1
|
Tammineni ER, Manno C, Oza G, Figueroa L. Skeletal muscle disorders as risk factors for type 2 diabetes. Mol Cell Endocrinol 2025; 599:112466. [PMID: 39848431 PMCID: PMC11886953 DOI: 10.1016/j.mce.2025.112466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/27/2024] [Accepted: 01/20/2025] [Indexed: 01/25/2025]
Abstract
The incidence and prevalence of muscular disorders and of type 2 diabetes (T2D) is increasing and both represent highly significant healthcare problems, both economically and compromising quality of life. Interestingly, skeletal muscle dysfunction and T2D share some commonalities including dysregulated glucose homeostasis, increased oxidative stress, dyslipidemia, and cytokine alterations. Several lines of evidence have hinted to a relationship between skeletal muscle dysfunction and T2D. For instance, T2D affects skeletal muscle morphology, functionality, and overall health through altered protein metabolism, impaired mitochondrial function, and ultimately cell viability. Conversely, humans suffering from myopathies and their experimental models demonstrated increased incidence of T2D through altered muscle glucose disposal function due to abnormal calcium homeostasis, compromised mitochondrial function, dyslipidemia, increased inflammatory cytokines and fiber size alterations and disproportions. Lifestyle modifications are essential for improving and maintaining mobility and metabolic health in individuals suffering from myopathies along with T2D. In this review, we updated current literature evidence on clinical incidence of T2D in inflammatory, mitochondrial, metabolic myopathies, and muscular dystrophies and further discussed the molecular basis of these skeletal muscle disorders leading to T2D.
Collapse
Affiliation(s)
| | - Carlo Manno
- Department of Physiology and Biophysics, Rush University, Chicago, USA
| | - Goldie Oza
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica S. C., Queretaro, Mexico
| | - Lourdes Figueroa
- Department of Physiology and Biophysics, Rush University, Chicago, USA
| |
Collapse
|
2
|
Gao R, Gu L, Zuo W, Wang P. Comprehensive predictors of drug-resistant epilepsy in MELAS: clinical, EEG, imaging, and biochemical factors. BMC Neurol 2025; 25:64. [PMID: 39953503 PMCID: PMC11827305 DOI: 10.1186/s12883-025-04046-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 01/17/2025] [Indexed: 02/17/2025] Open
Abstract
BACKGROUND Seizures are a common but often overlooked manifestation of MELAS. This study aimed to describe the characteristics of seizures in MELAS and to analyze the clinical, electroencephalographic, imaging, and biochemical factors associated with drug-resistant epilepsy. METHODS A single-center retrospective study was conducted to investigate the clinical characteristics of seizures in MELAS patients. The study collected data on clinical features, muscle biopsy results, genetic testing, seizure symptoms, electroencephalography (EEG), neuroimaging findings, cerebrospinal fluid and blood biochemistry, and the modified Rankin Scale (mRS). We also investigated the correlation between seizure frequency and mRS scores. In addition, we analyzed the risk factors for drug-resistant epilepsy in MELAS. RESULTS A total of 37 patients with confirmed MELAS (24 males and 13 females) were included in the study. All patients experienced seizures, with an onset age ranging from 14 to 53 years and a mean of 32 years. These MELAS patients experienced a variety of seizure types, with generalized seizures being the most common. EEG findings revealed background rhythm abnormalities in all patients, and epileptiform discharges were observed in 37.8% of patients during the interictal phase. Status epilepticus (OR 16.499; 95% CI, 1.615-168.557; P = 0.018) and elevated resting serum lactate levels (OR 8.594; 95% CI, 1.342-59.733; P = 0.024) were identified as independent risk factors for drug-resistant epilepsy. In addition, changes in the seizure frequency at the last follow-up compared to baseline were positively correlated with the mRS score. (r = 0.533, p < 0.001). CONCLUSION Status epilepticus and elevated resting serum lactate levels were predictive of the development of drug-resistant epilepsy in MELAS. Poor seizure control was significantly associated with increased clinical disability. Early identification of high-risk patients for drug-resistant epilepsy could facilitate the development of more effective treatment plans.
Collapse
Affiliation(s)
- Rui Gao
- Department of Neurology, Tianjin Huanhu Hospital, Nankai University, Tianjin, China
| | - Lihua Gu
- Department of Neurology, Tianjin Huanhu Hospital, Nankai University, Tianjin, China
| | - Wenchao Zuo
- Department of Neurology, Tianjin Huanhu Hospital, Nankai University, Tianjin, China
| | - Pan Wang
- Department of Neurology, Tianjin Huanhu Hospital, Nankai University, Tianjin, China.
| |
Collapse
|
3
|
Stoevesandt D, Schlitt A, Röntgen P, Kraya T. Cardiac manifestations in adult MELAS syndrome (mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes syndrome)- a cross-sectional study. Orphanet J Rare Dis 2025; 20:62. [PMID: 39930534 PMCID: PMC11812182 DOI: 10.1186/s13023-025-03534-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/27/2024] [Indexed: 02/13/2025] Open
Abstract
BACKROUND Cardiac involvement has been reported in different mitochondrial geno- and phenotypes, including mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like (MELAS) syndrome. However, cardiac manifestations are diverse and not well described. METHODS We prospectively examined cardiac manifestations in 11 adult patients with MELAS syndrome harboring the MTTL1 m.3243A < G-mutation using patient records, cardiac MRI (1.5 Tesla), echocardiography, electrocardiogram (ECG), laboratory tests of cardiac markers (CK, CK-MB, Trop I, BNP), and clinical severity (NMDAS = Newcastle Mitochondrial Disease Scale). RESULTS Among 11 consecutive patients with MELAS syndrome (73% male, mean age 37.5 ± 10.6 years) cardiac manifestations were found in nine (82%). Pathology was mainly detected using MRI (9 of 11, 82%). Six patients showed diffuse late enhancement in the left ventricle, one a left ventricular ejection fraction (LVEF) below 30%, two with a LVEF in the range of 40-50% in the cardiac MRI, and another five patients presenting diastolic dysfunction as defined by echocardiography. Only one patient with late enhancement on MRI also showed a conduction block in the ECG. There was no correlation between the cardiac manifestations and the NMDAS score or heteroplasmy grade. CONCLUSIONS Cardiac involvement in MELAS syndrome harboring the MTTL1 m.3243A > G mutation mostly entails cardiomyopathy, which was particularly evident in the cardiac MRI. Only one patient (1/11, 9.1%) had conduction defects. Thus, cardiac testing including cardiac MRI, echocardiography and ECG seems to be important for prognosis of MELAS patients.
Collapse
Affiliation(s)
- Dietrich Stoevesandt
- Department of Radiology, University Hospital Halle-Saale, Ernst-Grube Str. 40, 06097, Halle/Saale, Germany.
| | - Axel Schlitt
- Medical Faculty, Martin Luther-University Halle-Wittenberg, Halle/Saale, Germany
- Paracelsus-Harz-Clinic Bad Suderode, Quedlinburg, Germany
| | - Philipp Röntgen
- Department of Radiology, University Hospital Halle-Saale, Ernst-Grube Str. 40, 06097, Halle/Saale, Germany
| | - Torsten Kraya
- Department of Neurology, University Hospital Halle-Saale, Ernst-Grube Str. 40, 06097, Halle/Saale, Germany
- Department of Neurology, St Georg Hospital Leipzig, Ernst-Grube Str. 40, 06097, Halle/Saale, Leipzig, Germany
| |
Collapse
|
4
|
Kahraman R, Kaya SA, Demir S, Şahin Ş, Ertürk Çetin Ö. Lateralized periodic discharges and photic sensitivity in adult onset MELAS syndrome in twin sisters. Clin Neurol Neurosurg 2025; 249:108744. [PMID: 39823963 DOI: 10.1016/j.clineuro.2025.108744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/12/2025] [Accepted: 01/13/2025] [Indexed: 01/20/2025]
Abstract
Mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome is one of the most common mitochondrial disorders, typically presenting with symptoms before the age of 40. Epileptic seizures are a common manifestation, with both focal and generalized seizures being observed. EEG findings can be variable, with the most common patterns being slow background activity followed by epileptiform discharges.Here, we present monozygotic twin sisters with late-onset MELAS and specific EEG features, including lateralized periodic discharges and sensitivity to photic stimulation, which have been rarely reported in the literature. These cases emphasize the importance of considering MELAS in the differential diagnosis of late-onset symptoms. Furthermore, EEG findings such as sensitivity to photic stimulation may contribute to understanding MELAS pathophysiology, even during asymptomatic periods.
Collapse
Affiliation(s)
- Rümeysa Kahraman
- Department of Neurology, University of Health Sciences, Sancaktepe Şehit Prof. Dr. İlhan Varank Training and Research Hospital, Istanbul, Turkey
| | - Sena Ayşe Kaya
- Department of Neurology, University of Health Sciences, Sancaktepe Şehit Prof. Dr. İlhan Varank Training and Research Hospital, Istanbul, Turkey
| | - Serkan Demir
- Department of Neurology, University of Health Sciences, Sancaktepe Şehit Prof. Dr. İlhan Varank Training and Research Hospital, Istanbul, Turkey
| | - Şevki Şahin
- Department of Neurology, University of Health Sciences, Sancaktepe Şehit Prof. Dr. İlhan Varank Training and Research Hospital, Istanbul, Turkey
| | - Özdem Ertürk Çetin
- Department of Neurology, University of Health Sciences, Sancaktepe Şehit Prof. Dr. İlhan Varank Training and Research Hospital, Istanbul, Turkey.
| |
Collapse
|
5
|
Wen H, Deng H, Li B, Chen J, Zhu J, Zhang X, Yoshida S, Zhou Y. Mitochondrial diseases: from molecular mechanisms to therapeutic advances. Signal Transduct Target Ther 2025; 10:9. [PMID: 39788934 PMCID: PMC11724432 DOI: 10.1038/s41392-024-02044-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/28/2024] [Accepted: 10/31/2024] [Indexed: 01/12/2025] Open
Abstract
Mitochondria are essential for cellular function and viability, serving as central hubs of metabolism and signaling. They possess various metabolic and quality control mechanisms crucial for maintaining normal cellular activities. Mitochondrial genetic disorders can arise from a wide range of mutations in either mitochondrial or nuclear DNA, which encode mitochondrial proteins or other contents. These genetic defects can lead to a breakdown of mitochondrial function and metabolism, such as the collapse of oxidative phosphorylation, one of the mitochondria's most critical functions. Mitochondrial diseases, a common group of genetic disorders, are characterized by significant phenotypic and genetic heterogeneity. Clinical symptoms can manifest in various systems and organs throughout the body, with differing degrees and forms of severity. The complexity of the relationship between mitochondria and mitochondrial diseases results in an inadequate understanding of the genotype-phenotype correlation of these diseases, historically making diagnosis and treatment challenging and often leading to unsatisfactory clinical outcomes. However, recent advancements in research and technology have significantly improved our understanding and management of these conditions. Clinical translations of mitochondria-related therapies are actively progressing. This review focuses on the physiological mechanisms of mitochondria, the pathogenesis of mitochondrial diseases, and potential diagnostic and therapeutic applications. Additionally, this review discusses future perspectives on mitochondrial genetic diseases.
Collapse
Affiliation(s)
- Haipeng Wen
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Hui Deng
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Bingyan Li
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Junyu Chen
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Junye Zhu
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Xian Zhang
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Shigeo Yoshida
- Department of Ophthalmology, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan
| | - Yedi Zhou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China.
| |
Collapse
|
6
|
Xu S, Jiang J, Chang L, Zhang B, Zhu X, Niu F. Multisystem clinicopathologic and genetic analysis of MELAS. Orphanet J Rare Dis 2024; 19:487. [PMID: 39719631 DOI: 10.1186/s13023-024-03511-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 12/15/2024] [Indexed: 12/26/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes (MELAS) syndrome is a maternally inherited mitochondrial disorder that mostly affects the central nervous system and skeletal muscle. This study provides a comprehensive summary of the clinical symptoms, multisystemic pathogenesis, and genetic characteristics of MELAS syndrome. The aim was to improve comprehension of clinical practice and gain a deeper understanding of the latest pathophysiological theories. METHODS The present investigation involved a cohort of patients diagnosed with MELAS at Nanjing Drum Tower Hospital between January 2014 and December 2022. Multisystem symptoms, magnetic resonance imaging/spectroscopy (MRI/MRS), muscle biopsy, and mitochondrial DNA (mtDNA) data were summarized and subsequently analysed. RESULTS This retrospective study included a cohort of 29 MELAS patients who predominantly presented symptoms such as stroke-like episodes, proximal muscle weakness, and exercise intolerance. MRI scans revealed very small infarcts beneath the deep cortex during stroke-like episodes, indicating nonvascular brain damage. Pathology analyses of the brain also showed neuronal degeneration and glial cell proliferation in the cerebral parenchyma. Proton magnetic resonance spectroscopy (1H-MRS) analysis revealed an increase in the lactate peak and a reduction in the N-acetylaspartate (NAA) level. Similarly, the phosphorus magnetic resonance spectroscopy (31P-MRS) analysis revealed an abnormal ratio of inorganic phosphate (Pi) to phosphocreatine (PCr). Muscle biopsy revealed the presence of ragged red fibres (RRFs) and cytochrome c oxidase (COX) enzyme-defective cells. These abnormalities indicate structural abnormalities in the mitochondria and deficiencies in oxidative phosphorylation, respectively. In addition to the common m.3243A > G variant, other prevalent variants, including m.5628 T > C, m.6352-13952del, and a 9-bp small deletion combined with m.3243A > G, exist. CONCLUSIONS MELAS is a rare mitochondrial syndrome characterized by clinical heterogeneity and genetic heteroplasmy. Abnormalities in mitochondrial metabolic function and impairments in enzyme activity are the pathogenic processes underlying MELAS. Mitochondrial vasculopathy and mitochondrial neuropathy may provide a partial explanation for the unique aetiology of stroke-like episodes.
