1
|
Tamaki N, Fukui M, Kitamura M, Fukuda H, Furugen R, Yamanashi H, Miyata J, Saito T, Maeda T. Longitudinal relationship between atherosclerosis and progression of periodontitis in community-dwelling people in Nagasaki Islands Study. Sci Rep 2025; 15:13437. [PMID: 40251331 PMCID: PMC12008378 DOI: 10.1038/s41598-025-98377-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 04/10/2025] [Indexed: 04/20/2025] Open
Abstract
Few epidemiological studies have explored the longitudinal relationship between atherosclerosis and periodontitis. The aim of this study was to investigate the longitudinal relationship between atherosclerosis and the progression of periodontitis in community-dwelling individuals in Japan. Progression of periodontitis was defined as the presence of the teeth demonstrating a longitudinal loss of proximal attachment ≥ 3 mm during the study period. Oral examinations and subclinical atherosclerosis assessments were performed. The surrogate markers of early-stage atherosclerosis were increased carotid intima-media thickness (cIMT), low ankle-brachial index (ABI), and cardio-ankle vascular index (CAVI). The study included 222 Japanese adults. While CAVI increased significantly in both groups, the prevalence of CAVI ≥ 8 was significantly increased in only the progression group during the study period. Logistic regression analysis indicated that the progression of periodontitis was significantly associated with cIMT. Additionally, CAVI positively correlated with changes in probing pocket depth, while ABI negatively correlated with changes in clinical attachment loss. These results suggest that participants with high cIMT, high CAVI and low ABI had a high risk of periodontitis progression after adjusting for risk factors. In conclusion, subclinical markers of early-stage atherosclerosis are significantly associated with a greater risk of periodontitis progression in community-dwelling Japanese participants.
Collapse
Affiliation(s)
- Naofumi Tamaki
- Department of Preventive Dentistry, Kagoshima University Graduate School of Medicine and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima City, Kagoshima, 890-8544, Japan.
| | - Makoto Fukui
- Department of Hygiene and Oral Health Science, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramotocho, Tokushima City, Tokushima, 770-8504, Japan
| | - Masayasu Kitamura
- Department of Oral Health, Nagasaki University Graduate School of Biomedical Sciences, 1-7- 1 Sakamoto, Nagasaki City, Nagasaki, 852-8501, Japan
| | - Hideki Fukuda
- National Institute of Public Health, 2-3-6 Minami, Wako City, Saitama, 354-0026, Japan
| | - Reiko Furugen
- Department of Community Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki City, Nagasaki, 852-8501, Japan
| | - Hirotomo Yamanashi
- Department of General Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki City, Nagasaki, 852-8501, Japan
| | - Jun Miyata
- Department of Island and Community Medicine, Nagasaki University Graduate School of Biomedical Sciences, 205 Yoshikugicho, Goto City, Nagasaki, 853-8691, Japan
| | - Toshiyuki Saito
- Department of Oral Health, Nagasaki University Graduate School of Biomedical Sciences, 1-7- 1 Sakamoto, Nagasaki City, Nagasaki, 852-8501, Japan
| | - Takahiro Maeda
- Department of General Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki City, Nagasaki, 852-8501, Japan
- Department of Island and Community Medicine, Nagasaki University Graduate School of Biomedical Sciences, 205 Yoshikugicho, Goto City, Nagasaki, 853-8691, Japan
- Leading Medical Research Core Unit, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki City, Nagasaki, 852-8501, Japan
| |
Collapse
|
2
|
Reinhold V, Kallionpää RA, Valtanen M, Auranen K, Syrjänen S, Peltonen S, Peltonen J. Hospital Visits Associated With Oral Infections in Patients With Neurofibromatosis Type 1: A Register-Based Analysis. Am J Med Genet A 2025; 197:e63887. [PMID: 39315661 DOI: 10.1002/ajmg.a.63887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/12/2024] [Accepted: 09/12/2024] [Indexed: 09/25/2024]
Abstract
Various forms of oral involvement have been reported in patients with neurofibromatosis 1 (NF1). Here, we analyze register-based associations between NF1 and hospital visits related to oral infections. The Finnish NF1 cohort encompasses all individuals with verified NF1 who have visited the Finnish central and university hospitals in 1987-2011. The Finnish Care Register for Health Care allowed the follow-up of 1349 individuals with NF1, their 1894 siblings without NF1, and 13,870 matched controls for diagnoses related to oral infections in 1998-2014. We observed clearly increased hazards for hospital visits associated with dental caries (ICD-10 K02; NF1 vs. controls, hazard ratio [HR] 4.42, 95% CI 3.23-6.04), diseases of pulp and periapical tissues (K04; HR 3.85, 95% CI 2.68-5.54), and gingivitis and periodontal diseases (K05; HR 3.63, 95% CI 2.37-5.56). In contrast, hospital visits related to diseases of salivary glands (K11), and stomatitis and related lesions (K12) did not show significantly increased hazard in NF1 compared with the controls or the non-NF1 siblings. In conclusion, the findings suggest that hospital visits related to oral infections are relatively common among individuals with NF1. The results highlight the need for early detection, proactive prevention, and timely treatment of oral infections in individuals with NF1.
Collapse
Affiliation(s)
- Vivian Reinhold
- Cancer Research Unit, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Roope A Kallionpää
- Cancer Research Unit, Institute of Biomedicine, University of Turku, Turku, Finland
- FICAN West Cancer Centre, University of Turku and Turku University Hospital, Turku, Finland
- Department of Dermatology and Venereology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Mikko Valtanen
- Cancer Research Unit, Institute of Biomedicine, University of Turku, Turku, Finland
- Department of Public Health and Welfare, Population Health Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
- Department of Mathematics and Statistics, University of Turku, Turku, Finland
| | - Kari Auranen
- Department of Mathematics and Statistics, University of Turku, Turku, Finland
- Department of Clinical Medicine, University of Turku, Turku, Finland
| | - Stina Syrjänen
- Department of Oral Pathology, Institute of Dentistry, University of Turku, Turku, Finland
- Department of Pathology, Turku University Hospital, Turku, Finland
| | - Sirkku Peltonen
- Department of Dermatology and Venereology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Dermatology and Venereology, University of Turku, Turku, Finland
- Department of Dermatology, Turku University Hospital, Turku, Finland
- Department of Dermatology and Venereology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Dermatology and Allergology, University of Helsinki, Helsinki, Finland
- Skin and Allergy Hospital, Helsinki University Hospital, Helsinki, Finland
| | - Juha Peltonen
- Cancer Research Unit, Institute of Biomedicine, University of Turku, Turku, Finland
- FICAN West Cancer Centre, University of Turku and Turku University Hospital, Turku, Finland
| |
Collapse
|
3
|
Xi M, Ruan Q, Zhong S, Li J, Qi W, Xie C, Wang X, Abuduxiku N, Ni J. Periodontal bacteria influence systemic diseases through the gut microbiota. Front Cell Infect Microbiol 2024; 14:1478362. [PMID: 39619660 PMCID: PMC11604649 DOI: 10.3389/fcimb.2024.1478362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/29/2024] [Indexed: 12/11/2024] Open
Abstract
Many systemic diseases, including Alzheimer disease (AD), diabetes mellitus (DM) and cardiovascular disease, are associated with microbiota dysbiosis. The oral and intestinal microbiota are directly connected anatomically, and communicate with each other through the oral-gut microbiome axis to establish and maintain host microbial homeostasis. In addition to directly, periodontal bacteria may also be indirectly involved in the regulation of systemic health and disease through the disturbed gut. This paper provides evidence for the role of periodontal bacteria in systemic diseases via the oral-gut axis and the far-reaching implications of maintaining periodontal health in reducing the risk of many intestinal and parenteral diseases. This may provide insight into the underlying pathogenesis of many systemic diseases and the search for new preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Mengying Xi
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Qijun Ruan
- Department of Periodontics, Shenzhen Longgang Otolaryngology hospital, Shenzhen, China
| | - Sulan Zhong
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Jiatong Li
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Weijuan Qi
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Congman Xie
- Department of Orthodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Xiaoyan Wang
- Department of Periodontics, Shenzhen Longgang Otolaryngology hospital, Shenzhen, China
| | - Nuerbiya Abuduxiku
- Department of Stomatology, The First People’s Hospital of Kashi, Kashi, China
| | - Jia Ni
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| |
Collapse
|
4
|
Shen J, Chen H, Zhou X, Huang Q, Garay LG, Zhao M, Qian S, Zong G, Yan Y, Wang X, Wang B, Tonetti M, Zheng Y, Yuan C. Oral microbiome diversity and diet quality in relation to mortality. J Clin Periodontol 2024; 51:1478-1489. [PMID: 39188084 DOI: 10.1111/jcpe.14050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 06/07/2024] [Accepted: 07/08/2024] [Indexed: 08/28/2024]
Abstract
AIM To examine the independent and joint associations of oral microbiome diversity and diet quality with risks of all-cause and cause-specific mortality. MATERIALS AND METHODS We included 7,055 eligible adults from the U.S. National Health and Nutrition Examination Survey (NHANES). Oral microbiome diversity was measured with α-diversity, including the Simpson Index, observed amplicon sequence variants (ASVs), Faith's phylogenetic diversity, and Shannon-Weiner index. Dietary quality was assessed using the Healthy Eating Index-2015 (HEI-2015). Cox proportional hazard models were used to assess the corresponding associations. RESULTS During a mean follow-up of 9.0 years, we documented 382 all-cause deaths. We observed independent associations of oral microbiome diversity indices and dietary quality with all-cause mortality (hazard ratio [HR] = 0.63; 95% confidence interval [CI]: 0.49-0.82 for observed ASVs; HR = 0.68, 95% CI: 0.52-0.89 for HEI-2015). Jointly, participants with the highest tertiles of both oral microbiome diversity (in Simpson index) and HEI-2015 had the lowest hazard of mortality (HR = 0.37, 95% CI: 0.23-0.60). In addition, higher oral microbiome diversity was associated with lower risks of deaths from cardiometabolic disease and cancer. CONCLUSIONS Higher oral microbiome α-diversity and diet quality were independently associated with lower risk of mortality.
