1
|
Okumuş EB, Böke ÖB, Turhan SŞ, Doğan A. From development to future prospects: The adipose tissue & adipose tissue organoids. Life Sci 2024; 351:122758. [PMID: 38823504 DOI: 10.1016/j.lfs.2024.122758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
Living organisms store their energy in different forms of fats including lipid droplets, triacylglycerols, and steryl esters. In mammals and some non-mammal species, the energy is stored in adipose tissue which is the innervated specialized connective tissue that incorporates a variety of cell types such as macrophages, fibroblasts, pericytes, endothelial cells, adipocytes, blood cells, and several kinds of immune cells. Adipose tissue is so complex that the scope of its function is not only limited to energy storage, it also encompasses to thermogenesis, mechanical support, and immune defense. Since defects and complications in adipose tissue are heavily related to certain chronic diseases such as obesity, cardiovascular diseases, type 2 diabetes, insulin resistance, and cholesterol metabolism defects, it is important to further study adipose tissue to enlighten further mechanisms behind those diseases to develop possible therapeutic approaches. Adipose organoids are accepted as very promising tools for studying fat tissue development and its underlying molecular mechanisms, due to their high recapitulation of the adipose tissue in vitro. These organoids can be either derived using stromal vascular fractions or pluripotent stem cells. Due to their great vascularization capacity and previously reported incontrovertible regulatory role in insulin sensitivity and blood glucose levels, adipose organoids hold great potential to become an excellent candidate for the source of stem cell therapy. In this review, adipose tissue types and their corresponding developmental stages and functions, the importance of adipose organoids, and the potential they hold will be discussed in detail.
Collapse
Affiliation(s)
- Ezgi Bulut Okumuş
- Faculty of Engineering, Genetics and Bioengineering Department, Yeditepe University, İstanbul, Turkey
| | - Özüm Begüm Böke
- Faculty of Engineering, Genetics and Bioengineering Department, Yeditepe University, İstanbul, Turkey
| | - Selinay Şenkal Turhan
- Faculty of Engineering, Genetics and Bioengineering Department, Yeditepe University, İstanbul, Turkey
| | - Ayşegül Doğan
- Faculty of Engineering, Genetics and Bioengineering Department, Yeditepe University, İstanbul, Turkey.
| |
Collapse
|
2
|
Ziqubu K, Dludla PV, Mabhida SE, Jack BU, Keipert S, Jastroch M, Mazibuko-Mbeje SE. Brown adipose tissue-derived metabolites and their role in regulating metabolism. Metabolism 2024; 150:155709. [PMID: 37866810 DOI: 10.1016/j.metabol.2023.155709] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/28/2023] [Accepted: 10/14/2023] [Indexed: 10/24/2023]
Abstract
The discovery and rejuvenation of metabolically active brown adipose tissue (BAT) in adult humans have offered a new approach to treat obesity and metabolic diseases. Beyond its accomplished role in adaptive thermogenesis, BAT secretes signaling molecules known as "batokines", which are instrumental in regulating whole-body metabolism via autocrine, paracrine, and endocrine action. In addition to the intrinsic BAT metabolite-oxidizing activity, the endocrine functions of these molecules may help to explain the association between BAT activity and a healthy systemic metabolic profile. Herein, we review the evidence that underscores the significance of BAT-derived metabolites, especially highlighting their role in controlling physiological and metabolic processes involving thermogenesis, substrate metabolism, and other essential biological processes. The conversation extends to their capacity to enhance energy expenditure and mitigate features of obesity and its related metabolic complications. Thus, metabolites derived from BAT may provide new avenues for the discovery of metabolic health-promoting drugs with far-reaching impacts. This review aims to dissect the complexities of the secretory role of BAT in modulating local and systemic metabolism in metabolic health and disease.
Collapse
Affiliation(s)
- Khanyisani Ziqubu
- Department of Biochemistry, North-West University, Mmabatho 2745, South Africa
| | - Phiwayinkosi V Dludla
- Cochrane South Africa, South African Medical Research Council, Tygerberg 7505, South Africa; Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa
| | - Sihle E Mabhida
- Non-Communicable Diseases Research Unit, South African Medical Research Council, Tygerberg 7505, South Africa
| | - Babalwa U Jack
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa
| | - Susanne Keipert
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Martin Jastroch
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | | |
Collapse
|
3
|
Agarwal AK, Tunison K, Vale G, McDonald JG, Li X, Scherer PE, Horton JD, Garg A. Regulated adipose tissue-specific expression of human AGPAT2 in lipodystrophic Agpat2-null mice results in regeneration of adipose tissue. iScience 2023; 26:107806. [PMID: 37752957 PMCID: PMC10518674 DOI: 10.1016/j.isci.2023.107806] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/28/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023] Open
Abstract
Genetic loss of Agpat2 in humans and mice results in congenital generalized lipodystrophy with near-total loss of adipose tissue and predisposition to develop insulin resistance, diabetes mellitus, hepatic steatosis, and hypertriglyceridemia. The mechanism by which Agpat2 deficiency results in loss of adipose tissue remains unknown. We studied this by re-expressing human AGPAT2 (hAGPAT2) in Agpat2-null mice, regulated by doxycycline. In both sexes of Agpat2-null mice, adipose-tissue-specific re-expression of hAGPAT2 resulted in partial regeneration of both white and brown adipose tissue (but only 30%-50% compared with wild-type mice), which had molecular signatures of adipocytes, including leptin secretion. Furthermore, the stromal vascular fraction cells of regenerated adipose depots differentiated ex vivo only with doxycycline, suggesting the essential role of Agpat2 in adipocyte differentiation. Turning off expression of hAGPAT2 in vivo resulted in total loss of regenerated adipose tissue, clear evidence that Agpat2 is essential for adipocyte differentiation in vivo.
Collapse
Affiliation(s)
- Anil K. Agarwal
- Section of Nutrition and Metabolic Diseases, Division of Endocrinology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Center for Human Nutrition, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Katie Tunison
- Section of Nutrition and Metabolic Diseases, Division of Endocrinology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Center for Human Nutrition, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Goncalo Vale
- Center for Human Nutrition, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Molecular Genetics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jeffrey G. McDonald
- Center for Human Nutrition, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Molecular Genetics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xilong Li
- Peter O’Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Philipp E. Scherer
- Touchstone Center for Diabetes Research, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jay D. Horton
- Center for Human Nutrition, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Molecular Genetics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Abhimanyu Garg
- Section of Nutrition and Metabolic Diseases, Division of Endocrinology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Center for Human Nutrition, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
4
|
Wagner G, Fenzl A, Lindroos-Christensen J, Einwallner E, Husa J, Witzeneder N, Rauscher S, Gröger M, Derdak S, Mohr T, Sutterlüty H, Klinglmüller F, Wolkerstorfer S, Fondi M, Hoermann G, Cao L, Wagner O, Kiefer FW, Esterbauer H, Bilban M. LMO3 reprograms visceral adipocyte metabolism during obesity. J Mol Med (Berl) 2021; 99:1151-1171. [PMID: 34018016 PMCID: PMC8313462 DOI: 10.1007/s00109-021-02089-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 05/05/2021] [Accepted: 05/10/2021] [Indexed: 01/02/2023]
Abstract
Abstract Obesity and body fat distribution are important risk factors for the development of type 2 diabetes and metabolic syndrome. Evidence has accumulated that this risk is related to intrinsic differences in behavior of adipocytes in different fat depots. We recently identified LIM domain only 3 (LMO3) in human mature visceral adipocytes; however, its function in these cells is currently unknown. The aim of this study was to determine the potential involvement of LMO3-dependent pathways in the modulation of key functions of mature adipocytes during obesity. Based on a recently engineered hybrid rAAV serotype Rec2 shown to efficiently transduce both brown adipose tissue (BAT) and white adipose tissue (WAT), we delivered YFP or Lmo3 to epididymal WAT (eWAT) of C57Bl6/J mice on a high-fat diet (HFD). The effects of eWAT transduction on metabolic parameters were evaluated 10 weeks later. To further define the role of LMO3 in insulin-stimulated glucose uptake, insulin signaling, adipocyte bioenergetics, as well as endocrine function, experiments were conducted in 3T3-L1 adipocytes and newly differentiated human primary mature adipocytes, engineered for transient gain or loss of LMO3 expression, respectively. AAV transduction of eWAT results in strong and stable Lmo3 expression specifically in the adipocyte fraction over a course of 10 weeks with HFD feeding. LMO3 expression in eWAT significantly improved insulin sensitivity and healthy visceral adipose tissue expansion in diet-induced obesity, paralleled by increased serum adiponectin. In vitro, LMO3 expression in 3T3-L1 adipocytes increased PPARγ transcriptional activity, insulin-stimulated GLUT4 translocation and glucose uptake, as well as mitochondrial oxidative capacity in addition to fatty acid oxidation. Mechanistically, LMO3 induced the PPARγ coregulator Ncoa1, which was required for LMO3 to enhance glucose uptake and mitochondrial oxidative gene expression. In human mature adipocytes, LMO3 overexpression promoted, while silencing of LMO3 suppressed mitochondrial oxidative capacity. LMO3 expression in visceral adipose tissue regulates multiple genes that preserve adipose tissue functionality during obesity, such as glucose metabolism, insulin sensitivity, mitochondrial function, and adiponectin secretion. Together with increased PPARγ activity and Ncoa1 expression, these gene expression changes promote insulin-induced GLUT4 translocation, glucose uptake in addition to increased mitochondrial oxidative capacity, limiting HFD-induced adipose dysfunction. These data add LMO3 as a novel regulator improving visceral adipose tissue function during obesity. Key messages LMO3 increases beneficial visceral adipose tissue expansion and insulin sensitivity in vivo. LMO3 increases glucose uptake and oxidative mitochondrial activity in adipocytes. LMO3 increases nuclear coactivator 1 (Ncoa1). LMO3-enhanced glucose uptake and mitochondrial gene expression requires Ncoa1.
Supplementary Information The online version contains supplementary material available at 10.1007/s00109-021-02089-9.
