1
|
Tanday N, Zhu W, Tarasov AI, Flatt PR, Irwin N. [P 3]PP, a stable, long-acting pancreatic polypeptide analogue, evokes weight lowering and pancreatic beta-cell-protective effects in obesity-associated diabetes. Diabetes Obes Metab 2024; 26:4945-4957. [PMID: 39192525 DOI: 10.1111/dom.15897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 08/29/2024]
Abstract
AIM To thoroughly investigate the impact of sustained neuropeptide Y4 receptor (NPY4R) activation in obesity-associated diabetes. METHODS Initially, the prolonged pharmacodynamic profile of the enzymatically stable pancreatic polypeptide (PP) analogue, [P3]PP, was confirmed in normal mice up to 24 h after injection. Subsequent to this, [P3]PP was administered twice daily (25 nmol/kg) for 28 days to high-fat-fed mice with streptozotocin-induced insulin deficiency, known as HFF/STZ mice. RESULTS Treatment with [P3]PP for 28 days reduced energy intake and was associated with notable weight loss. In addition, circulating glucose was returned to values of approximately 8 mmol/L in [P3]PP-treated mice, with significantly increased plasma insulin and decreased glucagon concentrations. Glucose tolerance and glucose-stimulated insulin secretion were improved in [P3]PP-treated HFF/STZ mice, with no obvious effect on peripheral insulin sensitivity. Benefits on insulin secretion were associated with elevated pancreatic insulin content as well as islet and beta-cell areas. Positive effects on islet architecture were linked to increased beta-cell proliferation and decreased apoptosis. Treatment intervention also decreased islet alpha-cell area, but pancreatic glucagon content remained unaffected. In addition, [P3]PP-treated HFF/STZ mice presented with reduced plasma alanine transaminase and aspartate transaminase levels, with no change in circulating amylase concentrations. In terms of plasma lipid profile, triglyceride and cholesterol levels were significantly decreased by [P3]PP treatment, when compared to saline controls. CONCLUSION Collectively, these data highlight for the first time the potential of enzymatically stable PP analogues for the treatment of obesity and related diabetes.
Collapse
Affiliation(s)
- Neil Tanday
- Diabetes Research Centre, Ulster University, Coleraine, UK
| | - Wuyun Zhu
- Diabetes Research Centre, Ulster University, Coleraine, UK
| | | | - Peter R Flatt
- Diabetes Research Centre, Ulster University, Coleraine, UK
| | - Nigel Irwin
- Diabetes Research Centre, Ulster University, Coleraine, UK
| |
Collapse
|
2
|
Zhu W, Tanday N, Lafferty RA, Flatt PR, Irwin N. Novel enzyme-resistant pancreatic polypeptide analogs evoke pancreatic beta-cell rest, enhance islet cell turnover, and inhibit food intake in mice. Biofactors 2024; 50:1101-1112. [PMID: 38635341 PMCID: PMC11627468 DOI: 10.1002/biof.2059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/02/2024] [Indexed: 04/20/2024]
Abstract
Pancreatic polypeptide (PP) is a postprandial hormone secreted from pancreatic islets that activates neuropeptide Y4 receptors (NPY4Rs). PP is known to induce satiety but effects at the level of the endocrine pancreas are less well characterized. In addition, rapid metabolism of PP by dipeptidyl peptidase-4 (DPP-4) limits the investigation of the effects of the native peptide. Therefore, in the present study, five novel amino acid substituted and/or fatty acid derivatized PP analogs were synthesized, namely [P3]PP, [K13Pal]PP, [P3,K13Pal]PP, [N-Pal]PP, and [N-Pal,P3]PP, and their impact on pancreatic beta-cell function, as well as appetite regulation and glucose homeostasis investigated. All PP analogs displayed increased resistance to DPP-4 degradation. In addition, all peptides inhibited alanine-induced insulin secretion from BRIN-BD11 beta cells. Native PP and related analogs (10-8 and 10-6 M), and especially [P3]PP and [K13Pal]PP, significantly protected against cytokine-induced beta-cell apoptosis and promoted cellular proliferation, with effects dependent on the NPY4R for all peptides barring [N-Pal,P3]PP. In mice, all peptides, except [N-Pal]PP and [N-Pal,P3]PP, evoked a dose-dependent (25, 75, and 200 nmol/kg) suppression of appetite, with native PP and [P3]PP further augmenting glucagon-like peptide-1 (GLP-1) and cholecystokinin (CCK) induced reductions of food intake. The PP peptides had no obvious detrimental effect on glucose tolerance and they did not noticeably impair the glucose-regulatory actions of GLP-1 or CCK. In conclusion, Pro3 amino acid substitution of PP, either alone or together with mid-chain acylation, creates PP analogs with benefits on beta-cell rest, islet cell turnover, and energy regulation that may be applicable to the treatment of diabetes and obesity.
Collapse
Affiliation(s)
- Wuyun Zhu
- Diabetes Research CentreSchools of Biomedical Sciences and Pharmacy & Pharmaceutical Sciences, Ulster UniversityColeraineUK
| | - Neil Tanday
- Diabetes Research CentreSchools of Biomedical Sciences and Pharmacy & Pharmaceutical Sciences, Ulster UniversityColeraineUK
| | - Ryan A. Lafferty
- Diabetes Research CentreSchools of Biomedical Sciences and Pharmacy & Pharmaceutical Sciences, Ulster UniversityColeraineUK
| | - Peter R. Flatt
- Diabetes Research CentreSchools of Biomedical Sciences and Pharmacy & Pharmaceutical Sciences, Ulster UniversityColeraineUK
| | - Nigel Irwin
- Diabetes Research CentreSchools of Biomedical Sciences and Pharmacy & Pharmaceutical Sciences, Ulster UniversityColeraineUK
| |
Collapse
|
3
|
Perez-Frances M, Bru-Tari E, Cohrs C, Abate MV, van Gurp L, Furuyama K, Speier S, Thorel F, Herrera PL. Regulated and adaptive in vivo insulin secretion from islets only containing β-cells. Nat Metab 2024; 6:1791-1806. [PMID: 39169271 PMCID: PMC11422169 DOI: 10.1038/s42255-024-01114-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/22/2024] [Indexed: 08/23/2024]
Abstract
Insulin-producing β-cells in pancreatic islets are regulated by systemic cues and, locally, by adjacent islet hormone-producing 'non-β-cells' (namely α-cells, δ-cells and γ-cells). Yet whether the non-β-cells are required for accurate insulin secretion is unclear. Here, we studied mice in which adult islets are exclusively composed of β-cells and human pseudoislets containing only primary β-cells. Mice lacking non-β-cells had optimal blood glucose regulation, enhanced glucose tolerance, insulin sensitivity and restricted body weight gain under a high-fat diet. The insulin secretion dynamics in islets composed of only β-cells was comparable to that in intact islets. Similarly, human β-cell pseudoislets retained the glucose-regulated mitochondrial respiration, insulin secretion and exendin-4 responses of entire islets. The findings indicate that non-β-cells are dispensable for blood glucose homeostasis and β-cell function. These results support efforts aimed at developing diabetes treatments by generating β-like clusters devoid of non-β-cells, such as from pluripotent stem cells differentiated in vitro or by reprograming non-β-cells into insulin producers in situ.
Collapse
Affiliation(s)
- Marta Perez-Frances
- Department of Genetic Medicine and Development, iGE3 and Centre facultaire du diabète, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Eva Bru-Tari
- Department of Genetic Medicine and Development, iGE3 and Centre facultaire du diabète, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Christian Cohrs
- Institute of Physiology, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of the Helmholtz Zentrum München at the University Clinic Carl Gustav Carus of Technische Universität Dresden, Helmholtz Zentrum München, Neuherberg, Germany
| | - Maria Valentina Abate
- Department of Genetic Medicine and Development, iGE3 and Centre facultaire du diabète, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Léon van Gurp
- Department of Genetic Medicine and Development, iGE3 and Centre facultaire du diabète, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Kenichiro Furuyama
- Department of Genetic Medicine and Development, iGE3 and Centre facultaire du diabète, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Stephan Speier
- Institute of Physiology, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of the Helmholtz Zentrum München at the University Clinic Carl Gustav Carus of Technische Universität Dresden, Helmholtz Zentrum München, Neuherberg, Germany
| | - Fabrizio Thorel
- Department of Genetic Medicine and Development, iGE3 and Centre facultaire du diabète, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Pedro L Herrera
- Department of Genetic Medicine and Development, iGE3 and Centre facultaire du diabète, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
4
|
Reed J, Bain SC, Kanamarlapudi V. The Regulation of Metabolic Homeostasis by Incretins and the Metabolic Hormones Produced by Pancreatic Islets. Diabetes Metab Syndr Obes 2024; 17:2419-2456. [PMID: 38894706 PMCID: PMC11184168 DOI: 10.2147/dmso.s415934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/07/2024] [Indexed: 06/21/2024] Open
Abstract
In healthy humans, the complex biochemical interplay between organs maintains metabolic homeostasis and pathological alterations in this process result in impaired metabolic homeostasis, causing metabolic diseases such as diabetes and obesity, which are major global healthcare burdens. The great advancements made during the last century in understanding both metabolic disease phenotypes and the regulation of metabolic homeostasis in healthy individuals have yielded new therapeutic options for diseases like type 2 diabetes (T2D). However, it is unlikely that highly desirable more efficacious treatments will be developed for metabolic disorders until the complex systemic regulation of metabolic homeostasis becomes more intricately understood. Hormones produced by pancreatic islet beta-cells (insulin) and alpha-cells (glucagon) are pivotal for maintaining metabolic homeostasis; the activity of insulin and glucagon are reciprocally correlated to achieve strict control of glucose levels (normoglycaemia). Metabolic hormones produced by other pancreatic islet cells and incretins produced by the gut are also crucial for maintaining metabolic homeostasis. Recent studies highlighted the incomplete understanding of metabolic hormonal synergism and, therefore, further elucidation of this will likely lead to more efficacious treatments for diseases such as T2D. The objective of this review is to summarise the systemic actions of the incretins and the metabolic hormones produced by the pancreatic islets and their interactions with their respective receptors.
Collapse
Affiliation(s)
- Joshua Reed
- Institute of Life Science, Medical School, Swansea University, Swansea, SA2 8PP, UK
| | - Stephen C Bain
- Institute of Life Science, Medical School, Swansea University, Swansea, SA2 8PP, UK
| | | |
Collapse
|
5
|
Hill TG, Hill DJ. The Importance of Intra-Islet Communication in the Function and Plasticity of the Islets of Langerhans during Health and Diabetes. Int J Mol Sci 2024; 25:4070. [PMID: 38612880 PMCID: PMC11012451 DOI: 10.3390/ijms25074070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Islets of Langerhans are anatomically dispersed within the pancreas and exhibit regulatory coordination between islets in response to nutritional and inflammatory stimuli. However, within individual islets, there is also multi-faceted coordination of function between individual beta-cells, and between beta-cells and other endocrine and vascular cell types. This is mediated partly through circulatory feedback of the major secreted hormones, insulin and glucagon, but also by autocrine and paracrine actions within the islet by a range of other secreted products, including somatostatin, urocortin 3, serotonin, glucagon-like peptide-1, acetylcholine, and ghrelin. Their availability can be modulated within the islet by pericyte-mediated regulation of microvascular blood flow. Within the islet, both endocrine progenitor cells and the ability of endocrine cells to trans-differentiate between phenotypes can alter endocrine cell mass to adapt to changed metabolic circumstances, regulated by the within-islet trophic environment. Optimal islet function is precariously balanced due to the high metabolic rate required by beta-cells to synthesize and secrete insulin, and they are susceptible to oxidative and endoplasmic reticular stress in the face of high metabolic demand. Resulting changes in paracrine dynamics within the islets can contribute to the emergence of Types 1, 2 and gestational diabetes.