Collapse
Affiliation(s)
- Jie Shen
- School of Public Health, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hui Chen
- School of Public Health, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaofeng Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, China
| | - Qiumin Huang
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, China
| | - Lucas Gonzalo Garay
- School of Public Health, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengjia Zhao
- School of Public Health, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shujiao Qian
- Department of Oral Implantology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center of Stomatology; National Clinical Research Center for Oral Diseases; Shanghai key Laboratory of Stomatology, Shanghai, China
| | - Geng Zong
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Yan Yan
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology and Immunology, Chinese Academy of Sciences, Shanghai, China
| | - Xiaofeng Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Baohong Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Maurizio Tonetti
- Department of Oral Implantology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center of Stomatology; National Clinical Research Center for Oral Diseases; Shanghai key Laboratory of Stomatology, Shanghai, China
| | - Yan Zheng
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, China
| | - Changzheng Yuan
- School of Public Health, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Mi L, Li J, Hii ARK, Zuo Z, Tang Y, Zhou W, Wu Z, Qi X. Dental cementum anchored microspheres embedded in a self-healing hydrogel for the antibacterial, anti-inflammation, osteogenic, and anti-osteoclastic management of periodontitis disease. J Mater Chem B 2024; 12:9947-9962. [PMID: 39072701 DOI: 10.1039/d4tb00579a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Periodontitis, a prevalent chronic oral disease, poses a significant threat to periodontal tissues, often resulting in substantial attachment loss and tooth shedding. Leveraging the principles of bone affinity and the mechanism underlying tetracycline pigmentation of teeth, this study strategically employed tetracycline (TC) as a bone-affinity group. We modified TC on the surface of polylactic-co-glycolic acid copolymer (PLGA) microspheres (MSs) through covalent binding, and then loaded berberine (BBR) MSs into a thermosensitive self-healing hydrogel delivery system (BBR/TC-MS). It was verified that the BBR/TC-MS gel rapidly formed an in situ reservoir in the periodontal pocket upon injection, and the chelation between TC and cementum in the periodontal pocket enhanced the anchoring effect of the TC-modified microspheres on cementum, preventing their loss through gingival crevicular fluid. Subsequently, we proved in vitro and in vivo that the BBR/TC-MS gel has excellent bacteriostatic effects against the periodontal pathogenic bacteria Fusobacterium necrophorum (Fn), anti-inflammation property in periodontal and gingival tissues, and osteogenic effect by regulating the RANKL-RANK-OPG pathway to diminish osteoclast activity, thus continuously exerting antibacterial, anti-inflammatory, osteogenic, and anti-osteoclastic effects. This innovative approach holds promise as a targeted and effective strategy for combating multifaceted challenges posed by periodontitis.
Collapse
Affiliation(s)
- Li Mi
- China Pharmaceutical University, 210009, Nanjing, China.
| | - Jiachen Li
- China Pharmaceutical University, 210009, Nanjing, China.
| | | | - Zhenhao Zuo
- China Pharmaceutical University, 210009, Nanjing, China.
| | - Ya Tang
- The Second Outpatient Department, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| | - Wei Zhou
- Department of Periodontology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China.
| | - Zhenghong Wu
- China Pharmaceutical University, 210009, Nanjing, China.
| | - Xiaole Qi
- China Pharmaceutical University, 210009, Nanjing, China.
- Hangzhou Innovative Institute of Pharmaceutics, China Pharmaceutical University, 310018, Hangzhou, China
| |
Collapse
|
6
|
Tao K, Yuan Y, Xie Q, Dong Z. Relationship between human oral microbiome dysbiosis and neuropsychiatric diseases: An updated overview. Behav Brain Res 2024; 471:115111. [PMID: 38871130 DOI: 10.1016/j.bbr.2024.115111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/24/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
The role of the gut-brain axis in mental health disorders has been extensively studied. As the oral cavity is the starting point of the digestive tract, the role that the oral microbiota plays in mental health disorders has gained recent attention. Oral microbiota can enter the bloodstream and trigger inflammatory responses or translocate to the brain through the trigeminal nerve or olfactory system. Hence, the concept of the oral microbiota-brain axis has emerged. Several hypotheses have been suggested that the oral microbiota can enter the gastrointestinal tract and affect the gut-brain axis; however, literature describing oral-brain communication remains limited. This review summarizes the characteristics of oral microbiota and its mechanisms associated with mental health disorders. Through a comprehensive examination of the relationship between oral microbiota and various neuropsychiatric diseases, such as anxiety, depression, schizophrenia, autism spectrum disorder, epilepsy, Parkinson's disease, and dementia, this review seeks to identify promising avenues of future research.
Collapse
Affiliation(s)
- Kai Tao
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Yanling Yuan
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Qinglian Xie
- Department of Outpatient, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China; Department of Outpatient, West China Xiamen Hospital, Sichuan University, Fujian 361022, People's Republic of China.
| | - Zaiquan Dong
- Mental Health Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China.
| |
Collapse
|
7
|
Wang Z, Sun W, Hua R, Wang Y, Li Y, Zhang H. Promising dawn in tumor microenvironment therapy: engineering oral bacteria. Int J Oral Sci 2024; 16:24. [PMID: 38472176 PMCID: PMC10933493 DOI: 10.1038/s41368-024-00282-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/06/2024] [Accepted: 01/07/2024] [Indexed: 03/14/2024] Open
Abstract
Despite decades of research, cancer continues to be a major global health concern. The human mouth appears to be a multiplicity of local environments communicating with other organs and causing diseases via microbes. Nowadays, the role of oral microbes in the development and progression of cancer has received increasing scrutiny. At the same time, bioengineering technology and nanotechnology is growing rapidly, in which the physiological activities of natural bacteria are modified to improve the therapeutic efficiency of cancers. These engineered bacteria were transformed to achieve directed genetic reprogramming, selective functional reorganization and precise control. In contrast to endotoxins produced by typical genetically modified bacteria, oral flora exhibits favorable biosafety characteristics. To outline the current cognitions upon oral microbes, engineered microbes and human cancers, related literatures were searched and reviewed based on the PubMed database. We focused on a number of oral microbes and related mechanisms associated with the tumor microenvironment, which involve in cancer occurrence and development. Whether engineering oral bacteria can be a possible application of cancer therapy is worth consideration. A deeper understanding of the relationship between engineered oral bacteria and cancer therapy may enhance our knowledge of tumor pathogenesis thus providing new insights and strategies for cancer prevention and treatment.