Collapse
Affiliation(s)
- Gabriel Wagner
- Department of Laboratory Medicine, Medical University of Vienna, 1090, Vienna, Austria
| | - Anna Fenzl
- Clinical Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, 1090, Vienna, Austria
| | - Josefine Lindroos-Christensen
- Department of Laboratory Medicine, Medical University of Vienna, 1090, Vienna, Austria.,Novo Nordisk, Maaloev, Denmark
| | - Elisa Einwallner
- Department of Laboratory Medicine, Medical University of Vienna, 1090, Vienna, Austria
| | - Julia Husa
- Department of Laboratory Medicine, Medical University of Vienna, 1090, Vienna, Austria
| | - Nadine Witzeneder
- Department of Laboratory Medicine, Medical University of Vienna, 1090, Vienna, Austria
| | - Sabine Rauscher
- Core Facilities, Medical University of Vienna, 1090, Vienna, Austria
| | - Marion Gröger
- Core Facilities, Medical University of Vienna, 1090, Vienna, Austria
| | - Sophia Derdak
- Core Facilities, Medical University of Vienna, 1090, Vienna, Austria
| | - Thomas Mohr
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, 1090, Vienna, Austria
| | - Hedwig Sutterlüty
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, 1090, Vienna, Austria
| | - Florian Klinglmüller
- Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, 1090, Vienna, Austria.,Austrian Medicines & Medical Devices Agency, 1200, Vienna, Austria
| | - Silviya Wolkerstorfer
- Department of Laboratory Medicine, Medical University of Vienna, 1090, Vienna, Austria.,University of Applied Sciences, FH Campus Wien, 1100, Vienna, Austria.,Institute of Cardiovascular Prevention, Ludwig-Maximilians-University, 80336, Munich, Germany
| | - Martina Fondi
- University of Applied Sciences, FH Campus Wien, 1100, Vienna, Austria
| | - Gregor Hoermann
- Department of Laboratory Medicine, Medical University of Vienna, 1090, Vienna, Austria.,Central Institute of Medical and Chemical Laboratory Diagnostics, University Hospital Innsbruck, 6020, Innsbruck, Austria
| | - Lei Cao
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, 43210, USA
| | - Oswald Wagner
- Department of Laboratory Medicine, Medical University of Vienna, 1090, Vienna, Austria
| | - Florian W Kiefer
- Clinical Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, 1090, Vienna, Austria
| | - Harald Esterbauer
- Department of Laboratory Medicine, Medical University of Vienna, 1090, Vienna, Austria
| | - Martin Bilban
- Department of Laboratory Medicine, Medical University of Vienna, 1090, Vienna, Austria. .,Core Facilities, Medical University of Vienna, 1090, Vienna, Austria.
| |
Collapse
|
5
|
Ahmad B, Vohra MS, Saleemi MA, Serpell CJ, Fong IL, Wong EH. Brown/Beige adipose tissues and the emerging role of their secretory factors in improving metabolic health: The batokines. Biochimie 2021; 184:26-39. [PMID: 33548390 DOI: 10.1016/j.biochi.2021.01.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/22/2020] [Accepted: 01/28/2021] [Indexed: 12/12/2022]
Abstract
Brown and beige adipose tissues are the primary sites for adaptive non-shivering thermogenesis. Although they have been known principally for their thermogenic effects, in recent years, it has emerged that, just like white adipose tissue (WAT), brown and beige adipose tissues also play an important role in the regulation of metabolic health through secretion of various brown adipokines (batokines) in response to various physiological cues. These secreted batokines target distant organs and tissues such as the liver, heart, skeletal muscles, brain, WAT, and perform various local and systemic functions in an autocrine, paracrine, or endocrine manner. Brown and beige adipose tissues are therefore now receiving increasing levels of attention with respect to their effects on various other organs and tissues. Identification of novel secreted factors by these tissues may help in the discovery of drug candidates for the treatment of various metabolic disorders such as obesity, type-2 diabetes, skeletal deformities, cardiovascular diseases, dyslipidemia. In this review, we comprehensively describe the emerging secretory role of brown/beige adipose tissues and the metabolic effects of various brown/beige adipose tissues secreted factors on other organs and tissues in endocrine/paracrine manners, and as well as on brown/beige adipose tissue itself in an autocrine manner. This will provide insights into understanding the potential secretory role of brown/beige adipose tissues in improving metabolic health.
Collapse
Affiliation(s)
- Bilal Ahmad
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, Subang Jaya, 47500, Malaysia
| | - Muhammad Sufyan Vohra
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, Subang Jaya, 47500, Malaysia
| | - Mansab Ali Saleemi
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, Subang Jaya, 47500, Malaysia
| | - Christopher J Serpell
- School of Physical Sciences, Ingram Building, University of Kent, Canterbury, Kent, CT2 7NH, United Kingdom
| | - Isabel Lim Fong
- Department of Paraclinical Sciences, Faculty of Medicine and Health Sciences Universiti Malaysia Sarawak (UNIMAS), Kota Samarahan, Sarawak, 94300, Malaysia
| | - Eng Hwa Wong
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, Subang Jaya, 47500, Malaysia.
| |
Collapse
|
6
|
Shimba Y, Katayama K, Miyoshi N, Ikeda M, Morita A, Miura S. β-Aminoisobutyric Acid Suppresses Atherosclerosis in Apolipoprotein E-Knockout Mice. Biol Pharm Bull 2021; 43:1016-1019. [PMID: 32475911 DOI: 10.1248/bpb.b20-00078] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Endurance exercise training has been shown to induce peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) expression in skeletal muscle. We recently reported that skeletal muscle-specific PGC-1α overexpression suppressed atherosclerosis in apolipoprotein E-knockout (ApoE-/-) mice. β-Aminoisobutyric acid (BAIBA) is a PGC-1α-dependent myokine secreted from myocytes that affects multiple organs. We have also reported that BAIBA suppresses tumor necrosis factor-alpha-induced vascular cell adhesion molecule-1 (VCAM-1) and monocyte chemoattractant protein-1 (MCP-1) gene expression in endothelial cells. In the present study, we hypothesized that BAIBA suppresses atherosclerosis progression, and tested that hypothesis with ApoE-/- mice. The mice were administered water containing BAIBA for 14 weeks, and were then sacrificed at 20 weeks of age. Atherosclerotic plaque area, plasma BAIBA concentration, and plasma lipoprotein profiles were assessed. Immunohistochemical analyses of the plaque were performed to assess VCAM-1 and MCP-1 protein expression levels and macrophage infiltration. The results showed that BAIBA administration decreased atherosclerosis plaque area by 30%, concomitant with the elevation of plasma BAIBA levels. On the other hand, plasma lipoprotein profiles were not changed by the administration. Immunohistochemical analyses indicated reductions in VCAM-1, MCP-1, and Mac-2 protein expression levels in the plaque. These results suggest that BAIBA administration suppresses atherosclerosis progression without changing plasma lipoprotein profiles. We propose that the mechanisms of this suppression are reductions in both VCAM-1 and MCP-1 expression as well as macrophage infiltration into the plaque.
Collapse
Affiliation(s)
- Yuki Shimba
- Laboratory of Nutritional Biochemistry, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka
| | - Keigo Katayama
- Laboratory of Nutritional Biochemistry, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka
| | - Noriyuki Miyoshi
- Laboratory of Biochemistry, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka
| | - Masahiko Ikeda
- Faculty of Social and Environmental Studies, Tokoha University
| | - Akihito Morita
- Laboratory of Nutritional Biochemistry, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka
| | - Shinji Miura
- Laboratory of Nutritional Biochemistry, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka
| |
Collapse
|
7
|
Sarode SC, Sarode GS, Sengupta N, Sharma NK, Patil S. Adipocyte-tumor cell native encounter in oral squamous cell carcinoma. Future Oncol 2020; 16:1793-1796. [PMID: 32539566 DOI: 10.2217/fon-2020-0399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/04/2020] [Indexed: 11/21/2022] Open
Affiliation(s)
- Sachin C Sarode
- Department of Oral Pathology & Microbiology, Dr. D.Y. Patil Dental College & Hospital, Dr. D.Y. Patil Vidyapeeth, Sant-Tukaram Nagar, Pimpri, Pune 411018, MH, India
| | - Gargi S Sarode
- Department of Oral Pathology & Microbiology, Dr. D.Y. Patil Dental College & Hospital, Dr. D.Y. Patil Vidyapeeth, Sant-Tukaram Nagar, Pimpri, Pune 411018, MH, India
| | - Namrata Sengupta
- Department of Oral Pathology & Microbiology, Dr. D.Y. Patil Dental College & Hospital, Dr. D.Y. Patil Vidyapeeth, Sant-Tukaram Nagar, Pimpri, Pune 411018, MH, India
| | - Nilesh Kumar Sharma
- Cancer & Translational Research Lab, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Mumbai-Bangalore Highway, Tathawade, Pune 411033, MH, India
| | - Shankargouda Patil
- Department of Maxillofacial Surgery & Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
8
|
Naimo GD, Gelsomino L, Catalano S, Mauro L, Andò S. Interfering Role of ERα on Adiponectin Action in Breast Cancer. Front Endocrinol (Lausanne) 2020; 11:66. [PMID: 32132979 PMCID: PMC7041409 DOI: 10.3389/fendo.2020.00066] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/31/2020] [Indexed: 12/17/2022] Open
Abstract
Obesity is characterized by an excess of adipose tissue, due to adipocyte hypertrophy and hyperplasia. Adipose tissue is an endocrine organ producing many bioactive molecules, called adipokines. During obesity, dysfunctional adipocytes alter adipokine secretion, contributing to pathophysiology of obesity-associated diseases, including metabolic syndrome, type 2-diabetes, cardiovascular diseases and many types of malignancies. Circulating adiponectin levels are inversely correlated with BMI, thus adiponectin concentrations are lower in obese than normal-weight subjects. Many clinical investigations highlight that low adiponectin levels represent a serious risk factor in breast carcinogenesis, and are associated with the development of more aggressive phenotype. A large-scale meta-analysis suggests that BMI was positively associated with breast cancer mortality in women with ERα-positive disease, regardless menopausal status. This suggests the importance of estrogen signaling contribution in breast tumorigenesis of obese patients. It has been largely demonstrated that adiponectin exerts a protective role in ERα-negative cells, promoting anti-proliferative and pro-apoptotic effects, while controversial data have been reported in ERα-positive cells. Indeed, emerging data provide evidences that adiponectin in obese patients behave as growth factor in ERα-positive breast cancer cells. This addresses how ERα signaling interference may enhance the potential inhibitory threshold of adiponectin in ERα-positive cells. Thus, we may reasonably speculate that the relatively low adiponectin concentrations could be still not adequate to elicit, in ERα-positive breast cancer cells, the same inhibitory effects observed in ERα-negative cells. In the present review we will focus on the molecular mechanisms through which adiponectin affects breast cancer cell behavior in relationship to ERα expression.
