1
|
Chen P, Wang S, Zhang H, Li J. Recent advances in nanotherapy-based treatment of epilepsy. Colloids Surf B Biointerfaces 2025; 249:114499. [PMID: 39778465 DOI: 10.1016/j.colsurfb.2025.114499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/21/2024] [Accepted: 01/04/2025] [Indexed: 01/11/2025]
Abstract
Epilepsy is a complex neurological disorder characterized by recurrent seizures affecting millions of people worldwide. Despite advances in drug therapy, a significant proportion of patients remain resistant to conventional antiepileptic drugs (AEDs) due to challenges such as impermeability of the blood-brain barrier (BBB), multidrug resistance, and multifaceted epileptogenesis. Nanotechnology offers promising strategies to overcome these barriers by enhancing drug delivery across the BBB, improving target specificity and minimizing systemic side effects. This review explores recent advances in different innovative strategies of nanodelivery systems for epilepsy therapy, and we will discuss the design principles, mechanisms of action and therapeutic efficacy of these nanodelivery systems. In addition, we discuss the challenges and limitations that hinder the clinical translation of nanomedicine-based therapies for epilepsy. We emphasize the need for personalized and multidisciplinary approaches as well as the importance of continued research and interdisciplinary collaboration in order to translate these innovative strategies into effective therapies. Ultimately, the use of nanotechnology has the potential to enhance seizure control, reduce the burden of epilepsy, and improve the quality of life of patients affected by this complex neurological disorder. Nanotechnology-based drug delivery systems may usher in a new era of precision medicine for epilepsy treatment.
Collapse
Affiliation(s)
- Peng Chen
- General Hospital of Northern Theater Command, Liaoning 110016, China
| | - Shudong Wang
- Jinzhou Medical University, Liaoning 121001, China
| | - Heming Zhang
- Dalian Medical University, Liaoning 116044, China
| | - Jian Li
- General Hospital of Northern Theater Command, Liaoning 110016, China.
| |
Collapse
|
2
|
Lemes JA, Rosário BDA, Rocha SMS, Bandeira SS, Ribeiro AM, Vaz SH, Sebastião AM, Armada-Moreira A, Ribeiro DA, de Barros Viana M. The role of glutamate receptors and transporters in epilepsy: evidence from animal studies. Rev Neurosci 2025:revneuro-2024-0173. [PMID: 40248882 DOI: 10.1515/revneuro-2024-0173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 02/06/2025] [Indexed: 04/19/2025]
Abstract
Epilepsy encompasses a group of chronic brain disorders characterized by recurrent, hypersynchronous activity of neuronal clusters, with epileptic seizures being the primary manifestation of these disorders. The objective of epilepsy treatment is to prevent seizures with minimum adverse side effects. However, approximately 30 % of patients do not respond to available medications. One proposed mechanism of epileptogenesis is glutamate excitotoxicity. When released in excess or not appropriately removed from the synaptic cleft, glutamate hyperactivates receptors, causing a biochemical cascade, which culminates in seizures and cell death. The use of animal models is essential for uncovering potential epileptogenic pathways, understanding the role of receptors and transporters in excitotoxicity, and screening effective antiepileptic treatments. This review examines studies that investigate the role of glutamate transporters and receptors in excitotoxicity and epileptogenesis using animal models. For this, we searched through both PubMed/Medline and ScienceDirect databases. After applying the inclusion and exclusion criteria, 26 (twenty-six) studies were selected for analysis. The studies addressed key glutamate transporter family of excitatory amino acid transporters (EAATs) EAAT1, EAAT2, and EAAT3, responsible for glutamate clearance, as well as AMPA receptor subunits GluA1 and GluA2, NMDA receptor subunits GluN1, GluN2a, and GluN2b, and the metabotropic receptors mGluR5 and mGluR2/3. Results showed that the dysregulation of these transporters and receptors is associated to seizure induction and excitotoxic damage, pointing to their fundamental role in the mechanisms of excitotoxicity and epileptogenesis. These findings highlight the potential of targeting glutamate transporters and receptors to stabilize glutamate homeostasis as an intervention in epilepsy management.
Collapse
Affiliation(s)
- Jéssica Alves Lemes
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim, 136, 11015-021, Santos, SP, Brazil
| | - Barbara Dos Anjos Rosário
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim, 136, 11015-021, Santos, SP, Brazil
| | - Sophia Morya Santos Rocha
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim, 136, 11015-021, Santos, SP, Brazil
| | - Susana Sieiro Bandeira
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim, 136, 11015-021, Santos, SP, Brazil
| | - Alessandra Mussi Ribeiro
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim, 136, 11015-021, Santos, SP, Brazil
| | - Sandra Henriques Vaz
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
- Gulbenkian Institute for Molecular Medicine, Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal
- Centro Cardiovascular da Universidade de Lisboa, CCUL (CCUL@RISE), Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal
| | - Ana Maria Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
- Gulbenkian Institute for Molecular Medicine, Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal
- Centro Cardiovascular da Universidade de Lisboa, CCUL (CCUL@RISE), Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal
| | - Adam Armada-Moreira
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125, Modena, Italy
| | - Daniel Araki Ribeiro
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim, 136, 11015-021, Santos, SP, Brazil
| | - Milena de Barros Viana
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim, 136, 11015-021, Santos, SP, Brazil
| |
Collapse
|
3
|
Demir M, Elbe H, Cetinavci D, Saruhan E. Effects of Troxerutin on Oxidative Stress, Inflammation and Galectin- 3 Expression in Intracerebroventricular Kainic Acid-Induced Neurotoxicity. Inflammation 2025:10.1007/s10753-025-02301-9. [PMID: 40237932 DOI: 10.1007/s10753-025-02301-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 04/07/2025] [Accepted: 04/09/2025] [Indexed: 04/18/2025]
Abstract
Excitotoxicity caused by excessive concentration of the excitatory neurotransmitter glutamate causes neuronal cell death and promotes neurodegenerative disorders. The neuroexcitant neurotoxin kainic acid (KA) induces excitotoxicity, leading to neuronal death via oxidative stress and inflammation, and its experimental use is widespread. This study was designed to determine the protective effect of Troxerutin (TXR) and its relationship with Galectin-3 (Gal-3) in experimental excitotoxicity with neuroinflammation and oxidative stress. Fifty male Wistar rats were divided into five groups (n = 10): Control group rats received intraperitoneal (ip) normal saline for 6 days. Sham group rats received a single dose of intracerebroventricular (icv) normal saline on the first day. KA group rats were treated with a single dose of KA; icv-0.5 μg/μl). TXR group rats treated with TXR for 6 days: ip-100 mg/kg) and KA + TXR group rats treated with KA (single dose) and TXR (6 days). It was observed that malondialdehyde (MDA) and interleukin-1β (IL-1β) levels increased and reduced glutathione (GSH) levels decreased in the cerebral cortex of rats with KA neurotoxicity. TXR treatment caused a significant improvement in MDA and GSH levels and a significant decrease in IL-1β levels in rats with the excitotoxicity model. Gal-3 expressions in the hippocampus and cerebellum increased in KA-treated rats, whereas TXR treatment decreased Gal-3 expressions. In addition, histopathological changes caused by KA administration showed improvement in TXR-treated groups. In conclusion, the findings showed that TXR treatment attenuated KA-induced neurotoxicity by reducing oxidative tissue damage, inflammatory response and Gal-3 expression.
Collapse
Affiliation(s)
- Mehmet Demir
- Department of Physiology, Faculty of Medicine, Karabuk University, Karabuk, Turkey.
| | - Hulya Elbe
- Department of Histology and Embryology, Faculty of Medicine, Mugla Sıtkı Kocman University, Mugla, Turkey
| | - Dilan Cetinavci
- Department of Histology and Embryology, Mugla Training and Research Hospital, Mugla, Turkey
| | - Ercan Saruhan
- Department of Medical Biochemistry, Faculty of Medicine, Mugla Sıtkı Kocman University, Mugla, Turkey
| |
Collapse
|
4
|
Bi D, Bao H, Yang X, Wu Z, Yang X, Xu G, Liu X, Wan Z, Liu J, He J, Wen L, Jing Y, Zhu R, Long Z, Rong Y, Wang D, Wang X, Xiong W, Huang G, Gao F, Shen Y. BACE1-dependent cleavage of GABA A receptor contributes to neural hyperexcitability and disease progression in Alzheimer's disease. Neuron 2025; 113:1051-1064.e6. [PMID: 40015276 DOI: 10.1016/j.neuron.2025.01.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 10/15/2024] [Accepted: 01/30/2025] [Indexed: 03/01/2025]
Abstract
Neural hyperexcitability has been clinically associated with amyloid-β (Aβ) pathology and cognitive impairment in Alzheimer's disease (AD). Here, we show that decreased GABAA receptor (GABAAR) currents are linked to hippocampal granule cell hyperexcitability in the AD mouse model APP23. Elevated levels of β-secretase (BACE1), the β-secretase responsible for generating Aβ peptides, lead to aberrant cleavage of GABAAR β1/2/3 subunits in the brains of APP23 mice and AD patients. Moreover, BACE1-dependent cleavage of the β subunits leads to a decrease in GABAAR-mediated inhibitory currents in BACE1 transgenic mice. Finally, we show that the neural hyperexcitability, Aβ load, and spatial memory deficit phenotypes of APP23 mice are significantly reduced upon the granule cell expression of a non-cleavable β3 subunit mutant. Collectively, our study establishes that BACE1-dependent cleavage of GABAAR β subunits promotes the pathological hyperexcitability known to drive neurodegeneration and cognitive impairment in the AD brain, suggesting that prevention of the cleavage could slow disease progression.
Collapse
Affiliation(s)
- Danlei Bi
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei, China.
| | - Hong Bao
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei, China
| | - Xiaoli Yang
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei, China
| | - Zujun Wu
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei, China
| | - Xiaoxu Yang
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei, China
| | - Guangwei Xu
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei, China
| | - Xiaoming Liu
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei, China
| | - Zhikun Wan
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei, China
| | - Jiachen Liu
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei, China
| | - Junju He
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei, China
| | - Lang Wen
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei, China
| | - Yuying Jing
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei, China
| | - Ruijie Zhu
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei, China
| | - Zhenyu Long
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei, China
| | - Yating Rong
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei, China
| | - Dongxu Wang
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei, China
| | - Xiaoqun Wang
- Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Wei Xiong
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei, China
| | - Guangming Huang
- Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Feng Gao
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei, China.
| | - Yong Shen
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
5
|
Gomes L, de Oliveira Carvalho H, Lopes GR, da Costa Furtado G, Gonçalves DES, Colares NND, Ferreira AM, da Costa Furtado C, da Silva HR, de L T Dos Santos AVT, do Nascimento AL, Lage TM, Pedro IDR, Teixeira TA, Carvalho JCT. The action of injectable nanodispersion of Bixa orellana (Chronic-in®) on arthritis in diabetic rats: pharmacological and histopathological studies. Inflammopharmacology 2025; 33:2109-2128. [PMID: 40067519 DOI: 10.1007/s10787-025-01703-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Accepted: 02/18/2025] [Indexed: 04/13/2025]
Abstract
Diabetic arthritis (DA) is a microvascular complication associated with diabetes mellitus (DM), necessitating the exploration of innovative therapeutic approaches. The Amazon biome, rich in bioactive compounds, offers potential treatments; notably, Bixa orellana, which contains tocotrienol and geranylgeraniol, exhibits anti-inflammatory and antioxidant properties, particularly when formulated as a nanodispersion. OBJECTIVE This study aims to investigate the pharmacological effects of an injectable nanodispersion of Bixa orellana, termed Chronic-in®, in diabetic Wistar rats. METHOD Male Wistar rats were employed in the study, and DA was induced using an intraperitoneal injection of 100 mg/kg alloxan and an intraplantar administration of Freund's complete adjuvant. The animals were divided into five groups (n = 5): CON (normal rats treated with saline solution IM), CHR SC (DA rats treated with Chronic-in SC daily), SS (DA rats treated with saline solution IM), IND (DA rats treated with indomethacin orally), and CHR IM (DA rats treated with Chronic-in IM every 3 days). Treatment outcomes were assessed through various parameters, including changes in paw edema, Arthritic Index (AI), performance in the open field and Rotarod tests, radiographic evaluations using the Eichenholtz classification, Scanning Electron Microscopy (SEM) analysis of articular morphology, and hematological and biochemical assessments. RESULTS Significant reductions in edema were observed in the CHR SC, CHR IM, and IND groups (p < 0.001) compared to the SSA group. The AI showed significant differences among the CON, CHR SC, and CHR IM groups. Enhanced exploratory behavior was noted in the open field test for the Chronic-in-treated groups, particularly with IM administration. The Rotarod test demonstrated marked differences between the Chronic-in-treated, CON and SS groups. Radiographic and SEM evaluations indicated fewer bone alterations in the CHR IM and SC groups compared to the SSA and IND groups, along with preservation of articular surfaces. Histological assessments revealed thickened synovial membranes and pannus formation in the SS and IND groups. In contrast, CHR IM and CHR SC groups exhibited minimal loss of proteoglycans akin to the CON group. CONCLUSION Treatment with Chronic-in via both IM and SC routes effectively mitigated the inflammatory manifestations of diabetic neuropathic arthritis, demonstrating lower pain intensity during ambulation and protective effects against inflammation and joint integrity as evidenced in histological analyses. These findings suggest that Chronic-in represents a promising therapeutic option for diabetic arthritis.
Collapse
Affiliation(s)
- Lauana Gomes
- Laboratory of Drug Research, Department of Biological and Health Sciences, Federal University of Amapá, Rod. Josmar Chaves Pinto, Km 02, Jardim Marco Zero, Macapá, Amapá, 68903-419, Brazil
| | - Helison de Oliveira Carvalho
- Laboratory of Drug Research, Department of Biological and Health Sciences, Federal University of Amapá, Rod. Josmar Chaves Pinto, Km 02, Jardim Marco Zero, Macapá, Amapá, 68903-419, Brazil
| | - Gisele Rocha Lopes
- Laboratory of Drug Research, Department of Biological and Health Sciences, Federal University of Amapá, Rod. Josmar Chaves Pinto, Km 02, Jardim Marco Zero, Macapá, Amapá, 68903-419, Brazil
| | - Gabriel da Costa Furtado
- Laboratory of Drug Research, Department of Biological and Health Sciences, Federal University of Amapá, Rod. Josmar Chaves Pinto, Km 02, Jardim Marco Zero, Macapá, Amapá, 68903-419, Brazil
| | - Danna Emanuelle Santos Gonçalves
- Laboratory of Drug Research, Department of Biological and Health Sciences, Federal University of Amapá, Rod. Josmar Chaves Pinto, Km 02, Jardim Marco Zero, Macapá, Amapá, 68903-419, Brazil
| | - Nayara Nilcia Dias Colares
- Laboratory of Drug Research, Department of Biological and Health Sciences, Federal University of Amapá, Rod. Josmar Chaves Pinto, Km 02, Jardim Marco Zero, Macapá, Amapá, 68903-419, Brazil
| | - Adriana Maciel Ferreira
- Laboratory of Drug Research, Department of Biological and Health Sciences, Federal University of Amapá, Rod. Josmar Chaves Pinto, Km 02, Jardim Marco Zero, Macapá, Amapá, 68903-419, Brazil
| | - Crislany da Costa Furtado
- Laboratory of Drug Research, Department of Biological and Health Sciences, Federal University of Amapá, Rod. Josmar Chaves Pinto, Km 02, Jardim Marco Zero, Macapá, Amapá, 68903-419, Brazil
| | - Heitor Ribeiro da Silva
- Laboratory of Drug Research, Department of Biological and Health Sciences, Federal University of Amapá, Rod. Josmar Chaves Pinto, Km 02, Jardim Marco Zero, Macapá, Amapá, 68903-419, Brazil
| | - Abrahão Victor Tavares de L T Dos Santos
- Laboratory of Drug Research, Department of Biological and Health Sciences, Federal University of Amapá, Rod. Josmar Chaves Pinto, Km 02, Jardim Marco Zero, Macapá, Amapá, 68903-419, Brazil
- Innovation Pharmaceutical Program, Department of Biological and Health Sciences, Federal University of Amapá, Macapá, Amapá, Brazil
| | - Aline Lopes do Nascimento
- Laboratory of Drug Research, Department of Biological and Health Sciences, Federal University of Amapá, Rod. Josmar Chaves Pinto, Km 02, Jardim Marco Zero, Macapá, Amapá, 68903-419, Brazil
- Innovation Pharmaceutical Program, Department of Biological and Health Sciences, Federal University of Amapá, Macapá, Amapá, Brazil
| | - Tamiris Marques Lage
- Laboratory of Drug Research, Department of Biological and Health Sciences, Federal University of Amapá, Rod. Josmar Chaves Pinto, Km 02, Jardim Marco Zero, Macapá, Amapá, 68903-419, Brazil
| | - Irma Danielle Rodrigues Pedro
- Laboratory of Drug Research, Department of Biological and Health Sciences, Federal University of Amapá, Rod. Josmar Chaves Pinto, Km 02, Jardim Marco Zero, Macapá, Amapá, 68903-419, Brazil
| | - Thiago Afonso Teixeira
- Laboratory of Drug Research, Department of Biological and Health Sciences, Federal University of Amapá, Rod. Josmar Chaves Pinto, Km 02, Jardim Marco Zero, Macapá, Amapá, 68903-419, Brazil
- Innovation Pharmaceutical Program, Department of Biological and Health Sciences, Federal University of Amapá, Macapá, Amapá, Brazil
- University Hospital, Federal University of Amapá, Macapá, Amapá, Brazil
| | - José Carlos Tavares Carvalho
- Laboratory of Drug Research, Department of Biological and Health Sciences, Federal University of Amapá, Rod. Josmar Chaves Pinto, Km 02, Jardim Marco Zero, Macapá, Amapá, 68903-419, Brazil.