Collapse
Affiliation(s)
- Zifei Wang
- Key Laboratory of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei, China
| | - Wansu Sun
- Department of Stomatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ruixue Hua
- Key Laboratory of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei, China
| | - Yuanyin Wang
- Key Laboratory of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei, China
| | - Yang Li
- Department of Genetics, School of Life Science, Anhui Medical University, Hefei, China.
| | - Hengguo Zhang
- Key Laboratory of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei, China.
| |
Collapse
|
8
|
Gheonea TC, Șurlin P, Nicolae FM, Gheorghe DN, Popescu DM, Rogoveanu I. Dipeptidyl-Peptidase-4 and Glucagon-like-Peptide-1, a Link in the Connection between Periodontitis and Diabetes Mellitus-What Do We Know So Far?-A Scoping Review. J Clin Med 2024; 13:903. [PMID: 38337597 PMCID: PMC10856081 DOI: 10.3390/jcm13030903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
Periodontitis is a common condition affecting the tissues surrounding and supporting teeth. In addition to oral health concerns, periodontal disease increases the chance of developing systemic illnesses including type 2 diabetes mellitus. Porphyromonas gingivalis, a key-stone pathogen that has been linked to the pathophysiology of periodontal disease, can generate a series of dipeptide producing exopeptidases, dipeptidyl peptidases (DPP). DPP-4 levels in gingival crevicular fluid have been shown to increase during active periodontal disease, which may lead to their association with the disease's progression. Following oral glucose administration, mice injected with DPP-4 had higher blood glucose than the control group. DPP-4 inhibitors are used to treat patients with type 2 diabetes mellitus in order to extend the half-life of incretins. Elevated glucagon-like peptide-1 (GLP-1) levels following periodontal therapy could be considered new and applicable real-world evidence confirming the experimental findings of a beneficial interaction between oral microbiota and incretin axis. GLP-1 receptor agonist exendin-4 enhanced the osteoblast proliferation and development of these stem cells and inhibited the effects of glucose on the cells. In addition to lowering blood sugar, liraglutide, a GLP-1 receptor agonist, also possesses anti-inflammatory and bone-protective properties. These findings support the use of GLP-1 in the management and prevention of diabetic periodontitis.
Collapse
Affiliation(s)
- Theodora Claudia Gheonea
- Center for IBD Patients, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200345 Craiova, Romania
| | - Petra Șurlin
- Department of Periodontology, Research Center of Periodontal-Systemic Interactions, Faculty of Dental Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania (D.M.P.)
| | - Flavia Mirela Nicolae
- Department of Periodontology, Research Center of Periodontal-Systemic Interactions, Faculty of Dental Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania (D.M.P.)
| | - Dorin Nicolae Gheorghe
- Department of Periodontology, Research Center of Periodontal-Systemic Interactions, Faculty of Dental Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania (D.M.P.)
| | - Dora Maria Popescu
- Department of Periodontology, Research Center of Periodontal-Systemic Interactions, Faculty of Dental Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania (D.M.P.)
| | - Ion Rogoveanu
- Department of Gastroenterology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| |
Collapse
|
9
|
Inhibitory effect of polysaccharides extracted from Changbai Mountain Ganoderma lucidum on periodontal inflammation. Heliyon 2023; 9:e13205. [PMID: 36814621 PMCID: PMC9939615 DOI: 10.1016/j.heliyon.2023.e13205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 12/23/2022] [Accepted: 01/20/2023] [Indexed: 01/30/2023] Open
Abstract
As the main bioactive substance of Ganoderma lucidum, Ganoderma lucidum polysaccharide (GLP) has anti-inflammatory, antibacterial, and other biological activities. Studies have shown that GLP can regulate the expression of multiple inflammatory cytokines in different inflammatory models and diseases as part of the anti-infection immune response. We extracted crude Changbai Mountain Ganoderma lucidum polysaccharides (CGLPs), analyzed their physical and chemical properties, and then applied them to the periodontitis model to verify whether they have an inhibitory effect on mouse periodontitis. CGLP was determined to be a heteropolysaccharide with dextran as the main component. Its molecular weight was 17.40 kDa. In vivo experiments in mice showed that CGLP can inhibit the alveolar bone loss and reduced inflammation caused of periodontitis by regulating the expression of the inflammatory factors IL-1β, TNF-α, and IL-10 in a concentration-dependent manner.
Collapse
|
10
|
Neculae E, Gosav EM, Valasciuc E, Dima N, Floria M, Tanase DM. The Oral Microbiota in Valvular Heart Disease: Current Knowledge and Future Directions. LIFE (BASEL, SWITZERLAND) 2023; 13:life13010182. [PMID: 36676130 PMCID: PMC9862471 DOI: 10.3390/life13010182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/31/2022] [Accepted: 01/06/2023] [Indexed: 01/11/2023]
Abstract
Oral microbiota formation begins from birth, and everything from genetic components to the environment, alongside the host's behavior (such as diet, smoking, oral hygiene, and even physical activity), contributes to oral microbiota structure. Even though recent studies have focused on the gut microbiota's role in systemic diseases, the oral microbiome represents the second largest community of microorganisms, making it a new promising therapeutic target. Periodontitis and dental caries are considered the two main consequences of oral bacterial imbalance. Studies have shown that oral dysbiosis effects are not limited locally. Due to technological advancement, research identified oral bacterial species in heart valves. This evidence links oral dysbiosis with the development of valvular heart disease (VHD). This review focuses on describing the mechanism behind prolonged local inflammation and dysbiosis, that can induce bacteriemia by direct or immune-mediated mechanisms and finally VHD. Additionally, we highlight emerging therapies based on controlling oral dysbiosis, periodontal disease, and inflammation with immunological and systemic effects, that exert beneficial effects in VHD management.
Collapse
Affiliation(s)
- Ecaterina Neculae
- Department of Gastroenterology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Institute of Gastroenterology and Hepatology, “Sf. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Evelina Maria Gosav
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Emilia Valasciuc
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Nicoleta Dima
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Mariana Floria
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
- Correspondence:
| | - Daniela Maria Tanase
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| |
Collapse
|
11
|
Mainas G, Nibali L, Ide M, Mahmeed WA, Al-Rasadi K, Al-Alawi K, Banach M, Banerjee Y, Ceriello A, Cesur M, Cosentino F, Firenze A, Galia M, Goh SY, Janež A, Kalra S, Kapoor N, Kempler P, Lessan N, Lotufo P, Papanas N, Rizvi AA, Sahebkar A, Santos RD, Stoian AP, Toth PP, Viswanathan V, Rizzo M. Associations between Periodontitis, COVID-19, and Cardiometabolic Complications: Molecular Mechanisms and Clinical Evidence. Metabolites 2022; 13:40. [PMID: 36676965 PMCID: PMC9865290 DOI: 10.3390/metabo13010040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/11/2022] [Accepted: 12/15/2022] [Indexed: 12/29/2022] Open
Abstract
Periodontitis is a microbially driven, host-mediated disease that leads to loss of periodontal attachment and resorption of bone. It is associated with the elevation of systemic inflammatory markers and with the presence of systemic comorbidities. Coronavirus disease 2019 (COVID-19) is a contagious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Although the majority of patients have mild symptoms, others experience important complications that can lead to death. After the spread of the COVID-19 pandemic, several investigations demonstrating the possible relationship between periodontitis and COVID-19 have been reported. In addition, both periodontal disease and COVID-19 seem to provoke and/or impair several cardiometabolic complications such as cardiovascular disease, type 2 diabetes, metabolic syndrome, dyslipidemia, insulin resistance, obesity, non-alcoholic fatty liver disease, and neurological and neuropsychiatric complications. Therefore, due to the increasing number of investigations focusing on the periodontitis-COVID-19 relationship and considering the severe complications that such an association might cause, this review aims to summarize all existing emerging evidence regarding the link between the periodontitis-COVID-19 axis and consequent cardiometabolic impairments.
