1
|
Ma CF, Yang L, Degen AA, Ding LM. The water extract of Rheum palmatum has antioxidative properties and inhibits ROS production in mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118602. [PMID: 39084270 DOI: 10.1016/j.jep.2024.118602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 08/02/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Rheum palmatum (RP) is a widely used traditional herb, which possesses antioxidant properties, inhibits ROS production and reduces fever. AIM OF THE STUDY The aim of this study was to examine the antioxidative properties of the water extract of RP on oxidative-stressed mice. MATERIALS & METHODS Forty mice were administered with DL-homocysteine (DL-Hcy) to induce oxidative stress and were divided into four groups: 1) CK: NaCl and water; 2) DL-Hcy: DL-Hcy and water; 3) DL-Hcy+50RP: DL-Hcy with 50 mg kg-1 body weight (BW) d-1 RP; and 4) DL-Hcy+150RP: DL-Hcy with 150 mg kg-1 BW d-1 RP. Rhein (0.3 mg g-1 dry matter) was the main active ingredient in RP. RESULTS When compared with Dl-Hcy mice, the mice with supplementary RP mitigated oxidative stress by reducing the liver concentrations of superoxide dismutase (SOD) by 27% and glutathione peroxidase (GSH-Px) by 32%, and the reactive oxygen species (ROS) in the kidney and spleen. These responses were more pronounced in DL-Hcy+150RP than DL-Hcy+50RP mice. RP also exhibited therapeutic effects on liver steatosis, chronic kidney nephritis and intestinal villus width shortening caused by oxidative stress, and concomitantly decreased the serum glucose concentration (RP vs. DL-HCY, 2.3 vs. 4.1 mmol L-1). CONCLUSION It was concluded that RP possesses antioxidant and therapeutic properties that can mitigate lesions on organs and prevent diabetes in oxidative-stressed mice. This study highlights the potential of RP as a medicinal supplement for animals in the future.
Collapse
Affiliation(s)
- Cheng-Fang Ma
- Sichuan Provincial Forest and Grassland Key Laboratory of Alpine Grassland Conservation and Utilization of Tibetan Plateau, College of Grassland Resources, Institute of Qinghai-Tibet Plateau, Southwest Minzu University, Chengdu, 610041, China; Sate Key Laboratory of Herbage Improvement and Grassland Agro-ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Li Yang
- Sate Key Laboratory of Herbage Improvement and Grassland Agro-ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Abraham Allan Degen
- Desert Animal Adaptations and Husbandry, Wyler Department of Dryland Agriculture, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Lu-Ming Ding
- Sichuan Provincial Forest and Grassland Key Laboratory of Alpine Grassland Conservation and Utilization of Tibetan Plateau, College of Grassland Resources, Institute of Qinghai-Tibet Plateau, Southwest Minzu University, Chengdu, 610041, China.
| |
Collapse
|
2
|
Chen S, Fan H, Pei Y, Zhang K, Zhang F, Hu Q, Jin E, Li S. MAPK Signaling Pathway Plays Different Regulatory Roles in the Effects of Boric Acid on Proliferation, Apoptosis, and Immune Function of Splenic Lymphocytes in Rats. Biol Trace Elem Res 2024; 202:2688-2701. [PMID: 37737440 DOI: 10.1007/s12011-023-03862-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023]
Abstract
Boron is one of the essential trace elements in animals. Although boron supplementation can enhance immune function and promote cell proliferation, high-dose boron supplementation can negatively affect immune function and inhibit cell proliferation. Furthermore, its action pathway is unknown. In this study, ERK1/2, JNK, and p38MAPK signaling pathways were blocked using specific blockers to investigate the impact of low-dose and high-dose boron on proliferation, apoptosis, and immune function of lymphocytes, and the expression of genes related to cell proliferation and apoptosis in rats. The addition of 0.4 mmol/L boron did not affect the ratio of CD4+/CD8+ T cells (P>0.05), IgG and IFN-γ contents (P>0.05), the proliferation rate of lymphocytes (P>0.05), and mRNA and protein expressions of PCNA (P>0.05) in the spleen after ERK1/2 signal pathway was selectively inhibited. Moreover, the addition of 40 mmol/L boron did not affect the proportion of CD4+ T cells, contents of IgG and cytokines (IL-2 and IL-4), proliferation and apoptosis rates of lymphocytes, and expression of proliferation- and apoptosis-related genes in the spleen. Meanwhile, the addition of 0.4 mmol/l boron increased the ratio of CD4+/CD8+ T cells (P<0.05 or P<0.01), IFN-γ or IgG contents (P<0.05), and the proliferation rate of lymphocytes (P<0.05) in spleen after selective inhibition of JNK or p38MAPK signaling pathways, while the protein expression of Caspase-3 decreased (P<0.05 or P<0.01). Furthermore, 40 mmol/L boron decreased the proportion of lymphocyte subsets, cytokine contents, proliferation rate of lymphocytes, and mRNA and protein expressions of PCNA. In contrast, the mRNA and protein expressions of Caspase-3 and protein expression of Bax were increased. These results indicate that ERK1/2 signaling pathway mainly regulates the effects of low-dose and high-dose boron on proliferation, apoptosis, and immune function of splenic lymphocytes.