- Innovation Pharmaceutical Program, Department of Biological and Health Sciences, Federal University of Amapá, Macapá, Amapá, Brazil.
- University Hospital, Federal University of Amapá, Macapá, Amapá, Brazil.
| |
Collapse
|
6
|
Chen Y, Nie Q, Song T, Zou X, Li Q, Zhang P. Integrated Proteomics and Lipidomics Analysis of Hippocampus to Reveal the Metabolic Landscape of Epilepsy. ACS OMEGA 2025; 10:9351-9367. [PMID: 40092809 PMCID: PMC11904687 DOI: 10.1021/acsomega.4c10085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/07/2025] [Accepted: 02/12/2025] [Indexed: 03/19/2025]
Abstract
Epilepsy encompasses a spectrum of chronic brain disorders characterized by transient central nervous system dysfunctions induced by recurrent, aberrant, synchronized neuronal discharges. Hippocampal sclerosis (HS) is identified as the predominant pathological alteration in epilepsy, particularly in temporal lobe epilepsy. This study investigates the metabolic profiles of epileptic hippocampal tissues using proteomics and lipidomics techniques. An epilepsy model was established in Sprague-Dawley (SD) rats via intraperitoneal injection of pentylenetetrazole (PTZ), with hippocampal tissue samples subsequently extracted for histopathological examination. Proteomics analysis was conducted using isobaric tags for relative and absolute quantitation (iTRAQ) combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS), while lipidomics analysis employed ultrahigh-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UHPLC Q-TOF/MS). Proteomic analysis identified 144 proteins with significant differential expression in acute epileptic hippocampal tissue and 83 proteins in chronic epileptic hippocampal tissue. Key proteins, including neurofilament heavy (Nefh), vimentin (Vim), gelsolin (Gsn), NAD-dependent protein deacetylase (Sirt2), 2',3'-cyclic-nucleotide 3'-phosphodiesterase (Cnp), myocyte enhancer factor 2D (Mef2d), and Cathepsin D (Ctsd), were pivotal in epileptic hippocampal tissue injury and validated through parallel reaction monitoring (PRM). Concurrently, lipid metabolomics analysis identified 32 metabolites with significant differential expression in acute epileptic hippocampal tissue and 61 metabolites in chronic epileptic hippocampal tissue. Bioinformatics analysis indicated that glycerophospholipid (GP) metabolism, glycosylphosphatidylinositol (GPI)-anchor biosynthesis, and glycerolipid (GL) metabolism were crucial in epileptic hippocampal tissue injury. Integrated proteomics and lipidomics analysis revealed key protein-lipid interactions in acute and chronic epilepsy and identified critical pathways such as sphingolipid signaling, autophagy, and calcium signaling. These findings provide deeper insights into the pathophysiological mechanisms of epileptic hippocampal tissue damage, potentially unveiling novel therapeutic avenues for clinicians.
Collapse
Affiliation(s)
- Yinyu Chen
- Key
Laboratory of Tropical Translational Medicine of Ministry of Education
& the First Affiliated Hospital, Hainan
Medical University, Xueyuan Road 3#, Longhuaqu, Haikou 571199, Hainan, China
| | - Qianyun Nie
- Key
Laboratory of Tropical Translational Medicine of Ministry of Education
& the First Affiliated Hospital, Hainan
Medical University, Xueyuan Road 3#, Longhuaqu, Haikou 571199, Hainan, China
- Department
of Pathology, School of Basic Medicine and Life Sciences, Hainan Medical University, Xueyuan Road 3#, Longhuaqu, Haikou 571199 Hainan, China
| | - Tao Song
- Key
Laboratory of Tropical Translational Medicine of Ministry of Education
& the First Affiliated Hospital, Hainan
Medical University, Xueyuan Road 3#, Longhuaqu, Haikou 571199, Hainan, China
| | - Xing Zou
- Key
Laboratory of Tropical Translational Medicine of Ministry of Education
& the First Affiliated Hospital, Hainan
Medical University, Xueyuan Road 3#, Longhuaqu, Haikou 571199, Hainan, China
| | - Qifu Li
- Key
Laboratory of Tropical Translational Medicine of Ministry of Education
& the First Affiliated Hospital, Hainan
Medical University, Xueyuan Road 3#, Longhuaqu, Haikou 571199, Hainan, China
| | - Peng Zhang
- Key
Laboratory of Tropical Translational Medicine of Ministry of Education
& the First Affiliated Hospital, Hainan
Medical University, Xueyuan Road 3#, Longhuaqu, Haikou 571199, Hainan, China
| |
Collapse
|
7
|
Kim JE, Lee DS, Wang SH, Kang TC. P2X7 receptor augments kainic acid-induced nitrosative stress by abrogating GS-HSP25-mediated iNOS inhibition and GSH synthesis in the mouse hippocampus. Mol Cell Neurosci 2025; 133:103995. [PMID: 40032027 DOI: 10.1016/j.mcn.2025.103995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/05/2025] [Accepted: 02/13/2025] [Indexed: 03/05/2025] Open
Abstract
Glutathione (GSH) and heat shock protein 25 (HSP25) reciprocally regulate each other, which maintain redox homeostasis. Since P2X7 receptor (P2X7R) regulates GSH biosynthesis and HSP25 induction, the present study was conducted to explore the role of P2X7R in the reciprocal regulation between HSP25 and GSH in response to kainic acid (KA)-induced nitrosative stress and the related signal pathways, which are largely unknown. The present data demonstrate that P2X7R deletion attenuated KA-induced reductions in total GSH level and nuclear factor-erythroid 2-related factor 2 (Nrf2) intensity/nuclear translocation in astrocytes. P2X7R ablation increased Nrf2 intensity/nuclear translocation in microglia following KA treatment. P2X7R deletion also ameliorated KA-induced inducible nitric oxide synthase (iNOS) and S-nitrosylated-cysteine (SNO-Cys) inductions in microglia and astrocytes. However, P2X7R ablation could not affect KA-induced nuclear Nrf2 translocation and SNO-Cys production in CA3 neurons. Furthermore, P2X7R ablation mitigated S-nitrosylations of glutamine synthase (GS) and alanine-serine-cysteine transporter 2 (ASCT2) induced by KA. HSP25 knockdown increased GSH consumption, astroglial iNOS level and S-nitrosylations of GS and ASCT2, but decreased Nrf2 intensity/nuclear translocation in astrocytes of P2X7R-/- mice following KA injection. These findings indicate that P2X7R facilitated iNOS upregulation by inhibiting HSP25 induction and nuclear Nrf2 translocation in astrocytes, which augmented nitrosative stress-mediated reduction in GSH biosynthesis in response to KA. Therefore, our data suggest that the targeting of P2X7R-Nrf2-iNOS-GS-HSP25 pathway may be required for the maintenance of GSH-mediated redox homeostasis against nitrosative stress, which would prevent the progression of undesirable consequences from seizures and neuroinflammation.
Collapse
Affiliation(s)
- Ji-Eun Kim
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, South Korea.
| | - Duk-Shin Lee
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, South Korea
| | - Su Hyeon Wang
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, South Korea
| | - Tae-Cheon Kang
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, South Korea
| |
Collapse
|
8
|
Khan R, Turner A, Berk M, Walder K, Rossell S, Guerin AA, Kim JH. Genes, Cognition, and Their Interplay in Methamphetamine Use Disorder. Biomolecules 2025; 15:306. [PMID: 40001609 PMCID: PMC11852989 DOI: 10.3390/biom15020306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/09/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
Methamphetamine use disorder is a pressing global health issue, often accompanied by significant cognitive deficits that impair daily functioning and quality of life and complicate treatment. Emerging evidence highlights the potential role of genetic factors in methamphetamine use disorder, particularly in association with cognitive function. This review examines the key genetic and cognitive dimensions and their interplay in methamphetamine use disorder. There is converging evidence from several studies that genetic polymorphisms in BDNF, FAAH, SLC18A1, and SLC18A2 are associated with protection against or susceptibility to the disorder. In addition, people with methamphetamine use disorder consistently displayed impairments in cognitive flexibility and inhibitory control compared with people without the disorder. These cognitive domains were associated with reactivity to methamphetamine cues that were positively correlated with total years of methamphetamine use history. Emerging research also suggests that inhibitory control is negatively correlated with lower blood FAAH mRNA levels, while cognitive flexibility positively correlates with higher blood SLC18A2 mRNA levels, highlighting how genetic and cognitive dimensions interact in methamphetamine use disorder. We also include some future directions, emphasizing potential personalized therapeutic strategies that integrate genetic and cognitive insights. By drawing attention to the interplay between genes and cognition, we hope to advance our understanding of methamphetamine use disorder and inform the development of targeted interventions.
Collapse
Affiliation(s)
- Ramisha Khan
- IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC 3220, Australia; (R.K.); (A.T.); (M.B.); (K.W.)
| | - Alyna Turner
- IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC 3220, Australia; (R.K.); (A.T.); (M.B.); (K.W.)
| | - Michael Berk
- IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC 3220, Australia; (R.K.); (A.T.); (M.B.); (K.W.)
| | - Ken Walder
- IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC 3220, Australia; (R.K.); (A.T.); (M.B.); (K.W.)
| | - Susan Rossell
- Centre for Mental Health, Swinburne University of Technology, Melbourne, VIC 3122, Australia;
| | - Alexandre A. Guerin
- Centre for Youth Mental Health, University of Melbourne, Melbourne, VIC 3010, Australia;
- Orygen, Melbourne, VIC 3052, Australia
| | - Jee Hyun Kim
- IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC 3220, Australia; (R.K.); (A.T.); (M.B.); (K.W.)
| |
Collapse
|
9
|
Yang H, Xiang Y, Wang J, Ke Z, Zhou W, Yin X, Zhang M, Chen Z. Modulating the blood-brain barrier in CNS disorders: A review of the therapeutic implications of secreted protein acidic and rich in cysteine (SPARC). Int J Biol Macromol 2025; 288:138747. [PMID: 39674451 DOI: 10.1016/j.ijbiomac.2024.138747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
Secreted protein acidic and rich in cysteine (SPARC), an essential stromal cell protein, plays a crucial role in angiogenesis and maintaining endothelial barrier function. This protein is expressed by diverse cell types, including endothelial cells, fibroblasts, and macrophages, with increased expression found in regions of tissues undergoing active remodeling, repair, and proliferation. The role of SPARC in non-neural tissues is of significant interest. In the central nervous system (CNS), SPARC is highly expressed in blood vessels during early development. It becomes down-regulated as the brain matures, a pattern consistent with its role in angiogenesis and blood-brain barrier (BBB) establishment. In this review, we explore the multifaceted roles of SPARC in regulating CNS disorders, particularly its action in angiogenesis, inflammatory responses, neural system development and repair, barrier establishment, maintenance of BBB function, and the pathogenesis of CNS disorders triggered by BBB dysfunction.
Collapse
Affiliation(s)
- Hui Yang
- Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China; School of Basic Medicine, Jiujiang University, Jiujiang, Jiangxi 332000, China
| | - Yuanyuan Xiang
- Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China
| | - Jiaxuan Wang
- Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China; School of Basic Medicine, Jiujiang University, Jiujiang, Jiangxi 332000, China
| | - Zunliang Ke
- Department of Neurosurgery, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi 332000, China
| | - Weixin Zhou
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China
| | - Xiaoping Yin
- Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China
| | - Manqing Zhang
- School of Basic Medicine, Jiujiang University, Jiujiang, Jiangxi 332000, China.
| | - Zhiying Chen
- Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China.
| |
Collapse
|
10
|
Oruç KY, Ağtürk G, Oruç A, Yanar K, Seymen HO. Protective effect of Apelin-13 on D-glutamic acid-induced excitotoxicity in SH-SY5Y cell line: An in-vitro study. Neuropeptides 2025; 109:102483. [PMID: 39547009 DOI: 10.1016/j.npep.2024.102483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/08/2024] [Accepted: 11/03/2024] [Indexed: 11/17/2024]
Abstract
Excitotoxicity, resulting from excessive accumulation of glutamate in the extracellular space, leads to neuronal cell death. This study investigates the protective effects of Apelin-13 on D-Glutamic acid-induced excitotoxicity in SH-SY5Y human neuroblastoma cells, an in-vitro model for neurodegenerative diseases. Unlike the commonly studied L-glutamic acid, this research focuses on D-Glutamic acid to understand its specific impacts. SH-SY5Y cells were treated with varying concentrations of D-Glutamic acid and Apelin-13, followed by analyses at 12 and 24 h to evaluate cell viability, oxidative stress markers, and inflammatory cytokine levels. Cell viability assays revealed significant cytotoxic effects of D-Glutamic acid at doses of 10 mM and 20 mM, reducing viability by over 50 %. However, Apelin-13 treatment mitigated these effects, especially at 2 μg/ml, enhancing cell viability and reducing inflammatory cytokine levels (IL-1β and TNF-α). Apelin-13 also increased anti-inflammatory cytokine levels (IL-10 and TGF-β1) and brain-derived neurotrophic factor (BDNF), indicating its neuroprotective role. Oxidative stress markers, including ROS, AGE, AOPP, DT, T-SH, were significantly elevated by D-Glutamic acid but effectively reduced by Apelin-13. The neuroprotective mechanisms of Apelin-13 involve modulation of cAMP/PKA and MAPK signaling pathways, enhancing BDNF synthesis and suppressing oxidative stress and inflammatory responses. This study is the first to demonstrate the effects of D-Glutamic acid on SH-SY5Y cells. It highlights Apelin-13's potential as a therapeutic agent against excitotoxicity-induced neuronal damage, emphasizing its ability to modulate key molecular pathways involved in inflammation and oxidative stress. Further in-vivo studies are warranted to explore the long-term neuroprotective effects of Apelin-13 in treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Kadriye Yağmur Oruç
- Istanbul University-Cerrahpaşa, Cerrahpaşa Faculty of Medicine, Department of Physiology, Istanbul, Turkey; Istinye University, Faculty of Medicine, Department of Physiology, Istanbul, Turkey.
