1
|
Wang C, Li T, Lin C, Qiu X, Zhuang W, Li H, Feng X, Du X, Sun J. Schisandra Chinensis Polysaccharide Ameliorates Renal Dysfunction by Inhibiting Inflammatory Reactions and Oxidative Stress in Diabetic Rats. J Med Food 2025. [PMID: 40201944 DOI: 10.1089/jmf.2024.k.0285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025] Open
Abstract
Schisandra chinensis (S. chinensis) polysaccharide (SCP) is an active ingredient from S. chinensis used mainly for the treatment of diabetes, owing to its antioxidant, hypoglycemic, and lipidemic-modulating activities. A rat type II diabetes mellitus model was established by giving rats a high-fat diet and streptozotocin (STZ) to investigate the protective effect of SCP against renal injury in diabetic rats. It was found in this study that fasting blood glucose, serum lipids, serum creatinine, and blood urea nitrogen levels were decreased, the insulin sensitivity was increased, and pathological injuries of the kidney were alleviated in SCP-treated groups, indicating that SCP should have a protective effect against renal injury in diabetic rats. SCP treatment reduced serum C-reactive protein and inhibited the expression of nuclear factors-κB and related inflammatory factors in the renal tissue of diabetic rats. SCP treatment also regulated the expression of Nuclear factor (erythroid-derived 2) like-2, heme oxygenase-1, and kelch-like ECH-associated protein-1, reduced serum malondialdehyde content, and increased superoxide dismutase activity. Furthermore, SCP down-regulated the expression of fibronectin, α-SMA, transforming growth factor β1, and p-Smad3, up-regulated Smad7 expression, and mitigated the collagen fiber deposition in the renal interstitium in diabetic rats. It can be concluded that the mechanism of SCP in alleviating renal injury may be related to inhibiting inflammation, increasing antioxidant stress capacity, and improving renal fibrosis in diabetic rats.
Collapse
Affiliation(s)
- Chunmei Wang
- Department of Pharmacology, School of Pharmacy, Beihua University, Jilin, China
| | - Ting Li
- Department of Pharmacology, School of Pharmacy, Beihua University, Jilin, China
| | - Chengcheng Lin
- Department of Pharmacology, School of Pharmacy, Beihua University, Jilin, China
| | - Xudong Qiu
- Department of Hand Surgery, Affiliated Hospital, Beihua University, Jilin, China
| | - Wenyue Zhuang
- Department of Molecular Biology Test Technique, College of Medical Technology, Beihua University, Jilin, China
| | - He Li
- Department of Pharmacology, School of Pharmacy, Beihua University, Jilin, China
| | - Xingming Feng
- Department of Hand Surgery, Affiliated Hospital, Beihua University, Jilin, China
| | - Xingxu Du
- Department of Endocrinology, Affiliated Hospital, Beihua University, Jilin, China
| | - Jinghui Sun
- Department of Pharmacology, School of Pharmacy, Beihua University, Jilin, China
| |
Collapse
|
2
|
Zhou W, Fang J, Jia Q, Meng H, Liu F, Mao J. Transcription factor specificity protein (SP) family in renal physiology and diseases. PeerJ 2025; 13:e18820. [PMID: 39850832 PMCID: PMC11756367 DOI: 10.7717/peerj.18820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 12/15/2024] [Indexed: 01/25/2025] Open
Abstract
Dysregulated specificity proteins (SPs), members of the C2H2 zinc-finger family, are crucial transcription factors (TFs) with implications for renal physiology and diseases. This comprehensive review focuses on the role of SP family members, particularly SP1 and SP3, in renal physiology and pathology. A detailed analysis of their expression and cellular localization in the healthy human kidney is presented, highlighting their involvement in fatty acid metabolism, electrolyte regulation, and the synthesis of important molecules. The review also delves into the diverse roles of SPs in various renal diseases, including renal ischemia/reperfusion injury, diabetic nephropathy, renal interstitial fibrosis, and lupus nephritis, elucidating their molecular mechanisms and potential as therapeutic targets. The review further discusses pharmacological modulation of SPs and its implications for treatment. Our findings provide a comprehensive understanding of SPs in renal health and disease, offering new avenues for targeted therapeutic interventions and precision medicine in nephrology.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Nephrology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Jiaxi Fang
- Department of Ultrasound, Taizhou Central Hospital, Taizhou, Zhejiang, China
| | - Qingqing Jia
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Hanyan Meng
- Department of Nephrology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Fei Liu
- Department of Nephrology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Jianhua Mao
- Department of Nephrology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Gu Z, Liu X, Qi Z, Fang Z, Jiang Y, Huang Y, Wang Y, Wu L, Yang Y. An antioxidant nanozyme for targeted cardiac fibrosis therapy post myocardial infarction. J Nanobiotechnology 2024; 22:760. [PMID: 39696342 PMCID: PMC11656654 DOI: 10.1186/s12951-024-03047-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/29/2024] [Indexed: 12/20/2024] Open
Abstract
The excessive release of reactive oxygen species (ROS) after myocardial infarction (MI) disrupts the natural healing process, leading to cardiac fibrosis and compromising patient prognosis. However, the clinical application of many antioxidant drugs for MI treatment is hindered by their poor antioxidant efficacy and inability to specifically target the heart. Here we developed a tannic acid-modified MnO2 nanozyme (named MnO2@TA), which can achieve cardiac targeting to inhibit post-MI fibrosis and enhance cardiac function. Specifically, the MnO2@TA nanozyme, endowed with superoxide dismutase (SOD) and catalase (CAT) activities, effectively scavenges ROS, suppressing fibroblast activation and mitigating cardiac fibrosis without affecting cardiac repair. Notably, the incorporation of TA improves the nanozyme's affinity for the elastin and collagen-rich extracellular matrix in cardiac tissues, significantly increasing its retention and uptake within the heart and thereby enhancing its anti-fibrotic efficacy. In a murine myocardial infarction model, MnO2@TA demonstrates remarkable cardiac protection and safety, significantly improving cardiac function while attenuating cardiac fibrosis. This study presents a valuable reference for clinical research aimed at inhibiting cardiac fibrosis and advancing myocardial infarction treatments.
Collapse
Affiliation(s)
- Ziyi Gu
- Institute of Molecular Medicine (IMM), department of Cardiovascular Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xueliang Liu
- Institute of Molecular Medicine (IMM), department of Cardiovascular Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
- Punan Branch of Renji Hospital, Shanhai Jiaotong University School of Medicine, Shanghai, 200125, China
| | - Zhen Qi
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zhou Fang
- Institute of Molecular Medicine (IMM), department of Cardiovascular Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yiting Jiang
- Institute of Molecular Medicine (IMM), department of Cardiovascular Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yuting Huang
- Institute of Molecular Medicine (IMM), department of Cardiovascular Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yongyi Wang
- Institute of Molecular Medicine (IMM), department of Cardiovascular Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Lianming Wu
- Department of Radiology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Yu Yang
- Institute of Molecular Medicine (IMM), department of Cardiovascular Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
4
|
Li X, Fan QL, Ma TK, Liu C, Shi H, Sun YY, Wang Y, Ding DX, Tang A, Qin Y, Yang Q, Ding H, Li HY, Fu WN. MYCT1 attenuates renal fibrosis and tubular injury in diabetic kidney disease. iScience 2023; 26:107609. [PMID: 37664593 PMCID: PMC10470386 DOI: 10.1016/j.isci.2023.107609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 01/22/2023] [Accepted: 08/09/2023] [Indexed: 09/05/2023] Open
Abstract
Tubulointerstitial abnormalities contribute to the progression of diabetic kidney disease (DKD). However, the underlying mechanism of the pathobiology of tubulointerstitial disease is largely unknown. Here, we showed that MYCT1 expression was downregulated in in vitro and in vivo DKD models. Adeno-associated virus (AAV)-Myct1 significantly attenuated renal dysfunction and tubulointerstitial fibrosis in diabetic db/db mice and downregulated Sp1 transcription and TGF-β1/SMAD3 pathway activation. In human proximal tubular epithelial cells, high glucose-induced high expression of SP1 and TGF-β1/SMAD3 pathway activation as well as overaccumulation of extracellular matrix (ECM) were abrogated by MYCT1 overexpression. Mechanistically, the binding of VDR to the MYCT1 promoter was predicted and confirmed using dual-luciferase reporter and ChIP analysis. VDR transcriptionally upregulates MYCT1. Our data reveal MYCT1 as a new and potential therapeutic target in treating DKD.