Collapse
Affiliation(s)
- Giuseppina Daniela Naimo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata, Italy
| | - Luca Gelsomino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata, Italy
| | - Stefania Catalano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata, Italy
| | - Loredana Mauro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata, Italy
- *Correspondence: Loredana Mauro
| | - Sebastiano Andò
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata, Italy
- Health Center, University of Calabria, Arcavacata, Italy
- Sebastiano Andò
| |
Collapse
|
9
|
Zou W, Rohatgi N, Brestoff JR, Zhang Y, Scheller EL, Craft CS, Brodt MD, Migotsky N, Silva MJ, Harris CA, Teitelbaum SL. Congenital lipodystrophy induces severe osteosclerosis. PLoS Genet 2019; 15:e1008244. [PMID: 31233501 PMCID: PMC6611650 DOI: 10.1371/journal.pgen.1008244] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 07/05/2019] [Accepted: 06/12/2019] [Indexed: 12/28/2022] Open
Abstract
Berardinelli-Seip congenital generalized lipodystrophy is associated with increased bone mass suggesting that fat tissue regulates the skeleton. Because there is little mechanistic information regarding this issue, we generated "fat-free" (FF) mice completely lacking visible visceral, subcutaneous and brown fat. Due to robust osteoblastic activity, trabecular and cortical bone volume is markedly enhanced in these animals. FF mice, like Berardinelli-Seip patients, are diabetic but normalization of glucose tolerance and significant reduction in circulating insulin fails to alter their skeletal phenotype. Importantly, the skeletal phenotype of FF mice is completely rescued by transplantation of adipocyte precursors or white or brown fat depots, indicating that adipocyte derived products regulate bone mass. Confirming such is the case, transplantation of fat derived from adiponectin and leptin double knockout mice, unlike that obtained from their WT counterparts, fails to normalize FF bone. These observations suggest a paucity of leptin and adiponectin may contribute to the increased bone mass of Berardinelli-Seip patients.
Collapse
Affiliation(s)
- Wei Zou
- Division of Anatomic and Molecular Pathology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Nidhi Rohatgi
- Division of Anatomic and Molecular Pathology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Jonathan R. Brestoff
- Division of Laboratory and Genomic Medicine, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Yan Zhang
- Division of Anatomic and Molecular Pathology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States of America
- Center for Translational Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shanxi, People’s Republic of China
| | - Erica L. Scheller
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Clarissa S. Craft
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Michael D. Brodt
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Nicole Migotsky
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Matthew J. Silva
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Charles A. Harris
- Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Steven L. Teitelbaum
- Division of Anatomic and Molecular Pathology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States of America
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States of America
- * E-mail:
| |
Collapse
|
10
|
Gelsomino L, Naimo GD, Catalano S, Mauro L, Andò S. The Emerging Role of Adiponectin in Female Malignancies. Int J Mol Sci 2019; 20:E2127. [PMID: 31052147 PMCID: PMC6539460 DOI: 10.3390/ijms20092127] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 04/20/2019] [Accepted: 04/28/2019] [Indexed: 02/06/2023] Open
Abstract
Obesity, characterized by excess body weight, is now accepted as a hazardous health condition and an oncogenic factor. In different epidemiological studies obesity has been described as a risk factor in several malignancies. Some biological mechanisms that orchestrate obesity-cancer interaction have been discovered, although others are still not completely understood. The unbalanced secretion of biomolecules, called "adipokines", released by adipocytes strongly influences obesity-related cancer development. Among these adipokines, adiponectin exerts a critical role. Physiologically adiponectin governs glucose levels and lipid metabolism and is fundamental in the reproductive system. Low adiponectin circulating levels have been found in obese patients, in which its protective effects were lost. In this review, we summarize the epidemiological, in vivo and in vitro data in order to highlight how adiponectin may affect obesity-associated female cancers.
Collapse
Affiliation(s)
- Luca Gelsomino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy.
| | - Giuseppina Daniela Naimo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy.
| | - Stefania Catalano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy.
| | - Loredana Mauro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy.
| | - Sebastiano Andò
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy.
- Centro Sanitario, University of Calabria, Via Pietro Bucci, 87036 Arcavacata di Rende (CS), Italy.
| |
Collapse
|
11
|
West MD, Chang CF, Larocca D, Li J, Jiang J, Sim P, Labat I, Chapman KB, Wong KE, Nicoll J, Van Kanegan MJ, de Grey ADNJ, Nasonkin IO, Stahl A, Sternberg H. Clonal derivation of white and brown adipocyte progenitor cell lines from human pluripotent stem cells. Stem Cell Res Ther 2019; 10:7. [PMID: 30616682 PMCID: PMC6323697 DOI: 10.1186/s13287-018-1087-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/10/2018] [Accepted: 11/21/2018] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND The role of brown fat in non-shivering thermogenesis and the discovery of brown fat depots in adult humans has made it the subject of intense research interest. A renewable source of brown adipocyte (BA) progenitors would be highly valuable for research and therapy. Directed differentiation of human pluripotent stem (hPS) cells to white or brown adipocytes is limited by lack of cell purity and scalability. Here we describe an alternative approach involving the identification of clonal self-renewing human embryonic progenitor (hEP) cell lines following partial hPS cell differentiation and selection of scalable clones. METHODS We screened a diverse panel of hPS cell-derived clonal hEP cell lines for adipocyte markers following growth in adipocyte differentiation medium. The transcriptome of the human hES-derived clonal embryonic progenitor cell lines E3, C4ELS5.1, NP88, and NP110 representing three class of definitive adipocyte progenitors were compared to the relatively non-adipogenic line E85 and adult-derived BAT and SAT-derived cells using gene expression microarrays, RT-qPCR, metabolic analysis and immunocytochemistry. Differentiation conditions were optimized for maximal UCP1 expression. RESULTS Many of the differentiated hEP cell lines expressed the adipocyte marker, FAPB4, but only a small subset expressed definitive adipocyte markers including brown adipocyte marker, UCP1. Class I cells (i.e., E3) expressed CITED1, ADIPOQ, and C19orf80 but little to no UCP1. Class II (i.e., C4ELS5.1) expressed CITED1 and UCP1 but little ADIPOQ and LIPASIN. Class III (i.e., NP88, NP110) expressed CITED1, ADIPOQ, C19orf80, and UCP1 in a similar manner as fetal BAT-derived (fBAT) cells. Differentiated NP88 and NP110 lines were closest to fBAT cells morphologically in adiponectin and uncoupling protein expression. But they were more metabolically active than fBAT cells, had higher levels of 3-hydroxybutyrate, and lacked expression of fetal/adult marker, COX7A1. The hEP BA progenitor lines were scalable to 17 passages without loss of differentiation capacity and could be readily rederived. CONCLUSIONS Taken together, these data demonstrate that self-renewing adipocyte progenitor cells can be derived from hES cells and that they are functionally like BAT cells but with unique properties that might be advantageous for basic research and for development of cell-based treatments for metabolic diseases.
Collapse
Affiliation(s)
- Michael D. West
- AgeX Therapeutics, Inc., 1010 Atlantic Ave, Alameda, CA 94501 USA
| | - Ching-Fang Chang
- 0000 0001 2181 7878grid.47840.3fUniversity of California, Berkeley, CA 94720 USA
| | - Dana Larocca
- AgeX Therapeutics, Inc., 1010 Atlantic Ave, Alameda, CA 94501 USA
| | - Jie Li
- AgeX Therapeutics, Inc., 1010 Atlantic Ave, Alameda, CA 94501 USA
| | - Jianjie Jiang
- AgeX Therapeutics, Inc., 1010 Atlantic Ave, Alameda, CA 94501 USA
| | - Pamela Sim
- AgeX Therapeutics, Inc., 1010 Atlantic Ave, Alameda, CA 94501 USA
| | - Ivan Labat
- AgeX Therapeutics, Inc., 1010 Atlantic Ave, Alameda, CA 94501 USA
| | - Karen B. Chapman
- 0000 0001 2171 9311grid.21107.35Johns Hopkins University, Baltimore, MD 21218 USA
| | - Kari E. Wong
- grid.429438.0Metabolon Inc., Morrisville, NC 27560 USA
| | - James Nicoll
- grid.422945.cZen-Bio, Inc., Research Triangle Park, NC 27709 USA
| | | | - Aubrey D. N. J. de Grey
- AgeX Therapeutics, Inc., 1010 Atlantic Ave, Alameda, CA 94501 USA ,SENS Research Foundation, Mountain View, CA 94041 USA
| | | | - Andreas Stahl
- 0000 0001 2181 7878grid.47840.3fUniversity of California, Berkeley, CA 94720 USA
| | - Hal Sternberg
- AgeX Therapeutics, Inc., 1010 Atlantic Ave, Alameda, CA 94501 USA
| |
Collapse
|
12
|
Brément T, Cossec C, Roux C, Knol AC, Dréno B, Khammari A, Bourdeau P, Bruet V. Expression of Three Adipokines (Adiponectin, Leptin and Resistin) in Normal Canine Skin: a Pilot Study. J Comp Pathol 2018; 167:82-90. [PMID: 30503576 DOI: 10.1016/j.jcpa.2018.10.179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/17/2018] [Accepted: 10/26/2018] [Indexed: 01/19/2023]
Abstract
Adipokines are biologically active cytokines that are mainly produced in adipose tissue. There is evidence, in man and mice, that some adipokines may be secreted in other tissues including the vascular endothelium, epithelia and sebaceous glands. Moreover, modified serum levels of adipokines have been detected in people with acne vulgaris or psoriasis; it is suspected that adipokines could contribute to local and systemic inflammatory conditions. We aimed to evaluate the expression of three adipokines (i.e. leptin, adiponectin and resistin) in normal canine skin. Formalin-fixed, paraffin wax-embedded punch biopsy samples were obtained from the sparsely-haired skin of the caudal ventral abdomen of a single clinically healthy dog with no history of skin disease. Immunohistochemistry was applied, using rabbit polyclonal primary antibodies specific for leptin, adiponectin and resistin. Adipokines were not expressed in normal canine dermis or hypodermis. In contrast, they were detected in the keratinocytes of all epidermal layers and hair follicle segments, sebocytes, apocrine gland cells and in the vascular endothelium. This is the first report on the expression of adipokines in normal canine skin, a first step in studying their role in the skin physiology and inflammatory skin diseases of dogs.
