-to-treat systemic condition in which liver dysfunction acts as both regulator and target. However, the dynamic response of diverse intrahepatic cells to sepsis remains poorly characterized. Capsaicin (CAP), a multifunctional chemical derived from chilli peppers, has recently been shown to potentially possess anti-inflammatory effects, which is also one of the main approaches for drug discovery against sepsis. We performed single-cell RNA transcriptome sequencing on 86,830 intrahepatic cells isolated from normal mice, cecal ligation and puncture-induced sepsis model mice and CAP-treated mice. The transcriptional atlas of these cells revealed dynamic changes in hepatocytes, macrophages, neutrophils, and endothelial cells in response to sepsis. Among the extensive crosstalk across these major subtypes, KC_Cxcl10 shared strong potential interaction with other cells when responding to sepsis. CAP mitigated the severity of inflammation by partly reversing these pathophysiologic processes. Specific cell subpopulations in the liver act collectively to escalate inflammation, ultimately causing liver dysfunction. CAP displays its health-promoting function by ameliorating liver dysfunction induced by sepsis. Our study provides valuable insights into the pathophysiology of sepsis and suggestions for future therapeutic gain.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Critical Medicine, and Shenzhen Clinical Research Centre for GeriatricsShenzhen People's HospitalFirst Affiliated Hospital of Southern University of Science and TechnologySecond Clinical Medicine College of Jinan UniversityShenzhenGuangdongChina
- Institute of Basic Integrative Medicine ,School of Traditional Chinese Medicine, and School of Pharmaceutical SciencesSouthern Medical UniversityGuangzhouGuangdongChina
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao‐di Herbs, Artemisinin Research Center, and Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingChina
| | - Jing Liu
- Department of Critical Medicine, and Shenzhen Clinical Research Centre for GeriatricsShenzhen People's HospitalFirst Affiliated Hospital of Southern University of Science and TechnologySecond Clinical Medicine College of Jinan UniversityShenzhenGuangdongChina
| | - Jing Shen
- Department of OncologyShenzhen People's HospitalThe First Affiliated HospitalSouthern University of Science and TechnologyShenzhenGuangdongChina
| | - Jinhuan Ou
- Department of Critical Medicine, and Shenzhen Clinical Research Centre for GeriatricsShenzhen People's HospitalFirst Affiliated Hospital of Southern University of Science and TechnologySecond Clinical Medicine College of Jinan UniversityShenzhenGuangdongChina
| | - Yin Kwan Wong
- Department of PhysiologyYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Lulin Xie
- Department of Critical Medicine, and Shenzhen Clinical Research Centre for GeriatricsShenzhen People's HospitalFirst Affiliated Hospital of Southern University of Science and TechnologySecond Clinical Medicine College of Jinan UniversityShenzhenGuangdongChina
| | - Jingnan Huang
- Department of Critical Medicine, and Shenzhen Clinical Research Centre for GeriatricsShenzhen People's HospitalFirst Affiliated Hospital of Southern University of Science and TechnologySecond Clinical Medicine College of Jinan UniversityShenzhenGuangdongChina
| | - Chunting Zhang
- Department of Critical Medicine, and Shenzhen Clinical Research Centre for GeriatricsShenzhen People's HospitalFirst Affiliated Hospital of Southern University of Science and TechnologySecond Clinical Medicine College of Jinan UniversityShenzhenGuangdongChina
| | - Chunjin Fu
- Department of Critical Medicine, and Shenzhen Clinical Research Centre for GeriatricsShenzhen People's HospitalFirst Affiliated Hospital of Southern University of Science and TechnologySecond Clinical Medicine College of Jinan UniversityShenzhenGuangdongChina
| | - Junhui Chen
- Department of Critical Medicine, and Shenzhen Clinical Research Centre for GeriatricsShenzhen People's HospitalFirst Affiliated Hospital of Southern University of Science and TechnologySecond Clinical Medicine College of Jinan UniversityShenzhenGuangdongChina
| | - Jiayun Chen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao‐di Herbs, Artemisinin Research Center, and Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingChina
| | - Xueling He
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao‐di Herbs, Artemisinin Research Center, and Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingChina
| | - Fei Shi
- Department of Infectious DiseaseShenzhen People's HospitalThe First Affiliated HospitalSouthern University of Science and TechnologyShenzhenGuangdongChina
| | - Piao Luo
- Department of Critical Medicine, and Shenzhen Clinical Research Centre for GeriatricsShenzhen People's HospitalFirst Affiliated Hospital of Southern University of Science and TechnologySecond Clinical Medicine College of Jinan UniversityShenzhenGuangdongChina
- Institute of Basic Integrative Medicine ,School of Traditional Chinese Medicine, and School of Pharmaceutical SciencesSouthern Medical UniversityGuangzhouGuangdongChina
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao‐di Herbs, Artemisinin Research Center, and Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingChina
| | - Ping Gong
- Department of EmergencyShenzhen People's HospitalThe First Affiliated HospitalSouthern University of Science and TechnologyShenzhen CityGuangdong ProvinceChina
| | - Xueyan Liu
- Department of Critical Medicine, and Shenzhen Clinical Research Centre for GeriatricsShenzhen People's HospitalFirst Affiliated Hospital of Southern University of Science and TechnologySecond Clinical Medicine College of Jinan UniversityShenzhenGuangdongChina
| | - Jigang Wang
- Department of Critical Medicine, and Shenzhen Clinical Research Centre for GeriatricsShenzhen People's HospitalFirst Affiliated Hospital of Southern University of Science and TechnologySecond Clinical Medicine College of Jinan UniversityShenzhenGuangdongChina
- Institute of Basic Integrative Medicine ,School of Traditional Chinese Medicine, and School of Pharmaceutical SciencesSouthern Medical UniversityGuangzhouGuangdongChina
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao‐di Herbs, Artemisinin Research Center, and Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingChina
| |
Collapse
|
8
|
Qin S, Kitty I, Hao Y, Zhao F, Kim W. Maintaining Genome Integrity: Protein Kinases and Phosphatases Orchestrate the Balancing Act of DNA Double-Strand Breaks Repair in Cancer. Int J Mol Sci 2023; 24:10212. [PMID: 37373360 DOI: 10.3390/ijms241210212] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
DNA double-strand breaks (DSBs) are the most lethal DNA damages which lead to severe genome instability. Phosphorylation is one of the most important protein post-translation modifications involved in DSBs repair regulation. Kinases and phosphatases play coordinating roles in DSB repair by phosphorylating and dephosphorylating various proteins. Recent research has shed light on the importance of maintaining a balance between kinase and phosphatase activities in DSB repair. The interplay between kinases and phosphatases plays an important role in regulating DNA-repair processes, and alterations in their activity can lead to genomic instability and disease. Therefore, study on the function of kinases and phosphatases in DSBs repair is essential for understanding their roles in cancer development and therapeutics. In this review, we summarize the current knowledge of kinases and phosphatases in DSBs repair regulation and highlight the advancements in the development of cancer therapies targeting kinases or phosphatases in DSBs repair pathways. In conclusion, understanding the balance of kinase and phosphatase activities in DSBs repair provides opportunities for the development of novel cancer therapeutics.