Collapse
Affiliation(s)
- Giuseppe Mainas
- Periodontology Unit, Centre for Host-Microbiome Interactions, Dental Institute, King’s College London, London SE1 9RT, UK
| | - Luigi Nibali
- Periodontology Unit, Centre for Host-Microbiome Interactions, Dental Institute, King’s College London, London SE1 9RT, UK
| | - Mark Ide
- Periodontology Unit, Centre for Host-Microbiome Interactions, Dental Institute, King’s College London, London SE1 9RT, UK
| | - Wael Al Mahmeed
- Heart and Vascular Institute, Cleveland Clinic, Abu Dhabi P.O. Box 112412, United Arab Emirates
| | - Khalid Al-Rasadi
- Medical Research Center, Sultan Qaboos University, Muscat 113, Oman
| | - Kamila Al-Alawi
- Department of Training and Studies, Royal Hospital, Ministry of Health, Muscat 113, Oman
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz (MUL), 90419 Lodz, Poland
- Polish Mother’s Memorial Hospital Research Institute (PMMHRI), 93338 Lodz, Poland
- Cardiovascular Research Centre, University of Zielona Gora, 65417 Zielona Gora, Poland
| | - Yajnavalka Banerjee
- Department of Biochemistry, Mohamed Bin Rashid University, Dubai 505055, United Arab Emirates
| | | | - Mustafa Cesur
- Clinic of Endocrinology, Ankara Güven Hospital, 06540 Ankara, Turkey
| | - Francesco Cosentino
- Unit of Cardiology, Karolinska Institute and Karolinska University Hospital, University of Stockholm, 17177 Stockholm, Sweden
| | - Alberto Firenze
- Unit of Research and International Cooperation, University Hospital of Palermo, 90133 Palermo, Italy
| | - Massimo Galia
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bind), University of Palermo, 90133 Palermo, Italy
| | - Su-Yen Goh
- Department of Endocrinology, Singapore General Hospital, Singapore 169856, Singapore
| | - Andrej Janež
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Center Ljubljana, 1000 Ljubljana, Slovenia
| | - Sanjay Kalra
- Department of Endocrinology, Bharti Hospital & BRIDE, Karnal 132001, India
| | - Nitin Kapoor
- Department of Endocrinology, Diabetes and Metabolism, Christian Medical College, Vellore 632004, India
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Peter Kempler
- Department of Medicine and Oncology, Semmelweis University, 1085 Budapest, Hungary
| | - Nader Lessan
- The Research Institute, Imperial College London Diabetes Centre, Abu Dhabi P.O. Box 48338, United Arab Emirates
| | - Paulo Lotufo
- Center for Clinical and Epidemiological Research, University Hospital, University of São Paulo, São Paulo 05508-000, Brazil
| | - Nikolaos Papanas
- Diabetes Center, Second Department of Internal Medicine, Democritus University of Thrace, University Hospital of Alexandroupolis, 68100 Alexandroupolis, Greece
| | - Ali A. Rizvi
- Department of Medicine, University of Central Florida College of Medicine, Orlando, FL 32827, USA
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad 1313199137, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 1313199137, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 1313199137, Iran
| | - Raul D. Santos
- Heart Institute (InCor) University of Sao Paulo Medical School Hospital, São Paulo 05403-900, Brazil
- Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil
| | - Anca P. Stoian
- Faculty of Medicine, Diabetes, Nutrition and Metabolic Diseases, Carol Davila University, 050474 Bucharest, Romania
| | - Peter P. Toth
- Cicarrone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | | | - Manfredi Rizzo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (Promise), University of Palermo, 90133 Palermo, Italy
| |
Collapse
|
12
|
Stasiewicz M, Karpiński TM. The oral microbiota and its role in carcinogenesis. Semin Cancer Biol 2022; 86:633-642. [PMID: 34743032 DOI: 10.1016/j.semcancer.2021.11.002] [Citation(s) in RCA: 122] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 01/27/2023]
Abstract
Despite decades of research, cancer continues to be a major global health concern. In recent years, the role played by microorganisms in the development and progression of cancer has come under increased scrutiny. The aim of the present review is to highlight the main associations between members of the human oral microbiota and various cancers. The PubMed database was searched for available literature to outline the current state of understanding regarding the role of the oral microbiota and a variety of human cancers. Oral squamous cell carcinoma (OSCC) is associated with carriage of a number of oral bacteria (e.g., Porphyromonas gingivalis, Fusobacterium nucleatum, Streptococcus sp.), certain viruses (e.g., human papilloma virus, human herpes virus 8, herpes simplex virus 1 and Epstein-Barr virus) and yeast (Candida albicans). Moreover, members of the oral microbiota are associated with cancers of the esophagus, stomach, pancreas, colon/rectum and lung. Furthermore, the present review outlines a number of the carcinogenic mechanisms underlying the presented microbial associations with cancer. Such information may one day help clinicians to diagnose neoplastic diseases at earlier stages and prescribe treatments that take into account the possible microbial nature of carcinogenesis.
Collapse
Affiliation(s)
- Mark Stasiewicz
- Research Group of Medical Microbiology, Chair and Department of Medical Microbiology, Poznań University of Medical Sciences, Wieniawskiego 3, 61-712 Poznań, Poland.
| | - Tomasz M Karpiński
- Chair and Department of Medical Microbiology, Poznań University of Medical Sciences, Wieniawskiego 3, 61-712 Poznań, Poland.
| |
Collapse
|
13
|
Tang B, Yan C, Shen X, Li Y. The bidirectional biological interplay between microbiome and viruses in periodontitis and type-2 diabetes mellitus. Front Immunol 2022; 13:885029. [PMID: 36131931 PMCID: PMC9483123 DOI: 10.3389/fimmu.2022.885029] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
Periodontitis was an inflammatory disease associated with a dysbiosis of the oral flora characterized by a chronic sustained inflammation inducing the resorption of alveolar bone and leading to tooth loss. Type 2 diabetes mellitus (T2D) was a metabolic disease caused by impaired insulin action. The oral microbiome played a crucial role in modulating both the innate and adaptive immune system during the trigger and exacerbation of periodontitis and T2D. The bidirectional relationship of T2D and periodontitis had been the focus of intensive research, but those were not well explored. In this commentary, an in-depth analysis of the changes of microbiome and bacterial metabolites in periodontitis with or without diabetes was described. The promotion of periodontitis to T2D might involve inflammatory factors/receptors, oxidative stress, microRNA and so on. The effect of diabetes on periodontitis might involve adipose factor pathway, AGE/RAGE and RANK/RANKL pathway etc. Generally, periodontitis and diabetes are closely related to the microecological-epithelial interaction, soft tissue degradation, bone coupling disorder, immune regulation and gene transcription. The viruses, including HBV, HCV, HSV-1, Coronavirus, HCMV, EBV, HIV, phageome and so on, played an important role in the development of T2D and periodontitis. An in-depth understanding of the relationship between microbiome and host was of great significance to clarify the bidirectional mechanisms, suggesting that the periodontitis or T2D remission will have a positive impact on the other.
Collapse
Affiliation(s)
- Boyu Tang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Caixia Yan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yan Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Yan Li,
| |
Collapse
|
14
|
Li Q, Hu Z, Yang F, Peng Y. Circ_0066881 targets miR-144-5p/RORA axis to alleviate LPS-induced apoptotic and inflammatory damages in human periodontal ligament cells. Innate Immun 2022; 28:164-173. [PMID: 35635221 PMCID: PMC9189553 DOI: 10.1177/17534259221079812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Circular RNAs (circRNAs) are involved in the regulation of various diseases, including periodontitis. The objective of this study was to analyze the biological role and regulatory mechanism of circ_0066881 in LPS-induced periodontal ligament cells (PDLCs). Circ_0066881, microRNA-144-5p (miR-144-5p) and retinoid acid-related orphan receptor A (RORA) levels were determined using reverse transcription-quantitative PCR (RT-qPCR) assay. Cell viability detection was performed by Cell Counting Kit-8 assay. Cell apoptosis was assessed through flow cytometry and caspase-3 activity assay. The protein analysis was completed via Western blot. Inflammatory cytokines were measured by ELISA. The target interaction was validated by dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. The level of circ_0066881 was down-regulated in periodontitis tissues. Overexpression of circ_0066881 relieved LPS-induced cell viability inhibition and apoptosis or inflammation promotion in PDLCs. Circ_0066881 could bind to miR-144-5p. The protective function of circ_0066881 was achieved by sponging miR-144-5p in PDLCs. Circ_0066881 acts as a miR-144-5p sponge to mediate the RORA level. Inhibition of miR-144-5p attenuated LPS-induced cell injury via targeting RORA. All these results demonstrated that circ_0066881 partly prevented LPS-evoked cell dysfunction in PDLCs through miR-144-5p-mediated up-regulation of RORA.