Collapse
Affiliation(s)
- Thomas G. Hill
- Oxford Centre for Diabetes, Endocrinology, and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - David J. Hill
- Lawson Health Research Institute, St. Joseph’s Health Care, London, ON N6A 4V2, Canada;
- Departments of Medicine, Physiology and Pharmacology, Western University, London, ON N6A 3K7, Canada
| |
Collapse
|
6
|
Sridhar A, Khan D, Flatt PR, Moffett CR, Irwin N. GLP-1 receptor agonism and GIP receptor antagonism induce substantial alterations in enteroendocrine and islet cell populations in obese high fat fed mice. Peptides 2023; 169:171093. [PMID: 37660881 DOI: 10.1016/j.peptides.2023.171093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/21/2023] [Accepted: 08/30/2023] [Indexed: 09/05/2023]
Abstract
Effects of sustained activation of glucagon-like peptide-1 (GLP-1) receptors (GLP-1R) as well as antagonism of receptors for glucose-dependent insulinotropic peptide (GIP) on intestinal morphology and related gut hormone populations have not been fully investigated. The present study assesses the impact of 21-days twice daily treatment with the GLP-1R agonist exendin-4 (Ex-4), or the GIP receptor (GIPR) antagonist mGIP(3-30), on these features in obese mice fed a high fat diet (HFD). HFD mice presented with reduced crypt depth when compared to normal diet (ND) controls, which was reversed by Ex-4 treatment. Both regimens lead to an enlargement of villi length in HFD mice. HFD mice had increased numbers of GIP and PYY positive ileal cells, with both treatment interventions reversing the effect on PYY positive cells, but only Ex-4 restoring GIP ileal cell populations to ND levels. Ex-4 and mGIP (3-30) marginally decreased GLP-1 villi immunoreactivity and countered the reduction of ileal GLP-1 content caused by HFD. As expected, HFD mice presented with elevated pancreatic islet area. Interestingly, mGIP(3-30), but not Ex-4, enhanced islet and beta-cell areas in HFD mice despite lack of effect of beta-cell turnover, whilst Ex-4 increased delta-cell area. Co-localisation of islet PYY or GLP-1 with glucagon was increased by Ex-4, whilst islet PYY co-immunoreactivity with somatostatin was enhanced by mGIP(3-30) treatment. These observations highlight potential new mechanisms linked to the metabolic benefits of GLP-1R agonism and GIPR antagonism in obesity.
Collapse
Affiliation(s)
- Ananyaa Sridhar
- Diabetes Research Centre, Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, UK
| | - Dawood Khan
- Diabetes Research Centre, Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, UK
| | - Peter R Flatt
- Diabetes Research Centre, Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, UK
| | - Charlotte R Moffett
- Diabetes Research Centre, Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, UK
| | - Nigel Irwin
- Diabetes Research Centre, Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, UK.
| |
Collapse
|
7
|
Zhao Y, Zhou Y, Chi J, Che K, Wang Y, Wang W. Obesity is associated with impaired postprandial pancreatic polypeptide secretion. Front Endocrinol (Lausanne) 2023; 14:1192311. [PMID: 37334299 PMCID: PMC10273268 DOI: 10.3389/fendo.2023.1192311] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/10/2023] [Indexed: 06/20/2023] Open
Abstract
Objective This study aims to compare the levels of serum pancreatic polypeptide (PP), insulin (INS), C-peptide (C-P), and glucagon (GCG) before and after glucose stimulation in type 2 diabetes mellitus (T2DM) patients with different body mass indexes (BMI), analyze the relevant factors associated with PP secretion, and further investigate the role of PP in the development of obesity and diabetes. Methods Data were collected from 83 patients from the hospital. The subjects were divided into normal-weight group, overweight group, and obese group according to their BMI. All subjects were tested with the standard bread meal test (SBMT). PP and relevant parameters were measured, and the area under the curve (AUC) was calculated after 120 min of SBMT. AUCpp (AUC of PP) was used as the dependent variable, and the potential influencing factors were used as independent variables for multiple linear regression analysis. Results The obese and overweight groups had significantly lower PP secretion than the normal-weight group (485.95 pg·h/ml, 95% CI 76.16-895.74, p = 0.021; 664.61 pg·h/ml, 95% CI 285.46-1043.77, p = 0.001) at 60 min postprandial. PP secretion in the obese and overweight groups was also significantly lower than that in the normal-weight group (520.07 pg·h/ml, 95% CI 186.58-853.56, p = 0.003; 467.62 pg·h/ml, 95% CI 159.06-776.18, p = 0.003) at 120 min postprandial. AUCpp was negatively associated with BMI (r = -0.260, p = 0.017) and positively associated with AUCGCG (r = 0.501, p< 0.001). Multiple linear regression analysis showed that there was a linear correlation between AUCGCG, BMI, and AUCpp (p< 0.001, p = 0.008). The regression equation was calculated as follows: AUCpp = 1772.255-39.65 × BMI + 0.957 × AUCGCG (R2 = 54.1%, p< 0.001). Conclusion Compared with normal-weight subjects, overweight and obese subjects had impaired PP secretion after glucose stimulation. In T2DM patients, PP secretion was mainly affected by BMI and GCG. Clinical trial registry The Ethics Committee of the Affiliated Hospital of Qingdao University. Clinical trial registration http://www.chictr.org.cn, identifier ChiCTR2100047486.
Collapse
Affiliation(s)
- Yanyun Zhao
- Department of Endocrinology and Metabolism, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yue Zhou
- Department of Endocrinology and Metabolism, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jingwei Chi
- Medical Research Center, Qingdao Key Laboratory of Thyroid Diseases, Qingdao, China
| | - Kui Che
- Medical Research Center, Qingdao Key Laboratory of Thyroid Diseases, Qingdao, China
| | - Yangang Wang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wei Wang
- Department of Hematology, Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
8
|
Sridhar A, Khan D, Elliott JA, Naughton V, Flatt PR, Irwin N, Moffett CR. RYGB surgery has modest effects on intestinal morphology and gut hormone populations in the bypassed biliopancreatic limb but causes reciprocal changes in GLP-2 and PYY in the alimentary limb. PLoS One 2023; 18:e0286062. [PMID: 37228045 DOI: 10.1371/journal.pone.0286062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 05/09/2023] [Indexed: 05/27/2023] Open
Abstract
Roux-en-Y gastric-bypass (RYGB) induced alterations in intestinal morphology and gut-cell hormone expression profile in the bypassed biliopancreatic-limb (BPL) versus the alimentary-limbs (AL) are poorly characterised. This pilot study has therefore explored effects following RYGB in high-fat-diet (HFD) and normal-diet (ND) rats. Female Wistar rats (4-week-old) were fed HFD or ND for 23-weeks prior to RYGB or sham surgeries. Immunohistochemical analysis of excised tissue was conducted three-weeks post-surgery. After RYGB, intestinal morphology of the BPL in both HFD and ND groups was unchanged with exception of a small decrease in villi width in the ND-RYGB and crypt depth in the HFD-RYGB group. However, in the AL, villi width was decreased in ND-RYGB rats but increased in the HFD-RYGB group. In addition, crypt depth decreased after RYGB in the AL of HFD rats. GIP positive cells in either limb of both groups of rats were unchanged by RYGB. Similarly, there was little change in GLP-1 positive cells, apart from a small decrease of numbers in the villi of the BPL in HFD rats. RYGB increased GLP-2 cell numbers in the AL of ND-RYGB rats, including in both crypts and villi. This was associated with decreased numbers of cells expressing PYY in the AL of ND-RYGB rats. The BPL appears to maintain normal morphology and unchanged enteroendocrine cell populations despite being bypassed in RYGB-surgery. In contrast, in the AL, villi area is generally enhanced post-RYGB in ND rats with increased numbers of GLP-2 positive cells and decreased expression of PYY.
Collapse
Affiliation(s)
- Ananyaa Sridhar
- Biomedical Sciences Research Institute, School of Biomedical Sciences, Ulster University, Coleraine, N. Ireland, United Kingdom
| | - Dawood Khan
- Biomedical Sciences Research Institute, School of Biomedical Sciences, Ulster University, Coleraine, N. Ireland, United Kingdom
| | - Jessie A Elliott
- Department of Surgery, Trinity Centre for Health Sciences and St. James's Hospital, Dublin, Ireland
| | - Violetta Naughton
- Biomedical Sciences Research Institute, School of Biomedical Sciences, Ulster University, Coleraine, N. Ireland, United Kingdom
| | - Peter R Flatt
- Biomedical Sciences Research Institute, School of Biomedical Sciences, Ulster University, Coleraine, N. Ireland, United Kingdom
| | - Nigel Irwin
- Biomedical Sciences Research Institute, School of Biomedical Sciences, Ulster University, Coleraine, N. Ireland, United Kingdom
| | - Charlotte R Moffett
- Biomedical Sciences Research Institute, School of Biomedical Sciences, Ulster University, Coleraine, N. Ireland, United Kingdom
| |
Collapse
|
9
|
Zhu W, Tanday N, Flatt PR, Irwin N. Pancreatic polypeptide revisited: Potential therapeutic effects in obesity-diabetes. Peptides 2023; 160:170923. [PMID: 36509169 DOI: 10.1016/j.peptides.2022.170923] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
Pancreatic polypeptide (PP), a member of the neuropeptide Y (NPY) family of peptides, is a hormone secreted from the endocrine pancreas with established actions on appetite regulation. Thus, through activation of hypothalamic neuropeptide Y4 (NPY4R or Y4) receptors PP induces satiety in animals and humans, suggesting potential anti-obesity actions. In addition, despite being actively secreted from pancreatic islets and evidence of local Y4 receptor expression, PP mediated effects on the endocrine pancreas have not been fully elucidated. To date, it appears that PP possesses an acute insulinostatic effect, similar to the impact of other peptides from the NPY family. However, it is interesting that prolonged activation of pancreatic Y1 receptors leads to established benefits on beta-cell turnover, preservation of beta-cell identity and improved insulin secretory responsiveness. This may hint towards possible similar anti-diabetic actions of sustained Y4 receptor modulation, since the Y1 and Y4 receptors trigger comparable cell signalling pathways. In terms of exploiting the prospective therapeutic promise of PP, this is severely restricted by a short circulating half-life as is the case for many regulatory peptide hormones. It follows that long-acting, enzyme resistant, forms of PP will be required to determine viability of the Y4 receptor as an anti-obesity and -diabetes drug target. The current review aims to refocus interest on the biology of PP and highlight opportunities for therapeutic development.