Collapse
Affiliation(s)
- T Brément
- Dermatology/Parasitology/Mycology Unit, School of Veterinary Medicine-ONIRIS, University of Nantes, CS 40706, Nantes, France
| | - C Cossec
- NP3 Unit, School of Veterinary Medicine-ONIRIS, University of Nantes, CS 40706, Nantes 44307, France
| | - C Roux
- Dermatology/Parasitology/Mycology Unit, School of Veterinary Medicine-ONIRIS, University of Nantes, CS 40706, Nantes, France
| | - A C Knol
- CRCINA, INSERM, University of Angers, University of Nantes, Nantes, France
| | - B Dréno
- CRCINA, INSERM, University of Angers, University of Nantes, Nantes, France; Dermatology Service, CIC1413, CHU Nantes, Nantes, France
| | - A Khammari
- CRCINA, INSERM, University of Angers, University of Nantes, Nantes, France; Dermatology Service, CIC1413, CHU Nantes, Nantes, France
| | - P Bourdeau
- Dermatology/Parasitology/Mycology Unit, School of Veterinary Medicine-ONIRIS, University of Nantes, CS 40706, Nantes, France; NP3 Unit, School of Veterinary Medicine-ONIRIS, University of Nantes, CS 40706, Nantes 44307, France
| | - V Bruet
- Dermatology/Parasitology/Mycology Unit, School of Veterinary Medicine-ONIRIS, University of Nantes, CS 40706, Nantes, France; NP3 Unit, School of Veterinary Medicine-ONIRIS, University of Nantes, CS 40706, Nantes 44307, France.
| |
Collapse
|
13
|
Fensterseifer SR, Austin KJ, Ford SP, Alexander BM. Effects of maternal obesity on maternal and fetal plasma concentrations of adiponectin and expression of adiponectin and its receptor genes in cotyledonary and adipose tissues at mid- and late-gestation in sheep. Anim Reprod Sci 2018; 197:231-239. [PMID: 30172606 DOI: 10.1016/j.anireprosci.2018.08.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/16/2018] [Accepted: 08/24/2018] [Indexed: 12/15/2022]
Abstract
Adiponectin potentially influences fetal weight by altering insulin signaling and trans-placental amino acid and glucose transporters. The objective of this study was to determine how maternal obesity influences maternal and fetal plasma concentrations of adiponectin, expression of fetal adiponectin, its receptors, and adipogenic genes at mid- and late-gestation. Blood samples and tissues were collected from obese and control multiparous pregnant ewes at day 75 or 135 of gestation. Although day of gestation or maternal obesity did not influence (P > 0.6) maternal plasma concentrations of adiponectin, fetal weight was increased (P < 0.001) and adiponectin tended to decrease (P = 0.10) at mid-gestation in fetuses from obese ewes. Differences were not apparent at late-gestation (P > 0.70). Relative abundance of adiponectin (P = 0.01), AdipoR2 (P = 0.04) and PPARγ (P = 0.01) mRNA was less at mid-gestation in fetal adipose tissue from obese mothers. By late gestation, maternal obesity tended to associated with a decrease in relative abundance of adiponectin (P = 0.09) and SREBF1 (P = 0.10) mRNA in fetal adipose tissue. Maternal obesity did not influence (P ≥ 0.20) the relative abundance of adiponectin, AdipoR1 and AdipoR2 mRNA in cotyledonary tissue at mid or late- gestation. In conclusion, maternal obesity in sheep influences relative abundance of fetal adipose tissue mRNA for adiponectin and adipogenic, as well as plasma concentrations of total adiponectin. Although adiposity in pregnant ewes did not influence maternal adiponectin, maternal obesity potentially influenced fetal adipogenesis by altering the abundance of adiponectin, PPARγ and SREBF1 mRNA in fetal adipose tissue.
Collapse
Affiliation(s)
- S R Fensterseifer
- Department of Animal Science, University of Wyoming, Laramie, WY, 82071, United States
| | - K J Austin
- Department of Animal Science, University of Wyoming, Laramie, WY, 82071, United States
| | - S P Ford
- Department of Animal Science, University of Wyoming, Laramie, WY, 82071, United States; Center for the Study of Fetal Programming, Department of Animal Science, University of Wyoming, Laramie, WY, 82071, United States
| | - B M Alexander
- Department of Animal Science, University of Wyoming, Laramie, WY, 82071, United States.
| |
Collapse
|
14
|
Bauerle KT, Hutson I, Scheller EL, Harris CA. Glucocorticoid Receptor Signaling Is Not Required for In Vivo Adipogenesis. Endocrinology 2018; 159:2050-2061. [PMID: 29579167 PMCID: PMC5905394 DOI: 10.1210/en.2018-00118] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 03/13/2018] [Indexed: 12/31/2022]
Abstract
Regulation of adipogenesis is of major interest given that adipose tissue expansion and dysfunction are central to metabolic syndrome. Glucocorticoids (GCs) are important for adipogenesis in vitro. However, establishing a role for GCs in adipogenesis in vivo has been difficult. GC receptor (GR)‒null mice die at birth, a time at which wild-type (WT) mice do not have fully developed white adipose depots. We conducted several studies aimed at defining the role of GC signaling in adipogenesis in vitro and in vivo. First, we showed that GR-null mouse embryonic fibroblasts (MEFs) have compromised ability to form adipocytes in vitro, a phenotype that can be partially rescued with a peroxisome proliferator-activated receptor γ agonist. Next, we demonstrated that MEFs are capable of forming de novo fat pads in mice despite the absence of GR or circulating GCs [by bilateral adrenalectomy (ADX)]. However, ADX and GR-null fat pads and their associated adipocyte areas were smaller than those in controls. Second, using adipocyte-specific luciferase reporter mice, we identified adipocytes in both WT and GR-null embryonic day (E)18 mouse embryos. Lastly, positive perilipin staining in WT and GR-null E18 embryos confirmed the presence of early white inguinal and brown adipocytes. Taken together, these results provide compelling evidence that GCs and GR augment but are not required for the development of functional adipose tissue in vivo.
Collapse
Affiliation(s)
- Kevin T Bauerle
- Department of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, Missouri
- Department of Medicine, Veterans Affairs St. Louis Healthcare System, John Cochran Division, St. Louis, Missouri
| | - Irina Hutson
- Department of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, Missouri
| | - Erica L Scheller
- Department of Medicine, Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, Missouri
| | - Charles A Harris
- Department of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, Missouri
- Department of Medicine, Veterans Affairs St. Louis Healthcare System, John Cochran Division, St. Louis, Missouri
- Correspondence: Charles A. Harris, MD, PhD, Washington University School of Medicine, Campus Box 8127, St. Louis, Missouri 63110. E-mail:
| |
Collapse
|
15
|
Fu Z, Gong Y, Löfqvist C, Hellström A, Smith LEH. Review: adiponectin in retinopathy. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1862:1392-400. [PMID: 27155572 PMCID: PMC4885769 DOI: 10.1016/j.bbadis.2016.05.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 03/23/2016] [Accepted: 05/03/2016] [Indexed: 02/06/2023]
Abstract
Neovascular eye diseases are a major cause of blindness including retinopathy of prematurity, diabetic retinopathy and age-related macular degeneration in which new vessel formation is driven by hypoxia or metabolic abnormalities affecting the fuel supply. White-adipose-tissue derived adipokines such as adiponectin modulate metabolic responses. Increasing evidence shows that lack of adiponectin may result in retinal neovascularization. Activation of the adiponectin pathway may in turn restore energy metabolism, to suppress the drive for compensatory but ultimately pathological neovessels of retinopathy. In this review, we will summarize our current knowledge of the role of adiponectin in eye diseases of premature infants, diabetic patients as well as the elderly. Further investigations in this field are likely to lead to new preventative approaches for these diseases.
Collapse
Affiliation(s)
- Zhongjie Fu
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Yan Gong
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Chatarina Löfqvist
- Department of Ophthalmology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ann Hellström
- Department of Ophthalmology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lois E H Smith
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
16
|
Zhang D, Wang X, Lu XY. Adiponectin Exerts Neurotrophic Effects on Dendritic Arborization, Spinogenesis, and Neurogenesis of the Dentate Gyrus of Male Mice. Endocrinology 2016; 157:2853-69. [PMID: 27187175 PMCID: PMC4929553 DOI: 10.1210/en.2015-2078] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The hippocampus, a brain region critical for learning, memory and emotional processing, maintains its capacity to undergo structural plasticity throughout life. Hippocampal structural plasticity can be modulated by a number of intrinsic and extrinsic factors. This study investigated the effects of adiponectin, an adipocyte-derived hormone, on dendritic growth, arborization, and spinogenesis in mature granule neurons of the hippocampal dentate gyrus generated during embryonic (early-born) or early postnatal (late-born) stages. We found that adiponectin deficiency reduced dendritic length, branching and spine density of granule neurons. The reduction was more evident in early-born granule neurons than in late-born granule neurons. Intracerebroventricular infusion of adiponectin for 1 week increased of dendritic spines and arbor complexity in late-born granule neurons. Moreover, adiponectin deficiency decreased the production of adult-born new granule neurons through suppressing neural progenitor cell proliferation and differentiation, whereas intracerebroventricular adiponectin infusion increased the proliferation of neural progenitor cells in adult dentate gyrus. These results suggest that adiponectin plays an important role in dendritic spine remodeling and neurogenesis in the dentate gyrus.