Collapse
Affiliation(s)
- Shuai Xu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Zhongshan Road 321#, Nanjing, 210008, Jiangsu, China
| | - Jialiu Jiang
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Zhongshan Road 321#, Nanjing, 210008, Jiangsu, China
| | - Leilei Chang
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Zhongshan Road 321#, Nanjing, 210008, Jiangsu, China
| | - Biao Zhang
- Department of Pathology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Zhongshan Road 321#, Nanjing, 210008, Jiangsu, China
| | - Xiaolei Zhu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Zhongshan Road 321#, Nanjing, 210008, Jiangsu, China.
| | - Fengnan Niu
- Department of Pathology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Zhongshan Road 321#, Nanjing, 210008, Jiangsu, China.
| |
Collapse
|
7
|
Gao R, Gu L, Zuo W, Wang P. Long-term prognostic factors and outcomes in mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes: a clinical and biochemical marker analysis. Front Neurol 2024; 15:1491283. [PMID: 39697439 PMCID: PMC11652343 DOI: 10.3389/fneur.2024.1491283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/05/2024] [Indexed: 12/20/2024] Open
Abstract
Background MELAS (Mitochondrial Encephalomyopathy, Lactic Acidosis, and Stroke-like episodes) is a common subtype of mitochondrial encephalomyopathy. However, few studies have explored the relationship between biochemical markers and prognosis. This study aimed to explore the relationship between clinical and biochemical markers and prognosis of patients with MELAS. Methods This was a retrospective single-center study. A total of 39 MELAS patients were followed for an average of 7.3 ± 4.7 (range 1-21 years). All patients underwent detailed demographic registration, neurological examinations, biochemical and mitochondrial DNA analyses, muscle biopsy. Throughout the follow-up period, the modified Rankin Scale (mRS) scores, recurrent strokes rates, and mortality were tracked. Results All patients initially presented with stroke-like episodes. Of the 39 subjects who were followed, 8 died, primarily due to acute stroke-like episodes and status epilepticus. Univariate analysis showed a higher risk of mortality in patients with severe lactate elevation compared to those with normal and mildly elevated levels (OR = 5.714, 95% CI 1.086-30.071, p = 0.040). While the absence of anemia was associated with a lower risk of death compared to those with anemia (OR = 0.175, 95% CI 0.033-0.921, p = 0.040). In multivariate analysis, severe lactate elevation (OR = 7.279, 95% CI 1.102-48.086, p = 0.039) and anemia (OR = 0.137, 95% CI 0.021-0.908, p = 0.039) were identified as independent predictors of mortality. MRS scores were categorized as follows: 41% of patients scored 0 to 2, 38.5% scored 3 to 5, and 20.5% had a score of 6 or had died. There was a positive correlation between lactic acid levels and MRS scores (r = 0.460, p = 0.003). In contrast, hemoglobin levels were negatively correlated with MRS scores (r = -0.375, p = 0.015). Furthermore, a positive correlation was observed between MRS scores and the frequency of stroke-like episodes (r = 0.280, p = 0.042). Conclusion Our study found that the majority of patients with MELAS had poor clinical outcomes. Anemia and significantly increased lactate levels were identified as indicators of poor prognosis in MELAS. Early intervention may lead to improvements in clinical outcomes.
Collapse
Affiliation(s)
| | | | | | - Pan Wang
- Department of Neurology, Tianjin Huanhu Hospital, Nankai University, Tianjin, China
| |
Collapse
|
8
|
Bushnell C, Kernan WN, Sharrief AZ, Chaturvedi S, Cole JW, Cornwell WK, Cosby-Gaither C, Doyle S, Goldstein LB, Lennon O, Levine DA, Love M, Miller E, Nguyen-Huynh M, Rasmussen-Winkler J, Rexrode KM, Rosendale N, Sarma S, Shimbo D, Simpkins AN, Spatz ES, Sun LR, Tangpricha V, Turnage D, Velazquez G, Whelton PK. 2024 Guideline for the Primary Prevention of Stroke: A Guideline From the American Heart Association/American Stroke Association. Stroke 2024; 55:e344-e424. [PMID: 39429201 DOI: 10.1161/str.0000000000000475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
AIM The "2024 Guideline for the Primary Prevention of Stroke" replaces the 2014 "Guidelines for the Primary Prevention of Stroke." This updated guideline is intended to be a resource for clinicians to use to guide various prevention strategies for individuals with no history of stroke. METHODS A comprehensive search for literature published since the 2014 guideline; derived from research involving human participants published in English; and indexed in MEDLINE, PubMed, Cochrane Library, and other selected and relevant databases was conducted between May and November 2023. Other documents on related subject matter previously published by the American Heart Association were also reviewed. STRUCTURE Ischemic and hemorrhagic strokes lead to significant disability but, most important, are preventable. The 2024 primary prevention of stroke guideline provides recommendations based on current evidence for strategies to prevent stroke throughout the life span. These recommendations align with the American Heart Association's Life's Essential 8 for optimizing cardiovascular and brain health, in addition to preventing incident stroke. We also have added sex-specific recommendations for screening and prevention of stroke, which are new compared with the 2014 guideline. Many recommendations for similar risk factor prevention were updated, new topics were reviewed, and recommendations were created when supported by sufficient-quality published data.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Eliza Miller
- American College of Obstetricians and Gynecologists liaison
| | | | | | | | | | | | | | - Alexis N Simpkins
- American Heart Association Stroke Council Scientific Statement Oversight Committee on Clinical Practice Guideline liaison
| | | | | | | | | | | | | |
Collapse
|
9
|
Zhao Y, Zhao X, Ji K, Wang J, Zhao Y, Lin J, Gang Q, Yu M, Yuan Y, Jiang H, Sun C, Fang F, Yan C, Wang Z. The clinical and genetic spectrum of mitochondrial diseases in China: A multicenter retrospective cross-sectional study. Clin Genet 2024; 106:733-744. [PMID: 39118480 DOI: 10.1111/cge.14605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/16/2024] [Accepted: 07/27/2024] [Indexed: 08/10/2024]
Abstract
Mitochondrial diseases (MtDs) present diverse clinical phenotypes, yet large-scale studies are hindered by their rarity. This retrospective, multicenter study, conducted across five Chinese hospitals' neurology departments from 2009 to 2019, aimed to address this gap. Nationwide, 1351 patients were enrolled, with a median onset age of 14.0 (18.5) years. The predominant phenotype was mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) (45.0%). Mitochondrial DNA (mtDNA) mutations were prevalent (87.4%), with m.3243A>G being the most common locus (48.7%). Meanwhile, POLG mutations in nuclear DNA (nDNA) accounted for 16.5%. Comparative analysis based on age groups (with a cut-off at 14 years) revealed the highest prevalence of MELAS, with Leigh syndrome (LS) and chronic progressive external ophthalmoplegia (CPEO) being the second most common phenotypes in junior and senior groups, respectively. Notably, the most commonly mutated nuclear genes varied across age groups. In conclusion, MELAS predominated in this Chinese MtD cohort, underscored by m.3243A>G and POLG as principal mtDNA mutations and pathogenic nuclear genes. The phenotypic and genotypic disparities observed among different age cohorts highlight the complex nature of MtDs.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Xutong Zhao
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Kunqian Ji
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, China
| | - Junling Wang
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
- Department of Pediatrics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuying Zhao
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, China
| | - Jie Lin
- Department of Neurology, Huashan Hospital Fudan University, Shanghai, China
| | - Qiang Gang
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Meng Yu
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Yun Yuan
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Haishan Jiang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chong Sun
- Department of Neurology, Huashan Hospital Fudan University, Shanghai, China
| | - Fang Fang
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Chuanzhu Yan
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, China
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Neurovascular Disease Discovery, Peking University First Hospital, Beijing, China
| |
Collapse
|
10
|
Benbrahim FZ, El Haddad S, Allali N, Chat L. Moyamoya syndrome secondary to MELAS syndrome in a child: A case report and literature revue. Radiol Case Rep 2024; 19:6347-6353. [PMID: 39387012 PMCID: PMC11461959 DOI: 10.1016/j.radcr.2024.08.159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 10/12/2024] Open
Abstract
Mitochondrial myopathy with lactic acidosis and stroke-like episodes is a rare mitochondrial disorder, most often revealed by symptoms and signs that typically include mitochondrial myopathy, encephalopathy with stroke-like episodes, seizures and/or dementia, and lactic acidosis. Imaging findings, although diverse, usually present characteristic features that help differentiate these disorders from vascular syndromes. We present a case of a 2-year and 4-month-old girl with recurrent ischemic strokes associated with nonterritorial cortico-subcortical foci on brain imaging, along with stenosis of the terminal portion of the internal carotid arteries associated with a neovascular network. An elevated serum lactate level was found in the biological assessment. This article provides an overview of the various neuroimaging modalities available and the advent of new imaging techniques used in these disorders. It highlights the importance of considering a diagnosis of hereditary mitochondrial disorder in the presence of recurrent atypical stroke-like episodes when neuroimaging is inconsistent with ischemic infarction and reports an exceptional association with Moyamoya syndrome.
Collapse
Affiliation(s)
- Fatima Zohra Benbrahim
- Department of Radiology, Children Hospital of Rabat, Ibn Sina University Hospital, Mohammed V University, Rabat, Morocco
| | - Siham El Haddad
- Department of Radiology, Children Hospital of Rabat, Ibn Sina University Hospital, Mohammed V University, Rabat, Morocco
| | - Nazik Allali
- Department of Radiology, Children Hospital of Rabat, Ibn Sina University Hospital, Mohammed V University, Rabat, Morocco
| | - Latifa Chat
- Department of Radiology, Children Hospital of Rabat, Ibn Sina University Hospital, Mohammed V University, Rabat, Morocco
| |
Collapse
|
11
|
Na JH, Lee YM. Diagnosis and Management of Mitochondrial Encephalopathy, Lactic Acidosis, and Stroke-like Episodes Syndrome. Biomolecules 2024; 14:1524. [PMID: 39766231 PMCID: PMC11672891 DOI: 10.3390/biom14121524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/27/2024] [Accepted: 11/27/2024] [Indexed: 01/05/2025] Open
Abstract
Mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome is a complex mitochondrial disorder characterized by a wide range of systemic manifestations. Key clinical features include recurrent stroke-like episodes, seizures, lactic acidosis, muscle weakness, exercise intolerance, sensorineural hearing loss, diabetes, and progressive neurological decline. MELAS is most commonly associated with mutations in mitochondrial DNA, particularly the m.3243A>G mutation in the MT-TL1 gene, which encodes tRNALeu (CUR). These mutations impair mitochondrial protein synthesis, leading to defective oxidative phosphorylation and energy failure at the cellular level. The clinical presentation and severity vary widely among patients, but the syndrome often results in significant morbidity and reduced life expectancy because of progressive neurological deterioration. Current management is largely focused on conservative care, including anti-seizure medications, arginine or citrulline supplementation, high-dose taurine, and dietary therapies. However, these therapies do not address the underlying genetic mutations, leaving many patients with substantial disease burden. Emerging experimental treatments, such as gene therapy and mitochondrial replacement techniques, aim to correct the underlying genetic defects and offer potential curative strategies. Further research is essential to understand the pathophysiology of MELAS, optimize current therapies, and develop novel treatments that may significantly improve patient outcomes and extend survival.
Collapse
Affiliation(s)
| | - Young-Mock Lee
- Departments of Pediatrics, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06229, Republic of Korea;
| |
Collapse
|
12
|
Gupta V, Jolly B, Bhoyar RC, Divakar MK, Jain A, Mishra A, Senthivel V, Imran M, Scaria V, Sivasubbu S. Spectrum of rare and common mitochondrial DNA variations from 1029 whole genomes of self-declared healthy individuals from India. Comput Biol Chem 2024; 112:108118. [PMID: 38878606 DOI: 10.1016/j.compbiolchem.2024.108118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 05/21/2024] [Accepted: 06/04/2024] [Indexed: 09/13/2024]
Abstract
Mitochondrial disorders are a class of heterogeneous disorders caused by genetic variations in the mitochondrial genome (mtDNA) as well as the nuclear genome. The spectrum of mtDNA variants remains unexplored in the Indian population. In the present study, we have cataloged 2689 high confidence single nucleotide variants, small insertions and deletions in mtDNA in 1029 healthy Indian individuals. We found a major proportion (76.5 %) of the variants being rare (AF<=0.005) in the studied population. Intriguingly, we found two 'confirmed' pathogenic variants (m.1555 A>G and m.14484 T>C) with a frequency of ∼1 in 250 individuals in our dataset. The high carrier frequency underscores the need for screening of the mtDNA pathogenic mutations in newborns in India. Interestingly, our analysis also revealed 202 variants in our dataset which have been 'reported' in disease cases as per the MITOMAP database. Additionally, we found the frequency of haplogroup M (52.2 %) to be the highest among all the 18 top-level haplogroups found in our dataset. In comparison to the global population datasets, 20 unique mtDNA variants are found in the Indian population. We hope the whole genome sequencing based compendium of mtDNA variants along with their allele frequencies and heteroplasmy levels in the Indian population will drive additional genome scale studies for mtDNA. Furthermore, the identification of clinically relevant variants in our dataset will aid in better clinical interpretation of the variants in mitochondrial disorders.
Collapse
Affiliation(s)
- Vishu Gupta
- CSIR Institute of Genomics and Integrative Biology, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Bani Jolly
- CSIR Institute of Genomics and Integrative Biology, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rahul C Bhoyar
- CSIR Institute of Genomics and Integrative Biology, New Delhi 110025, India
| | - Mohit Kumar Divakar
- CSIR Institute of Genomics and Integrative Biology, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Abhinav Jain
- CSIR Institute of Genomics and Integrative Biology, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anushree Mishra
- CSIR Institute of Genomics and Integrative Biology, New Delhi 110025, India
| | - Vigneshwar Senthivel
- CSIR Institute of Genomics and Integrative Biology, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mohamed Imran
- CSIR Institute of Genomics and Integrative Biology, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vinod Scaria
- CSIR Institute of Genomics and Integrative Biology, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Sridhar Sivasubbu
- CSIR Institute of Genomics and Integrative Biology, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
13
|
Gunawardena K, Praveenan S, Dissanayake VHW, Ratnayake P. Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes with coexisting nemaline myopathy: a case report. J Med Case Rep 2024; 18:420. [PMID: 39252049 PMCID: PMC11385988 DOI: 10.1186/s13256-024-04723-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 07/25/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes and nemaline myopathy are two rare genetic conditions. We report the first case reported in world literature with coexistence of both these rare disorders. CASE PRESENTATION A 11-year-old previously healthy Sri Lankan male child, product of a nonconsanguineous marriage with normal development presented with acute onset short lasting recurring episodes of right-sided eye deviation with impaired consciousness. In between episodes he regained consciousness. Family history revealed a similar presentation in the mother at 36 years of age. Examination was significant for short stature and proximal upper and lower limb weakness. His plasma and cerebrospinal fluid lactate were elevated. Magnetic resonance imaging brain had evidence of an acute infarction in the right occipital territory. Sanger sequencing for common mitochondrial variants of mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes confirmed this diagnosis. Whole exome sequencing revealed pathogenic compound heterozygous variants in NEB gene implicating in coexisting nemaline myopathy. Acute presentation was managed with supportive care, antiepileptics, and mitochondrial supplementation. Currently he is stable on daily supplementation of arginine and limb-strengthening physiotherapy. He is being monitored closely clinically and with serum lactate level. CONCLUSION Genetic diseases are rare. Coexistence of two genetic conditions is even rarer. Genetic confirmation of diagnosis is imperative for prediction of complications, accurate management, and genetic counseling.
