1
|
Ohno M, Wakatsuki S, Araki T. The essential role of E3 ubiquitin ligases in the pathogenesis of neurodevelopmental and psychiatric disorders: Cul3, Cul4, Ube3a, and ZNRF1. Biochem Biophys Res Commun 2025; 763:151798. [PMID: 40233431 DOI: 10.1016/j.bbrc.2025.151798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 04/10/2025] [Accepted: 04/10/2025] [Indexed: 04/17/2025]
Abstract
The ubiquitin-proteasome system (UPS) is a crucial proteolytic pathway responsible for maintaining cellular homeostasis by degrading specific substrates and misfolded proteins. Protein ubiquitination, a key post-translational modification, is mediated by three enzymes: E1 (activating enzyme), E2 (conjugating enzyme), and E3 (ligase enzyme). Among these, E3 ligase genes have been linked to various neurological disorders, emphasizing the need to understand their molecular mechanisms. This paper reviews recent studies on the substrates of various E3 ubiquitin ligases including Cul3, Cul4, Ube3a, and ZNRF1, and explains how their dysfunction contributes to neuronal impairments and disease phenotypes. By deepening our understanding of these mechanisms, this review aims to facilitate the development of targeted therapies and guide future research into neurodegenerative and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Moeka Ohno
- Department of Peripheral Nervous System Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo, 187-8502, Japan; Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Shuji Wakatsuki
- Department of Peripheral Nervous System Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo, 187-8502, Japan.
| | - Toshiyuki Araki
- Department of Peripheral Nervous System Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo, 187-8502, Japan; Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan.
| |
Collapse
|
2
|
Baumgartner TJ, Dvorak NM, Goode NA, Haghighijoo Z, Marosi M, Singh J, Singh AK, Laezza F. Axin-binding domain of glycogen synthase kinase 3β facilitates functional interactions with voltage-gated Na+ channel Na v1.6. J Biol Chem 2025; 301:108162. [PMID: 39793889 PMCID: PMC11847078 DOI: 10.1016/j.jbc.2025.108162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 12/09/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025] Open
Abstract
Voltage-gated Na+ (Nav) channels are the primary determinants of the action potential in excitable cells. Nav channels rely on a wide and diverse array of intracellular protein-protein interactions (PPIs) to achieve their full function. Glycogen synthase kinase 3β (GSK3β) has been previously identified as a modulator of Nav1.6-encoded currents and neuronal excitability through PPI formation with Nav1.6 and phosphorylation of its C-terminal domain (CTD). Here, we hypothesized that GSK3β functions as a scaffold in a regulatory PPI complex with the Nav1.6 CTD. Mutagenesis screening using the split-luciferase complementation assay indicated that the axin-binding domain (ABD) of GSK3β (262-299) is necessary for complex formation between the Nav1.6 CTD and GSK3β, and that residues within this domain are drivers of GSK3β-mediated regulation of the channel. Overexpression of an ABD-GFP fusion construct in human embryonic kidney 293 cells stably expressing Nav1.6 significantly reduced Nav1.6 nanocluster density compared with GFP alone. In addition, overexpression of the ABD-GFP fusion construct ablates GSK3β-mediated potentiation of Nav1.6-encoded currents and alters channel kinetics. Finally, in vivo AAV-mediated overexpression of the ABD-GFP construct in the CA1 hippocampal region induced a reduction in maximal action potential firing and an increase in action potential current threshold in a manner resembling previously reported effects of GSK3β silencing in neurons. Taken together, these results not only suggest that GSK3β-mediated regulation of Nav1.6 extends beyond transient phosphorylation but also implicates the ABD as a critical regulatory domain that facilitates GSK3β's functional effects on Nav1.6 and neuronal excitability.
Collapse
Affiliation(s)
- Timothy John Baumgartner
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Nolan Michael Dvorak
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Nana Aboadwe Goode
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Zahra Haghighijoo
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Mate Marosi
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jully Singh
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Aditya Kumar Singh
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Fernanda Laezza
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, USA.
| |
Collapse
|
3
|
Singh AK, Singh J, Goode NA, Laezza F. Crosstalk among WEE1 Kinase, AKT, and GSK3 in Nav1.2 Channelosome Regulation. Int J Mol Sci 2024; 25:8069. [PMID: 39125637 PMCID: PMC11311446 DOI: 10.3390/ijms25158069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/05/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024] Open
Abstract
The signaling complex around voltage-gated sodium (Nav) channels includes accessory proteins and kinases crucial for regulating neuronal firing. Previous studies showed that one such kinase, WEE1-critical to the cell cycle-selectively modulates Nav1.2 channel activity through the accessory protein fibroblast growth factor 14 (FGF14). Here, we tested whether WEE1 exhibits crosstalk with the AKT/GSK3 kinase pathway for coordinated regulation of FGF14/Nav1.2 channel complex assembly and function. Using the in-cell split luciferase complementation assay (LCA), we found that the WEE1 inhibitor II and GSK3 inhibitor XIII reduce the FGF14/Nav1.2 complex formation, while the AKT inhibitor triciribine increases it. However, combining WEE1 inhibitor II with either one of the other two inhibitors abolished its effect on the FGF14/Nav1.2 complex formation. Whole-cell voltage-clamp recordings of sodium currents (INa) in HEK293 cells co-expressing Nav1.2 channels and FGF14-GFP showed that WEE1 inhibitor II significantly suppresses peak INa density, both alone and in the presence of triciribine or GSK3 inhibitor XIII, despite the latter inhibitor's opposite effects on INa. Additionally, WEE1 inhibitor II slowed the tau of fast inactivation and caused depolarizing shifts in the voltage dependence of activation and inactivation. These phenotypes either prevailed or were additive when combined with triciribine but were outcompeted when both WEE1 inhibitor II and GSK3 inhibitor XIII were present. Concerted regulation by WEE1 inhibitor II, triciribine, and GSK3 inhibitor XIII was also observed in long-term inactivation and use dependency of Nav1.2 currents. Overall, these findings suggest a complex role for WEE1 kinase-in concert with the AKT/GSK3 pathway-in regulating the Nav1.2 channelosome.
Collapse
Affiliation(s)
- Aditya K. Singh
- Department of Pharmacology & Toxicology, The University of Texas Medical Branch, Galveston, TX 77555, USA; (J.S.); (N.A.G.); (F.L.)
| | | | | | | |
Collapse
|
4
|
Okoh J, Mays J, Bacq A, Oses-Prieto JA, Tyanova S, Chen CJ, Imanbeyev K, Doladilhe M, Zhou H, Jafar-Nejad P, Burlingame A, Noebels J, Baulac S, Costa-Mattioli M. Targeted suppression of mTORC2 reduces seizures across models of epilepsy. Nat Commun 2023; 14:7364. [PMID: 37963879 PMCID: PMC10645975 DOI: 10.1038/s41467-023-42922-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 10/26/2023] [Indexed: 11/16/2023] Open
Abstract
Epilepsy is a neurological disorder that poses a major threat to public health. Hyperactivation of mTOR complex 1 (mTORC1) is believed to lead to abnormal network rhythmicity associated with epilepsy, and its inhibition is proposed to provide some therapeutic benefit. However, mTOR complex 2 (mTORC2) is also activated in the epileptic brain, and little is known about its role in seizures. Here we discover that genetic deletion of mTORC2 from forebrain neurons is protective against kainic acid-induced behavioral and EEG seizures. Furthermore, inhibition of mTORC2 with a specific antisense oligonucleotide robustly suppresses seizures in several pharmacological and genetic mouse models of epilepsy. Finally, we identify a target of mTORC2, Nav1.2, which has been implicated in epilepsy and neuronal excitability. Our findings, which are generalizable to several models of human seizures, raise the possibility that inhibition of mTORC2 may serve as a broader therapeutic strategy against epilepsy.
Collapse
Affiliation(s)
- James Okoh
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Memory and Brain Research Center, Baylor College of Medicine, Houston, TX, USA
- Altos Labs Inc, Bay Area Institute, Redwood City, CA, USA
| | - Jacqunae Mays
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Memory and Brain Research Center, Baylor College of Medicine, Houston, TX, USA
| | - Alexandre Bacq
- Institut du Cerveau-Paris Brain Institute-ICM, Sorbonne Université, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, F-75013, Paris, France
| | - Juan A Oses-Prieto
- Departments of Chemistry and Pharmaceutical Chemistry, University of California San Fransisco, San Fransisco, CA, USA
| | - Stefka Tyanova
- Altos Labs Inc, Bay Area Institute, Redwood City, CA, USA
| | - Chien-Ju Chen
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Memory and Brain Research Center, Baylor College of Medicine, Houston, TX, USA
- Novartis Inc, Boston, MA, USA
| | - Khalel Imanbeyev
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Memory and Brain Research Center, Baylor College of Medicine, Houston, TX, USA
| | - Marion Doladilhe
- Institut du Cerveau-Paris Brain Institute-ICM, Sorbonne Université, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, F-75013, Paris, France
| | - Hongyi Zhou
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Memory and Brain Research Center, Baylor College of Medicine, Houston, TX, USA
- Altos Labs Inc, Bay Area Institute, Redwood City, CA, USA
| | | | - Alma Burlingame
- Departments of Chemistry and Pharmaceutical Chemistry, University of California San Fransisco, San Fransisco, CA, USA
| | - Jeffrey Noebels
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Stephanie Baulac
- Institut du Cerveau-Paris Brain Institute-ICM, Sorbonne Université, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, F-75013, Paris, France
| | - Mauro Costa-Mattioli
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
- Memory and Brain Research Center, Baylor College of Medicine, Houston, TX, USA.
- Altos Labs Inc, Bay Area Institute, Redwood City, CA, USA.
| |
Collapse
|
5
|
Lesage A, Lorenzini M, Burel S, Sarlandie M, Bibault F, Lindskog C, Maloney D, Silva JR, Townsend RR, Nerbonne JM, Marionneau C. Determinants of iFGF13-mediated regulation of myocardial voltage-gated sodium (NaV) channels in mouse. J Gen Physiol 2023; 155:e202213293. [PMID: 37516919 PMCID: PMC10374952 DOI: 10.1085/jgp.202213293] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/14/2023] [Accepted: 06/30/2023] [Indexed: 07/31/2023] Open
Abstract
Posttranslational regulation of cardiac NaV1.5 channels is critical in modulating channel expression and function, yet their regulation by phosphorylation of accessory proteins has gone largely unexplored. Using phosphoproteomic analysis of NaV channel complexes from adult mouse left ventricles, we identified nine phosphorylation sites on intracellular fibroblast growth factor 13 (iFGF13). To explore the potential roles of these phosphosites in regulating cardiac NaV currents, we abolished expression of iFGF13 in neonatal and adult mouse ventricular myocytes and rescued it with wild-type (WT), phosphosilent, or phosphomimetic iFGF13-VY. While the increased rate of closed-state inactivation of NaV channels induced by Fgf13 knockout in adult cardiomyocytes was completely restored by adenoviral-mediated expression of WT iFGF13-VY, only partial rescue was observed in neonatal cardiomyocytes after knockdown. The knockdown of iFGF13 in neonatal ventricular myocytes also shifted the voltage dependence of channel activation toward hyperpolarized potentials, a shift that was not reversed by WT iFGF13-VY expression. Additionally, we found that iFGF13-VY is the predominant isoform in adult ventricular myocytes, whereas both iFGF13-VY and iFGF13-S are expressed comparably in neonatal ventricular myocytes. Similar to WT iFGF13-VY, each of the iFGF13-VY phosphomutants studied restored NaV channel inactivation properties in both models. Lastly, Fgf13 knockout also increased the late Na+ current in adult cardiomyocytes, and this effect was restored with expression of WT and phosphosilent iFGF13-VY. Together, our results demonstrate that iFGF13 is highly phosphorylated and displays differential isoform expression in neonatal and adult ventricular myocytes. While we found no roles for iFGF13 phosphorylation, our results demonstrate differential effects of iFGF13 on neonatal and adult mouse ventricular NaV channels.