Collapse
Affiliation(s)
- Di Zhang
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, Texas 78229
| | - Xuezhen Wang
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, Texas 78229
| | - Xin-Yun Lu
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, Texas 78229
| |
Collapse
|
17
|
Nagasaki H, Ohta T. Extrauterine growth and adipocytokines in appropriate-for-gestational-age preterm infants. Pediatr Int 2016; 58:584-588. [PMID: 26717447 DOI: 10.1111/ped.12896] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 10/26/2015] [Accepted: 11/30/2015] [Indexed: 11/29/2022]
Abstract
BACKGROUND Extra-uterine growth retardation in preterm infants is associated with an increased risk for cardiometabolic diseases later in life. Adipocytokines are also associated with the development of cardiometabolic diseases. We examined the relationship between extra-uterine growth and serum concentrations of adipocytokines and metabolic hormones in preterm infants. METHODS Serum concentrations of leptin, adiponectin, insulin, IL-6, TNF-α, C-peptide, GIP, GLP-1 and glucagon were measured in 38 appropriate-for-gestational-age preterm infants at birth, and at 33 and 38 weeks of postmenstrual age using a Bio-Plex 200TM suspension array system. RESULTS Serum concentrations of leptin were not correlated with body weight at any time point. However, serum concentrations of adiponectin were correlated with body weight at all time points. Serum concentrations of IL-6 were decreased from birth to 33 and 38 weeks. Serum concentrations of TNF-α were not changed. Serum concentrations of C-peptide, GIP and glucagon increased from birth to 33 weeks, and decreased from 33 to 38 weeks. Serum concentrations of insulin and GLP-1 were not changed. CONCLUSION Changes in serum concentrations of leptin and adiponectin showed unique profiles, thereby suggesting maldevelopment of white adipose tissue. This may affect the future development of adipose tissue and lead to increased risk for cardio-metabolic disorders. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hiraku Nagasaki
- Department of Child Health and Welfare (Pediatrics), Graduate School of Medical Sciences, Ryukyu University, Nishihara, Japan
| | - Takao Ohta
- Department of Child Health and Welfare (Pediatrics), Graduate School of Medical Sciences, Ryukyu University, Nishihara, Japan
| |
Collapse
|
18
|
Abstract
Adiponectin (APN), an adipokine produced by adipocytes, has been shown to have a critical role in the pathogenesis of obesity-associated malignancies. Through its receptor interactions, APN may exert its anti-carcinogenic effects including regulating cell survival, apoptosis and metastasis via a plethora of signalling pathways. Despite the strong evidence supporting this notion, some work may indicate otherwise. Our review addresses all controversies critically. On the whole, hypoadiponectinaemia is associated with increased risk of several malignancies and poor prognosis. In addition, various genetic polymorphisms may predispose individuals to increased risk of obesity-associated malignancies. We also provide an updated summary on therapeutic interventions to increase APN levels that are of key interest in this field. To date efforts to manipulate APN levels have been promising, but much work remains to be done.
Collapse
Affiliation(s)
- Arnav Katira
- UCL Medical School, UCL Faculty of Medical Science, University College London, London WC1E 6BT, UK
| | - Peng H Tan
- UCL Medical School, UCL Faculty of Medical Science, University College London, London WC1E 6BT, UK; Breast Unit, Whittington Health, London N19 5NF, UK
| |
Collapse
|
19
|
Wang CY, Shie SS, Wen MS, Hung KC, Hsieh IC, Yeh TS, Wu D. Loss of FTO in adipose tissue decreases Angptl4 translation and alters triglyceride metabolism. Sci Signal 2015; 8:ra127. [PMID: 26671148 DOI: 10.1126/scisignal.aab3357] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A common variant of the FTO (fat mass- and obesity-associated) gene is a risk factor for obesity. We found that mice with an adipocyte-specific deletion of FTO gained more weight than control mice on a high-fat diet. Analysis of mice lacking FTO in adipocytes fed a normal diet or adipocytes from these mice revealed alterations in triglyceride metabolism that would be expected to favor increased fatty acid storage by adipose tissue. Mice lacking FTO in adipocytes showed increased serum triglyceride breakdown and clearance, which was associated with lower serum triglyceride concentrations. In addition, lipolysis in response to β-adrenergic stimulation was decreased in adipocytes and ex vivo adipose explants from the mutant mice. FTO is a nucleic acid demethylase that removes N(6)-methyladenosine (m(6)A) from mRNAs. We found that FTO bound to Angptl4, which encodes an adipokine that stimulates intracellular lipolysis in adipocytes. Unexpectedly, the adipose tissue of fasted or fed mice lacking FTO in adipocytes had greater Angptl4 mRNA abundance. However, after high-fat feeding, the mutant mice had less Angptl4 protein and more m(6)A-modified Angptl4 than control mice, suggesting that lack of FTO prevented the translation of Angptl4. Injection of Angptl4-encoding adenovirus into mice lacking FTO in adipocytes restored serum triglyceride concentrations and lipolysis to values similar to those in control mice and abolished excessive weight gain from a high-fat diet. These results reveal that FTO regulates fatty acid mobilization in adipocytes and thus body weight in part through posttranscriptional regulation of Angptl4.
Collapse
Affiliation(s)
- Chao-Yung Wang
- Department of Cardiology, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan 33302, Taiwan.
| | - Shian-Sen Shie
- Department of Infectious Diseases, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan 33302, Taiwan
| | - Ming-Shien Wen
- Department of Cardiology, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan 33302, Taiwan
| | - Kuo-Chun Hung
- Department of Cardiology, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan 33302, Taiwan
| | - I-Chang Hsieh
- Department of Cardiology, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan 33302, Taiwan
| | - Ta-Sen Yeh
- Department of General Surgery, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan 33302, Taiwan
| | - Delon Wu
- Department of Cardiology, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan 33302, Taiwan
| |
Collapse
|
20
|
Podolak-Popinigis J, Górnikiewicz B, Ronowicz A, Sachadyn P. Transcriptome profiling reveals distinctive traits of retinol metabolism and neonatal parallels in the MRL/MpJ mouse. BMC Genomics 2015; 16:926. [PMID: 26572684 PMCID: PMC4647819 DOI: 10.1186/s12864-015-2075-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 10/13/2015] [Indexed: 12/26/2022] Open
Abstract
Background The MRL/MpJ mouse is a laboratory inbred strain known for regenerative abilities which are manifested by scarless closure of ear pinna punch holes. Enhanced healing responses have been reported in other organs. A remarkable feature of the strain is that the adult MRL/MpJ mouse retains several embryonic biochemical characteristics, including increased expression of stem cell markers. Results We explored the transcriptome of the MRL/MpJ mouse in the heart, liver, spleen, bone marrow and ears. We used two reference strains, thus increasing the chances to discover the genes responsible for the exceptional properties of the regenerative strain. We revealed several distinctive characteristics of gene expression patterns in the MRL/MpJ mouse, including the repression of immune response genes, the up-regulation of those associated with retinol metabolism and PPAR signalling, as well as differences in expression of the genes engaged in wounding response. Another crucial finding is that the gene expression patterns in the adult MRL/MpJ mouse and murine neonates share a number of parallels, which are also related to immune and wounding response, PPAR pathway, and retinol metabolism. Conclusions Our results indicate the significance of retinol signalling and neonatal transcriptomic relics as the distinguishing features of the MRL/MpJ mouse. The possibility that retinoids could act as key regulatory molecules in this regeneration model brings important implications for regenerative medicine. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2075-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Justyna Podolak-Popinigis
- Department of Molecular Biotechnology and Microbiology, Gdańsk University of Technology, Gdańsk, Poland
| | - Bartosz Górnikiewicz
- Department of Molecular Biotechnology and Microbiology, Gdańsk University of Technology, Gdańsk, Poland
| | - Anna Ronowicz
- Department of Biology and Pharmaceutical Botany, Medical University of Gdańsk, Gdańsk, Poland
| | - Paweł Sachadyn
- Department of Molecular Biotechnology and Microbiology, Gdańsk University of Technology, Gdańsk, Poland.
| |
Collapse
|
21
|
Spaethling JM, Sanchez-Alavez M, Lee J, Xia FC, Dueck H, Wang W, Fisher SA, Sul JY, Seale P, Kim J, Bartfai T, Eberwine J. Single-cell transcriptomics and functional target validation of brown adipocytes show their complex roles in metabolic homeostasis. FASEB J 2015; 30:81-92. [PMID: 26304220 DOI: 10.1096/fj.15-273797] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 08/13/2015] [Indexed: 01/08/2023]
Abstract
Brown adipocytes (BAs) are specialized for adaptive thermogenesis and, upon sympathetic stimulation, activate mitochondrial uncoupling protein (UCP)-1 and oxidize fatty acids to generate heat. The capacity for brown adipose tissue (BAT) to protect against obesity and metabolic disease is recognized, yet information about which signals activate BA, besides β3-adrenergic receptor stimulation, is limited. Using single-cell transcriptomics, we confirmed the presence of mRNAs encoding traditional BAT markers (i.e., UCP1, expressed in 100% of BAs Adrb3, expressed in <50% of BAs) in mouse and have shown single-cell variability (>1000-fold) in their expression at both the mRNA and protein levels. We further identified mRNAs encoding novel markers, orphan GPCRs, and many receptors that bind the classic neurotransmitters, neuropeptides, chemokines, cytokines, and hormones. The transcriptome variability between BAs suggests a much larger range of responsiveness of BAT than previously recognized and that not all BAs function identically. We examined the in vivo functional expression of 12 selected receptors by microinjecting agonists into live mouse BAT and analyzing the metabolic response. In this manner, we expanded the number of known receptors on BAs at least 25-fold, while showing that the expression of classic BA markers is more complex and variable than previously thought.