Collapse
Affiliation(s)
- Xin Li
- Department of Medical Genetics, China Medical University, Shenyang, China
- Department of Nephrology, Fourth Hospital of China Medical University, Shenyang, China
| | - Qiu-Ling Fan
- Department of Nephrology, First Hospital of China Medical University, Shenyang, China
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tian-Kui Ma
- Department of Nephrology, First Hospital of China Medical University, Shenyang, China
| | - Cong Liu
- Department of General Surgery, First Hospital of Harbin Medical University, Harbin, China
| | - Hang Shi
- Department of Intensive Care Unit, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuan-Yuan Sun
- Department of Medical Genetics, China Medical University, Shenyang, China
| | - Yue Wang
- Department of Medical Genetics, China Medical University, Shenyang, China
| | - Dong-Xue Ding
- Department of Medical Genetics, China Medical University, Shenyang, China
| | - Ao Tang
- Department of Medical Genetics, China Medical University, Shenyang, China
| | - Yu Qin
- Department of Nephrology, Fourth Hospital of China Medical University, Shenyang, China
| | - Qi Yang
- Department of Nephrology, Fourth Hospital of China Medical University, Shenyang, China
| | - Hong Ding
- Department of Nephrology, Fourth Hospital of China Medical University, Shenyang, China
| | - Hang-Yu Li
- Department of General Surgery, Fourth Hospital of China Medical University, Shenyang, China
| | - Wei-Neng Fu
- Department of Medical Genetics, China Medical University, Shenyang, China
| |
Collapse
|
5
|
Saleh Aldayel T. Apigenin attenuates high-fat diet-induced nephropathy in rats by hypoglycemic and hypolipidemic effects, and concomitant activation of the Nrf2/antioxidant axis. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
6
|
Sp1-Mediated Prdx6 Upregulation Leads to Clasmatodendrosis by Increasing Its aiPLA2 Activity in the CA1 Astrocytes in Chronic Epilepsy Rats. Antioxidants (Basel) 2022; 11:antiox11101883. [PMID: 36290607 PMCID: PMC9598987 DOI: 10.3390/antiox11101883] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 11/29/2022] Open
Abstract
Clasmatodendrosis is an autophagic astroglial degeneration (a non-apoptotic (type II) programmed cell death) whose underlying mechanisms are fully understood. Peroxiredoxin-6 (Prdx6), the “non-selenium glutathione peroxidase (NSGPx)”, is the only member of the 1-cysteine peroxiredoxin family. Unlike the other Prdx family, Prdx6 has multiple functions as glutathione peroxidase (GPx) and acidic calcium-independent phospholipase (aiPLA2). The present study shows that Prdx6 was upregulated in CA1 astrocytes in chronic epilepsy rats. 2-Cyano-3,12-dioxo-oleana-1,9(11)-dien-28-oic acid methyl ester (CDDO-Me) and N-acetylcysteine (NAC, a precursor of glutathione) ameliorated clasmatodendrosis accompanied by reduced Prdx6 level in CA1 astrocytes. Specificity protein 1 (Sp1) expression was upregulated in CA1 astrocyte, which was inhibited by mithramycin A (MMA). MMA alleviated clasmatodendrosis and Prdx6 upregulation. Sp1 expression was also downregulated by CDDO-Me and NAC. Furthermore, 1-hexadecyl-3-(trifluoroethgl)-sn-glycerol-2 phosphomethanol (MJ33, a selective inhibitor of aiPLA2 activity of Prdx6) attenuated clasmatodendrosis without affecting Prdx6 expression. All chemicals shortened spontaneous seizure duration but not seizure frequency and behavioral seizure severity in chronic epilepsy rats. Therefore, our findings suggest that Sp1 activation may upregulate Prdx6, whose aiPLA2 activity would dominate over GPx activity in CA1 astrocytes and may lead to prolonged seizure activity due to autophagic astroglial degeneration.
Collapse
|
7
|
Liang ZL, Chen F, Park S, Balasubramanian B, Liu WC. Impacts of Heat Stress on Rabbit Immune Function, Endocrine, Blood Biochemical Changes, Antioxidant Capacity and Production Performance, and the Potential Mitigation Strategies of Nutritional Intervention. Front Vet Sci 2022; 9:906084. [PMID: 35720853 PMCID: PMC9201964 DOI: 10.3389/fvets.2022.906084] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/02/2022] [Indexed: 11/25/2022] Open
Abstract
Heat stress has become a widespread concern in the world, which is one of the major environmental stressors and causes substantial economic loss in the rabbit industry. Heat stress leads to multiple damages to the health of rabbits, such as organ damage, oxidative stress, disordered endocrine regulation, suppressed immune function and reproductive disorders, ultimately, induces the decreased production performance and increased mortality. Nutritional approaches, including feeding strategies, adjusting feed formula, and supplementing vitamins, minerals, electrolytes, Chinese herbal medicines, and functional active substances to the feed, were reported to mitigate the detrimental effects of heat stress in rabbits. Therefore, elucidating the damage of heat stress to rabbits; proper management and nutritional approaches should be considered to solve the heat stress issue in rabbits. This review highlights the scientific evidence regarding the effects of heat stress on rabbit's immune function, endocrine, blood biochemical changes, antioxidant capacity and production performance, and the potential mitigation strategies of nutritional intervention to alleviate heat stress in rabbits; which could contribute to develop nutritional strategies in relieving heat stress of rabbits.
Collapse
Affiliation(s)
- Zi-Long Liang
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Fan Chen
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Sungkwon Park
- Department of Food Science and Biotechnology, College of Life Science, Sejong University, Seoul, South Korea
| | | | - Wen-Chao Liu
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| |
Collapse
|
8
|
Yue LL, Du X. Thrombospondin 1 Promotes Endoplasmic Reticulum Stress and Apoptosis in HK-2 Cells by Upregulating ATF6-CHOP. Curr Med Sci 2022; 42:341-347. [PMID: 35192143 DOI: 10.1007/s11596-022-2513-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 09/21/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVE The goal of this study is to investigate the role and mechanism of endoplasmic reticulum stress and apoptosis regulated by thrombospondin 1 (TSP1) in human renal tubular epithelial cells (HK-2 cells). METHODS HK-2 cells were exposed to high concentrations of glucose (HG). The endoplasmic reticulum stress inhibitor 4-phenylbutyric acid (4-PBA) was administered by transfecting TSP1 or an empty vector to explore the mechanism of the endoplasmic reticulum response regulated by TSP1 and stress in renal cell apoptosis. The effects of TSP1 and 4-PBA on the proliferation and apoptosis of HK-2 cells under HG conditions were assessed using Cell counting kit-8 and flow cytometry. Western blotting was used to detect the apoptosis- and endoplasmic reticulum stress-related protein expression regulated by TSP1 and 4-PBA. RESULTS HG treatment induced high cell apoptosis, abundantly expressed TSP1 level and restrained viability in HK-2 cells. Overexpression of TSP1 significantly inhibited the proliferation of and facilitated apoptosis of HK-2 cells under HG conditions. Administration of endoplasmic reticulum stress inhibitor 4-PBA after overexpression of TSP1 antagonized the inhibitory proliferation and promoted apoptosis rate in HG-triggered HK-2 cells induced by TSP1 overexpression. 4-PBA treatment significantly hindered the expression of endoplasmic reticulum stress markers, such as PERK, ATF4, ATF6, p-eIF2α, IRE1, CHOP and XBP1, suggesting that the administration of 4-PBA was successful. CONCLUSION Overexpression of TSP1 activated endoplasmic reticulum stress by regulating the ATF6-CHOP axis. TSP1 restrained cell proliferation, and promoted apoptosis and endoplasmic reticulum stress by activating the ATF6-CHOP axis.
Collapse
Affiliation(s)
- Li-Li Yue
- Department of Nephrology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Xin Du
- Department of Nephrology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China.
| |
Collapse
|
9
|
Effect of fucoidan on kidney injury in type 2 diabetic rats based on PI3K/AKT/Nrf2. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.104976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
10
|
Hassan HM, Mahran YF, Ghanim AMH. Ganoderma lucidum ameliorates the diabetic nephropathy via down-regulatory effect on TGFβ-1 and TLR-4/NFκB signalling pathways. J Pharm Pharmacol 2021; 73:1250-1261. [PMID: 33847358 DOI: 10.1093/jpp/rgab058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 03/18/2021] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Diabetic nephropathy (DN) is one of the most important complications of diabetes mellitus and it is considered as a principal cause for end-stage renal failure. Ganoderma lucidum (GL) has been studied for its reno-protective effect against different kidney injury models. The aim of our study is to investigate the mechanisms by which GL can improve kidney injury and consequent renal inflammation and fibrosis. METHODS GL either in a low dose (250 mg/kg, i.p.) or high dose (500 mg/kg, i.p.) was administered to DN rat model, and nephropathy indices were investigated. KEY FINDINGS GL treatment significantly down-regulated kidney injury molecule-1 (KIM-1) gene expression and inhibited TLR-4 (Toll-like receptor-4)/NFκB (nuclear factor kappa B) signalling pathway. As well, GL treatment significantly decreased the pro-inflammatory mediator; IL-1β (interleukin-1 beta) level and fibrosis-associated growth factors; FGF-23 (fibroblast growth factor-23) and TGFβ-1 (transforming growth factor beta-1) levels. In addition, GL remarkably inhibited (Bax) the pro-apoptotic protein and induced (Bcl-2) the anti-apoptotic protein expression in kidneys. Moreover, GL treatment significantly alleviates kidney injury indicated by correcting the deteriorated kidney function and improving oxidative stress status in DN rats. CONCLUSIONS GL significantly improved renal function indices through dose-dependent kidney function restoration, oxidative stress reduction, down-regulation of gene expression of KIM-1 and TLR4/NFκB signalling pathway blockage with subsequent alleviation of renal inflammation and fibrosis.
Collapse
Affiliation(s)
- Hanan M Hassan
- Department of pharmacology and Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa City, Mansoura, Egypt
| | - Yasmen F Mahran
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Kingdom of Saudi Arabia
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Amal M H Ghanim
- Department of Biochemistry, Faculty of Pharmacy, Fayoum University, Fayoum, Egypt
| |
Collapse
|
11
|
CDDO-Me Attenuates Astroglial Autophagy via Nrf2-, ERK1/2-SP1- and Src-CK2-PTEN-PI3K/AKT-Mediated Signaling Pathways in the Hippocampus of Chronic Epilepsy Rats. Antioxidants (Basel) 2021; 10:antiox10050655. [PMID: 33922531 PMCID: PMC8145743 DOI: 10.3390/antiox10050655] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/19/2021] [Accepted: 04/22/2021] [Indexed: 12/30/2022] Open
Abstract
Clasmatodendrosis is an autophagic astroglial death showing extensive swollen cell bodies with vacuoles and disintegrated/beaded processes. This astroglial degeneration is closely relevant to the synchronous epileptiform discharges. However, the underlying molecular mechanisms and the roles of clasmatodendrosis in spontaneous seizure activity are still unknown. The 2-cyano-3,12-dioxo-oleana-1,9(11)-dien-28-oic acid methyl ester (CDDO-Me; RTA 402) is one of the activators for nuclear factor-erythroid 2-related factor 2 (Nrf2) that is a redox-sensitive transcription factor. In the present study, we explored the effects of CDDO-Me on clasmatodendrosis in chronic epilepsy rats, which could prevent epilepsy-related complications. In the present study, clasmatodendritic astrocytes showed reduced Nrf2 expression and its nuclear accumulation, which were restored by CDDO-Me. CDDO-Me also abrogated heat shock protein 25 (HSP25) upregulation in clasmatodendritic astrocytes by regulating extracellular signal-related kinases 1/2 (ERK1/2)-specificity protein 1 (SP1)- and Src-casein kinase 2 (CK2)-phosphatase and tensin homolog deleted on chromosome 10 (PTEN)-phosphatidylinositol-3-kinase (PI3K)-AKT-glycogen synthase kinase 3β (GSK3β)-bax-interacting factor 1 (Bif-1)-mediated signaling pathways in chronic epilepsy rats. In addition, CDDO-Me ameliorated spontaneous seizure duration, but not seizure frequency and behavioral seizure severity. Therefore, our findings suggest that clasmatodendrosis may affect seizure duration in chronic epilepsy rats, and that CDDO-Me may attenuate autophagic astroglial degeneration by regulating various signaling pathways.