| | - Gökhan Ağtürk
- Haliç University, Faculty of Medicine, Department of Physiology, Istanbul, Turkey
| | - Aykut Oruç
- Istanbul University-Cerrahpaşa, Cerrahpaşa Faculty of Medicine, Department of Physiology, Istanbul, Turkey
| | - Karolin Yanar
- Istanbul University-Cerrahpaşa, Cerrahpaşa Faculty of Medicine, Department of Medical Biochemistry, Istanbul, Turkey
| | - Hakkı Oktay Seymen
- Istanbul University-Cerrahpaşa, Cerrahpaşa Faculty of Medicine, Department of Physiology, Istanbul, Turkey
| |
Collapse
|
11
|
Mese-Tayfur S, Demirel-Yalcıner T, Migni A, Bartolini D, Galli F, Ozer NK, Sozen E. Modulation of inflammatory signaling by vitamin E metabolites and its therapeutic implications. Free Radic Res 2025; 59:86-101. [PMID: 39764767 DOI: 10.1080/10715762.2024.2449457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/06/2024] [Accepted: 12/28/2024] [Indexed: 01/30/2025]
Abstract
Naturally occurring vitamin E is a lipophilic plant-derived molecule corresponding to the 2 R forms of alpha-tocopherol. A series of natural analogs or tocochromanols are present in nature, including β-, γ- and δ-tocopherol (βT, γT, δT), the corresponding tocotrienols (αTE, βTE, γTE, δTE) and tocomonoenols. Differences between these analogs as lipophilic antioxidants and modulators of molecular processes suggest specific therapeutic properties against various disorders associated with acute and chronic inflammation. However, hepatic metabolism of these compounds via cytochrome P450-initiated side chain ω-oxidation involves the production of long-chain metabolites (LCMs) followed by intermediate (ICMs) and short-chain metabolites (SCMs), respectively. Despite the initial studies indicating these metabolites as catabolic-end products, recent findings identify their importance in providing biological functions. In this scope, LCMs, especially 13'-carboxychromanols (13'-COOHs), have been reported to hold stronger anti-inflammatory capacity than their unmetabolized precursors due to their ability to inhibit 5-lipoxygenase and cyclooxygenase-catalyzed eicosanoid formation, as well as their modulation of the pro-inflammatory transcriptional protein nuclear factor κB (NF-κB). Also, these LCMs have been reported to enhance detoxification and lipid metabolism pathways associated with cellular inflammation by modulating the nuclear receptors peroxisome proliferator-activated receptor-γ (PPARγ) and pregnane x receptor (PXR). These properties of LCMs will be described in this narrative review article focusing on recent information regarding their bioavailability, anti-inflammatory effects, and mechanisms of action in acute and chronic inflammatory disorders.
Collapse
Affiliation(s)
- Seher Mese-Tayfur
- Department of Biochemistry, Faculty of Medicine, Marmara University, Istanbul, Turkey
- Institute of Health Sciences, Marmara University, Istanbul, Turkey
| | - Tugce Demirel-Yalcıner
- Department of Biochemistry, Faculty of Medicine, Uskudar University, Istanbul, Turkey
- Metabolic and Inflammatory Diseases Research Center (METIFLAM), Uskudar University, Istanbul, Turkey
| | - Anna Migni
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Desirée Bartolini
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Francesco Galli
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Nesrin Kartal Ozer
- Department of Biochemistry, Faculty of Medicine, Uskudar University, Istanbul, Turkey
- Metabolic and Inflammatory Diseases Research Center (METIFLAM), Uskudar University, Istanbul, Turkey
| | - Erdi Sozen
- Department of Biochemistry, Faculty of Medicine, Marmara University, Istanbul, Turkey
- Genetic and Metabolic Diseases Research and Investigation Center (GEMHAM), Marmara University, Istanbul, Turkey
| |
Collapse
|
12
|
Ogunmiluyi OE, Naiho AO, Emojevwe VO, Oladele TS, Adebisi KA, Siyanbade JA, Akinola AO. Zinc or/and Vitamin E Supplementation Mitigates Oxidative Stress, Neuroinflammation, Neurochemical Changes and Behavioural Deficits in Male Wistar Rats Exposed to Bonny Light Crude Oil. J Toxicol 2024; 2024:9317271. [PMID: 39734606 PMCID: PMC11681987 DOI: 10.1155/jt/9317271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 12/10/2024] [Indexed: 12/31/2024] Open
Abstract
Background: Crude oil, a major key economic driver in developing countries, is also of environmental concern, linked to neurotoxicity and behavioural problems. Despite the known neurotoxic effects of crude oil and the potential benefits of zinc and vitamin E, there is a paucity of research specifically addressing their combined efficacy in mitigating neurochemical changes and behavioural deficits induced by crude oil. Current studies have largely focussed on the individual effects of these supplements in different contexts, but their synergistic potential in a crude oil exposure model remains underexplored. This study investigated the potential effects of zinc and vitamin E on neurobehavioural alterations in male Wistar rats fed with Bonny light crude oil (BLCO)-contaminated diet. Methods: Thirty (30) male Wistar rats (160 ± 10 g) were assigned into five groups (n = 6). Group 1 received standard rat feed, Group 2 was exposed to BLCO (0.1 mL/g of rat feed) for 3 weeks, and groups 3-5 were treated with zinc (50 mg/kg/day), vitamin E (400 IU/kg), or both [vitamin E (400 IU/kg) + zinc (50 mg/kg/day)], respectively for 1 week after BLCO exposure for 3 weeks. Locomotive, anxiolytic, depressive-like behaviours and spatial memory were assessed using the open-field test, elevated plus maze, forced swim test and Y-maze. Rats were sacrificed and the brain samples were collected for biochemical assays at the end of the behavioural tests. Results: Zinc and vitamin E supplementation (individually or combined) significantly increased brain total antioxidant capacity and superoxide dismutase (SOD) activity, reduced inflammatory markers (TNF-alpha) and lipid peroxidation, normalized neurotransmitter levels in the brain and improved behavioural performance. Conclusion: Treatment with Zn and/or vitamin E reverses BLCO-induced neurobehavioural alterations via modulation of oxidative stress, inflammation and neurotransmitters.
Collapse
Affiliation(s)
| | - Alexander Obidike Naiho
- Department of Physiology, University of Medical Sciences, Ondo, Ondo, Nigeria
- Department of Physiology, University of Delta, Agbor, Delta, Nigeria
- Department of Physiology, Delta State University, Abraka, Delta, Nigeria
| | | | | | | | | | | |
Collapse
|
13
|
Kim JE, Lee DS, Wang SH, Kim TH, Kang TC. GPx1-ERK1/2-CREB pathway regulates the distinct vulnerability of hippocampal neurons to oxidative stress via modulating mitochondrial dynamics following status epilepticus. Neuropharmacology 2024; 260:110135. [PMID: 39214451 DOI: 10.1016/j.neuropharm.2024.110135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/18/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Glutathione peroxidase-1 (GPx1) and cAMP/Ca2+ responsive element (CRE)-binding protein (CREB) regulate neuronal viability by maintaining the redox homeostasis. Since GPx1 and CREB reciprocally regulate each other, it is likely that GPx1-CREB interaction may play a neuroprotective role against oxidative stress, which are largely unknown. Thus, we investigated the underlying mechanisms of the reciprocal regulation between GPx1 and CREB in the male rat hippocampus. Under physiological condition, L-buthionine sulfoximine (BSO)-induced oxidative stress increased GPx1 expression, extracellular signal-regulated kinase 1/2 (ERK1/2) activity and CREB serine (S) 133 phosphorylation in CA1 neurons, but not dentate granule cells (DGC), which were diminished by GPx1 siRNA, U0126 or CREB knockdown. GPx1 knockdown inhibited ERK1/2 and CREB activations induced by BSO. CREB knockdown also decreased the efficacy of BSO on ERK1/2 activation. BSO facilitated dynamin-related protein 1 (DRP1)-mediated mitochondrial fission in CA1 neurons, which abrogated by GPx1 knockdown and U0126. CREB knockdown blunted BSO-induced DRP1 upregulation without affecting DRP1 S616 phosphorylation ratio. Following status epilepticus (SE), GPx1 expression was reduced in CA1 neurons and DGC. SE also decreased CREB activity CA1 neurons, but not DGC. SE degenerated CA1 neurons, but not DGC, accompanied by mitochondrial elongation. These post-SE events were ameliorated by N-acetylcysteine (NAC, an antioxidant), but deteriorated by GPx1 knockdown. These findings indicate that a transient GPx1-ERK1/2-CREB activation may be a defense mechanism to protect hippocampal neurons against oxidative stress via maintenance of proper mitochondrial dynamics.
Collapse
Affiliation(s)
- Ji-Eun Kim
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, 24252, South Korea.
| | - Duk-Shin Lee
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, 24252, South Korea.
| | - Su Hyeon Wang
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, 24252, South Korea
| | - Tae-Hyun Kim
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, 24252, South Korea
| | - Tae-Cheon Kang
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, 24252, South Korea.
| |
Collapse
|
14
|
Ma K, Tian J, Zhang Y, Li Y, Zhang Y, Zhu L. Insights into the neurotoxicity and oxidative stress to the freshwater amphipod Hyalella azteca induced by hexafluoropropylene oxide trimer acid. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176434. [PMID: 39307363 DOI: 10.1016/j.scitotenv.2024.176434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/14/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024]
Abstract
With the regulation and phase-out of conventional per- and polyfluoroalkyl substances (PFAS), there is a growing trend towards seeking alternatives that are less toxic and less persistent. Hexafluoropropylene oxide trimer acid (HFPO-TA) is one of the alternatives to perfluorooctanoic acid (PFOA), the latter being widely present in the environment globally. However, there is limited information regarding the biological toxicity of HFPO-TA to aquatic organisms. In this study, the freshwater benthic amphipod, Hyalella azteca, was used to assess the acute and chronic toxicity of HFPO-TA in both water and sediment. HFPO-TA was found to be more toxic to H. azteca than PFOA, as indicated by greater production of reactive oxygen species (p < 0.05) and increasing catalase activity (p < 0.05). In addition, exposure to HFPO-TA affected the swimming behavior and the acetylcholinesterase (AChE) activity of the amphipod. Molecular docking models revealed that HFPO-TA can bind to AChE with a stronger binding affinity than PFOA. Furthermore, an integrated biomarker response index indicated that environmentally relevant concentration (1-100 μg/L) of HFPO-TA may cause toxicity to H. azteca, encompassing oxidative stress and neurotoxicity. This study provides new insights into the toxicity mechanisms of HFPO-TA and is valuable for assessing the ecological safety of this compound.
Collapse
Affiliation(s)
- Kaiyuan Ma
- Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Jiayi Tian
- Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Ying Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Yuqing Li
- Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Yanfeng Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China.
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| |
Collapse
|
15
|
Sun Q, Peng S, Xu Q, Weikop P, Hussain R, Song W, Nedergaard M, Ding F. Enhancing glymphatic fluid transport by pan-adrenergic inhibition suppresses epileptogenesis in male mice. Nat Commun 2024; 15:9600. [PMID: 39505840 PMCID: PMC11541706 DOI: 10.1038/s41467-024-53430-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 10/08/2024] [Indexed: 11/08/2024] Open
Abstract
Epileptogenesis is the process whereby the previously normally functioning brain begins to generate spontaneous, unprovoked seizures. Status epilepticus (SE), which entails a massive release of neuronal glutamate and other neuroactive substances, is one of the best-known triggers of epileptogenesis. We here asked whether pharmacologically promoting glymphatic clearance during or after SE is beneficial and able to attenuate the subsequent epileptogenesis. We induced SE in adult male mice by intrahippocampal kainic acid (KA) infusion. Acute administration of a cocktail of adrenergic receptor antagonists (propranolol, prazosin, and atipamezole: PPA), enhanced glymphatic flow and effectively reduced the severity of spontaneous seizures in the chronic phase. The PPA treatment also reduced reactive gliosis and inhibited the loss of polarized expression of AQP4 water channels in the vascular endfeet of astrocytes. Administration of PPA after cessation of SE (30 hours post KA) also effectively suppressed epileptogenesis and improved outcome. Conversely, mice with constitutively low glymphatic transport due to genetic deletion of the aquaporin 4 (AQP4) water channel showed exacerbation of KA-induced epileptogenesis. We conclude that the pharmacological modulation of glymphatic fluid transport may represent a potential strategy to dampen epileptogenesis and the occurrence of spontaneous seizures following KA-induced SE.
Collapse
Affiliation(s)
- Qian Sun
- Center for Translational Neuromedicine, University of Rochester, Rochester, NY, USA
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Sisi Peng
- Center for Translational Neuromedicine, University of Rochester, Rochester, NY, USA
- Department of PET/MR, Shanghai Universal Medical Imaging Diagnostic Center, Shanghai, China
| | - Qiwu Xu
- Center for Translational Neuromedicine, University of Rochester, Rochester, NY, USA
| | - Pia Weikop
- Center for Translational Neuromedicine, University of Copenhagen Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | - Rashad Hussain
- Center for Translational Neuromedicine, University of Rochester, Rochester, NY, USA
| | - Wei Song
- Center for Translational Neuromedicine, University of Rochester, Rochester, NY, USA
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, University of Rochester, Rochester, NY, USA.
- Center for Translational Neuromedicine, University of Copenhagen Faculty of Health and Medical Sciences, Copenhagen, Denmark.
| | - Fengfei Ding
- Center for Translational Neuromedicine, University of Rochester, Rochester, NY, USA.
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
16
|
Saleh Al-Awthan Y, Al-Homidi MK, Albalawi AR, Almousi KI. Methamphetamine Neurotoxicity: Neurotoxic Effects, Mechanism of Toxicity, Molecular Mechanisms and Treatment Strategies. Pak J Biol Sci 2024; 27:613-625. [PMID: 39731431 DOI: 10.3923/pjbs.2024.613.625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2024]
Abstract
Methamphetamine (METH) is a highly addictive and dangerous drug that mainly affects neurotransmitters in the brain and leads to feelings of alertness and euphoria. The METH use can lead to addiction, which has become a worldwide problem, resulting in a slew of public health and safety issues. Recent studies showed that chronic METH use can lead to neurotoxicity, neuro-inflammation and oxidative stress which can lead to neuronal injury. This review discussed the history of METH use, the link between METH use and neurotoxicity, the molecular mechanism and the different treatment strategies. This study attempted to discuss some of the drug's principal impacts and gave proof in favor of a few of the cellular and molecular causes of METH neurotoxicity. In addition, it demonstrates the most recent treatment strategies involving mitigating METH-induced neurotoxicity. However, future studies are needed to better understand the mechanism by which METH use induced neurotoxicity.
Collapse
|
17
|
Fang Q, Cai Y, Yang Y, Zhang J, Ke J, Luo J, Zheng Y, Zhang Z, Alidu ALJ, Wang Q, Huang X. Curcumin attenuated neuroinflammation via the TLR4/MyD88/NF-κB signaling way in the juvenile rat hippocampus following kainic acid-induced epileptic seizures. Metab Brain Dis 2024; 39:1387-1403. [PMID: 39292432 DOI: 10.1007/s11011-024-01401-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/19/2024] [Indexed: 09/19/2024]
Abstract
The study examined curcumin's impart on relieving neuroinflammation of juvenile rats in kainic acid (KA) induced epileptic seizures by inhibiting the TLR4/MyD88/NF-κB pathway. There were five groups: control, KA, KA + curcumin (KC), KA + oxcarbazepine (OXC) (KO), KA + curcumin + OXC (KCO) groups. KA was stereotactically injected into right hippocampus following intraperitoneal injection of curcumin or (and) OXC for seven days. The rats in the above groups were randomly divided into three subgroups (at 6 h, 24 h, and 72 h of KA administration) following the seizure degree assessed. The number of NeuN (+) neurons and GFAP (+) astrocytes was counted. The gene and protein levels of TLR4, MyD88, and NF-κB were detected. Compared with the KA group, the seizure latency was longer, and the incidence of status epilepticus (SE) was lower in the KC, KO, and KCO groups. The most significant changes were in the KCO group. At 72 h following KA injected, the number of neurons was the least, and the number of astrocytes was the most in the KA group. The number of neurons was the most and the number of astrocytes was the least in the KCO group. At 24 h, the mRNA and protein levels of TLR4, MyD88, and NF-κB in the KA group were the most. The above valves were the least in the KCO group. Therefore, curcumin could enhance anti-epileptic effect of OXC, protect injured neurons and reduce proliferated glial cells of the hippocampus of epileptic rats by inhibiting inflammation via the TLR4/MyD88/NF-κB pathway.