Collapse
Affiliation(s)
- Adrien Lesage
- CNRS, INSERM, L’institut du Thorax, Nantes Université, Nantes, France
| | - Maxime Lorenzini
- CNRS, INSERM, L’institut du Thorax, Nantes Université, Nantes, France
| | - Sophie Burel
- CNRS, INSERM, L’institut du Thorax, Nantes Université, Nantes, France
| | - Marine Sarlandie
- CNRS, INSERM, L’institut du Thorax, Nantes Université, Nantes, France
| | - Floriane Bibault
- CNRS, INSERM, L’institut du Thorax, Nantes Université, Nantes, France
| | - Cecilia Lindskog
- Department of Immunology, Genetics and Pathology, Cancer Precision Medicine, Uppsala University, Uppsala, Sweden
| | | | - Jonathan R. Silva
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - R. Reid Townsend
- Department of Cell Biology and Physiology, Washington University Medical School, St. Louis, MO, USA
- Department of Medicine, Washington University Medical School, St. Louis, MO, USA
| | - Jeanne M. Nerbonne
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
- Department of Medicine, Washington University Medical School, St. Louis, MO, USA
- Department of Developmental Biology, Washington University Medical School, St. Louis, MO, USA
| | - Céline Marionneau
- CNRS, INSERM, L’institut du Thorax, Nantes Université, Nantes, France
| |
Collapse
|
6
|
Agbo J, Ibrahim ZG, Magaji SY, Mutalub YB, Mshelia PP, Mhya DH. Therapeutic efficacy of voltage-gated sodium channel inhibitors in epilepsy. ACTA EPILEPTOLOGICA 2023; 5:16. [PMID: 40217485 PMCID: PMC11960332 DOI: 10.1186/s42494-023-00127-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 06/21/2023] [Indexed: 04/14/2025] Open
Abstract
Epilepsy is a neurological disease characterized by excessive and abnormal hyper-synchrony of electrical discharges of the brain and a predisposition to generate epileptic seizures resulting in a broad spectrum of neurobiological insults, imposing psychological, cognitive, social and also economic burdens to the sufferer. Voltage-gated sodium channels (VGSCs) are essential for the generation and propagation of action potentials throughout the central nervous system. Dysfunction of these channels has been implicated in the pathogenesis of epilepsy. VGSC inhibitors have been demonstrated to act as anticonvulsants to suppress the abnormal neuronal firing underlying epileptic seizures, and are used for the management and treatment of both genetic-idiopathic and acquired epilepsies. We discuss the forms of idiopathic and acquired epilepsies caused by VGSC mutations and the therapeutic efficacy of VGSC blockers in idiopathic, acquired and pharmacoresistant forms of epilepsy in this review. We conclude that there is a need for better alternative therapies that can be used alone or in combination with VGSC inhibitors in the management of epilepsies. The current anti-seizure medications (ASMs) especially for pharmacoresistant epilepsies and some other types of epilepsy have not yielded expected therapeutic efficacy partly because they do not show subtype-selectivity in blocking sodium channels while also bringing side effects. Therefore, there is a need to develop novel drug cocktails with enhanced selectivity for specific VGSC isoforms, to achieve better treatment of pharmacoresistant epilepsies and other types of epileptic seizures.
Collapse
Affiliation(s)
- John Agbo
- Department of Clinical Pharmacology and Therapeutics, Faculty of Basic Clinical Sciences, College of Medical Sciences, Abubakar Tafawa Balewa University, Bauchi, 740272, Nigeria.
| | - Zainab G Ibrahim
- Department of Clinical Pharmacology and Therapeutics, Faculty of Basic Clinical Sciences, College of Medical Sciences, Abubakar Tafawa Balewa University, Bauchi, 740272, Nigeria
| | - Shehu Y Magaji
- Department of Clinical Pharmacology and Therapeutics, Faculty of Basic Clinical Sciences, College of Medical Sciences, Abubakar Tafawa Balewa University, Bauchi, 740272, Nigeria
| | - Yahkub Babatunde Mutalub
- Department of Clinical Pharmacology and Therapeutics, Faculty of Basic Clinical Sciences, College of Medical Sciences, Abubakar Tafawa Balewa University, Bauchi, 740272, Nigeria
| | - Philemon Paul Mshelia
- Department of Physiology, Faculty of Basic Medical Science, College of Medical Sciences, Abubakar Tafawa Balewa University, Bauchi, 740272, Nigeria
| | - Daniel H Mhya
- Department of Medical Biochemistry, Faculty of Basic Medical Science, College of Medical Sciences, Abubakar Tafawa Balewa University, Bauchi, 740272, Nigeria
| |
Collapse
|
7
|
Lesage A, Lorenzini M, Burel S, Sarlandie M, Bibault F, Maloney D, Silva JR, Reid Townsend R, Nerbonne JM, Marionneau C. FHF2 phosphorylation and regulation of native myocardial Na V 1.5 channels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.31.526475. [PMID: 36778222 PMCID: PMC9915605 DOI: 10.1101/2023.01.31.526475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Phosphorylation of the cardiac Na V 1.5 channel pore-forming subunit is extensive and critical in modulating channel expression and function, yet the regulation of Na V 1.5 by phosphorylation of its accessory proteins remains elusive. Using a phosphoproteomic analysis of Na V channel complexes purified from mouse left ventricles, we identified nine phosphorylation sites on Fibroblast growth factor Homologous Factor 2 (FHF2). To determine the roles of phosphosites in regulating Na V 1.5, we developed two models from neonatal and adult mouse ventricular cardiomyocytes in which FHF2 expression is knockdown and rescued by WT, phosphosilent or phosphomimetic FHF2-VY. While the increased rates of closed-state and open-state inactivation of Na V channels induced by the FHF2 knockdown are completely restored by the FHF2-VY isoform in adult cardiomyocytes, sole a partial rescue is obtained in neonatal cardiomyocytes. The FHF2 knockdown also shifts the voltage-dependence of activation towards hyperpolarized potentials in neonatal cardiomyocytes, which is not rescued by FHF2-VY. Parallel investigations showed that the FHF2-VY isoform is predominant in adult cardiomyocytes, while expression of FHF2-VY and FHF2-A is comparable in neonatal cardiomyocytes. Similar to WT FHF2-VY, however, each FHF2-VY phosphomutant restores the Na V channel inactivation properties in both models, preventing identification of FHF2 phosphosite roles. FHF2 knockdown also increases the late Na + current in adult cardiomyocytes, which is restored similarly by WT and phosphosilent FHF2-VY. Together, our results demonstrate that ventricular FHF2 is highly phosphorylated, implicate differential roles for FHF2 in regulating neonatal and adult mouse ventricular Na V 1.5, and suggest that the regulation of Na V 1.5 by FHF2 phosphorylation is highly complex. eTOC Summary Lesage et al . identify the phosphorylation sites of FHF2 from mouse left ventricular Na V 1.5 channel complexes. While no roles for FHF2 phosphosites could be recognized yet, the findings demonstrate differential FHF2-dependent regulation of neonatal and adult mouse ventricular Na V 1.5 channels.
Collapse
|
8
|
Albeely AM, Williams OOF, Perreault ML. GSK-3β Disrupts Neuronal Oscillatory Function to Inhibit Learning and Memory in Male Rats. Cell Mol Neurobiol 2022; 42:1341-1353. [PMID: 33392916 PMCID: PMC11421759 DOI: 10.1007/s10571-020-01020-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/27/2020] [Indexed: 12/25/2022]
Abstract
Alterations in glycogen synthase kinase-3β (GSK-3β) activity have been implicated in disorders of cognitive impairment, including Alzheimer's disease and schizophrenia. Cognitive dysfunction is also characterized by the dysregulation of neuronal oscillatory activity, macroscopic electrical rhythms in brain that are critical to systems communication. A direct functional relationship between GSK-3β and neuronal oscillations has not been elucidated. Therefore, in the present study, using an adeno-associated viral vector containing a persistently active mutant form of GSK-3β, GSK-3β(S9A), the impact of elevated kinase activity in prefrontal cortex (PFC) or ventral hippocampus (vHIP) of rats on neuronal oscillatory activity was evaluated. GSK-3β(S9A)-induced changes in learning and memory were also assessed and the phosphorylation status of tau protein, a substrate of GSK-3β, examined. It was demonstrated that increasing GSK-3β(S9A) activity in either the PFC or vHIP had similar effects on neuronal oscillatory activity, enhancing theta and/or gamma spectral power in one or both regions. Increasing PFC GSK-3β(S9A) activity additionally suppressed high gamma PFC-vHIP coherence. These changes were accompanied by deficits in recognition memory, spatial learning, and/or reversal learning. Elevated pathogenic tau phosphorylation was also evident in regions where GSK-3β(S9A) activity was upregulated. The neurophysiological and learning and memory deficits induced by GSK-3β(S9A) suggest that aberrant GSK-3β signalling may not only play an early role in cognitive decline in Alzheimer's disease but may also have a more central involvement in disorders of cognitive dysfunction through the regulation of neurophysiological network function.
Collapse
Affiliation(s)
- Abdalla M Albeely
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd. E, Guelph, ON, N1G 2W1, Canada
- Collaborative Neuroscience Program, University of Guelph, 50 Stone Rd. E, Guelph, ON, Canada
| | - Olivia O F Williams
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd. E, Guelph, ON, N1G 2W1, Canada
| | - Melissa L Perreault
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd. E, Guelph, ON, N1G 2W1, Canada.
- Collaborative Neuroscience Program, University of Guelph, 50 Stone Rd. E, Guelph, ON, Canada.
| |
Collapse
|
9
|
Glycogen Synthase Kinase 3: Ion Channels, Plasticity, and Diseases. Int J Mol Sci 2022; 23:ijms23084413. [PMID: 35457230 PMCID: PMC9028019 DOI: 10.3390/ijms23084413] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 12/15/2022] Open
Abstract
Glycogen synthase kinase 3β (GSK3) is a multifaceted serine/threonine (S/T) kinase expressed in all eukaryotic cells. GSK3β is highly enriched in neurons in the central nervous system where it acts as a central hub for intracellular signaling downstream of receptors critical for neuronal function. Unlike other kinases, GSK3β is constitutively active, and its modulation mainly involves inhibition via upstream regulatory pathways rather than increased activation. Through an intricate converging signaling system, a fine-tuned balance of active and inactive GSK3β acts as a central point for the phosphorylation of numerous primed and unprimed substrates. Although the full range of molecular targets is still unknown, recent results show that voltage-gated ion channels are among the downstream targets of GSK3β. Here, we discuss the direct and indirect mechanisms by which GSK3β phosphorylates voltage-gated Na+ channels (Nav1.2 and Nav1.6) and voltage-gated K+ channels (Kv4 and Kv7) and their physiological effects on intrinsic excitability, neuronal plasticity, and behavior. We also present evidence for how unbalanced GSK3β activity can lead to maladaptive plasticity that ultimately renders neuronal circuitry more vulnerable, increasing the risk for developing neuropsychiatric disorders. In conclusion, GSK3β-dependent modulation of voltage-gated ion channels may serve as an important pharmacological target for neurotherapeutic development.