Collapse
|
12
|
ALTamimi JZ, AlFaris NA, Alshammari GM, Alagal RI, Aljabryn DH, Aldera H, Alrfaei BM, Alkhateeb MA, Yahya MA. Ellagic acid protects against diabetic nephropathy in rats by regulating the transcription and activity of Nrf2. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104397] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
13
|
Yao H, Zhang N, Zhang W, Li J, Hua H, Li Y. Discovery of polypodiside as a Keap1-dependent Nrf2 activator attenuating oxidative stress and accumulation of extracellular matrix in glomerular mesangial cells under high glucose. Bioorg Med Chem 2020; 28:115833. [PMID: 33166928 DOI: 10.1016/j.bmc.2020.115833] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 02/07/2023]
Abstract
Diabetic nephropathy (DN) is a severe microvascular complication of diabetes mellitus. High glucose has resulted in oxidative stress and following renal fibrosis as the crucial nodes of this disease. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor regulating transcription of many antioxidant genes and suppressing synthesis of extracellular matrix. To discover Nrf2 activators targeting DN, we have evaluated polypodiside using cell-based assays. The results showed polypodiside inhibited the high glucose-induced self-limited proliferation of glomerular meangial cells. Activation of Nrf2 and enhanced transcription to antioxidant response elements were observed in the presence of polypodiside. Oxidative stress and accumulation of extracellular matrix induced by high glucose in glomerular meangial cells have been ameliorated by polypodiside. Further investigations revealed the effects of polypodiside on glomerular meangial cells were associated with activation of Nrf2. Co-immunoprecipitation of Nrf2 disclosed polypodiside disrupted the Kelch-like ECH-associated protein-1 (Keap1)-Nrf2 interaction. Molecular docking elucidated polypodiside could enter the Nrf2 binding cavity of Keap1 via interacting with the residues encompassing that cavity. These findings indicate polypodiside is a Keap1-dependent Nrf2 activator affording the catabatic effects against oxidative stress and accumulation of extracellular matrix in glomerular meangial cells under high glucose.
Collapse
Affiliation(s)
- Huankai Yao
- School of Pharmacy and Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Nan Zhang
- School of Pharmacy and Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Wenting Zhang
- Department of Laboratory Medicine, Xuzhou Center for Disease Control and Prevention, Xuzhou, Jiangsu 221006, China
| | - Jindong Li
- Department of Pharmacy, Taizhou People's Hospital, Taizhou, Jiangsu 225300, China
| | - Huilian Hua
- Department of Pharmacy, Taizhou People's Hospital, Taizhou, Jiangsu 225300, China
| | - Yan Li
- School of Pharmacy and Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
14
|
Shah KH, Oza MJ. Comprehensive Review of Bioactive and Molecular Aspects of Moringa Oleifera Lam. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1813755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Kaushal H. Shah
- Department of Pharmacognosy, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Manisha J. Oza
- Department of Pharmacognosy, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| |
Collapse
|
15
|
Fan HY, Wang XK, Li X, Ji K, Du SH, Liu Y, Kong LL, Xu JC, Yang GQ, Chen DQ, Qi D. Curcumin, as a pleiotropic agent, improves doxorubicin-induced nephrotic syndrome in rats. JOURNAL OF ETHNOPHARMACOLOGY 2020; 250:112502. [PMID: 31881321 DOI: 10.1016/j.jep.2019.112502] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/05/2019] [Accepted: 12/22/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Curcumin, a phenolic compound extracted from the rhizome of turmeric (Curcuma longa L.), has been reported to have broad biological functions including potent antioxidant and renoprotective effects. It has been reported that Curcumin has a certain protective effect on the kidney. However, its mechanism of action needs further study. AIM OF THE STUDY The present research aims at investigating the therapeutic effects and its underlying mechanism of curcumin on NS. MATERIALS AND METHODS The conditionally immortalized mouse podocyte cell line was utilized to evaluate the podocyte-protective effect of curcumin and its effects on NF-κB pathway and Nrf2/ARE pathway in podocyte in vitro. Furthermore, the DOX-induced NS rats were utilized to investigate the therapeutic effects and its underlying mechanism of curcumin against NS in vivo. RESULTS The consequences of this study revealed that curcumin activated Nrf2, inhibited NF-κB pathway and up-regulated podocin in DOX-induced podocyte. Further research results showed that curcumin can considerably alleviate proteinuria and improve hypoalbuminemia in NS rats, and lower blood lipid levels to alleviate hyperlipidemia in NS rats, indicating that curcumin has significant therapeutic effects on rat NS. Further observation by electron microscopy and detection showed that curcumin can improve renal function and podocyte injury, which may be related to the repairment of mRNA expression and podocin protein. Interestingly, the results of the blood rheology test showed that curcumin can effectively reduce whole blood viscosity (WBV) and plasma viscosity (PV), and reduce hematocrit (Hct). In addition, the oxidative stress state of kidney in NS rats was considerably reversed by curcumin, which may be achieved by activating Nrf2 and increasing the expression of antioxidant enzymes HO-1, NQO-1. We also found that NF-κB pathway is activated in the kidney of NS rats, and curcumin can inhibit the activation of NF-κB by down-regulating the expression of NF-κB p65, reducing the level of p-IκBα and up-regulating the expression of IκBα. CONCLUSION These findings suggest that curcumin, as a multifunctional agent, exerts a protective effect on DOX-induced nephrotic syndrome in rats, which provides a pharmacological basis for the further development of curcumin and also provides a basis for the advantages of multi-targeted drugs in the processing of NS.
Collapse
Affiliation(s)
- Hua-Ying Fan
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China.
| | - Xue-Kai Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Xin Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Kai Ji
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Shi-Hao Du
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Yu Liu
- Fushan District People's Hospital of Yantai City, 265500, Yantai, Shandong, PR China
| | - Lin-Lin Kong
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Jing-Chen Xu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Gang-Qiang Yang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China.
| | - Da-Quan Chen
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China.
| | - Dong Qi
- Department of Nephrology, Yu-Huang-Ding Hospital/Qingdao University, 264000, Yantai, Shandong, PR China.
| |
Collapse
|
16
|
Ethyl Vanillin Protects against Kidney Injury in Diabetic Nephropathy by Inhibiting Oxidative Stress and Apoptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2129350. [PMID: 31781325 PMCID: PMC6875338 DOI: 10.1155/2019/2129350] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 09/27/2019] [Accepted: 10/08/2019] [Indexed: 01/05/2023]
Abstract
Diabetes-induced oxidative stress and apoptosis is regarded as a critical role in the pathogenesis of diabetic nephropathy (DN). Treating diabetes-induced kidney damage and renal dysfunction has been thought a promising therapeutic option to attenuate the development and progression of DN. In this study, we investigated the renoprotective effect of ethyl vanillin (EVA), an active analogue of vanillin isolated from vanilla beans, on streptozotocin- (STZ-) induced rat renal injury model and high glucose-induced NRK-52E cell model. The EVA treatment could strongly improve the deterioration of renal function and kidney cell apoptosis in vivo and in vitro. Moreover, treating with EVA significantly decreased the level of MDA and reactive oxygen species (ROS) and stabilized antioxidant enzyme system in response to oxidative stress by enhancing the activity of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) in vivo and in vitro. Furthermore, EVA also markedly suppressed cleaved caspase-3, Bax, and nuclear transcription factor erythroid 2-related factor (Nrf2) expression in STZ-induced rats. Therefore, these results of our investigation provided that EVA might protect against kidney injury in DN by inhibiting oxidative stress and cell apoptosis.
Collapse
|
17
|
Gao P, Li L, Yang L, Gui D, Zhang J, Han J, Wang J, Wang N, Lu J, Chen S, Hou L, Sun H, Xie L, Zhou J, Peng C, Lu Y, Peng X, Wang C, Miao J, Ozcan U, Huang Y, Jia W, Liu J. Yin Yang 1 protein ameliorates diabetic nephropathy pathology through transcriptional repression of TGFβ1. Sci Transl Med 2019; 11:eaaw2050. [PMID: 31534017 DOI: 10.1126/scitranslmed.aaw2050] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 08/29/2019] [Indexed: 12/19/2022]
Abstract
Transforming growth factor-β1 (TGFβ1) has been identified as a major pathogenic factor underlying the development of diabetic nephropathy (DN). However, the current strategy of antagonizing TGFβ1 has failed to demonstrate favorable outcomes in clinical trials. To identify a different therapeutic approach, we designed a mass spectrometry-based DNA-protein interaction screen to find transcriptional repressors that bind to the TGFB1 promoter and identified Yin Yang 1 (YY1) as a potent repressor of TGFB1. YY1 bound directly to TGFB1 promoter regions and repressed TGFB1 transcription in human renal mesangial cells. In mouse models, YY1 was elevated in mesangial cells during early diabetic renal lesions and decreased in later stages, and knockdown of renal YY1 aggravated, whereas overexpression of YY1 attenuated glomerulosclerosis. In addition, although their duration of diabetic course was comparable, patients with higher YY1 expression developed diabetic nephropathy more slowly compared to those who presented with lower YY1 expression. We found that a small molecule, eudesmin, suppressed TGFβ1 and other profibrotic factors by increasing YY1 expression in human renal mesangial cells and attenuated diabetic renal lesions in DN mouse models by increasing YY1 expression. These results suggest that YY1 is a potent transcriptional repressor of TGFB1 during the development of DN in diabetic mice and that small molecules targeting YY1 may serve as promising therapies for treating DN.