Collapse
Affiliation(s)
- Qin Li
- Department of Stomatology, Pingxiang People’s Hospital, Pingxiang, Jiangxi, China
| | - Zhaopeng Hu
- Department of Pathology, Pingxiang People’s Hospital, Pingxiang, Jiangxi,China
| | - Fang Yang
- Department of Stomatology, Pingxiang People’s Hospital, Pingxiang, Jiangxi, China
| | - Yi Peng
- Department of Stomatology, Pingxiang People’s Hospital, Pingxiang, Jiangxi, China
| |
Collapse
|
15
|
Mainas G, Ide M, Rizzo M, Magan-Fernandez A, Mesa F, Nibali L. Managing the Systemic Impact of Periodontitis. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:621. [PMID: 35630038 PMCID: PMC9147054 DOI: 10.3390/medicina58050621] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 01/22/2023]
Abstract
Periodontitis is a microbially driven host-mediated disease that leads to loss of periodontal attachment and bone. It is associated with elevation of systemic inflammatory markers and with the presence of systemic co-morbidities. Furthermore, periodontal treatment leads to a 24-48 h-long acute local and systemic inflammatory response. This systemic response might increase the burden of patients with compromised medical history and/or uncontrolled systemic diseases. The correlation between periodontitis and systemic diseases, the impact of periodontitis on the quality of life and public health, the effects of periodontal treatment on systemic health and disease, and the available methods to manage systemic inflammation after periodontal therapy are discussed. The main focus then shifts to a description of the existing evidence regarding the impact of periodontitis and periodontal treatment on systemic health and to the identification of approaches aiming to reduce the effect of periodontitis on systemic inflammation.
Collapse
Affiliation(s)
- Giuseppe Mainas
- Periodontology Unit, Centre for Host-Microbiome Interactions, Dental Institute, King’s College London, London SE1 9RT, UK; (G.M.); (M.I.)
| | - Mark Ide
- Periodontology Unit, Centre for Host-Microbiome Interactions, Dental Institute, King’s College London, London SE1 9RT, UK; (G.M.); (M.I.)
| | - Manfredi Rizzo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, School of Medicine, University of Palermo, 90133 Palermo, Italy;
| | - Antonio Magan-Fernandez
- Department of Periodontics, School of Dentistry, University of Granada, 18071 Granada, Spain; (A.M.-F.); (F.M.)
| | - Francisco Mesa
- Department of Periodontics, School of Dentistry, University of Granada, 18071 Granada, Spain; (A.M.-F.); (F.M.)
| | - Luigi Nibali
- Periodontology Unit, Centre for Host-Microbiome Interactions, Dental Institute, King’s College London, London SE1 9RT, UK; (G.M.); (M.I.)
| |
Collapse
|
16
|
miR-141-3p Regulates EZH2 to Attenuate Porphyromonas gingivalis Lipopolysaccharide-Caused Inflammation and Inhibition of Osteogenic Differentiation in Human Periodontal Ligament Stem Cells. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:4634925. [PMID: 35509853 PMCID: PMC9061008 DOI: 10.1155/2022/4634925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/24/2022] [Accepted: 03/31/2022] [Indexed: 12/04/2022]
Abstract
Objective miR-141-3p has been demonstrated to be both anti-inflammatory and osteoprotective. This study is aimed at investigating the effect of miR-141-3p on osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs) stimulated by Porphyromonas gingivalis lipopolysaccharide (PgLPS) and its mechanism. Methods PgLPS was used to induce an inflammatory environment, and overexpression of miR-141-3p was done to assess its effect on hPDLSCs in an inflammatory environment. The level of miR-141-3p and EZH2 in hPDLSCs from each treatment group was detected via qRT-PCR, and the inflammatory factors IL-6 and IL-8 in the supernatant of each group were detected by ELISA. ALP staining and alizarin red staining were used to assess the effect of miR-141-3p on the osteogenic differentiation ability of hPDLSCs, and also, western blot was used to detect expression of osteogenic differentiation-related proteins. Further, dual-luciferase reporter assay examined whether miR-141-3p targeted EZH2. Results PgLPS led to a significant decrease of miR-141-3p in hPDLSCs. Overexpression of miR-141-3p could enhance ALP activity and alizarin red staining intensity and increase Runx2, OPN and OCN protein expression levels in PgLPS-treated hPDLSCs. Additionally, miR-141-3p could reduce IL-6 and IL-8. miR-141-3p could target and negatively regulate EZH2, and overexpression of EZH2 reversed the promoting effect of miR-141-3p on osteogenic differentiation. Conclusion miR-141-3p can attenuate PgLPS-induced inhibition of osteogenic differentiation and inflammation in hPDLSCs by negatively regulating EZH2.
Collapse
|
17
|
Zeng L, Zhong G, Huang Y, Jia J, Bi H. A phosphopantetheinyl transferase gene restricted to Porphyromonas. Res Microbiol 2022; 173:103940. [PMID: 35337986 DOI: 10.1016/j.resmic.2022.103940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 11/26/2022]
Abstract
The phosphopantetheinyl transferases (PPTases) catalyze the post-translational modification of carrier proteins (CPs) from fatty acid synthases (FASs) in primary metabolism and from polyketide synthases (PKSs) and non-ribosomal polypeptide synthases (NRPSs) in secondary metabolism. Based on the conserved sequence motifs and substrate specificities, two types (AcpS-type and Sfp-type) of PPTases have been identified in prokaryotes. We present here that Porphyromonas gingivalis, the keystone pathogen in chronic periodontitis, harbors merely one PPTase, namely PptP. Complementation and gene deletion experiments clearly show that PptP can replace the function of Escherichia coli AcpS and is essential for the growth of P. gingivalis. Purified PptP transfers the 4-phosphopantetheine moiety of CoA to inactive apo-acyl carrier protein (ACP) to form holo-ACP, which functions as an active carrier of the acyl intermediates of fatty acid synthesis. Moreover, PptP exhibits broad substrate specificity, modifying all ACP substrates tested and catalyzing the transfer of coenzyme A (CoA) derivatives. The lack of sequence alignment with known PPTases together with phylogenetic analyses revealed PptP as a new class of PPTases. Identification of the new PPTase gene pptP exclusive in Porphyromonas species reveals a potential target for treating P. gingivalis infections.