Collapse
|
10
|
Marosi M, Nenov MN, Di Re J, Dvorak NM, Alshammari M, Laezza F. Inhibition of the Akt/PKB Kinase Increases Na v1.6-Mediated Currents and Neuronal Excitability in CA1 Hippocampal Pyramidal Neurons. Int J Mol Sci 2022; 23:ijms23031700. [PMID: 35163623 PMCID: PMC8836202 DOI: 10.3390/ijms23031700] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/21/2022] [Accepted: 01/28/2022] [Indexed: 02/07/2023] Open
Abstract
In neurons, changes in Akt activity have been detected in response to the stimulation of transmembrane receptors. However, the mechanisms that lead to changes in neuronal function upon Akt inhibition are still poorly understood. In the present study, we interrogate how Akt inhibition could affect the activity of the neuronal Nav channels with while impacting intrinsic excitability. To that end, we employed voltage-clamp electrophysiological recordings in heterologous cells expressing the Nav1.6 channel isoform and in hippocampal CA1 pyramidal neurons in the presence of triciribine, an inhibitor of Akt. We showed that in both systems, Akt inhibition resulted in a potentiation of peak transient Na+ current (INa) density. Akt inhibition correspondingly led to an increase in the action potential firing of the CA1 pyramidal neurons that was accompanied by a decrease in the action potential current threshold. Complementary confocal analysis in the CA1 pyramidal neurons showed that the inhibition of Akt is associated with the lengthening of Nav1.6 fluorescent intensity along the axonal initial segment (AIS), providing a mechanism for augmented neuronal excitability. Taken together, these findings provide evidence that Akt-mediated signal transduction might affect neuronal excitability in a Nav1.6-dependent manner.
Collapse
Affiliation(s)
- Mate Marosi
- Department of Pharmacology & Toxicology, The University of Texas Medical Branch, Galveston, TX 77555, USA; (M.M.); (M.N.N.); (J.D.R.); (N.M.D.); (M.A.)
| | - Miroslav N. Nenov
- Department of Pharmacology & Toxicology, The University of Texas Medical Branch, Galveston, TX 77555, USA; (M.M.); (M.N.N.); (J.D.R.); (N.M.D.); (M.A.)
| | - Jessica Di Re
- Department of Pharmacology & Toxicology, The University of Texas Medical Branch, Galveston, TX 77555, USA; (M.M.); (M.N.N.); (J.D.R.); (N.M.D.); (M.A.)
| | - Nolan M. Dvorak
- Department of Pharmacology & Toxicology, The University of Texas Medical Branch, Galveston, TX 77555, USA; (M.M.); (M.N.N.); (J.D.R.); (N.M.D.); (M.A.)
| | - Musaad Alshammari
- Department of Pharmacology & Toxicology, The University of Texas Medical Branch, Galveston, TX 77555, USA; (M.M.); (M.N.N.); (J.D.R.); (N.M.D.); (M.A.)
- Department of Pharmacology, College of Pharmacy, King Saud University, Riyadh P.O. Box 145111, Saudi Arabia
| | - Fernanda Laezza
- Department of Pharmacology & Toxicology, The University of Texas Medical Branch, Galveston, TX 77555, USA; (M.M.); (M.N.N.); (J.D.R.); (N.M.D.); (M.A.)
- Center for Addiction Research, Center for Biomedical Engineering and Mitchell, Center for Neurodegenerative Diseases, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
- Correspondence: ; Tel.: +1-(409)-772-9672; Fax: +1-(409)-772-9642
| |
Collapse
|
11
|
Dvorak NM, Tapia CM, Singh AK, Baumgartner TJ, Wang P, Chen H, Wadsworth PA, Zhou J, Laezza F. Pharmacologically Targeting the Fibroblast Growth Factor 14 Interaction Site on the Voltage-Gated Na + Channel 1.6 Enables Isoform-Selective Modulation. Int J Mol Sci 2021; 22:ijms222413541. [PMID: 34948337 PMCID: PMC8708424 DOI: 10.3390/ijms222413541] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/15/2021] [Accepted: 12/15/2021] [Indexed: 01/05/2023] Open
Abstract
Voltage-gated Na+ (Nav) channels are the primary molecular determinant of the action potential. Among the nine isoforms of the Nav channel α subunit that have been described (Nav1.1-Nav1.9), Nav1.1, Nav1.2, and Nav1.6 are the primary isoforms expressed in the central nervous system (CNS). Crucially, these three CNS Nav channel isoforms display differential expression across neuronal cell types and diverge with respect to their subcellular distributions. Considering these differences in terms of their localization, the CNS Nav channel isoforms could represent promising targets for the development of targeted neuromodulators. However, current therapeutics that target Nav channels lack selectivity, which results in deleterious side effects due to modulation of off-target Nav channel isoforms. Among the structural components of the Nav channel α subunit that could be pharmacologically targeted to achieve isoform selectivity, the C-terminal domains (CTD) of Nav channels represent promising candidates on account of displaying appreciable amino acid sequence divergence that enables functionally unique protein–protein interactions (PPIs) with Nav channel auxiliary proteins. In medium spiny neurons (MSNs) of the nucleus accumbens (NAc), a critical brain region of the mesocorticolimbic circuit, the PPI between the CTD of the Nav1.6 channel and its auxiliary protein fibroblast growth factor 14 (FGF14) is central to the generation of electrical outputs, underscoring its potential value as a site for targeted neuromodulation. Focusing on this PPI, we previously developed a peptidomimetic derived from residues of FGF14 that have an interaction site on the CTD of the Nav1.6 channel. In this work, we show that whereas the compound displays dose-dependent effects on the activity of Nav1.6 channels in heterologous cells, the compound does not affect Nav1.1 or Nav1.2 channels at comparable concentrations. In addition, we show that the compound correspondingly modulates the action potential discharge and the transient Na+ of MSNs of the NAc. Overall, these results demonstrate that pharmacologically targeting the FGF14 interaction site on the CTD of the Nav1.6 channel is a strategy to achieve isoform-selective modulation, and, more broadly, that sites on the CTDs of Nav channels interacted with by auxiliary proteins could represent candidates for the development of targeted therapeutics.
Collapse
|
12
|
Dvorak NM, Tapia CM, Baumgartner TJ, Singh J, Laezza F, Singh AK. Pharmacological Inhibition of Wee1 Kinase Selectively Modulates the Voltage-Gated Na + Channel 1.2 Macromolecular Complex. Cells 2021; 10:3103. [PMID: 34831326 PMCID: PMC8619224 DOI: 10.3390/cells10113103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 11/24/2022] Open
Abstract
Voltage-gated Na+ (Nav) channels are a primary molecular determinant of the action potential (AP). Despite the canonical role of the pore-forming α subunit in conferring this function, protein-protein interactions (PPI) between the Nav channel α subunit and its auxiliary proteins are necessary to reconstitute the full physiological activity of the channel and to fine-tune neuronal excitability. In the brain, the Nav channel isoforms 1.2 (Nav1.2) and 1.6 (Nav1.6) are enriched, and their activities are differentially regulated by the Nav channel auxiliary protein fibroblast growth factor 14 (FGF14). Despite the known regulation of neuronal Nav channel activity by FGF14, less is known about cellular signaling molecules that might modulate these regulatory effects of FGF14. To that end, and building upon our previous investigations suggesting that neuronal Nav channel activity is regulated by a kinase network involving GSK3, AKT, and Wee1, we interrogate in our current investigation how pharmacological inhibition of Wee1 kinase, a serine/threonine and tyrosine kinase that is a crucial component of the G2-M cell cycle checkpoint, affects the Nav1.2 and Nav1.6 channel macromolecular complexes. Our results show that the highly selective inhibitor of Wee1 kinase, called Wee1 inhibitor II, modulates FGF14:Nav1.2 complex assembly, but does not significantly affect FGF14:Nav1.6 complex assembly. These results are functionally recapitulated, as Wee1 inhibitor II entirely alters FGF14-mediated regulation of the Nav1.2 channel, but displays no effects on the Nav1.6 channel. At the molecular level, these effects of Wee1 inhibitor II on FGF14:Nav1.2 complex assembly and FGF14-mediated regulation of Nav1.2-mediated Na+ currents are shown to be dependent upon the presence of Y158 of FGF14, a residue known to be a prominent site for phosphorylation-mediated regulation of the protein. Overall, our data suggest that pharmacological inhibition of Wee1 confers selective modulatory effects on Nav1.2 channel activity, which has important implications for unraveling cellular signaling pathways that fine-tune neuronal excitability.
Collapse
Affiliation(s)
| | | | | | | | | | - Aditya K. Singh
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 75901, USA; (N.M.D.); (C.M.T.); (T.J.B.); (J.S.); (F.L.)
| |
Collapse
|
13
|
Arribas-Blázquez M, Piniella D, Olivos-Oré LA, Bartolomé-Martín D, Leite C, Giménez C, Artalejo AR, Zafra F. Regulation of the voltage-dependent sodium channel Na V1.1 by AKT1. Neuropharmacology 2021; 197:108745. [PMID: 34375627 DOI: 10.1016/j.neuropharm.2021.108745] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/09/2021] [Accepted: 08/02/2021] [Indexed: 11/28/2022]
Abstract
The voltage-sensitive sodium channel NaV1.1 plays a critical role in regulating excitability of GABAergic neurons and mutations in the corresponding gene are associated to Dravet syndrome and other forms of epilepsy. The activity of this channel is regulated by several protein kinases. To identify novel regulatory kinases we screened a library of activated kinases and we found that AKT1 was able to directly phosphorylate NaV1.1. In vitro kinase assays revealed that the phosphorylation site was located in the C-terminal part of the large intracellular loop connecting domains I and II of NaV1.1, a region that is known to be targeted by other kinases like PKA and PKC. Electrophysiological recordings revealed that activated AKT1 strongly reduced peak Na+ currents and displaced the inactivation curve to more negative potentials in HEK-293 cell stably expressing NaV1.1. These alterations in current amplitude and steady-state inactivation were mimicked by SC79, a specific activator of AKT1, and largely reverted by triciribine, a selective inhibitor. Neurons expressing endogenous NaV1.1 in primary cultures were identified by expressing a fluorescent protein under the NaV1.1 promoter. There, we also observed a strong decrease in the current amplitude after addition of SC79, but small effects on the inactivation parameters. Altogether, we propose a novel mechanism that might regulate the excitability of neural networks in response to AKT1, a kinase that plays a pivotal role under physiological and pathological conditions, including epileptogenesis.