Collapse
Affiliation(s)
- Qiong Fang
- Department of Pediatrics, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian Province, China, 350001.
- Department of Pediatrics, Fujian Provincial Hospital, Provincial Clinical Medical College of Fujian Medical University, 134 East Street, Gulou District, Fuzhou, Fujian Province, China, 350001.
| | - Yuehao Cai
- Department of Pediatrics, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian Province, China, 350001
| | - Yating Yang
- Department of Pediatrics, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian Province, China, 350001
| | - Jiuyun Zhang
- Department of Emergency, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian Province, China, 350001.
- Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, Fujian Province, China, 350001.
- Fujian Provincial Key Laboratory of Emergency Medicine, Fujian Provincial Institute of Emergency Medicine, Fujian Emergency Medical Center, 134 East Street, Gulou District, Fuzhou, Fujian Province, China, 350001.
| | - Jun Ke
- Department of Emergency, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian Province, China, 350001
- Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, Fujian Province, China, 350001
| | - Jiewei Luo
- Department of Traditional Chinese Medicine, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian, China, 350001
| | - Yujinglin Zheng
- Department of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian Province, China, 350001
| | - Zhiyuan Zhang
- Department of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian Province, China, 350001
| | - Abdul-Latif Jijiri Alidu
- Department of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian Province, China, 350001
| | - Qiancheng Wang
- Department of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian Province, China, 350001
| | - Xinyi Huang
- Department of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian Province, China, 350001
| |
Collapse
|
18
|
Maity J, Pal P, Ghosh M, Naskar B, Chakraborty S, Pal R, Mukhopadhyay PK. Molecular Dissection of the Arsenic-Induced Leukocyte Incursion into the Inflamed Thymus and Spleen and Its Amelioration by Co-supplementation of L-Ascorbic Acid and α-Tocopherol. Biol Trace Elem Res 2024:10.1007/s12011-024-04378-z. [PMID: 39325335 DOI: 10.1007/s12011-024-04378-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/12/2024] [Indexed: 09/27/2024]
Abstract
Arsenic, a surreptitious presence in our environment, perpetuates a persistent global menace with its deleterious impacts. It possesses the capability to trigger substantial immunosuppression by instigating inflammation in critical organs like the thymus and spleen. L-Ascorbic acid (L-AA) exhibits robust immunoregulatory prowess by orchestrating the epigenetic terrain through TET and JHDM pathways. Conversely, α-tocopherol (α-T) demonstrates the capacity to dampen the production of pro-inflammatory cytokines by modulating the PI3K-Akt axis. Given these insights, this inquiry embarks on exploring the mitigative potential of L-AA and α-T co-supplementation at the transcriptome level within leukocytes under arsenic exposure. Concurrently, the research endeavours to unravel the potent anti-inflammatory effects of administering α-T and L-AA, alleviating inflammation within the spleen and thymus amidst arsenic-induced insult and delving deeply into their immunomodulatory mechanisms. The rats were randomly allocated into eight distinct groups for subsequent experimentation: (I) the control group was administered solely with distilled water as the vehicle (control); (II) NaAsO2-treated group (As); (III) NaAsO2 treated along with L-ascorbic acid and α-tocopherol supplemented group (As + L-AA + α-T); (IV) L-ascorbic acid and α-tocopherol supplemented group (L-AA + α-T); (V) NaAsO2 treated along with L-ascorbic acid supplemented group (As + L-AA); (VI) only L-ascorbic acid supplemented group (L-AA); (VII) NaAsO2 treated along with α-tocopherol supplemented group (As + α-T); (VIII) only α-tocopherol supplemented group (α-T). Rats treated with NaAsO2 exhibited an increased neutrophil count in their bloodstream, as revealed by a comprehensive transcriptomic analysis showcasing heightened expressions of ItgaM, MMP9, and Itga4 within circulating leukocytes under arsenic exposure. Concurrently, arsenic heightened the expression of pro-inflammatory cytokines within the thymus and spleen. This elevated cytokine activity promoted the upregulation of ICAM-1 on vascular endothelial cells, facilitating the infiltration of Ly6g + leukocytes into the afflicted thymus and spleen. Remarkably, the combination of L-AA acid and α-T demonstrated substantial therapeutic efficacy, adeptly reducing the influx of Ly6g + leukocytes into these immune sites and subsequent reduction of excessive collagen deposition. The dynamic duo of L-AA and α-T achieved this amelioration by suppressing the expression of ItgaM, MMP9, and Itga4 mRNA within circulating leukocytes and moderating tissue levels of pro-inflammatory cytokines in arsenic-exposed thymus and spleen.
Collapse
Affiliation(s)
- Jeet Maity
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, India
| | - Priyankar Pal
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, India
- School of Life Science, Department of Biotechnology, Swami Vivekananda University, Barrackpore, India
| | - Madhurima Ghosh
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, India
| | - Bhagyashree Naskar
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, India
| | - Santanu Chakraborty
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, India
| | - Ranjana Pal
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, India
| | | |
Collapse
|
19
|
Galli F, Bartolini D, Ronco C. Oxidative stress, defective proteostasis and immunometabolic complications in critically ill patients. Eur J Clin Invest 2024; 54:e14229. [PMID: 38676423 DOI: 10.1111/eci.14229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/31/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024]
Abstract
Oxidative stress (OS) develops in critically ill patients as a metabolic consequence of the immunoinflammatory and degenerative processes of the tissues. These induce increased and/or dysregulated fluxes of reactive species enhancing their pro-oxidant activity and toxicity. At the same time, OS sustains its own inflammatory and immunometabolic pathogenesis, leading to a pervasive and vitious cycle of events that contribute to defective immunity, organ dysfunction and poor prognosis. Protein damage is a key player of these OS effects; it generates increased levels of protein oxidation products and misfolded proteins in both the cellular and extracellular environment, and contributes to forms DAMPs and other proteinaceous material to be removed by endocytosis and proteostasis processes of different cell types, as endothelial cells, tissue resident monocytes-macrophages and peripheral immune cells. An excess of OS and protein damage in critical illness can overwhelm such cellular processes ultimately interfering with systemic proteostasis, and consequently with innate immunity and cell death pathways of the tissues thus sustaining organ dysfunction mechanisms. Extracorporeal therapies based on biocompatible/bioactive membranes and new adsorption techniques may hold some potential in reducing the impact of OS on the defective proteostasis of patients with critical illness. These can help neutralizing reactive and toxic species, also removing solutes in a wide spectrum of molecular weights thus improving proteostasis and its immunometabolic corelates. Pharmacological therapy is also moving steps forward which could help to enhance the efficacy of extracorporeal treatments. This narrative review article explores the aspects behind the origin and pathogenic role of OS in intensive care and critically ill patients, with a focus on protein damage as a cause of impaired systemic proteostasis and immune dysfunction in critical illness.
Collapse
Affiliation(s)
- Francesco Galli
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Desirée Bartolini
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Claudio Ronco
- Department of Medicine, International Renal Research Institute of Vicenza, University of Padova, San Bortolo Hospital Vicenza, Vicenza, Italy
| |
Collapse
|
20
|
Hachem M, Ahmmed MK, Nacir-Delord H. Phospholipidomics in Clinical Trials for Brain Disorders: Advancing our Understanding and Therapeutic Potentials. Mol Neurobiol 2024; 61:3272-3295. [PMID: 37981628 PMCID: PMC11087356 DOI: 10.1007/s12035-023-03793-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 10/31/2023] [Indexed: 11/21/2023]
Abstract
Phospholipidomics is a specialized branch of lipidomics that focuses on the characterization and quantification of phospholipids. By using sensitive analytical techniques, phospholipidomics enables researchers to better understand the metabolism and activities of phospholipids in brain disorders such as Alzheimer's and Parkinson's diseases. In the brain, identifying specific phospholipid biomarkers can offer valuable insights into the underlying molecular features and biochemistry of these diseases through a variety of sensitive analytical techniques. Phospholipidomics has emerged as a promising tool in clinical studies, with immense potential to advance our knowledge of neurological diseases and enhance diagnosis and treatment options for patients. In the present review paper, we discussed numerous applications of phospholipidomics tools in clinical studies, with a particular focus on the neurological field. By exploring phospholipids' functions in neurological diseases and the potential of phospholipidomics in clinical research, we provided valuable insights that could aid researchers and clinicians in harnessing the full prospective of this innovative practice and improve patient outcomes by providing more potent treatments for neurological diseases.
Collapse
Affiliation(s)
- Mayssa Hachem
- Department of Chemistry and Healthcare Engineering Innovation Center, Khalifa University of Sciences and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| | - Mirja Kaizer Ahmmed
- Department of Fishing and Post-Harvest Technology, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Houda Nacir-Delord
- Department of Chemistry, Khalifa University of Sciences and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| |
Collapse
|
21
|
Khoury ES, Patel RV, O’Ferrall C, Fowler A, Sah N, Sharma A, Gupta S, Scafidi S, Kurtz J, Olmstead SJ, Kudchadkar SR, Kannan RM, Blue ME, Kannan S. Dendrimer nanotherapy targeting of glial dysfunction improves inflammation and neurobehavioral phenotype in adult female Mecp2-heterozygous mouse model of Rett syndrome. J Neurochem 2024; 168:841-854. [PMID: 37777475 PMCID: PMC11002961 DOI: 10.1111/jnc.15960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 07/19/2023] [Accepted: 08/29/2023] [Indexed: 10/02/2023]
Abstract
Rett syndrome is an X-linked neurodevelopmental disorder caused by mutation of Mecp2 gene and primarily affects females. Glial cell dysfunction has been implicated in in Rett syndrome (RTT) both in patients and in mouse models of this disorder and can affect synaptogenesis, glial metabolism and inflammation. Here we assessed whether treatment of adult (5-6 months old) symptomatic Mecp2-heterozygous female mice with N-acetyl cysteine conjugated to dendrimer (D-NAC), which is known to target glia and modulate inflammation and oxidative injury, results in improved behavioral phenotype, sleep and glial inflammatory profile. We show that unbiased global metabolomic analysis of the hippocampus and striatum in adult Mecp2-heterozygous mice demonstrates significant differences in lipid metabolism associated with neuroinflammation, providing the rationale for targeting glial inflammation in this model. Our results demonstrate that treatment with D-NAC (10 mg/kg NAC) once weekly is more efficacious than equivalently dosed free NAC in improving the gross neurobehavioral phenotype in symptomatic Mecp2-heterozygous female mice. We also show that D-NAC therapy is significantly better than saline in ameliorating several aspects of the abnormal phenotype including paw clench, mobility, fear memory, REM sleep and epileptiform activity burden. Systemic D-NAC significantly improves microglial proinflammatory cytokine production and is associated with improvements in several aspects of the phenotype including paw clench, mobility, fear memory, and REM sleep, and epileptiform activity burden in comparison to saline-treated Mecp2-hetereozygous mice. Systemic glial-targeted delivery of D-NAC after symptom onset in an older clinically relevant Rett syndrome model shows promise in improving neurobehavioral impairments along with sleep pattern and epileptiform activity burden. These findings argue for the translational value of this approach for treatment of patients with Rett Syndrome.
Collapse
Affiliation(s)
- Elizabeth Smith Khoury
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Ruchit V. Patel
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Caroline O’Ferrall
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Amanda Fowler
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Nirnath Sah
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Anjali Sharma
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Siddharth Gupta
- Kennedy Krieger Institute, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Susanna Scafidi
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Josh Kurtz
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Sarah J. Olmstead
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Sapna R. Kudchadkar
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
- Departments of Pediatrics and Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Rangaramanujam M. Kannan
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore MD, 21205
- Kennedy Krieger Institute – Johns Hopkins University for Cerebral Palsy Research Excellence, Baltimore, MD 21287
- Departments of Chemical and Biomolecular Engineering, and Materials Science and Engineering, Johns Hopkins University, Baltimore MD, 21218
| | - Mary E. Blue
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore MD, 21205
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore MD, 21205
- Hugo W. Moser Research Institute at Kennedy Krieger Inc., Baltimore MD, 21205
| | - Sujatha Kannan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore MD, 21205
- Hugo W. Moser Research Institute at Kennedy Krieger Inc., Baltimore MD, 21205
- Kennedy Krieger Institute – Johns Hopkins University for Cerebral Palsy Research Excellence, Baltimore, MD 21287
| |
Collapse
|
22
|
Nezhad Salari AM, Rasoulizadeh Z, Shabgah AG, Vakili-Ghartavol R, Sargazi G, Gholizadeh Navashenaq J. Exploring the mechanisms of kaempferol in neuroprotection: Implications for neurological disorders. Cell Biochem Funct 2024; 42:e3964. [PMID: 38439154 DOI: 10.1002/cbf.3964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/06/2024]
Abstract
Kaempferol, a flavonoid compound found in various fruits, vegetables, and medicinal plants, has garnered increasing attention due to its potential neuroprotective effects in neurological diseases. This research examines the existing literature concerning the involvement of kaempferol in neurological diseases, including stroke, Parkinson's disease, Alzheimer's disease, neuroblastoma/glioblastoma, spinal cord injury, neuropathic pain, and epilepsy. Numerous in vitro and in vivo investigations have illustrated that kaempferol possesses antioxidant, anti-inflammatory, and antiapoptotic properties, contributing to its neuroprotective effects. Kaempferol has been shown to modulate key signaling pathways involved in neurodegeneration and neuroinflammation, such as the PI3K/Akt, MAPK/ERK, and NF-κB pathways. Moreover, kaempferol exhibits potential therapeutic benefits by enhancing neuronal survival, attenuating oxidative stress, enhancing mitochondrial calcium channel activity, reducing neuroinflammation, promoting neurogenesis, and improving cognitive function. The evidence suggests that kaempferol holds promise as a natural compound for the prevention and treatment of neurological diseases. Further research is warranted to elucidate the underlying mechanisms of action, optimize dosage regimens, and evaluate the safety and efficacy of this intervention in human clinical trials, thereby contributing to the advancement of scientific knowledge in this field.