Collapse
Affiliation(s)
- Sisi Qin
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Ichiwa Kitty
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Chungcheongnam-do, Republic of Korea
| | - Yalan Hao
- Analytical Instrumentation Center, Hunan University, Changsha 410082, China
| | - Fei Zhao
- College of Biology, Hunan University, Changsha 410082, China
| | - Wootae Kim
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Chungcheongnam-do, Republic of Korea
| |
Collapse
|
9
|
He W, Chang L, Li X, Mei Y. Research progress on the mechanism of ferroptosis and its role in diabetic retinopathy. Front Endocrinol (Lausanne) 2023; 14:1155296. [PMID: 37334304 PMCID: PMC10268817 DOI: 10.3389/fendo.2023.1155296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/09/2023] [Indexed: 06/20/2023] Open
Abstract
Ferroptosis is iron-dependent regulatory cell death (RCD). Morphologically, ferroptosis is manifested as mitochondrial atrophy and increased mitochondrial membrane density. Biochemically, ferroptosis is characterized by the depletion of glutathione (GSH), the inactivation of glutathione peroxidase 4 (GPX4), and an increase in lipid peroxides (LPO)and divalent iron ions. Ferroptosis is associated with various diseases, but the relationship with diabetic retinopathy(DR) is less studied. DR is one of the complications of diabetes mellitus and has a severe impact on visual function. The pathology of DR is complex, and the current treatment is unsatisfactory. Therefore, exploring pathogenesis is helpful for the clinical treatment of DR. This paper reviews the pathological mechanism of ferroptosis and DR in recent years and the involvement of ferroptosis in the pathology of DR. In addition, we propose problems that need to be addressed in this research field. It is expected to provide new ideas for treating DR by analyzing the role of ferroptosis in DR.
Collapse
Affiliation(s)
- Wei He
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Department of Ophthalmology, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- Department of Ophthalmology, The First People's Hospital of Yunnan Province, Kunming, China
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Lu Chang
- Department of Ophthalmology, Kunming Aier Eye Hospital, Kunming, China
| | - Xinlu Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Yan Mei
- Department of Ophthalmology, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- Department of Ophthalmology, The First People's Hospital of Yunnan Province, Kunming, China
| |
Collapse
|
10
|
Kubra KT, Akhter MS, Apperley K, Barabutis N. Growth Hormone-Releasing Hormone Antagonist JV-1-36 Suppresses Reactive Oxygen Species Generation in A549 Lung Cancer Cells. ENDOCRINES 2022; 3:813-820. [PMID: 36540765 PMCID: PMC9762825 DOI: 10.3390/endocrines3040067] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023] Open
Abstract
Growth hormone-releasing hormone (GHRH) and its receptors are expressed in a variety of human cancers, and have been involved in malignancies. GHRH antagonists (GHRHAnt) were developed to suppress tumor progression and metastasis. Previous studies demonstrate the involvement of reactive oxygen species (ROS) in cancer progression. Herein, we investigate the effect of a commercially available GHRH antagonist, namely JV-1-36, in the redox status of the A549 human cancer cell line. Our results suggest that this peptide significantly reduces ROS production in those cells in a time-dependent manner and counteracts H2O2-induced ROS. Our study supports the anti-oxidative effects of JV-1-36 and contributes in our knowledge towards the in vitro effects of GHRHAnt in cancers.
Collapse
Affiliation(s)
- Khadeja-Tul Kubra
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA
| | - Mohammad S. Akhter
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA
| | - Kaitlyn Apperley
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA
| | - Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA
| |
Collapse
|
11
|
Zhang S, Liu X, Wang J, Yuan F, Liu Y. Targeting ferroptosis with miR-144-3p to attenuate pancreatic β cells dysfunction via regulating USP22/SIRT1 in type 2 diabetes. Diabetol Metab Syndr 2022; 14:89. [PMID: 35761309 PMCID: PMC9235078 DOI: 10.1186/s13098-022-00852-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Recently, ferroptosis has been implicated in the pathologic process of several diseases including type 2 diabetes mellitus (T2DM). However, molecular mechanisms underlying ferroptosis in T2DM remain obscure. METHODS Twenty four mice were included in this study. T2DM model mice were established by a high-fat diet combined with streptozotocin injection. INS-1 cells were stimulated with high glucose (HG). Cell viability was detected by CCK-8 kit. The levels of GSH, MDA, iron, and lipid ROS, and SOD activity, were detected by the corresponding kits. The interaction between miR-144-3p and USP22 was validated by dual-luciferase reporter assay. The relationship between USP22 and its substrate was verified using Co-IP and ubiquitination assays. The mRNA and protein expressions were examined by RT-qPCR and western blot, respectively. The functions of β cells in vitro and in vivo were evaluated glucose-stimulated insulin secretion test and HOMA-β, respectively. RESULTS Ferroptosis occurred in the pancreas of T2DM mice and HG-induced INS-1 cells. Silencing miR-144-3p blocked the effect of HG on the cell viability and accumulation of lipid peroxides, thereby improving the insulin secretion in INS-1 cells. Mechanistically, USP22 is a direct target of miR-144-3p, which could stabilize SIRT1 expression, thereby suppressing ferroptosis. Overexpressing USP22 attenuated deleterious roles of HG in INS-1 cells; but its roles were reversed by up-regulating miR-144-3p. In vivo study demonstrated that miR-144-3p antagomir exerted an anti-hyperglycemic effect and regulated the ferroptosis-related proteins in the pancreas. CONCLUSION The up-regulation of miR-144-3p suppressed USP22/SIRT1 to induce ferroptosis, which causes pancreatic β cells dysfunction, thereby promoting T2DM development.