Collapse
Affiliation(s)
- Marina Arribas-Blázquez
- Centro de Biología Molecular Severo Ochoa, Facultad de Ciencias, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain; Department of Pharmacology and Toxicology, Veterinary Faculty, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Dolores Piniella
- Centro de Biología Molecular Severo Ochoa, Facultad de Ciencias, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain; IdiPAZ, Instituto de Salud Carlos III, Madrid, Spain
| | - Luis A Olivos-Oré
- Department of Pharmacology and Toxicology, Veterinary Faculty, Universidad Complutense de Madrid, 28040, Madrid, Spain; Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - David Bartolomé-Martín
- Centro de Biología Molecular Severo Ochoa, Facultad de Ciencias, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain; IdiPAZ, Instituto de Salud Carlos III, Madrid, Spain
| | - Cristiana Leite
- Centro de Biología Molecular Severo Ochoa, Facultad de Ciencias, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Cecilio Giménez
- Centro de Biología Molecular Severo Ochoa, Facultad de Ciencias, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain; IdiPAZ, Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio R Artalejo
- Department of Pharmacology and Toxicology, Veterinary Faculty, Universidad Complutense de Madrid, 28040, Madrid, Spain; Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Francisco Zafra
- Centro de Biología Molecular Severo Ochoa, Facultad de Ciencias, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain; IdiPAZ, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
14
|
Di Re J, Hsu WCJ, Kayasandik CB, Fularczyk N, James TF, Nenov MN, Negi P, Marosi M, Scala F, Prasad S, Labate D, Laezza F. Inhibition of AKT Signaling Alters βIV Spectrin Distribution at the AIS and Increases Neuronal Excitability. Front Mol Neurosci 2021; 14:643860. [PMID: 34276302 PMCID: PMC8278006 DOI: 10.3389/fnmol.2021.643860] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 05/27/2021] [Indexed: 11/24/2022] Open
Abstract
The axon initial segment (AIS) is a highly regulated subcellular domain required for neuronal firing. Changes in the AIS protein composition and distribution are a form of structural plasticity, which powerfully regulates neuronal activity and may underlie several neuropsychiatric and neurodegenerative disorders. Despite its physiological and pathophysiological relevance, the signaling pathways mediating AIS protein distribution are still poorly studied. Here, we used confocal imaging and whole-cell patch clamp electrophysiology in primary hippocampal neurons to study how AIS protein composition and neuronal firing varied in response to selected kinase inhibitors targeting the AKT/GSK3 pathway, which has previously been shown to phosphorylate AIS proteins. Image-based features representing the cellular pattern distribution of the voltage-gated Na+ (Nav) channel, ankyrin G, βIV spectrin, and the cell-adhesion molecule neurofascin were analyzed, revealing βIV spectrin as the most sensitive AIS protein to AKT/GSK3 pathway inhibition. Within this pathway, inhibition of AKT by triciribine has the greatest effect on βIV spectrin localization to the AIS and its subcellular distribution within neurons, a phenotype that Support Vector Machine classification was able to accurately distinguish from control. Treatment with triciribine also resulted in increased excitability in primary hippocampal neurons. Thus, perturbations to signaling mechanisms within the AKT pathway contribute to changes in βIV spectrin distribution and neuronal firing that may be associated with neuropsychiatric and neurodegenerative disorders.
Collapse
Affiliation(s)
- Jessica Di Re
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | - Wei-Chun J. Hsu
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
- Biochemistry and Molecular Biology Graduate Program, Graduate School of Biomedical Sciences, University of Texas Medical Branch, Galveston, TX, United States
- M.D./Ph.D. Combined Degree Program, Graduate School of Biomedical Sciences, University of Texas Medical Branch, Galveston, TX, United States
| | - Cihan B. Kayasandik
- Department of Mathematics, University of Houston, Houston, TX, United States
- Department of Computer Engineering, Istanbul Medipol University, Istanbul, Turkey
| | - Nickolas Fularczyk
- Department of Mathematics, University of Houston, Houston, TX, United States
| | - T. F. James
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | - Miroslav N. Nenov
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | - Pooran Negi
- Department of Mathematics, University of Houston, Houston, TX, United States
| | - Mate Marosi
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | - Federico Scala
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | - Saurabh Prasad
- Department of Electrical and Computer Engineering, University of Houston, Houston, TX, United States
| | - Demetrio Labate
- Department of Mathematics, University of Houston, Houston, TX, United States
| | - Fernanda Laezza
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
15
|
Chang C, Wang SH, Xu LN, Su XL, Zeng YF, Wang P, Zhang LR, Han SN. Glycogen synthase kinase 3 beta inhibitor SB216763 improves Kir2.1 expression after myocardia infraction in rats. J Interv Card Electrophysiol 2021; 63:239-248. [PMID: 33611692 DOI: 10.1007/s10840-021-00963-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 02/07/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Abnormal ion channel currents caused by myocardial electrical remodeling is one of the main causes of malignant arrhythmias. Glycogen synthase kinase 3β (GSK-3β) is the main therapeutic target following ischemia as it regulates nerve cell channels. However, few studies have investigated its role in myocardial electrical remodeling. The present study aimed to investigate the role of GSK-3β in a rat myocardial infarction (MI)-induced electrical remodeling and potential effects on cardiac ionic channels including KCNJ2/Kir2.1/IK1. METHODS Ligation of the left anterior descending artery in rats was performed to establish a MI model. The rats were randomly divided into three groups, the sham, MI, and MI + SB group. The animals in the latter group were administered SB216763 (GSK-3β inhibitor) at a dose of 0.6 mg·kg-1·day-1. The ventricular function was assessed by echocardiography, electrocardiography, and histological analysis 7 days post-surgery. Serum was collected to measure lactate dehydrogenase and cardiac troponin I levels, and the mRNA and protein levels of the KCNJ2/Kir2.1/IK1 channel in the heart tissues were assessed. H9c2 cells were cultured to examine the effects of SB216763 on the protein expression of Kir2.1 channel under hypoxic conditions. RESULTS The results revealed that SB216763 ameliorated acute cardiac injury and improved myocardial dysfunction. Moreover, SB216763 increased the mRNA and protein expression of Kir2.1 during MI. Furthermore, SB216763 treatment abrogated the decreased expression of Kir2.1 in H9c2 cells under hypoxic conditions. CONCLUSIONS GSK-3β inhibition upregulates Kir2.1 expression in a rat model of MI.
Collapse
Affiliation(s)
- Cheng Chang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Shu-Hui Wang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Li-Na Xu
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Xue-Ling Su
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Yi-Fan Zeng
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Peng Wang
- Basic Medical Department, School of Nursing, Zhengzhou University, Zhengzhou, 450001, China
| | - Li-Rong Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Sheng-Na Han
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
16
|
Alshammari TK. The Ketamine Antidepressant Story: New Insights. Molecules 2020; 25:molecules25235777. [PMID: 33297563 PMCID: PMC7730956 DOI: 10.3390/molecules25235777] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/02/2020] [Accepted: 12/06/2020] [Indexed: 12/12/2022] Open
Abstract
Ketamine is a versatile agent primarily utilized as a dissociative anesthetic, which acts by blocking the excitatory receptor N-methyl-d-aspartate receptor (NMDA). It functions to inhibit the current of both Na+ and K+ voltage-gated channels, thus preventing serotonin and dopamine reuptake. Studies have indicated that administering a single subanesthetic dose of ketamine relieves depression rapidly and that the effect is sustained. For decades antidepressant agents were based on the monoamine theory. Although ketamine may not be the golden antidepressant, it has opened new avenues toward mechanisms involved in the pathology of treatment-resistant depression and achieving rapid antidepressant effects. Thus, preclinical studies focusing on deciphering the molecular mechanisms involved in the antidepressant action of ketamine will assist in the development of a new antidepressant. This review was conducted to elucidate the emerging pathways that can explain the complex dose-dependent mechanisms achieved by administering ketamine to treat major depressive disorders. Special attention was paid to reviewing the literature on hydroxynorketamines, which are ketamine metabolites that have recently attracted attention in the context of depression.
Collapse
Affiliation(s)
- Tahani K Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2475, Riyadh 11451, Saudi Arabia
| |
Collapse
|
17
|
Wadsworth PA, Singh AK, Nguyen N, Dvorak NM, Tapia CM, Russell WK, Stephan C, Laezza F. JAK2 regulates Nav1.6 channel function via FGF14 Y158 phosphorylation. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2020; 1867:118786. [PMID: 32599005 PMCID: PMC7984254 DOI: 10.1016/j.bbamcr.2020.118786] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/18/2020] [Accepted: 06/20/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Protein interactions between voltage-gated sodium (Nav) channels and accessory proteins play an essential role in neuronal firing and plasticity. However, a surprisingly limited number of kinases have been identified as regulators of these molecular complexes. We hypothesized that numerous as-of-yet unidentified kinases indirectly regulate the Nav channel via modulation of the intracellular fibroblast growth factor 14 (FGF14), an accessory protein with numerous unexplored phosphomotifs and required for channel function in neurons. METHODS Here we present results from an in-cell high-throughput screening (HTS) against the FGF14: Nav1.6 complex using >3000 diverse compounds targeting an extensive range of signaling pathways. Regulation by top kinase targets was then explored using in vitro phosphorylation, biophysics, mass-spectrometry and patch-clamp electrophysiology. RESULTS Compounds targeting Janus kinase 2 (JAK2) were over-represented among HTS hits. Phosphomotif scans supported by mass spectrometry revealed FGF14Y158, a site previously shown to mediate both FGF14 homodimerization and interactions with Nav1.6, as a JAK2 phosphorylation site. Following inhibition of JAK2, FGF14 homodimerization increased in a manner directly inverse to FGF14:Nav1.6 complex formation, but not in the presence of the FGF14Y158A mutant. Patch-clamp electrophysiology revealed that through Y158, JAK2 controls FGF14-dependent modulation of Nav1.6 channels. In hippocampal CA1 pyramidal neurons, the JAK2 inhibitor Fedratinib reduced firing by a mechanism that is dependent upon expression of FGF14. CONCLUSIONS These studies point toward a novel mechanism by which levels of JAK2 in neurons could directly influence firing and plasticity by controlling the FGF14 dimerization equilibrium, and thereby the availability of monomeric species for interaction with Nav1.6.
Collapse
Affiliation(s)
- Paul A Wadsworth
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX, USA; Department of Pharmacology & Toxicology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Aditya K Singh
- Department of Pharmacology & Toxicology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Nghi Nguyen
- HTS Screening Core, Center for Translational Cancer Research, Texas A&M Health Science Center: Institute of Biosciences and Technology, Houston, TX, USA
| | - Nolan M Dvorak
- Department of Pharmacology & Toxicology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Cynthia M Tapia
- Department of Pharmacology & Toxicology, The University of Texas Medical Branch, Galveston, TX, USA
| | - William K Russell
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Clifford Stephan
- HTS Screening Core, Center for Translational Cancer Research, Texas A&M Health Science Center: Institute of Biosciences and Technology, Houston, TX, USA
| | - Fernanda Laezza
- Department of Pharmacology & Toxicology, The University of Texas Medical Branch, Galveston, TX, USA; Center for Addiction Research, The University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
18
|
Khudiakov A, Zaytseva A, Perepelina K, Smolina N, Pervunina T, Vasichkina E, Karpushev A, Tomilin A, Malashicheva A, Kostareva A. Sodium current abnormalities and deregulation of Wnt/β-catenin signaling in iPSC-derived cardiomyocytes generated from patient with arrhythmogenic cardiomyopathy harboring compound genetic variants in plakophilin 2 gene. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165915. [PMID: 32768677 DOI: 10.1016/j.bbadis.2020.165915] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 06/29/2020] [Accepted: 08/01/2020] [Indexed: 01/09/2023]
Abstract
BACKGROUND Mutations in desmosomal genes linked to arrhythmogenic cardiomyopathy are commonly associated with Wnt/β-catenin signaling abnormalities and reduction of the sodium current density. Inhibitors of GSK3B were reported to restore sodium current and improve heart function in various arrhythmogenic cardiomyopathy models, but mechanisms underlying this effect remain unclear. We hypothesized that there is a crosstalk between desmosomal proteins, signaling pathways, and cardiac sodium channels. METHODS AND RESULTS To reveal molecular mechanisms of arrhythmogenic cardiomyopathy, we established human iPSC-based model of this pathology. iPSC-derived cardiomyocytes from patient carrying two genetic variants in PKP2 gene demonstrated that PKP2 haploinsufficiency due to frameshift variant, in combination with the missense variant expressed from the second allele, was associated with decreased Wnt/β-catenin activity and reduced sodium current. Different approaches were tested to restore impaired cardiomyocytes functions, including wild type PKP2 transduction, GSK3B inhibition and Wnt/β-catenin signaling modulation. Inhibition of GSK3B led to the restoration of both Wnt/β-catenin signaling activity and sodium current density in patient-specific cardiomyocytes while GSK3B activation led to the reduction of sodium current density. Moreover, we found that upon inhibition GSK3B sodium current was restored through Wnt/β-catenin-independent mechanism. CONCLUSION We propose that alterations in GSK3B-Wnt/β-catenin signaling pathways lead to regulation of sodium current implying its role in molecular pathogenesis of arrhythmogenic cardiomyopathy.