Collapse
Affiliation(s)
- Shuqin Chen
- College of Animal Science, Anhui Science and Technology University, No.9 Donghua Road, Fengyang County, Chuzhou, Anhui Province, 233100, People's Republic of China
| | - Haoran Fan
- College of Animal Science, Anhui Science and Technology University, No.9 Donghua Road, Fengyang County, Chuzhou, Anhui Province, 233100, People's Republic of China
| | - Yaqiong Pei
- College of Animal Science, Anhui Science and Technology University, No.9 Donghua Road, Fengyang County, Chuzhou, Anhui Province, 233100, People's Republic of China
| | - Kaihuan Zhang
- College of Animal Science, Anhui Science and Technology University, No.9 Donghua Road, Fengyang County, Chuzhou, Anhui Province, 233100, People's Republic of China
| | - Feng Zhang
- College of Animal Science, Anhui Science and Technology University, No.9 Donghua Road, Fengyang County, Chuzhou, Anhui Province, 233100, People's Republic of China
| | - Qianqian Hu
- College of Animal Science, Anhui Science and Technology University, No.9 Donghua Road, Fengyang County, Chuzhou, Anhui Province, 233100, People's Republic of China
| | - Erhui Jin
- College of Animal Science, Anhui Science and Technology University, No.9 Donghua Road, Fengyang County, Chuzhou, Anhui Province, 233100, People's Republic of China.
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, No.9 Donghua Road, Fengyang County, Chuzhou, Anhui Province, 233100, People's Republic of China.
| | - Shenghe Li
- College of Animal Science, Anhui Science and Technology University, No.9 Donghua Road, Fengyang County, Chuzhou, Anhui Province, 233100, People's Republic of China
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, No.9 Donghua Road, Fengyang County, Chuzhou, Anhui Province, 233100, People's Republic of China
| |
Collapse
|
3
|
Farooqui H, Anjum F, Lebeche D, Ali S. Boron Facilitates Amelioration of Hepatic Injury by the Osmolyte Glycine and Resolves Injury by Improving the Tissue Redox Homeostasis. J Diet Suppl 2024; 21:585-607. [PMID: 38501915 DOI: 10.1080/19390211.2024.2328340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Background: Glycine is a conditional non-essential amino acid in human and other mammals. It is abundant in the liver and is known for a wide spectrum of characteristics including the antioxidant, antiinflammatory, immunomodulatory, and cryoprotective effects. The amino acid is a naturally occurring osmolyte compatible with protein surface interactions and has been reported in literature as a potent therapeutic immuno-nutrient for liver diseases such as alcoholic liver disease. Oral glycine administration protects ethanol-induced liver injury, improves serum and tissue lipid profile, and alleviates hepatic injury in various conditions. In recent years, sodium salt of boron (borax) has been reported for its beneficial effects on cellular stress, including the effects on cell survival, immunity, and tissue redox state. Incidentally both glycine and boron prevent apoptosis and promote cell survival under stress. Objective: This study investigates the beneficial effect of borax on liver protection by glycine. Methods: Briefly, liver toxicity was induced in rats by a single intraperitoneal injection of thioacetamide (400 mg/kg b. wt.). Results: Significant changes in oxidative stress and liver function test parameters, the molybdenum Fe-S flavin hydroxylase activity, nitric oxide and tissue histopathology were observed in thioacetamide treated positive control group. The changes were ameliorated both by glycine as well as borax, but the combinatorial treatment yielded a better response indicating the impact of boron supplementation on glycine mediated protection of liver injury in experimental animal model. Conclusions: The study has clinical implications as the hepatotoxicity caused by thioacetamide mimics features of hepatitis C infection in human.