Collapse
Affiliation(s)
- Shanshan Zhang
- School of Medicine of Pingdingshan University, Middle Section of Chongwen Road, Xincheng District, Pingdingshan, 467000 Henan China
- Shool of Nursing, Doctor of Philosophy in Nursing, Philippine Women’s University, Manila, Philippines
| | - Xiao Liu
- School of Medicine of Pingdingshan University, Middle Section of Chongwen Road, Xincheng District, Pingdingshan, 467000 Henan China
- Shool of Nursing, Doctor of Philosophy in Nursing, Philippine Women’s University, Manila, Philippines
| | - Jihong Wang
- School of Medicine of Pingdingshan University, Middle Section of Chongwen Road, Xincheng District, Pingdingshan, 467000 Henan China
| | - Fengjuan Yuan
- School of Medicine of Pingdingshan University, Middle Section of Chongwen Road, Xincheng District, Pingdingshan, 467000 Henan China
- Shool of Nursing, Doctor of Philosophy in Nursing, Philippine Women’s University, Manila, Philippines
| | - Yali Liu
- School of Medicine of Pingdingshan University, Middle Section of Chongwen Road, Xincheng District, Pingdingshan, 467000 Henan China
- Shool of Nursing, Doctor of Philosophy in Nursing, Philippine Women’s University, Manila, Philippines
| |
Collapse
|
12
|
Zhao Y, Wang H, Zhou J, Shao Q. Glutathione Peroxidase GPX1 and Its Dichotomous Roles in Cancer. Cancers (Basel) 2022; 14:cancers14102560. [PMID: 35626163 PMCID: PMC9139801 DOI: 10.3390/cancers14102560] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/12/2022] [Accepted: 05/18/2022] [Indexed: 12/20/2022] Open
Abstract
As the first identified selenoprotein, glutathione peroxidase 1 (GPX1) is a widely and abundantly expressed antioxidant enzyme. GPX1 utilizes glutathione as a substrate to catalyze hydrogen peroxide, lipid peroxide, and peroxynitrite, thereby reducing intracellular oxidative stress. The GPX1 gene is regulated at transcriptional, post-transcriptional, and translational levels. Numerous case-control studies and meta-analyses have assessed the association between a functional genetic polymorphism of the GPX1 gene, named Pro198Leu (rs1050450 C>T), and cancer susceptibility in different populations. GPX1 polymorphism has type-specific effects as a candidate marker for cancer risk, but the association between GPX1 variants and cancer susceptibility remains controversial in different studies. GPX1 is abnormally elevated in most types of cancer but has complex dichotomous roles as tumor suppressor and promoter in different cancers. GPX1 can participate in various signaling pathways to regulate tumor biological behaviors, including cell proliferation, apoptosis, invasion, immune response, and chemoresistance. In this review, we comprehensively summarize the controversial associations between GPX1 polymorphism and cancer risks and further discuss the relationships between the aberrant expressions of GPX1 and tumorigenesis. Further studies are needed to elucidate the clinical significance of GPX1 as a potential prognostic biomarker and novel therapeutic target in various malignancies.
Collapse
Affiliation(s)
- Yangjing Zhao
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China; (Y.Z.); (H.W.)
| | - Hui Wang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China; (Y.Z.); (H.W.)
| | - Jingdong Zhou
- Department of Hematology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang 212002, China
- Correspondence: (J.Z.); (Q.S.)
| | - Qixiang Shao
- Institute of Medical Genetics and Reproductive Immunity, School of Medical Science and Laboratory Medicine, Jiangsu College of Nursing, Huai’an 223005, China
- Correspondence: (J.Z.); (Q.S.)
| |
Collapse
|
13
|
Liu L, Huang S, Xu M, Gong Y, Li D, Wan C, Wu H, Tang Q. Isoquercitrin protects HUVECs against high glucose‑induced apoptosis through regulating p53 proteasomal degradation. Int J Mol Med 2021; 48:122. [PMID: 33982778 PMCID: PMC8121554 DOI: 10.3892/ijmm.2021.4955] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 04/12/2021] [Indexed: 02/06/2023] Open
Abstract
High glucose (HG)-induced endothelial apoptosis serves an important role in the vascular dysfunction associated with diabetes mellitus (DM). It has been reported that isoquercitrin (IQC), a flavonoid glucoside, possesses an anti-DM effect, but the mechanism requires further investigation. The present study investigated the effect of IQC against HG-induced apoptosis in human umbilical vein endothelial cells (HUVECs) and explored its molecular mechanism. HUVECs were treated with 5 or 30 mM glucose for 48 h. Endothelial cell viability was monitored using the Cell Counting Kit-8 assay. Mitochondrial membrane potential was detected by JC-1 staining. Apoptosis was observed by TUNEL staining and flow cytometry. Western blotting was used for the analysis of apoptosis-associated proteins Bax, Bcl-2, cleaved (C)-caspase3, total-caspase3, p53 and phosphorylated p53. Reverse transcription-quantitative PCR was used to analyze the mRNA expression levels of Bax, Bcl-2 and p53. Immunofluorescence staining was utilized to detect the expression levels and distribution of p53 and ubiquitin specific peptidase 10 (USP10) in HUVECs. The results revealed that IQC significantly attenuated HG-induced endothelial apoptosis, as shown by decreased apoptotic cells observed by TUNEL, JC-1 staining and flow cytometry. Moreover, under HG stress, IQC treatment markedly inhibited the increased expression levels of the pro-apoptotic proteins p53, Bax and C-caspase3, and increased the expression levels of the anti-apoptotic protein Bcl-2 in HUVECs. However, the anti-apoptotic effect of IQC against HG was partially blunted by increasing p53 protein levels in vitro. IQC influenced the mRNA expression levels of Bax and Bcl-2 in response to HG, but it did not affect the transcription of p53. Notably, IQC inhibited the HG-induced phosphorylation of p53 at Ser15 and the nuclear transport of USP10, destabilizing p53 and increasing the proteasomal degradation of the p53 protein. The current findings revealed that IQC exerted a protective effect against the HG-induced apoptosis of endothelial cells by regulating the proteasomal degradation of the p53 protein, suggesting that IQC may be used as a novel therapeutic compound to ameliorate DM-induced vascular complications.