Collapse
|
10
|
Liu Y, Gu R, Gao M, Wei Y, Shi Y, Wang X, Gu Y, Gu X, Zhang H. Emerging role of substance and energy metabolism associated with neuroendocrine regulation in tumor cells. Front Endocrinol (Lausanne) 2023; 14:1126271. [PMID: 37051193 PMCID: PMC10084767 DOI: 10.3389/fendo.2023.1126271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 02/07/2023] [Indexed: 03/29/2023] Open
Abstract
Cancer is the second most common cause of mortality in the world. One of the unresolved difficult pathological mechanism issues in malignant tumors is the imbalance of substance and energy metabolism of tumor cells. Cells maintain life through energy metabolism, and normal cells provide energy through mitochondrial oxidative phosphorylation to generate ATP, while tumor cells demonstrate different energy metabolism. Neuroendocrine control is crucial for tumor cells' consumption of nutrients and energy. As a result, better combinatorial therapeutic approaches will be made possible by knowing the neuroendocrine regulating mechanism of how the neuroendocrine system can fuel cellular metabolism. Here, the basics of metabolic remodeling in tumor cells for nutrients and metabolites are presented, showing how the neuroendocrine system regulates substance and energy metabolic pathways to satisfy tumor cell proliferation and survival requirements. In this context, targeting neuroendocrine regulatory pathways in tumor cell metabolism can beneficially enhance or temper tumor cell metabolism and serve as promising alternatives to available treatments.
Collapse
Affiliation(s)
- Yingying Liu
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
- School of Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Renjun Gu
- School of Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Murong Gao
- Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Beijing, China
| | - Yangwa Wei
- Department of Hepatobiliary Surgery, Hainan Provincial People’s Hospital, Haikou, China
| | - Yu Shi
- Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xu Wang
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Yihuang Gu
- School of Acupuncture and Tuina, School of Regimen and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
- The Second Hospital of Nanjing, Nanjing, China
- *Correspondence: Hongru Zhang, ; Xin Gu, ; Yihuang Gu,
| | - Xin Gu
- School of Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Hongru Zhang, ; Xin Gu, ; Yihuang Gu,
| | - Hongru Zhang
- School of Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Hongru Zhang, ; Xin Gu, ; Yihuang Gu,
| |
Collapse
|
11
|
Sridhar A, Khan D, Abdelaal M, Elliott JA, Naughton V, Flatt PR, Le Roux CW, Docherty NG, Moffett CR. Differential effects of RYGB surgery and best medical treatment for obesity-diabetes on intestinal and islet adaptations in obese-diabetic ZDSD rats. PLoS One 2022; 17:e0274788. [PMID: 36137097 PMCID: PMC9499270 DOI: 10.1371/journal.pone.0274788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/05/2022] [Indexed: 11/19/2022] Open
Abstract
Modification of gut-islet secretions after Roux-En-Y gastric bypass (RYBG) surgery contributes to its metabolic and anti-diabetic benefits. However, there is limited knowledge on tissue-specific hormone distribution post-RYGB surgery and how this compares with best medical treatment (BMT). In the present study, pancreatic and ileal tissues were excised from male Zucker-Diabetic Sprague Dawley (ZDSD) rats 8-weeks after RYGB, BMT (daily oral dosing with metformin 300mg/kg, fenofibrate 100mg/kg, ramipril 1mg/kg, rosuvastatin 10mg/kg and subcutaneous liraglutide 0.2mg/kg) or sham operation (laparotomy). Insulin, glucagon, somatostatin, PYY, GLP-1 and GIP expression patterns were assessed using immunocytochemistry and analyzed using ImageJ. After RYGB and BMT, body weight and plasma glucose were decreased. Intestinal morphometry was unaltered by RYGB, but crypt depth was decreased by BMT. Intestinal PYY cells were increased by both interventions. GLP-1- and GIP-cell counts were unchanged by RYGB but BMT increased ileal GLP-1-cells and decreased those expressing GIP. The intestinal contents of PYY and GLP-1 were significantly enhanced by RYGB, whereas BMT decreased ileal GLP-1. No changes of islet and beta-cell area or proliferation were observed, but the extent of beta-cell apoptosis and islet integrity calculated using circularity index were improved by both treatments. Significantly decreased islet alpha-cell areas were observed in both groups, while beta- and PYY-cell areas were unchanged. RYGB also induced a decrease in islet delta-cell area. PYY and GLP-1 colocalization with glucagon in islets was significantly decreased in both groups, while co-staining of PYY with glucagon was decreased and that with somatostatin increased. These data characterize significant cellular islet and intestinal adaptations following RYGB and BMT associated with amelioration of obesity-diabetes in ZDSD rats. The differential responses observed and particularly those within islets, may provide important clues to the unique ability of RYGB to cause diabetes remission.
Collapse
Affiliation(s)
- Ananyaa Sridhar
- Biomedical Sciences Research Institute, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, United Kingdom
| | - Dawood Khan
- Biomedical Sciences Research Institute, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, United Kingdom
- * E-mail:
| | - Mahmoud Abdelaal
- Diabetes Complications Research Centre, School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Jessie A. Elliott
- Department of Surgery, Trinity Centre for Health Sciences and St. James’s Hospital, Dublin, Ireland
| | - Violetta Naughton
- Biomedical Sciences Research Institute, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, United Kingdom
| | - Peter R. Flatt
- Biomedical Sciences Research Institute, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, United Kingdom
| | - Carel W. Le Roux
- Diabetes Complications Research Centre, School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Neil G. Docherty
- Diabetes Complications Research Centre, School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Charlotte R. Moffett
- Biomedical Sciences Research Institute, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, United Kingdom
| |
Collapse
|
12
|
Mohan S, Lafferty RA, Flatt PR, Moffett RC, Irwin N. Ac3IV, a V1a and V1b receptor selective vasopressin analogue, protects against hydrocortisone-induced changes in pancreatic islet cell lineage. Peptides 2022; 152:170772. [PMID: 35202749 DOI: 10.1016/j.peptides.2022.170772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/11/2022] [Accepted: 02/17/2022] [Indexed: 11/25/2022]
Abstract
The Avpr1a (V1a) and Avpr1b (V1b) receptor selective, vasopressin (AVP) analogue, Ac3IV has been shown to improve metabolism and pancreatic islet structure in diabetes and insulin resistance. The present study further investigates these actions by assessing the ability of Ac3IV to protect against pancreatic islet architectural disturbances induced by hydrocortisone (HC) treatment in transgenic Ins1Cre/+;Rosa26-eYFP mice, that possess beta-cell lineage tracing capabilities. HC intervention increased (p < 0.001) energy intake but reduced (p < 0.01) body weight gain, with no impact of Ac3IV. All HC mice had reduced (p < 0.05) circulating glucose, but plasma insulin and glucagon concentrations remained unchanged. However, HC mice presented with increased (p < 0.001) pancreatic insulin content, which was further augmented by Ac3IV. In addition, Ac3IV treatment countered HC-induced increases in islet-, beta- and alpha-cell areas (p < 0.01), as well as promoting islet number towards control levels. This was accompanied by reduced (p < 0.05) beta-cell growth, but enhanced (p < 0.001) alpha-cell proliferation. There were no changes in islet cell apoptotic rates in any of the groups of HC mice, but co-expression of CK19 with insulin in pancreatic ductal cells was reduced by Ac3IV. Assessment of beta-cell lineage revealed that Ac3IV partially protected against HC-mediated de-differentiation of mature beta-cells, whilst also decreasing (p < 0.01) beta- to alpha-cell transdifferentiation. Our data indicate that sustained activation of V1a and V1b receptors exerts positive islet cell transition effects to help retain beta-cell identity in HC mice.
Collapse
Affiliation(s)
- Shruti Mohan
- SAAD Centre for Pharmacy and Diabetes, Ulster University, Coleraine, Northern Ireland, UK
| | - Ryan A Lafferty
- SAAD Centre for Pharmacy and Diabetes, Ulster University, Coleraine, Northern Ireland, UK
| | - Peter R Flatt
- SAAD Centre for Pharmacy and Diabetes, Ulster University, Coleraine, Northern Ireland, UK
| | - R Charlotte Moffett
- SAAD Centre for Pharmacy and Diabetes, Ulster University, Coleraine, Northern Ireland, UK
| | - Nigel Irwin
- SAAD Centre for Pharmacy and Diabetes, Ulster University, Coleraine, Northern Ireland, UK.
| |
Collapse
|
13
|
Zhao Y, Zhou Y, Xiao M, Huang Y, Qi M, Kong Z, Chi J, Che K, Lv W, Dong B, Wang Y. Impaired glucose tolerance is associated with enhanced postprandial pancreatic polypeptide secretion. J Diabetes 2022; 14:334-344. [PMID: 35437937 PMCID: PMC9366580 DOI: 10.1111/1753-0407.13268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/05/2022] [Accepted: 03/26/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND The purpose of this study is to compare serum pancreatic polypeptide (PP), insulin, C-peptide, and glucagon in different glucose tolerance stages; analyze the influencing factors of PP secretion; and further explore the role of PP in the pathogenesis of diabetes mellitus. METHODS Data were collected from 100 subjects from hospital. According to the results of oral glucose tolerance test (OGTT), the subjects were divided into a normal glucose tolerance (NGT) group, an impaired glucose regulation (IGR) group, and a newly diagnosed type 2 diabetes mellitus (T2DM) group. PP and the related parameters were measured, and the area under the curve (AUC) 120 min after OGTT was calculated. AUCpp (AUC of PP) was used as the dependent variable and the potentially influencing factors were used as the independent variable for multiple linear regression analysis. RESULTS Postprandial 60 min PP in the IGR group was higher than those in the NGT group (2973.80 [±547.49] pg·h/mL vs 2663.55 [±594.89] pg·h/mL, p < 0.05). AUCpp was significantly higher in the IGR group (428.76 pg·h/mL, 95% confidence interval [CI] [41.06 -816.46], p = 0.031) and newly diagnosed T2DM group (404.35 pg·h/mL, 95% CI [5.37-803.33], p = 0.047) than in the NGT group. AUCpp was negatively correlated with body mass index (BMI) (r = -0.235, p = 0.038) and positively correlated with postprandial 60 min blood glucose (r = 0.370, p = 0.001) and AUCbg (AUC of blood glucose) (r = 0.323, p = 0.007). Multiple linear regression analysis indicated that there was a linear correlation between BMI, AUCbg , and AUCpp (p = 0.004, p = 0.001), and the regression equation was calculated as: AUCpp = 6592.272 + 86.275 × AUCbg -95.291 × BMI (R2 = 12.7%, p < 0.05). CONCLUSIONS Compared with NGT subjects, IGR and T2DM patients have an enhanced postprandial PP secretion. In T2DMs, the secretion of PP is mainly affected by BMI and blood glucose.