Collapse
Affiliation(s)
- Humaira Farooqui
- Department of Biotechnology, School of Chemical and Life Sciences, New Delhi, India
- Department of Biochemistry, School of Chemical and Life Sciences, New Delhi, India
| | - Farah Anjum
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Djamel Lebeche
- Department of Physiology, College of Medicine, The University of TN Health Science Centre, Memphis, TN, USA
| | - Shakir Ali
- Department of Biochemistry, School of Chemical and Life Sciences, New Delhi, India
| |
Collapse
|
4
|
Turkez H, Yıldırım S, Sahin E, Arslan ME, Emsen B, Tozlu OO, Alak G, Ucar A, Tatar A, Hacimuftuoglu A, Keles MS, Geyikoglu F, Atamanalp M, Saruhan F, Mardinoglu A. Boron Compounds Exhibit Protective Effects against Aluminum-Induced Neurotoxicity and Genotoxicity: In Vitro and In Vivo Study. TOXICS 2022; 10:428. [PMID: 36006107 PMCID: PMC9413983 DOI: 10.3390/toxics10080428] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 07/18/2022] [Accepted: 07/26/2022] [Indexed: 02/04/2023]
Abstract
Genetic, neuropathological and biochemical investigations have revealed meaningful relationships between aluminum (Al) exposure and neurotoxic and hematotoxic damage. Hence, intensive efforts are being made to minimize the harmful effects of Al. Moreover, boron compounds are used in a broad mix of industries, from cosmetics and pharmaceuticals to agriculture. They affect critical biological functions in cellular events and enzymatic reactions, as well as endocrinal and mineral metabolisms. There are limited dose-related data about boric acid (BA) and other boron compounds, including colemanite (Col), ulexite (UX) and borax (BX), which have commercial prominence. In this study, we evaluate boron compounds' genetic, cytological, biochemical and pathological effects against aluminum chloride (AlCl3)-induced hematotoxicity and neurotoxicity on different cell and animal model systems. First, we perform genotoxicity studies on in vivo rat bone marrow cells and peripheric human blood cultures. To analyze DNA and chromosome damage, we use single cell gel electrophoresis (SCGE or comet assay) and micronucleus (MN) and chromosome aberration (CA) assays. The nuclear division index (NDI) is used to monitor cytostasis. Second, we examine the biochemical parameters (superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), malondialdehyde (MDA), total antioxidant capacity (TAC) and total oxidative status (TOS)) to determine oxidative changes in blood and brain. Next, we assess the histopathological alterations by using light and electron microscopes. Our results show that Al increases oxidative stress and genetic damage in blood and brain in vivo and in vitro studies. Al also led to severe histopathological and ultrastructural alterations in the brain. However, the boron compounds alone did not cause adverse changes based on the above-studied parameters. Moreover, these compounds exhibit different levels of beneficial effects by removing the harmful impact of Al. The antioxidant, antigenotoxic and cytoprotective effects of boron compounds against Al-induced damage indicate that boron may have a high potential for use in medical purposes in humans. In conclusion, our analysis suggests that boron compounds (especially BA, BX and UX) can be administered to subjects to prevent neurodegenerative and hematological disorders at determined doses.