Collapse
Affiliation(s)
- Jennifer M Spaethling
- *Department of Pharmacology, Department of Genomics and Computational Biology, and Department of Cell and Developmental Biology, Perelman School of Medicine, and Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA; and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, USA
| | - Manuel Sanchez-Alavez
- *Department of Pharmacology, Department of Genomics and Computational Biology, and Department of Cell and Developmental Biology, Perelman School of Medicine, and Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA; and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, USA
| | - JaeHee Lee
- *Department of Pharmacology, Department of Genomics and Computational Biology, and Department of Cell and Developmental Biology, Perelman School of Medicine, and Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA; and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, USA
| | - Feng C Xia
- *Department of Pharmacology, Department of Genomics and Computational Biology, and Department of Cell and Developmental Biology, Perelman School of Medicine, and Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA; and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, USA
| | - Hannah Dueck
- *Department of Pharmacology, Department of Genomics and Computational Biology, and Department of Cell and Developmental Biology, Perelman School of Medicine, and Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA; and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, USA
| | - Wenshan Wang
- *Department of Pharmacology, Department of Genomics and Computational Biology, and Department of Cell and Developmental Biology, Perelman School of Medicine, and Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA; and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, USA
| | - Stephen A Fisher
- *Department of Pharmacology, Department of Genomics and Computational Biology, and Department of Cell and Developmental Biology, Perelman School of Medicine, and Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA; and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, USA
| | - Jai-Yoon Sul
- *Department of Pharmacology, Department of Genomics and Computational Biology, and Department of Cell and Developmental Biology, Perelman School of Medicine, and Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA; and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, USA
| | - Patrick Seale
- *Department of Pharmacology, Department of Genomics and Computational Biology, and Department of Cell and Developmental Biology, Perelman School of Medicine, and Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA; and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, USA
| | - Junhyong Kim
- *Department of Pharmacology, Department of Genomics and Computational Biology, and Department of Cell and Developmental Biology, Perelman School of Medicine, and Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA; and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, USA
| | - Tamas Bartfai
- *Department of Pharmacology, Department of Genomics and Computational Biology, and Department of Cell and Developmental Biology, Perelman School of Medicine, and Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA; and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, USA
| | - James Eberwine
- *Department of Pharmacology, Department of Genomics and Computational Biology, and Department of Cell and Developmental Biology, Perelman School of Medicine, and Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA; and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, USA
| |
Collapse
|
22
|
Fu Y. Adiponectin Signaling and Metabolic Syndrome. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 121:293-319. [DOI: 10.1016/b978-0-12-800101-1.00009-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
23
|
Abstract
Polychlorinated biphenyls (PCBs) are persistent environmental pollutants that can severely disrupt the endocrine system. In the present study, early-weaned male rats were administered a single dose of 2,3,6-2',5'-pentachlorinated biphenyl (PCB 95; 32 mg/kg per day, by i.p. injection) for two consecutive days (postnatal days (PNDs) 15 and 16) and killed 24 and 48 h after the administration of the last dose. Compared with the control group, administration of PCB 95 induced a reduction (P<0.01) in serum concentrations of thyroxine, triiodothyronine, and GH and an increase (P<0.01) in the serum concentration of TSH at PNDs 17 and 18. These conspicuous perturbations led to some histopathological deterioration in the thyroid gland characterized by follicular degeneration, edema, fibrosis, hemorrhage, luminal obliteration, and hypertrophy with reduced colloidal contents at PND 18. The dyshormonogenesis and thyroid dysgenesis may be attributed to the elevation of DNA fragmentation at PNDs 17 and 18. Furthermore, this hypothyroid state revealed higher (P<0.01) serum concentrations of leptin, adiponectin, and tumor necrosis factor and lower (P<0.01) serum concentrations of IGF1 and insulin at both PNDs compared with the control group. Interestingly, the body weight of the neonates in the PCB 95 group exhibited severe decreases throughout the experimental period in relation to that of the control group. These results imply that PCB 95 may act as a disruptor of the developmental hypothalamic-pituitary-thyroid axis. Hypothyroidism caused by PCB 95 may impair the adipokine axis, fat metabolism, and in general postnatal development. Thus, further studies need to be carried out to understand this concept.
Collapse
Affiliation(s)
- R G Ahmed
- Division of Anatomy and Embryology, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, PO 62514, Egypt
| |
Collapse
|
24
|
Jimenez V, Muñoz S, Casana E, Mallol C, Elias I, Jambrina C, Ribera A, Ferre T, Franckhauser S, Bosch F. In vivo adeno-associated viral vector-mediated genetic engineering of white and brown adipose tissue in adult mice. Diabetes 2013; 62:4012-22. [PMID: 24043756 PMCID: PMC3837045 DOI: 10.2337/db13-0311] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Adipose tissue is pivotal in the regulation of energy homeostasis through the balance of energy storage and expenditure and as an endocrine organ. An inadequate mass and/or alterations in the metabolic and endocrine functions of adipose tissue underlie the development of obesity, insulin resistance, and type 2 diabetes. To fully understand the metabolic and molecular mechanism(s) involved in adipose dysfunction, in vivo genetic modification of adipocytes holds great potential. Here, we demonstrate that adeno-associated viral (AAV) vectors, especially serotypes 8 and 9, mediated efficient transduction of white (WAT) and brown adipose tissue (BAT) in adult lean and obese diabetic mice. The use of short versions of the adipocyte protein 2 or uncoupling protein-1 promoters or micro-RNA target sequences enabled highly specific, long-term AAV-mediated transgene expression in white or brown adipocytes. As proof of concept, delivery of AAV vectors encoding for hexokinase or vascular endothelial growth factor to WAT or BAT resulted in increased glucose uptake or increased vessel density in targeted depots. This method of gene transfer also enabled the secretion of stable high levels of the alkaline phosphatase marker protein into the bloodstream by transduced WAT. Therefore, AAV-mediated genetic engineering of adipose tissue represents a useful tool for the study of adipose pathophysiology and, likely, for the future development of new therapeutic strategies for obesity and diabetes.
Collapse
|
25
|
Ebner A, Poitz DM, Alexiou K, Deussen A. Secretion of adiponectin from mouse aorta and its role in cold storage-induced vascular dysfunction. Basic Res Cardiol 2013; 108:390. [PMID: 24121466 DOI: 10.1007/s00395-013-0390-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 09/11/2013] [Accepted: 09/25/2013] [Indexed: 01/03/2023]
Abstract
Availability of adiponectin plays a crucial role in cardiovascular function. The present study was conducted to evaluate the presence, alterations and impact of the various adiponectin isoforms in vascular tissue under clinically relevant in vitro conditions (cold storage). Presence of various adiponectin isoforms in vascular smooth muscle cells and their regulation during cold storage was evaluated by PCR, western blot, ELISA and immunohistochemistry. The impact of the various isoforms for vessel preservation was assessed using isometric force measurement as an in vitro assay for vascular function. Adiponectin is expressed in smooth muscle cells from murine aortae and human saphenous veins. Following 2 days of cold storage adiponectin mRNA expression in mouse aorta is reduced, which appears to be regulated indirectly by miR-292-3p. Despite the reduced mRNA expression, adiponectin accumulated in cold storage supernatant over 2 days indicating a net release of adiponectin. Two days of cold storage resulted in an impairment of endothelium-dependent relaxation which was prevented by addition of full-length adiponectin in concentrations similar to normal plasma levels during storage. In contrast, addition of recombinant adiponectin which is unable to form high order multimers failed to improve vessel function. High concentrations (20 μg/mL) of this trimeric isoform even reduced the vasorelaxation response and facilitated uncoupling of endothelial nitric oxide synthase. Endothelial injury by cold storage may partly be prevented by addition of high-molecular-weight adiponectin. This effect may support graft patency to avoid coagulation- and atherosclerosis-associated impairment of perfusion.
Collapse
Affiliation(s)
- Annette Ebner
- Department of Physiology, Medical Faculty Carl Gustav Carus, University of Technology Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | | | | | | |
Collapse
|
26
|
Iacobellis G, Di Gioia C, Petramala L, Chiappetta C, Serra V, Zinnamosca L, Marinelli C, Ciardi A, De Toma G, Letizia C. Brown fat expresses adiponectin in humans. Int J Endocrinol 2013; 2013:126751. [PMID: 24348550 PMCID: PMC3848049 DOI: 10.1155/2013/126751] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 09/24/2013] [Accepted: 09/24/2013] [Indexed: 11/17/2022] Open
Abstract
The presence of brown adipose tissue (BAT) in humans is unclear. Pheochromocytomas (PHEO) are rare tumors of neuroectodermal origin which occur in 0.1-0.2% of patients with hypertension. We sought to evaluate the presence and activity of BAT surrounding adrenal PHEO in a well-studied sample of 11 patients who were diagnosed with PHEO and then underwent adrenalectomy. Areas of white fat (WAT) and BAT surrounding PHEO were obtained by Laser Capture Microdissection for analysis of uncoupling protein (UCP)-1 and adiponectin mRNA expression. Adiponectin and UCP-1 mRNA levels were significantly higher in BAT than in WAT (0.62 versus 0.15 and 362.4 versus 22.1, resp., P < 0.01 for both). Adiponectin mRNA levels significantly correlated with urinary metanephrines (r = 0.76, P < 0.01), vanilly mandelic acid (VMA) (r = 0.95, P < 0.01), and serum adiponectin levels (r = 0.95, P < 0.01). Serum adiponectin levels significantly decreased (24.2 ± 2 μ g/mL versus 18 ± 11 μ g/mL, P < 0.01) after adrenalectomy in PHEO subjects. This study provides the following findings: (1) BAT surrounding PHEO expresses adiponectin and UCP-1 mRNA, (2) expression of adiponectin mRNA is significantly higher in BAT than in WAT surrounding PHEO, and (3) catecholamines and serum adiponectin levels significantly correlate with BAT UCP-1 and adiponectin mRNA.
Collapse
Affiliation(s)
- Gianluca Iacobellis
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Cira Di Gioia
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University of Rome, 00165 Rome, Italy
| | - Luigi Petramala
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, 155 Viale del Policlinico, 00165 Rome, Italy
| | - Caterina Chiappetta
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University of Rome, 00165 Rome, Italy
| | - Valentina Serra
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, 155 Viale del Policlinico, 00165 Rome, Italy
| | - Laura Zinnamosca
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, 155 Viale del Policlinico, 00165 Rome, Italy
| | - Cristiano Marinelli
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, 155 Viale del Policlinico, 00165 Rome, Italy
| | - Antonio Ciardi
- Department of Surgery “P. Valdoni”, Sapienza University of Rome, 00165 Rome, Italy
| | - Giorgio De Toma
- Department of Surgery “P. Valdoni”, Sapienza University of Rome, 00165 Rome, Italy
| | - Claudio Letizia
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, 155 Viale del Policlinico, 00165 Rome, Italy
- *Claudio Letizia:
| |
Collapse
|
27
|
Cinar N, Gurlek A. Association between novel adipocytokines adiponectin, vaspin, visfatin, and thyroid: An experimental and clinical update. Endocr Connect 2013; 2:R30-8. [PMID: 24145612 PMCID: PMC3847914 DOI: 10.1530/ec-13-0061] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Adipose tissue secretes a variety of active biological substances, called adipocytokines, that act in an autocrine, paracrine, and endocrine manner. They have roles in appetite control, thermogenesis, and thyroid and reproductive functions. All these molecules may lead to local and generalized inflammation, mediating obesity-associated vascular disorders including hypertension, diabetes, atherosclerosis, and insulin resistance. Thyroid dysfunction is associated with changes in body weight, thermogenesis, and energy expenditure. The connections between cardiovascular risk factors such as dyslipidemia, impaired glucose tolerance, insulin resistance, atherosclerosis, and thyroid dysfunction have been reported in several studies. The adipocytokines serve as causative or protective factors in the development of these disorders in the states of thyroid dysfunction. Abnormal levels of adipocytokines (adiponectin (ADP), leptin, resistin, vaspin, and visfatin) in hypo- and hyperthyroidism have been reported with controversial results. This review aims to update the implication of novel adipokines ADP, vaspin, and visfatin in thyroid dysfunction.