Collapse
Affiliation(s)
| | - Anastasia Zaytseva
- Almazov National Medical Research Centre, Saint-Petersburg, Russia; Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, Saint-Petersburg, Russia
| | - Kseniya Perepelina
- Almazov National Medical Research Centre, Saint-Petersburg, Russia; Saint Petersburg State University, Saint-Petersburg, Russia
| | - Natalia Smolina
- Almazov National Medical Research Centre, Saint-Petersburg, Russia; Department of Women's and Children's Health, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| | | | - Elena Vasichkina
- Almazov National Medical Research Centre, Saint-Petersburg, Russia
| | - Alexey Karpushev
- Almazov National Medical Research Centre, Saint-Petersburg, Russia
| | | | - Anna Malashicheva
- Almazov National Medical Research Centre, Saint-Petersburg, Russia; Saint Petersburg State University, Saint-Petersburg, Russia; Institute of Cytology RAS, Saint-Petersburg, Russia
| | - Anna Kostareva
- Almazov National Medical Research Centre, Saint-Petersburg, Russia; Department of Women's and Children's Health, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
19
|
Manduca JD, Thériault RK, Perreault ML. Glycogen synthase kinase-3: The missing link to aberrant circuit function in disorders of cognitive dysfunction? Pharmacol Res 2020; 157:104819. [PMID: 32305493 DOI: 10.1016/j.phrs.2020.104819] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/10/2020] [Accepted: 04/07/2020] [Indexed: 12/15/2022]
Abstract
Elevated GSK-3 activity has been implicated in cognitive dysfunction associated with various disorders including Alzheimer's disease, schizophrenia, type 2 diabetes, traumatic brain injury, major depressive disorder and bipolar disorder. Further, aberrant neural oscillatory activity in, and between, cortical regions and the hippocampus is consistently present within these same cognitive disorders. In this review, we will put forth the idea that increased GSK-3 activity serves as a pathological convergence point across cognitive disorders, inducing similar consequent impacts on downstream signaling mechanisms implicated in the maintenance of processes critical to brain systems communication and normal cognitive functioning. In this regard we suggest that increased activation of GSK-3 and neuronal oscillatory dysfunction are early pathological changes that may be functionally linked. Mechanistic commonalities between these disorders of cognitive dysfunction will be discussed and potential downstream targets of GSK-3 that may contribute to neuronal oscillatory dysfunction identified.
Collapse
Affiliation(s)
- Joshua D Manduca
- Department of Molecular and Cellular Biology, University of Guelph, ON, Canada
| | | | - Melissa L Perreault
- Department of Molecular and Cellular Biology, University of Guelph, ON, Canada.
| |
Collapse
|
20
|
Sopjani M, Millaku L, Nebija D, Emini M, Rifati-Nixha A, Dërmaku-Sopjani M. The Glycogen Synthase Kinase-3 in the Regulation of Ion Channels and Cellular Carriers. Curr Med Chem 2020; 26:6817-6829. [PMID: 30306852 DOI: 10.2174/0929867325666181009122452] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 09/19/2018] [Accepted: 09/21/2018] [Indexed: 01/19/2023]
Abstract
Glycogen synthase kinase-3 (GSK-3) is a highly evolutionarily conserved and ubiquitously expressed serine/threonine kinase, an enzyme protein profoundly specific for glycogen synthase (GS). GSK-3 is involved in various cellular functions and physiological processes, including cell proliferation, differentiation, motility, and survival as well as glycogen metabolism, protein synthesis, and apoptosis. There are two isoforms of human GSK-3 (named GSK-3α and GSK-3β) encoded by two distinct genes. Recently, GSK-3β has been reported to function as a powerful regulator of various transport processes across the cell membrane. This kinase, GSK-3β, either directly or indirectly, may stimulate or inhibit many different types of transporter proteins, including ion channel and cellular carriers. More specifically, GSK-3β-sensitive cellular transport regulation involves various calcium, chloride, sodium, and potassium ion channels, as well as a number of Na+-coupled cellular carriers including excitatory amino acid transporters EAAT2, 3 and 4, high-affinity Na+ coupled glucose carriers SGLT1, creatine transporter 1 CreaT1, and the type II sodium/phosphate cotransporter NaPi-IIa. The GSK-3β-dependent cellular transport regulations are a part of the kinase functions in numerous physiological and pathophysiological processes. Clearly, additional studies are required to examine the role of GSK-3β in many other types of cellular transporters as well as further elucidating the underlying mechanisms of GSK-3β-mediated cellular transport regulation.
Collapse
Affiliation(s)
- Mentor Sopjani
- Faculty of Medicine, University of Prishtina, 10000 Prishtine, Kosova
| | - Lulzim Millaku
- Faculty of Natural Sciences and Mathematics, University of Prishtina, 10000 Prishtine, Kosova
| | - Dashnor Nebija
- Faculty of Medicine, University of Prishtina, 10000 Prishtine, Kosova
| | - Merita Emini
- Faculty of Medicine, University of Prishtina, 10000 Prishtine, Kosova
| | - Arleta Rifati-Nixha
- Faculty of Natural Sciences and Mathematics, University of Prishtina, 10000 Prishtine, Kosova
| | | |
Collapse
|
21
|
Quantitative phosphoproteomic analysis of the molecular substrates of sleep need. Nature 2018; 558:435-439. [PMID: 29899451 DOI: 10.1038/s41586-018-0218-8] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 05/01/2018] [Indexed: 12/25/2022]
Abstract
Sleep and wake have global effects on brain physiology, from molecular changes1-4 and neuronal activities to synaptic plasticity3-7. Sleep-wake homeostasis is maintained by the generation of a sleep need that accumulates during waking and dissipates during sleep8-11. Here we investigate the molecular basis of sleep need using quantitative phosphoproteomic analysis of the sleep-deprived and Sleepy mouse models of increased sleep need. Sleep deprivation induces cumulative phosphorylation of the brain proteome, which dissipates during sleep. Sleepy mice, owing to a gain-of-function mutation in the Sik3 gene 12 , have a constitutively high sleep need despite increased sleep amount. The brain proteome of these mice exhibits hyperphosphorylation, similar to that seen in the brain of sleep-deprived mice. Comparison of the two models identifies 80 mostly synaptic sleep-need-index phosphoproteins (SNIPPs), in which phosphorylation states closely parallel changes of sleep need. SLEEPY, the mutant SIK3 protein, preferentially associates with and phosphorylates SNIPPs. Inhibition of SIK3 activity reduces phosphorylation of SNIPPs and slow wave activity during non-rapid-eye-movement sleep, the best known measurable index of sleep need, in both Sleepy mice and sleep-deprived wild-type mice. Our results suggest that phosphorylation of SNIPPs accumulates and dissipates in relation to sleep need, and therefore SNIPP phosphorylation is a molecular signature of sleep need. Whereas waking encodes memories by potentiating synapses, sleep consolidates memories and restores synaptic homeostasis by globally downscaling excitatory synapses4-6. Thus, the phosphorylation-dephosphorylation cycle of SNIPPs may represent a major regulatory mechanism that underlies both synaptic homeostasis and sleep-wake homeostasis.
Collapse
|
22
|
Scala F, Nenov MN, Crofton EJ, Singh AK, Folorunso O, Zhang Y, Chesson BC, Wildburger NC, James TF, Alshammari MA, Alshammari TK, Elfrink H, Grassi C, Kasper JM, Smith AE, Hommel JD, Lichti CF, Rudra JS, D'Ascenzo M, Green TA, Laezza F. Environmental Enrichment and Social Isolation Mediate Neuroplasticity of Medium Spiny Neurons through the GSK3 Pathway. Cell Rep 2018; 23:555-567. [PMID: 29642012 PMCID: PMC6150488 DOI: 10.1016/j.celrep.2018.03.062] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 02/05/2018] [Accepted: 03/14/2018] [Indexed: 11/29/2022] Open
Abstract
Resilience and vulnerability to neuropsychiatric disorders are linked to molecular changes underlying excitability that are still poorly understood. Here, we identify glycogen-synthase kinase 3β (GSK3β) and voltage-gated Na+ channel Nav1.6 as regulators of neuroplasticity induced by environmentally enriched (EC) or isolated (IC) conditions-models for resilience and vulnerability. Transcriptomic studies in the nucleus accumbens from EC and IC rats predicted low levels of GSK3β and SCN8A mRNA as a protective phenotype associated with reduced excitability in medium spiny neurons (MSNs). In vivo genetic manipulations demonstrate that GSK3β and Nav1.6 are molecular determinants of MSN excitability and that silencing of GSK3β prevents maladaptive plasticity of IC MSNs. In vitro studies reveal direct interaction of GSK3β with Nav1.6 and phosphorylation at Nav1.6T1936 by GSK3β. A GSK3β-Nav1.6T1936 competing peptide reduces MSNs excitability in IC, but not EC rats. These results identify GSK3β regulation of Nav1.6 as a biosignature of MSNs maladaptive plasticity.