Collapse
Affiliation(s)
- Kawmadi Gunawardena
- Pediatric Neurology Department, Lady Ridgeway Hospital for Children, Colombo 08, Sri Lanka.
- Department of Anatomy, Genetics and Bioinformatics, Faculty of Medicine, University of Colombo, Colombo 08, Sri Lanka.
| | - Somasundaram Praveenan
- Department of Anatomy, Genetics and Bioinformatics, Faculty of Medicine, University of Colombo, Colombo 08, Sri Lanka
| | - Vajira H W Dissanayake
- Department of Anatomy, Genetics and Bioinformatics, Faculty of Medicine, University of Colombo, Colombo 08, Sri Lanka
| | - Pyara Ratnayake
- Pediatric Neurology Department, Lady Ridgeway Hospital for Children, Colombo 08, Sri Lanka
| |
Collapse
|
14
|
Finsterer J. Cortical atrophy is a common phenotypic feature in MELAS patients. Asian J Surg 2024:S1015-9584(24)01748-2. [PMID: 39191585 DOI: 10.1016/j.asjsur.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/01/2024] [Indexed: 08/29/2024] Open
Affiliation(s)
- Josef Finsterer
- Neurology Dpt., Neurology & Neurophysiology Center, Vienna, Austria.
| |
Collapse
|
15
|
Finsterer J, Mehri S. Cluster Analysis to Specify the MELAS Genotype and Phenotype Must Consider Genetic Background Peculiarities and Disease Progression. AJNR Am J Neuroradiol 2024; 45:E31. [PMID: 39122462 PMCID: PMC11383394 DOI: 10.3174/ajnr.a8323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
|
16
|
A P F Alves C, Goldstein A, Peterson J, Vossough A. Reply. AJNR Am J Neuroradiol 2024; 45:E32-E33. [PMID: 39122461 PMCID: PMC11383422 DOI: 10.3174/ajnr.a8415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Affiliation(s)
- Cesar A P F Alves
- Division of Neuroradiology, Radiology DepartmentBoston Children's HospitalHarvard Medical SchoolBoston, MassachusettsDepartment of RadiologyChildren's Hospital of PhiladelphiaPhiladelphia, Pennsylvania
| | - Amy Goldstein
- Mitochondrial Medicine Frontier ProgramDivision of Human GeneticsDepartment of PediatricsThe Children's Hospital of PhiladelphiaPhiladelphia, PennsylvaniaDepartment of PediatricsUniversity of Pennsylvania Perelman School of MedicinePhiladelphia, Pennsylvania
| | - James Peterson
- Mitochondrial Medicine Frontier ProgramDivision of Human GeneticsDepartment of PediatricsThe Children's Hospital of PhiladelphiaPhiladelphia, Pennsylvania
| | - Arastoo Vossough
- Department of RadiologyChildren's Hospital of PhiladelphiaPhiladelphia, Pennsylvania
| |
Collapse
|
17
|
Finsterer J. The Neurovascular Coupling Concept Does Not Sufficiently Explain the Pathophysiology of Stroke-Like Lesions. J Magn Reson Imaging 2024; 60:800-801. [PMID: 38014594 DOI: 10.1002/jmri.29131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 10/31/2023] [Indexed: 11/29/2023] Open
Affiliation(s)
- Josef Finsterer
- Neurology Department, Neurology & Neurophysiology Center, Vienna, Austria
| |
Collapse
|
18
|
Dhawan S, Musa AH, Mantripragada K. Novel Mitochondrial Cytopathy Causing Mitochondrial Encephalomyopathy With Lactic Acidosis and Stroke-Like Episodes Syndrome and Tubulointerstitial Nephropathy. Cureus 2024; 16:e66722. [PMID: 39262552 PMCID: PMC11390156 DOI: 10.7759/cureus.66722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2024] [Indexed: 09/13/2024] Open
Abstract
Mitochondrial cytopathies, predominantly MT-TL1 mutations and, to a lesser extent, MT-ND5, have been associated with mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes (MELAS), manifesting as multi-organ dysfunction. This is just the second instance of MELAS secondary to the pathogenic novel m.13091T>C variant of MT-ND5. Moreover, nephropathy associated with MT-ND5 mutation has only been reported in nine cases so far. A middle-aged man presented in a state of acute confusion with speech difficulty with both receptive and expressive aphasia. He had a background of refractory seizures, chronic atypical migraine, childhood-onset optic neuropathy, and end-stage renal disease requiring renal transplant. During admission, he had episodes of aggression and paranoid beliefs. Magnetic resonance (MR) imaging of the head showed multiple areas of cortical abnormality, unusual for age, including a large frontal infarct crossing arterial boundaries. Cerebrospinal fluid (CSF) protein and lactate were high, whereas, the electroencephalography (EEG) result was normal. Muscle biopsy mitochondrial DNA gene sequencing derived novel MT-ND5 gene variant m.13091T>C p.(Met252Thr). Kidney biopsy previously had shown interstitial fibrosis and tubular atrophy. He was managed as acute ischaemic stroke along with a combination of clobazam, levetiracetam, and eslicarbazepine for seizures. MELAS typically presents with seizures, stroke-like episodes, cortical visual loss, and recurrent migraine headaches. The previous reported case of m.13091T>C mutation followed a similar progression, however, there was no associated nephropathy and normal visual acuity. Kidney transplants in affected patients of MELAS have been associated with a high survival rate. MT-ND5 mutation-associated nephropathy has shown a variable manifestation, either as focal segmental glomerular sclerosis (FSGS) or tubulo-interstitial disease.
Collapse
Affiliation(s)
- Saurav Dhawan
- Internal Medicine, Manchester University National Health Service (NHS) Foundation Trust, Manchester, GBR
| | - Abdel H Musa
- Internal Medicine, Manchester University National Health Service (NHS) Foundation Trust, Manchester, GBR
| | | |
Collapse
|
19
|
Finsterer J. Genetic family studies and prospective evaluation for multisystem involvement are needed in LHON patients. Rom J Ophthalmol 2024; 68:338-339. [PMID: 39464769 PMCID: PMC11503226 DOI: 10.22336/rjo.2024.62] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2024] [Indexed: 10/29/2024] Open
|
20
|
Ozlu C, Messahel S, Minassian B, Kayani S. Mitochondrial encephalopathies and myopathies: Our tertiary center's experience. Eur J Paediatr Neurol 2024; 50:31-40. [PMID: 38583367 DOI: 10.1016/j.ejpn.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/12/2024] [Accepted: 03/22/2024] [Indexed: 04/09/2024]
Abstract
Mitochondrial diseases have a heterogeneous phenotype and can result from mutations in the mitochondrial or nuclear genomes, constituting a diagnostically and therapeutically challenging group of disorders. We report our center's experience with mitochondrial encephalopathies and myopathies with a cohort of 50 genetically and phenotypically diverse patients followed in the Neurology clinic over the last ten years. Seventeen patients had mitochondrial DNA mutations, presented over a wide range of ages with seizures, feeding difficulties, extraocular movements abnormalities, and had high rates of stroke-like episodes and regression. Twenty-seven patients had nuclear DNA mutations, presented early in life with feeding difficulty, failure-to-thrive, and seizures, and had high proportions of developmental delay, wheelchair dependence, spine abnormalities and dystonia. In six patients, a mutation could not be identified, but they were included for having mitochondrial disease confirmed by histopathology, enzyme analysis and clinical features. These patients had similar characteristics to patients with nuclear DNA mutations, suggesting missed underlying mutations in the nuclear genome. Management was variable among patients, but outcomes were universally poor with severe disability in all cases. Therapeutic entryways through elucidation of disease pathways and remaining unknown genes are acutely needed.
Collapse
Affiliation(s)
- Can Ozlu
- University of Texas Southwestern Medical Center ,Dallas, TX, USA; Children's Medical Center, Dallas, TX, USA
| | | | - Berge Minassian
- University of Texas Southwestern Medical Center ,Dallas, TX, USA; Children's Medical Center, Dallas, TX, USA
| | - Saima Kayani
- University of Texas Southwestern Medical Center ,Dallas, TX, USA; Children's Medical Center, Dallas, TX, USA.
| |
Collapse
|
21
|
Zijun L, Xu Y, Yujia Y, Zhiqiang X. Elderly onset of MELAS carried an M.3243A >G mutation in a female with deafness and visual deficits: A case report. Clin Case Rep 2024; 12:e8438. [PMID: 38487642 PMCID: PMC10937291 DOI: 10.1002/ccr3.8438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/27/2023] [Accepted: 11/11/2023] [Indexed: 03/17/2024] Open
Abstract
Key Clinical Message MELAS is a disorder with clinical variability that also responsible for a significant portion of unexplained hereditary or childhood-onset hearing loss. Although patients typically present in childhood, the first stroke-like episode can occur later in life in some patients, potentially related to a lower heteroplasmy level. It is crucial to consider MELAS as a potential cause of stroke-like events if age at presentation and symptoms are atypical, especially among middle-aged patients without vascular risk factors. Abstract MELAS syndrome (mitochondrial encephalopathy with lactic acidosis and stroke-like episodes) is a rare genetic condition that most patients develop stroke-like episodes before the age of 40. We report a 52-year-old female with a documented 40-year history of progressive sensorineural hearing loss, developed a visual field deficit and stroke-like events in her middle age who finally diagnosed was MELAS. The patient was started on vitamin E, l-carnitine, l-arginine, and coenzyme Q10 that gradually improved before dismissal from the hospital. This case highlights the importance of considering MELAS as a potential cause of stroke-like events if imaging findings are atypical for cerebral infarction, especially among middle-aged patients without vascular risk factors and an unusual cause of progressive sensorineural hearing loss.
Collapse
Affiliation(s)
- Lin Zijun
- Department of NeurologyArmy Medical Center of People's Liberation Army of ChinaChongqingChina
| | - Yi Xu
- Department of NeurologyArmy Medical Center of People's Liberation Army of ChinaChongqingChina
| | - Yang Yujia
- Department of NeurologyArmy Medical Center of People's Liberation Army of ChinaChongqingChina
| | - Xu Zhiqiang
- Department of NeurologyArmy Medical Center of People's Liberation Army of ChinaChongqingChina
| |
Collapse
|
22
|
Lin Y, Wang J, Ren H, Ma X, Wang W, Zhao Y, Xu Z, Liu S, Wang W, Xu X, Wang B, Zhao D, Wang D, Li W, Liu F, Zhao Y, Lu J, Yan C, Ji K. Mitochondrial myopathy without extraocular muscle involvement: a unique clinicopathologic profile. J Neurol 2024; 271:864-876. [PMID: 37847292 DOI: 10.1007/s00415-023-12005-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 10/18/2023]
Abstract
OBJECTIVE Mitochondrial myopathy without extraocular muscles involvement (MiMy) represents a distinct form of mitochondrial disorder predominantly affecting proximal/distal or axial muscles, with its phenotypic, genotypic features, and long-term prognosis poorly understood. METHODS A cross-sectional study conducted at a national diagnostic center for mitochondrial disease involved 47 MiMy patients, from a cohort of 643 mitochondrial disease cases followed up at Qilu Hospital from January 1, 2000, to January 1, 2021. We compared the clinical, pathological, and genetic features of MiMy to progressive external ophthalmoplegia (PEO) and mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) patients. RESULTS MiMy patients demonstrated a more pronounced muscle involvement syndrome, with lower 6MWT scores, higher FSS, and lower BMI compared to PEO and MELAS patients. Serum levels of creatinine kinase (CK), lactate, and growth and differentiation factor 15 (GDF15) were substantially elevated in MiMy patients. Nearly a third (31.9%) displayed signs of subclinical peripheral neuropathy, mostly axonal neuropathy. Muscle biopsies revealed that cytochrome c oxidase strong (COX-s) ragged-red fibers (RRFs) were a typical pathological feature in MiMy patients. Genetic analysis predominantly revealed mtDNA point pathogenic variants (59.6%) and less frequently single (12.8%) or multiple (4.2%) mtDNA deletions. During the follow-up, a majority (76.1%) of MiMy patients experienced stabilization or improvement after therapeutic intervention. CONCLUSIONS This study provides a comprehensive profile of MiMy through a large patient cohort, elucidating its unique clinical, genetic, and pathological features. These findings offer significant insights into the diagnostic and therapeutic management of MiMy, ultimately aiming to ameliorate patient outcomes and enhance the quality of life.
Collapse
Affiliation(s)
- Yan Lin
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, 250012, Shandong, China
| | - Jiayin Wang
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, 250012, Shandong, China
| | - Hong Ren
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250012, Shandong, China
| | - Xiaotian Ma
- Mitochondrial Medicine Laboratory, Qilu Hospital (Qingdao), Shandong University, Qingdao, 266035, Shandong, China
| | - Wei Wang
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, 250012, Shandong, China
| | - Ying Zhao
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, 250012, Shandong, China
| | - Zhihong Xu
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, 250012, Shandong, China
| | - Shuangwu Liu
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, 250012, Shandong, China
| | - Wenqing Wang
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, 250012, Shandong, China
| | - Xuebi Xu
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang Street, Ouhai District, Wenzhou, 325000, China
| | - Bin Wang
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, 250012, Shandong, China
| | - Dandan Zhao
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, 250012, Shandong, China
| | - Dongdong Wang
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, 250012, Shandong, China
| | - Wei Li
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, 250012, Shandong, China
| | - Fuchen Liu
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, 250012, Shandong, China
| | - Yuying Zhao
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, 250012, Shandong, China
| | - Jianqiang Lu
- Department of Pathology and Molecular Medicine, Neuropathology Section, McMaster University, Hamilton, ON, Canada
| | - Chuanzhu Yan
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, 250012, Shandong, China
- Mitochondrial Medicine Laboratory, Qilu Hospital (Qingdao), Shandong University, Qingdao, 266035, Shandong, China
- Brain Science Research Institute, Shandong University, Jinan, 250012, Shandong, China
| | - Kunqian Ji
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, 250012, Shandong, China.
| |
Collapse
|
23
|
Pizzamiglio C, Hanna MG, Pitceathly RDS. Primary mitochondrial diseases. HANDBOOK OF CLINICAL NEUROLOGY 2024; 204:53-76. [PMID: 39322395 DOI: 10.1016/b978-0-323-99209-1.00004-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Primary mitochondrial diseases (PMDs) are a heterogeneous group of hereditary disorders characterized by an impairment of the mitochondrial respiratory chain. They are the most common group of genetic metabolic disorders, with a prevalence of 1 in 4,300 people. The presence of leukoencephalopathy is recognized as an important feature in many PMDs and can be a manifestation of mutations in both mitochondrial DNA (classic syndromes such as mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes; myoclonic epilepsy with ragged-red fibers [RRFs]; Leigh syndrome; and Kearns-Sayre syndrome) and nuclear DNA (mutations in maintenance genes such as POLG, MPV17, and TYMP; Leigh syndrome; and mitochondrial aminoacyl-tRNA synthetase disorders). In this chapter, PMDs associated with white matter involvement are outlined, including details of clinical presentations, brain MRI features, and elements of differential diagnoses. The current approach to the diagnosis of PMDs and management strategies are also discussed. A PMD diagnosis in a subject with leukoencephalopathy should be considered in the presence of specific brain MRI features (for example, cyst-like lesions, bilateral basal ganglia lesions, and involvement of both cerebral hemispheres and cerebellum), in addition to a complex neurologic or multisystem disorder. Establishing a genetic diagnosis is crucial to ensure appropriate genetic counseling, multidisciplinary team input, and eligibility for clinical trials.