Collapse
Affiliation(s)
- Libo Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Sihui Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Man Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yan Gong
- Pharmacy Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Dan Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Chunxia Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Haiming Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Qizhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
14
|
Luo EF, Li HX, Qin YH, Qiao Y, Yan GL, Yao YY, Li LQ, Hou JT, Tang CC, Wang D. Role of ferroptosis in the process of diabetes-induced endothelial dysfunction. World J Diabetes 2021; 12:124-137. [PMID: 33594332 PMCID: PMC7839168 DOI: 10.4239/wjd.v12.i2.124] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 11/30/2020] [Accepted: 12/10/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Endothelial dysfunction, a hallmark of diabetes, is a critical and initiating contributor to the pathogenesis of diabetic cardiovascular complications. However, the underlying mechanisms are still not fully understood. Ferroptosis is a newly defined regulated cell death driven by cellular metabolism and iron-dependent lipid peroxidation. Although the involvement of ferroptosis in disease pathogenesis has been shown in cancers and degenerative diseases, the participation of ferroptosis in the pathogenesis of diabetic endothelial dysfunction remains unclear.
AIM To examine the role of ferroptosis in diabetes-induced endothelial dysfunction and the underlying mechanisms.
METHODS Human umbilical vein endothelial cells (HUVECs) were treated with high glucose (HG), interleukin-1β (IL-1β), and ferroptosis inhibitor, and then the cell viability, reactive oxygen species (ROS), and ferroptosis-related marker protein were tested. To further determine whether the p53-xCT (the substrate-specific subunit of system Xc-)-glutathione (GSH) axis is involved in HG and IL-1β induced ferroptosis, HUVECs were transiently transfected with p53 small interfering ribonucleic acid or NC small interfering ribonucleic acid and then treated with HG and IL-1β. Cell viability, ROS, and ferroptosis-related marker protein were then assessed. In addition, we detected the xCT and p53 expression in the aorta of db/db mice.
RESULTS It was found that HG and IL-1β induced ferroptosis in HUVECs, as evidenced by the protective effect of the ferroptosis inhibitors, Deferoxamine and ferrostatin-1, resulting in increased lipid ROS and decreased cell viability. Mechanistically, activation of the p53-xCT-GSH axis induced by HG and IL-1β enhanced ferroptosis in HUVECs. In addition, a decrease in xCT and the presence of de-endothelialized areas were observed in the aortic endothelium of db/db mice.
CONCLUSION Ferroptosis is involved in endothelial dysfunction and p53-xCT-GSH axis activation plays a crucial role in endothelial cell ferroptosis and endothelial dysfunction.
Collapse
Affiliation(s)
- Er-Fei Luo
- School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Hong-Xia Li
- School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Yu-Han Qin
- School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Yong Qiao
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Gao-Liang Yan
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Yu-Yu Yao
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Lin-Qing Li
- School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Jian-Tong Hou
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Cheng-Chun Tang
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Dong Wang
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing 210009, Jiangsu Province, China
| |
Collapse
|
15
|
Kim GD, Park S. Effects of Cudrania tricuspidata on anti-senescence in high glucose-treated endothelial cells via the Akt/p53/p21 pathway. Food Sci Nutr 2020; 8:5999-6006. [PMID: 33282251 PMCID: PMC7684615 DOI: 10.1002/fsn3.1885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 08/19/2020] [Accepted: 08/23/2020] [Indexed: 01/08/2023] Open
Abstract
The roles of Cudrania tricuspidata (CT) in the prevention of senescence and the underlying mechanisms have not been elucidated. In a high glucose (HG)-induced senescent endothelial cell (EC) culture, CT (20 µg/ml) reduced the number of senescence-associated β-galactosidase-positive cells by 8.3% compared with the control group and increased the expression of p-Sirt1 by more than twofold compared with the control group. Moreover, 20 μg/ml CT treatment doubled the activity of p-Akt, which was inhibited by HG, compared with the control group. In addition, CT treatment decreased the expression of p53, p21, and Rb, which was increased by HG. Overall, CT delays HG-induced senescence via the Akt/p53/p21 pathway, suggesting its potential as a functional agent for the protection of ECs.
Collapse
Affiliation(s)
- Gi Dae Kim
- Department of Food and NutritionKyungnam UniversityChangwon‐siRepublic of Korea
| | - Seonghee Park
- Department of Biological ScienceSookmyung Women's UniversitySeoulRepublic of Korea
| |
Collapse
|
16
|
Siddiqui SS, Rahman S, Rupasinghe HV, Vazhappilly CG. Dietary Flavonoids in p53-Mediated Immune Dysfunctions Linking to Cancer Prevention. Biomedicines 2020; 8:biomedicines8080286. [PMID: 32823757 PMCID: PMC7460013 DOI: 10.3390/biomedicines8080286] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/03/2020] [Accepted: 08/11/2020] [Indexed: 12/14/2022] Open
Abstract
The p53 protein plays a central role in mediating immune functioning and determines the fate of the cells. Its role as a tumor suppressor, and in transcriptional regulation and cytokine activity under stress conditions, is well defined. The wild type (WT) p53 functions as a guardian for the genome, while the mutant p53 has oncogenic roles. One of the ways that p53 combats carcinogenesis is by reducing inflammation. WT p53 functions as an anti-inflammatory molecule via cross-talk activity with multiple immunological pathways, such as the major histocompatibility complex I (MHCI) associated pathway, toll-like receptors (TLRs), and immune checkpoints. Due to the multifarious roles of p53 in cancer, it is a potent target for cancer immunotherapy. Plant flavonoids have been gaining recognition over the last two decades to use as a potential therapeutic regimen in ameliorating diseases. Recent studies have shown the ability of flavonoids to suppress chronic inflammation, specifically by modulating p53 responses. Further, the anti-oxidant Keap1/Nrf2/ARE pathway could play a crucial role in mitigating oxidative stress, leading to a reduction of chronic inflammation linked to the prevention of cancer. This review aims to discuss the pharmacological properties of plant flavonoids in response to various oxidative stresses and immune dysfunctions and analyzes the cross-talk between flavonoid-rich dietary intake for potential disease prevention.