Collapse
Affiliation(s)
- Yanyun Zhao
- Department of Endocrinology and MetabolismAffiliated Hospital of Qingdao UniversityQingdaoChina
- Medical Research CenterQingdao Key Laboratory of Thyroid DiseasesQingdaoChina
| | - Yue Zhou
- Department of Endocrinology and MetabolismAffiliated Hospital of Qingdao UniversityQingdaoChina
| | - Min Xiao
- Department of Endocrinology and MetabolismAffiliated Hospital of Qingdao UniversityQingdaoChina
- Medical Research CenterQingdao Key Laboratory of Thyroid DiseasesQingdaoChina
| | - Yajing Huang
- Department of Endocrinology and MetabolismAffiliated Hospital of Qingdao UniversityQingdaoChina
| | - Mengmeng Qi
- Department of Endocrinology and MetabolismAffiliated Hospital of Qingdao UniversityQingdaoChina
- Medical Research CenterQingdao Key Laboratory of Thyroid DiseasesQingdaoChina
| | - Zili Kong
- Department of Endocrinology and MetabolismAffiliated Hospital of Qingdao UniversityQingdaoChina
- Medical Research CenterQingdao Key Laboratory of Thyroid DiseasesQingdaoChina
| | - Jingwei Chi
- Medical Research CenterQingdao Key Laboratory of Thyroid DiseasesQingdaoChina
| | - Kui Che
- Medical Research CenterQingdao Key Laboratory of Thyroid DiseasesQingdaoChina
| | - Wenshan Lv
- Department of Endocrinology and MetabolismAffiliated Hospital of Qingdao UniversityQingdaoChina
| | - Bingzi Dong
- Department of Endocrinology and MetabolismAffiliated Hospital of Qingdao UniversityQingdaoChina
| | - Yangang Wang
- Department of Endocrinology and MetabolismAffiliated Hospital of Qingdao UniversityQingdaoChina
| |
Collapse
|
14
|
Khan D, Moffett RC, Flatt PR, Tarasov AI. Classical and non-classical islet peptides in the control of β-cell function. Peptides 2022; 150:170715. [PMID: 34958851 DOI: 10.1016/j.peptides.2021.170715] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/25/2021] [Accepted: 12/17/2021] [Indexed: 12/25/2022]
Abstract
The dual role of the pancreas as both an endocrine and exocrine gland is vital for food digestion and control of nutrient metabolism. The exocrine pancreas secretes enzymes into the small intestine aiding digestion of sugars and fats, whereas the endocrine pancreas secretes a cocktail of hormones into the blood, which is responsible for blood glucose control and regulation of carbohydrate, protein and fat metabolism. Classical islet hormones, insulin, glucagon, pancreatic polypeptide and somatostatin, interact in an autocrine and paracrine manner, to fine-tube the islet function and insulin secretion to the needs of the body. Recently pancreatic islets have been reported to express a number of non-classical peptide hormones involved in metabolic signalling, whose major production site was believed to reside outside pancreas, e.g. in the small intestine. We highlight the key non-classical islet peptides, and consider their involvement, together with established islet hormones, in regulation of stimulus-secretion coupling as well as proliferation, survival and transdifferentiation of β-cells. We furthermore focus on the paracrine interaction between classical and non-classical islet hormones in the maintenance of β-cell function. Understanding the functional relationships between these islet peptides might help to develop novel, more efficient treatments for diabetes and related metabolic disorders.
Collapse
Affiliation(s)
- Dawood Khan
- Biomedical Sciences Research Institute, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK.
| | - R Charlotte Moffett
- Biomedical Sciences Research Institute, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| | - Peter R Flatt
- Biomedical Sciences Research Institute, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| | - Andrei I Tarasov
- Biomedical Sciences Research Institute, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| |
Collapse
|
15
|
Yang CH, Ann-Onda D, Lin X, Fynch S, Nadarajah S, Pappas EG, Liu X, Scott JW, Oakhill JS, Galic S, Shi Y, Moreno-Asso A, Smith C, Loudovaris T, Levinger I, Eizirik DL, Laybutt DR, Herzog H, Thomas HE, Loh K. Neuropeptide Y1 receptor antagonism protects β-cells and improves glycemic control in type 2 diabetes. Mol Metab 2021; 55:101413. [PMID: 34890851 PMCID: PMC8733231 DOI: 10.1016/j.molmet.2021.101413] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/12/2021] [Accepted: 11/30/2021] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVES Loss of functional β-cell mass is a key factor contributing to poor glycemic control in advanced type 2 diabetes (T2D). We have previously reported that the inhibition of the neuropeptide Y1 receptor improves the islet transplantation outcome in type 1 diabetes (T1D). The aim of this study was to identify the pathophysiological role of the neuropeptide Y (NPY) system in human T2D and further evaluate the therapeutic potential of using the Y1 receptor antagonist BIBO3304 to improve β-cell function and survival in T2D. METHODS The gene expression of the NPY system in human islets from nondiabetic subjects and subjects with T2D was determined and correlated with the stimulation index. The glucose-lowering and β-cell-protective effects of BIBO3304, a selective orally bioavailable Y1 receptor antagonist, in high-fat diet (HFD)/multiple low-dose streptozotocin (STZ)-induced and genetically obese (db/db) T2D mouse models were assessed. RESULTS In this study, we identified a more than 2-fold increase in NPY1R and its ligand, NPY mRNA expression in human islets from subjects with T2D, which was significantly associated with reduced insulin secretion. Consistently, the pharmacological inhibition of Y1 receptors by BIBO3304 significantly protected β cells from dysfunction and death under multiple diabetogenic conditions in islets. In a preclinical study, we demonstrated that the inhibition of Y1 receptors by BIBO3304 led to reduced adiposity and enhanced insulin action in the skeletal muscle. Importantly, the Y1 receptor antagonist BIBO3304 treatment also improved β-cell function and preserved functional β-cell mass, thereby resulting in better glycemic control in both HFD/multiple low-dose STZ-induced and db/db T2D mice. CONCLUSIONS Our results revealed a novel causal link between increased islet NPY-Y1 receptor gene expression and β-cell dysfunction and failure in human T2D, contributing to the understanding of the pathophysiology of T2D. Furthermore, our results demonstrate that the inhibition of the Y1 receptor by BIBO3304 represents a potential β-cell-protective therapy for improving functional β-cell mass and glycemic control in T2D.
Collapse
Affiliation(s)
- Chieh-Hsin Yang
- St. Vincent's Institute of Medical Research, Fitzroy, VIC, 3065, Australia.
| | - Danise Ann-Onda
- St. Vincent's Institute of Medical Research, Fitzroy, VIC, 3065, Australia
| | - Xuzhu Lin
- St. Vincent's Institute of Medical Research, Fitzroy, VIC, 3065, Australia
| | - Stacey Fynch
- St. Vincent's Institute of Medical Research, Fitzroy, VIC, 3065, Australia
| | | | - Evan G Pappas
- St. Vincent's Institute of Medical Research, Fitzroy, VIC, 3065, Australia
| | - Xin Liu
- St. Vincent's Institute of Medical Research, Fitzroy, VIC, 3065, Australia
| | - John W Scott
- St. Vincent's Institute of Medical Research, Fitzroy, VIC, 3065, Australia; Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, 3000, Australia; The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3052, Australia
| | - Jonathan S Oakhill
- St. Vincent's Institute of Medical Research, Fitzroy, VIC, 3065, Australia; Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, 3000, Australia; Department of Medicine, University of Melbourne, Fitzroy, VIC, 3065, Australia
| | - Sandra Galic
- St. Vincent's Institute of Medical Research, Fitzroy, VIC, 3065, Australia; Department of Medicine, University of Melbourne, Fitzroy, VIC, 3065, Australia
| | - Yanchuan Shi
- Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, 2010, Australia; Faculty of Medicine, UNSW Australia, Sydney, 2052, Australia
| | - Alba Moreno-Asso
- Institute of Health and Sport (IHES), Victoria University, Footscray, VIC, Australia; Australian Institute for Musculoskeletal Science (AIMSS), University of Melbourne and Western Health, St Albans, VIC, Australia
| | - Cassandra Smith
- Institute of Health and Sport (IHES), Victoria University, Footscray, VIC, Australia; Australian Institute for Musculoskeletal Science (AIMSS), University of Melbourne and Western Health, St Albans, VIC, Australia
| | - Thomas Loudovaris
- St. Vincent's Institute of Medical Research, Fitzroy, VIC, 3065, Australia; Department of Medicine, University of Melbourne, Fitzroy, VIC, 3065, Australia
| | - Itamar Levinger
- Institute of Health and Sport (IHES), Victoria University, Footscray, VIC, Australia; Australian Institute for Musculoskeletal Science (AIMSS), University of Melbourne and Western Health, St Albans, VIC, Australia
| | - Decio L Eizirik
- ULB Center for Diabetes Research, Medical Faculty, Universite Libre de Bruxelles (ULB), Brussels, Belgium; Indiana Biosciences Research Institute (IBRI), Indianapolis, IN, USA
| | - D Ross Laybutt
- Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, 2010, Australia; Faculty of Medicine, UNSW Australia, Sydney, 2052, Australia
| | - Herbert Herzog
- Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, 2010, Australia; Faculty of Medicine, UNSW Australia, Sydney, 2052, Australia
| | - Helen E Thomas
- St. Vincent's Institute of Medical Research, Fitzroy, VIC, 3065, Australia; Department of Medicine, University of Melbourne, Fitzroy, VIC, 3065, Australia
| | - Kim Loh
- St. Vincent's Institute of Medical Research, Fitzroy, VIC, 3065, Australia; Department of Medicine, University of Melbourne, Fitzroy, VIC, 3065, Australia.
| |
Collapse
|
16
|
Yang CH, Onda DA, Oakhill JS, Scott JW, Galic S, Loh K. Regulation of Pancreatic β-Cell Function by the NPY System. Endocrinology 2021; 162:6213414. [PMID: 33824978 DOI: 10.1210/endocr/bqab070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Indexed: 01/24/2023]
Abstract
The neuropeptide Y (NPY) system has been recognized as one of the most critical molecules in the regulation of energy homeostasis and glucose metabolism. Abnormal levels of NPY have been shown to contribute to the development of metabolic disorders including obesity, cardiovascular diseases, and diabetes. NPY centrally promotes feeding and reduces energy expenditure, while the other family members, peptide YY (PYY) and pancreatic polypeptide (PP), mediate satiety. New evidence has uncovered additional functions for these peptides that go beyond energy expenditure and appetite regulation, indicating a more extensive function in controlling other physiological functions. In this review, we will discuss the role of the NPY system in the regulation of pancreatic β-cell function and its therapeutic implications for diabetes.