Collapse
Affiliation(s)
- Hasan Turkez
- Department of Medical Biology, Faculty of Medicine, Atatürk University, 25240 Erzurum, Turkey;
| | - Serkan Yıldırım
- Department of Pathology, Faculty of Veterinary, Atatürk University, 25240 Erzurum, Turkey;
| | - Elvan Sahin
- Department of Histology and Embryology, Faculty of Medicine, Sakarya University, 54050 Sakarya, Turkey;
| | - Mehmet Enes Arslan
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, 25050 Erzurum, Turkey; (M.E.A.); (O.O.T.)
| | - Bugrahan Emsen
- Department of Biology, Kamil Özdağ Faculty of Science, Karamanoğlu Mehmetbey University, 70200 Karaman, Turkey;
| | - Ozlem Ozdemir Tozlu
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, 25050 Erzurum, Turkey; (M.E.A.); (O.O.T.)
| | - Gonca Alak
- Department of Aquaculture, Faculty of Fisheries, Atatürk University, 25240 Erzurum, Turkey; (G.A.); (A.U.); (M.A.)
| | - Arzu Ucar
- Department of Aquaculture, Faculty of Fisheries, Atatürk University, 25240 Erzurum, Turkey; (G.A.); (A.U.); (M.A.)
| | - Abdulgani Tatar
- Department of Medical Genetics, Medical Faculty, Atatürk University, 25240 Erzurum, Turkey;
| | - Ahmet Hacimuftuoglu
- Department of Medical Pharmacology, Medical Faculty, Atatürk University, 25240 Erzurum, Turkey; (A.H.); (F.S.)
| | - Mevlut Sait Keles
- Department of Biochemistry, Medical Faculty, Uskudar University, 34664 Istanbul, Turkey;
| | - Fatime Geyikoglu
- Department of Biology, Faculty of Arts and Sciences, Atatürk University, 25240 Erzurum, Turkey;
| | - Muhammed Atamanalp
- Department of Aquaculture, Faculty of Fisheries, Atatürk University, 25240 Erzurum, Turkey; (G.A.); (A.U.); (M.A.)
| | - Fatih Saruhan
- Department of Medical Pharmacology, Medical Faculty, Atatürk University, 25240 Erzurum, Turkey; (A.H.); (F.S.)
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH-Royal Institute of Technology, 114 28 Stockholm, Sweden
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London WC2R 2LS, UK
| |
Collapse
|
5
|
Koc K, Geyikoglu F, Yilmaz A, Yildirim S, Deniz GY. The effect of lithium tetraborate as a novel cardioprotective agent after renal ischemia-reperfusion injury. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e201052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
| | | | - Asli Yilmaz
- Ataturk University, Turkey; Ataturk University, Turkey
| | | | | |
Collapse
|
6
|
Xiong Y, Jin E, Yin Q, Che C, He S. Boron Attenuates Heat Stress-Induced Apoptosis by Inhibiting Endoplasmic Reticulum Stress in Mouse Granulosa Cells. Biol Trace Elem Res 2021; 199:611-621. [PMID: 32385716 DOI: 10.1007/s12011-020-02180-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 04/28/2020] [Indexed: 01/25/2023]
Abstract
Heat stress-induced apoptosis in granulosa cells is mediated by multiple apoptotic signaling pathways, including endoplasmic reticulum (ER) stress. Boron is a naturally occurring trace element with several cytoprotective properties. Nonetheless, the molecular mechanisms involved in the protective functions of boron in granulosa cells undergoing apoptosis caused by heat stress (HS) remain unclear. In this study, we investigated the role of boric acid, a predominant chemical form of boron, in HS-induced apoptotic damage in mouse granulosa cells (mGCs) and explored the underlying mechanisms. We found that HS treatment suppressed cell viability; increased the apoptotic rate of cells; potentiated the activity of caspase-3, a key player in the caspase-mediated apoptotic signaling pathway; and activated ER stress markers, including glucose-regulated protein 78 (GRP78) and CCAAT/enhancer-binding protein (C/EBP) homologous protein (CHOP) in mGCs. However, boric acid treatment effectively alleviated the effects of both HS-induced and thapsigargin (an ER stress agonist)-induced apoptosis, such as the enhanced activity of caspase-3 and increase in GRP78 and CHOP expression. Moreover, treatment with 4-phenylbutyrate (4-PBA), an ER stress antagonist, significantly attenuated these HS-induced adverse effects in mGCs. In addition, boric acid supplementation in the culture medium significantly restored the decreased estradiol levels in heat-treated mGCs. The administration of boric acid to female mice previously exposed to hyperthermal conditions effectively restored the levels of serum estradiol in vivo. Collectively, these findings suggest that HS induces apoptosis in mGCs via ER stress pathways and that boron has a protective effect against these adverse effects. This study provides novel insights into the benefits of using boron against heat-induced apoptosis.