Collapse
|
28
|
Prats-Puig A, Sitjar C, Ribot R, Calvo M, Clausell-Pomés N, Soler-Roca M, Soriano-Rodríguez P, Osiniri I, Ros-Miquel M, Bassols J, de Zegher F, Ibáñez L, López-Bermejo A. Relative hypoadiponectinemia, insulin resistance, and increased visceral fat in euthyroid prepubertal girls with low-normal serum free thyroxine. Obesity (Silver Spring) 2012; 20:1455-61. [PMID: 21738234 DOI: 10.1038/oby.2011.206] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A lower activity of the thyroid axis within the clinical reference range is related to a dysmetabolic phenotype in adult populations. We posited that such an association is already present as early as in prepubertal childhood. Serum thyroid stimulating hormone (TSH) and free T4, body fat (bioelectric impedance), insulin resistance (homeostasis model assessment of insulin resistance (HOMA(IR))), total and high molecular weight (HMW)-adiponectin and serum lipids were assessed in 234 euthyroid prepubertal children (113 boys and 121 girls) attending primary care clinics. Visceral fat (abdominal ultrasound) was measured in a subset of these subjects (n = 147; 74 boys and 73 girls). Explants of visceral adipose tissue from an additional six prepubertal children (three boys and three girls) were used to study the regulation of total and HMW-adiponectin by thyroid hormone. Serum free T4 was in girls independently associated with HMW-adiponectin, HOMA(IR) and visceral fat, so that circulating HMW-adiponectin decreased by 30% (β = 0.305 P < 0.005, R(2) = 0.13) and HOMA(IR) and visceral fat increased, respectively, by 90% (β = -0.255 P < 0.01, R(2) = 0.05) and 30% (β = -0.369, P < 0.005, R(2) = 0.12) from the highest to the lowest tertile of serum free T4. Nonsignificant differences in these parameters were found in boys. Treatment of visceral fat explants with thyroid hormone increased total and HMW-adiponectin by 70% and 53%, respectively, above control values (P < 0.01). In conclusion, a dysmetabolic phenotype, consisting of relative hypoadiponectinemia, insulin resistance and increased visceral fat, is associated with low-normal serum free thyroxine in euthyroid prepubertal girls. These associations may be partly explained by a positive regulation of HMW-adiponectin secretion by thyroid hormone.
Collapse
|
29
|
Wree A, Mayer A, Westphal S, Beilfuss A, Canbay A, Schick RR, Gerken G, Vaupel P. Adipokine expression in brown and white adipocytes in response to hypoxia. J Endocrinol Invest 2012; 35:522-7. [PMID: 21952510 DOI: 10.3275/7964] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Adipose tissue has emerged as an important endocrine regulator by secreting hormones referred to as adipokines. Recent studies showed that adipose tissue considerably responds to hypoxia. Although the impact of white adipose tissue on regulative processes is established, the importance of brown adipose tissue in adults has emerged just recently. METHODS Brown (BA) and white adipocytes (WA) were cultured either in the presence of chemical hypoxia-mimetics or under hypoxic atmosphere of 1% oxygen. Expression of hypoxia-inducible factor 1α (HIF- 1α) was assessed by western blot. The expression levels of several known HIF-1α-regulated proteins [vascular endothelial growth factor (VEGF), leptin, adiponectin, and angiotensinogen (AGT)] were quantified. RESULTS Both chemical hypoxia-mimetics and physical hypoxia led to increased nuclear HIF-1α expression and to decreased cytoplasmatic adiponectin in both cell types. In contrast, VEGF and AGT expression did not change upon hypoxic stimulation. Leptin was exclusively detectable in WA, while uncoupling-protein 1 (UCP-1) was expressed in BA only. CONCLUSIONS WA and BA are sensitive to hypoxia, in which HIF-1α expression is induced. Protein expression of adiponectin is hypoxia-dependent, whereas AGT, VEGF, leptin, and UCP-1 expression do not change secondary to hypoxia.
Collapse
Affiliation(s)
- A Wree
- Department of Gastroenterology and Hepatology, University of Essen, University Hospital Essen, Hufelandstrasse 55, 45122 Essen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
de Oliveira C, de Mattos ABM, Silva CBR, Mota JF, Zemdegs JCS. Nutritional and hormonal modulation of adiponectin and its receptors adipoR1 and adipoR2. VITAMINS AND HORMONES 2012; 90:57-94. [PMID: 23017712 DOI: 10.1016/b978-0-12-398313-8.00003-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Adiponectin is the most abundant plasma protein synthesized mostly by adipose tissue and is an insulin-sensitive hormone, playing a central role in glucose and lipid metabolism. Adiponectin effects are mediated via two receptors, adipoR1 and adipoR2. Several hormones and diet components that are involved in insulin resistance may impair insulin sensitivity at least in part by decreasing adiponectin and adiponectin receptors. Adiponectin expression and serum levels are associated with the amount and type of fatty acids and carbohydrate consumed. Other food items, such as vitamins, alcohol, sodium, green tea, and coffee, have been reported to modify adiponectin levels. Several hormones, including testosterone, estrogen, prolactin, glucocorticoids, catecholamines, and growth hormone, have been shown to inhibit adiponectin production, but the studies are still controversial. Even so, adiponectin is a potential therapeutic target in the treatment of diabetes mellitus and other diseases associated with hypoadiponectinemia.
Collapse
Affiliation(s)
- Cristiane de Oliveira
- Systemic Inflammation Laboratory, Trauma Research, St. Joseph's Hospital and Medical Center, Phoenix, USA.
| | | | | | | | | |
Collapse
|
31
|
Regulation of adiponectin gene expression in adipose tissue by thyroid hormones. J Physiol Biochem 2011; 68:193-203. [DOI: 10.1007/s13105-011-0131-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 11/15/2011] [Indexed: 10/15/2022]
|
32
|
Sassmann A, Offermanns S, Wettschureck N. Tamoxifen-inducible Cre-mediated recombination in adipocytes. Genesis 2011; 48:618-25. [PMID: 20715175 DOI: 10.1002/dvg.20665] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
To generate a mouse line which allows inducible, Cre/loxP-dependent recombination in adipocytes, we used RedE/RedT-mediated recombineering to insert the CreER(T)²-transgene, which encodes a fusion protein of Cre and a mutated tamoxifen-responsive estrogen receptor, into the start codon of the adipocyte-specific Adipoq gene. Adipoq encodes adiponectin, an adipokine specifically expressed in differentiated adipocytes. Tamoxifen treatment induced almost complete recombination in white adipose tissue of the AdipoqCreER(T)² mouse line (97%-99%), while no recombination was seen in vehicle-treated animals. Recombination in brown adipose tissue was about 15%, whereas other organs and tissues did not undergo recombination. In addition, mice expressing CreER(T)² in adipocytes did not show any alterations of metabolic functions like glucose tolerance, lipolysis, or energy expenditure compared to control mice. Therefore the AdipoqCreER(T)² mouse line will be a valuable tool for studying the consequences of a temporally controlled deletion of floxed genes in white adipose tissue.
Collapse
Affiliation(s)
- Antonia Sassmann
- Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | | | | |
Collapse
|
33
|
Miranda S, González-Rodríguez A, Revuelta-Cervantes J, Rondinone CM, Valverde AM. Beneficial effects of PTP1B deficiency on brown adipocyte differentiation and protection against apoptosis induced by pro- and anti-inflammatory stimuli. Cell Signal 2009; 22:645-59. [PMID: 20026400 DOI: 10.1016/j.cellsig.2009.11.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 11/18/2009] [Accepted: 11/28/2009] [Indexed: 10/20/2022]
Abstract
Insulin is an inducer of brown fat adipogenesis through the activation of a signalling network that involves positive/negative modulators. Given the importance of brown adipose tissue (BAT) for basal thermogenic energy expenditure, we investigated the role of PTP1B in the acquisition of terminal differentiated phenotype and in the apoptotic responses of brown adipocytes. Immortalized brown preadipocytes lacking (PTP1B(-/-)) or expressing (PTP1B(+/+)) PTP1B have been generated. PTP1B deficiency accelerated a full program of brown adipogenesis including induction of transcription factors, coactivators, adipogenic markers and signalling molecules. Fully differentiated PTP1B(-/-) brown adipocytes were resistant to tumor necrosis factor (TNFalpha)-induced apoptosis as these cells were protected against caspase-8 activation, FLIP degradation, Bid cleavage and caspase-3 activation compared to wild-type controls. These events were recovered by PTP1B rescue. Survival signalling including phosphorylation of IRS-1 and Akt/PKB and BclxL expression were decreased in TNFalpha-treated PTP1B(-/-) cells but not in the wild-type. Similarly, PTP1B(-/-) brown adipocytes were protected against resveratrol-induced apoptosis. Phosphorylation of Akt/PKB and Foxo1 phosphorylation/acetylation decreased exclusively in resveratrol-treated wild-type cells, leading to nuclear localization of Foxo1 and up-regulation of Bim. Thus, PTP1B inhibition could be of benefit against obesity by counteracting TNFalpha-induced brown fat atrophy, and combined with resveratrol might improve low-grade inflammation.
Collapse
Affiliation(s)
- Soledad Miranda
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC/UAM), C/ Arturo Pérez Duperier 4, 28029 Madrid, Spain
| | | | | | | | | |
Collapse
|
34
|
Abstract
Obesity leads to insulin resistance because the larger adipocytes in obese persons secrete proinflammatory cytokines that cause chronic inflammation in adipose tissue. This, in turn, leads to the alteration of adipokine secretion, which can induce insulin resistance. However, the development of insulin resistance without obesity is still obscure. We aimed to use an animal inflammation model with cotton pellet granuloma (CPG) in adipose tissue to characterize insulin resistance formation. We found that CPG in epididymal white adipose tissue (WAT), rather than in interscapular brown adipose tissue, impaired insulin sensitivity, and glucose utilization, and that it decreased levels of phosphoinsulin receptor and phospho-Akt in both muscle and liver tissue, but that it did not modify the body weight or food intake in mice. Macrophage infiltration in adipose tissue, leukocyte counts, monocyte chemoattractant protein-1, and interleukin-6 were elevated in CPG-treated mice. However, we found a marked decrease of plasma adiponectin only in the WAT group, which might have been because of the lower level of peroxisome proliferator-activated receptor-gamma in WAT. These results show that granuloma formation in WAT by implantation of a cotton pellet may induce insulin resistance under nonobese condition through circulating inflammatory mediators, especially the low level of adiponectin.