Collapse
Affiliation(s)
- Chieh-Hsin Yang
- St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Danise-Ann Onda
- St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Jonathan S Oakhill
- St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Department of Medicine, University of Melbourne, Parkville, VIC 3010, Australia
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC 3000, Australia
| | - John W Scott
- St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC 3000, Australia
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3010, Australia
| | - Sandra Galic
- St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Department of Medicine, University of Melbourne, Parkville, VIC 3010, Australia
| | - Kim Loh
- St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Department of Medicine, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
17
|
Endocrine role of bone in the regulation of energy metabolism. Bone Res 2021; 9:25. [PMID: 34016950 PMCID: PMC8137703 DOI: 10.1038/s41413-021-00142-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 12/20/2020] [Accepted: 01/12/2021] [Indexed: 02/06/2023] Open
Abstract
Bone mainly functions as a supportive framework for the whole body and is the major regulator of calcium homeostasis and hematopoietic function. Recently, an increasing number of studies have characterized the significance of bone as an endocrine organ, suggesting that bone-derived factors regulate local bone metabolism and metabolic functions. In addition, these factors can regulate global energy homeostasis by altering insulin sensitivity, feeding behavior, and adipocyte commitment. These findings may provide a new pathological mechanism for related metabolic diseases or be used in the diagnosis, treatment, and prevention of metabolic diseases such as osteoporosis, obesity, and diabetes mellitus. In this review, we summarize the regulatory effect of bone and bone-derived factors on energy metabolism and discuss directions for future research.
Collapse
|
18
|
Ghislain J, Poitout V. Targeting lipid GPCRs to treat type 2 diabetes mellitus - progress and challenges. Nat Rev Endocrinol 2021; 17:162-175. [PMID: 33495605 DOI: 10.1038/s41574-020-00459-w] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/04/2020] [Indexed: 02/07/2023]
Abstract
Therapeutic approaches to the treatment of type 2 diabetes mellitus that are designed to increase insulin secretion either directly target β-cells or indirectly target gastrointestinal enteroendocrine cells (EECs), which release hormones that modulate insulin secretion (for example, incretins). Given that β-cells and EECs both express a large array of G protein-coupled receptors (GPCRs) that modulate insulin secretion, considerable research and development efforts have been undertaken to design therapeutic drugs targeting these GPCRs. Among them are GPCRs specific for free fatty acid ligands (lipid GPCRs), including free fatty acid receptor 1 (FFA1, otherwise known as GPR40), FFA2 (GPR43), FFA3 (GPR41) and FFA4 (GPR120), as well as the lipid metabolite binding glucose-dependent insulinotropic receptor (GPR119). These lipid GPCRs have demonstrated important roles in the control of islet and gut hormone secretion. Advances in lipid GPCR pharmacology have led to the identification of a number of synthetic agonists that exert beneficial effects on glucose homeostasis in preclinical studies. Yet, translation of these promising results to the clinic has so far been disappointing. In this Review, we present the physiological roles, pharmacology and clinical studies of these lipid receptors and discuss the challenges associated with their clinical development for the treatment of type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Julien Ghislain
- Montreal Diabetes Research Center, Centre Hospitalier de l'Université de Montréal, Montréal, QC, Canada
| | - Vincent Poitout
- Montreal Diabetes Research Center, Centre Hospitalier de l'Université de Montréal, Montréal, QC, Canada.
- Department of Medicine, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
19
|
Osipovich AB, Stancill JS, Cartailler JP, Dudek KD, Magnuson MA. Excitotoxicity and Overnutrition Additively Impair Metabolic Function and Identity of Pancreatic β-Cells. Diabetes 2020; 69:1476-1491. [PMID: 32332159 PMCID: PMC7809715 DOI: 10.2337/db19-1145] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 04/20/2020] [Indexed: 12/14/2022]
Abstract
A sustained increase in intracellular Ca2+ concentration (referred to hereafter as excitotoxicity), brought on by chronic metabolic stress, may contribute to pancreatic β-cell failure. To determine the additive effects of excitotoxicity and overnutrition on β-cell function and gene expression, we analyzed the impact of a high-fat diet (HFD) on Abcc8 knockout mice. Excitotoxicity caused β-cells to be more susceptible to HFD-induced impairment of glucose homeostasis, and these effects were mitigated by verapamil, a Ca2+ channel blocker. Excitotoxicity, overnutrition, and the combination of both stresses caused similar but distinct alterations in the β-cell transcriptome, including additive increases in genes associated with mitochondrial energy metabolism, fatty acid β-oxidation, and mitochondrial biogenesis and their key regulator Ppargc1a Overnutrition worsened excitotoxicity-induced mitochondrial dysfunction, increasing metabolic inflexibility and mitochondrial damage. In addition, excitotoxicity and overnutrition, individually and together, impaired both β-cell function and identity by reducing expression of genes important for insulin secretion, cell polarity, cell junction, cilia, cytoskeleton, vesicular trafficking, and regulation of β-cell epigenetic and transcriptional program. Sex had an impact on all β-cell responses, with male animals exhibiting greater metabolic stress-induced impairments than females. Together, these findings indicate that a sustained increase in intracellular Ca2+, by altering mitochondrial function and impairing β-cell identity, augments overnutrition-induced β-cell failure.
Collapse
Affiliation(s)
- Anna B Osipovich
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
- Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN
| | - Jennifer S Stancill
- Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN
| | | | - Karrie D Dudek
- Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN
| | - Mark A Magnuson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
- Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN
| |
Collapse
|
20
|
Rehiman SH, Lim SM, Neoh CF, Majeed ABA, Chin AV, Tan MP, Kamaruzzaman SB, Ramasamy K. Proteomics as a reliable approach for discovery of blood-based Alzheimer's disease biomarkers: A systematic review and meta-analysis. Ageing Res Rev 2020; 60:101066. [PMID: 32294542 DOI: 10.1016/j.arr.2020.101066] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/03/2020] [Accepted: 04/03/2020] [Indexed: 02/08/2023]
Abstract
In order to gauge the impact of proteomics in discovery of Alzheimer's disease (AD) blood-based biomarkers, this study had systematically reviewed articles published between 1984-2019. Articles that fulfilled the inclusion criteria were assessed for risk of bias. A meta-analysis was performed for replicable candidate biomarkers (CB). Of the 1651 articles that were identified, 17 case-control and two cohort studies, as well as three combined case-control and longitudinal designs were shortlisted. A total of 207 AD and mild cognitive impairment (MCI) CB were discovered, with 48 reported in >2 studies. This review highlights six CB, namely alpha-2-macroglobulin (α2M)ps, pancreatic polypeptide (PP)ps, apolipoprotein A-1 (ApoA-1)ps, afaminp, insulin growth factor binding protein-2 (IGFBP-2)ps and fibrinogen-γ-chainp, all of which exhibited consistent pattern of regulation in >three independent cohorts. They are involved in AD pathogenesis via amyloid-beta (Aβ), neurofibrillary tangles, diabetes and cardiovascular diseases (CVD). Meta-analysis indicated that ApoA-1ps was significantly downregulated in AD (SMD = -1.52, 95% CI: -1.89, -1.16, p < 0.00001), with low inter-study heterogeneity (I2 = 0%, p = 0.59). α2Mps was significantly upregulated in AD (SMD = 0.83, 95% CI: 0.05, 1.62, p = 0.04), with moderate inter-study heterogeneity (I2 = 41%, p = 0.19). Both CB are involved in Aβ formation. These findings provide important insights into blood-based AD biomarkers discovery via proteomics.
Collapse
|
21
|
Acetylation of Hsp90 reverses dexamethasone-mediated inhibition of insulin secretion. Toxicol Lett 2020; 320:19-27. [PMID: 31778773 DOI: 10.1016/j.toxlet.2019.11.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/19/2019] [Accepted: 11/23/2019] [Indexed: 01/02/2023]
Abstract
The deleterious effects of glucocorticoids on glucose homeostasis limit their clinical use. There is substantial evidence demonstrating that islet function impaired by long-term glucocorticoids exposure is a core defect in the progression of impaired glucose tolerance to diabetes. The activity of heat-shock protein (Hsp) 90 is required to maintain the hormone-binding activity and stability of glucocorticoid receptor (GR). In the present study, Hsp90 inhibition by 17-DMAG counteracted dexamethasone-mediated inhibition of glucose-stimulated insulin secretion in isolated rat islets as well as expressions of neuropeptide Y (NPY) and somatostatin receptor 3 (SSTR3), two negative regulators of insulin secretion. Like 17-DMAG, both the pan-histone deacetylase (HDAC) inhibitor TSA and HDAC6 inhibitor Tubacin exhibited a similar action in protecting islet function against dexamethasone-induced injury, along with the downregulation of NPY and SSTR3 expressions. The hyperacetylation of Hsp90 by TSA and Tubacin disrupted its binding ability to GR and blocked dexamethasone-elicited nuclear translocation of GR in INS-1 β-cell lines. In addition, Tubacin treatment triggered the GR protein degradation through the ubiquitin-proteasome pathway. These findings suggest that Hsp90 acetylation by inhibiting HDAC6 activity may be a potential strategy to prevent the development of steroid diabetes mellitus via alleviating glucocorticoid-impaired islet function.
Collapse
|
22
|
Xu W, Jones PM, Geng H, Li R, Liu X, Li Y, Lv Q, Liu Y, Wang J, Wang X, Sun Z, Liang J. Islet Stellate Cells Regulate Insulin Secretion via Wnt5a in Min6 Cells. Int J Endocrinol 2020; 2020:4708132. [PMID: 32184820 PMCID: PMC7060442 DOI: 10.1155/2020/4708132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/24/2019] [Accepted: 01/10/2020] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Type 2 diabetes mellitus is a serious public health problem worldwide. Accumulating evidence has shown that β-cell dysfunction is an important mechanism underlying diabetes mellitus. The changes in the physiological state of islet stellate cells (ISCs) and the effects of these cells on β-cell dysfunction is an important mechanism underlying diabetes mellitus. The changes in the physiological state of islet stellate cells (ISCs) and the effects of these cells on. METHODS Glucose-stimulated insulin secretion (GSIS) from Min6 cells was examined by estimating the insulin levels in response to high glucose challenge after culture with ISC supernatant or exogenous Wnt5a. Western blotting and quantitative real-time polymerase chain reaction (qRT-PCR) analyses were used to observe changes in the β-cell dysfunction is an important mechanism underlying diabetes mellitus. The changes in the physiological state of islet stellate cells (ISCs) and the effects of these cells on. RESULTS We observed a significant increase in insulin secretion from Min6 cells cocultured in vitro with supernatant from db/m mouse ISCs compared to that from Min6 cells cocultured with supernatant from db/db mouse ISCs; The intracellular Ca2+ concentration in Min6 cells increased in cultured in vitro with supernatant from db/m mouse ISCs and exogenous Wnt5a compared to that from control Min6 cells. Culture of Min6 cells with exogenous Wnt5a caused a significant increase in pCamKII, pFoxO1, PDX-1, and Glut2 levels compared to those in Min6 cells cultured alone; this treatment further decreased Ror2 and Cask expression but did not affect β-cell dysfunction is an important mechanism underlying diabetes mellitus. The changes in the physiological state of islet stellate cells (ISCs) and the effects of these cells on. CONCLUSION ISCs regulate insulin secretion from Min6 cells through the Wnt5a protein-induced Wnt-calcium and FoxO1-PDX1-GLUT2-insulin signalling cascades.