Collapse
Affiliation(s)
| | - Zahra Rasoulizadeh
- Student Research Committee, Bam University of Medical Sciences, Bam, Iran
| | | | - Roghayyeh Vakili-Ghartavol
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ghasem Sargazi
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran
| | | |
Collapse
|
23
|
Liu Y, Chang Y, Jiang X, Mei H, Cao Y, Wu D, Xie R, Jiang W, Vasquez E, Wu Y, Lin S, Cao Y. Analysis of the role of PANoptosis in seizures via integrated bioinformatics analysis and experimental validation. Heliyon 2024; 10:e26219. [PMID: 38404827 PMCID: PMC10884430 DOI: 10.1016/j.heliyon.2024.e26219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/14/2024] [Accepted: 02/08/2024] [Indexed: 02/27/2024] Open
Abstract
Background Epilepsy is recognized as the most common chronic neurological condition among children, and hippocampal neuronal cell death has been identified as a crucial factor in the pathophysiological processes underlying seizures. In recent studies, PANoptosis, a newly characterized form of cell death, has emerged as a significant contributor to the development of various neurological disorders, including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. PANoptosis involves the simultaneous activation of pyroptosis, apoptosis, and necroptosis within the same population of cells. However, its specific role in the context of seizures remains to be fully elucidated. Further investigation is required to uncover the precise involvement of PANoptosis in the pathogenesis of seizures and to better understand its potential implications for the development of targeted therapeutic approaches in epilepsy. Methods In this study, the gene expression data of the hippocampus following the administration of kainic acid (KA) or NaCl was obtained from the Gene Expression Omnibus (GEO) database. The PANoptosis-related gene set was compiled from the GeneCards database and previous literature. Time series analysis was performed to analyze the temporal expression patterns of the PANoptosis-related genes. Gene set variation analysis (GSVA), Gene ontology (GO), and Kyoto encyclopedia of genes and genomes (KEGG) were employed to explore potential biological mechanisms underlying PANoptosis and its role in seizures. Weighted gene co-expression network analysis (WGCNA) and differential expression analysis were utilized to identify pivotal gene modules and PANoptosis-related genes associated with the pathophysiological processes underlying seizures. To validate the expression of PANoptosis-related genes, Western blotting or quantitative real-time polymerase chain reaction (qRT-PCR) assays were conducted. These experimental validations were performed in human blood samples, animal models, and cell models to verify the expression patterns of the PANoptosis-related genes and their relevance to epilepsy. Results The GSVA analysis performed in this study demonstrated that PANoptosis-related genes have the potential to distinguish between the control group and KA-induced epileptic mice. This suggests that the expression patterns of these genes are significantly altered in response to KA-induced epilepsy. Furthermore, the Weighted gene co-expression network analysis (WGCNA) identified the blue module as being highly associated with epileptic phenotypes. This module consists of genes that exhibit correlated expression patterns specifically related to epilepsy. Within the blue module, 10 genes were further identified as biomarker genes for epilepsy. These genes include MLKL, IRF1, RIPK1, GSDMD, CASP1, CASP8, ZBP1, CASP6, PYCARD, and IL18. These genes likely play critical roles in the pathophysiology of epilepsy and could serve as potential biomarkers for diagnosing or monitoring the condition. Conclusion In conclusion, our study suggests that the hippocampal neuronal cell death in epilepsy may be closely related to PANoptosis, a novel form of cell death, which provides insights into the underlying pathophysiological processes of epilepsy and helps the development of novel therapeutic approaches for epilepsy.
Collapse
Affiliation(s)
- Yueying Liu
- Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Yuanjin Chang
- Affiliated Hospital of Jiangnan University, Wuxi, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Xiaofan Jiang
- Affiliated Hospital of Jiangnan University, Wuxi, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Huiya Mei
- Affiliated Hospital of Jiangnan University, Wuxi, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yingsi Cao
- Affiliated Hospital of Jiangnan University, Wuxi, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Dongqin Wu
- Affiliated Hospital of Jiangnan University, Wuxi, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Ruijin Xie
- Affiliated Hospital of Jiangnan University, Wuxi, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Wenjun Jiang
- Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Emely Vasquez
- The City University of New York School of Medicine, New York, USA
| | - Yu Wu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Shunyan Lin
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Yachuan Cao
- Affiliated Hospital of Jiangnan University, Wuxi, China
| |
Collapse
|
24
|
Theodosis-Nobelos P, Marc G, Rekka EA. Design, Synthesis and Evaluation of Antioxidant and NSAID Derivatives with Antioxidant, Anti-Inflammatory and Plasma Lipid Lowering Effects. Molecules 2024; 29:1016. [PMID: 38474528 DOI: 10.3390/molecules29051016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Amides containing methyl esters of γ-aminobutyric acid (GABA), L-proline and L-tyrosine, and esters containing 3-(pyridin-3-yl)propan-1-ol were synthesized by conjugation with 3,5-di-tert-butyl-4-hydroxybenzoic, an NSAID (tolfenamic acid), or 3-phenylacrylic (cinnamic, (E)-3-(3,4-dimethoxyphenyl)acrylic and caffeic) acids. The rationale for the conjugation of such moieties was based on the design of structures with two or more molecular characteristics. The novel compounds were tested for their antioxidant, anti-inflammatory and hypolipidemic properties. Several compounds were potent antioxidants, comparable to the well-known antioxidant, Trolox. In addition, the radical scavenging activity of compound 6 reached levels that were slightly better than that of Trolox. All the tested compounds demonstrated remarkable activity in the reduction in carrageenan-induced rat paw edema, up to 59% (compound 2, a dual antioxidant and anti-inflammatory molecule, with almost 2.5-times higher activity in this experiment than the parent NSAID). Additionally, the compounds caused a significant decrease in the plasma lipidemic indices in Triton-induced hyperlipidemic rats. Compound 2 decreased total cholesterol by 75.1% and compound 3 decreased triglycerides by 79.3% at 150 μmol/kg (i.p.). The hypocholesterolemic effect of the compounds was comparable to that of simvastatin, a well-known hypocholesterolemic drug. Additionally, all compounds lowered blood triglycerides. The synthesized compounds with multiple activities, as designed, may be useful as potential candidates for conditions involving inflammation, lipidemic deregulation and oxygen toxicity.
Collapse
Affiliation(s)
| | - Gabriel Marc
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy, 41 Victor Babeș Street, RO-400010 Cluj-Napoca, Romania
| | - Eleni A Rekka
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotelian University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
25
|
Shi X, Liu R, Wang Y, Yu T, Zhang K, Zhang C, Gu Y, Zhang L, Wu J, Wang Q, Zhu F. Inhibiting acid-sensing ion channel exerts neuroprotective effects in experimental epilepsy via suppressing ferroptosis. CNS Neurosci Ther 2024; 30:e14596. [PMID: 38357854 PMCID: PMC10867794 DOI: 10.1111/cns.14596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 12/16/2023] [Accepted: 12/21/2023] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Epilepsy is a chronic neurological disease characterized by repeated and unprovoked epileptic seizures. Developing disease-modifying therapies (DMTs) has become important in epilepsy studies. Notably, focusing on iron metabolism and ferroptosis might be a strategy of DMTs for epilepsy. Blocking the acid-sensing ion channel 1a (ASIC1a) has been reported to protect the brain from ischemic injury by reducing the toxicity of [Ca2+ ]i . However, whether inhibiting ASIC1a could exert neuroprotective effects and become a novel target for DMTs, such as rescuing the ferroptosis following epilepsy, remains unknown. METHODS In our study, we explored the changes in ferroptosis-related indices, including glutathione peroxidase (GPx) enzyme activity and levels of glutathione (GSH), iron accumulation, lipid degradation products-malonaldehyde (MDA) and 4-hydroxynonenal (4-HNE) by collecting peripheral blood samples from adult patients with epilepsy. Meanwhile, we observed alterations in ASIC1a protein expression and mitochondrial microstructure in the epileptogenic foci of patients with drug-resistant epilepsy. Next, we accessed the expression and function changes of ASIC1a and measured the ferroptosis-related indices in the in vitro 0-Mg2+ model of epilepsy with primary cultured neurons. Subsequently, we examined whether blocking ASIC1a could play a neuroprotective role by inhibiting ferroptosis in epileptic neurons. RESULTS Our study first reported significant changes in ferroptosis-related indices, including reduced GPx enzyme activity, decreased levels of GSH, iron accumulation, elevated MDA and 4-HNE, and representative mitochondrial crinkling in adult patients with epilepsy, especially in epileptogenic foci. Furthermore, we found that inhibiting ASIC1a could produce an inhibitory effect similar to ferroptosis inhibitor Fer-1, alleviate oxidative stress response, and decrease [Ca2+ ]i overload by inhibiting the overexpressed ASIC1a in the in vitro epilepsy model induced by 0-Mg2+ . CONCLUSION Inhibiting ASIC1a has potent neuroprotective effects via alleviating [Ca2+ ]i overload and regulating ferroptosis on the models of epilepsy and may act as a promising intervention in DMTs.
Collapse
Affiliation(s)
- Xiaorui Shi
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Ru Liu
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
- Advanced Innovation Center for Human Brain ProtectionCapital Medical UniversityBeijingChina
| | - Yingting Wang
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Tingting Yu
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Kai Zhang
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Chao Zhang
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Yuyu Gu
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Limin Zhang
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Jianping Wu
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
- Advanced Innovation Center for Human Brain ProtectionCapital Medical UniversityBeijingChina
| | - Qun Wang
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
- Center of Epilepsy, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain DisordersCapital Medical UniversityBeijingChina
| | - Fei Zhu
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| |
Collapse
|
26
|
Ye X, Lin JY, Chen LX, Wu XC, Ma KJ, Li BX, Fang YX. SREBP1 deficiency diminishes glutamate-mediated HT22 cell damage and hippocampal neuronal pyroptosis induced by status epilepticus. Heliyon 2024; 10:e23945. [PMID: 38205297 PMCID: PMC10777081 DOI: 10.1016/j.heliyon.2023.e23945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 11/06/2023] [Accepted: 12/16/2023] [Indexed: 01/12/2024] Open
Abstract
Status epilepticus (SE) is a life-threatening disorder that can result in death or severe brain damage, and there is a substantial body of evidence suggesting a strong association between pyroptosis and SE. Sterol regulatory element binding protein 1 (SREBP1) is a significant transcription factor participating in both lipid homeostasis and glucose metabolism. However, the function of SREBP1 in pyroptosis during SE remains unknown. In this study, we established a SE rat model by intraperitoneal injection of lithium chloride and pilocarpine in vivo. Additionally, we treated HT22 hippocampal cells with glutamate to create neuronal injury models in vitro. Our results demonstrated a significant induction of SREBP1, inflammasomes, and pyroptosis in the hippocampus of SE rats and glutamate-treated HT22 cells. Moreover, we found that SREBP1 is regulated by the mTOR signaling pathway, and inhibiting mTOR signaling contributed to the amelioration of SE-induced hippocampal neuron pyroptosis, accompanied by a reduction in SREBP1 expression. Furthermore, we conducted siRNA-mediated knockdown of SREBP1 in HT22 cells and observed a significant reversal of glutamate-induced cell death, activation of inflammasomes, and pyroptosis. Importantly, our confocal immunofluorescence analysis revealed the co-localization of SREBP1 and NLRP1. In conclusion, our findings suggest that deficiency of SREBP1 attenuates glutamate-induced HT22 cell injury and hippocampal neuronal pyroptosis in rats following SE. Targeting SREBP1 may hold promise as a therapeutic strategy for SE.
Collapse
Affiliation(s)
- Xing Ye
- Department of Forensic Medicine, School of Basic Medical Sciences, Gannan Medical University, Ganzhou, 341000, China
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Jun-Yi Lin
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Ling-Xia Chen
- Department of Pathogenic Biology, School of Basic Medical Sciences, Gannan Medical University, Ganzhou, 341000, China
| | - Xue-chun Wu
- Department of Neurology, Minhang Hospital, Fudan University, Shanghai, China
| | - Kai-Jun Ma
- Shanghai Key Laboratory of Crime Scene Evidence, Institute of Forensic Science, Shanghai Public Security Bureau, Shanghai, 200083, China
| | - Bei-Xu Li
- School of Policing Studies, Shanghai University of Political Science and Law, Shanghai, 201701, China
| | - You-Xin Fang
- Department of Neurology, Minhang Hospital, Fudan University, Shanghai, China
| |
Collapse
|
27
|
Sprissler R, Hammer M, Labiner D, Joshi N, Alan A, Weinand M. Leukocyte differential gene expression prognostic value for high versus low seizure frequency in temporal lobe epilepsy. BMC Neurol 2024; 24:16. [PMID: 38166692 PMCID: PMC10759702 DOI: 10.1186/s12883-023-03459-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 10/26/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND This study was performed to test the hypothesis that systemic leukocyte gene expression has prognostic value differentiating low from high seizure frequency refractory temporal lobe epilepsy (TLE). METHODS A consecutive series of patients with refractory temporal lobe epilepsy was studied. Based on a median baseline seizure frequency of 2.0 seizures per month, low versus high seizure frequency was defined as ≤ 2 seizures/month and > 2 seizures/month, respectively. Systemic leukocyte gene expression was analyzed for prognostic value for TLE seizure frequency. All differentially expressed genes were analyzed, with Ingenuity® Pathway Analysis (IPA®) and Reactome, to identify leukocyte gene expression and biological pathways with prognostic value for seizure frequency. RESULTS There were ten males and six females with a mean age of 39.4 years (range: 16 to 62 years, standard error of mean: 3.6 years). There were five patients in the high and eleven patients in the low seizure frequency cohorts, respectively. Based on a threshold of twofold change (p < 0.001, FC > 2.0, FDR < 0.05) and expression within at least two pathways from both Reactome and Ingenuity® Pathway Analysis (IPA®), 13 differentially expressed leukocyte genes were identified which were all over-expressed in the low when compared to the high seizure frequency groups, including NCF2, HMOX1, RHOB, FCGR2A, PRKCD, RAC2, TLR1, CHP1, TNFRSF1A, IFNGR1, LYN, MYD88, and CASP1. Similar analysis identified four differentially expressed genes which were all over-expressed in the high when compared to the low seizure frequency groups, including AK1, F2R, GNB5, and TYMS. CONCLUSIONS Low and high seizure frequency TLE are predicted by the respective upregulation and downregulation of specific leukocyte genes involved in canonical pathways of neuroinflammation, oxidative stress and lipid peroxidation, GABA (γ-aminobutyric acid) inhibition, and AMPA and NMDA receptor signaling. Furthermore, high seizure frequency-TLE is distinguished prognostically from low seizure frequency-TLE by differentially increased specific leukocyte gene expression involved in GABA inhibition and NMDA receptor signaling. High and low seizure frequency patients appear to represent two mechanistically different forms of temporal lobe epilepsy based on leukocyte gene expression.
Collapse
Affiliation(s)
- Ryan Sprissler
- Center for Applied Genetics and Genomic Medicine, RII, University of Arizona, Tucson, AZ, USA.
| | - Michael Hammer
- Department of Neurology, University of Arizona College of Medicine, Tucson, AZ, USA
| | - David Labiner
- Department of Neurology, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Neil Joshi
- Department of Neurosurgery, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Albert Alan
- Department of Neurosurgery, University of Arizona College of Medicine, Tucson, AZ, USA
- University of Arizona College of Medicine, Tucson, AZ, USA
| | - Martin Weinand
- Department of Neurosurgery, University of Arizona College of Medicine, Tucson, AZ, USA
| |
Collapse
|
28
|
Park JH, Hwang Y, Nguyen YND, Kim HC, Shin EJ. Ramelteon attenuates hippocampal neuronal loss and memory impairment following kainate-induced seizures. J Pineal Res 2024; 76:e12921. [PMID: 37846173 DOI: 10.1111/jpi.12921] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 09/18/2023] [Accepted: 09/26/2023] [Indexed: 10/18/2023]
Abstract
Evidence suggests that the neuroprotective effects of melatonin involve both receptor-dependent and -independent actions. However, little is known about the effects of melatonin receptor activation on the kainate (KA) neurotoxicity. This study examined the effects of repeated post-KA treatment with ramelteon, a selective agonist of melatonin receptors, on neuronal loss, cognitive impairment, and depression-like behaviors following KA-induced seizures. The expression of melatonin receptors decreased in neurons, whereas it was induced in astrocytes 3 and 7 days after seizures elicited by KA (0.12 μg/μL) in the hippocampus of mice. Ramelteon (3 or 10 mg/kg, i.p.) and melatonin (10 mg/kg, i.p.) mitigated KA-induced oxidative stress and impairment of glutathione homeostasis and promoted the nuclear translocation and DNA binding activity of Nrf2 in the hippocampus after KA treatment. Ramelteon and melatonin also attenuated microglial activation but did not significantly affect astroglial activation induced by KA, despite the astroglial induction of melatonin receptors after KA treatment. However, ramelteon attenuated KA-induced proinflammatory phenotypic changes in astrocytes. Considering the reciprocal regulation of astroglial and microglial activation, these results suggest ramelteon inhibits microglial activation by regulating astrocyte phenotypic changes. These effects were accompanied by the attenuation of the nuclear translocation and DNA binding activity of nuclear factor κB (NFκB) induced by KA. Consequently, ramelteon attenuated the KA-induced hippocampal neuronal loss, memory impairment, and depression-like behaviors; the effects were comparable to those of melatonin. These results suggest that ramelteon-mediated activation of melatonin receptors provides neuroprotection against KA-induced neurotoxicity in the mouse hippocampus by activating Nrf2 signaling to attenuate oxidative stress and restore glutathione homeostasis and by inhibiting NFκB signaling to attenuate neuroinflammatory changes.