Collapse
Affiliation(s)
- Shoib Sarwar Siddiqui
- Department of Biotechnology, American University of Ras Al Khaimah, Ras Al Khaimah PO Box 10021, UAE;
| | - Sofia Rahman
- School of Natural Sciences and Mathematics, The University of Texas at Dallas, Richardson, TX 75080, USA;
| | - H.P. Vasantha Rupasinghe
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada;
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Cijo George Vazhappilly
- Department of Biotechnology, American University of Ras Al Khaimah, Ras Al Khaimah PO Box 10021, UAE;
- Correspondence:
| |
Collapse
|
17
|
Oduro PK, Fang J, Niu L, Li Y, Li L, Zhao X, Wang Q. Pharmacological management of vascular endothelial dysfunction in diabetes: TCM and western medicine compared based on biomarkers and biochemical parameters. Pharmacol Res 2020; 158:104893. [PMID: 32434053 DOI: 10.1016/j.phrs.2020.104893] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/18/2020] [Accepted: 05/03/2020] [Indexed: 12/20/2022]
Abstract
Diabetes, a worldwide health concern while burdening significant populace of countries with time due to a hefty increase in both incidence and prevalence rates. Hyperglycemia has been buttressed both in clinical and experimental studies to modulate widespread molecular actions that effect macro and microvascular dysfunctions. Endothelial dysfunction, activation, inflammation, and endothelial barrier leakage are key factors contributing to vascular complications in diabetes, plus the development of diabetes-induced cardiovascular diseases. The recent increase in molecular, transcriptional, and clinical studies has brought a new scope to the understanding of molecular mechanisms and the therapeutic targets for endothelial dysfunction in diabetes. In this review, an attempt made to discuss up to date critical and emerging molecular signaling pathways involved in the pathophysiology of endothelial dysfunction and viable pharmacological management targets. Importantly, we exploit some Traditional Chinese Medicines (TCM)/TCM isolated bioactive compounds modulating effects on endothelial dysfunction in diabetes. Finally, clinical studies data on biomarkers and biochemical parameters involved in the assessment of the efficacy of treatment in vascular endothelial dysfunction in diabetes was compared between clinically used western hypoglycemic drugs and TCM formulas.
Collapse
Affiliation(s)
- Patrick Kwabena Oduro
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin 301617, PR China
| | - Jingmei Fang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin 301617, PR China
| | - Lu Niu
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin 301617, PR China
| | - Yuhong Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin 301617, PR China; Tianjin Key Laboratory of Chinese medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Lin Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin 301617, PR China; Tianjin Key Laboratory of Chinese medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Xin Zhao
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin 301617, PR China; Tianjin Key Laboratory of Chinese medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Qilong Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin 301617, PR China; Tianjin Key Laboratory of Chinese medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| |
Collapse
|
18
|
Fan W, Zhang R, Han D, Jiang Z, Li S, Zhang J, Li Y, Wang Y, Cao F. Reduced Sirtuin1 signalling exacerbates diabetic mice hindlimb ischaemia injury and inhibits the protective effect of a liver X receptor agonist. J Cell Mol Med 2020; 24:5476-5490. [PMID: 32286000 PMCID: PMC7214142 DOI: 10.1111/jcmm.15201] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/29/2020] [Accepted: 03/10/2020] [Indexed: 12/30/2022] Open
Abstract
Diabetes mellitus causes endothelial dysfunction, which further exacerbates peripheral arterial disease (PAD). Improving endothelial function via reducing endothelial oxidative stress (OS) may be a promising therapy for diabetic PAD. Activation of liver X receptor (LXR) inhibits excessive OS and provides protective effects on endothelial cells in diabetic individuals. Therefore, we investigated the effects of LXR agonist treatment on diabetic PAD with a focus on modulating endothelial OS. We used a streptozotocin‐induced diabetes mouse model combined with a hindlimb ischaemia (HLI) injury to mimic diabetic PAD, which was followed by LXR agonist treatment. In our study, the LXR agonist T0901317 protected against HLI injury in diabetic mice by attenuating endothelial OS and stimulating angiogenesis. However, a deficiency in endothelial Sirtuin1 (SIRT1) largely inhibited the therapeutic effects of T0901317. Furthermore, we found that the underlying therapeutic mechanisms of T0901317 were related to SIRT1 and non‐SIRT1 signalling, and the isoform LXRβ was involved in LXR agonist‐elicited SIRT1 regulation. In conclusion, LXR agonist treatment protected against HLI injury in diabetic mice via mitigating endothelial OS and stimulating cellular viability and angiogenesis by LXRβ, which elicited both SIRT1‐mediated and non‐SIRT1‐mediated signalling pathways. Therefore, LXR agonist treatment may be a promising therapeutic strategy for diabetic PAD.