Collapse
Affiliation(s)
- Wei Xu
- Department of Endocrinology, Xuzhou Central Hospital, Xuzhou Institute of Medical Sciences, Xuzhou Clinical School of Nanjing Medical University, Affiliated Hospital of Medical School of Southeast University, Xuzhou, Jiangsu, China
- Diabetes Research Group, Division of Diabetes & Nutritional Sciences, School of Medicine, King's College London, London, UK
| | - Peter M. Jones
- Diabetes Research Group, Division of Diabetes & Nutritional Sciences, School of Medicine, King's College London, London, UK
| | - Houfa Geng
- Department of Endocrinology, Xuzhou Central Hospital, Xuzhou Institute of Medical Sciences, Xuzhou Clinical School of Nanjing Medical University, Affiliated Hospital of Medical School of Southeast University, Xuzhou, Jiangsu, China
| | - Rui Li
- Department of Endocrinology, Xuzhou Central Hospital, Xuzhou Institute of Medical Sciences, Xuzhou Clinical School of Nanjing Medical University, Affiliated Hospital of Medical School of Southeast University, Xuzhou, Jiangsu, China
| | - Xuekui Liu
- Department of Endocrinology, Xuzhou Central Hospital, Xuzhou Institute of Medical Sciences, Xuzhou Clinical School of Nanjing Medical University, Affiliated Hospital of Medical School of Southeast University, Xuzhou, Jiangsu, China
| | - Yinxia Li
- Department of Endocrinology, Xuzhou Central Hospital, Xuzhou Institute of Medical Sciences, Xuzhou Clinical School of Nanjing Medical University, Affiliated Hospital of Medical School of Southeast University, Xuzhou, Jiangsu, China
| | - Qian Lv
- Department of Endocrinology, Xuzhou Central Hospital, Xuzhou Institute of Medical Sciences, Xuzhou Clinical School of Nanjing Medical University, Affiliated Hospital of Medical School of Southeast University, Xuzhou, Jiangsu, China
| | - Ying Liu
- Department of Endocrinology, Xuzhou Central Hospital, Xuzhou Institute of Medical Sciences, Xuzhou Clinical School of Nanjing Medical University, Affiliated Hospital of Medical School of Southeast University, Xuzhou, Jiangsu, China
| | - Jie Wang
- Department of Endocrinology, Xuzhou Central Hospital, Xuzhou Institute of Medical Sciences, Xuzhou Clinical School of Nanjing Medical University, Affiliated Hospital of Medical School of Southeast University, Xuzhou, Jiangsu, China
| | - Xiuli Wang
- Department of Endocrinology, Xuzhou Central Hospital, Xuzhou Institute of Medical Sciences, Xuzhou Clinical School of Nanjing Medical University, Affiliated Hospital of Medical School of Southeast University, Xuzhou, Jiangsu, China
| | - Zilin Sun
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, Medical School, Southeast University, Nanjing, China
| | - Jun Liang
- Department of Endocrinology, Xuzhou Central Hospital, Xuzhou Institute of Medical Sciences, Xuzhou Clinical School of Nanjing Medical University, Affiliated Hospital of Medical School of Southeast University, Xuzhou, Jiangsu, China
| |
Collapse
|
23
|
Hartig SM, Cox AR. Paracrine signaling in islet function and survival. J Mol Med (Berl) 2020; 98:451-467. [PMID: 32067063 DOI: 10.1007/s00109-020-01887-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 02/05/2020] [Accepted: 02/11/2020] [Indexed: 02/06/2023]
Abstract
The pancreatic islet is a dense cellular network comprised of several cell types with endocrine function vital in the control of glucose homeostasis, metabolism, and feeding behavior. Within the islet, endocrine hormones also form an intricate paracrine network with supportive cells (endothelial, neuronal, immune) and secondary signaling molecules regulating cellular function and survival. Modulation of these signals has potential consequences for diabetes development, progression, and therapeutic intervention. Beta cell loss, reduced endogenous insulin secretion, and dysregulated glucagon secretion are hallmark features of both type 1 and 2 diabetes that not only impact systemic regulation of glucose, but also contribute to the function and survival of cells within the islet. Advancing research and technology have revealed new islet biology (cellular identity and transcriptomes) and identified previously unrecognized paracrine signals and mechanisms (somatostatin and ghrelin paracrine actions), while shifting prior views of intraislet communication. This review will summarize the paracrine signals regulating islet endocrine function and survival, the disruption and dysfunction that occur in diabetes, and potential therapeutic targets to preserve beta cell mass and function.
Collapse
Affiliation(s)
- Sean M Hartig
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Aaron R Cox
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
24
|
Craig S, Perry R, Vyavahare S, Ng M, Gault V, Flatt P, Irwin N. A GIP/xenin hybrid in combination with exendin-4 improves metabolic status in db/db diabetic mice and promotes enduring antidiabetic benefits in high fat fed mice. Biochem Pharmacol 2020; 171:113723. [DOI: 10.1016/j.bcp.2019.113723] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 11/15/2019] [Indexed: 12/23/2022]
|
25
|
English A, Irwin N. Nonclassical Islet Peptides: Pancreatic and Extrapancreatic Actions. CLINICAL MEDICINE INSIGHTS-ENDOCRINOLOGY AND DIABETES 2019; 12:1179551419888871. [PMID: 32425629 PMCID: PMC7216561 DOI: 10.1177/1179551419888871] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 10/21/2019] [Indexed: 02/06/2023]
Abstract
The pancreas has physiologically important endocrine and exocrine functions; secreting enzymes into the small intestine to aid digestion and releasing multiple peptide hormones via the islets of Langerhans to regulate glucose metabolism, respectively. Insulin and glucagon, in combination with ghrelin, pancreatic polypeptide and somatostatin, are the main classical islet peptides critical for the maintenance of blood glucose. However, pancreatic islets also synthesis numerous ‘nonclassical’ peptides that have recently been demonstrated to exert fundamental effects on overall islet function and metabolism. As such, insights into the physiological relevance of these nonclassical peptides have shown impact on glucose metabolism, insulin action, cell survival, weight loss, and energy expenditure. This review will focus on the role of individual nonclassical islet peptides to stimulate pancreatic islet secretions as well as regulate metabolism. In addition, the more recognised actions of these peptides on satiety and energy regulation will also be considered. Furthermore, recent advances in the field of peptide therapeutics and obesity-diabetes have focused on the benefits of simultaneously targeting several hormone receptor signalling cascades. The potential for nonclassical islet hormones within such combinational approaches will also be discussed.
Collapse
Affiliation(s)
- Andrew English
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| | - Nigel Irwin
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| |
Collapse
|
26
|
Short-term CFTR inhibition reduces islet area in C57BL/6 mice. Sci Rep 2019; 9:11244. [PMID: 31375720 PMCID: PMC6677757 DOI: 10.1038/s41598-019-47745-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 07/16/2019] [Indexed: 12/14/2022] Open
Abstract
Cystic fibrosis-related diabetes (CFRD) worsens CF lung disease leading to early mortality. Loss of beta cell area, even without overt diabetes or pancreatitis is consistently observed. We investigated whether short-term CFTR inhibition was sufficient to impact islet morphology and function in otherwise healthy mice. CFTR was inhibited in C57BL/6 mice via 8-day intraperitoneal injection of CFTRinh172. Animals had a 7-day washout period before measures of hormone concentration or islet function were performed. Short-term CFTR inhibition increased blood glucose concentrations over the course of the study. However, glucose tolerance remained normal without insulin resistance. CFTR inhibition caused marked reductions in islet size and in beta cell and non-beta cell area within the islet, which resulted from loss of islet cell size rather than islet cell number. Significant reductions in plasma insulin concentrations and pancreatic insulin content were also observed in CFTR-inhibited animals. Temporary CFTR inhibition had little long-term impact on glucose-stimulated, or GLP-1 potentiated insulin secretion. CFTR inhibition has a rapid impact on islet area and insulin concentrations. However, islet cell number is maintained and insulin secretion is unaffected suggesting that early administration of therapies aimed at sustaining beta cell mass may be useful in slowing the onset of CFRD.
Collapse
|
27
|
Jiang K, Chaimov D, Patel SN, Liang JP, Wiggins SC, Samojlik MM, Rubiano A, Simmons CS, Stabler CL. 3-D physiomimetic extracellular matrix hydrogels provide a supportive microenvironment for rodent and human islet culture. Biomaterials 2019; 198:37-48. [PMID: 30224090 PMCID: PMC6397100 DOI: 10.1016/j.biomaterials.2018.08.057] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 07/31/2018] [Accepted: 08/27/2018] [Indexed: 01/19/2023]
Abstract
Organ-on-a-chip platforms serve as cost-efficient testbeds for screening pharmaceutical agents, mimicking natural physiology, and studying disease. In the field of diabetes, the development of an islet-on-a-chip platform would have broad implications in understanding disease pathology and discovering potential therapies. Islet microphysiological systems are limited, however, by their poor cell survival and function in culture. A key factor that has been implicated in this decline is the disruption of islet-matrix interactions following isolation. Herein, we sought to recapitulate the in vivo peri-islet niche using decellularized extracellular matrix (ECM) hydrogels. Sourcing from porcine bladder, lung, and pancreas tissues, 3-D ECM hydrogels were generated, characterized, and validated using both rodent and human pancreatic islets. Optimized decellularization protocols resulted in hydrogels with distinctive viscoelastic properties that correlated to their matrix composition. The in situ 3-D encapsulation of human or rat islets within ECM hydrogels resulted in improved functional stability over standard culture conditions. Islet composition and morphology were also altered, with enhanced retention of islet-resident endothelial cells and the formation of cord-like structures or sprouts emerging from the islet spheroid. These supportive 3-D physiomimetic ECM hydrogels can be leveraged within microfluidic platforms for the long-term culture of islets.
Collapse
Affiliation(s)
- K Jiang
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, United States
| | - D Chaimov
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, United States
| | - S N Patel
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, United States
| | - J-P Liang
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, United States
| | - S C Wiggins
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, United States
| | - M M Samojlik
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, United States
| | - A Rubiano
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL, United States
| | - C S Simmons
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, United States; Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL, United States
| | - C L Stabler
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, United States.
| |
Collapse
|
28
|
Pan F, He X, Feng J, Cui W, Gao L, Li M, Yang H, Wang C, Hu Y. Peptidome analysis reveals the involvement of endogenous peptides in mouse pancreatic dysfunction with aging. J Cell Physiol 2019; 234:14090-14099. [PMID: 30618084 DOI: 10.1002/jcp.28098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 12/13/2018] [Indexed: 01/15/2023]
Abstract
Type 2 diabetes (T2D) is a glucose regulation disorder that has significantly enhanced mortality and the global disease burden. The prevalence of T2D has increased worldwide and is higher in the elderly. The function of pancreatic islets decreases with age, which is one important reason for the occurrence of diabetes in the elderly. Recently, peptidome analysis has attracted attention. However, the role of age-related peptides in pancreatic dysfunction has not been investigated extensively. Here, we conducted a comparison of endogenous peptides between pancreas from adult and aging mice by liquid chromatography tandem mass spectrometry (LC-MS/MS). A total of 2,089 peptides originating from 1,280 protein precursors were identified, of which 232 were upregulated and 183 were downregulated in the aging mice (fold change ≥ 2 and p < 0.05), suggesting that the expression of pancreatic peptides in mice varied with age. The molecular weight of most peptides was <3.0 kDa, and the isoelectric point distribution had a bimodal characteristic. Further analysis of cleavage site patterns indicated that proteases cleaved pancreatic proteins according to their rules. Moreover, Gene Ontology and pathway analyses showed that the differentially expressed peptides potentially had specific effects on pancreatic dysfunction. Some differential peptides were located within the domains of precursor proteins that were closely associated with the development of diabetes. We believe that our research may advance the current understanding of pancreas-derived peptides and that certain peptides may be involved in the etiology of diabetes.