Collapse
Affiliation(s)
- Federico Scala
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX 77550, USA; Biophysics Graduate Program, Institute of Human Physiology, Università Cattolica, Rome, Italy
| | - Miroslav N Nenov
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Elizabeth J Crofton
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX 77550, USA; Neuroscience Graduate Program, The University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Aditya K Singh
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Oluwarotimi Folorunso
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Yafang Zhang
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX 77550, USA; Pharmacology and Toxicology Graduate Program, The University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Brent C Chesson
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX 77550, USA; Pharmacology and Toxicology Graduate Program, The University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Norelle C Wildburger
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Thomas F James
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX 77550, USA; Neuroscience Graduate Program, The University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Musaad A Alshammari
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX 77550, USA; Pharmacology and Toxicology Graduate Program, The University of Texas Medical Branch, Galveston, TX 77550, USA; Studies Abroad Program, King Saud University, Riyadh, Saudi Arabia
| | - Tahani K Alshammari
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX 77550, USA; Pharmacology and Toxicology Graduate Program, The University of Texas Medical Branch, Galveston, TX 77550, USA; Studies Abroad Program, King Saud University, Riyadh, Saudi Arabia
| | - Hannah Elfrink
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX 77550, USA; Bench Tutorials Program: Scientific Research and Design, The University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Claudio Grassi
- Institute of Human Physiology, Università Cattolica, Rome, Italy; Fondazione Policlinico Universitario A. Gemelli, Rome, Italy
| | - James M Kasper
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX 77550, USA; Center for Addiction Research, The University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Ashley E Smith
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX 77550, USA; Center for Addiction Research, The University of Texas Medical Branch, Galveston, TX 77550, USA; Cell Biology Graduate Program, The University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Jonathan D Hommel
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX 77550, USA; Center for Addiction Research, The University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Cheryl F Lichti
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX 77550, USA; Mitchell Center for Neurodegenerative Diseases, The University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Jai S Rudra
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX 77550, USA
| | | | - Thomas A Green
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX 77550, USA; Center for Addiction Research, The University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Fernanda Laezza
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX 77550, USA; Mitchell Center for Neurodegenerative Diseases, The University of Texas Medical Branch, Galveston, TX 77550, USA; Center for Addiction Research, The University of Texas Medical Branch, Galveston, TX 77550, USA.
| |
Collapse
|
23
|
Nguyen T, Fan T, George SR, Perreault ML. Disparate Effects of Lithium and a GSK-3 Inhibitor on Neuronal Oscillatory Activity in Prefrontal Cortex and Hippocampus. Front Aging Neurosci 2018; 9:434. [PMID: 29375364 PMCID: PMC5770585 DOI: 10.3389/fnagi.2017.00434] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 12/15/2017] [Indexed: 12/11/2022] Open
Abstract
Glycogen synthase kinase-3 (GSK-3) plays a critical role in cognitive dysfunction associated with Alzheimer’s disease (AD), yet the mechanism by which GSK-3 alters cognitive processes in other disorders, such as schizophrenia, remains unknown. In the present study, we demonstrated a role for GSK-3 in the direct regulation of neuronal oscillations in hippocampus (HIP) and prelimbic cortex (PL). A comparison of the GSK-3 inhibitors SB 216763 and lithium demonstrated disparate effects of the drugs on spatial memory and neural oscillatory activity in HIP and PL. SB 216763 administration improved spatial memory whereas lithium treatment had no effect. Analysis of neuronal local field potentials in anesthetized animals revealed that whereas both repeated SB 216763 (2.5 mg/kg) and lithium (100 mg/kg) induced a theta frequency spike in HIP at approximately 10 Hz, only SB 216763 treatment induced an overall increase in theta power (4–12 Hz) compared to vehicle. Acute administration of either drug suppressed slow (32–59 Hz) and fast (61–100 Hz) gamma power. In PL, both drugs induced an increase in theta power. Repeated SB 216763 increased HIP–PL coherence across all frequencies except delta, whereas lithium selectively suppressed delta coherence. These findings demonstrate that GSK-3 plays a direct role in the regulation of theta oscillations in regions critically involved in cognition, and highlight a potential mechanism by which GSK-3 may contribute to cognitive decline in disorders of cognitive dysfunction.
Collapse
Affiliation(s)
- Tuan Nguyen
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Theresa Fan
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Susan R George
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.,Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Melissa L Perreault
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
24
|
Beining M, Mongiat LA, Schwarzacher SW, Cuntz H, Jedlicka P. T2N as a new tool for robust electrophysiological modeling demonstrated for mature and adult-born dentate granule cells. eLife 2017; 6:e26517. [PMID: 29165247 PMCID: PMC5737656 DOI: 10.7554/elife.26517] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 11/21/2017] [Indexed: 12/18/2022] Open
Abstract
Compartmental models are the theoretical tool of choice for understanding single neuron computations. However, many models are incomplete, built ad hoc and require tuning for each novel condition rendering them of limited usability. Here, we present T2N, a powerful interface to control NEURON with Matlab and TREES toolbox, which supports generating models stable over a broad range of reconstructed and synthetic morphologies. We illustrate this for a novel, highly detailed active model of dentate granule cells (GCs) replicating a wide palette of experiments from various labs. By implementing known differences in ion channel composition and morphology, our model reproduces data from mouse or rat, mature or adult-born GCs as well as pharmacological interventions and epileptic conditions. This work sets a new benchmark for detailed compartmental modeling. T2N is suitable for creating robust models useful for large-scale networks that could lead to novel predictions. We discuss possible T2N application in degeneracy studies.
Collapse
Affiliation(s)
- Marcel Beining
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck SocietyFrankfurtGermany
- Frankfurt Institute for Advanced StudiesFrankfurtGermany
- Institute of Clinical Neuroanatomy, Neuroscience CenterGoethe UniversityFrankfurtGermany
- Faculty of BiosciencesGoethe UniversityFrankfurtGermany
| | - Lucas Alberto Mongiat
- Instituto de Investigación en Biodiversidad y MedioambienteUniversidad Nacional del Comahue-CONICETSan Carlos de BarilocheArgentina
| | | | - Hermann Cuntz
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck SocietyFrankfurtGermany
- Frankfurt Institute for Advanced StudiesFrankfurtGermany
| | - Peter Jedlicka
- Institute of Clinical Neuroanatomy, Neuroscience CenterGoethe UniversityFrankfurtGermany
| |
Collapse
|
25
|
Hsu WCJ, Wildburger NC, Haidacher SJ, Nenov MN, Folorunso O, Singh AK, Chesson BC, Franklin WF, Cortez I, Sadygov RG, Dineley KT, Rudra JS, Taglialatela G, Lichti CF, Denner L, Laezza F. PPARgamma agonists rescue increased phosphorylation of FGF14 at S226 in the Tg2576 mouse model of Alzheimer's disease. Exp Neurol 2017; 295:1-17. [PMID: 28522250 DOI: 10.1016/j.expneurol.2017.05.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 04/13/2017] [Accepted: 05/13/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND Cognitive impairment in humans with Alzheimer's disease (AD) and in animal models of Aβ-pathology can be ameliorated by treatments with the nuclear receptor peroxisome proliferator-activated receptor-gamma (PPARγ) agonists, such as rosiglitazone (RSG). Previously, we demonstrated that in the Tg2576 animal model of AD, RSG treatment rescued cognitive deficits and reduced aberrant activity of granule neurons in the dentate gyrus (DG), an area critical for memory formation. METHODS We used a combination of mass spectrometry, confocal imaging, electrophysiology and split-luciferase assay and in vitro phosphorylation and Ingenuity Pathway Analysis. RESULTS Using an unbiased, quantitative nano-LC-MS/MS screening, we searched for potential molecular targets of the RSG-dependent rescue of DG granule neurons. We found that S226 phosphorylation of fibroblast growth factor 14 (FGF14), an accessory protein of the voltage-gated Na+ (Nav) channels required for neuronal firing, was reduced in Tg2576 mice upon treatment with RSG. Using confocal microscopy, we confirmed that the Tg2576 condition decreased PanNav channels at the AIS of the DG, and that RSG treatment of Tg2576 mice reversed the reduction in PanNav channels. Analysis from previously published data sets identified correlative changes in action potential kinetics in RSG-treated T2576 compared to untreated and wildtype controls. In vitro phosphorylation and mass spectrometry confirmed that the multifunctional kinase GSK-3β, a downstream target of insulin signaling highly implicated in AD, phosphorylated FGF14 at S226. Assembly of the FGF14:Nav1.6 channel complex and functional regulation of Nav1.6-mediated currents by FGF14 was impaired by a phosphosilent S226A mutation. Bioinformatics pathway analysis of mass spectrometry and biochemistry data revealed a highly interconnected network encompassing PPARγ, FGF14, SCN8A (Nav 1.6), and the kinases GSK-3 β, casein kinase 2β, and ERK1/2. CONCLUSIONS These results identify FGF14 as a potential PPARγ-sensitive target controlling Aβ-induced dysfunctions of neuronal activity in the DG underlying memory loss in early AD.
Collapse
Affiliation(s)
- Wei-Chun J Hsu
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States; Biochemistry and Molecular Biology Graduate Program, Graduate School of Biomedical Sciences, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States; M.D./Ph.D. Combined Degree Program, Graduate School of Biomedical Sciences, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States
| | - Norelle C Wildburger
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States; Neuroscience Graduate Program, Graduate School of Biomedical Sciences, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States; Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, United States
| | - Sigmund J Haidacher
- Department of Internal Medicine, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States
| | - Miroslav N Nenov
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States; Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States
| | - Oluwarotimi Folorunso
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States
| | - Aditya K Singh
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States
| | - Brent C Chesson
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States
| | - Whitney F Franklin
- Neuroscience Graduate Program, Graduate School of Biomedical Sciences, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States; Department of Neurology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States; Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States
| | - Ibdanelo Cortez
- Neuroscience Graduate Program, Graduate School of Biomedical Sciences, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States; Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States
| | - Rovshan G Sadygov
- Biochemistry and Molecular Biology Graduate Program, Graduate School of Biomedical Sciences, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States; Sealy Center for Molecular Medicine, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States
| | - Kelly T Dineley
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States; Department of Neurology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States; Center for Addiction Research, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States
| | - Jay S Rudra
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States
| | - Giulio Taglialatela
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States; Department of Neurology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States
| | - Cheryl F Lichti
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States
| | - Larry Denner
- Sealy Center for Molecular Medicine, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States; Department of Internal Medicine, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States; Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States; Center for Addiction Research, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States
| | - Fernanda Laezza
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States; Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States; Center for Addiction Research, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States; Center for Biomedical Engineering, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States.
| |
Collapse
|
26
|
James TF, Nenov MN, Tapia CM, Lecchi M, Koshy S, Green TA, Laezza F. Consequences of acute Na v1.1 exposure to deltamethrin. Neurotoxicology 2017; 60:150-160. [PMID: 28007400 PMCID: PMC5447465 DOI: 10.1016/j.neuro.2016.12.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 12/02/2016] [Accepted: 12/14/2016] [Indexed: 12/19/2022]
Abstract
BACKGROUND Pyrethroid insecticides are the most popular class of insecticides in the world, despite their near-ubiquity, their effects of delaying the onset of inactivation of voltage-gated sodium (Nav) channels have not been well-evaluated in all the mammalian Nav isoforms. OBJECTIVE Here we compare the well-studied Nav1.6 isoforms to the less-understood Nav1.1 in their responses to acute deltamethrin exposure. METHODS We used patch-clamp electrophysiology to record sodium currents encoded by either Nav1.1 or Nav1.6 channels stably expressed in HEK293 cells. Protocols evaluating both resting and use-dependent modification were employed. RESULTS We found that exposure of both isoforms to 10μM deltamethrin significantly potentiated persistent and tail current densities without affecting peak transient current densities, and only Nav1.1 maintained these significant effects at 1μM deltamethrin. Window currents increased for both as well, and while only Nav1.6 displayed changes in activation slope and V1/2 of steady-state inactivation for peak currents, V1/2 of persistent current activation was hyperpolarized of ∼10mV by deltamethrin in Nav1.1 cells. Evaluating use-dependence, we found that deltamethrin again potentiated persistent and tail current densities in both isoforms, but only Nav1.6 demonstrated use-dependent enhancement, indicating the primary deltamethrin-induced effects on Nav1.1 channels are not use-dependent. CONCLUSION Collectively, these data provide evidence that Nav1.1 is indeed vulnerable to deltamethrin modification at lower concentrations than Nav1.6, and this effect is primarily mediated during the resting state. GENERAL SIGNIFICANCE These findings identify Nav1.1 as a novel target of pyrethroid exposure, which has major implications for the etiology of neuropsychiatric disorders associated with loss of Nav1.1-expressing inhibitory neurons.