Collapse
Affiliation(s)
- Liping Zeng
- Key Laboratory of Pathogen Biology of Jiangsu Province, Department of Pathogen Biology, Nanjing Medical University, Nanjing, China; Department of Gastroenterology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Guowei Zhong
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yan Huang
- Key Laboratory of Pathogen Biology of Jiangsu Province, Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Jia Jia
- Key Laboratory of Pathogen Biology of Jiangsu Province, Department of Pathogen Biology, Nanjing Medical University, Nanjing, China; Department of Gastroenterology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Hongkai Bi
- Key Laboratory of Pathogen Biology of Jiangsu Province, Department of Pathogen Biology, Nanjing Medical University, Nanjing, China; Department of Gastroenterology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
18
|
Deng W, Wang X, Zhang J, Zhao S. Circ_0138959/miR-495-3p/TRAF6 axis regulates proliferation, wound healing and osteoblastic differentiation of periodontal ligament cells in periodontitis. J Dent Sci 2022; 17:1125-1134. [PMID: 35784154 PMCID: PMC9236932 DOI: 10.1016/j.jds.2022.01.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/13/2022] [Indexed: 01/14/2023] Open
Abstract
Background/purpose Periodontitis is a chronic inflammatory disease, and periodontal ligament cells (PDLCs) are pivotal for osteogenesis. Circular RNAs (circRNAs) can regulate disease progression via targeting miRNA/mRNA axis. The purposes of this study were to explore the function and mechanism of circ_0138959 in periodontitis. Materials and methods Periodontitis cell model was established by lipopolysaccharide (LPS) treatment in PDLCs. RNA expression was determined by quantitative reverse transcription-polymerase chain reaction assay. Cell proliferation was detected using 3-(4, 5-dimethylthiazol-2-y1)-2, 5-diphenyl tetrazolium bromide assay. Wound healing and cell apoptosis were examined by wound healing assay and flow cytometry. Inflammatory cytokines were measured via Enzyme-linked immunosorbent assay. Osteogenic differentiation was assessed by Alkaline phosphatase and Alizarin red S staining assays. Western blot was used for protein detection. The target interaction was validated by dual-luciferase reporter assay. Results Circ_0138959 was overexpressed in periodontitis tissues and LPS-treated PDLCs. Downregulation of circ_0138959 attenuated LPS-induced inhibition of proliferation, wound healing and osteogenic differentiation but promotion of apoptosis and inflammation. Circ_0138959 acted as a miR-495-3p sponge, and the regulatory role of circ_0138959 in LPS-induced cell injury was achieved by sponging miR-495-3p. Additionally, miR-495-3p targeted TNF Receptor Associated Factor 6 (TRAF6) and miR-495-3p protected against LPS-induced cell dysfunction by targeting TRAF6. Circ_0138959 upregulated TRAF6 level via inhibiting miR-495-3p. Conclusion This study suggested that circ_0138959 upregulated the TRAF6 expression by binding to miR-495-3p, consequently aggravating LPS-induced cell damages in PDLCs. Circ_0138959 might be a probable target for treatment of periodontitis.
Collapse
Affiliation(s)
- Wenjuan Deng
- Department of Stomatology, Gaoxin Branch of Jinan Stomatological Hospital, Jinan, Shandong, China
| | - Xiaoliang Wang
- Department of Stomatology, Gaoxin Branch of Jinan Stomatological Hospital, Jinan, Shandong, China
| | - Jin Zhang
- Department of Stomatology, Gaoxin Branch of Jinan Stomatological Hospital, Jinan, Shandong, China
| | - Sainan Zhao
- Department of Stomatology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
- Corresponding author. Department of stomatology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369, Jingshi Road, Jinan City, Shandong Province, 250014, China.
| |
Collapse
|
19
|
Nrf2 in the Field of Dentistry with Special Attention to NLRP3. Antioxidants (Basel) 2022; 11:antiox11010149. [PMID: 35052653 PMCID: PMC8772975 DOI: 10.3390/antiox11010149] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/06/2022] [Accepted: 01/09/2022] [Indexed: 02/06/2023] Open
Abstract
The aim of this review article was to summarize the functional implications of the nuclear factor E2-related factor or nuclear factor (erythroid-derived 2)-like 2 (Nrf2), with special attention to the NACHT (nucleotide-binding oligomerization), LRR (leucine-rich repeat), and PYD (pyrin domain) domains-containing protein 3 (NLRP3) inflammasome in the field of dentistry. NLRP3 plays a crucial role in the progression of inflammatory and adaptive immune responses throughout the body. It is already known that this inflammasome is a key regulator of several systemic diseases. The initiation and activation of NLRP3 starts with the oral microbiome and its association with the pathogenesis and progression of several oral diseases, including periodontitis, periapical periodontitis, and oral squamous cell carcinoma (OSCC). The possible role of the inflammasome in oral disease conditions may involve the aberrant regulation of various response mechanisms, not only in the mouth but in the whole body. Understanding the cellular and molecular biology of the NLRP3 inflammasome and its relationship to Nrf2 is necessary for the rationale when suggesting it as a potential therapeutic target for treatment and prevention of oral inflammatory and immunological disorders. In this review, we highlighted the current knowledge about NLRP3, its likely role in the pathogenesis of various inflammatory oral processes, and its crosstalk with Nrf2, which might offer future possibilities for disease prevention and targeted therapy in the field of dentistry and oral health.
Collapse
|
20
|
Thomas C, Minty M, Vinel A, Canceill T, Loubières P, Burcelin R, Kaddech M, Blasco-Baque V, Laurencin-Dalicieux S. Oral Microbiota: A Major Player in the Diagnosis of Systemic Diseases. Diagnostics (Basel) 2021; 11:1376. [PMID: 34441309 PMCID: PMC8391932 DOI: 10.3390/diagnostics11081376] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 07/28/2021] [Accepted: 07/28/2021] [Indexed: 02/06/2023] Open
Abstract
The oral cavity is host to a complex and diverse microbiota community which plays an important role in health and disease. Major oral infections, i.e., caries and periodontal diseases, are both responsible for and induced by oral microbiota dysbiosis. This dysbiosis is known to have an impact on other chronic systemic diseases, whether triggering or aggravating them, making the oral microbiota a novel target in diagnosing, following, and treating systemic diseases. In this review, we summarize the major roles that oral microbiota can play in systemic disease development and aggravation and also how novel tools can help investigate this complex ecosystem. Finally, we describe new therapeutic approaches based on oral bacterial recolonization or host modulation therapies. Collaboration in diagnosis and treatment between oral specialists and general health specialists is of key importance in bridging oral and systemic health and disease and improving patients' wellbeing.
Collapse
Affiliation(s)
- Charlotte Thomas
- INSERM UMR 1297 Inserm, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Avenue Jean Poulhès 1, CEDEX 4, 31432 Toulouse, France; (A.V.); (P.L.); (R.B.); (V.B.-B.)
- Faculté de Chirurgie Dentaire, Université Paul Sabatier III (UPS), 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France; (T.C.); (M.K.); (S.L.-D.)
- Service d’Odontologie Rangueil, CHU de Toulouse, 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France
| | - Matthieu Minty
- INSERM UMR 1297 Inserm, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Avenue Jean Poulhès 1, CEDEX 4, 31432 Toulouse, France; (A.V.); (P.L.); (R.B.); (V.B.-B.)
- Faculté de Chirurgie Dentaire, Université Paul Sabatier III (UPS), 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France; (T.C.); (M.K.); (S.L.-D.)
- Service d’Odontologie Rangueil, CHU de Toulouse, 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France
| | - Alexia Vinel
- INSERM UMR 1297 Inserm, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Avenue Jean Poulhès 1, CEDEX 4, 31432 Toulouse, France; (A.V.); (P.L.); (R.B.); (V.B.-B.)
- Faculté de Chirurgie Dentaire, Université Paul Sabatier III (UPS), 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France; (T.C.); (M.K.); (S.L.-D.)
- Service d’Odontologie Rangueil, CHU de Toulouse, 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France
| | - Thibault Canceill
- Faculté de Chirurgie Dentaire, Université Paul Sabatier III (UPS), 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France; (T.C.); (M.K.); (S.L.-D.)
- Service d’Odontologie Rangueil, CHU de Toulouse, 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France
- UMR CNRS 5085, Centre Interuniversitaire de Recherche et d’Ingénierie des Matériaux (CIRIMAT), Université Paul Sabatier, 35 Chemin des Maraichers, CEDEX 9, 31062 Toulouse, France
| | - Pascale Loubières
- INSERM UMR 1297 Inserm, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Avenue Jean Poulhès 1, CEDEX 4, 31432 Toulouse, France; (A.V.); (P.L.); (R.B.); (V.B.-B.)
- Faculté de Chirurgie Dentaire, Université Paul Sabatier III (UPS), 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France; (T.C.); (M.K.); (S.L.-D.)
| | - Remy Burcelin
- INSERM UMR 1297 Inserm, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Avenue Jean Poulhès 1, CEDEX 4, 31432 Toulouse, France; (A.V.); (P.L.); (R.B.); (V.B.-B.)
- Faculté de Chirurgie Dentaire, Université Paul Sabatier III (UPS), 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France; (T.C.); (M.K.); (S.L.-D.)
| | - Myriam Kaddech
- Faculté de Chirurgie Dentaire, Université Paul Sabatier III (UPS), 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France; (T.C.); (M.K.); (S.L.-D.)