Collapse
Affiliation(s)
- Yongjie Xiong
- College of Animal Science, Anhui Science and Technology University, Fengyang, 233100, Anhui, China
- Key Laboratory of the Quality and Safety Control for Pork of the Ministry of Agriculture, Anhui Science and Technology University, Fengyang, 233100, Anhui, China
| | - Erhui Jin
- College of Animal Science, Anhui Science and Technology University, Fengyang, 233100, Anhui, China
- Key Laboratory of the Quality and Safety Control for Pork of the Ministry of Agriculture, Anhui Science and Technology University, Fengyang, 233100, Anhui, China
| | - Qirun Yin
- College of Animal Science, Anhui Science and Technology University, Fengyang, 233100, Anhui, China
- Key Laboratory of the Quality and Safety Control for Pork of the Ministry of Agriculture, Anhui Science and Technology University, Fengyang, 233100, Anhui, China
| | - Chuanyan Che
- College of Animal Science, Anhui Science and Technology University, Fengyang, 233100, Anhui, China
- Key Laboratory of the Quality and Safety Control for Pork of the Ministry of Agriculture, Anhui Science and Technology University, Fengyang, 233100, Anhui, China
| | - Shaojun He
- College of Animal Science, Anhui Science and Technology University, Fengyang, 233100, Anhui, China.
- Key Laboratory of the Quality and Safety Control for Pork of the Ministry of Agriculture, Anhui Science and Technology University, Fengyang, 233100, Anhui, China.
| |
Collapse
|
7
|
Boron improves cardiac contractility and fibrotic remodeling following myocardial infarction injury. Sci Rep 2020; 10:17138. [PMID: 33051505 PMCID: PMC7553911 DOI: 10.1038/s41598-020-73864-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 08/17/2020] [Indexed: 11/18/2022] Open
Abstract
Myocardial fibrosis is a major determinant of clinical outcomes in heart failure (HF) patients. It is characterized by the emergence of myofibroblasts and early activation of pro-fibrotic signaling pathways before adverse ventricular remodeling and progression of HF. Boron has been reported in recent years to augment the innate immune system and cell proliferation, which play an important role in the repair and regeneration of the injured tissue. Currently, the effect of boron on cardiac contractility and remodeling is unknown. In this study, we investigated, for the first time, the effect of boron supplementation on cardiac function, myocardial fibrosis, apoptosis and regeneration in a rat model myocardial infarction (MI)-induced HF. MI was induced in animals and borax, a sodium salt of boron, was administered for 7 days, p.o., 21 days post-injury at a dose level of 4 mg/kg body weight. Transthoracic echocardiographic analysis showed a significant improvement in systolic and diastolic functions with boron treatment compared to saline control. In addition, boron administration showed a marked reduction in myocardial fibrosis and apoptosis in the injured hearts, highlighting a protective effect of boron in the ischemic heart. Interestingly, we observed a tenfold increase of nuclei in thin myocardial sections stained positive for the cell cycle marker Ki67 in the MI boron-treated rats compared to saline, indicative of increased cardiomyocyte cell cycle activity in MI hearts, highlighting its potential role in regeneration post-injury. We similarly observed increased Ki67 and BrdU staining in cultured fresh neonatal rat ventricular cardiomyocytes. Collectively, the results show that boron positively impacted MI-induced HF and attenuated cardiac fibrosis and apoptosis, two prominent features of HF. Importantly, boron has the potential to induce cardiomyocyte cell cycle entry and potentially cardiac tissue regeneration after injury. Boron might be beneficial as a supplement in MI and may be a good candidate substance for anti-fibrosis approach.