Collapse
Affiliation(s)
- Pan Gao
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Liliang Li
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Liu Yang
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China.
| | - Dingkun Gui
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200032, China
| | - Jiarong Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Junfeng Han
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Jiajia Wang
- Department of Endocrinology, Third Affiliated Hospital of Soochow University, Changzhou 213001, China
| | - Niansong Wang
- Department of Endocrinology, Third Affiliated Hospital of Soochow University, Changzhou 213001, China
| | - Junxi Lu
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Suzhen Chen
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Liping Hou
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Honglin Sun
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Liping Xie
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Jian Zhou
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Chao Peng
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai 201210, China
| | - Yan Lu
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai 200025, China
| | - Xuemei Peng
- Department of Metabolic and Bariatric Surgery, First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Cunchuan Wang
- Department of Metabolic and Bariatric Surgery, First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Ji Miao
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Umut Ozcan
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yu Huang
- School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong 999077, China
| | - Weiping Jia
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China.
| | - Junli Liu
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China.
| |
Collapse
|
18
|
Zhang J, Zhao X, Zhu H, Wang J, Ma J, Gu M. Apigenin Protects Against Renal Tubular Epithelial Cell Injury and Oxidative Stress by High Glucose via Regulation of NF-E2-Related Factor 2 (Nrf2) Pathway. Med Sci Monit 2019; 25:5280-5288. [PMID: 31309931 PMCID: PMC6652381 DOI: 10.12659/msm.915038] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Diabetic nephropathy (DN) is a disease characterized by oxidative stress and apoptosis of renal tubular epithelial cells driven by hyperglycemia. Apigenin is a flavonoid compound that possesses potent anti-apoptotic properties. The present study aimed to explore the protective effects and underlying mechanisms of apigenin on renal tubular epithelial cells exposed to hyperglycemia. Material/Methods Human renal epithelial cell HK-2 were incubated to D-glucose to establish in vitro DN model. The cell viability, lactate dehydrogenase (LDH) release, apoptosis and oxidative stress were evaluated. qRT-PCR was performed to determine the mRNA levels of NF-E2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1). Western blot analysis was performed to measure the protein expressions of Nrf2. Results In HK-2 cells, high glucose reduced cell viability in a concentration- and time-dependent manner. Apigenin suppressed the decrease in cell viability and increase in supernatant LDH release at 100 and 200 μM after 48-h treatment. Apigenin reduced apoptotic rate and pro-inflammatory cytokines production. Apigenin suppressed oxidative stress and increased mRNA expressions of Nrf2 and HO-1. Inhibition of Nrf2 using small interfering RNA (siRNA), or cotreatment with LY294002, an inhibitor of PI3K/Akt, abolished the protective effect on high glucose-induced injury, oxidative stress, and pro-inflammatory cytokines production by apigenin. LY294002 also attenuated the increase in Nrf2 protein by apigenin in high glucose-treated HK-2 cells. Conclusions Apigenin protects renal tubular epithelial cells against high glucose-induced injury through suppression of oxidative stress and inflammation via activation of the Nrf2 pathway.
Collapse
Affiliation(s)
- Jichen Zhang
- Department of Endocrinology, Shanghai Pudong New District Gongli Hospital, Second Military Medical University, Shanghai, China (mainland).,Postgraduate Education College, Ningxia Medical University, Yinchuan, Ningxia, China (mainland)
| | - Xuemei Zhao
- Department of Endocrinology, Shanghai Pudong New District Gongli Hospital, Second Military Medical University, Shanghai, China (mainland)
| | - Hongling Zhu
- Department of Endocrinology, Shanghai Pudong New District Gongli Hospital, Second Military Medical University, Shanghai, China (mainland)
| | - Jingnan Wang
- Department of Endocrinology, Shanghai Pudong New District Gongli Hospital, Second Military Medical University, Shanghai, China (mainland)
| | - Junhua Ma
- Department of Endocrinology, Shanghai Pudong New District Gongli Hospital, Second Military Medical University, Shanghai, China (mainland)
| | - Mingjun Gu
- Department of Endocrinology, Shanghai Pudong New District Gongli Hospital, Second Military Medical University, Shanghai, China (mainland)
| |
Collapse
|
19
|
Yang F, Li J, Deng H, Wang Y, Lei C, Wang Q, Xiang J, Liang L, Xia J, Pan X, Li X, Long Q, Chang L, Xu P, Huang A, Wang K, Tang N. GSTZ1-1 Deficiency Activates NRF2/IGF1R Axis in HCC via Accumulation of Oncometabolite Succinylacetone. EMBO J 2019; 38:e101964. [PMID: 31267557 PMCID: PMC6669923 DOI: 10.15252/embj.2019101964] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/24/2019] [Accepted: 06/02/2019] [Indexed: 12/19/2022] Open
Abstract
The IGF1R signaling is important in the malignant progression of cancer. However, overexpression of IGF1R has not been properly assessed in HCC. Here, we revealed that GSTZ1‐1, the enzyme in phenylalanine/tyrosine catabolism, is downregulated in HCC, and its expression was negatively correlated with IGF1R. Mechanistically, GSTZ1‐1 deficiency led to succinylacetone accumulation, alkylation modification of KEAP1, and NRF2 activation, thus promoting IGF1R transcription by recruiting SP1 to its promoter. Moreover, inhibition of IGF1R or NRF2 significantly inhibited tumor‐promoting effects of GSTZ1 knockout in vivo. These findings establish succinylacetone as an oncometabolite, and GSTZ1‐1 as an important tumor suppressor by inhibiting NRF2/IGF1R axis in HCC. Targeting NRF2 or IGF1R may be a promising treatment approach for this subset HCC.
Collapse
Affiliation(s)
- Fan Yang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, The Second Affiliated Hospital, Institute for Viral Hepatitis, Chongqing Medical University, Chongqing, China.,Department of Infectious Diseases, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jingjing Li
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, The Second Affiliated Hospital, Institute for Viral Hepatitis, Chongqing Medical University, Chongqing, China
| | - Haijun Deng
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, The Second Affiliated Hospital, Institute for Viral Hepatitis, Chongqing Medical University, Chongqing, China
| | - Yihao Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Chong Lei
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, The Second Affiliated Hospital, Institute for Viral Hepatitis, Chongqing Medical University, Chongqing, China
| | - Qiujie Wang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, The Second Affiliated Hospital, Institute for Viral Hepatitis, Chongqing Medical University, Chongqing, China
| | - Jin Xiang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, The Second Affiliated Hospital, Institute for Viral Hepatitis, Chongqing Medical University, Chongqing, China
| | - Li Liang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, The Second Affiliated Hospital, Institute for Viral Hepatitis, Chongqing Medical University, Chongqing, China
| | - Jie Xia
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, The Second Affiliated Hospital, Institute for Viral Hepatitis, Chongqing Medical University, Chongqing, China
| | - Xuanming Pan
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, The Second Affiliated Hospital, Institute for Viral Hepatitis, Chongqing Medical University, Chongqing, China
| | - Xiaosong Li
- Department of Infectious Diseases, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Quanxin Long
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, The Second Affiliated Hospital, Institute for Viral Hepatitis, Chongqing Medical University, Chongqing, China
| | - Lei Chang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Ping Xu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Ailong Huang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, The Second Affiliated Hospital, Institute for Viral Hepatitis, Chongqing Medical University, Chongqing, China
| | - Kai Wang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, The Second Affiliated Hospital, Institute for Viral Hepatitis, Chongqing Medical University, Chongqing, China
| | - Ni Tang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, The Second Affiliated Hospital, Institute for Viral Hepatitis, Chongqing Medical University, Chongqing, China
| |
Collapse
|
20
|
Chang J, Zhou Y, Cong G, Guo H, Guo Y, Lu K, Li YC, Tian H. Dendrobium candidum
protects against diabetic kidney lesions through regulating vascular endothelial growth factor, Glucose Transporter 1, and connective tissue growth factor expression in rats. J Cell Biochem 2019; 120:13924-13931. [DOI: 10.1002/jcb.28666] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/27/2018] [Accepted: 01/09/2019] [Indexed: 01/08/2023]
Affiliation(s)
- Jingzhi Chang
- Department of Biochemistry and Molecular Biology ShangQiu Medical College Shangqiu China
| | - Yuanting Zhou
- Department of Biochemistry and Molecular Biology ShangQiu Medical College Shangqiu China
| | - Guobin Cong
- Department of Biochemistry and Molecular Biology ShangQiu Medical College Shangqiu China
| | - Hui Guo
- Department of Biochemistry and Molecular Biology ShangQiu Medical College Shangqiu China
| | - Yali Guo
- Department of Biochemistry and Molecular Biology ShangQiu Medical College Shangqiu China
| | - Kun Lu
- Department of Biochemistry and Molecular Biology ShangQiu Medical College Shangqiu China
| | - Yi chuan Li
- Department of Biochemistry and Molecular Biology ShangQiu Medical College Shangqiu China
| | - Hua Tian
- Department of Biochemistry and Molecular Biology ShangQiu Medical College Shangqiu China
| |
Collapse
|
21
|
Cheng D, Gao L, Su S, Sargsyan D, Wu R, Raskin I, Kong AN. Moringa Isothiocyanate Activates Nrf2: Potential Role in Diabetic Nephropathy. AAPS J 2019; 21:31. [PMID: 30783799 PMCID: PMC6647035 DOI: 10.1208/s12248-019-0301-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/17/2019] [Indexed: 01/11/2023] Open
Abstract
Moringa isothiocyanate (MIC-1) is the main active isothiocyanate found in Moringa oleifera, a plant consumed as diet and traditional herbal medicine. Compared to sulforaphane (SFN), MICs are less studied and most work have focused on its anti-inflammatory activity. The purpose of this study is to better understand the Nrf2-ARE antioxidant activity of MIC-1 and its potential in diabetic nephropathy. MIC-1 showed little toxicity from 1.25-5 μM. MIC-1 activated Nrf2-ARE at similar levels to SFN. MIC-1 also increased gene expression of downstream Nrf2 genes NQO1, HO-1, and GCLC. Protein expression of HO-1 and GCLC was elevated in MIC-1-treated cells versus control. MIC-1 suppressed pro-inflammatory cytokines in LPS-stimulated macrophages. MIC-1 reduced levels of reactive oxygen species in high glucose (HG)-treated human renal proximal tubule HK-2 cells. RNA-seq was performed to examine the transcriptome in HK-2 cells exposed to HG with or without MIC-1. Ingenuity Pathway Analysis (IPA) of RNA-seq on HK-2 cells exposed to HG identified TGFβ1 and NQO1 regulation as potentially impacted and treatment of HG-exposed HK-2 cells with MIC-1 reversed the gene expression of these two pathways. Results implicate that the transcriptional regulator TGFβ1 signaling is activated by HG and that MIC-1 can inhibit HG-stimulated TGFβ1 activation. In summary, MIC-1 activates Nrf2-ARE signaling, increases expression of Nrf2 target genes, and suppresses inflammation, while also reducing oxidative stress and possibly TGFβ1 signaling in high glucose induced renal cells. Taken together, it appears that one potential therapeutic strategy for managing DN and is currently under development in clinic is Nrf2 activation.