Collapse
Affiliation(s)
- Jung Hoon Park
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chuncheon, Republic of Korea
| | - Yeonggwang Hwang
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chuncheon, Republic of Korea
| | - Yen Nhi Doan Nguyen
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chuncheon, Republic of Korea
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chuncheon, Republic of Korea
| | - Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
29
|
De Marchi F, Vignaroli F, Mazzini L, Comi C, Tondo G. New Insights into the Relationship between Nutrition and Neuroinflammation in Alzheimer's Disease: Preventive and Therapeutic Perspectives. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:614-627. [PMID: 37291780 DOI: 10.2174/1871527322666230608110201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 04/16/2023] [Accepted: 05/08/2023] [Indexed: 06/10/2023]
Abstract
Neurodegenerative diseases are progressive brain disorders characterized by inexorable synaptic dysfunction and neuronal loss. Since the most consistent risk factor for developing neurodegenerative diseases is aging, the prevalence of these disorders is intended to increase with increasing life expectancy. Alzheimer's disease is the most common cause of neurodegenerative dementia, representing a significant medical, social, and economic burden worldwide. Despite growing research to reach an early diagnosis and optimal patient management, no disease-modifying therapies are currently available. Chronic neuroinflammation has been recognized as a crucial player in sustaining neurodegenerative processes, along with pathological deposition of misfolded proteins, including amyloid-β and tau protein. Modulating neuroinflammatory responses may be a promising therapeutic strategy in future clinical trials. Among factors that are able to regulate neuroinflammatory mechanisms, diet, and nutrients represent easily accessible and modifiable lifestyle components. Mediterranean diet and several nutrients, including polyphenols, vitamins, and omega-3 polyunsaturated fatty acids, can exert antioxidant and anti-inflammatory properties, impacting clinical manifestations, cognitive decline, and dementia. This review aims to provide an updated overview of the relationship between neuroinflammation, nutrition, gut microbiota, and neurodegeneration. We summarize the major studies exploring the effects of diet regimes on cognitive decline, primarily focusing on Alzheimer's disease dementia and the impact of these results on the design of ongoing clinical trials.
Collapse
Affiliation(s)
- Fabiola De Marchi
- ALS Center, Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale, 28100, Novara, Italy
| | - Francesca Vignaroli
- Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale, 28100, Novara, Italy
| | - Letizia Mazzini
- ALS Center, Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale, 28100, Novara, Italy
| | - Cristoforo Comi
- Neurology Unit, Department of Translational Medicine, S. Andrea Hospital, University of Piemonte Orientale, 13100, Vercelli, Italy
| | - Giacomo Tondo
- Neurology Unit, Department of Translational Medicine, S. Andrea Hospital, University of Piemonte Orientale, 13100, Vercelli, Italy
| |
Collapse
|
30
|
Jabeen K, Rehman K, Akash MSH, Nadeem A, Mir TM. Neuroprotective and Cardiometabolic Role of Vitamin E: Alleviating Neuroinflammation and Metabolic Disturbance Induced by AlCl 3 in Rat Models. Biomedicines 2023; 11:2453. [PMID: 37760893 PMCID: PMC10525157 DOI: 10.3390/biomedicines11092453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 08/27/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Cardiovascular diseases (CVDs) and neurodegenerative disorders, such as diabetes mellitus and Alzheimer's disease, share a common pathophysiological link involving insulin resistance (IR), inflammation, and hypertension. Aluminium chloride (AlCl3), a known neurotoxicant, has been associated with neurodegeneration, cognitive impairment, and various organ dysfunctions due to the production of reactive oxygen species (ROS) and oxidative stress. In this study, we aimed to investigate the potential protective effects of metformin and vitamin E against AlCl3-induced neuroinflammation and cardiometabolic disturbances in rat models. Rats were divided into five groups: a normal control group, an AlCl3-treated diseased group without any treatment, and three groups exposed to AlCl3 and subsequently administered with metformin (100 mg/kg/day) alone, vitamin E (150 mg/kg/day) orally alone, or a combination of metformin (100 mg/kg/day) and vitamin E (150 mg/kg/day) for 45 days. We analyzed serum biomarkers and histopathological changes in brain, heart, and pancreatic tissues using H&E and Masson's trichrome staining and immunohistochemistry (IHC). Electrocardiogram (ECG) patterns were observed for all groups. The AlCl3-treated group showed elevated levels of inflammatory biomarkers, MDA, and disturbances in glycemic and lipid profiles, along with reduced insulin levels. However, treatment with the combination of metformin and vitamin E resulted in significantly reduced glucose, cholesterol, LDL, and TG levels, accompanied by increased insulin and HDL levels compared to the individual treatment groups. Histopathological analyses revealed that combination therapy preserved neuronal structures, muscle cell nuclei, and normal morphology in the brain, heart, and pancreatic tissues. IHC demonstrated reduced amyloid plaques and neurofibrillary tangles in the combination-treated group compared to the AlCl3-treated group. Moreover, the combination group showed a normal ECG pattern, contrasting the altered pattern observed in the AlCl3-treated group. Overall, our findings suggest that metformin and vitamin E, in combination, possess neuroprotective and cardiometabolic effects, alleviating AlCl3-induced neuroinflammation and metabolic disturbances.
Collapse
Affiliation(s)
- Komal Jabeen
- Institute of Physiology and Pharmacology, University of Agriculture, Faisalabad 38000, Pakistan
- Department of Pharmacy, Niazi Medical and Dental College, Sargodha 40100, Pakistan
| | - Kanwal Rehman
- Department of Pharmacy, The Women University, Multan 66000, Pakistan
| | | | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Tahir Maqbool Mir
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| |
Collapse
|
31
|
Pant A, Vasundhara M. Endophytic fungi: a potential source for drugs against central nervous system disorders. Braz J Microbiol 2023; 54:1479-1499. [PMID: 37165297 PMCID: PMC10485218 DOI: 10.1007/s42770-023-00997-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 04/27/2023] [Indexed: 05/12/2023] Open
Abstract
Neuroprotection is one of the important protection methods against neuronal cells and tissue damage caused by neurodegenerative diseases such as Alzheimer's, Parkinson's, Huntington's, and multiple sclerosis. Various bioactive compounds produced by medicinal plants can potentially treat central nervous system (CNS) disorders. Apart from these resources, endophytes also produce diverse secondary metabolites capable of protecting the CNS. The bioactive compounds produced by endophytes play essential roles in enhancing the growth factors, antioxidant defence functions, diminishing neuroinflammatory, and apoptotic pathways. The efficacy of compounds produced by endophytic fungi was also evaluated by enzymes, cell lines, and in vivo models. Acetylcholine esterase (AChE) inhibition is frequently used to assess in vitro neuroprotective activity along with cytotoxicity-induced neuronal cell lines. Some of drugs, such as tacrine, donepezil, rivastigmine, galantamine, and other compounds, are generally used as reference standards. Furthermore, clinical trials are required to confirm the role of these natural compounds in neuroprotection efficacy and evaluate their safety profile. This review illustrates the production of various bioactive compounds produced by endophytic fungi and their role in preventing neurodegeneration.
Collapse
Affiliation(s)
- Anushree Pant
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India
| | - M Vasundhara
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India.
| |
Collapse
|
32
|
Ciltas AC, Toy CE, Güneş H, Yaprak M. Effects of probiotics on GABA/glutamate and oxidative stress in PTZ- induced acute seizure model in rats. Epilepsy Res 2023; 195:107190. [PMID: 37473590 DOI: 10.1016/j.eplepsyres.2023.107190] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/24/2023] [Accepted: 07/06/2023] [Indexed: 07/22/2023]
Abstract
Studies conducted in recent years have indicated a relationship between epilepsy and gut microbiota. Ion channels, excitatory/inhibitory balance and regulatory systems play a role in the pathophysiology of epilepsy. In addition, gut dysbiosis is also involved in the pathophysiology of epilepsy. This research investigated the impacts of probiotic mixture on epileptic seizures, Gamma aminobutyric acid (GABA), glutamate, and TAS and TOS levels in hippocampal tissue in the PTZ-induced acute seizure model in rats. Four groups were formed with male Wistar albino rats. The first and second groups were given 1 ml/day saline solution, and the other groups were given 0.05 mg/1 ml/day vehicle or 109cfu/1 ml/day probiotic supplementation, respectively via gavage for 21 days. A single-dose PTZ (45 mg/kg) was administered to induce seizure. The stages of seizure were analyzed according to the Racine scale. While ELISA was used to determine GABA and glutamate levels in the hippocampus, an automated colorimetric method was utilized to measure oxidant/antioxidant biomarkers. It was found that by delaying the first myoclonic jerk (FMJ), and the onset of the generalized tonic-clonic seizures, the probiotic mixture demonstrated anticonvulsant effects against seizures. The probiotic mixture was found to increase the inhibitory neurotransmitter GABA. It was also found to decrease TOS levels and increase TAS concentration. The findings of this study showed that probiotic mixture reduced oxidative stress with its positive effects against PTZ-induced epileptic seizures. Further studies are needed to reveal potentially related mechanisms.
Collapse
Affiliation(s)
- Arzuhan Cetindag Ciltas
- Department of Medical Services and Techniques, Vocational School of Health Services, Sivas Cumhuriyet University, Sivas, Turkey.
| | - Cemal Erdem Toy
- Department of Medical Physiology, Faculty of Medicine, Sivas Cumhuriyet University, Sivas, Turkey
| | - Handan Güneş
- Department of Medical Physiology, Faculty of Medicine, Sivas Cumhuriyet University, Sivas, Turkey
| | - Meryem Yaprak
- Department of Medical Physiology, Faculty of Medicine, Sivas Cumhuriyet University, Sivas, Turkey
| |
Collapse
|
33
|
Turan Ç, Şenormancı G, Neşelioğlu S, Budak Y, Erel Ö, Şenormancı Ö. Oxidative Stress and Inflammatory Biomarkers in People with Methamphetamine Use Disorder. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2023; 21:572-582. [PMID: 37424424 PMCID: PMC10335902 DOI: 10.9758/cpn.22.1047] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/03/2023] [Accepted: 03/06/2023] [Indexed: 07/11/2023]
Abstract
Objective This study aimed to investigate the blood serum levels of biomarkers specifying oxidative stress status and systemic inflammation between people using methamphetamine (METH) and the control group (CG). Serum thiol/disulfide balance and ischemia-modified albumin levels were studied to determine oxidative stress, and serum interleukin-6 (IL-6) levels and complete blood count (CBC) were to assess inflammation. Methods Fifty patients with METH use disorder (MUD) and 36 CG participants were included in the study. Two tubes of venous blood samples were taken to measure oxidative stress, serum thiol/disulfide balance, ischemia-modified albumin, and IL-6 levels between groups. The correlation of parameters measuring oxidative stress and inflammation between groups with sociodemographic data was investigated. Results In this study, serum total thiol, free thiol levels, disulfide/native thiol percentage ratios, and serum ischemia- modified albumin levels of the patients were statistically significantly higher than the healthy controls. No difference was observed between the groups in serum disulfide levels and serum IL-6 levels. Considering the regression analysis, only the duration of substance use was a statistically significant factor in explaining serum IL-6 levels. The parameters showing inflammation in the CBC were significantly higher in the patients than in the CG. Conclusion CBC can be used to evaluate systemic inflammation in patients with MUD. Parameters measuring thiol/disulfide homeostasis and ischemia-modified albumin can be, also, used to assess oxidative stress.
Collapse
Affiliation(s)
- Çetin Turan
- Department of Psychiatry, University of Health Sciences Bursa Yuksek Ihtisas Training and Research Hospital, Bursa, Turkey
| | - Güliz Şenormancı
- Department of Psychiatry, University of Health Sciences Bursa Yuksek Ihtisas Training and Research Hospital, Bursa, Turkey
| | - Salim Neşelioğlu
- Clinic of Clinical Biochemistry, Yıldırım Beyazıt University, Ankara City Hospital, Ankara, Turkey
| | - Yasemin Budak
- Department of Biochemistry, University of Health Sciences Bursa Yuksek Ihtisas Training and Research Hospital, Bursa, Turkey
| | - Özcan Erel
- Clinic of Clinical Biochemistry, Yıldırım Beyazıt University, Ankara City Hospital, Ankara, Turkey
| | - Ömer Şenormancı
- Department of Clinical Psychology, University of Beykent, Istanbul, Turkey
| |
Collapse
|
34
|
Corrales-Hernández MG, Villarroel-Hagemann SK, Mendoza-Rodelo IE, Palacios-Sánchez L, Gaviria-Carrillo M, Buitrago-Ricaurte N, Espinosa-Lugo S, Calderon-Ospina CA, Rodríguez-Quintana JH. Development of Antiepileptic Drugs throughout History: From Serendipity to Artificial Intelligence. Biomedicines 2023; 11:1632. [PMID: 37371727 DOI: 10.3390/biomedicines11061632] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 05/24/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
This article provides a comprehensive narrative review of the history of antiepileptic drugs (AEDs) and their development over time. Firstly, it explores the significant role of serendipity in the discovery of essential AEDs that continue to be used today, such as phenobarbital and valproic acid. Subsequently, it delves into the historical progression of crucial preclinical models employed in the development of novel AEDs, including the maximal electroshock stimulation test, pentylenetetrazol-induced test, kindling models, and other animal models. Moving forward, a concise overview of the clinical advancement of major AEDs is provided, highlighting the initial milestones and the subsequent refinement of this process in recent decades, in line with the emergence of evidence-based medicine and the implementation of increasingly rigorous controlled clinical trials. Lastly, the article explores the contributions of artificial intelligence, while also offering recommendations and discussing future perspectives for the development of new AEDs.
Collapse
Affiliation(s)
- María Gabriela Corrales-Hernández
- Pharmacology Unit, Department of Biomedical Sciences, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
| | - Sebastián Kurt Villarroel-Hagemann
- Pharmacology Unit, Department of Biomedical Sciences, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
| | | | - Leonardo Palacios-Sánchez
- Neuroscience Research Group (NeURos), NeuroVitae Center for Neuroscience, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
| | - Mariana Gaviria-Carrillo
- Neuroscience Research Group (NeURos), NeuroVitae Center for Neuroscience, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
| | | | - Santiago Espinosa-Lugo
- Pharmacology Unit, Department of Biomedical Sciences, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
| | - Carlos-Alberto Calderon-Ospina
- Pharmacology Unit, Department of Biomedical Sciences, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
- Research Group in Applied Biomedical Sciences (UR Biomed), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
| | - Jesús Hernán Rodríguez-Quintana
- Fundacion CardioInfantil-Instituto de Cardiologia, Calle 163a # 13B-60, Bogotá 111156, Colombia
- Hospital Universitario Mayor Mederi, Calle 24 # 29-45, Bogotá 111411, Colombia
| |
Collapse
|
35
|
Madireddy S, Madireddy S. Therapeutic Strategies to Ameliorate Neuronal Damage in Epilepsy by Regulating Oxidative Stress, Mitochondrial Dysfunction, and Neuroinflammation. Brain Sci 2023; 13:brainsci13050784. [PMID: 37239256 DOI: 10.3390/brainsci13050784] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Epilepsy is a central nervous system disorder involving spontaneous and recurring seizures that affects 50 million individuals globally. Because approximately one-third of patients with epilepsy do not respond to drug therapy, the development of new therapeutic strategies against epilepsy could be beneficial. Oxidative stress and mitochondrial dysfunction are frequently observed in epilepsy. Additionally, neuroinflammation is increasingly understood to contribute to the pathogenesis of epilepsy. Mitochondrial dysfunction is also recognized for its contributions to neuronal excitability and apoptosis, which can lead to neuronal loss in epilepsy. This review focuses on the roles of oxidative damage, mitochondrial dysfunction, NAPDH oxidase, the blood-brain barrier, excitotoxicity, and neuroinflammation in the development of epilepsy. We also review the therapies used to treat epilepsy and prevent seizures, including anti-seizure medications, anti-epileptic drugs, anti-inflammatory therapies, and antioxidant therapies. In addition, we review the use of neuromodulation and surgery in the treatment of epilepsy. Finally, we present the role of dietary and nutritional strategies in the management of epilepsy, including the ketogenic diet and the intake of vitamins, polyphenols, and flavonoids. By reviewing available interventions and research on the pathophysiology of epilepsy, this review points to areas of further development for therapies that can manage epilepsy.