Collapse
|
8
|
Üstündağ FD, Ünal İ, Cansız D, Üstündağ ÜV, Subaşat HK, Alturfan AA, Tiber PM, Emekli-Alturfan E. 3-Pyridinylboronic acid normalizes the effects of 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine exposure in zebrafish embryos. Drug Chem Toxicol 2020; 45:947-954. [PMID: 32693643 DOI: 10.1080/01480545.2020.1795189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is a neurotoxin that damages dopaminergic neurons. Zebrafish has been shown to be a suitable model organism to investigate the molecular pathways in the pathogenesis of Parkinson's disease and also for potential therapeutic agent research. Boron has been shown to play an important role in the neural activity of the brain. Boronic acids are used in combinatorial approaches in drug design and discovery. The effect of 3-pyridinylboronic acid which is an important sub-class of heterocyclic boronic acids has not been evaluated in case of MPTP exposure in zebrafish embryos. Accordingly, this study was designed to investigate the effects of 3-pyridinylboronic acid on MPTP exposed zebrafish embryos focusing on the molecular pathways related to neurodegeneration and apoptosis by RT-PCR. Zebrafish embryos were exposed to MPTP (800 μM); MPTP + Low Dose 3-Pyridinylboronic acid (50 μM) (MPTP + LB) and MPTP + High Dose 3-Pyridinylboronic acid (100 μM) (MPTP + HB) in well plates for 72 hours post fertilization. Results of our study showed that MPTP induced a P53 dependent and Bax mediated apoptosis in zebrafish embryos and 3-pyridinylboronic acid restored the locomotor activity and gene expressions related to mitochondrial dysfunction and oxidative stress due to the deleterious effects of MPTP, in a dose-dependent manner.
Collapse
Affiliation(s)
- Fümet Duygu Üstündağ
- Faculty of Medicine, Department of Biophysics, Marmara University, Istanbul, Turkey
| | - İsmail Ünal
- Faculty of Dentistry, Department of Basic Medical Sciences, Marmara University, Istanbul, Turkey
| | - Derya Cansız
- Faculty of Medicine, Department of Biochemistry, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Ünsal Veli Üstündağ
- Faculty of Medicine, Medical Biochemistry, Department Medipol University, Istanbul, Turkey
| | - Hülya Kara Subaşat
- Graduate School of Natural and Applied Sciences, Department of Energy, Mugla Sıtkı Kocman University, Muğla, Turkey
| | - A Ata Alturfan
- Faculty of Medicine, Department of Biochemistry, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Pınar Mega Tiber
- Faculty of Medicine, Department of Biophysics, Marmara University, Istanbul, Turkey
| | - Ebru Emekli-Alturfan
- Faculty of Dentistry, Department of Basic Medical Sciences, Marmara University, Istanbul, Turkey
| |
Collapse
|
9
|
Khan B, Naiyer A, Athar F, Ali S, Thakur SC. Synthesis, characterization and anti-inflammatory activity evaluation of 1,2,4-triazole and its derivatives as a potential scaffold for the synthesis of drugs against prostaglandin-endoperoxide synthase. J Biomol Struct Dyn 2020; 39:457-475. [PMID: 31900051 DOI: 10.1080/07391102.2019.1711193] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Substituted 1,2,4-triazole nucleus is common in several drugs used in a variety of clinical conditions including infections, hypoglycemia, hypertension and cancer. In this study, we synthesized 1,2,4-triazole and its 16 hydrazone derivatives (B1-B16), characterized them by IR, NMR and Mass spectroscopy, and evaluated their radical scavenging and anti-inflammatory activities in vitro and in vivo. Out of 16 derivatives, five (B1, B5, B6, B9, and B13) demonstrated a significant radical scavenging and anti-inflammatory activity in vitro. B6, which possessed two electron-donating hydroxyl groups, was most active among all. Molecular docking and MD simulation of the complex of B6 with prostaglandin-endoperoxide synthase (PTGS) or cyclooxygenase (COX) showed that B6 occupied celecoxib binding site in COX with high affinity (the binding free energy of the complex with COX-1 was -10.5, and -11.2 kcal/mol with