Collapse
Affiliation(s)
- Chiara Pizzamiglio
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom; NHS Highly Specialised Service for Rare Mitochondrial Disorders, Queen Square Centre for Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Michael G Hanna
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom; NHS Highly Specialised Service for Rare Mitochondrial Disorders, Queen Square Centre for Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Robert D S Pitceathly
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom; NHS Highly Specialised Service for Rare Mitochondrial Disorders, Queen Square Centre for Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, London, United Kingdom.
| |
Collapse
|
24
|
Cox BC, Pearson JY, Mandrekar J, Gavrilova RH. The clinical spectrum of MELAS and associated disorders across ages: a retrospective cohort study. Front Neurol 2023; 14:1298569. [PMID: 38156086 PMCID: PMC10753009 DOI: 10.3389/fneur.2023.1298569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/20/2023] [Indexed: 12/30/2023] Open
Abstract
Objective Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) is a severe multisystemic disease, although some have a milder phenotype. We aimed to evaluate the clinical spectrum of this disease from MELAS patients to asymptomatic carriers and identify predictors of severity. Methods We reviewed 81 patients, who had MELAS or had positive genetics without meeting clinical criteria. Patients who met criteria including lactic acidosis, encephalomyopathy, and stroke-like episodes (SLE) were categorized as MELAS, symptomatic non-MELAS, and asymptomatic. MELAS was further categorized as "standard-onset" if the first stroke-like episode (SLE) occurred before age 40 or "late-onset." Results Eighty-one patients were included: 42 MELAS (13 late-onset), 30 symptomatic non-MELAS, and 9 asymptomatic. MELAS patients had lower BMI at onset (mean 18.6 vs. 25.1 asymptomatic and 22.0 symptomatic non-MELAS, p < 0.05). There was a trend toward higher serum heteroplasmy in MELAS compared to symptomatic non-MELAS and asymptomatic (means 39.3, 29.3, and 21.8% p = 0.09). Symptomatic non-MELAS had more sensorineural hearing loss as first presenting symptom (51.6% vs. 24.4%, p < 0.05). MELAS had higher prevalence of seizures (88.1% vs. 16.7%, p < 0.05) and shorter survival from onset to death (50% mortality at 25 years vs. 10%, p < 0.05). Late-onset MELAS had longer disease duration from first symptom to first SLE (mean 16.6 vs. 9.3 yrs) and also lived longer (mean age at death 62 vs. 30). Standard-onset MELAS had more neurologic involvement at onset than late-onset (51.7% vs. 15.4%). Late-onset patients had more prevalent diabetes (69.2% vs. 13.8%) and nephropathy (53.8% vs. 10.3%). Patients with late-onset MELAS also had more organ systems involved (mean 4.1 vs. 2.7, p < 0.05). There was a trend toward higher heteroplasmy levels in standard-onset (mean 44.8% vs. 25.3%, p = 0.18). Discussion Our study highlights the spectrum of MELAS. The lower BMI in MELAS at presentation as well as higher rates of sensorineural hearing loss as initial symptom in symptomatic non-MELAS may be useful clinical markers. While many patients present before age 40 with SLE, some can present with SLE later in life. Standard onset MELAS is more likely to present with neurologic symptoms. Late-onset is more likely to suffer diabetes or nephropathy and have more organ systems involved.
Collapse
Affiliation(s)
- Benjamin C. Cox
- Department of Neurology, College of Medicine, Mayo Clinic, Rochester, MN, United States
| | - Jennifer Y. Pearson
- Department of Neurology, College of Medicine, Mayo Clinic, Rochester, MN, United States
| | - Jay Mandrekar
- Department of Health Sciences Research, College of Medicine, Mayo Clinic, Rochester, MN, United States
| | - Ralitza H. Gavrilova
- Department of Neurology, College of Medicine, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
25
|
Sakamoto N, Hamada S, Takahashi H, Satou R, Suzuki M, Maeno T. Improvement of Intestinal Pseudo-Obstruction by Total Parenteral Nutrition in a Young Woman With Mitochondrial Myopathy, Encephalopathy, Lactic Acidosis, and Stroke-Like Episodes: A Case Report. Cureus 2023; 15:e50075. [PMID: 38186459 PMCID: PMC10769865 DOI: 10.7759/cureus.50075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2023] [Indexed: 01/09/2024] Open
Abstract
Patients with mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS), a mitochondrial disease, develop various types of organ failure, including intestinal pseudo-obstruction (IPO). We treated a patient with IPO that improved with total parenteral nutrition. A 20-year-old woman with a two-year history of diabetes mellitus was taking sitagliptin but her hemoglobin A1c (HbA1c) levels began increasing. After receiving metformin, she suffered a stroke-like attack and was diagnosed with MELAS. After persistent anorexia, she presented with symptoms of IPO, such as vomiting and gastrointestinal dilatation. After about 10 days of total parenteral nutrition, intestinal peristalsis improved and bowel movements resumed. She was able to resume her normal diet, and glycemic control with insulin glargine has allowed her to return to her daily life without gastrointestinal symptoms for over six months. Total parenteral nutrition may be effective for MELAS with IPO, and good glycemic control can prevent the need for incretin-related drugs, thus reducing the likelihood of recurrent IPO.
Collapse
Affiliation(s)
- Naoto Sakamoto
- Department of Primary Care and Medical Education, Institute of Medicine, University of Tsukuba, Tsukuba, JPN
| | - Shuhei Hamada
- Department of Primary Care and Medical Education, Institute of Medicine, University of Tsukuba, Tsukuba, JPN
| | - Hiroki Takahashi
- Department of General Medicine, Taito Municipal Hospital, Tokyo, JPN
| | - Rumi Satou
- Department of Internal Medicine, Kamisu Saiseikai Hospital, Kamisu, JPN
| | - Masatsune Suzuki
- Department of Primary Care and Medical Education, Institute of Medicine, University of Tsukuba, Tsukuba, JPN
| | - Tetsuhiro Maeno
- Department of Primary Care and Medical Education, Institute of Medicine, University of Tsukuba, Tsukuba, JPN
| |
Collapse
|
26
|
Shoop WK, Lape J, Trum M, Powell A, Sevigny E, Mischler A, Bacman SR, Fontanesi F, Smith J, Jantz D, Gorsuch CL, Moraes CT. Efficient elimination of MELAS-associated m.3243G mutant mitochondrial DNA by an engineered mitoARCUS nuclease. Nat Metab 2023; 5:2169-2183. [PMID: 38036771 PMCID: PMC10730414 DOI: 10.1038/s42255-023-00932-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 10/16/2023] [Indexed: 12/02/2023]
Abstract
Nuclease-mediated editing of heteroplasmic mitochondrial DNA (mtDNA) seeks to preferentially cleave and eliminate mutant mtDNA, leaving wild-type genomes to repopulate the cell and shift mtDNA heteroplasmy. Various technologies are available, but many suffer from limitations based on size and/or specificity. The use of ARCUS nucleases, derived from naturally occurring I-CreI, avoids these pitfalls due to their small size, single-component protein structure and high specificity resulting from a robust protein-engineering process. Here we describe the development of a mitochondrial-targeted ARCUS (mitoARCUS) nuclease designed to target one of the most common pathogenic mtDNA mutations, m.3243A>G. mitoARCUS robustly eliminated mutant mtDNA without cutting wild-type mtDNA, allowing for shifts in heteroplasmy and concomitant improvements in mitochondrial protein steady-state levels and respiration. In vivo efficacy was demonstrated using a m.3243A>G xenograft mouse model with mitoARCUS delivered systemically by adeno-associated virus. Together, these data support the development of mitoARCUS as an in vivo gene-editing therapeutic for m.3243A>G-associated diseases.
Collapse
Affiliation(s)
- Wendy K Shoop
- Precision BioSciences, Durham, NC, USA
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | | | | | | | | | - Sandra R Bacman
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Flavia Fontanesi
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | | | | | - Carlos T Moraes
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
27
|
Strasser L, Doja A, Davila J, Chakraborty P, Bourque DK. The mitochondrial tRNA MT-TW m.5537_5538insT variant presents with significant intra-familial clinical variability. Am J Med Genet A 2023; 191:2890-2897. [PMID: 37654102 DOI: 10.1002/ajmg.a.63378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 06/12/2023] [Accepted: 07/29/2023] [Indexed: 09/02/2023]
Abstract
Mitochondrial disorders can present with a wide range of clinical and biochemical phenotypes. Mitochondrial DNA variants may be influenced by factors such as degree of heteroplasmy and tissue distribution. We present a four-generation family in which 10 individuals carry a pathogenic mitochondrial variant (m.5537_5538insT, MT-TW gene) with differing levels of heteroplasmy and clinical features. This genetic variant has been documented in two prior reports, both in individuals with Leigh syndrome. In the current family, three individuals have severe mitochondrial symptoms including Leigh syndrome (patient 1, 100% in blood), MELAS (patient 2, 97% heteroplasmy in muscle), and MELAS-like syndrome (patient 3, 50% heteroplasmy in blood and 100% in urine). Two individuals have mild mitochondrial symptoms (patient 4, 50% in blood and 67% in urine and patient 5, 50% heteroplasmy in blood and 30% in urine). We observe that this variant is associated with multiple mitochondrial presentations and phenotypes, including MELAS syndrome for which this variant has not previously been reported. We also demonstrate that the level of heteroplasmy of the mitochondrial DNA variant correlates with the severity of clinical presentation; however, not with the specific mitochondrial syndrome.
Collapse
Affiliation(s)
- Lauren Strasser
- Division of Pediatric Neurology, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Asif Doja
- Division of Pediatric Neurology, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
- Department of Pediatrics, University of Ottawa, Ottawa, Ontario, Canada
| | - Jorge Davila
- Department of Medical Imaging, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
- Department of Radiology, University of Ottawa, Ottawa, Ontario, Canada
| | - Pranesh Chakraborty
- Department of Pediatrics, University of Ottawa, Ottawa, Ontario, Canada
- Division of Metabolics and Newborn Screening, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Danielle K Bourque
- Department of Pediatrics, University of Ottawa, Ottawa, Ontario, Canada
- Division of Metabolics and Newborn Screening, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| |
Collapse
|
28
|
Yagi K, Okazaki S, Ohbatake A, Nakaya M, Liu J, Arite E, Miyamoto Y, Ito N, Nakano K, Yamaaki N, Honoki H, Fujisaka S, Chujo D, Tsunoda SI, Yanagimoto K, Nozue T, Yamada M, Ooe K, Araki T, Nakashima A, Azami Y, Sodemoto Y, Tadokoro K, Nagano M, Noguchi T, Nohara A, Origasa H, Niida Y, Tada H. Negative correlation between organ heteroplasmy, particularly hepatic heteroplasmy, and age at death revealed by post-mortem studies of m.3243A > G cases. Mol Genet Metab 2023; 140:107691. [PMID: 37660570 DOI: 10.1016/j.ymgme.2023.107691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/27/2023] [Accepted: 08/27/2023] [Indexed: 09/05/2023]
Abstract
Mitochondrial DNA m.3243A > G mutation causes mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) and its associated multi-organ disorders, including diabetes. To clarify associations between m.3243A > G organ heteroplasmy and clinical phenotypes, including the age at death, we combined genetic and pathological examinations from seven unreported and 36 literature cases of autopsied subjects. Clinical characteristics of subjects were as follows: male, 13; female, 28; unknown, 2; the age at death, 36.9 ± 20.2 [4-82] years; BMI, 16.0 ± 2.9 [13.0-22.3]; diabetes, N = 21 (49%), diabetes onset age 38.6 ± 14.2 years; deafness, N = 27 (63%); stroke-like episodes (StLEp), N = 25 (58%); congestive heart failure (CHF), N = 15 (35%); CHF onset age, 51.3 ± 14.5 years. Causes of death (N = 32) were as follows: cardiac, N = 13 (41%); infection, N = 8 (25%); StLEp, N = 4 (13%); gastrointestinal, N = 4 (13%); renal, N = 2 (6%); hepatic, N = 1 (2%). High and low heteroplasmies were confirmed in non-regenerative and regenerative organs, respectively. Heteroplasmy of the liver, spleen, leukocytes, and kidney for all subjects was significantly associated with the age at death. Furthermore, the age at death was related to juvenile-onset (any m.3243A > G-related symptoms appeared before 20) and stroke-like episodes. Multiple linear regression analysis with the age at death as an objective variable showed the significant contribution of liver heteroplasty and juvenile-onset to the age at death. m.3243A > G organ heteroplasmy levels, particularly hepatic heteroplasmy, are significantly associated with the age at death in deceased cases.