Collapse
|
35
|
A disulfide-bond A oxidoreductase-like protein (DsbA-L) regulates adiponectin multimerization. Proc Natl Acad Sci U S A 2008; 105:18302-7. [PMID: 19011089 DOI: 10.1073/pnas.0806341105] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Impairments in adiponectin multimerization lead to defects in adiponectin secretion and function and are associated with diabetes, yet the underlying mechanisms remain largely unknown. We have identified an adiponectin-interacting protein, previously named GST-kappa, by yeast 2-hybrid screening. The adiponectin-interacting protein contains 2 thioredoxin domains and has very little sequence similarity to other GST isoforms. However, this protein shares high sequence and secondary structure homology to bacterial disulfide-bond A oxidoreductase (DsbA) and is thus renamed DsbA-like protein (DsbA-L). DsbA-L is highly expressed in adipose tissue, and its expression level is negatively correlated with obesity in mice and humans. DsbA-L expression in 3T3-L1 adipocytes is stimulated by the insulin sensitizer rosiglitazone and inhibited by the inflammatory cytokine TNFalpha. Overexpression of DsbA-L promoted adiponectin multimerization while suppressing DsbA-L expression by RNAi markedly and selectively reduced adiponectin levels and secretion in 3T3-L1 adipocytes. Our results identify DsbA-L as a key regulator for adiponectin biosynthesis and uncover a potential new target for developing therapeutic drugs for the treatment of insulin resistance and its associated metabolic disorders.
Collapse
|
36
|
Hass N, Haub H, Stevens R, Breer H, Schwarzenbacher K. Expression of adiponectin receptor 1 in olfactory mucosa of mice. Cell Tissue Res 2008; 334:187-97. [PMID: 18791742 DOI: 10.1007/s00441-008-0677-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Accepted: 08/18/2008] [Indexed: 01/18/2023]
Abstract
AdipoR1 and AdipoR2 are receptors for the adipocyte-derived hormone adiponectin, which is an important regulator of glucose and lipid metabolism, and which has also been implicated in the control of food intake and energy homeostasis. In the present study, we have demonstrated that AdipoR1 is expressed in mature sensory neurons of the olfactory mucosa of mice, in a pattern reminiscent of the olfactory marker protein. AdipoR1 expression levels in the olfactory mucosa have been observed to increase gradually during late embryogenesis until adulthood. No local expression of adiponectin has been detected in nasal tissues, indicating that serum adiponectin is the ligand for AdipoR1 in olfactory sensory neurons. As the serum adiponectin concentration is regulated depending on adipose tissue mass, with a reduction of adiponectin levels being seen in obesity, AdipoR1 function in the olfactory epithelium seems to be directly linked to the nutritional status of the body, suggesting a potential modulatory role for AdipoR1 in the adjustment of the olfactory system to energy balance requirements.
Collapse
Affiliation(s)
- Nicole Hass
- Institute of Physiology (230), University of Hohenheim, Garbenstrasse 30, 70599, Stuttgart, Germany.
| | | | | | | | | |
Collapse
|
37
|
Wert SE. Does adiponectin play a role in pulmonary emphysema? Am J Physiol Lung Cell Mol Physiol 2008; 294:L1032-4. [DOI: 10.1152/ajplung.90273.2008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
38
|
Nishida M, Funahashi T, Shimomura I. Pathophysiological significance of adiponectin. Med Mol Morphol 2007; 40:55-67. [PMID: 17572841 DOI: 10.1007/s00795-007-0366-7] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Accepted: 03/16/2007] [Indexed: 12/22/2022]
Abstract
Adipose tissue, which classically has been considered as an energy-storing organ, is now viewed as a massive source of bioactive substances such as leptin, tumor necrosis factor (TNF)-alpha, and adiponectin. Adiponectin was discovered to be the most abundant adipose-specific transcript. Its function had been unclear, but epidemiological and clinical studies have demonstrated that serum levels of adiponectin are inversely associated with body weight, especially abdominal visceral fat accumulation. In addition, adiponectin was inversely related to cardiovascular risk factors, such as insulin resistance, blood pressure, and low-density lipoprotein (LDL) cholesterol and triglyceride levels, and was positively related to high-density lipoprotein (HDL) cholesterol levels. Moreover, low adiponectin concentration is associated with a high incidence of cardiovascular disease (CVD), diabetes, some kinds of cancer, and other various diseases. These associations suggest the clinical significance of adiponectin, and a number of investigations are now being conducted to clarify the biological functions of adiponectin. Recent studies have revealed that adiponectin exhibits antiinflammatory, antiatherogenic, and antidiabetic properties. In addition, adiponectin has been thought to be a key molecule in "metabolic syndrome," which is an epidemiological target for preventing cardiovascular disease. Various functions of adiponectin may possibly serve to prevent and treat obesity-related diseases and CVD. Furthermore, enhancement of adiponectin secretion or action may become a promising therapeutic target.
Collapse
Affiliation(s)
- Makoto Nishida
- Health Care Center, Osaka University 1-17 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.
| | | | | |
Collapse
|
39
|
Aragão CN, Souza LL, Cabanelas A, Oliveira KJ, Pazos-Moura CC. Effect of experimental hypo- and hyperthyroidism on serum adiponectin. Metabolism 2007; 56:6-11. [PMID: 17161219 DOI: 10.1016/j.metabol.2006.08.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2006] [Accepted: 08/07/2006] [Indexed: 11/27/2022]
Abstract
Adiponectin, an adipocyte-derived hormone, has been shown to decrease body weight by increasing thermogenesis and lipid oxidation. Thyroid hormones have similar effects. Here we investigated if experimental hypo- and hyperthyroidism in rats would induce changes in serum adiponectin concentration. Adult rats became hypothyroid by treatment with 0.03% methimazole in the drinking water for 28 days or hyperthyroid by subcutaneous thyroxine injections (50 microg/100g body weight) for 10 days. Serum adiponectin level of hyperthyroid rats was 3.2-fold higher than that of euthyroid ones (P < .001), whereas that in hypothyroid rats tended to be lower (38%), but without statistical significance. Serum adiponectin had a positive correlation with serum thyroxine (r = .81, P < .001) and triiodothyronine (r = 0.68, P = .03) and a negative correlation with serum thyroid-stimulating hormone (P = -.62, r = 0.015). In addition, there was a negative correlation between serum adiponectin level and total visceral white adipose mass (= sum of inguinal, epididymal, and retroperitoneal depots; r = -0.43; P = .032), which was reduced by 40.5% in hyperthyroid (P < .01) but not in hypothyroid animals. A positive association between serum adiponectin level and brown adipose tissue mass was found (r = 0.43, P = .03), but not with body weight, which was reduced in both hypo- and hyperthyroid groups. Adiponectin has been reported to have an insulin-sensitizing effect. However, in hyperthyroid rats, higher serum adiponectin level was not accompanied by statistically different changes in basal serum insulin levels, blood glucose concentrations, or glucose tolerance as compared with euthyroid rats, except for a slight increase in blood glucose level at 120 minutes after glucose intraperitoneal administration (P < .05). Therefore, experimental hypothyroidism did not change serum adiponectin concentration, whereas hyperthyroidism induced an important elevation in the serum hormone concentration, with still unknown biological significance.
Collapse
Affiliation(s)
- Christina Nogueira Aragão
- Laboratório de Endocrinologia Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, CEP 21949.900 Rio de Janeiro, RJ, Brazil
| | | | | | | | | |
Collapse
|
40
|
Bansal N, Charlton-Menys V, Pemberton P, McElduff P, Oldroyd J, Vyas A, Koudsi A, Clayton PE, Cruickshank JK, Durrington PN. Adiponectin in umbilical cord blood is inversely related to low-density lipoprotein cholesterol but not ethnicity. J Clin Endocrinol Metab 2006; 91:2244-9. [PMID: 16551729 DOI: 10.1210/jc.2005-2714] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Adiponectin is a recognized protective risk marker for cardiovascular disease in adults and is associated with an optimal lipid profile. The role of adiponectin at birth is not well understood, and its relationship with the neonatal lipid profile is unknown. Because ethnic disparities in cardiovascular risk have been attributed to low adiponectin and its associated low high-density lipoprotein cholesterol (HDL-C), investigation at birth may help determine the etiology of these risk patterns. OBJECTIVE Our objective was to investigate the relationship between neonatal adiponectin and lipid profile at birth in two ethnic groups in cord blood. DESIGN, SETTING, AND PARTICIPANTS Seventy-four healthy mothers and their newborns of South Asian and White European origin were studied in this cross-sectional study at St. Mary's Hospital, Manchester, United Kingdom. MAIN OUTCOME MEASURES Serum adiponectin, total cholesterol, HDL-C, low-density lipoprotein cholesterol (LDL-C), and triglyceride levels were measured in umbilical venous blood at birth and in maternal blood collected at 28 wk gestation. RESULTS Cord adiponectin was significantly inversely associated with cord LDL-C (r = -0.32; P = 0.005) but not HDL-C. In a multiple regression analysis, cord LDL-C remained the most significant association of cord adiponectin (beta = -0.13; P < 0.001). We did not find any significant ethnic differences in cord adiponectin or lipids with the exception of triglycerides, which were significantly lower in South Asian newborns (P < 0.05). CONCLUSION This is the first report of an inverse relationship between cord adiponectin and LDL-C at birth. In contrast to adult studies, we found no significant association between adiponectin and HDL-C in cord blood. Our results and the strong independent association between adiponectin and HDL-C observed in adult studies suggest a role for adiponectin in lipid metabolism. Ethnic differences in adiponectin may arise after birth.
Collapse
Affiliation(s)
- Narinder Bansal
- Clinical Epidemiology Group, University of Manchester Medical School, Stopford Building, Oxford Road, Manchester, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|