Collapse
Affiliation(s)
- Sahithi Madireddy
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
36
|
Łukawski K, Czuczwar SJ. Oxidative Stress and Neurodegeneration in Animal Models of Seizures and Epilepsy. Antioxidants (Basel) 2023; 12:antiox12051049. [PMID: 37237916 DOI: 10.3390/antiox12051049] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/25/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
Free radicals are generated in the brain, as well as in other organs, and their production is proportional to the brain activity. Due to its low antioxidant capacity, the brain is particularly sensitive to free radical damage, which may affect lipids, nucleic acids, and proteins. The available evidence clearly points to a role for oxidative stress in neuronal death and pathophysiology of epileptogenesis and epilepsy. The present review is devoted to the generation of free radicals in some animal models of seizures and epilepsy and the consequences of oxidative stress, such as DNA or mitochondrial damage leading to neurodegeneration. Additionally, antioxidant properties of antiepileptic (antiseizure) drugs and a possible use of antioxidant drugs or compounds in patients with epilepsy are reviewed. In numerous seizure models, the brain concentration of free radicals was significantly elevated. Some antiepileptic drugs may inhibit these effects; for example, valproate reduced the increase in brain malondialdehyde (a marker of lipid peroxidation) concentration induced by electroconvulsions. In the pentylenetetrazol model, valproate prevented the reduced glutathione concentration and an increase in brain lipid peroxidation products. The scarce clinical data indicate that some antioxidants (melatonin, selenium, vitamin E) may be recommended as adjuvants for patients with drug-resistant epilepsy.
Collapse
Affiliation(s)
- Krzysztof Łukawski
- Department of Physiopathology, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland
| | - Stanisław J Czuczwar
- Department of Pathophysiology, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland
| |
Collapse
|
37
|
Cumbres-Vargas IM, Zamudio SR, Pichardo-Macías LA, Ramírez-San Juan E. Thalidomide Attenuates Epileptogenesis and Seizures by Decreasing Brain Inflammation in Lithium Pilocarpine Rat Model. Int J Mol Sci 2023; 24:ijms24076488. [PMID: 37047461 PMCID: PMC10094940 DOI: 10.3390/ijms24076488] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
Thalidomide (TAL) has shown potential therapeutic effects in neurological diseases like epilepsy. Both clinical and preclinical studies show that TAL may act as an antiepileptic drug and as a possible treatment against disease development. However, the evidence for these effects is limited. Therefore, the antiepileptogenic and anti-inflammatory effects of TAL were evaluated herein. Sprague Dawley male rats were randomly allocated to one of five groups (n = 18 per group): control (C); status epilepticus (SE); SE-TAL (25 mg/kg); SE-TAL (50 mg/kg); and SE-topiramate (TOP; 60mg/kg). The lithium-pilocarpine model was used, and one day after SE induction the rats received pharmacological treatment for one week. The brain was obtained, and the hippocampus was micro-dissected 8, 18, and 28 days after SE. TNF-α, IL-6, and IL-1β concentrations were quantified. TOP and TAL (50 mg/kg) increased the latency to the first of many spontaneous recurrent seizures (SRS) and decreased SRS frequency, as well as decreasing TNF-α and IL-1β concentrations in the hippocampus. In conclusion, the results showed that both TAL (50 mg/kg) and TOP have anti-ictogenic and antiepileptogenic effects, possibly by decreasing neuroinflammation.
Collapse
Affiliation(s)
- Irán M Cumbres-Vargas
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 07738, Mexico
| | - Sergio R Zamudio
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 07738, Mexico
| | - Luz A Pichardo-Macías
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 07738, Mexico
| | - Eduardo Ramírez-San Juan
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 07738, Mexico
| |
Collapse
|
38
|
Briyal S, Ranjan AK, Gulati A. Oxidative stress: A target to treat Alzheimer's disease and stroke. Neurochem Int 2023; 165:105509. [PMID: 36907516 DOI: 10.1016/j.neuint.2023.105509] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 02/01/2023] [Accepted: 03/05/2023] [Indexed: 03/13/2023]
Abstract
Oxidative stress has been established as a well-known pathological condition in several neurovascular diseases. It starts with increased production of highly oxidizing free-radicals (e.g. reactive oxygen species; ROS and reactive nitrogen species; RNS) and becomes too high for the endogenous antioxidant system to neutralize them, which results in a significantly disturbed balance between free-radicals and antioxidants levels and causes cellular damage. A number of studies have evidently shown that oxidative stress plays a critical role in activating multiple cell signaling pathways implicated in both progression as well as initiation of neurological diseases. Therefore, oxidative stress continues to remain a key therapeutic target for neurological diseases. This review discusses the mechanisms involved in reactive oxygen species (ROS) generation in the brain, oxidative stress, and pathogenesis of neurological disorders such as stroke and Alzheimer's disease (AD) and the scope of antioxidant therapies for these disorders.
Collapse
Affiliation(s)
- Seema Briyal
- College of Pharmacy, Midwestern University, Downers Grove, IL, 60515, USA.
| | - Amaresh K Ranjan
- College of Pharmacy, Midwestern University, Downers Grove, IL, 60515, USA
| | - Anil Gulati
- College of Pharmacy, Midwestern University, Downers Grove, IL, 60515, USA; Pharmazz Inc. Research and Development, Willowbrook, IL, USA
| |
Collapse
|
39
|
Sarlo GL, Kao A, Holton KF. Investigation of the low glutamate diet as an adjunct treatment for pediatric epilepsy: A pilot randomized controlled trial. Seizure 2023; 106:138-147. [PMID: 36867910 DOI: 10.1016/j.seizure.2023.02.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
INTRODUCTION Current dietary therapies for epilepsy have side effects and are low in nutrients, which would make an alternative dietary treatment, which addresses these issues, advantageous. One potential option is the low glutamate diet (LGD). Glutamate is implicated in seizure activity. Blood brain barrier permeability in epilepsy could enable dietary glutamate to reach the brain and contribute to ictogenesis. OBJECTIVE to assess the LGD as an adjunct treatment for pediatric epilepsy. METHODS This study was a nonblinded, parallel, randomized clinical trial. The study was conducted virtually due to COVID-19 and registered on clinicaltrials.gov (NCT04545346). Participants were eligible if they were between the ages of 2 and 21 with ≥4 seizures per month. Baseline seizures were assessed for 1-month, then participants were allocated via block randomization to the intervention month (N=18), or a wait-listed control month followed by the intervention month (N=15). Outcome measures included seizure frequency, caregiver global impression of change (CGIC), non-seizure improvements, nutrient intake, and adverse events. RESULTS Nutrient intake significantly increased during the intervention. No significant differences in seizure frequency were observed between intervention and control groups. However, efficacy was assessed at 1-month compared to the standard 3-months in diet research. Additionally, 21% of participants were observed to be clinical responders to the diet. Overall health (CGIC) significantly improved in 31%, 63% experienced ≥1 non-seizure improvements, and 53% experienced adverse events. Clinical response likelihood decreased with increasing age (0.71 [0.50-0.99], p=0.04), as did the likelihood of overall health improvement (0.71 [0.54-0.92], p=0.01). DISCUSSION This study provides preliminary support for the LGD as an adjunct treatment before epilepsy becomes drug resistant, which is in contrast to the role of current dietary therapies in drug resistant epilepsy.
Collapse
Affiliation(s)
- Gabrielle L Sarlo
- Department of Neuroscience, Behavior, Cognition and Neuroscience Program, American University, Washington DC, United States; Children's National Research Institute, Center for Neuroscience, Washington, DC, United States
| | - Amy Kao
- Division of Neurophysiology, Epilepsy, and Critical Care, Center for Neuroscience and Behavioral Medicine, Children's National Medical Center, Washington, DC, United States; Division of Neurology 2, Office of Neuroscience, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States
| | - Kathleen F Holton
- Department of Health Studies, American University, Washington DC, United States; Department of Neuroscience, American University, Washington DC, United States; Center for Neuroscience and Behavior, American University, Washington DC, United States.
| |
Collapse
|
40
|
Chen Y, Holland KD, Shertzer HG, Nebert DW, Dalton TP. Fatal Epileptic Seizures in Mice Having Compromised Glutathione and Ascorbic Acid Biosynthesis. Antioxidants (Basel) 2023; 12:antiox12020448. [PMID: 36830006 PMCID: PMC9952205 DOI: 10.3390/antiox12020448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/31/2023] [Accepted: 02/05/2023] [Indexed: 02/12/2023] Open
Abstract
Reduced glutathione (GSH) and ascorbic acid (AA) are the two most abundant low-molecular-weight antioxidants in mammalian tissues. GclmKO knockout mice lack the gene encoding the modifier subunit of the rate-limiting enzyme in GSH biosynthesis; GclmKO mice exhibit 10-40% of normal tissue GSH levels and show no overt phenotype. GuloKO knockout mice, lacking a functional Gulo gene encoding L-gulono-γ-lactone oxidase, cannot synthesize AA and depend on dietary ascorbic acid for survival. To elucidate functional crosstalk between GSH and AA in vivo, we generated the GclmKO/GuloKO double-knockout (DKO) mouse. DKO mice exhibited spontaneous epileptic seizures, proceeding to death between postnatal day (PND)14 and PND23. Histologically, DKO mice displayed neuronal loss and glial proliferation in the neocortex and hippocampus. Epileptic seizures and brain pathology in young DKO mice could be prevented with AA supplementation in drinking water (1 g/L). Remarkably, in AA-rescued adult DKO mice, the removal of AA supplementation for 2-3 weeks resulted in similar, but more severe, neocortex and hippocampal pathology and seizures, with death occurring between 12 and 21 days later. These results provide direct evidence for an indispensable, yet underappreciated, role for the interplay between GSH and AA in normal brain function and neuronal health. We speculate that the functional crosstalk between GSH and AA plays an important role in regulating glutamatergic neurotransmission and in protecting against excitotoxicity-induced brain damage.
Collapse
Affiliation(s)
- Ying Chen
- Department of Environmental and Public Health Sciences, Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT 06520, USA
- Correspondence: ; Tel.: +1-203-785-4694; Fax: +1-203-724-6023
| | - Katherine D. Holland
- Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Howard G. Shertzer
- Department of Environmental and Public Health Sciences, Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Daniel W. Nebert
- Department of Environmental and Public Health Sciences, Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
- Departments of Pediatrics and Molecular & Developmental Biology, Cincinnati Children’s Research Center, Cincinnati, OH 45229, USA
| | - Timothy P. Dalton
- Department of Environmental and Public Health Sciences, Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| |
Collapse
|
41
|
Silva-Parra J, Sandu C, Felder-Schmittbuhl MP, Hernández-Kelly LC, Ortega A. Aryl Hydrocarbon Receptor in Glia Cells: A Plausible Glutamatergic Neurotransmission Orchestrator. Neurotox Res 2023; 41:103-117. [PMID: 36607593 DOI: 10.1007/s12640-022-00623-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/23/2022] [Accepted: 12/15/2022] [Indexed: 01/07/2023]
Abstract
Glutamate is the major excitatory amino acid in the vertebrate brain. Glutamatergic signaling is involved in most of the central nervous system functions. Its main components, namely receptors, ion channels, and transporters, are tightly regulated at the transcriptional, translational, and post-translational levels through a diverse array of extracellular signals, such as food, light, and neuroactive molecules. An exquisite and well-coordinated glial/neuronal bidirectional communication is required for proper excitatory amino acid signal transactions. Biochemical shuttles such as the glutamate/glutamine and the astrocyte-neuronal lactate represent the fundamental involvement of glial cells in glutamatergic transmission. In fact, the disruption of any of these coordinated biochemical intercellular cascades leads to an excitotoxic insult that underlies some aspects of most of the neurodegenerative diseases characterized thus far. In this contribution, we provide a comprehensive summary of the involvement of the Aryl hydrocarbon receptor, a ligand-dependent transcription factor in the gene expression regulation of glial glutamate transporters. These receptors might serve as potential targets for the development of novel strategies for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Janisse Silva-Parra
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, San Pedro Zacatenco, 07360, CDMX, México
| | - Cristina Sandu
- Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives, Université de Strasbourg, Strasbourg, France
| | - Marie-Paule Felder-Schmittbuhl
- Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives, Université de Strasbourg, Strasbourg, France
| | - Luisa C Hernández-Kelly
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, San Pedro Zacatenco, 07360, CDMX, México
| | - Arturo Ortega
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, San Pedro Zacatenco, 07360, CDMX, México.
| |
Collapse
|
42
|
Biomarkers of Drug Resistance in Temporal Lobe Epilepsy in Adults. Metabolites 2023; 13:metabo13010083. [PMID: 36677008 PMCID: PMC9866293 DOI: 10.3390/metabo13010083] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/26/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023] Open
Abstract
Temporal lobe epilepsy (TLE) is the most common type of focal epilepsy in adults. Experimental and clinical data indicate that neuroinflammation and neurodegeneration accompanying epileptogenesis make a significant contribution to the chronicity of epilepsy and the development of drug resistance in TLE cases. Changes in plasma and serum concentrations of proteins associated with neuroinflammation and neurodegeneration can be predictive biomarkers of the course of the disease. This study used an enzyme-linked immunosorbent assay of the following plasma proteins: brain-derived neurotrophic factor (BDNF), tumor necrosis factor alpha (TNFa), and high-mobility group protein B1 (HMGB1) in patients with mesial TLE to search for biomarkers of the disease. The objective of the study was to examine biomarkers of the neuroinflammation and neurodegeneration of plasma: BDNF, TNFa, and HMGB1. The aim of the study was to identify changes in the concentration of circulating pro-inflammatory and neurotrophic factors that are prognostically significant for the development of drug resistance and the course of TLE. A decrease in the concentration of BDNF, TNFa, and HMGB1 was registered in the group of patients with TLE compared with the control group. A significant decrease in the concentration of HMGB1 in patients with drug-resistant TLE was observed. Aberrations in plasma concentrations of BDNF, TNFa, and HMGB1 in patients with TLE compared with the controls have been confirmed by earlier studies. A decrease in the expression of the three biomarkers may be the result of neurodegenerative processes caused by the long course of the disease. The results of the study may indicate the acceptability of using HMGB1 and TNFa as prognostic biological markers to indicate the severity of the disease course and the risk of developing drug resistance.
Collapse
|
43
|
Sciaccaluga M, Ruffolo G, Palma E, Costa C. Traditional and Innovative Anti-seizure Medications Targeting Key Physiopathological Mechanisms: Focus on Neurodevelopment and Neurodegeneration. Curr Neuropharmacol 2023; 21:1736-1754. [PMID: 37143270 PMCID: PMC10514539 DOI: 10.2174/1570159x21666230504160948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 05/06/2023] Open
Abstract
Despite the wide range of compounds currently available to treat epilepsy, there is still no drug that directly tackles the physiopathological mechanisms underlying its development. Indeed, antiseizure medications attempt to prevent seizures but are inefficacious in counteracting or rescuing the physiopathological phenomena that underlie their onset and recurrence, and hence do not cure epilepsy. Classically, the altered excitation/inhibition balance is postulated as the mechanism underlying epileptogenesis and seizure generation. This oversimplification, however, does not account for deficits in homeostatic plasticity resulting from either insufficient or excessive compensatory mechanisms in response to a change in network activity. In this respect, both neurodevelopmental epilepsies and those associated with neurodegeneration may share common underlying mechanisms that still need to be fully elucidated. The understanding of these molecular mechanisms shed light on the identification of new classes of drugs able not only to suppress seizures, but also to present potential antiepileptogenic effects or "disease-modifying" properties.