- Service d’Odontologie Rangueil, CHU de Toulouse, 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France
| | - Vincent Blasco-Baque
- INSERM UMR 1297 Inserm, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Avenue Jean Poulhès 1, CEDEX 4, 31432 Toulouse, France; (A.V.); (P.L.); (R.B.); (V.B.-B.)
- Faculté de Chirurgie Dentaire, Université Paul Sabatier III (UPS), 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France; (T.C.); (M.K.); (S.L.-D.)
- Service d’Odontologie Rangueil, CHU de Toulouse, 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France
| | - Sara Laurencin-Dalicieux
- Faculté de Chirurgie Dentaire, Université Paul Sabatier III (UPS), 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France; (T.C.); (M.K.); (S.L.-D.)
- Service d’Odontologie Rangueil, CHU de Toulouse, 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France
- INSERM UMR 1295, Centre d’Epidémiologie et de Recherche en Santé des Populations de Toulouse (CERPOP), Epidémiologie et Analyse en Santé Publique, Risques, Maladies Chroniques et Handicaps, 37 Allées Jules Guesdes, 31000 Toulouse, France
| |
Collapse
|
21
|
Park SY, Hwang BO, Lim M, Ok SH, Lee SK, Chun KS, Park KK, Hu Y, Chung WY, Song NY. Oral-Gut Microbiome Axis in Gastrointestinal Disease and Cancer. Cancers (Basel) 2021; 13:2124. [PMID: 33924899 PMCID: PMC8125773 DOI: 10.3390/cancers13092124] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
It is well-known that microbiota dysbiosis is closely associated with numerous diseases in the human body. The oral cavity and gut are the two largest microbial habitats, playing a major role in microbiome-associated diseases. Even though the oral cavity and gut are continuous regions connected through the gastrointestinal tract, the oral and gut microbiome profiles are well-segregated due to the oral-gut barrier. However, the oral microbiota can translocate to the intestinal mucosa in conditions of the oral-gut barrier dysfunction. Inversely, the gut-to-oral microbial transmission occurs as well in inter- and intrapersonal manners. Recently, it has been reported that oral and gut microbiomes interdependently regulate physiological functions and pathological processes. Oral-to-gut and gut-to-oral microbial transmissions can shape and/or reshape the microbial ecosystem in both habitats, eventually modulating pathogenesis of disease. However, the oral-gut microbial interaction in pathogenesis has been underappreciated to date. Here, we will highlight the oral-gut microbiome crosstalk and its implications in the pathogenesis of the gastrointestinal disease and cancer. Better understanding the role of the oral-gut microbiome axis in pathogenesis will be advantageous for precise diagnosis/prognosis and effective treatment.
Collapse
Affiliation(s)
- Se-Young Park
- Department of Applied Life Science, The Graduate School, Yonsei University, and BK21 FOUR Project, Yonsei University College of Dentistry, Seoul 03722, Korea; (S.-Y.P.); (B.-O.H.); (S.-H.O.)
| | - Byeong-Oh Hwang
- Department of Applied Life Science, The Graduate School, Yonsei University, and BK21 FOUR Project, Yonsei University College of Dentistry, Seoul 03722, Korea; (S.-Y.P.); (B.-O.H.); (S.-H.O.)
| | - Mihwa Lim
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul 03722, Korea; (M.L.); (S.-K.L.); (K.-K.P.)
| | - Seung-Ho Ok
- Department of Applied Life Science, The Graduate School, Yonsei University, and BK21 FOUR Project, Yonsei University College of Dentistry, Seoul 03722, Korea; (S.-Y.P.); (B.-O.H.); (S.-H.O.)
| | - Sun-Kyoung Lee
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul 03722, Korea; (M.L.); (S.-K.L.); (K.-K.P.)
| | - Kyung-Soo Chun
- College of Pharmacy, Keimyung University, Daegu 42601, Korea;
| | - Kwang-Kyun Park
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul 03722, Korea; (M.L.); (S.-K.L.); (K.-K.P.)
| | - Yinling Hu
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA;
| | - Won-Yoon Chung
- Department of Oral Biology, Oral Cancer Research Institute, and BK21 FOUR Project, Yonsei University College of Dentistry, Seoul 03722, Korea;
| | - Na-Young Song
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul 03722, Korea; (M.L.); (S.-K.L.); (K.-K.P.)
| |
Collapse
|
22
|
Oral–Gut Microbiome Axis in Gastrointestinal Disease and Cancer. Cancers (Basel) 2021. [DOI: 10.3390/cancers13071748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
It is well-known that microbiota dysbiosis is closely associated with numerous diseases in the human body. The oral cavity and gut are the two largest microbial habitats, playing a major role in microbiome-associated diseases. Even though the oral cavity and gut are continuous regions connected through the gastrointestinal tract, the oral and gut microbiome profiles are well-segregated due to the oral–gut barrier. However, the oral microbiota can translocate to the intestinal mucosa in conditions of the oral–gut barrier dysfunction. Inversely, the gut-to-oral microbial transmission occurs as well in inter- and intrapersonal manners. Recently, it has been reported that oral and gut microbiomes interdependently regulate physiological functions and pathological processes. Oral-to-gut and gut-to-oral microbial transmissions can shape and/or reshape the microbial ecosystem in both habitats, eventually modulating pathogenesis of disease. However, the oral–gut microbial interaction in pathogenesis has been underappreciated to date. Here, we will highlight the oral–gut microbiome crosstalk and its implications in the pathogenesis of the gastrointestinal disease and cancer. Better understanding the role of the oral–gut microbiome axis in pathogenesis will be advantageous for precise diagnosis/prognosis and effective treatment.
Collapse
|
23
|
Zheng DX, Kang XN, Wang YX, Huang YN, Pang CF, Chen YX, Kuang ZL, Peng Y. Periodontal disease and emotional disorders: A meta-analysis. J Clin Periodontol 2020; 48:180-204. [PMID: 33103263 DOI: 10.1111/jcpe.13395] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 09/08/2020] [Accepted: 10/21/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVE The objective of this study was to evaluate the relationship of periodontal disease with depression and anxiety via a systematic review and meta-analysis. METHOD We systematically searched the EMBASE, PubMed, Web of Science, PsycINFO, and SinoMed databases (until August 4, 2019) with language restricted to English and Chinese. Case-control, cross-sectional, and cohort studies that calculated the risk ratio (RR), odds ratio (OR)/prevalence OR (POR), and hazard ratio (HR) of depression/anxiety with periodontal disease or the OR/POR/RR/HR of periodontal disease caused by depression/anxiety were included. Observational studies that reported the depression/anxiety scale score of patients with periodontal disease and healthy periodontal subjects aged ≥14 years were also included. We used the standard format to extract the following information from each included study: author/s, survey year, study design, age of participants, periodontal disease definition, depression/anxiety measurement, and summary of results. The Newcastle-Ottawa scale was used to ascertain the quality of the included citations. RESULTS After screening, 40 studies were included. A meta-analysis of the case-control studies showed that periodontal disease was positively associated with depression (OR = 1.70, 95% confidence interval [CI] = 1.01-2.83). A meta-analysis of 12 studies showed that periodontal disease was significantly correlated with anxiety (OR = 1.36, 95% CI = 1.11-1.66). A meta-analysis of 18 studies showed that subjects with periodontal disease had higher depression scale score (standardized mean difference [SMD] = 1.05, 95% CI = 0.68-1.41) and anxiety scale score (SMD = 0.70, 95% CI = 0.44-0.96). CONCLUSION Periodontal disease is associated with emotional disorders. However, the high degree of heterogeneity among studies should be considered. More high-quality prospective studies are required to confirm the relationship.