Collapse
Affiliation(s)
- T F James
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, USA; Neuroscience Graduate Program, University of Texas Medical Branch, USA
| | - Miroslav N Nenov
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, USA
| | - Cynthia M Tapia
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, USA
| | - Marzia Lecchi
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Italy
| | - Shyny Koshy
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, USA; Center for Addiction Research, University of Texas Medical Branch, USA
| | - Thomas A Green
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, USA; Center for Addiction Research, University of Texas Medical Branch, USA
| | - Fernanda Laezza
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, USA; Mitchell Center for Neurodegenerative Diseases, USA; Center for Environmental Toxicology, University of Texas Medical Branch, USA; Center for Addiction Research, University of Texas Medical Branch, USA.
| |
Collapse
|
27
|
Crofton EJ, Nenov MN, Zhang Y, Scala F, Page SA, McCue DL, Li D, Hommel JD, Laezza F, Green TA. Glycogen synthase kinase 3 beta alters anxiety-, depression-, and addiction-related behaviors and neuronal activity in the nucleus accumbens shell. Neuropharmacology 2017; 117:49-60. [PMID: 28126496 DOI: 10.1016/j.neuropharm.2017.01.020] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 01/15/2017] [Accepted: 01/22/2017] [Indexed: 11/24/2022]
Abstract
Psychiatric disorders such as anxiety, depression and addiction are often comorbid brain pathologies thought to share common mechanistic biology. As part of the cortico-limbic circuit, the nucleus accumbens shell (NAcSh) plays a fundamental role in integrating information in the circuit, such that modulation of NAcSh circuitry alters anxiety, depression, and addiction-related behaviors. Intracellular kinase cascades in the NAcSh have proven important mediators of behavior. To investigate glycogen-synthase kinase 3 (GSK3) beta signaling in the NAcSh in vivo we knocked down GSK3beta expression with a novel adeno-associated viral vector (AAV2) and assessed changes in anxiety- and depression-like behavior and cocaine self-administration in GSK3beta knockdown rats. GSK3beta knockdown reduced anxiety-like behavior while increasing depression-like behavior and cocaine self-administration. Correlative electrophysiological recordings in acute brain slices were used to assess the effect of AAV-shGSK3beta on spontaneous firing and intrinsic excitability of tonically active interneurons (TANs), cells required for input and output signal integration in the NAcSh and for processing reward-related behaviors. Loose-patch recordings showed that TANs transduced by AAV-shGSK3beta exhibited reduction in tonic firing and increased spike half width. When assessed by whole-cell patch clamp recordings these changes were mirrored by reduction in action potential firing and accompanied by decreased hyperpolarization-induced depolarizing sag potentials, increased action potential current threshold, and decreased maximum rise time. These results suggest that silencing of GSK3beta in the NAcSh increases depression- and addiction-related behavior, possibly by decreasing intrinsic excitability of TANs. However, this study does not rule out contributions from other neuronal sub-types.
Collapse
Affiliation(s)
- Elizabeth J Crofton
- Center for Addiction Research, The University of Texas Medical Branch, Galveston, TX, USA; Mitchell Center for Neurodegenerative Diseases, The University of Texas Medical Branch, Galveston, TX, USA; Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Miroslav N Nenov
- Center for Addiction Research, The University of Texas Medical Branch, Galveston, TX, USA; Mitchell Center for Neurodegenerative Diseases, The University of Texas Medical Branch, Galveston, TX, USA; Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Yafang Zhang
- Center for Addiction Research, The University of Texas Medical Branch, Galveston, TX, USA; Mitchell Center for Neurodegenerative Diseases, The University of Texas Medical Branch, Galveston, TX, USA; Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Federico Scala
- Center for Addiction Research, The University of Texas Medical Branch, Galveston, TX, USA; Mitchell Center for Neurodegenerative Diseases, The University of Texas Medical Branch, Galveston, TX, USA; Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX, USA; Biophysics Graduate Program, Institute of Human Physiology, Universita Cattolica, Rome, Italy
| | - Sean A Page
- Center for Addiction Research, The University of Texas Medical Branch, Galveston, TX, USA; Mitchell Center for Neurodegenerative Diseases, The University of Texas Medical Branch, Galveston, TX, USA; Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX, USA
| | - David L McCue
- Center for Addiction Research, The University of Texas Medical Branch, Galveston, TX, USA; Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Dingge Li
- Center for Addiction Research, The University of Texas Medical Branch, Galveston, TX, USA; Mitchell Center for Neurodegenerative Diseases, The University of Texas Medical Branch, Galveston, TX, USA; Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Jonathan D Hommel
- Center for Addiction Research, The University of Texas Medical Branch, Galveston, TX, USA; Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Fernanda Laezza
- Center for Addiction Research, The University of Texas Medical Branch, Galveston, TX, USA; Mitchell Center for Neurodegenerative Diseases, The University of Texas Medical Branch, Galveston, TX, USA; Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Thomas A Green
- Center for Addiction Research, The University of Texas Medical Branch, Galveston, TX, USA; Mitchell Center for Neurodegenerative Diseases, The University of Texas Medical Branch, Galveston, TX, USA; Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
28
|
Luca A, Calandra C, Luca M. Gsk3 Signalling and Redox Status in Bipolar Disorder: Evidence from Lithium Efficacy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:3030547. [PMID: 27630757 PMCID: PMC5007367 DOI: 10.1155/2016/3030547] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/28/2016] [Accepted: 07/20/2016] [Indexed: 12/15/2022]
Abstract
Objective. To discuss the link between glycogen synthase kinase-3 (GSK3) and the main biological alterations demonstrated in bipolar disorder (BD), with special attention to the redox status and the evidence supporting the efficacy of lithium (a GSK3 inhibitor) in the treatment of BD. Methods. A literature research on the discussed topics, using Pubmed and Google Scholar, has been conducted. Moreover, a manual selection of interesting references from the identified articles has been performed. Results. The main biological alterations of BD, pertaining to inflammation, oxidative stress, membrane ion channels, and circadian system, seem to be intertwined. The dysfunction of the GSK3 signalling pathway is involved in all the aforementioned "biological causes" of BD. In a complex scenario, it can be seen as the common denominator linking them all. Lithium inhibition of GSK3 could, at least in part, explain its positive effect on these biological dysfunctions and its superiority in terms of clinical efficacy. Conclusions. Deepening the knowledge on the molecular bases of BD is fundamental to identifying the biochemical pathways that must be targeted in order to provide patients with increasingly effective therapeutic tools against an invalidating disorder such as BD.
Collapse
Affiliation(s)
- Antonina Luca
- Department of Medical and Surgical Sciences and Advanced Technologies, University Hospital Policlinico-Vittorio Emanuele, Santa Sofia Street 78, Catania, 95100 Sicily, Italy
| | - Carmela Calandra
- Psychiatry Unit, Department of Medical and Surgical Sciences and Advanced Technologies, University Hospital Policlinico-Vittorio Emanuele, Santa Sofia Street 78, Catania, 95100 Sicily, Italy
| | - Maria Luca
- Psychiatry Unit, Department of Medical and Surgical Sciences and Advanced Technologies, University Hospital Policlinico-Vittorio Emanuele, Santa Sofia Street 78, Catania, 95100 Sicily, Italy
| |
Collapse
|
29
|
Alshammari TK, Alshammari MA, Nenov MN, Hoxha E, Cambiaghi M, Marcinno A, James TF, Singh P, Labate D, Li J, Meltzer HY, Sacchetti B, Tempia F, Laezza F. Genetic deletion of fibroblast growth factor 14 recapitulates phenotypic alterations underlying cognitive impairment associated with schizophrenia. Transl Psychiatry 2016; 6:e806. [PMID: 27163207 PMCID: PMC5070049 DOI: 10.1038/tp.2016.66] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 02/25/2016] [Accepted: 03/05/2016] [Indexed: 12/14/2022] Open
Abstract
Cognitive processing is highly dependent on the functional integrity of gamma-amino-butyric acid (GABA) interneurons in the brain. These cells regulate excitability and synaptic plasticity of principal neurons balancing the excitatory/inhibitory tone of cortical networks. Reduced function of parvalbumin (PV) interneurons and disruption of GABAergic synapses in the cortical circuitry result in desynchronized network activity associated with cognitive impairment across many psychiatric disorders, including schizophrenia. However, the mechanisms underlying these complex phenotypes are still poorly understood. Here we show that in animal models, genetic deletion of fibroblast growth factor 14 (Fgf14), a regulator of neuronal excitability and synaptic transmission, leads to loss of PV interneurons in the CA1 hippocampal region, a critical area for cognitive function. Strikingly, this cellular phenotype associates with decreased expression of glutamic acid decarboxylase 67 (GAD67) and vesicular GABA transporter (VGAT) and also coincides with disrupted CA1 inhibitory circuitry, reduced in vivo gamma frequency oscillations and impaired working memory. Bioinformatics analysis of schizophrenia transcriptomics revealed functional co-clustering of FGF14 and genes enriched within the GABAergic pathway along with correlatively decreased expression of FGF14, PVALB, GAD67 and VGAT in the disease context. These results indicate that Fgf14(-/-) mice recapitulate salient molecular, cellular, functional and behavioral features associated with human cognitive impairment, and FGF14 loss of function might be associated with the biology of complex brain disorders such as schizophrenia.