Collapse
Affiliation(s)
- Kunimasa Yagi
- Center for Clinical Genomics, Kanazawa Medical University Hospital, 1-1 Daigaku, Uchinada, Ishikawa 920-0293, Japan; Second Department of Internal Medicine, Kanazawa University Graduate School of Medical Science, Kanazawa 920-8641, Japan; First Department of Internal Medicine, Toyama University, Toyama 934-0194, Japan.
| | - Satoko Okazaki
- Second Department of Internal Medicine, Kanazawa University Graduate School of Medical Science, Kanazawa 920-8641, Japan
| | - Azusa Ohbatake
- Second Department of Internal Medicine, Kanazawa University Graduate School of Medical Science, Kanazawa 920-8641, Japan
| | - Masako Nakaya
- Second Department of Internal Medicine, Kanazawa University Graduate School of Medical Science, Kanazawa 920-8641, Japan
| | - Jianhui Liu
- Second Department of Internal Medicine, Kanazawa University Graduate School of Medical Science, Kanazawa 920-8641, Japan; First Department of Internal Medicine, Toyama University, Toyama 934-0194, Japan
| | - Eiko Arite
- Second Department of Internal Medicine, Kanazawa University Graduate School of Medical Science, Kanazawa 920-8641, Japan
| | - Yukiko Miyamoto
- Second Department of Internal Medicine, Kanazawa University Graduate School of Medical Science, Kanazawa 920-8641, Japan
| | - Naoko Ito
- Second Department of Internal Medicine, Kanazawa University Graduate School of Medical Science, Kanazawa 920-8641, Japan
| | - Kaoru Nakano
- Second Department of Internal Medicine, Kanazawa University Graduate School of Medical Science, Kanazawa 920-8641, Japan
| | - Naoto Yamaaki
- Second Department of Internal Medicine, Kanazawa University Graduate School of Medical Science, Kanazawa 920-8641, Japan
| | - Hisae Honoki
- First Department of Internal Medicine, Toyama University, Toyama 934-0194, Japan
| | - Shiho Fujisaka
- First Department of Internal Medicine, Toyama University, Toyama 934-0194, Japan
| | - Daisuke Chujo
- Second Department of Internal Medicine, Kanazawa University Graduate School of Medical Science, Kanazawa 920-8641, Japan; First Department of Internal Medicine, Toyama University, Toyama 934-0194, Japan
| | - Shin-Ichiro Tsunoda
- Yokohama Sakae Kyosai Hospital, Federation of National Public Service Personnel Mutual Associations, Yokohama 247-8581, Japan
| | - Kunio Yanagimoto
- Yokohama Sakae Kyosai Hospital, Federation of National Public Service Personnel Mutual Associations, Yokohama 247-8581, Japan
| | - Tsuyoshi Nozue
- Yokohama Sakae Kyosai Hospital, Federation of National Public Service Personnel Mutual Associations, Yokohama 247-8581, Japan
| | - Masayo Yamada
- Yokohama Sakae Kyosai Hospital, Federation of National Public Service Personnel Mutual Associations, Yokohama 247-8581, Japan
| | - Kotaro Ooe
- Department of Internal Medicine, Saiseikai Kanazawa Hospital, Kanazawa 920-0353, Japan
| | - Tsutomu Araki
- Department of Internal Medicine, Saiseikai Kanazawa Hospital, Kanazawa 920-0353, Japan
| | - Akikatsu Nakashima
- Department of Internal Medicine, Ishikawa Prefectural Central Hospital, Kanazawa 920-8530, Japan
| | | | | | - Kenichi Tadokoro
- Bio Medical Laboratory (BML), Inc., 1361-1 Matoba, Kawagoe, Saitama 350-1101, Japan
| | - Makoto Nagano
- Bio Medical Laboratory (BML), Inc., 1361-1 Matoba, Kawagoe, Saitama 350-1101, Japan
| | - Tohru Noguchi
- Second Department of Internal Medicine, Kanazawa University Graduate School of Medical Science, Kanazawa 920-8641, Japan
| | - Atushi Nohara
- Department of Internal Medicine, Ishikawa Prefectural Central Hospital, Kanazawa 920-8530, Japan
| | - Hideki Origasa
- The Institute of Statistical Mathematics, Toyama University, Toyama 934-0194, Japan
| | - Yo Niida
- Center for Clinical Genomics, Kanazawa Medical University Hospital, 1-1 Daigaku, Uchinada, Ishikawa 920-0293, Japan
| | - Hayato Tada
- Second Department of Internal Medicine, Kanazawa University Graduate School of Medical Science, Kanazawa 920-8641, Japan
| |
Collapse
|
29
|
Finsterer J. Stroke-like lesions should not be mixed up with ischemic stroke in MELAS with cardioembolic risk. Clin Case Rep 2023; 11:e8051. [PMID: 37841883 PMCID: PMC10568046 DOI: 10.1002/ccr3.8051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/17/2023] [Accepted: 10/04/2023] [Indexed: 10/17/2023] Open
|
30
|
Liufu T, Yu H, Yu J, Yu M, Tian Y, Ou Y, Deng J, Xing G, Wang Z. Complex I deficiency in m.3243A>G fibroblasts is alleviated by reducing NADH accumulation. Front Physiol 2023; 14:1164287. [PMID: 37650111 PMCID: PMC10464909 DOI: 10.3389/fphys.2023.1164287] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 08/03/2023] [Indexed: 09/01/2023] Open
Abstract
Introduction: Mitochondrial disease is a spectrum of debilitating disorders caused by mutations in the mitochondrial DNA (mtDNA) or nuclear DNA that compromises the respiratory chain. Mitochondrial 3243A>G (m.3243 A>G) is the most common mutation showing great heterogeneity in phenotype. Previous studies have indicated that NADH: ubiquinone oxidoreductase (complex I) deficiency accompanied by a decreased nicotinamide adenine dinucleotide (NAD+)/reduced NAD+ (NADH) ratio may play a pivotal role in the pathogenesis of m.3243A>G mutation. Methods: To evaluate the potential effects of strategies targeting the imbalanced NAD+/NADH ratio in m.3243A>G mutation, we treated fibroblasts derived from patients with the m.3243 A>G mutation using nicotinamide riboside (NR) or mitochondria-targeted H2O-forming NADH oxidase (mitoLbNOX). Results: M.3243 A>G fibroblasts showed a significant reduction in complex I core subunit 6, complex I enzymatic activity, complex I-dependent oxygen consumption rate (OCR), and adenosine triphosphate (ATP) production compared to the controls. The NAD+/NADH ratio was also significantly reduced in m.3243 A>G fibroblasts, and, using fluorescence lifetime imaging microscopy, we also found that the NADH level was elevated in m.3243 A>G fibroblasts. After NR treatment, the NAD+/NADH ratio, complex I-dependent OCR, and ATP levels increased, whereas NADH levels remained unchanged. More excitingly, after treatment with mitoLbNOX, the NAD+/NADH ratio, complex I-independent OCR, and ATP levels increased more pronouncedly compared with the NR treatment group, accompanied by significantly reduced NADH levels. Discussion: The present study suggests that compared with repletion of NAD+ alone, the combination of this therapeutic modality with alleviation of NADH overload may amplify the treatment effect of restoring NAD+/NADH balance in m.3243A>G fibroblasts.
Collapse
Affiliation(s)
- Tongling Liufu
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Haiyan Yu
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, China
| | - Jiaxi Yu
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Meng Yu
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Yue Tian
- Neuroscience Research Institute, Peking University, Beijing, China
| | - Yichun Ou
- Neuroscience Research Institute, Peking University, Beijing, China
| | - Jianwen Deng
- Department of Neurology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| | - Guogang Xing
- Neuroscience Research Institute, Peking University, Beijing, China
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| |
Collapse
|
31
|
Ueda S, Yagi M, Tomoda E, Matsumoto S, Ueyanagi Y, Do Y, Setoyama D, Matsushima Y, Nagao A, Suzuki T, Ide T, Mori Y, Oyama N, Kang D, Uchiumi T. Mitochondrial haplotype mutation alleviates respiratory defect of MELAS by restoring taurine modification in tRNA with 3243A > G mutation. Nucleic Acids Res 2023; 51:7480-7495. [PMID: 37439353 PMCID: PMC10415116 DOI: 10.1093/nar/gkad591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 06/22/2023] [Accepted: 06/28/2023] [Indexed: 07/14/2023] Open
Abstract
The 3243A > G in mtDNA is a representative mutation in mitochondrial diseases. Mitochondrial protein synthesis is impaired due to decoding disorder caused by severe reduction of 5-taurinomethyluridine (τm5U) modification of the mutant mt-tRNALeu(UUR) bearing 3243A > G mutation. The 3243A > G heteroplasmy in peripheral blood reportedly decreases exponentially with age. Here, we found three cases with mild respiratory symptoms despite bearing high rate of 3243A > G mutation (>90%) in blood mtDNA. These patients had the 3290T > C haplotypic mutation in addition to 3243A > G pathogenic mutation in mt-tRNALeu(UUR) gene. We generated cybrid cells of these cases to examine the effects of the 3290T > C mutation on mitochondrial function and found that 3290T > C mutation improved mitochondrial translation, formation of respiratory chain complex, and oxygen consumption rate of pathogenic cells associated with 3243A > G mutation. We measured τm5U frequency of mt-tRNALeu(UUR) with 3243A > G mutation in the cybrids by a primer extension method assisted with chemical derivatization of τm5U, showing that hypomodification of τm5U was significantly restored by the 3290T > C haplotypic mutation. We concluded that the 3290T > C is a haplotypic mutation that suppresses respiratory deficiency of mitochondrial disease by restoring hypomodified τm5U in mt-tRNALeu(UUR) with 3243A > G mutation, implying a potential therapeutic measure for mitochondrial disease associated with pathogenic mutations in mt-tRNAs.
Collapse
Affiliation(s)
- Saori Ueda
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Mikako Yagi
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Ena Tomoda
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Shinya Matsumoto
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yasushi Ueyanagi
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yura Do
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Daiki Setoyama
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yuichi Matsushima
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Japan
| | - Asuteka Nagao
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Tomomi Ide
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yusuke Mori
- Department of Internal Medicine Kitakyushu City Yahata Hospital, 2-6-2 Ogura, Yahatahigashi-ku, Kitakyushu 805-8534, Japan
| | - Noriko Oyama
- Department of Endocrinology and Metabolism, Fukuoka Children's Hospital, 5-1-1 Kashiiteriha, Higashi-ku, Fukuoka 813-0017, Japan
| | - Dongchon Kang
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takeshi Uchiumi
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
32
|
Finsterer J, Mehri S. Mitochondrial disorders due to m.3243A>G not meeting diagnostic criteria for MELAS require comprehensive work-up. Eur Heart J Case Rep 2023; 7:ytad294. [PMID: 37614624 PMCID: PMC10442996 DOI: 10.1093/ehjcr/ytad294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Affiliation(s)
- Josef Finsterer
- Neurology and Neurophysiology Centre, Postfach 20, 1180 Vienna, Austria
| | - Sounira Mehri
- Biochemistry Laboratory, LR12ES05 ‘Nutrition-Functional Foods and Vascular Health’, Faculty of Medicine, Road Taher Hadded P.B 56, 5000 Monastir, Tunisia
| |
Collapse
|
33
|
Lee SH, Lee CJ. Adult-onset MELAS syndrome in a 51-year-old woman without typical clinical manifestations: a case report. Eur Heart J Case Rep 2023; 7:ytad389. [PMID: 37614625 PMCID: PMC10442998 DOI: 10.1093/ehjcr/ytad389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/09/2023] [Indexed: 08/25/2023]
Affiliation(s)
- Sang-Hyup Lee
- Division of Cardiology, Department of Internal Medicine, Severance Cardiovascular Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea
| | - Chan Joo Lee
- Division of Cardiology, Department of Internal Medicine, Severance Cardiovascular Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea
| |
Collapse
|
34
|
Khasminsky V, Auriel E, Luckman J, Eliahou R, Inbar E, Pardo K, Landau Y, Barnea R, Mermelstein M, Shelly S, Naftali J, Peretz S. Clinicoradiologic Criteria for the Diagnosis of Stroke-like Episodes in MELAS. Neurol Genet 2023; 9:e200082. [PMID: 37426458 PMCID: PMC10323819 DOI: 10.1212/nxg.0000000000200082] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 05/16/2023] [Indexed: 07/11/2023]
Abstract
Background and Objectives Stroke-like episodes (SLEs) in patients with mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome are often misdiagnosed as acute ischemic stroke (AIS). We aimed to determine unique clinical and neuroimaging features for SLEs and formulate diagnostic criteria. Methods We retrospectively identified patients with MELAS admitted for SLEs between January 2012 and December 2021. Clinical features and imaging findings were compared with a cohort of patients who presented with AIS and similar lesion topography. A set of criteria was formulated and then tested by a blinded rater to evaluate diagnostic performance. Results Eleven MELAS patients with 17 SLE and 21 AISs were included. Patients with SLEs were younger (median 45 [37-60] vs 77 [68-82] years, p < 0.01) and had a lower body mass index (18 ± 2.6 vs 29 ± 4, p < 0.01), more commonly reported hearing loss (91% vs 5%, p < 0.01), and more commonly presented with headache and/or seizures (41% vs 0%, p < 0.01). The earliest neuroimaging test performed at presentation was uniformly a noncontrast CT. Two main patterns of lesion topography with a stereotypical spatiotemporal evolution were identified-an anterior pattern (7/21, 41%) starting at the temporal operculum and spreading to the peripheral frontal cortex and a posterior pattern (10/21, 59%) starting at the cuneus/precuneus and spreading to the lateral occipital and parietal cortex. Other distinguishing features for SLEs vs AIS were cerebellar atrophy (91% vs 19%, p < 0.01), previous cortical lesions with typical SLE distribution (46% vs 9%, p = 0.03), acute lesion tissue hyperemia and venous engorgement on CT angiography (CTA) (45% vs 0%, p < 0.01), and no large vessel occlusion on CTA (0% vs 100%, p < 0.01). Based on these clinicoradiologic features, a set of diagnostic criteria were constructed for possible SLE (sensitivity 100%, specificity 81%, AUC 0.905) and probable SLE (sensitivity 88%, specificity 95%, AUC 0.917). Discussion Clinicoradiologic criteria based on simple anamnesis and a CT scan at presentation can accurately diagnose SLE and lead to early administration of appropriate therapy. Classification of Evidence This study provides Class III evidence that an algorithm using clinical and imaging features can differentiate stroke-like episodes due to MELAS from acute ischemic strokes.