Collapse
Affiliation(s)
- David Cheng
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 228, 160 Frelinghuysen Road, Piscataway, New Jersey, 08854, USA
- Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
| | - Linbo Gao
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 228, 160 Frelinghuysen Road, Piscataway, New Jersey, 08854, USA
| | - Shan Su
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 228, 160 Frelinghuysen Road, Piscataway, New Jersey, 08854, USA
| | - Davit Sargsyan
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 228, 160 Frelinghuysen Road, Piscataway, New Jersey, 08854, USA
- Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
| | - Renyi Wu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 228, 160 Frelinghuysen Road, Piscataway, New Jersey, 08854, USA
| | - Ilya Raskin
- Department of Plant Biology & Pathology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, 08901, USA
| | - Ah-Ng Kong
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 228, 160 Frelinghuysen Road, Piscataway, New Jersey, 08854, USA.
| |
Collapse
|
22
|
Liu Y, Liu P, Wang Q, Sun F, Liu F. Sulforaphane Attenuates H₂O₂-induced Oxidant Stress in Human Trabecular Meshwork Cells (HTMCs) via the Phosphatidylinositol 3-Kinase (PI3K)/Serine/Threonine Kinase (Akt)-Mediated Factor-E2-Related Factor 2 (Nrf2) Signaling Activation. Med Sci Monit 2019; 25:811-818. [PMID: 30689624 PMCID: PMC6362759 DOI: 10.12659/msm.913849] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Background The aim of this study was to investigate whether and how sulforaphane (SFN), a novel promising nuclear factor-E2-related factor 2 (Nrf2) activator, exerted antioxidative stress through activating Nrf2 signaling. Material/Methods Cultured human trabecular meshwork cells (HTMCs) were treated with SFN for 6 hours after establishing the oxidative stress model by hydrogen peroxide (H2O2). The cell viability, the level of intercellular reactive oxygen species (ROS), and the apoptosis rate were observed using various kits. In addition, the gene and protein expression of Nrf2 and the phase II antioxidative enzymes were determined by performing qRT-PCR and western blotting. Results In H2O2-treated HTMCs, SFN protected HTMCs from oxidative stress damage and decreased the intracellular ROS accumulation, thus inhibiting cell apoptosis. SFN also increased the gene and protein expression of phase II antioxidative enzymes such as NAD(P)H: quinone oxidoreductase 1 (NQO-1), heme oxygenase-1 (HO-1), glutamate-cysteine ligase catalytic subunit (GCLC), and glutamate-cysteine ligase modifier subunit (GCLM) by Nrf2-dependent pathway. Furthermore, investigations of the pathway showed that HTMCs pretreated with LY294002, an inhibitor of phosphatidylinositol 3-kinase (PI3K), downregulated the expression of phase II antioxidative enzymes, partly. Conclusions These results indicated a novel application for SFN in attenuating H2O2-induced oxidative stress in HTMCs through activating PI3K/Akt/Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Yuzhen Liu
- Department of Ophthalmology, Binzhou Medical University Hospital, Binzhou, Shandong, China (mainland)
| | - Pan Liu
- Department of Ophthalmology, Binzhou Medical University Hospital, Binzhou, Shandong, China (mainland)
| | - Qiang Wang
- Department of Ophthalmology, Yantai Affiliated Hospital of Binzhou Medical University Hospital, Yantai, Shandong, China (mainland)
| | - Fengmei Sun
- Department of Library, Binzhou Medical University, Yantai, Shandong, China (mainland)
| | - Fang Liu
- Pharmacy Intravenous Admixture Services, Affiliated Hospital of Taishan Medical University, Tai'an, Shandong, China (mainland)
| |
Collapse
|
23
|
Unoki T, Akiyama M, Kumagai Y, Gonçalves FM, Farina M, da Rocha JBT, Aschner M. Molecular Pathways Associated With Methylmercury-Induced Nrf2 Modulation. Front Genet 2018; 9:373. [PMID: 30271424 PMCID: PMC6146031 DOI: 10.3389/fgene.2018.00373] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 08/23/2018] [Indexed: 12/19/2022] Open
Abstract
Methylmercury (MeHg) is a potent neurotoxin that affects particularly the developing brain. Since MeHg is a potent electrophilic agent, a wide range of intracellular effects occur in response to its exposure. Yet, the molecular mechanisms associated with MeHg-induced cell toxicity have yet to be fully understood. Activation of cell defense mechanisms in response to metal exposure, including the up-regulation of Nrf2- (nuclear factor erythroid 2-related factor 2)-related genes has been previously shown. Nrf2 is a key regulator of cellular defenses against oxidative, electrophilic and environmental stress, regulating the expression of antioxidant proteins, phase-II xenobiotic detoxifying enzymes as well phase-III xenobiotic transporters. Analogous to other electrophiles, MeHg activates Nrf2 through modification of its repressor Keap1 (Kelch-like ECH-associated protein 1). However, recent findings have also revealed that Keap1-independent signal pathways might contribute to MeHg-induced Nrf2 activation and cytoprotective responses against MeHg exposure. These include, Akt phosphorylation (Akt/GSK-3β/Fyn-mediated Nrf2 activation pathway), activation of the PTEN/Akt/CREB pathway and MAPK-induced autophagy and p62 expression. In this review, we summarize the state-of-the-art knowledge regarding Nrf2 up-regulation in response to MeHg exposure, highlighting the modulation of signaling pathways related to Nrf2 activation. The study of these mechanisms is important in evaluating MeHg toxicity in humans, and can contribute to the identification of the molecular mechanisms associated with MeHg exposure.
Collapse
Affiliation(s)
- Takamitsu Unoki
- Department of Basic Medical Sciences, National Institute for Minamata Diseasexy3Minamata, Japan
| | - Masahiro Akiyama
- Environmental Biology Laboratory, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yoshito Kumagai
- Environmental Biology Laboratory, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Filipe Marques Gonçalves
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Marcelo Farina
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Brazil
| | | | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
24
|
Antunes Dos Santos A, Ferrer B, Marques Gonçalves F, Tsatsakis AM, Renieri EA, Skalny AV, Farina M, Rocha JBT, Aschner M. Oxidative Stress in Methylmercury-Induced Cell Toxicity. TOXICS 2018; 6:toxics6030047. [PMID: 30096882 PMCID: PMC6161175 DOI: 10.3390/toxics6030047] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/03/2018] [Accepted: 08/07/2018] [Indexed: 02/06/2023]
Abstract
Methylmercury (MeHg) is a hazardous environmental pollutant, which elicits significant toxicity in humans. The accumulation of MeHg through the daily consumption of large predatory fish poses potential health risks, and the central nervous system (CNS) is the primary target of toxicity. Despite well-described neurobehavioral effects (i.e., motor impairment), the mechanisms of MeHg-induced toxicity are not completely understood. However, several lines of evidence point out the oxidative stress as an important molecular mechanism in MeHg-induced intoxication. Indeed, MeHg is a soft electrophile that preferentially interacts with nucleophilic groups (mainly thiols and selenols) from proteins and low-molecular-weight molecules. Such interaction contributes to the occurrence of oxidative stress, which can produce damage by several interacting mechanisms, impairing the function of various molecules (i.e., proteins, lipids, and nucleic acids), potentially resulting in modulation of different cellular signal transduction pathways. This review summarizes the general aspects regarding the interaction between MeHg with regulators of the antioxidant response system that are rich in thiol and selenol groups such as glutathione (GSH), and the selenoenzymes thioredoxin reductase (TrxR) and glutathione peroxidase (Gpx). A particular attention is directed towards the role of the PI3K/Akt signaling pathway and the nuclear transcription factor NF-E2-related factor 2 (Nrf2) in MeHg-induced redox imbalance.
Collapse
Affiliation(s)
| | - Beatriz Ferrer
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Filipe Marques Gonçalves
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Aristides M Tsatsakis
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece.
| | - Elisavet A Renieri
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece.
| | - Anatoly V Skalny
- Department of Medical Elementology, Peoples' Friendship University of Russia (RUDN University), Moscow 150000, Russia.
- Laboratory of Biotechnology and Applied Bioelementology, Yaroslavl State University, Yaroslavl 150014, Russia.
- All-Russian Research Institute of Medicinal and Aromatic Plants (VILAR), Moscow 150000, Russia.
| | - Marcelo Farina
- Department of Biochemistry, Federal University of Santa Catarina, Florianopolis 88040-900, Santa Catarina, Brazil.
| | - João B T Rocha
- Department of Biochemistry, Federal University of Santa Maria, Santa Maria 97105-900, Rio Grande do Sul, Brazil.