Collapse
Affiliation(s)
- Wensi Fan
- Department of Cardiology & National Clinical Research Center for Geriatric Diseases2nd Medical CenterChinese PLA General HospitalBeijingChina
| | - Ran Zhang
- Department of Cardiology1st Medical CenterChinese PLA General HospitalBeijingChina
| | - Dong Han
- Department of CardiologyXijing HospitalFourth Military Medical UniversityXianChina
| | - Zhenhua Jiang
- Department of CardiologyXijing HospitalFourth Military Medical UniversityXianChina
| | - Shuang Li
- Department of CardiologyThe General Hospital of Western Theater Command (Chengdu Military General Hospital)Chengdu610083China
| | - Jibin Zhang
- Department of Cardiology & National Clinical Research Center for Geriatric Diseases2nd Medical CenterChinese PLA General HospitalBeijingChina
| | - Yanhua Li
- Department of Cardiology & National Clinical Research Center for Geriatric Diseases2nd Medical CenterChinese PLA General HospitalBeijingChina
| | - Yabin Wang
- Department of Cardiology & National Clinical Research Center for Geriatric Diseases2nd Medical CenterChinese PLA General HospitalBeijingChina
- Department of Cardiology1st Medical CenterChinese PLA General HospitalBeijingChina
| | - Feng Cao
- Department of Cardiology & National Clinical Research Center for Geriatric Diseases2nd Medical CenterChinese PLA General HospitalBeijingChina
- Department of Cardiology1st Medical CenterChinese PLA General HospitalBeijingChina
| |
Collapse
|
19
|
Functional Role of p53 in the Regulation of Chemical-Induced Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6039769. [PMID: 32190175 PMCID: PMC7066401 DOI: 10.1155/2020/6039769] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 02/03/2020] [Accepted: 02/11/2020] [Indexed: 12/12/2022]
Abstract
The nuclear transcription factor p53, discovered in 1979, has a broad range of biological functions, primarily the regulation of apoptosis, the cell cycle, and DNA repair. In addition to these canonical functions, a growing body of evidence suggests that p53 plays an important role in regulating intracellular redox homeostasis through transcriptional and nontranscriptional mechanisms. Oxidative stress induction and p53 activation are common responses to chemical exposure and are suggested to play critical roles in chemical-induced toxicity. The activation of p53 can exert either prooxidant or antioxidant activity, depending on the context. In this review, we discuss the functional role of p53 in regulating chemical-induced oxidative stress, summarize the potential signaling pathways involved in p53's regulation of chemically mediated oxidative stress, and propose issues that should be addressed in future studies to improve understanding of the relationship between p53 and chemical-induced oxidative stress.
Collapse
|
20
|
Morresi C, Cianfruglia L, Sartini D, Cecati M, Fumarola S, Emanuelli M, Armeni T, Ferretti G, Bacchetti T. Effect of High Glucose-Induced Oxidative Stress on Paraoxonase 2 Expression and Activity in Caco-2 Cells. Cells 2019; 8:1616. [PMID: 31835890 PMCID: PMC6953021 DOI: 10.3390/cells8121616] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 01/14/2023] Open
Abstract
(1) Background: Hyperglycemia leads to several biochemical and physiological consequences, such as the generation of advanced glycation end products (AGEs) and reactive oxygen species (ROS), which are involved in the development of several human diseases. Intestinal cells are continuously exposed to pro-oxidants and lipid peroxidation products from ingested foods, and also to glyco-oxidative damage. It has been reported that free radical generation may be linked to the development of inflammation-related gastrointestinal diseases. (2) Methods: The effects of high glucose (HG) treatment (50 mM) were assessed in terms of free radical production, lipid peroxidation, and AGEs formation. Furthermore, the expression and the antiapoptotic and antioxidant activity of the paraoxonase-2 (PON2) enzyme in intestinal cells has been investigated. (3) Results: Caco-2 cells treated with media supplied with high glucose (HG) (50 mM) showed, with respect to physiological glucose concentration (25 mM), an increase in ROS production, lipid peroxidation, and AGEs formation. Moreover, a lower PON2 expression and activity in HG-treated cells was related to activation of the apoptotic pathways. (4) Conclusions: Our results demonstrated that high glucose concentrations triggered glyco-oxidative stress in intestinal cells; the downregulation of PON2 could result in a higher oxidative stress and might contribute to intestinal dysfunction.
Collapse
Affiliation(s)
- Camilla Morresi
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy; (C.M.); (M.C.); (T.B.)
| | - Laura Cianfruglia
- Department of Clinical Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy; (L.C.); (D.S.); (S.F.); (M.E.)
| | - Davide Sartini
- Department of Clinical Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy; (L.C.); (D.S.); (S.F.); (M.E.)
| | - Monia Cecati
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy; (C.M.); (M.C.); (T.B.)
| | - Stefania Fumarola
- Department of Clinical Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy; (L.C.); (D.S.); (S.F.); (M.E.)
| | - Monica Emanuelli
- Department of Clinical Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy; (L.C.); (D.S.); (S.F.); (M.E.)
| | - Tatiana Armeni
- Department of Clinical Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy; (L.C.); (D.S.); (S.F.); (M.E.)
| | - Gianna Ferretti
- Department of Clinical Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy; (L.C.); (D.S.); (S.F.); (M.E.)
| | - Tiziana Bacchetti
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy; (C.M.); (M.C.); (T.B.)
| |
Collapse
|
21
|
Sun C, Guo E, Zhou B, Shan W, Huang J, Weng D, Wu P, Wang C, Wang S, Zhang W, Gao Q, Xu X, Wang B, Hu J, Ma D, Chen G. A reactive oxygen species scoring system predicts cisplatin sensitivity and prognosis in ovarian cancer patients. BMC Cancer 2019; 19:1061. [PMID: 31703584 PMCID: PMC6839150 DOI: 10.1186/s12885-019-6288-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 10/24/2019] [Indexed: 12/11/2022] Open
Abstract
Background To reveal roles of reactive oxygen species (ROS) status in chemotherapy resistance and to develop a ROS scoring system for prognosis prediction in ovarian cancer. Methods We tested the sensitizing effects of ROS elevating drugs to cisplatin (cDDP) in ovarian cancer both in vitro and in vivo. A ROS scoring system was developed using The Cancer Genome Atlas (TCGA) database of ovarian cancer. The associations between ROS scores and overall survival (OS) were analyzed in TCGA, Tothill dataset, and our in-house dataset (TJ dataset). Results ROS-inducing drugs increased cisplatin-induced ovarian cancer cell injury in vitro and in vivo. ROS scoring system was established using 25 ROS-related genes. Patients were divided into low (scores 0–12) and high (scores 13–25) score groups. Improved patient survival was associated with higher scores (TCGA dataset hazard ratio (HR) = 0.43, P < 0.001; Tothill dataset HR = 0.65, P = 0.022; TJ dataset HR = 0.40, P = 0.003). The score was also significantly associated with OS in multiple datasets (TCGA dataset r2 = 0.574, P = 0.032; Thothill dataset r2 = 0.266, P = 0.049; TJ dataset r2 = 0.632, P = 0.001) and with cisplatin sensitivity in ovarian cancer cell lines (r2 = 0.799, P = 0.016) when used as a continuous variable. The scoring system showed better prognostic performance than other clinical factors by receiver operating characteristic (ROC) curves (TCGA dataset area under the curve (AUC) = 0.71 v.s. 0.65, Tothill dataset AUC = 0.73 v.s. 0.67, TJ dataset AUC = 0.74 v.s. 0.66). Conclusions ROS status is associated with chemotherapy resistance. ROS score system might be a prognostic biomarker in predicting the survival benefit from ovarian cancer patients.