Collapse
Affiliation(s)
- Vadim Khasminsky
- From the Departments of Imaging (V.K., J.L., R.E., E.I.) and Neurology (E.A., K.P., R.B., M.M., J.N., S.P.), Rabin Medical Center, Petach Tikva, Israel; Sackler Faculty of Medicine (V.K., E.A., J.L., R.E., E.I., Y.L., R.B., S.P.), Tel Aviv University; Metabolic Diseases Clinic (Y.L.), Schneider Children's Medical Center, Petach Tikva; Department of Neurology (S.S.), Rambam Health Care Campus, Haifa, Israel; and Department of Neurology (S.S.), Mayo Clinic, Rochester, MN
| | - Eitan Auriel
- From the Departments of Imaging (V.K., J.L., R.E., E.I.) and Neurology (E.A., K.P., R.B., M.M., J.N., S.P.), Rabin Medical Center, Petach Tikva, Israel; Sackler Faculty of Medicine (V.K., E.A., J.L., R.E., E.I., Y.L., R.B., S.P.), Tel Aviv University; Metabolic Diseases Clinic (Y.L.), Schneider Children's Medical Center, Petach Tikva; Department of Neurology (S.S.), Rambam Health Care Campus, Haifa, Israel; and Department of Neurology (S.S.), Mayo Clinic, Rochester, MN
| | - Judith Luckman
- From the Departments of Imaging (V.K., J.L., R.E., E.I.) and Neurology (E.A., K.P., R.B., M.M., J.N., S.P.), Rabin Medical Center, Petach Tikva, Israel; Sackler Faculty of Medicine (V.K., E.A., J.L., R.E., E.I., Y.L., R.B., S.P.), Tel Aviv University; Metabolic Diseases Clinic (Y.L.), Schneider Children's Medical Center, Petach Tikva; Department of Neurology (S.S.), Rambam Health Care Campus, Haifa, Israel; and Department of Neurology (S.S.), Mayo Clinic, Rochester, MN
| | - Ruth Eliahou
- From the Departments of Imaging (V.K., J.L., R.E., E.I.) and Neurology (E.A., K.P., R.B., M.M., J.N., S.P.), Rabin Medical Center, Petach Tikva, Israel; Sackler Faculty of Medicine (V.K., E.A., J.L., R.E., E.I., Y.L., R.B., S.P.), Tel Aviv University; Metabolic Diseases Clinic (Y.L.), Schneider Children's Medical Center, Petach Tikva; Department of Neurology (S.S.), Rambam Health Care Campus, Haifa, Israel; and Department of Neurology (S.S.), Mayo Clinic, Rochester, MN
| | - Edna Inbar
- From the Departments of Imaging (V.K., J.L., R.E., E.I.) and Neurology (E.A., K.P., R.B., M.M., J.N., S.P.), Rabin Medical Center, Petach Tikva, Israel; Sackler Faculty of Medicine (V.K., E.A., J.L., R.E., E.I., Y.L., R.B., S.P.), Tel Aviv University; Metabolic Diseases Clinic (Y.L.), Schneider Children's Medical Center, Petach Tikva; Department of Neurology (S.S.), Rambam Health Care Campus, Haifa, Israel; and Department of Neurology (S.S.), Mayo Clinic, Rochester, MN
| | - Keshet Pardo
- From the Departments of Imaging (V.K., J.L., R.E., E.I.) and Neurology (E.A., K.P., R.B., M.M., J.N., S.P.), Rabin Medical Center, Petach Tikva, Israel; Sackler Faculty of Medicine (V.K., E.A., J.L., R.E., E.I., Y.L., R.B., S.P.), Tel Aviv University; Metabolic Diseases Clinic (Y.L.), Schneider Children's Medical Center, Petach Tikva; Department of Neurology (S.S.), Rambam Health Care Campus, Haifa, Israel; and Department of Neurology (S.S.), Mayo Clinic, Rochester, MN
| | - Yuval Landau
- From the Departments of Imaging (V.K., J.L., R.E., E.I.) and Neurology (E.A., K.P., R.B., M.M., J.N., S.P.), Rabin Medical Center, Petach Tikva, Israel; Sackler Faculty of Medicine (V.K., E.A., J.L., R.E., E.I., Y.L., R.B., S.P.), Tel Aviv University; Metabolic Diseases Clinic (Y.L.), Schneider Children's Medical Center, Petach Tikva; Department of Neurology (S.S.), Rambam Health Care Campus, Haifa, Israel; and Department of Neurology (S.S.), Mayo Clinic, Rochester, MN
| | - Rani Barnea
- From the Departments of Imaging (V.K., J.L., R.E., E.I.) and Neurology (E.A., K.P., R.B., M.M., J.N., S.P.), Rabin Medical Center, Petach Tikva, Israel; Sackler Faculty of Medicine (V.K., E.A., J.L., R.E., E.I., Y.L., R.B., S.P.), Tel Aviv University; Metabolic Diseases Clinic (Y.L.), Schneider Children's Medical Center, Petach Tikva; Department of Neurology (S.S.), Rambam Health Care Campus, Haifa, Israel; and Department of Neurology (S.S.), Mayo Clinic, Rochester, MN
| | - Maor Mermelstein
- From the Departments of Imaging (V.K., J.L., R.E., E.I.) and Neurology (E.A., K.P., R.B., M.M., J.N., S.P.), Rabin Medical Center, Petach Tikva, Israel; Sackler Faculty of Medicine (V.K., E.A., J.L., R.E., E.I., Y.L., R.B., S.P.), Tel Aviv University; Metabolic Diseases Clinic (Y.L.), Schneider Children's Medical Center, Petach Tikva; Department of Neurology (S.S.), Rambam Health Care Campus, Haifa, Israel; and Department of Neurology (S.S.), Mayo Clinic, Rochester, MN
| | - Shahar Shelly
- From the Departments of Imaging (V.K., J.L., R.E., E.I.) and Neurology (E.A., K.P., R.B., M.M., J.N., S.P.), Rabin Medical Center, Petach Tikva, Israel; Sackler Faculty of Medicine (V.K., E.A., J.L., R.E., E.I., Y.L., R.B., S.P.), Tel Aviv University; Metabolic Diseases Clinic (Y.L.), Schneider Children's Medical Center, Petach Tikva; Department of Neurology (S.S.), Rambam Health Care Campus, Haifa, Israel; and Department of Neurology (S.S.), Mayo Clinic, Rochester, MN
| | - Jonathan Naftali
- From the Departments of Imaging (V.K., J.L., R.E., E.I.) and Neurology (E.A., K.P., R.B., M.M., J.N., S.P.), Rabin Medical Center, Petach Tikva, Israel; Sackler Faculty of Medicine (V.K., E.A., J.L., R.E., E.I., Y.L., R.B., S.P.), Tel Aviv University; Metabolic Diseases Clinic (Y.L.), Schneider Children's Medical Center, Petach Tikva; Department of Neurology (S.S.), Rambam Health Care Campus, Haifa, Israel; and Department of Neurology (S.S.), Mayo Clinic, Rochester, MN
| | - Shlomi Peretz
- From the Departments of Imaging (V.K., J.L., R.E., E.I.) and Neurology (E.A., K.P., R.B., M.M., J.N., S.P.), Rabin Medical Center, Petach Tikva, Israel; Sackler Faculty of Medicine (V.K., E.A., J.L., R.E., E.I., Y.L., R.B., S.P.), Tel Aviv University; Metabolic Diseases Clinic (Y.L.), Schneider Children's Medical Center, Petach Tikva; Department of Neurology (S.S.), Rambam Health Care Campus, Haifa, Israel; and Department of Neurology (S.S.), Mayo Clinic, Rochester, MN
| |
Collapse
|
35
|
Wang W, Zhao Y, Xu X, Ma X, Sun Y, Lin Y, Zhao Y, Xu Z, Wang J, Ren H, Wang B, Zhao D, Wang D, Liu F, Li W, Yan C, Ji K. A different pattern of clinical, muscle pathology and brain MRI findings in MELAS with mt-ND variants. Ann Clin Transl Neurol 2023; 10:1035-1045. [PMID: 37221696 PMCID: PMC10270267 DOI: 10.1002/acn3.51787] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/23/2023] [Accepted: 04/26/2023] [Indexed: 05/25/2023] Open
Abstract
OBJECTIVE To explore the clinical characteristics of mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) caused by mitochondrial DNA-encoded complex I subunit (mt-ND) variants. METHODS In this retrospective study, the clinical, myopathological and brain MRI features of patients with MELAS caused by mt-ND variants (MELAS-mtND) were collected and compared with those of MELAS patients carrying the m.3243A > G variant (MELAS-A3243G). RESULT A total of 18 MELAS-mtND patients (female: 7; median age: 24.5 years) represented 15.9% (n = 113) of all patients with MELAS caused by mtDNA variants in our neuromuscular center from January 2012 to June 2022. In this MELAS-mtND cohort, the two most common variants were m.10191 T > C (4/18, 22.2%) and m.13513 G > A (3/18, 16.7%). The most frequent symptoms were seizures (14/18, 77.8%) and muscle weakness (11/18, 61.1%). Compared with 87 MELAS-A3243G patients, MELAS-mtND patients were significantly more likely to have a variant that was absent in blood cells (40% vs. 1.4%). Furthermore, MELAS-mtND patients had a significantly lower MDC score (7.8 ± 2.7 vs. 9.8 ± 1.9); less hearing loss (27.8% vs. 54.0%), diabetes (11.1% vs. 37.9%), and migraine (33.3% vs. 62.1%); less short stature (males ≤ 165 cm; females ≤ 155 cm; 23.1% vs. 60.8%) and higher body mass index (20.4 ± 2.5 vs. 17.8 ± 2.7). MELAS-mtND patients had significantly more normal muscle pathology (31.3% vs. 4.1%) and fewer RRFs/RBFs (62.5% vs. 91.9%), COX-deficient fibers/blue fibers (25.0% vs. 85.1%) and SSVs (50.0% vs. 81.1%). Moreover, brain MRI evaluated at the first stroke-like episode showed significantly more small cortical lesions in MELAS-mtND patients (66.7% vs. 12.2%). INTERPRETATION Our results suggested that MELAS-mtND patients have distinct clinical, myopathological and brain MRI features compared with MELAS-A3243G patients.
Collapse
Affiliation(s)
- Wei Wang
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandong250012China
| | - Yuying Zhao
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandong250012China
| | - Xuebi Xu
- Department of NeurologyFirst Affiliated Hospital of Wenzhou Medical UniversityNanbaixiang Street, Ouhai DistrictWenzhou325000China
| | - Xiaotian Ma
- Department of Medicine Experimental Center, Qilu Hospital (Qingdao), Cheeloo College of MedicineShandong UniversityQingdaoShandong266035China
| | - Yuan Sun
- Department of neurology, Qilu Hospital (Qingdao), Cheeloo College of MedicineShandong UniversityQingdaoShandong266035China
| | - Yan Lin
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandong250012China
| | - Ying Zhao
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandong250012China
| | - Zhihong Xu
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandong250012China
| | - Jiayin Wang
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandong250012China
| | - Hong Ren
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandong250012China
| | - Bin Wang
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandong250012China
| | - Dandan Zhao
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandong250012China
| | - Dongdong Wang
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandong250012China
| | - Fuchen Liu
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandong250012China
| | - Wei Li
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandong250012China
| | - Chuanzhu Yan
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandong250012China
- Brain Science Research InstituteShandong UniversityJinanShandong250012China
- Mitochondrial Medicine Laboratory, Qilu Hospital (Qingdao)Shandong UniversityQingdaoShandong266035China
| | - Kunqian Ji
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandong250012China
| |
Collapse
|
36
|
Naganuma T, Imasawa T, Nukui I, Wakasugi M, Kitamura H, Yatsuka Y, Kishita Y, Okazaki Y, Murayama K, Jinguji Y. Focal segmental glomerulosclerosis with a mutation in the mitochondrially encoded NADH dehydrogenase 5 gene: A case report. Mol Genet Metab Rep 2023; 35:100963. [PMID: 36941957 PMCID: PMC10024046 DOI: 10.1016/j.ymgmr.2023.100963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/11/2023] Open
Abstract
NADH dehydrogenase 5 (ND5) is one of 44 subunits composed of Complex I in mitochondrial respiratory chain. Therefore, a mitochondrially encoded ND5 (MT-ND5) gene mutation causes mitochondrial oxidative phosphorylation (OXPHOS) disorder, resulting in the development of mitochondrial diseases. Focal segmental glomerulosclerosis (FSGS) which had podocytes filled with abnormal mitochondria is induced by mitochondrial diseases. An MT-ND5 mutation also causes FSGS. We herein report a Japanese woman who was found to have proteinuria and renal dysfunction in an annual health check-up at 29 years old. Because her proteinuria and renal dysfunction were persistent, she had a kidney biopsy at 33 years of age. The renal histology showed FSGS with podocytes filled with abnormal mitochondria. The podocytes also had foot process effacement and cytoplasmic vacuolization. In addition, the renal pathological findings showed granular swollen epithelial cells (GSECs) in tubular cells, age-inappropriately disarranged and irregularly sized vascular smooth muscle cells (AiDIVs), and red-coloured podocytes (ReCPos) by acidic dye. A genetic analysis using peripheral mononuclear blood cells and urine sediment cells detected the m.13513 G > A variant in the MT-ND5 gene. Therefore, this patient was diagnosed with FSGS due to an MT-ND5 gene mutation. Although this is not the first case report to show that an MT-ND5 gene mutation causes FSGS, this is the first to demonstrate podocyte injuries accompanied with accumulation of abnormal mitochondria in the cytoplasm.
Collapse
Key Words
- ATP, adenosine triphosphate
- AiDIVs, age-inappropriately disarranged and irregularly sized vascular smooth muscle cells
- COX IV, cytochrome c oxidase subunit 4
- Case report
- Cr, creatinine
- FSGS, focal segmental glomerulosclerosis
- Focal segmental glomerulosclerosis
- GSECs, granular swollen epithelial cells
- MELAS, mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes
- MRC, mitochondrial respiratory chain
- MT-ND5, mitochondrially encoded ND5
- Mitochondrial nephropathy
- NADH dehydrogenase 5
- ND5, NADH dehydrogenase 5
- OXPHOS:, oxidative phosphorylation
- Podocyte
- ReCPos, red-coloured podocytes
- eGFR, estimated glomerular filtration rate
- mtDNA, mitochondrial DNA
- nDNA, nuclear DNA
- sCr, serum creatinine
Collapse
Affiliation(s)
- Tsukasa Naganuma
- Division of Nephrology, Department of Internal Medicine, Yamanashi Prefectural Central Hospital, 1-1-1 Fujimi, Kofu, Yamanashi 400-0027, Japan
| | - Toshiyuki Imasawa
- Department of Nephrology, National Hospital Organization Chiba-Higashi National Hospital, 673 Nitona-cho, Chuoh-ku, Chiba-city, Chiba 206-8712, Japan
- Corresponding author.
| | - Ikuo Nukui
- Division of Nephrology, Department of Internal Medicine, Yamanashi Prefectural Central Hospital, 1-1-1 Fujimi, Kofu, Yamanashi 400-0027, Japan
| | - Masakiyo Wakasugi
- Division of Nephrology, Department of Internal Medicine, Yamanashi Prefectural Central Hospital, 1-1-1 Fujimi, Kofu, Yamanashi 400-0027, Japan
| | - Hiroshi Kitamura
- Department of Clinical Pathology, National Hospital Organization Chiba-Higashi National Hospital, 673 Nitona-cho, Chuoh-ku, Chiba-city, Chiba 206-8712, Japan
| | - Yukiko Yatsuka
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Yoshihito Kishita
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
- Department of Life Science, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashiosaka, Osaka 577-8502, Japan
| | - Yasushi Okazaki
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Kei Murayama
- Center for Medical Genetics, Department of Metabolism, Chiba Children's Hospital, 579-1, Heta-cho, Midori-ku, Chiba 266-0007, Japan
| | - Yoshimi Jinguji
- Division of Nephrology, Department of Internal Medicine, Yamanashi Prefectural Central Hospital, 1-1-1 Fujimi, Kofu, Yamanashi 400-0027, Japan
| |
Collapse
|
37
|
Wang JW, Yuan XB, Chen HF. Late-onset mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes syndrome with mitochondrial DNA 3243A>G mutation masquerading as autoimmune encephalitis: A case report. World J Clin Cases 2023; 11:3275-3281. [PMID: 37274040 PMCID: PMC10237123 DOI: 10.12998/wjcc.v11.i14.3275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/27/2023] [Accepted: 04/07/2023] [Indexed: 05/16/2023] Open
Abstract
BACKGROUND Here, we present a unique case of mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes (MELAS) syndrome, which initially appeared to be autoimmune encephalitis and was ultimately confirmed as MELAS with the mitochondrial DNA 3243A>G mutation.