Collapse
Affiliation(s)
- Fenghui Pan
- Division of Geriatrics, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xuan He
- Division of Geriatrics, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jie Feng
- Department of Laboratory and Inspection Center, Jiangsu Institute of Planned Parenthood Research, Nanjing, Jiangsu, China
| | - Wenxia Cui
- Division of Geriatrics, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lei Gao
- Division of Geriatrics, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Man Li
- Division of Geriatrics, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Haiyan Yang
- Division of Geriatrics, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chun Wang
- Division of Geriatrics, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yun Hu
- Division of Geriatrics, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Chemistry, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, China
| |
Collapse
|
29
|
Xu W, Liang J, Geng HF, Lu J, Li R, Wang XL, Lv Q, Liu Y, Wang J, Liu XK, Jones PM, Sun Z. Wingless-Type MMTV Integration Site Family Member 5a Is a Key Secreted Islet Stellate Cell-Derived Product that Regulates Islet Function. Int J Endocrinol 2019; 2019:7870109. [PMID: 31097962 PMCID: PMC6487103 DOI: 10.1155/2019/7870109] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 01/18/2019] [Accepted: 03/04/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Emerging evidence suggests that T2DM is attributable to the dysfunction of β-cells and the activation of islet stellate cells (ISCs). The wingless-type MMTV integration site family member 5a (Wnt5a)/frizzled 5 (Fzd5) signalling pathway might take part in this process. Our study is aimed at defining the status of ISCs during β-cell insulin secretion homeostasis by determining the role of the Wnt5a protein in the regulation of insulin production. We examined the effects of the status of ISCs on β-cell insulin secretion in normoglycemic db/m and hyperglycaemic db/db mice. METHODS iTRAQ protein screening and RNA interference were used to determine novel ISC-derived secretory products that may use other mechanisms to influence the function of islets. RESULTS We showed a significant reduction in insulin secretion by β-cells in vitro when they were cocultured with db/db ISCs compared to when they were cocultured with ISCs isolated from normoglycemic db/m mice; in addition, both Wnt5a and its receptor Fzd5 were more highly expressed by quiescent ISCs than by activated db/db ISCs. Treatment with exogenous Wnt5a increased the secretion of insulin in association with the deactivation of ISCs. CONCLUSION Our observations revealed that the Wnt5a protein is a key effector of ISC-mediated improvement in islet function.
Collapse
Affiliation(s)
- Wei Xu
- Department of Endocrinology of Xuzhou Central Hospital, Xuzhou Institute of Medical Sciences, Affiliated Hospital of Southeast University, Xuzhou, Jiangsu, China
- Department of Diabetes, School of Life Course Sciences, King's College London, Guy's Campus, London, UK
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, Medical School, Southeast University, Nanjing, China
| | - Jun Liang
- Department of Endocrinology of Xuzhou Central Hospital, Xuzhou Institute of Medical Sciences, Affiliated Hospital of Southeast University, Xuzhou, Jiangsu, China
| | - H. F. Geng
- Department of Endocrinology of Xuzhou Central Hospital, Xuzhou Institute of Medical Sciences, Affiliated Hospital of Southeast University, Xuzhou, Jiangsu, China
| | - Jun Lu
- Key Laboratory of Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Rui Li
- Department of Endocrinology of Xuzhou Central Hospital, Xuzhou Institute of Medical Sciences, Affiliated Hospital of Southeast University, Xuzhou, Jiangsu, China
| | - X. L. Wang
- Department of Endocrinology of Xuzhou Central Hospital, Xuzhou Institute of Medical Sciences, Affiliated Hospital of Southeast University, Xuzhou, Jiangsu, China
| | - Qian Lv
- Department of Endocrinology of Xuzhou Central Hospital, Xuzhou Institute of Medical Sciences, Affiliated Hospital of Southeast University, Xuzhou, Jiangsu, China
| | - Ying Liu
- Department of Endocrinology of Xuzhou Central Hospital, Xuzhou Institute of Medical Sciences, Affiliated Hospital of Southeast University, Xuzhou, Jiangsu, China
| | - Jie Wang
- Department of Endocrinology of Xuzhou Central Hospital, Xuzhou Institute of Medical Sciences, Affiliated Hospital of Southeast University, Xuzhou, Jiangsu, China
| | - X. K. Liu
- Department of Endocrinology of Xuzhou Central Hospital, Xuzhou Institute of Medical Sciences, Affiliated Hospital of Southeast University, Xuzhou, Jiangsu, China
| | - Peter M. Jones
- Department of Diabetes, School of Life Course Sciences, King's College London, Guy's Campus, London, UK
| | - Zl Sun
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, Medical School, Southeast University, Nanjing, China
| |
Collapse
|
30
|
Hasib A, Ng MT, Khan D, Gault VA, Flatt PR, Irwin N. Characterisation and antidiabetic utility of a novel hybrid peptide, exendin-4/gastrin/xenin-8-Gln. Eur J Pharmacol 2018; 834:126-135. [DOI: 10.1016/j.ejphar.2018.07.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/29/2018] [Accepted: 07/13/2018] [Indexed: 12/14/2022]
|
31
|
Atanes P, Ruz-Maldonado I, Hawkes R, Liu B, Zhao M, Huang GC, Al-Amily IM, Salehi A, Amisten S, Persaud SJ. Defining G protein-coupled receptor peptide ligand expressomes and signalomes in human and mouse islets. Cell Mol Life Sci 2018; 75:3039-3050. [PMID: 29455414 PMCID: PMC6061145 DOI: 10.1007/s00018-018-2778-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/30/2018] [Accepted: 02/13/2018] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Islets synthesise and secrete numerous peptides, some of which are known to be important regulators of islet function and glucose homeostasis. In this study, we quantified mRNAs encoding all peptide ligands of islet G protein-coupled receptors (GPCRs) in isolated human and mouse islets and carried out in vitro islet hormone secretion studies to provide functional confirmation for the species-specific role of peptide YY (PYY) in mouse islets. MATERIALS AND METHODS GPCR peptide ligand mRNAs in human and mouse islets were quantified by quantitative real-time PCR relative to the reference genes ACTB, GAPDH, PPIA, TBP and TFRC. The pathways connecting GPCR peptide ligands with their receptors were identified by manual searches in the PubMed, IUPHAR and Ingenuity databases. Distribution of PYY protein in mouse and human islets was determined by immunohistochemistry. Insulin, glucagon and somatostatin secretion from islets was measured by radioimmunoassay. RESULTS We have quantified GPCR peptide ligand mRNA expression in human and mouse islets and created specific signalomes mapping the pathways by which islet peptide ligands regulate human and mouse GPCR signalling. We also identified species-specific islet expression of several GPCR ligands. In particular, PYY mRNA levels were ~ 40,000-fold higher in mouse than human islets, suggesting a more important role of locally secreted Pyy in mouse islets. This was confirmed by IHC and functional experiments measuring insulin, glucagon and somatostatin secretion. DISCUSSION The detailed human and mouse islet GPCR peptide ligand atlases will allow accurate translation of mouse islet functional studies for the identification of GPCR/peptide signalling pathways relevant for human physiology, which may lead to novel treatment modalities of diabetes and metabolic disease.
Collapse
Affiliation(s)
- Patricio Atanes
- Department of Diabetes, Faculty of Life Sciences and Medicine, King's College London, London, UK.
- Department of Diabetes, Faculty of Life Sciences and Medicine, King's College London, London, SE1 1UL, UK.
| | - Inmaculada Ruz-Maldonado
- Department of Diabetes, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Ross Hawkes
- Department of Diabetes, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Bo Liu
- Department of Diabetes, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Min Zhao
- Department of Diabetes, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Guo Cai Huang
- Department of Diabetes, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Israa Mohammed Al-Amily
- Division of Islet Cell Physiology, Department of Clinical Science, SUS, University of Lund, Malmö, Sweden
| | - Albert Salehi
- Division of Islet Cell Physiology, Department of Clinical Science, SUS, University of Lund, Malmö, Sweden
| | - Stefan Amisten
- Department of Diabetes, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Shanta J Persaud
- Department of Diabetes, Faculty of Life Sciences and Medicine, King's College London, London, UK.
- Department of Diabetes, Faculty of Life Sciences and Medicine, King's College London, London, SE1 1UL, UK.
| |
Collapse
|
32
|
Green AD, Vasu S, Flatt PR. Cellular models for beta-cell function and diabetes gene therapy. Acta Physiol (Oxf) 2018; 222. [PMID: 29226587 DOI: 10.1111/apha.13012] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 11/29/2017] [Accepted: 12/01/2017] [Indexed: 02/06/2023]
Abstract
Diabetes is characterized by the destruction and/or relative dysfunction of insulin-secreting beta-cells in the pancreatic islets of Langerhans. Consequently, considerable effort has been made to understand the physiological processes governing insulin production and secretion in these cells and to elucidate the mechanisms involved in their deterioration in the pathogenesis of diabetes. To date, considerable research has exploited clonal beta-cell lines derived from rodent insulinomas. Such cell lines have proven to be a great asset in diabetes research, in vitro drug testing, and studies of beta-cell physiology and provide a sustainable, and in many cases, more practical alternative to the use of animals or primary tissue. However, selection of the most appropriate rodent beta cell line is often challenging and no single cell line entirely recapitulates the properties of human beta-cells. The generation of stable human beta-cell lines would provide a much more suitable model for studies of human beta-cell physiology and pathology and could potentially be used as a readily available source of implantable insulin-releasing tissue for cell-based therapies of diabetes. In this review, we discuss the history, development, functional characteristics and use of available clonal rodent beta-cell lines, as well as reflecting on recent advances in the generation of human-derived beta-cell lines, their use in research studies and their potential for cell therapy of diabetes.