COX-2). Maximum anti-inflammatory activity was also shown by the B6 derivative in vivo, in the rat model of carrageenan-induced inflammation. B6, along with four other derivatives (B1, B5, B9 and B13) exhibited 80-90% free radical scavenging activity. The IC50 values of these compounds were ≥40 µM. Griess nitrite and dichloro-dihydro-fluorescein-diacetate assays suggested a significant inhibition of nitric oxide and reactive oxygen species, especially by B6 and B9. Taken together, out of 16 derivatives, B6 is reported to have highest anti-inflammatory and antioxidant activity at a low dose level, which may be attributed to its two electron-donating hydroxyls. B6 is proposed to be an important scaffold for the synthesis of new drugs against PTGS for use in a myriad of inflammatory and infectious diseases.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Bushra Khan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Abdullah Naiyer
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Fareeda Athar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Shakir Ali
- Department of Biochemistry, School of Chemical and Life Sciences & DBT BTISNet Bioinformatics infrastructure facility, BIF, Jamia Hamdard, New Delhi, India
| | - Sonu Chand Thakur
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
10
|
Cheng FR, Cui HX, Fang JL, Yuan K, Guo Y. Ameliorative Effect and Mechanism of the Purified Anthraquinone-Glycoside Preparation from Rheum Palmatum L. on Type 2 Diabetes Mellitus. Molecules 2019; 24:E1454. [PMID: 31013790 PMCID: PMC6515271 DOI: 10.3390/molecules24081454] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/27/2019] [Accepted: 04/04/2019] [Indexed: 12/11/2022] Open
Abstract
Rheum palmatum L. is a traditional Chinese medicine with various pharmacological properties, including anti-inflammatory, antibacterial, and detoxification effects. In this study, the mechanism of the hypoglycemic effect of purified anthraquinone-Glycoside from Rheum palmatum L. (PAGR) in streptozotocin (STZ) and high-fat diet induced type 2 diabetes mellitus (T2DM) in rats was investigated. The rats were randomly divided into normal (NC), T2DM, metformin (Met), low, middle (Mid), and high (Hig) does of PAGR groups. After six weeks of continuous administration of PAGR, the serum indices and tissue protein expression were determined, and the pathological changes in liver, kidney, and pancreas tissues were observed. The results showed that compared with the type 2 diabetes mellitus group, the fasting blood glucose (FBG), total cholesterol (TC), and triglyceride (TG) levels in the serum of rats in the PAGR treatment groups were significantly decreased, while superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX) levels were noticeably increased. The expression of Fas ligand (FasL), cytochrome C (Cyt-c), and caspase-3 in pancreatic tissue was obviously decreased, and the pathological damage to the liver, kidney, and pancreas was improved. These indicate that PAGR can reduce oxidative stress in rats with diabetes mellitus by improving blood lipid metabolism and enhancing their antioxidant capacity, thereby regulating the mitochondrial apoptotic pathway to inhibitβ-cell apoptosis and improve β-cell function. Furthermore, it can regulate Fas/FasL-mediated apoptosis signaling pathway to inhibit β-cell apoptosis, thereby lowering blood glucose levels and improving T2DM.
Collapse
Affiliation(s)
- Fang-Rong Cheng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China.
| | - Hong-Xin Cui
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China.
- Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment & Chinese Medicine Development of Henan Province, Zhengzhou 450046, China.
| | - Ji-Li Fang
- Jiyang College of Zhejiang Agriculture and Forestry University, Zhu'ji 311800, China.
| | - Ke Yuan
- Jiyang College of Zhejiang Agriculture and Forestry University, Zhu'ji 311800, China.
| | - Ying Guo
- Zhejiang Chinese Medical University, Zhejiang, Hangzhou 310053, China.
| |
Collapse
|