CASE SUMMARY A 58-year-old female presented with acute-onset speech impediment and auditory hallucinations, symmetrical bitemporal lobe abnormalities, clinical and laboratory findings, and a lack of relevant prodromal history, which suggested diagnosis of autoimmune encephalitis. Further work-up, in conjunction with the patient’s medical history, family history, and lactate peak on brain lesions on magnetic resonance imaging, suggested a mitochondrial disorder. Mitochondrial genome analysis revealed the m.3243A>G variant in the MT-TL1 gene, which led to a diagnosis of MELAS syndrome.
CONCLUSION This case underscores the importance of considering MELAS as a potential cause of autoimmune encephalitis even if patients are over 40 years of age, as the symptoms and signs are atypical for MELAS syndrome.
Collapse
Affiliation(s)
- Jian-Wei Wang
- Department of Neurology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, Zhejiang Province, China
| | - Xiao-Bo Yuan
- Department of Neurology, The First People's Hospital of Yongkang, Jinhua 321300, Zhejiang Province, China
| | - Hong-Fang Chen
- Department of Neurology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, Zhejiang Province, China
| |
Collapse
|
38
|
Alves CAPF, Zandifar A, Peterson JT, Tara SZ, Ganetzky R, Viaene AN, Andronikou S, Falk MJ, Vossough A, Goldstein AC. MELAS: Phenotype Classification into Classic-versus-Atypical Presentations. AJNR Am J Neuroradiol 2023; 44:602-610. [PMID: 37024306 PMCID: PMC10171385 DOI: 10.3174/ajnr.a7837] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/24/2023] [Indexed: 04/08/2023]
Abstract
BACKGROUND AND PURPOSE An increased number of pathogenic variants have been described in mitochondrial encephalomyopathy lactic acidosis and strokelike episodes (MELAS). Different imaging presentations have emerged in parallel with a growing recognition of clinical and outcome variability, which pose a diagnostic challenge to neurologists and radiologists and may impact an individual patient's response to therapeutic interventions. By evaluating clinical, neuroimaging, laboratory, and genetic findings, we sought to improve our understanding of the sources of potential phenotype variability in patients with MELAS. MATERIALS AND METHODS This retrospective single-center study included individuals who had confirmed mitochondrial DNA pathogenic variants and a diagnosis of MELAS and whose data were reviewed from January 2000 through November 2021. The approach included a review of clinical, neuroimaging, laboratory, and genetic data, followed by an unsupervised hierarchical cluster analysis looking for sources of phenotype variability in MELAS. Subsequently, experts identified "victory-variables" that best differentiated MELAS cohort clusters. RESULTS Thirty-five patients with a diagnosis of mitochondrial DNA-based MELAS (median age, 12 years; interquartile range, 7-24 years; 24 female) were eligible for this study. Fifty-three discrete variables were evaluated by an unsupervised cluster analysis, which revealed that two distinct phenotypes exist among patients with MELAS. After experts reviewed the variables, they selected 8 victory-variables with the greatest impact in determining the MELAS subgroups: developmental delay, sensorineural hearing loss, vision loss in the first strokelike episode, Leigh syndrome overlap, age at the first strokelike episode, cortical lesion size, regional brain distribution of lesions, and genetic groups. Ultimately, 2-step differentiating criteria were defined to classify atypical MELAS. CONCLUSIONS We identified 2 distinct patterns of MELAS: classic MELAS and atypical MELAS. Recognizing different patterns in MELAS presentations will enable clinical and research care teams to better understand the natural history and prognosis of MELAS and identify the best candidates for specific therapeutic interventions.
Collapse
Affiliation(s)
- C A P F Alves
- From the Division of Neuroradiology (C.A.P.F.A., A.Z., S.A., A.V.), Department of Radiology
| | - A Zandifar
- From the Division of Neuroradiology (C.A.P.F.A., A.Z., S.A., A.V.), Department of Radiology
| | - J T Peterson
- Mitochondrial Medicine Frontier Program (J.T.P., S.Z.T., R.G., M.J.F., A.C.G.), Division of Human Genetics, Department of Pediatrics
| | - S Z Tara
- Mitochondrial Medicine Frontier Program (J.T.P., S.Z.T., R.G., M.J.F., A.C.G.), Division of Human Genetics, Department of Pediatrics
| | - R Ganetzky
- Mitochondrial Medicine Frontier Program (J.T.P., S.Z.T., R.G., M.J.F., A.C.G.), Division of Human Genetics, Department of Pediatrics
- Departments of Pediatrics (R.G., M.J.F., A.C.G.)
| | - A N Viaene
- Department of Pathology and Laboratory Medicine (A.N.V.), The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Pathology and Laboratory Medicine (A.N.V.)
| | - S Andronikou
- From the Division of Neuroradiology (C.A.P.F.A., A.Z., S.A., A.V.), Department of Radiology
- Radiology (S.A., A.V.), Perelman School of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - M J Falk
- Mitochondrial Medicine Frontier Program (J.T.P., S.Z.T., R.G., M.J.F., A.C.G.), Division of Human Genetics, Department of Pediatrics
- Departments of Pediatrics (R.G., M.J.F., A.C.G.)
| | - A Vossough
- From the Division of Neuroradiology (C.A.P.F.A., A.Z., S.A., A.V.), Department of Radiology
- Radiology (S.A., A.V.), Perelman School of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - A C Goldstein
- Mitochondrial Medicine Frontier Program (J.T.P., S.Z.T., R.G., M.J.F., A.C.G.), Division of Human Genetics, Department of Pediatrics
- Departments of Pediatrics (R.G., M.J.F., A.C.G.)
| |
Collapse
|
39
|
Wu G, Shen Y, Zhu F, Tao W, Zhou Y, Ke S, Jiang H. Comprehensive Diagnostic Criteria for MELAS Syndrome; a Case Study Involving an Elderly Patient With MT-TWm.5541C>T Mutation. Neurologist 2023; 28:190-194. [PMID: 36125978 PMCID: PMC10158598 DOI: 10.1097/nrl.0000000000000457] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
INTRODUCTION The mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome is a matrilineal hereditary multisystem disease caused by mutations in the mitochondrial DNA. Although the initial diagnostic criteria correlate with a range of clinical phenotypes, including clinical onset after the age of 40, there is still lack of a unified single diagnostic standard for MELAS. CASE REPORT A 71-year-old female patient with recurrent stroke was reported. Magnetic resonance imaging showed a cerebral gyrus-like diffusion weighted imaging high signal lesion in the parietal-occipital lobe and the area of this lesion expanded with disease progression. The MRS result showed significantly inverted Lac/Lip peaks. The nucleic acid sequencing result displayed a MT-TWm.5541C>T mutation, and a 12.86% mutation rate in the blood sample. The patient had a 6-year history of type 2 diabetes. CONCLUSION Patients with the MELAS syndrome may present with a variety of clinical manifestations. Our data demonstrated that, for patients with atypical cerebral infarction and suspected MELAS syndrome, gene sequencing and muscle biopsy should be performed in time. This case provides a reference for the diagnostic criteria of MELAS syndrome.
Collapse
Affiliation(s)
- Gang Wu
- Department of Neurology
- Department of Pharmacy, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | | | | | | | | | | | | |
Collapse
|
40
|
Lou X, Zhou Y, Liu Z, Xie Y, Zhang L, Zhao S, Gong S, Zhuo X, Wang J, Dai L, Ren X, Tong X, Jiang L, Fang H, Fang F, Lyu J. De novo frameshift variant in MT-ND1 causes a mitochondrial complex I deficiency associated with MELAS syndrome. Gene 2023; 860:147229. [PMID: 36717040 DOI: 10.1016/j.gene.2023.147229] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/04/2023] [Accepted: 01/24/2023] [Indexed: 01/29/2023]
Abstract
BACKGROUND The variant m.3571_3572insC/MT-ND1 thus far only reported in oncocytic tumors of different tissues. However, the role of m.3571_3572insC in inherited mitochondrial diseases has yet to be elucidated. METHODS A patient diagnosed with MELAS syndrome was recruited, and detailed medical records were collected and reviewed. The muscle was biopsied for mitochondrial respiratory chain enzyme activity. Series of fibroblast clones bearing different m.3571_3572insC variant loads were generated from patient-derived fibroblasts and subjected to functional assays. RESULTS Complex I deficiency was confirmed in the patient's muscle via mitochondrial respiratory chain enzyme activity assay. The m.3571_3572insC was filtered for the candidate variant of the patient according to the guidelines for mitochondrial mRNA variants interpretation. Three cell clones with different m.3571_3572insC variant loads were generated to evaluate mitochondrial function. Blue native PAGE analysis revealed that m.3571_3572insC caused a deficiency in the mitochondrial complex I. Oxygen consumption rate, ATP production, and lactate assays found an impairment of cellular bioenergetic capacity due to m.3571_3572insC. Mitochondrial membrane potential was decreased, and mitochondrial reactive oxygen species production was increased with the variant of m.3571_3572insC. According to the competitive cell growth assay, the mutant cells had impaired cell growth capacity compared to wild type. CONCLUSIONS A novel variant m.3571_3572insC was identified in a patient diagnosed with MELAS syndrome, and the variant impaired mitochondrial respiration by decreasing the activity of complex I. In conclusion, the genetic spectrum of mitochondrial diseases was expanded by including m.3571_3572insC/MT-ND1.
Collapse
Affiliation(s)
- Xiaoting Lou
- Center for Reproductive Medicine, Department of Genetic and Genomic Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China; Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Yuwei Zhou
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zhimei Liu
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100069, China
| | - Yaojun Xie
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Luyi Zhang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Suzhou Zhao
- Fujungenetics Technologies Co., Ltd, Beijing 100176, China
| | - Shuai Gong
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100069, China
| | - Xiuwei Zhuo
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100069, China
| | - Junling Wang
- Department of Pediatrics, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Lifang Dai
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100069, China
| | - Xiaotun Ren
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100069, China
| | - Xiao Tong
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100069, China
| | - Liangliang Jiang
- Pediatric Neurology, Anhui Provincial Children's Hospital, Hefei, Anhui 230022, China
| | - Hezhi Fang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Fang Fang
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100069, China.
| | - Jianxin Lyu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China; Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
41
|
Ng YS, Gorman GS. Stroke-like episodes in adult mitochondrial disease. HANDBOOK OF CLINICAL NEUROLOGY 2023; 194:65-78. [PMID: 36813321 DOI: 10.1016/b978-0-12-821751-1.00005-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Stroke-like episode is a paroxysmal neurological manifestation which affects a specific group of patients with mitochondrial disease. Focal-onset seizures, encephalopathy, and visual disturbances are prominent findings associated with stroke-like episodes, with a predilection for the posterior cerebral cortex. The most common cause of stroke-like episodes is the m.3243A>G variant in MT-TL1 gene followed by recessive POLG variants. This chapter aims to review the definition of stroke-like episode and delineate the clinical phenomenology, neuroimaging and EEG findings typically seen in patients. In addition, several lines of evidence supporting neuronal hyper-excitability as the key mechanism of stroke-like episodes are discussed. The management of stroke-like episodes should focus on aggressive seizure management and treatment for concomitant complications such as intestinal pseudo-obstruction. There is no robust evidence to prove the efficacy of l-arginine for both acute and prophylactic settings. Progressive brain atrophy and dementia are the sequalae of recurrent stroke-like episode, and the underlying genotype in part predicts prognosis.
Collapse
Affiliation(s)
- Yi Shiau Ng
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Gráinne S Gorman
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom.
| |
Collapse
|
42
|
Yang X, Sun A, Ji K, Wang X, Yang X, Zhao X. Clinical features of epileptic seizures in patients with mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes. Seizure 2023; 106:110-116. [PMID: 36827862 DOI: 10.1016/j.seizure.2023.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/21/2023] Open
Abstract
BACKGROUND AND PURPOSE This study aimed to characterize the clinical features of epilepsy in mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) and analyze the clinical determinants for drug-resistant epilepsy in MELAS. METHODS A single-center, retrospective study was conducted to investigate the clinical features of epilepsy in patients with MELAS. Collected variables included seizure semiology, electroencephalography (EEG), muscle biopsy, genetic testing, neuroimaging findings, resting serum lactic value and modified Rankin scale (mRS) of patients with MELAS. We also investigated the differences between the adult-onset group and the child-onset group and analyzed the risk factors for drug-resistant epilepsy in MELAS. RESULTS We studied 97 patients (56 males: 41 females) with confirmed MELAS. Epileptic seizure occurred in 100.0% of patients and the initial symptom of 69.1% patients was epileptic seizure. The average age of disease onset was 21.0 years, ranging from 2 to 60 years. The seizure types of these patients with MELAS were variable, with generalized onset (51.5%) to be the most common type. The EEG changes in the patients with MELAS were mainly slow wave (90.9%) and epileptiform discharge (68.2%). The child-onset group with earlier seizure onset presented significantly higher resting serum lactic value (p = 0.0048) and lower incidence of stroke-like lesion in the brain (p = 0.003), especially in the temporal lobe (p < 0.001), compared with the adult-onset group. Importantly, drug-resistant epilepsy in MELAS was demonstrated to be closely related to the earlier age of seizure onset (p = 0.013), as well as the higher mRS score (p < 0.001) and higher resting serum lactic value (p = 0.009). CONCLUSION Early identification of MELAS should be considered among individuals with recurrent epilepsy through clinical screening. Age of seizure onset and resting serum lactic value may predict the development of drug-resistant epilepsy in MELAS. Close observation and appropriate anti-epileptic treatment are indispensable for individuals with MELAS to improve the prognosis. Further studies with larger sample size are required to further evaluate the risk factors of drug-resistant epilepsy in MELAS and provide guidance on treatment of MELAS.