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
25
|
Xie Z, Zhong L, Wu Y, Wan X, Yang H, Xu X, Li P. Carnosic acid improves diabetic nephropathy by activating Nrf2/ARE and inhibition of NF-κB pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 47:161-173. [PMID: 30166101 DOI: 10.1016/j.phymed.2018.04.031] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 01/22/2018] [Accepted: 04/15/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Diabetic nephropathy (DN), one of the most serious complications of diabetes, is the leading cause of morbidity and mortality of end-stage renal disease. Our previous research found that carnosic acid (CA) or rosemary extract can effectively improve glucose and lipid metabolism disorder by inhibiting SREBPs. PURPOSE In this study, we aimed to explore the therapeutic effects of CA on the DN. METHODS The mice glomerular mesangial cells (mGMCs) were used to evaluate the anti-oxidative and anti-inflammation effects of CA under high glucose (HG) condition. Furthermore, db/db mice and streptozotocin (STZ)-induced diabetic mice were used to investigate the effects of CA against DN in vivo. RESULTS The results showed that CA activated Nrf2, inhibited NF-κB pathway and regulated related downstream genes in mGMC under HG condition. A 14-week treatment of mice with CA reduced water uptake and urine volume, attenuated diabetes-induced albuminuria, increased urine creatinine, and subsequently improved the glomerular sclerosis and mesangial expansion in db/db mice. Similarly, a 20-week oral administration of CA improved kidney damage in STZ-induced diabetic mice. In addition, CA inhibited the expression of profibrotic factors, such as TGF-β1, fibronectin and E-cadherin. Compared to irbesartan, CA exerted better glucose lowering effect, and in kidney, CA was more potent to reduce fibronectin and E-cadherin expression. In all the animal experiment, CA did not lead to abnormal damages to other tissues. CONCLUSION These findings suggest that CA is a safe compound which exerts the protective effects on diabetes-induced kidney complications.
Collapse
Affiliation(s)
- Zhisheng Xie
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Lingjun Zhong
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Yanrao Wu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaomeng Wan
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Hua Yang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaojun Xu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
26
|
MDM2 controls NRF2 antioxidant activity in prevention of diabetic kidney disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1034-1045. [PMID: 29704532 DOI: 10.1016/j.bbamcr.2018.04.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 04/15/2018] [Accepted: 04/23/2018] [Indexed: 01/03/2023]
Abstract
Oxidative stress and P53 contribute to the pathogenesis of diabetic kidney disease (DKD). Nuclear factor erythroid 2-related factor 2 (NRF2) is a master regulator of cellular antioxidant defense system, is negatively regulated by P53 and prevents DKD. Recent findings revealed an important role of mouse double minute 2 (MDM2) in protection against DKD. However, the mechanism remained unclear. We hypothesized that MDM2 enhances NRF2 antioxidant signaling in DKD given that MDM2 is a key negative regulator of P53. The MDM2 inhibitor nutlin3a elevated renal P53, inhibited NRF2 signaling and induced oxidative stress, inflammation, fibrosis, DKD-like renal pathology and albuminuria in the wild-type (WT) non-diabetic mice. These effects exhibited more prominently in nutlin3a-treated WT diabetic mice. Interestingly, nutlin3a failed to induce greater renal injuries in the Nrf2 knockout (KO) mice under both the diabetic and non-diabetic conditions, indicating that NRF2 predominantly mediates MDM2's action. On the contrary, P53 inhibition by pifithrin-α activated renal NRF2 signaling and the expression of Mdm2, and attenuated DKD in the WT diabetic mice, but not in the Nrf2 KO diabetic mice. In high glucose-treated mouse mesangial cells, P53 gene silencing completely abolished nutlin3a's inhibitory effect on NRF2 signaling. The present study demonstrates for the first time that MDM2 controls renal NRF2 antioxidant activity in DKD via inhibition of P53, providing MDM2 activation and P53 inhibition as novel strategies in the management of DKD.
Collapse
|
27
|
Lister A, Bourgeois S, Imenez Silva PH, Rubio-Aliaga I, Marbet P, Walsh J, Shelton LM, Keller B, Verrey F, Devuyst O, Giesbertz P, Daniel H, Goldring CE, Copple IM, Wagner CA, Odermatt A. NRF2 regulates the glutamine transporter Slc38a3 (SNAT3) in kidney in response to metabolic acidosis. Sci Rep 2018; 8:5629. [PMID: 29618784 PMCID: PMC5884861 DOI: 10.1038/s41598-018-24000-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 03/19/2018] [Indexed: 12/28/2022] Open
Abstract
Expression of the glutamine transporter SNAT3 increases in kidney during metabolic acidosis, suggesting a role during ammoniagenesis. Microarray analysis of Nrf2 knock-out (KO) mouse kidney identified Snat3 as the most significantly down-regulated transcript compared to wild-type (WT). We hypothesized that in the absence of NRF2 the kidney would be unable to induce SNAT3 under conditions of metabolic acidosis and therefore reduce the availability of glutamine for ammoniagenesis. Metabolic acidosis was induced for 7 days in WT and Nrf2 KO mice. Nrf2 KO mice failed to induce Snat3 mRNA and protein expression during metabolic acidosis. However, there were no differences in blood pH, bicarbonate, pCO2, chloride and calcium or urinary pH, ammonium and phosphate levels. Normal induction of ammoniagenic enzymes was observed whereas several amino acid transporters showed differential regulation. Moreover, Nrf2 KO mice during acidosis showed increased expression of renal markers of oxidative stress and injury and NRF2 activity was increased during metabolic acidosis in WT kidney. We conclude that NRF2 is required to adapt the levels of SNAT3 in response to metabolic acidosis. In the absence of NRF2 and SNAT3, the kidney does not have any major acid handling defect; however, increased oxidative stress and renal injury may occur.
Collapse
Affiliation(s)
- Adam Lister
- Department of Pharmaceutical Sciences, Division of Molecular and Systems Toxicology, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland.,National Center for Competence in Research Kidney.CH, Zürich, Switzerland
| | - Soline Bourgeois
- Institute of Physiology, Zürich Centre for Integrative Human Physiology, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland.,National Center for Competence in Research Kidney.CH, Zürich, Switzerland
| | - Pedro H Imenez Silva
- Institute of Physiology, Zürich Centre for Integrative Human Physiology, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland.,National Center for Competence in Research Kidney.CH, Zürich, Switzerland
| | - Isabel Rubio-Aliaga
- Institute of Physiology, Zürich Centre for Integrative Human Physiology, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland.,National Center for Competence in Research Kidney.CH, Zürich, Switzerland
| | - Philippe Marbet
- Department of Pharmaceutical Sciences, Division of Molecular and Systems Toxicology, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland.,National Center for Competence in Research Kidney.CH, Zürich, Switzerland
| | - Joanne Walsh
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool, L69 3GE, UK
| | - Luke M Shelton
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool, L69 3GE, UK
| | - Bettina Keller
- Institute of Physiology, Zürich Centre for Integrative Human Physiology, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Francois Verrey
- Institute of Physiology, Zürich Centre for Integrative Human Physiology, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland.,National Center for Competence in Research Kidney.CH, Zürich, Switzerland
| | - Olivier Devuyst
- Institute of Physiology, Zürich Centre for Integrative Human Physiology, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland.,National Center for Competence in Research Kidney.CH, Zürich, Switzerland
| | - Pieter Giesbertz
- Department of Biochemistry, ZIEL Research Center of Nutrition and Food Sciences, Technische Universität München, Freising, Germany
| | - Hannelore Daniel
- Department of Biochemistry, ZIEL Research Center of Nutrition and Food Sciences, Technische Universität München, Freising, Germany
| | - Christopher E Goldring
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool, L69 3GE, UK
| | - Ian M Copple
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool, L69 3GE, UK
| | - Carsten A Wagner
- Institute of Physiology, Zürich Centre for Integrative Human Physiology, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland. .,National Center for Competence in Research Kidney.CH, Zürich, Switzerland.
| | - Alex Odermatt
- Department of Pharmaceutical Sciences, Division of Molecular and Systems Toxicology, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland. .,National Center for Competence in Research Kidney.CH, Zürich, Switzerland.
| |
Collapse
|
28
|
Boonloh K, Lee ES, Kim HM, Kwon MH, Kim YM, Pannangpetch P, Kongyingyoes B, Kukongviriyapan U, Thawornchinsombut S, Lee EY, Kukongviriyapan V, Chung CH. Rice bran protein hydrolysates attenuate diabetic nephropathy in diabetic animal model. Eur J Nutr 2018; 57:761-772. [PMID: 28004272 DOI: 10.1007/s00394-016-1366-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 12/14/2016] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Diabetic nephropathy (DN) is an important microvascular complication of uncontrolled diabetes. The features of DN include albuminuria, extracellular matrix alterations, and progressive renal insufficiency. Rice bran protein hydrolysates (RBPs) have been reported to have antihyperglycemic, lipid-lowering, and anti-inflammatory effects in diabetic rats. Our study was to investigate the renoprotective effects of RBP in diabetic animals and mesangial cultured cells. METHODS Eight-week-old male db/m and db/db mice were orally treated with tap water or RBP (100 or 500 mg/kg/day) for 8 weeks. At the end of the experiment, diabetic nephropathy in kidney tissues was investigated for histological, ultrastructural, and clinical chemistry changes, and biomarkers of angiogenesis, fibrosis, inflammation, and antioxidant in kidney were analyzed by Western blotting. Protection against proangiogenic proteins and induction of cytoprotection by RBP in cultured mesangial cells was evaluated. RESULTS RBP treatment improved insulin sensitivity, decreased elevated fasting serum glucose levels, and improved serum lipid levels and urinary albumin/creatinine ratios in diabetic mice. RBP ameliorated the decreases in podocyte slit pore numbers, thickening of glomerular basement membranes, and mesangial matrix expansion and suppressed elevation of MCP-1, ICAM-1, HIF-1α, VEGF, TGF-β, p-Smad2/3, and type IV collagen expression. Moreover, RBP restored suppressed antioxidant Nrf2 and HO-1 expression. In cultured mesangial cells, RBP inhibited high glucose-induced angiogenic protein expression and induced the expression of Nrf2 and HO-1. CONCLUSION RBP attenuates the progression of diabetic nephropathy and restored renal function by suppressing the expression of proangiogenic and profibrotic proteins, inhibiting proinflammatory mediators, and restoring the antioxidant and cytoprotective system.