Collapse
Affiliation(s)
- Chaoyang Sun
- Cancer Biology Research Center (Key laboratory of Chinese Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.,Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Ensong Guo
- Cancer Biology Research Center (Key laboratory of Chinese Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.,Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Bo Zhou
- Cancer Biology Research Center (Key laboratory of Chinese Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.,Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Wanying Shan
- Cancer Biology Research Center (Key laboratory of Chinese Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.,Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Jia Huang
- Cancer Biology Research Center (Key laboratory of Chinese Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.,Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Danhui Weng
- Cancer Biology Research Center (Key laboratory of Chinese Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.,Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Peng Wu
- Cancer Biology Research Center (Key laboratory of Chinese Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.,Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Changyu Wang
- Cancer Biology Research Center (Key laboratory of Chinese Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.,Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Shixuan Wang
- Cancer Biology Research Center (Key laboratory of Chinese Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.,Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Wei Zhang
- Cancer Biology Research Center (Key laboratory of Chinese Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.,Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Qinglei Gao
- Cancer Biology Research Center (Key laboratory of Chinese Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.,Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xiaoyan Xu
- Cancer Biology Research Center (Key laboratory of Chinese Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.,Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Beibei Wang
- Cancer Biology Research Center (Key laboratory of Chinese Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.,Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Junbo Hu
- Cancer Biology Research Center (Key laboratory of Chinese Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.,Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Ding Ma
- Cancer Biology Research Center (Key laboratory of Chinese Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.,Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Gang Chen
- Cancer Biology Research Center (Key laboratory of Chinese Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China. .,Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.
| |
Collapse
|
22
|
SUMOylation Evoked by Oxidative Stress Reduced Lens Epithelial Cell Antioxidant Functions by Increasing the Stability and Transcription of TP53INP1 in Age-Related Cataracts. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7898069. [PMID: 31281592 PMCID: PMC6590620 DOI: 10.1155/2019/7898069] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 05/05/2019] [Indexed: 01/13/2023]
Abstract
Oxidative stress plays an important role in the pathogenesis of cataracts. Small ubiquitin-like modifier (SUMO) proteins have great effects on cell stress response. Previous studies have shown that TP53INP1 can arrest cell growth and induce apoptosis by modulating p53 transcriptional activity and that both TP53INP1 and p53 are substrates of SUMOylation. However, no previous research has studied the effect of SUMOylation on the oxidative stress response in cataracts. This is the first study to investigate the effect of SUMOylation of TP53INP1 in oxidative stress-induced lens epithelial cell injury and age-related cataract formation. We found that the oxidative stress-induced endogenous SUMOylation of TP53INP1 promoted human lens epithelial cell (holed) apoptosis and regulated hLEC antioxidant effects by increasing the stability and transcription of TP53INP1 in age-related cataracts. SUMO-1, SUMOylation, and TP53INP1 were upregulated in lens tissues affected by age-related cataracts. A SUMO-1-specific protease, SENP1, acted as an oxidative stress-sensitive target gene in hLECs. This study identified for the first time that TP53INP1 can be SUMOylated in vivo, that the SUMOylation of TP53INP1 is induced by oxidative stress, and that SUMOylation/deSUMOylation can affect the stability and transcription of TP53INP1 in hLECs.
Collapse
|
23
|
Wu J, Liang W, Tian Y, Ma F, Huang W, Jia Y, Jiang Z, Wu H. Inhibition of P53/miR-34a improves diabetic endothelial dysfunction via activation of SIRT1. J Cell Mol Med 2019; 23:3538-3548. [PMID: 30793480 PMCID: PMC6484332 DOI: 10.1111/jcmm.14253] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/28/2019] [Accepted: 02/06/2019] [Indexed: 12/11/2022] Open
Abstract
Endothelial dysfunction contributes to diabetic macrovascular complications, resulting in high mortality. Recent findings demonstrate a pathogenic role of P53 in endothelial dysfunction, encouraging the investigation of the effect of P53 inhibition on diabetic endothelial dysfunction. Thus, high glucose (HG)‐treated endothelial cells (ECs) were subjected to pifithrin‐α (PFT‐α)—a specific inhibitor of P53, or P53‐small interfering RNA (siRNA), both of which attenuated the HG‐induced endothelial inflammation and oxidative stress. Moreover, inhibition of P53 by PFT‐α or P53‐siRNA prohibited P53 acetylation, decreased microRNA‐34a (miR‐34a) level, leading to a dramatic increase in sirtuin 1 (SIRT1) protein level. Interestingly, the miR‐34a inhibitor (miR‐34a‐I) and PFT‐α increased SIRT1 protein level and alleviated the HG‐induced endothelial inflammation and oxidative stress to a similar extent; however, these effects of PFT‐α were completely abrogated by the miR‐34a mimic. In addition, SIRT1 inhibition by EX‐527 or Sirt1‐siRNA completely abolished miR‐34a‐I's protection against HG‐induced endothelial inflammation and oxidative stress. Furthermore, in the aortas of streptozotocin‐induced diabetic mice, both PFT‐α and miR‐34a‐I rescued the inflammation, oxidative stress and endothelial dysfunction caused by hyperglycaemia. Hence, the present study has uncovered a P53/miR‐34a/SIRT1 pathway that leads to endothelial dysfunction, suggesting that P53/miR‐34a inhibition could be a viable strategy in the management of diabetic macrovascular diseases.