Collapse
Affiliation(s)
- Xiaxin Yang
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, PR. China
| | - Anqi Sun
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, PR. China
| | - Kunqian Ji
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR. China
| | - Xiaotang Wang
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, PR. China
| | - Xue Yang
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, PR. China.
| | - Xiuhe Zhao
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, PR. China.
| |
Collapse
|
43
|
Naftali J, Mermelstein M, Landau YE, Barnea R, Shelly S, Auriel E, Peretz S. Clinical score for early diagnosis and treatment of stroke-like episodes in MELAS syndrome. Acta Neurol Belg 2023:10.1007/s13760-023-02196-z. [PMID: 36792807 DOI: 10.1007/s13760-023-02196-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/18/2023] [Indexed: 02/17/2023]
Abstract
BACKGROUND AND OBJECTIVES Stroke-like episodes (SLEs) in patients with MELAS syndrome are often initially misdiagnosed as acute ischemic stroke (AIS), resulting in treatment delay. We aimed to determine clinical features that may distinguish SLEs from AISs and explore the benefit of early L-arginine treatment on patient outcomes. METHODS We looked retrospectively for MELAS patients admitted between January 2005 and January 2022 and compared them to an AIS cohort with similar lesion topography. MELAS patients who received L-arginine within 40 days of their first SLE were defined as the early treatment group and the remaining as late or no treatment group. RESULTS Twenty-three SLEs in 10 MELAS patients and 21 AISs were included. SLE patients had significantly different features: they were younger, more commonly reported hearing loss, lower body mass index, had more commonly a combination of headache and/or seizures at presentation, serum lactate was higher, and hemiparesis was less common. An SLE Early Clinical Score (SLEECS) was constructed by designating one point to each above features. SLEECS ≥ 4 had 80% sensitivity and 100% specificity for SLE diagnosis. Compared to late or no treatment, early treatment group patients (n = 5) had less recurrent SLEs (total 2 vs. 11), less seizures (14% vs. 25%, p = 0.048), lower degree of disability at first and last follow-up (modified ranking scale, mRS 2 ± 0.7 vs. 4.2 ± 1, p = 0.005; 2 ± 0.7 vs. 5.8 ± 0.5, p < 0.001, respectively), and a lower mortality (0% vs. 80% p = 0.048). CONCLUSIONS The SLEECS model may aid in the early diagnosis and treatment of SLEs and lead to improved clinical outcomes.
Collapse
Affiliation(s)
- Jonathan Naftali
- Department of Neurology, Rabin Medical Center, Zeev Jabotinsky St 39, 49100, Petah Tikva, Israel
| | - Maor Mermelstein
- Department of Neurology, Rabin Medical Center, Zeev Jabotinsky St 39, 49100, Petah Tikva, Israel
| | - Yuval E Landau
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Metabolic Diseases Clinic, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - Rani Barnea
- Department of Neurology, Rabin Medical Center, Zeev Jabotinsky St 39, 49100, Petah Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shahar Shelly
- Department of Neurology, Sheba Medical Center, Tel Aviv, Israel.,Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Eitan Auriel
- Department of Neurology, Rabin Medical Center, Zeev Jabotinsky St 39, 49100, Petah Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shlomi Peretz
- Department of Neurology, Rabin Medical Center, Zeev Jabotinsky St 39, 49100, Petah Tikva, Israel. .,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
44
|
Ibayashi K, Fujino Y, Mimaki M, Fujimoto K, Matsuda S, Goto YI. Estimation of the Number of Patients With Mitochondrial Diseases: A Descriptive Study Using a Nationwide Database in Japan. J Epidemiol 2023; 33:68-75. [PMID: 33907064 PMCID: PMC9794447 DOI: 10.2188/jea.je20200577] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND To provide a better healthcare system for patients with mitochondrial diseases, it is important to understand the basic epidemiology of these conditions, including the number of patients affected. However, little information about them has appeared in Japan to date. METHODS To gather data of patients with mitochondrial diseases, we estimated the number of patients with mitochondrial diseases from April 2018 through March 2019 using a national Japanese health care claims database, the National Database (NDB). Further, we calculated the prevalence of patients, and sex ratio, age class, and geographical distribution. RESULTS From April 2018 through March 2019, the number of patients with mitochondrial diseases was 3,629, and the prevalence was 2.9 (95% confidence interval [CI], 2.8-3.0) per 100,000 general population. The ratio of females and males was 53 to 47, and the most frequent age class was 40-49 years old. Tokyo had the greatest number of patients with mitochondrial diseases, at 477, whereas Yamanashi had the fewest, at 13. Kagoshima had the highest prevalence of patients with mitochondrial diseases, 8.4 (95% CI, 7.1-10.0) per 100,000 population, whereas Yamanashi had the lowest, 1.6 (95% CI, 0.8-2.7). CONCLUSION The number of patients with mitochondrial diseases estimated by this study, 3,269, was more than double that indicated by the Japanese government. This result may imply that about half of all patients are overlooked for reasons such as low severity of illness, suggesting that the Japanese healthcare system needs to provide additional support for these patients.
Collapse
Affiliation(s)
- Koki Ibayashi
- Department of Environmental Epidemiology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, Fukuoka, Japan
| | - Yoshihisa Fujino
- Department of Environmental Epidemiology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, Fukuoka, Japan
| | - Masakazu Mimaki
- Department of Pediatrics, Teikyo University School of Medicine, Tokyo, Japan
| | - Kenji Fujimoto
- Department of Public Health, University of Occupational and Environmental Health, Japan, Fukuoka, Japan
| | - Shinya Matsuda
- Department of Public Health, University of Occupational and Environmental Health, Japan, Fukuoka, Japan
| | - Yu-ichi Goto
- Department of Mental Retardation and Birth Defect Research, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| |
Collapse
|
45
|
Lee SH, Lee CJ, Won D, Kang SM. Adult-onset MELAS syndrome in a 51-year-old woman without typical clinical manifestations: a case report. Eur Heart J Case Rep 2023; 7:ytad028. [PMID: 36733687 PMCID: PMC9887669 DOI: 10.1093/ehjcr/ytad028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/15/2022] [Accepted: 01/11/2023] [Indexed: 01/19/2023]
Abstract
Background Mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes (MELAS) syndrome is a multi-organ disorder resulting from mitochondrial DNA (mtDNA) mutations. We report a case of suspected MELAS syndrome that progressed to left ventricular dysfunction 24 years after an initial diagnosis of atrioventricular block (AVB). Case summary A 51-year-old woman was referred to heart failure clinic because of dyspnoea on exertion and progressive cardiomegaly. She had a dual-chamber pacemaker implanted for 24 years because of a high-degree AVB. She was treated for diabetes mellitus for 23 years and used hearing aids for 12 years because of sensorineural hearing loss. Transthoracic echocardiography revealed reduced left ventricular ejection fraction (26%), with increased thickness and unusual texture of the myocardium. The absence of abnormal findings on serum and urine protein electrophoresis suggested that light-chain amyloidosis was unlikely. In addition, 99mTc-3,3-diphosphono-1,2-propanodicarboxylic acid scintigraphy revealed no definite uptake in the myocardium. Endomyocardial biopsy revealed a hypertrophy of myocytes in haematoxylin-eosin staining, and electron microscopy revealed a disarrangement of mitochondrial cristae, which were suggestive of mitochondrial cardiomyopathy. A mtDNA test detected the m.3243A > G mutation in the MT-TL1 gene. According to these findings, MELAS syndrome was the most probable diagnosis despite the absence of common symptoms such as stroke-like episodes or lactic acidosis. Discussion The patient had progressed to heart failure with reduced ejection fraction 24 years after the first cardiac manifestation. An identification of the mutation in the MT-TL1 gene, indicative of MELAS syndrome, enabled the diagnosis of MELAS syndrome without typical manifestations.
Collapse
Affiliation(s)
- Sang-Hyup Lee
- Division of Cardiology, Department of Internal Medicine, Severance Cardiovascular Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea
| | - Chan Joo Lee
- Corresponding author. Tel: +82 2 2228 8450, Fax: +82 2 2227 7732,
| | - Dongju Won
- Department of Laboratory Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea
| | | |
Collapse
|
46
|
Argudo JM, Astudillo Moncayo OM, Insuasti W, Garofalo G, Aguirre AS, Encalada S, Villamarin J, Oña S, Tenemaza MG, Eissa-Garcés A, Matcheswalla S, Ortiz JF. Arginine for the Treatment of Mitochondrial Encephalopathy, Lactic Acidosis, and Stroke-Like Episodes: A Systematic Review. Cureus 2022; 14:e32709. [PMID: 36686069 PMCID: PMC9848692 DOI: 10.7759/cureus.32709] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2022] [Indexed: 12/23/2022] Open
Abstract
Mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome is a mitochondrial disease that lacks a definitive treatment. Lately, there has been an increased interest in the scientific community about the role of arginine in the short and long-term settings of the disease. We aim to conduct a systematic review of the clinical use of arginine in the management of MELAS and explore the role of arginine in the pathophysiology of the disease. We used PubMed advanced-strategy searches and only included full-text clinical trials on humans written in the English language. After applying the inclusion/exclusion criteria, four clinical trials were reviewed. We used the Meta-analysis of Observational Studies in Epidemiology (MOOSE) guidelines and Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) protocol for this systematic review. We used the Cochrane Collaboration risk-of-bias tool to assess the bias encountered in each study. Overall, IV arginine seems to be effective in improving symptoms during acute attacks of MELAS, while oral arginine supplementation increases endothelial function, preventing further stroke-like episodes.
Collapse
Affiliation(s)
| | | | - Walter Insuasti
- Division of Research and Academic Affairs, Larkin Community Hospital, Miami, USA
| | | | - Alex S Aguirre
- School of Medicine, Universidad San Francisco de Quito, Quito, ECU
| | | | - Jose Villamarin
- School of Medicine, Universidad Central del Ecuador, Quito, ECU
| | - Sebastian Oña
- School of Medicine, Universidad San Francisco de Quito, Quito, ECU
| | | | | | | | - Juan Fernando Ortiz
- Department of Neurology, Corewell Health, Michigan State University, Grand Rapids, USA
| |
Collapse
|
47
|
Apply the Hirano or Japanese criteria when diagnosing MELAS. Ann Med Surg (Lond) 2022; 84:104965. [DOI: 10.1016/j.amsu.2022.104965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022] Open
|
48
|
Chang X, Yin Z, Zhang W, Shi J, Pu C, Shi Q, Wang J, Zhang J, Yan L, Yang W, Guo J. Data-independent acquisition-based quantitative proteomic analysis of m.3243A>G MELAS reveals novel potential pathogenesis and therapeutic targets. Medicine (Baltimore) 2022; 101:e30938. [PMID: 36254078 PMCID: PMC9575705 DOI: 10.1097/md.0000000000030938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The pathogenesis of mitochondrial myopathy, encephalopathy, lactic acidosis and stroke like episodes (MELAS) syndrome has not been fully elucidated. The m.3243A > G mutation which is responsible for 80% MELAS patients affects proteins with undetermined functions. Therefore, we performed quantitative proteomic analysis on skeletal muscle specimens from MELAS patients. We recruited 10 patients with definitive MELAS and 10 age- and gender- matched controls. Proteomic analysis based on nanospray liquid chromatography-mass spectrometry (LC-MS) was performed using data-independent acquisition (DIA) method and differentially expressed proteins were revealed by bioinformatics analysis. We identified 128 differential proteins between MELAS and controls, including 68 down-regulated proteins and 60 up-regulated proteins. The differential proteins involved in oxidative stress were identified, including heat shock protein beta-1 (HSPB1), alpha-crystallin B chain (CRYAB), heme oxygenase 1 (HMOX1), glucose-6-phosphate dehydrogenase (G6PD) and selenoprotein P. Gene ontology and kyoto encyclopedia of genes and genomes pathway analysis showed significant enrichment in phagosome, ribosome and peroxisome proliferator-activated receptors (PPAR) signaling pathway. The imbalance between oxidative stress and antioxidant defense, the activation of autophagosomes, and the abnormal metabolism of mitochondrial ribosome proteins (MRPs) might play an important role in m.3243A > G MELAS. The combination of proteomic and bioinformatics analysis could contribute potential molecular networks to the pathogenesis of MELAS in a comprehensive manner.
Collapse
Affiliation(s)
- Xueli Chang
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Zhaoxu Yin
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Wei Zhang
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jiaying Shi
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Chuanqiang Pu
- Department of Neurology, Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Qiang Shi
- Department of Neurology, Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Juan Wang
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jing Zhang
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Li Yan
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Wenqu Yang
- Department of Anesthesiology, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Taiyuan, Shanxi, China
| | - Junhong Guo
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- *Correspondence: Junhong Guo, Department of Neurology, First Hospital, Shanxi Medical University, No. 85, Jiefang South Road, Taiyuan, 030001, Shanxi, China (e-mail: )
| |
Collapse
|
49
|
Alenezi AF, Almelahi MA, Fekih-Romdhana F, Jahrami HA. Delay in diagnosing a patient with mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome who presented with status epilepticus and lactic acidosis: a case report. J Med Case Rep 2022; 16:361. [PMID: 36210452 PMCID: PMC9549677 DOI: 10.1186/s13256-022-03613-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/16/2022] [Indexed: 11/10/2022] Open
Abstract
Background Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episode syndrome is a rare mitochondrial genetic disorder that can present with a variety of clinical manifestations, including stroke, hearing loss, seizures, and lactic acidosis. The most common genetic mutation associated with this syndrome is M.3243A>G. The main underlying mechanism of the disease relates to protein synthesis, energy depletion, and nitric oxide deficiency. Controlling disease complications and improving patient quality of life are the primary aims of treatment options. Case presentation A 28-year-old Arabic female visited Al-Amiri Hospital in Kuwait. The patient was newly diagnosed with mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episode syndrome following her admission as a case of status epilepticus requiring further investigation. The patient’s seizures were controlled, and she was evaluated to rule out the most serious complications by carrying out appropriate clinical, laboratory, and radiological imaging. The patient was discharged from the hospital after 2 weeks with a follow-up plan. Conclusion This case report emphasizes the importance of considering mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episode syndrome as a potential cause of status epilepticus with lactic acidosis in a young female patient with a past history of stroke-like episodes. It also stresses the most important workup to rule out every possible life-threatening complication to improve patients’ lives.
Collapse
|
50
|
Finsterer J. Sudden death in m.3243A>G carriers is multicausal and requires extensive work-up. Leg Med (Tokyo) 2022; 59:102130. [DOI: 10.1016/j.legalmed.2022.102130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/28/2022] [Accepted: 08/03/2022] [Indexed: 10/31/2022]
|