Collapse
MESH Headings
- Animals
- Biomarkers/blood
- Biomarkers/metabolism
- Cell Line
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/diet therapy
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Diabetic Nephropathies/immunology
- Diabetic Nephropathies/prevention & control
- Food-Processing Industry/economics
- Hyperglycemia/prevention & control
- Hypoglycemic Agents/economics
- Hypoglycemic Agents/metabolism
- Hypoglycemic Agents/therapeutic use
- Industrial Waste/analysis
- Industrial Waste/economics
- Insulin Resistance
- Kidney/immunology
- Kidney/metabolism
- Kidney/pathology
- Kidney/ultrastructure
- Male
- Mesangial Cells/immunology
- Mesangial Cells/metabolism
- Mesangial Cells/pathology
- Mesangial Cells/ultrastructure
- Mice, Mutant Strains
- Microscopy, Electron, Transmission
- Oryza/chemistry
- Plant Epidermis/chemistry
- Plant Proteins, Dietary/economics
- Plant Proteins, Dietary/metabolism
- Plant Proteins, Dietary/therapeutic use
- Protein Hydrolysates/economics
- Protein Hydrolysates/metabolism
- Protein Hydrolysates/therapeutic use
- Renal Insufficiency/complications
- Renal Insufficiency/immunology
- Renal Insufficiency/prevention & control
- Seeds/chemistry
- Thailand
Collapse
Affiliation(s)
- Kampeebhorn Boonloh
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Eun Soo Lee
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Yonsei University Wonju College of Medicine, Wonju, 220-701, South Korea
| | - Hong Min Kim
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Yonsei University Wonju College of Medicine, Wonju, 220-701, South Korea
| | - Mi Hye Kwon
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Yonsei University Wonju College of Medicine, Wonju, 220-701, South Korea
| | - You Mi Kim
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Yonsei University Wonju College of Medicine, Wonju, 220-701, South Korea
| | | | - Bunkerd Kongyingyoes
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Upa Kukongviriyapan
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Supawan Thawornchinsombut
- Department of Food Technology, Faculty of Technology, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Eun Young Lee
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Korea
| | - Veerapol Kukongviriyapan
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
| | - Choon Hee Chung
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Yonsei University Wonju College of Medicine, Wonju, 220-701, South Korea
| |
Collapse
|
29
|
Liu D, Zhang Y, Wei Y, Liu G, Liu Y, Gao Q, Zou L, Zeng W, Zhang N. Activation of AKT pathway by Nrf2/PDGFA feedback loop contributes to HCC progression. Oncotarget 2018; 7:65389-65402. [PMID: 27588483 PMCID: PMC5323163 DOI: 10.18632/oncotarget.11700] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 08/24/2016] [Indexed: 01/10/2023] Open
Abstract
Nuclear factor erythroid-2-related factor 2 (Nrf2), a master transcription factor in the antioxidant response, has been found to be ubiquitously expressed in various cancer cells and in the regulation tumor proliferation, invasion, and chemoresistance activities. The regulatory roles of Nrf2 in controlling Hepatocellular carcinoma (HCC) progression remain unclear. In this study, we demonstrated that Nrf2 was significantly elevated in HCC cells and tissues and was correlated with poor prognosis of HCCs. Consistently, Nrf2 significantly promoted HCC cell growth both in vitro and in vivo. Further investigation suggested a novel association of Nrf2 with Platelet-Derived Growth Factor-A (PDGFA). Nrf2 promoted PDGFA transcription by recruiting specificity protein 1 (Sp1) to its promoter, resulting in increased activation of the AKT/p21 pathway and cell cycle progression of HCC cells. As a feedback loop, PDGFA enhanced Nrf2 expression and activation in an AKT dependent manner. In line with these findings, expression of Nrf2 and PDGFA were positively correlated in HCC tissues. Taken together, this study uncovers a novel mechanism of the Nrf2/PDGFA regulatory loop that is crucial for AKT-dependent HCC progression, and thereby provides potential targets for HCC therapy.
Collapse
Affiliation(s)
- Danyang Liu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yonglong Zhang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yingze Wei
- Department of Pathology, Tumor Hospital of Nantong, Nantong, China
| | - Guoyuan Liu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yufeng Liu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Qiongmei Gao
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Liping Zou
- Department of Pathology, Huashan Hospital, Fudan University, Shanghai, China
| | - Wenjiao Zeng
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Nong Zhang
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
30
|
Zhou SX, Huo DM, He XY, Yu P, Xiao YH, Ou CL, Jiang RM, Li D, Li H. High glucose/lysophosphatidylcholine levels stimulate extracellular matrix deposition in diabetic nephropathy via platelet‑activating factor receptor. Mol Med Rep 2018; 17:2366-2372. [PMID: 29207067 PMCID: PMC5783481 DOI: 10.3892/mmr.2017.8102] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 05/12/2017] [Indexed: 12/12/2022] Open
Abstract
Platelet-activating factor (PAF), protein kinase C (PKC)βI, transforming growth factor (TGF)‑β1 and aberrant extracellular matrix (ECM) deposition have been associated with diabetic nephropathy (DN). However, the mechanistic basis underlying this association remains to be elucidated. The present study investigated the association among the aforementioned factors in a DN model consisting of human mesangial cells (HMCs) exposed to high glucose (HG) and lysophosphatidylcholine (LPC) treatments. HMCs were divided into the following treatment groups: Control; PAF; PAF+PKCβI inhibitor LY333531; HG + LPC; PAF + HG + LPC; and PAF + HG + LPC + LY333531. Cells were cultured for 24 h, and PKCβI and TGF‑β1 expression was determined using the reverse transcription‑quantitative polymerase chain reaction and western blotting. The expression levels of the ECM‑associated molecules collagen IV and fibronectin in the supernatant were detected using ELISA analysis. Subcellular localization of PKCβI was assessed using immunocytochemistry. PKCβI and TGF‑β1 expression was increased in the PAF + HG + LPC group compared with the other groups (P<0.05); however, this effect was abolished in the presence of LY333531 (P<0.05). Supernatant fibronectin and collagen IV levels were increased in the PAF + HG + LPC group compared with the others (P<0.05); this was reversed by treatment with LY333531 (P<0.05). In cells treated with PAF, HG and LPC, PKCβI was translocated from the cytosol to the nucleus, an effect which was blocked when PKCβI expression was inhibited (P<0.05). The findings of the present study demonstrated that PAF stimulated ECM deposition in HMCs via activation of the PKC‑TGF‑β1 axis in a DN model.
Collapse
Affiliation(s)
- Su-Xian Zhou
- Department of Endocrinology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, P.R. China
| | - Dong-Mei Huo
- Department of Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530000, P.R. China
| | - Xiao-Yun He
- Department of Endocrinology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, P.R. China
| | - Ping Yu
- Department of Endocrinology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, P.R. China
| | - Yan-Hua Xiao
- Department of Endocrinology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, P.R. China
| | - Chun-Lin Ou
- Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410078, P.R. China
| | - Ren-Mei Jiang
- Department of Endocrinology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, P.R. China
| | - Dan Li
- Heibei Software Institute, Baoding, Hebei 071000, P.R. China
| | - Hao Li
- Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, P.R. China
| |
Collapse
|
31
|
The Role of Nrf2 in Cardiovascular Function and Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:9237263. [PMID: 29104732 PMCID: PMC5618775 DOI: 10.1155/2017/9237263] [Citation(s) in RCA: 193] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 07/27/2017] [Indexed: 02/07/2023]
Abstract
Free radicals, reactive oxygen/nitrogen species (ROS/RNS), hydrogen sulphide, and hydrogen peroxide play an important role in both intracellular and intercellular signaling; however, their production and quenching need to be closely regulated to prevent cellular damage. An imbalance, due to exogenous sources of free radicals and chronic upregulation of endogenous production, contributes to many pathological conditions including cardiovascular disease and also more general processes involved in aging. Nuclear factor erythroid 2-like 2 (NFE2L2; commonly known as Nrf2) is a transcription factor that plays a major role in the dynamic regulation of a network of antioxidant and cytoprotective genes, through binding to and activating expression of promoters containing the antioxidant response element (ARE). Nrf2 activity is regulated by many mechanisms, suggesting that tight control is necessary for normal cell function and both hypoactivation and hyperactivation of Nrf2 are indicated in playing a role in different aspects of cardiovascular disease. Targeted activation of Nrf2 or downstream genes may prove to be a useful avenue in developing therapeutics to reduce the impact of cardiovascular disease. We will review the current status of Nrf2 and related signaling in cardiovascular disease and its relevance to current and potential treatment strategies.
Collapse
|
32
|
Culbreth M, Zhang Z, Aschner M. Methylmercury augments Nrf2 activity by downregulation of the Src family kinase Fyn. Neurotoxicology 2017; 62:200-206. [PMID: 28736149 DOI: 10.1016/j.neuro.2017.07.028] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/17/2017] [Accepted: 07/17/2017] [Indexed: 12/26/2022]
Abstract
Methylmercury (MeHg) is a potent developmental neurotoxicant that induces an oxidative stress response in the brain. It has been demonstrated that MeHg exposure increases nuclear factor erythroid 2-related factor 2 (Nrf2) activity. Nrf2 is a transcription factor that translocates to the nucleus in response to oxidative stress, and upregulates phase II detoxifying enzymes. Although, Nrf2 activity is augmented subsequent to MeHg exposure, it has yet to be established whether Nrf2 moves into the nucleus as a result. Furthermore, the potential effect MeHg might have on the non-receptor tyrosine kinase, Fyn, has not been addressed. Fyn phosphorylates Nrf2 in the nucleus, resulting in its inactivation, and consequent downregulation of the oxidative stress response. Here, we observe Nrf2 translocates to the nucleus subsequent to MeHg-induced oxidative stress. This response is concomitant with reduced Fyn expression and nuclear localization. Moreover, we detected an increase in phosphorylated Akt and glycogen synthase kinase 3 beta (GSK-3β) at activating and inhibitory sites, respectively. Akt phosphorylates and inhibits GSK-3β, which subsequently prevents Fyn phosphorylation to signal nuclear import. Our results demonstrate MeHg downregulates Fyn to maintain Nrf2 activity, and further illuminate a potential mechanism by which MeHg elicits neurotoxicity.