Collapse
Affiliation(s)
- T K Alshammari
- Pharmacology and Toxicology Graduate Program, University of Texas Medical Branch, Galveston, TX, USA
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
- King Saud University Graduate Studies Abroad Program, King Saud University, Riyadh, Saudi Arabia
| | - M A Alshammari
- Pharmacology and Toxicology Graduate Program, University of Texas Medical Branch, Galveston, TX, USA
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
- King Saud University Graduate Studies Abroad Program, King Saud University, Riyadh, Saudi Arabia
| | - M N Nenov
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - E Hoxha
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
- Department of Neuroscience, University of Torino, Turin, Italy
| | - M Cambiaghi
- Department of Neuroscience, University of Torino, Turin, Italy
| | - A Marcinno
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
| | - T F James
- Department of Neuroscience, University of Torino, Turin, Italy
| | - P Singh
- Department of Mathematics, University of Houston, Houston, TX, USA
| | - D Labate
- Department of Mathematics, University of Houston, Houston, TX, USA
| | - J Li
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Mitchell Center for Neurodegenerative Diseases, The University of Texas Medical Branch, Galveston, TX, USA
| | - H Y Meltzer
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - B Sacchetti
- Department of Neuroscience, University of Torino, Turin, Italy
| | - F Tempia
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
- Department of Neuroscience, University of Torino, Turin, Italy
| | - F Laezza
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
- Mitchell Center for Neurodegenerative Diseases, The University of Texas Medical Branch, Galveston, TX, USA
- Center for Addiction Research, The University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
30
|
Hsu WCJ, Scala F, Nenov MN, Wildburger NC, Elferink H, Singh AK, Chesson CB, Buzhdygan T, Sohail M, Shavkunov AS, Panova NI, Nilsson CL, Rudra JS, Lichti CF, Laezza F. CK2 activity is required for the interaction of FGF14 with voltage-gated sodium channels and neuronal excitability. FASEB J 2016; 30:2171-86. [PMID: 26917740 DOI: 10.1096/fj.201500161] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 02/09/2016] [Indexed: 01/18/2023]
Abstract
Recent data shows that fibroblast growth factor 14 (FGF14) binds to and controls the function of the voltage-gated sodium (Nav) channel with phenotypic outcomes on neuronal excitability. Mutations in the FGF14 gene in humans have been associated with brain disorders that are partially recapitulated in Fgf14(-/-) mice. Thus, signaling pathways that modulate the FGF14:Nav channel interaction may be important therapeutic targets. Bioluminescence-based screening of small molecule modulators of the FGF14:Nav1.6 complex identified 4,5,6,7 -: tetrabromobenzotriazole (TBB), a potent casein kinase 2 (CK2) inhibitor, as a strong suppressor of FGF14:Nav1.6 interaction. Inhibition of CK2 through TBB reduces the interaction of FGF14 with Nav1.6 and Nav1.2 channels. Mass spectrometry confirmed direct phosphorylation of FGF14 by CK2 at S228 and S230, and mutation to alanine at these sites modified FGF14 modulation of Nav1.6-mediated currents. In 1 d in vitro hippocampal neurons, TBB induced a reduction in FGF14 expression, a decrease in transient Na(+) current amplitude, and a hyperpolarizing shift in the voltage dependence of Nav channel steady-state inactivation. In mature neurons, TBB reduces the axodendritic polarity of FGF14. In cornu ammonis area 1 hippocampal slices from wild-type mice, TBB impairs neuronal excitability by increasing action potential threshold and lowering firing frequency. Importantly, these changes in excitability are recapitulated in Fgf14(-/-) mice, and deletion of Fgf14 occludes TBB-dependent phenotypes observed in wild-type mice. These results suggest that a CK2-FGF14 axis may regulate Nav channels and neuronal excitability.-Hsu, W.-C. J., Scala, F., Nenov, M. N., Wildburger, N. C., Elferink, H., Singh, A. K., Chesson, C. B., Buzhdygan, T., Sohail, M., Shavkunov, A. S., Panova, N. I., Nilsson, C. L., Rudra, J. S., Lichti, C. F., Laezza, F. CK2 activity is required for the interaction of FGF14 with voltage-gated sodium channels and neuronal excitability.
Collapse
Affiliation(s)
| | - Federico Scala
- Department of Pharmacology and Toxicology, Institute of Human Physiology, Università Cattolica, Rome, Italy; and
| | | | - Norelle C Wildburger
- Department of Pharmacology and Toxicology, Department of Neurology, Washington, University School of Medicine, St. Louis, Missouri, USA
| | | | | | - Charles B Chesson
- Human Pathophysiology and Translational Medicine, Institute for Translational Sciences
| | | | | | | | | | - Carol L Nilsson
- Department of Pharmacology and Toxicology, Sealy Center for Molecular Medicine
| | | | - Cheryl F Lichti
- Department of Pharmacology and Toxicology, Mitchell Center for Neurodegenerative Diseases
| | - Fernanda Laezza
- Department of Pharmacology and Toxicology, Mitchell Center for Neurodegenerative Diseases, Center for Addiction Research, and Center for Biomedical Engineering, University of Texas Medical Branch, Galveston, Texas, USA;
| |
Collapse
|
31
|
Alshammari MA, Alshammari TK, Nenov MN, Scala F, Laezza F. Fibroblast Growth Factor 14 Modulates the Neurogenesis of Granule Neurons in the Adult Dentate Gyrus. Mol Neurobiol 2015; 53:7254-7270. [PMID: 26687232 DOI: 10.1007/s12035-015-9568-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/29/2015] [Indexed: 11/25/2022]
Abstract
Adult neurogenesis, the production of mature neurons from progenitor cells in the adult mammalian brain, is linked to the etiology of neurodegenerative and psychiatric disorders. However, a thorough understanding of the molecular elements at the base of adult neurogenesis remains elusive. Here, we provide evidence for a previously undescribed function of fibroblast growth factor 14 (FGF14), a brain disease-associated factor that controls neuronal excitability and synaptic plasticity, in regulating adult neurogenesis in the dentate gyrus (DG). We found that FGF14 is dynamically expressed in restricted subtypes of sex determining region Y-box 2 (Sox2)-positive and doublecortin (DCX)-positive neural progenitors in the DG. Bromodeoxyuridine (BrdU) incorporation studies and confocal imaging revealed that genetic deletion of Fgf14 in Fgf14 -/- mice leads to a significant change in the proportion of proliferating and immature and mature newly born adult granule cells. This results in an increase in the late immature and early mature population of DCX and calretinin (CR)-positive neurons. Electrophysiological extracellular field recordings showed reduced minimal threshold response and impaired paired-pulse facilitation at the perforant path to DG inputs in Fgf14 -/- compared to Fgf14 +/+ mice, supporting disrupted synaptic connectivity as a correlative read-out to impaired neurogenesis. These new insights into the biology of FGF14 in neurogenesis shed light into the signaling pathways associated with disrupted functions in complex brain diseases.
Collapse
Affiliation(s)
- Musaad A Alshammari
- Pharmacology and Toxicology Graduate Program, The University of Texas Medical Branch, Galveston, TX, USA
- Graduate Studies Abroad Program, King Saud University, Riyadh, Saudi Arabia
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Medical Research Building 7.102B, 301 University Boulevard, Galveston, TX, 77555, USA
| | - Tahani K Alshammari
- Pharmacology and Toxicology Graduate Program, The University of Texas Medical Branch, Galveston, TX, USA
- Graduate Studies Abroad Program, King Saud University, Riyadh, Saudi Arabia
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Medical Research Building 7.102B, 301 University Boulevard, Galveston, TX, 77555, USA
| | - Miroslav N Nenov
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Medical Research Building 7.102B, 301 University Boulevard, Galveston, TX, 77555, USA
| | - Federico Scala
- Biophysics Graduate Program, Institute of Human Physiology, Università Cattolica, Rome, Italy
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Medical Research Building 7.102B, 301 University Boulevard, Galveston, TX, 77555, USA
| | - Fernanda Laezza
- Mitchell Center for Neurodegenerative Diseases, The University of Texas Medical Branch, Galveston, TX, USA.
- Center for Addiction Research, The University of Texas Medical Branch, Galveston, TX, USA.
- Center for Biomedical Engineering, The University of Texas Medical Branch, Galveston, TX, USA.
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Medical Research Building 7.102B, 301 University Boulevard, Galveston, TX, 77555, USA.
| |
Collapse
|
32
|
Onwuli DO, Beltran-Alvarez P. An update on transcriptional and post-translational regulation of brain voltage-gated sodium channels. Amino Acids 2015; 48:641-651. [PMID: 26503606 PMCID: PMC4752963 DOI: 10.1007/s00726-015-2122-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 10/16/2015] [Indexed: 11/29/2022]
Abstract
Voltage-gated sodium channels are essential proteins in brain physiology, as they generate the sodium currents that initiate neuronal action potentials. Voltage-gated sodium channels expression, localisation and function are regulated by a range of transcriptional and post-translational mechanisms. Here, we review our understanding of regulation of brain voltage-gated sodium channels, in particular SCN1A (NaV1.1), SCN2A (NaV1.2), SCN3A (NaV1.3) and SCN8A (NaV1.6), by transcription factors, by alternative splicing, and by post-translational modifications. Our focus is strongly centred on recent research lines, and newly generated knowledge.
Collapse
Affiliation(s)
- Donatus O Onwuli
- School of Biological, Biomedical and Environmental Sciences, University of Hull, Hardy Building Cottingham Road, Hull, HU6 7RX, UK
| | - Pedro Beltran-Alvarez
- School of Biological, Biomedical and Environmental Sciences, University of Hull, Hardy Building Cottingham Road, Hull, HU6 7RX, UK.
| |
Collapse
|
33
|
Herpes Simplex Virus type-1 infection induces synaptic dysfunction in cultured cortical neurons via GSK-3 activation and intraneuronal amyloid-β protein accumulation. Sci Rep 2015; 5:15444. [PMID: 26487282 PMCID: PMC4614347 DOI: 10.1038/srep15444] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 09/15/2015] [Indexed: 12/12/2022] Open
Abstract
Increasing evidence suggests that recurrent Herpes Simplex Virus type 1 (HSV-1) infection spreading to the CNS is a risk factor for Alzheimer’s Disease (AD) but the underlying mechanisms have not been fully elucidated yet. Here we demonstrate that in cultured mouse cortical neurons HSV-1 induced Ca2+-dependent activation of glycogen synthase kinase (GSK)-3. This event was critical for the HSV-1-dependent phosphorylation of amyloid precursor protein (APP) at Thr668 and the following intraneuronal accumulation of amyloid-β protein (Aβ). HSV-1-infected neurons also exhibited: i) significantly reduced expression of the presynaptic proteins synapsin-1 and synaptophysin; ii) depressed synaptic transmission. These effects depended on GSK-3 activation and intraneuronal accumulation of Aβ. In fact, either the selective GSK-3 inhibitor, SB216763, or a specific antibody recognizing Aβ (4G8) significantly counteracted the effects induced by HSV-1 at the synaptic level. Moreover, in neurons derived from APP KO mice and infected with HSV-1 Aβ accumulation was not found and synaptic protein expression was only slightly reduced when compared to wild-type infected neurons. These data further support our contention that HSV-1 infections spreading to the CNS may contribute to AD phenotype.
Collapse
|
34
|
Labate D, Laezza F, Negi P, Ozcan B, Papadakis M. Efficient processing of fluorescence images using directional multiscale representations. MATHEMATICAL MODELLING OF NATURAL PHENOMENA 2014; 9:177-193. [PMID: 28804225 PMCID: PMC5553129 DOI: 10.1051/mmnp/20149512] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Recent advances in high-resolution fluorescence microscopy have enabled the systematic study of morphological changes in large populations of cells induced by chemical and genetic perturbations, facilitating the discovery of signaling pathways underlying diseases and the development of new pharmacological treatments. In these studies, though, due to the complexity of the data, quantification and analysis of morphological features are for the vast majority handled manually, slowing significantly data processing and limiting often the information gained to a descriptive level. Thus, there is an urgent need for developing highly efficient automated analysis and processing tools for fluorescent images. In this paper, we present the application of a method based on the shearlet representation for confocal image analysis of neurons. The shearlet representation is a newly emerged method designed to combine multiscale data analysis with superior directional sensitivity, making this approach particularly effective for the representation of objects defined over a wide range of scales and with highly anisotropic features. Here, we apply the shearlet representation to problems of soma detection of neurons in culture and extraction of geometrical features of neuronal processes in brain tissue, and propose it as a new framework for large-scale fluorescent image analysis of biomedical data.
Collapse
Affiliation(s)
- D. Labate
- Dept. of Mathematics, University of Houston, Houston, Texas 77204, USA
| | - F. Laezza
- Dept. of Pharmacology and Toxicology, UT Medical Branch, Galveston, TX 77555, USA
| | - P. Negi
- Dept. of Mathematics, University of Houston, Houston, Texas 77204, USA
| | - B. Ozcan
- Dept. of Mathematics, University of Houston, Houston, Texas 77204, USA
| | - M. Papadakis
- Dept. of Mathematics, University of Houston, Houston, Texas 77204, USA
| |
Collapse
|