Collapse
Affiliation(s)
- De-Xiu Zheng
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Xiao-Ning Kang
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Yi-Xi Wang
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Yi-Na Huang
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Chun-Feng Pang
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Yu-Xuan Chen
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Zhi-Li Kuang
- The Department of Stomatology, Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yun Peng
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
24
|
Kleinstein S, Nelson K, Freire M. Inflammatory Networks Linking Oral Microbiome with Systemic Health and Disease. J Dent Res 2020; 99:1131-1139. [PMID: 32459164 PMCID: PMC7443998 DOI: 10.1177/0022034520926126] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The dance between microbes and the immune system takes place in all biological systems, including the human body, but this interaction is especially complex in the primary gateway to the body: the oral cavity. Recent advances in technology have enabled deep sequencing and analysis of members and signals of these communities. In a healthy state, the oral microbiome is composed of commensals, and their genes and phenotypes may be selected by the immune system to survive in symbiosis. These highly regulated signals are modulated by a network of microbial and host metabolites. However, in a diseased state, host-microbial networks lead to dysbiosis and considerable burden to the host prior to systemic impact that extends beyond the oral compartment. Interestingly, we presented data demonstrating similarities between human and mice immune dysbiosis and discussed how this affects the host response to similar pathobionts. The host and microbial signatures of a number of disease states are currently being examined to identify potential correlations. How the oral microbiome interacts with inflammation and the immune system to cause disease remains an area of active research. In this review, we summarize recent advancements in understanding the role of oral microbiota in mediating inflammation and altering systemic health and disease. In line with these findings, it is possible that existing conditions may be resolved by targeting specific immune-microbial markers in a positive way.
Collapse
Affiliation(s)
| | - K.E. Nelson
- J. Craig Venter Institute, La Jolla, CA, USA
| | - M. Freire
- J. Craig Venter Institute, La Jolla, CA, USA
| |
Collapse
|
25
|
Magan-Fernandez A, Castellino G, Cappello F, Mesa F. Editorial Commentary: The role of periodontal microorganisms in the pathogenesis of myocardial infarction. From PCR techniques to microbiome sequencing. Trends Cardiovasc Med 2020; 31:83-84. [PMID: 32192823 DOI: 10.1016/j.tcm.2020.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 02/15/2020] [Indexed: 11/26/2022]
Affiliation(s)
| | - Giuseppa Castellino
- Periodontology Department, School of Dentistry, University of Granada, Granada, Spain; Department of Biomedicine and Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy; Euro-Mediterranean Institute of Science and Technology, Palermo, Italy
| | - Francesco Cappello
- Department of Biomedicine and Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy; Euro-Mediterranean Institute of Science and Technology, Palermo, Italy
| | - Francisco Mesa
- Periodontology Department, School of Dentistry, University of Granada, Granada, Spain
| |
Collapse
|
26
|
Han Y, Wang F, Shao L, Huang P, Xu Y. LncRNA TUG1 mediates lipopolysaccharide-induced proliferative inhibition and apoptosis of human periodontal ligament cells by sponging miR-132. Acta Biochim Biophys Sin (Shanghai) 2019; 51:1208-1215. [PMID: 31735958 DOI: 10.1093/abbs/gmz125] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 09/28/2019] [Accepted: 09/28/2019] [Indexed: 01/03/2023] Open
Abstract
Emerging evidence shows that the long noncoding RNA taurine-upregulated gene 1 (TUG1) plays pivotal roles in regulating biological properties and functions of parenchyma cells in various types of disease processes. However, the mechanism underlying the effects of TUG1 on cell proliferation and apoptosis of human periodontal ligament cells (PDLCs) in periodontitis is undefined. In this study, we explored the functions of TUG1 and its underlying mechanisms in the inflammatory process induced by Porphyromonas gingivalis-derived lipopolysaccharide (LPS) in PDLCs. Our results showed that TUG1 had a decreased expression in both periodontal ligament (PDL) tissues with periodontitis and PDLCs under a LPS-induced inflammatory condition, and TUG1 expression was negatively correlated with miR-132 expression in periodontitis-affected PDL tissues. Furthermore, we found that TUG1 overexpression in PDLCs alleviated LPS-induced proliferative inhibition and apoptosis promotion, while TUG1 knockdown had the opposite effect. In addition, miR-132 inhibitor alleviated TUG1 knockdown-induced inhibition of proliferation and increase of apoptosis in PDLCs under inflammatory conditions induced by LPS. These findings indicated that TUG1 has an enormous potential in regulating cell proliferation and apoptosis of PDLCs during periodontitis and may provide an effective therapeutic target for periodontitis to reduce the damage caused by inflammatory reactions.
Collapse
Affiliation(s)
- Ying Han
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China
| | - Fang Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China
| | - Longquan Shao
- Nanfang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Peidi Huang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China
| | - Yue Xu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China
| |
Collapse
|
27
|
circRNA CDR1as Regulated the Proliferation of Human Periodontal Ligament Stem Cells under a Lipopolysaccharide-Induced Inflammatory Condition. Mediators Inflamm 2019; 2019:1625381. [PMID: 31582895 PMCID: PMC6754938 DOI: 10.1155/2019/1625381] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 06/05/2019] [Accepted: 07/15/2019] [Indexed: 12/21/2022] Open
Abstract
circRNA CDR1as (CDR1as) has been demonstrated to play important roles in a variety of inflammation-related diseases by acting as miRNA sponges. The present study is aimed at investigating the potential roles of CDR1as in the proliferation of human periodontal ligament stem cells (PDLSCs) under an inflammatory condition induced by Porphyromonas gingivalis-derived lipopolysaccharide (LPS). Human periodontal ligament cells (PDLCs) were isolated from periodontal ligament tissue, and PDLSCs were sorted from PDLCs based on the STRO-1 expression through fluorescence-activated cell sorting. We further found that CDR1as was significantly downregulated in LPS-treated PDLSCs compared to untreated cells, as well as in normal periodontal ligament tissues compared to periodontitis tissues. Knockdown of CDR1as promoted LPS-induced proliferative inhibition of PDLSCs, whereas overexpression of CDR1as alleviated the LPS-induced proliferative ability of PDLSCs. Mechanistically, CDR1as functioned as an miR-7 sponge to activate the ERK signal pathway to mediate the inhibition effect of LPS on cell proliferation. Taken together, our findings revealed the effects of the interacting pair of CDR1as/miR-7 on the proliferation ability of PDLSCs within their surrounding inflammatory microenvironment of periodontitis.
Collapse
|
28
|
Rabe A, Gesell Salazar M, Michalik S, Fuchs S, Welk A, Kocher T, Völker U. Metaproteomics analysis of microbial diversity of human saliva and tongue dorsum in young healthy individuals. J Oral Microbiol 2019; 11:1654786. [PMID: 31497257 PMCID: PMC6720020 DOI: 10.1080/20002297.2019.1654786] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/30/2019] [Accepted: 08/07/2019] [Indexed: 12/29/2022] Open
Abstract
Background: The human oral microbiome influences initiation or progression of diseases like caries or periodontitis. Metaproteomics approaches enable the simultaneous investigation of microbial and host proteins and their interactions to improve understanding of oral diseases. Objective: In this study, we provide a detailed metaproteomics perspective of the composition of salivary and tongue microbial communities of young healthy subjects. Design: Stimulated saliva and tongue samples were collected from 24 healthy volunteers, subjected to shotgun nLC-MS/MS and analyzed by the Trans-Proteomic Pipeline and the Prophane tool. Results: 3,969 bacterial and 1,857 human proteins could be identified from saliva and tongue, respectively. In total, 1,971 bacterial metaproteins and 1,154 human proteins were shared in both sample types. Twice the amount of bacterial metaproteins were uniquely identified for the tongue dorsum compared to saliva. Overall, 107 bacterial genera of seven phyla formed the microbiome. Comparative analysis identified significant functional differences between the microbial biofilm on the tongue and the microbiome of saliva. Conclusion: Even if the microbial communities of saliva and tongue dorsum showed a strong similarity based on identified protein functions and deduced bacterial composition, certain specific characteristics were observed. Both microbiomes exhibit a great diversity with seven genera being most abundant.
Collapse
Affiliation(s)
- Alexander Rabe
- Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Manuela Gesell Salazar
- Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Stephan Michalik
- Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Stephan Fuchs
- Department of Infectious Diseases, Division of Nosocomial Pathogens and Antibiotic Resistances, Robert Koch-Institute, Wernigerode, Germany
| | - Alexander Welk
- Department of Restorative Dentistry, Periodontology, Endodontology, and Preventive and Pediatric Dentistry, University Medicine Greifswald, Greifswald, Germany
| | - Thomas Kocher
- Department of Restorative Dentistry, Periodontology, Endodontology, and Preventive and Pediatric Dentistry, University Medicine Greifswald, Greifswald, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|