Collapse
Affiliation(s)
- Miriam Sciaccaluga
- Section of Neurology, S.M. della Misericordia Hospital, Department of Medicine and Surgery, University of Perugia, Piazzale Gambuli 1, Perugia, 06129, Italy
| | - Gabriele Ruffolo
- Department of Physiology and Pharmacology, Istituto Pasteur—Fondazione Cenci Bolognetti, University of Rome, Sapienza, Rome, 00185, Italy
- IRCCS San Raffaele Roma, Rome, 00166, Italy
| | - Eleonora Palma
- Department of Physiology and Pharmacology, Istituto Pasteur—Fondazione Cenci Bolognetti, University of Rome, Sapienza, Rome, 00185, Italy
- IRCCS San Raffaele Roma, Rome, 00166, Italy
| | - Cinzia Costa
- Section of Neurology, S.M. della Misericordia Hospital, Department of Medicine and Surgery, University of Perugia, Piazzale Gambuli 1, Perugia, 06129, Italy
| |
Collapse
|
44
|
Holton K. The potential role of dietary intervention for the treatment of neuroinflammation. TRANSLATIONAL NEUROIMMUNOLOGY, VOLUME 7 2023:239-266. [DOI: 10.1016/b978-0-323-85841-0.00022-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
45
|
Oza MJ, Gaikwad AB, Kulkarni YA. Effect of diet and nutrition on neuroinflammation: An overview. DIET AND NUTRITION IN NEUROLOGICAL DISORDERS 2023:597-611. [DOI: 10.1016/b978-0-323-89834-8.00030-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
46
|
Ssempijja F, Dare SS, Bukenya EEM, Kasozi KI, Kenganzi R, Fernandez EM, Vicente-Crespo M. Attenuation of Seizures, Cognitive Deficits, and Brain Histopathology by Phytochemicals of Imperata cylindrica (L.) P. Beauv (Poaceae) in Acute and Chronic Mutant Drosophila melanogaster Epilepsy Models. J Evid Based Integr Med 2023; 28:2515690X231160191. [PMID: 36866635 PMCID: PMC9989407 DOI: 10.1177/2515690x231160191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 08/09/2022] [Accepted: 02/06/2023] [Indexed: 03/04/2023] Open
Abstract
Imperata cylindrica is a globally distributed plant known for its antiepileptic attributes, but there is a scarcity of robust evidence for its efficacy. The study investigated neuroprotective attributes of Imperata cylindrica root extract on neuropathological features of epilepsy in a Drosophila melanogaster mutant model of epilepsy. It was conducted on 10-day-old (at the initiation of study) male post-eclosion bang-senseless paralytic Drosophila (parabss1) involved acute (1-3 h) and chronic (6-18 days) experiments; n = 50 flies per group (convulsions tests); n = 100 flies per group (learning/memory tests and histological examination). Administrations were done in 1 g standard fly food, per os. The mutant flies of study (parabss1) showed marked age-dependent progressive brain neurodegeneration and axonal degeneration, significant (P < 0.05) bang sensitivity and convulsions, and cognitive deficits due to up-regulation of the paralytic gene in our mutants. The neuropathological findings were significantly (P < 0.05) alleviated in dose and duration-dependent fashions to near normal/normal after acute and chronic treatment with extract similar to sodium valproate. Therefore, para is expressed in neurons of brain tissues in our mutant flies to bring about epilepsy phenotypes and behaviors of the current juvenile and old-adult mutant D. melanogaster models of epilepsy. The herb exerts neuroprotection by anticonvulsant and antiepileptogenic mechanisms in mutant D. melanogaster due to plant flavonoids, polyphenols, and chromones (1 and 2) which exert antioxidative and receptor or voltage-gated sodium ion channels' inhibitory properties, and thus causing reduced inflammation and apoptosis, increased tissue repair, and improved cell biology in the brain of mutant flies. The methanol root extract provides anticonvulsant and antiepileptogenic medicinal values which protect epileptic D. melanogaster. Therefore, the herb should be advanced for more experimental and clinical studies to confirm its efficacy in treating epilepsy.
Collapse
Affiliation(s)
- Fred Ssempijja
- Department of Anatomy, Faculty of Medicine, Mbarara University of Science and Technology, P.O Box 1410, Mbarara, Uganda
- Department of Anatomy, Faculty of Biomedical Sciences, Kampala International University, Western Campus, P.O Box 71, Ishaka, Bushenyi, Uganda
| | - Samuel Sunday Dare
- Department of Anatomy, Faculty of Biomedical Sciences, Kampala International University, Western Campus, P.O Box 71, Ishaka, Bushenyi, Uganda
- School of Medicine, Kabale University, P.O Box 317, Kabale, Uganda
| | - Edmund E. M. Bukenya
- Department of Anatomy, Faculty of Biomedical Sciences, Kampala International University, Western Campus, P.O Box 71, Ishaka, Bushenyi, Uganda
- School of Medicine, Kabale University, P.O Box 317, Kabale, Uganda
| | | | - Ritah Kenganzi
- Department of Medical Laboratory Sciences, School of Allied Health Sciences, Kampala International University Teaching Hospital, P.O Box 71, Ishaka, Bushenyi, Uganda
| | - Edgar Mario Fernandez
- Department of Anatomy, Faculty of Biomedical Sciences, Kampala International University, Western Campus, P.O Box 71, Ishaka, Bushenyi, Uganda
| | - Marta Vicente-Crespo
- Institute of Biomedical Research, Kampala International University Western Campus, P.O Box 71, Bushenyi, Uganda
- Department of Biochemistry, Faculty of Biomedical Sciences, Kampala International University Western Campus, P.O Box 71, Bushenyi, Uganda
| |
Collapse
|
47
|
Albekairi TH, Kamra A, Bhardwaj S, Mehan S, Giri A, Suri M, Alshammari A, Alharbi M, Alasmari AF, Narula AS, Kalfin R. Beta-Boswellic Acid Reverses 3-Nitropropionic Acid-Induced Molecular, Mitochondrial, and Histopathological Defects in Experimental Rat Model of Huntington's Disease. Biomedicines 2022; 10:2866. [PMID: 36359390 PMCID: PMC9687177 DOI: 10.3390/biomedicines10112866] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 10/01/2023] Open
Abstract
Huntington's disease (HD) is distinguished by a triple repeat of CAG in exon 1, an increase in poly Q in the Htt gene, and a loss of GABAergic medium spiny neurons (MSN) in the striatum and white matter of the cortex. Mitochondrial ETC-complex dysfunctions are involved in the pathogenesis of HD, including neuronal energy loss, synaptic neurotrophic decline, neuronal inflammation, apoptosis, and grey and white matter destruction. A previous study has demonstrated that beta Boswellic acid (β-BA), a naturally occurring phytochemical, has several neuroprotective properties that can reduce pathogenic factors associated with various neurological disorders. The current investigation aimed to investigate the neuroprotective potential of β-BA at oral doses of 5, 10, and 15 mg/kg alone, as well as in conjunction with the potent antioxidant vitamin E (8 mg/kg, orally) in 3-NP-induced experimental HD rats. Adult Wistar rats were separated into seven groups, and 3-NP, at a dose of 10 mg/kg, was orally administered to each group of adult Wistar rats beginning on day 1 and continuing through day 14. The neurotoxin 3-NP induces neurodegenerative, g, neurochemical, and pathological alterations in experimental animals. Continuous injection of 3-NP, according to our results, aggravated HD symptoms by suppressing ETC-complex-II, succinate dehydrogenase activity, and neurochemical alterations. β-BA, when taken with vitamin E, improved behavioural dysfunctions such as neuromuscular and motor impairments, as well as memory and cognitive abnormalities. Pharmacological treatments with β-BA improved and restored ETC complexes enzymes I, II, and V levels in brain homogenates. β-BA treatment also restored neurotransmitter levels in the brain while lowering inflammatory cytokines and oxidative stress biomarkers. β-BA's neuroprotective potential in reducing neuronal death was supported by histopathological findings in the striatum and cortex. As a result, the findings of this research contributed to a better understanding of the potential role of natural phytochemicals β-BA in preventing neurological illnesses such as HD.
Collapse
Affiliation(s)
- Thamer H. Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Arzoo Kamra
- Department of Pharmacology, Seth G.L. Bihani S.D. College of Technical Education, Institute of Pharmaceutical Sciences and Drug Research, Sri Ganganagar 335001, Rajasthan, India
| | - Sudeep Bhardwaj
- Department of Pharmacology, Seth G.L. Bihani S.D. College of Technical Education, Institute of Pharmaceutical Sciences and Drug Research, Sri Ganganagar 335001, Rajasthan, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy (An Autonomous College), Moga 142001, Punjab, India
| | - Aditi Giri
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy (An Autonomous College), Moga 142001, Punjab, India
| | - Manisha Suri
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy (An Autonomous College), Moga 142001, Punjab, India
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdullah F. Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC 27516, USA
| | - Reni Kalfin
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Block 23, 1113 Sofia, Bulgaria
- Department of Healthcare, South-West University “NeofitRilski”, Ivan Mihailov St. 66, 2700 Blagoevgrad, Bulgaria
| |
Collapse
|
48
|
Wang L, Duan C, Wang R, Chen L, Wang Y. Inflammation-related genes and immune infiltration landscape identified in kainite-induced temporal lobe epilepsy based on integrated bioinformatics analysis. Front Neurosci 2022; 16:996368. [PMID: 36389252 PMCID: PMC9648357 DOI: 10.3389/fnins.2022.996368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/06/2022] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND Temporal lobe epilepsy (TLE) is a common brain disease. However, the pathogenesis of TLE and its relationship with immune infiltration remains unclear. We attempted to identify inflammation-related genes (IRGs) and the immune cell infiltration pattern involved in the pathological process of TLE via bioinformatics analysis. MATERIALS AND METHODS The GSE88992 dataset was downloaded from the Gene Expression Omnibus (GEO) database to perform differentially expressed genes screening and weighted gene co-expression network analysis (WGCNA). Subsequently, the functional enrichment analysis was performed to explore the biological function of the differentially expressed IRGs (DEIRGs). The hub genes were further identified by the CytoHubba algorithm and validated by an external dataset (GSE60772). Furthermore, the CIBERSORT algorithm was applied to assess the differential immune cell infiltration between control and TLE groups. Finally, we used the DGIbd database to screen the candidate drugs for TLE. RESULTS 34 DEIRGs (33 up-regulated and 1 down-regulated gene) were identified, and they were significantly enriched in inflammation- and immune-related pathways. Subsequently, 4 hub DEIRGs (Ptgs2, Jun, Icam1, Il6) were further identified. Immune cell infiltration analysis revealed that T cells CD4 memory resting, NK cells activated, Monocytes and Dendritic cells activated were involved in the TLE development. Besides, there was a significant correlation between hub DEIRGs and some of the specific immune cells. CONCLUSION 4 hub DEIRGs (Ptgs2, Jun, Icam1, Il6) were associated with the pathogenesis of TLE via regulation of immune cell functions, which provided a novel perspective for the understanding of TLE.
Collapse
Affiliation(s)
| | | | | | | | - Yue Wang
- Department of Neurology, Xinqiao Hospital and The Second Affiliated Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
49
|
Pacheco ALD, de Melo IS, de Araujo Costa M, Amaral MMC, de Gusmão Taveiros Silva NK, Santos YMO, Gitaí DLG, Duzzioni M, Borbely AU, Silva RS, Donatti ALF, Mestriner L, Fuzo CA, Cummings RD, Garcia-Cairasco N, Dias-Baruffi M, de Castro OW. Neuroprotective Effect of Exogenous Galectin-1 in Status Epilepticus. Mol Neurobiol 2022; 59:7354-7369. [PMID: 36171480 DOI: 10.1007/s12035-022-03038-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 09/19/2022] [Indexed: 10/14/2022]
Abstract
Intrahippocampal pilocarpine microinjection (H-PILO) induces status epilepticus (SE) that can lead to spontaneous recurrent seizures (SRS) and neurodegeneration in rodents. Studies using animal models have indicated that lectins mediate a variety of biological activities with neuronal benefits, especially galectin-1 (GAL-1), which has been identified as an effective neuroprotective compound. GAL-1 is associated with the regulation of cell adhesion, proliferation, programmed cell death, and immune responses, as well as attenuating neuroinflammation. Here, we administrated GAL-1 to Wistar rats and evaluated the severity of the SE, neurodegenerative and inflammatory patterns in the hippocampal formation. Administration of GAL-1 caused a reduction in the number of class 2 and 4 seizures, indicating a decrease in seizure severity. Furthermore, we observed a reduction in inflammation and neurodegeneration 24 h and 15 days after SE. Overall, these results suggest that GAL-1 has a neuroprotective effect in the early stage of epileptogenesis and provides new insights into the roles of exogenous lectins in temporal lobe epilepsy (TLE).
Collapse
Affiliation(s)
- Amanda Larissa Dias Pacheco
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Av. Lourival de Melo Mota, km 14, Campus A. C. Simões, Cidade Universitária, Maceió, AL, CEP 57072-970, Brazil
| | - Igor Santana de Melo
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Av. Lourival de Melo Mota, km 14, Campus A. C. Simões, Cidade Universitária, Maceió, AL, CEP 57072-970, Brazil
| | - Maisa de Araujo Costa
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Av. Lourival de Melo Mota, km 14, Campus A. C. Simões, Cidade Universitária, Maceió, AL, CEP 57072-970, Brazil
| | - Mariah Morais Celestino Amaral
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Av. Lourival de Melo Mota, km 14, Campus A. C. Simões, Cidade Universitária, Maceió, AL, CEP 57072-970, Brazil
| | - Nívea Karla de Gusmão Taveiros Silva
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Av. Lourival de Melo Mota, km 14, Campus A. C. Simões, Cidade Universitária, Maceió, AL, CEP 57072-970, Brazil
| | - Yngrid Mickaelli Oliveira Santos
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Av. Lourival de Melo Mota, km 14, Campus A. C. Simões, Cidade Universitária, Maceió, AL, CEP 57072-970, Brazil
| | - Daniel Leite Góes Gitaí
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Av. Lourival de Melo Mota, km 14, Campus A. C. Simões, Cidade Universitária, Maceió, AL, CEP 57072-970, Brazil
| | - Marcelo Duzzioni
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Av. Lourival de Melo Mota, km 14, Campus A. C. Simões, Cidade Universitária, Maceió, AL, CEP 57072-970, Brazil
| | - Alexandre Urban Borbely
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Av. Lourival de Melo Mota, km 14, Campus A. C. Simões, Cidade Universitária, Maceió, AL, CEP 57072-970, Brazil
| | - Robinson Sabino Silva
- Department of Physiology, Institute of Biomedical Sciences, Federal University of Uberlândia (UFU), Uberlândia, MG, Brazil
| | - Ana Luiza Ferreira Donatti
- Department of Physiology, Medical School of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil.,Department of Neuroscience and Behavioral Sciences, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Luisa Mestriner
- Department of Clinical Analyses, Toxicology, and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Carlos Alessandro Fuzo
- Department of Clinical Analyses, Toxicology, and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Richard D Cummings
- Beth Israel Deaconess Medical Center, Department of Surgery, Harvard Glycomics Center, Harvard Medical School, CLS 11087 - 3 Blackfan Circle, Boston, MA, 02115, USA
| | - Norberto Garcia-Cairasco
- Department of Physiology, Medical School of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil.,Department of Neuroscience and Behavioral Sciences, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Marcelo Dias-Baruffi
- Department of Clinical Analyses, Toxicology, and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil.
| | - Olagide Wagner de Castro
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Av. Lourival de Melo Mota, km 14, Campus A. C. Simões, Cidade Universitária, Maceió, AL, CEP 57072-970, Brazil.
| |
Collapse
|
50
|
Cannabidiol effect in pentylenetetrazole-induced seizures depends on PI3K. Pharmacol Rep 2022; 74:1099-1106. [DOI: 10.1007/s43440-022-00391-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/08/2022] [Accepted: 07/13/2022] [Indexed: 10/14/2022]
|