Collapse
Affiliation(s)
- Junduo Wu
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, Jilin, China.,Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, Heilongjiang, China
| | - Wenzhao Liang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China.,Occupational and Environmental Medicine Center, Linköping University, Linköping, Sweden
| | - Yueli Tian
- Department of Gastroenteric Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Fuzhe Ma
- Department of Nephrology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Wenlin Huang
- School of Science and Technology, Georgia Gwinnett College, Lawrenceville, Georgia
| | - Ye Jia
- Department of Diabetes Complications and Metabolism, Diabetes Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, California
| | - Ziping Jiang
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Hao Wu
- Department of Toxicology and Nutrition, School of Public Health, Shandong University, Jinan, Shandong, China
| |
Collapse
|
24
|
Chen X, Wu Q, Jiang H, Wang J, Zhao Y, Xu Y, Zhu M. SET8 is involved in the regulation of hyperglycemic memory in human umbilical endothelial cells. Acta Biochim Biophys Sin (Shanghai) 2018; 50:635-642. [PMID: 29762637 DOI: 10.1093/abbs/gmy051] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 04/24/2018] [Indexed: 11/13/2022] Open
Abstract
Hyperglycemic memory occurs in diabetic cardiovascular complications, but the underlying mechanism remains to be elucidated. Although the depletion of SET8 leads to increased mitochondrial oxidative stress via increasing cellular reactive oxygen species (ROS) production, the role of SET8 in hyperglycemic memory-induced mitochondrial dysfunction is not well understood. Here, we investigated the role of SET8 in this setting. Our results showed that high glucose-induced vascular inflammation, ROS production and apoptosis remained at high levels even when glucose returned to normal level. Elevated glucose reduced SET8 expression, which also remained at low level after returning to normoglycemia. SET8 overexpression protected cells from elevated glucose and hyperglycemic memory-induced endothelial injury by blocking ROS accumulation, attenuating vascular inflammation, and restoring nitric oxide production. Thus, our results suggest that SET8 may be a key mediator in hyperglycemic memory.
Collapse
Affiliation(s)
- Xiangyuan Chen
- Department of Anaesthesiology, Fudan University Shanghai Cancer Centre, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Anaesthesiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qichao Wu
- Department of Anaesthesiology, Fudan University Shanghai Cancer Centre, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Anaesthesiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hui Jiang
- Department of Anaesthesiology, Fudan University Shanghai Cancer Centre, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiaqiang Wang
- Department of Anaesthesiology, Fudan University Shanghai Cancer Centre, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Anaesthesiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yanjun Zhao
- Department of Anaesthesiology, Fudan University Shanghai Cancer Centre, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yajun Xu
- Department of Anaesthesiology, Fudan University Shanghai Cancer Centre, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Minmin Zhu
- Department of Anaesthesiology, Fudan University Shanghai Cancer Centre, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
25
|
Sultan CS, Saackel A, Stank A, Fleming T, Fedorova M, Hoffmann R, Wade RC, Hecker M, Wagner AH. Impact of carbonylation on glutathione peroxidase-1 activity in human hyperglycemic endothelial cells. Redox Biol 2018; 16:113-122. [PMID: 29499564 PMCID: PMC5952877 DOI: 10.1016/j.redox.2018.02.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 02/19/2018] [Indexed: 12/14/2022] Open
Abstract
AIMS High levels of glucose and reactive carbonyl intermediates of its degradation pathway such as methylglyoxal (MG) may contribute to diabetic complications partly via increased generation of reactive oxygen species (ROS). This study focused on glutathione peroxidase-1 (GPx1) expression and the impact of carbonylation as an oxidative protein modification on GPx1 abundance and activity in human umbilical vein endothelial cells (HUVEC) under conditions of mild to moderate oxidative stress. RESULTS High extracellular glucose and MG enhanced intracellular ROS formation in HUVECs. Protein carbonylation was only transiently augmented pointing to an effective antioxidant defense in these cells. Nitric oxide synthase expression was decreased under hyperglycemic conditions but increased upon exposure to MG, whereas superoxide dismutase expression was not significantly affected. Increased glutathione peroxidase (GPx) activity seemed to compensate for a decrease in GPx1 protein due to enhanced degradation via the proteasome. Mass spectrometry analysis identified Lys-114 as a possible carbonylation target which provides a vestibule for the substrate H2O2 and thus enhances the enzymatic reaction. INNOVATION Oxidative protein carbonylation has so far been associated with functional inactivation of modified target proteins mainly contributing to aging and age-related diseases. Here, we demonstrate that mild oxidative stress and subsequent carbonylation seem to activate protective cellular redox signaling pathways whereas severe oxidative stress overwhelms the cellular antioxidant defense leading to cell damage. CONCLUSIONS This study may contribute to a better understanding of redox homeostasis and its role in the development of diabetes and related vascular complications.
Collapse
Affiliation(s)
- Cheryl S Sultan
- Department of Cardiovascular Physiology, Heidelberg University, Heidelberg D-69120, Germany
| | - Andrea Saackel
- Department of Cardiovascular Physiology, Heidelberg University, Heidelberg D-69120, Germany
| | - Antonia Stank
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Heidelberg D-69118, Germany; Heidelberg Graduate School of Mathematical and Computational Methods for the Sciences, Heidelberg D-69120, Germany
| | - Thomas Fleming
- Department of Medicine I and Clinical Chemistry, University Hospital Heidelberg, Heidelberg D-69120, Germany
| | - Maria Fedorova
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Center for Biotechnology and Biomedicine, Leipzig University, Leipzig D-04103, Germany
| | - Ralf Hoffmann
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Center for Biotechnology and Biomedicine, Leipzig University, Leipzig D-04103, Germany
| | - Rebecca C Wade
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Heidelberg D-69118, Germany; Interdisciplinary Center for Scientific Computing (IWR), Heidelberg D-69120, Germany; Center for Molecular Biology of the University of Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg D-69120, Germany
| | - Markus Hecker
- Department of Cardiovascular Physiology, Heidelberg University, Heidelberg D-69120, Germany
| | - Andreas H Wagner
- Department of Cardiovascular Physiology, Heidelberg University, Heidelberg D-69120, Germany.
| |
Collapse
|
26
|
Impact of percutaneous invasive coronary procedures using a radial approach on endothelial function of radial artery. ADVANCES IN INTERVENTIONAL CARDIOLOGY 2018; 14:95-98. [PMID: 29743910 PMCID: PMC5939551 DOI: 10.5114/aic.2018.74361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 12/07/2017] [Indexed: 01/09/2023] Open
|