Collapse
Affiliation(s)
- A. D. Green
- SAAD Centre for Pharmacy & Diabetes; School of Biomedical Sciences; University of Ulster; Coleraine UK
| | - S. Vasu
- SAAD Centre for Pharmacy & Diabetes; School of Biomedical Sciences; University of Ulster; Coleraine UK
- Cell Growth and Metabolism Section; Diabetes, Endocrinology, and Obesity Branch; NIDDK; National Institutes of Health; Bethesda MD USA
| | - P. R. Flatt
- SAAD Centre for Pharmacy & Diabetes; School of Biomedical Sciences; University of Ulster; Coleraine UK
| |
Collapse
|
33
|
Khan D, Moffet CR, Flatt PR, Kelly C. Role of islet peptides in beta cell regulation and type 2 diabetes therapy. Peptides 2018; 100:212-218. [PMID: 29412821 DOI: 10.1016/j.peptides.2017.11.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 11/22/2017] [Accepted: 11/22/2017] [Indexed: 12/25/2022]
Abstract
The endocrine pancreas is composed of islets of Langerhans, which secrete a variety of peptide hormones critical for the maintenance of glucose homeostasis. Insulin is the primary regulator of glucose and its secretion from beta-cells is tightly regulated in response to physiological demands. Direct cell-cell communication within islets is essential for glucose-induced insulin secretion. Emerging data suggest that islet connectivity is also important in the regulating the release of other islet hormones including glucagon and somatostatin. Autocrine and paracrine signals exerted by secreted peptides within the islet also play a key role. A great deal of attention has focused on classical islet peptides, namely insulin, glucagon and somatostatin. Recently, it has become clear that islets also synthesise and secrete a range of non-classical peptides, which regulate beta-cell function and insulin release. The current review summarises the roles of islet cell connectivity and islet peptide-driven autocrine and paracrine signalling in beta-cell function and survival. The potential to harness the paracrine effects of non-classical islet peptides for the treatment of type 2 diabetes is also briefly discussed.
Collapse
Affiliation(s)
- Dawood Khan
- Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, University of Ulster, C-TRIC Building, Altnagelvin Area Hospital, Glenshane Road, L/Derry, BT47 6SB, Northern Ireland, UK
| | - Charlotte R Moffet
- SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, University of Ulster, Coleraine, Northern Ireland, UK
| | - Peter R Flatt
- SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, University of Ulster, Coleraine, Northern Ireland, UK
| | - Catriona Kelly
- Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, University of Ulster, C-TRIC Building, Altnagelvin Area Hospital, Glenshane Road, L/Derry, BT47 6SB, Northern Ireland, UK.
| |
Collapse
|
34
|
Mohan S, Khan D, Moffett RC, Irwin N, Flatt PR. Oxytocin is present in islets and plays a role in beta-cell function and survival. Peptides 2018; 100:260-268. [PMID: 29274352 DOI: 10.1016/j.peptides.2017.12.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 12/11/2017] [Accepted: 12/19/2017] [Indexed: 01/18/2023]
Abstract
Oxytocin is associated mainly with modulating reproductive function. However, studies suggest that oxytocin also plays a role in endocrine pancreatic function. In the present study, islet expression of oxytocin and its related receptor was confirmed in mouse islets as well as cultured rodent and human beta-cells. Oxytocin significantly stimulated glucose-induced insulin secretion from isolated mouse islets. Similar insulinotropic actions were also observed in rodent BRIN BD11 and human 1.1B4 beta-cells. Positive effects of oxytocin on insulin secretion were almost fully annulled by the oxytocin receptor antagonist, atosiban. In terms of mechanism of insulin secretory action, oxytocin had no effect on beta-cell membrane potential or cAMP generation, but did augment intracellular calcium concentrations. In vivo administration of oxytocin to mice significantly reduced overall blood glucose levels and increased plasma insulin concentrations in response to a glucose challenge. Oxytocin also had a modest, but significant, appetite suppressive effect. As expected, streptozotocin diabetic mice had marked loss of beta-cell area accompanied by increases in alpha-cell area, whilst hydrocortisone treatment increased beta-cell and overall islet areas. Both mouse models of diabetes presented with dramatically decreased percentage islet oxytocin co-localisation with insulin and increased co-localisation with glucagon. More detailed studies in cultured beta-cell lines revealed direct positive effects of oxytocin on beta-cell proliferation and protection against apoptosis. Together, these data highlight a potentially important role of islet-derived oxytocin and related receptor signalling pathways on the modulation of beta-cell function and survival.
Collapse
Affiliation(s)
- Shruti Mohan
- SAAD Centre for Pharmacy and Diabetes, University of Ulster, Coleraine, Northern Ireland, UK
| | - Dawood Khan
- SAAD Centre for Pharmacy and Diabetes, University of Ulster, Coleraine, Northern Ireland, UK
| | - R Charlotte Moffett
- SAAD Centre for Pharmacy and Diabetes, University of Ulster, Coleraine, Northern Ireland, UK
| | - Nigel Irwin
- SAAD Centre for Pharmacy and Diabetes, University of Ulster, Coleraine, Northern Ireland, UK.
| | - Peter R Flatt
- SAAD Centre for Pharmacy and Diabetes, University of Ulster, Coleraine, Northern Ireland, UK
| |
Collapse
|
35
|
Hasib A, Ng MT, Khan D, Gault VA, Flatt PR, Irwin N. A novel GLP-1/xenin hybrid peptide improves glucose homeostasis, circulating lipids and restores GIP sensitivity in high fat fed mice. Peptides 2018; 100:202-211. [PMID: 29412820 DOI: 10.1016/j.peptides.2017.10.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 10/24/2017] [Accepted: 10/24/2017] [Indexed: 02/08/2023]
Abstract
Combined modulation of peptide hormone receptors including, glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP) and xenin, have established benefits for the treatment of diabetes. The present study has assessed the biological actions and therapeutic efficacy of a novel exendin-4/xenin-8-Gln hybrid peptide, both alone and in combination with the GIP receptor agonist (DAla2)GIP. Exendin-4/xenin-8-Gln was enzymatically stable and exhibited enhanced insulin secretory actions when compared to its parent peptides. Exendin-4/xenin-8-Gln also possessed ability to potentiate the in vitro actions of GIP. Acute administration of exendin-4/xenin-8-Gln in mice induced appetite suppressive effects, as well as significant and protracted glucose-lowering and insulin secretory actions. Twice daily administration of exendin-4/xenin-8-Gln, alone or in combination with (DAla2)GIP, for 21-days significantly reduced non-fasting glucose and increased circulating insulin levels in high fat fed mice. In addition, all exendin-4/xenin-8-Gln treated mice displayed improved glucose tolerance, insulin sensitivity and metabolic responses to GIP. Combination therapy with (DAla2)GIP did not result in any obvious further benefits. Metabolic improvements in all treatment groups were accompanied by reduced pancreatic beta-cell area and insulin content, suggesting reduced insulin demand. Interestingly, body weight, food intake, circulating glucagon, metabolic rate and amylase activity were unaltered by the treatment regimens. However, all treatment groups, barring (DAla2)GIP alone, exhibited marked reductions in total- and LDL-cholesterol. Furthermore, exendin-4 therapy also reduced circulating triacylglycerol. This study highlights the positive antidiabetic effects of exendin-4/xenin-8-Gln, and suggests that combined modulation of GLP-1 and xenin related signalling pathways represents an exciting treatment option for type 2 diabetes.
Collapse
Affiliation(s)
- Annie Hasib
- From the SAAD Centre for Pharmacy and Diabetes, University of Ulster, Coleraine, Northern Ireland, UK
| | - Ming T Ng
- From the SAAD Centre for Pharmacy and Diabetes, University of Ulster, Coleraine, Northern Ireland, UK
| | - Dawood Khan
- From the SAAD Centre for Pharmacy and Diabetes, University of Ulster, Coleraine, Northern Ireland, UK
| | - Victor A Gault
- From the SAAD Centre for Pharmacy and Diabetes, University of Ulster, Coleraine, Northern Ireland, UK
| | - Peter R Flatt
- From the SAAD Centre for Pharmacy and Diabetes, University of Ulster, Coleraine, Northern Ireland, UK
| | - Nigel Irwin
- From the SAAD Centre for Pharmacy and Diabetes, University of Ulster, Coleraine, Northern Ireland, UK.
| |
Collapse
|
36
|
Lafferty RA, Flatt PR, Irwin N. Emerging therapeutic potential for peptide YY for obesity-diabetes. Peptides 2018; 100:269-274. [PMID: 29412828 DOI: 10.1016/j.peptides.2017.11.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 11/06/2017] [Accepted: 11/06/2017] [Indexed: 12/25/2022]
Abstract
The vast majority of research to date on the gut hormone Peptide YY (PYY) has focused on appetite suppression and body weight regulation effects. These biological actions are believed to occur through interaction of PYY with hypothalamic Y2 receptors. However, more recent studies have added additional knowledge to understanding of the physiological, and potential therapeutic, roles of PYY beyond obesity alone. Thus, PYY has now been shown to impart improvements in pancreatic beta-cell survival and function, with obvious benefits for diabetes. This effect has been linked mainly to binding and activation of Y1 receptors by PYY, but more evidence is still required in this regard. Given the potential therapeutic promise of PYY-derived compounds, and complexity of receptor interactions, it is important to fully understand the complete biological action profile of PYY. Therefore, the current review aims to compile, evaluate and summarise current knowledge on PYY, with particular emphasis on obesity and diabetes treatment, and the importance of specific Y receptor interactions for this.
Collapse
Affiliation(s)
- Ryan A Lafferty
- SAAD Centre for Pharmacy and Diabetes, University of Ulster, Coleraine, Northern Ireland, BT52 1SA, UK
| | - Peter R Flatt
- SAAD Centre for Pharmacy and Diabetes, University of Ulster, Coleraine, Northern Ireland, BT52 1SA, UK
| | - Nigel Irwin
- SAAD Centre for Pharmacy and Diabetes, University of Ulster, Coleraine, Northern Ireland, BT52 1SA, UK.
| |
Collapse
|
37
|
Khan D, Vasu S, Moffett RC, Gault VA, Flatt PR, Irwin N. Locally produced xenin and the neurotensinergic system in pancreatic islet function and β-cell survival. Biol Chem 2017; 399:79-92. [DOI: 10.1515/hsz-2017-0136] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 08/14/2017] [Indexed: 12/11/2022]
Abstract
AbstractModulation of neuropeptide receptors is important for pancreatic β-cell function. Here, islet distribution and effects of the neurotensin (NT) receptor modulators, xenin and NT, was examined. Xenin, but not NT, significantly improved glucose disposal and insulin secretion, in mice. However, both peptides stimulated insulin secretion from rodent β-cells at 5.6 mmglucose, with xenin having similar insulinotropic actions at 16.7 mmglucose. In contrast, NT inhibited glucose-induced insulin secretion. Similar observations were made in human 1.1B4 β-cells and isolated mouse islets. Interestingly, similar xenin levels were recorded in pancreatic and small intestinal tissue. Arginine and glucose stimulated xenin release from islets. Streptozotocin treatment decreased and hydrocortisone treatment increased β-cell mass in mice. Xenin co-localisation with glucagon was increased by streptozotocin, but unaltered in hydrocortisone mice. This corresponded to elevated plasma xenin levels in streptozotocin mice. In addition, co-localisation of xenin with insulin was increased by hydrocortisone, and decreased by streptozotocin. Furtherin vitroinvestigations revealed that xenin and NT protected β-cells against streptozotocin-induced cytotoxicity. Xenin augmented rodent and human β-cell proliferation, whereas NT displayed proliferative actions only in human β-cells. These data highlight the involvement of NT signalling pathways for the possible modulation of β-cell function.
Collapse
|