Collapse
Affiliation(s)
- Megan Culbreth
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States.
| | - Ziyan Zhang
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
33
|
Cui W, Min X, Xu X, Du B, Luo P. Role of Nuclear Factor Erythroid 2-Related Factor 2 in Diabetic Nephropathy. J Diabetes Res 2017; 2017:3797802. [PMID: 28512642 PMCID: PMC5420438 DOI: 10.1155/2017/3797802] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/09/2017] [Accepted: 03/13/2017] [Indexed: 12/30/2022] Open
Abstract
Diabetic nephropathy (DN) is manifested as increased urinary protein level, decreased glomerular filtration rate, and final renal dysfunction. DN is the leading cause of end-stage renal disease worldwide and causes a huge societal healthcare burden. Since satisfied treatments are still limited, exploring new strategies for the treatment of this disease is urgently needed. Oxidative stress takes part in the initiation and development of DN. In addition, nuclear factor erythroid 2-related factor 2 (Nrf2) plays a key role in the cellular response to oxidative stress. Thus, activation of Nrf2 seems to be a new choice for the treatment of DN. In current review, we discussed and summarized the therapeutic effects of Nrf2 activation on DN from both basic and clinical studies.
Collapse
Affiliation(s)
- Wenpeng Cui
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Xu Min
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Xiaohong Xu
- Department of Gynaecology and Obstetrics, The Second Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Bing Du
- Department of Cardiology, The First Hospital of Jilin University, Changchun, Jilin 130031, China
| | - Ping Luo
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, Jilin 130041, China
| |
Collapse
|
34
|
Wei Y, Liu D, Jin X, Gao P, Wang Q, Zhang J, Zhang N. PA-MSHA inhibits the growth of doxorubicin-resistant MCF-7/ADR human breast cancer cells by downregulating Nrf2/p62. Cancer Med 2016; 5:3520-3531. [PMID: 27758045 PMCID: PMC5224842 DOI: 10.1002/cam4.938] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 09/08/2016] [Accepted: 09/22/2016] [Indexed: 01/09/2023] Open
Abstract
Acquired resistance to doxorubicin in breast cancer is a serious therapeutic problem. In this study, we investigated whether Pseudomonas aeruginosa mannose-sensitive hemagglutinin (PA-MSHA) could inhibit the growth of doxorubicin-resistant breast cancer cells. We found that the expressions of Nrf2 and p62 in breast cancer were higher than that in the corresponding adjacent normal tissues and benign breast epithelial cell. The expressions of Nrf2 and p62 in breast cancer doxorubicin-resistant cells MCF-7/ADR were higher than that in doxorubicin-sensitive cells MCF-7. Silencing of Nrf2 or p62 rendered breast cancer cells more susceptible to doxorubicin. We further demonstrated that PA-MSHA inhibited growth and induced apoptosis of MCF-7/ADR cells but not MCF-7 cells. Subcutaneous administration of PA-MSHA greatly inhibited the growth of xenograft tumors from MCF-7/ADR cells in nude mice. In addition, PA-MSHA could downregulate Nrf2 and p62 in vitro and in vivo. These results suggested that activation of Nrf2 and p62 was associated with doxorubicin resistance in breast cancer. PA-MSHA could inhibit the growth of doxorubicin-resistant MCF-7/ADR cells and its potential mechanism might be due to the suppression of Nrf2/p62. It indicated the possibility of using PA-MSHA in doxorubicin-resistant breast cancer.
Collapse
Affiliation(s)
- Yingze Wei
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Department of Pathology, Nantong Tumor Hospital, Nantong, Jiangsu, China
| | - Danyang Liu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xiaoxia Jin
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Pan Gao
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Qingying Wang
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Jiawen Zhang
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Nong Zhang
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
35
|
Gao P, Wei Y, Zhang Z, Zeng W, Sun D, Liu D, Hou B, Zhang C, Zhang N, Li H, Li L. Synergistic effects of c-Jun and SP1 in the promotion of TGFβ1-mediated diabetic nephropathy progression. Exp Mol Pathol 2016; 100:441-450. [PMID: 27112839 DOI: 10.1016/j.yexmp.2016.04.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 04/11/2016] [Accepted: 04/21/2016] [Indexed: 10/21/2022]
Abstract
Diabetic nephropathy (DN) is a major complication of diabetes mellitus. Transforming growth factor beta 1 (TGFβ1) is a well-distinguished mediator of progressive renal fibrosis in DN. However, the molecular mechanisms contributing to enhanced TGFβ1 expression in the progression of DN are not fully understood. Herein, we reported that c-Jun and specificity protein 1 (SP1) were critical upstream regulators of TGFβ1 expression in DN. The increase in c-Jun and SP1 expressions was positively correlated with TGFβ1 in both high glucose-treated human renal mesangial cells (HRMCs) and diabetic kidneys. Furthermore, c-Jun dose-dependently promoted SP1-mediated TGFβ1 transcription and vice versa. The synergistic effects of c-Jun and SP1 were attributed to their auto-regulation and cross-activation. Moreover, enhanced phosphorylation levels of c-Jun and SP1 were accompanied with increased TGFβ1 expression in diabetic kidneys. Accordingly, dephosphorylation of c-Jun and SP1 by the specific c-Jun N-terminal kinase (JNK) inhibitor SP600125 prevented the increase in TGFβ1 expression. These results suggested that c-Jun and SP1 synergistically activated profibrotic TGFβ1 expression in the development of DN by auto-regulation, cross-activation and phospho-modification.
Collapse
Affiliation(s)
- Pan Gao
- Department of Pathology, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Xuhui District, Shanghai 200032, China; Institute of Human Virology, University of Maryland School of Medicine, 725 West Lombard Street, Baltimore, MD 21201, USA
| | - Yingze Wei
- Department of Pathology, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Xuhui District, Shanghai 200032, China
| | - Zhigang Zhang
- Department of Pathology, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Xuhui District, Shanghai 200032, China
| | - Wenjiao Zeng
- Department of Pathology, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Xuhui District, Shanghai 200032, China
| | - Daming Sun
- Forensic Science Center, East China University of Political Science and Law, 112 Huayang Road, Changning District, Shanghai 200042, China
| | - Danyang Liu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Xuhui District, Shanghai 200032, China
| | - Bo Hou
- Department of Pathology, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Xuhui District, Shanghai 200032, China
| | - Congying Zhang
- Department of Pathology, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Xuhui District, Shanghai 200032, China
| | - Nong Zhang
- Department of Pathology, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Xuhui District, Shanghai 200032, China
| | - Hui Li
- Department of Pathology, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Xuhui District, Shanghai 200032, China.
| | - Liliang Li
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Xuhui District, Shanghai 200032, China.
| |
Collapse
|
36
|
Wang F, Ma J, Han F, Guo X, Meng L, Sun Y, Jin C, Duan H, Li H, Peng Y. DL-3-n-butylphthalide delays the onset and progression of diabetic cataract by inhibiting oxidative stress in rat diabetic model. Sci Rep 2016; 6:19396. [PMID: 26759189 PMCID: PMC4725374 DOI: 10.1038/srep19396] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 12/07/2015] [Indexed: 11/15/2022] Open
Abstract
DL-3-n-butylphthalide (NBP) is a therapeutic drug used for ischemic stroke treatment. Here, we investigated the impact of NBP on the development of rat diabetic cataract induced by intraperitoneal injection of streptozotocin (STZ). NBP was then administrated by oral gavage for nine weeks. Cataract development was monitored through ophthalmoscope inspections. The levels of blood glucose and serum reactive oxygen species (ROS), malondialdehyde (MDA) and 8-Hydroxydeovexyguanosine (8-OHdG) were measured. Total and soluble protein and oxidative stress parameters, such as 2, 4- dinitrophenylhydrazone (DNP), 4-hydroxynonenal (4-HNE) and MDA in the lenses were determined by Western blot and thiobarbituric acid analyses. The expressions of NF-E2-related factor 2 (Nrf2) and its downstream antioxidant enzymes, thioredoxin (TRX), Catalase and nuclear accumulation of Nrf2 were determined by Western blot and immunohistochemistry analyses. We showed that NBP treatment significantly improved the cataract scores, the levels of DNP, 4-HNE, and MDA in the lens compared to the non-treated groups. NBP also enhanced the expressions of Nrf2, TRX and catalase in the lens of diabetic rats. In addition, NBP treatment also decreased levels of blood glucose, serum MDA and 8-OHdG. These results suggested that NBP treatment significantly delayed the onset and progression of diabetic cataract by inhibiting the oxidative stresses.
Collapse
Affiliation(s)
- Fuxu Wang
- Department of Hematology, the Second Hospital of Hebei Medical University, 215 Western Heping Road, Shijiazhuang 050000, China
| | - Jia Ma
- Department of Ophthalmology, the Second Hospital of Hebei Medical University, 215 Western Heping Road, Shijiazhuang 050000, China
| | - Fei Han
- Department of Digestology, the Second Hospital of Hebei Medical University, 215 Western Heping Road, Shijiazhuang 050000, China
| | - Xiujin Guo
- Department of Ophthalmology, the Second Hospital of Hebei Medical University, 215 Western Heping Road, Shijiazhuang 050000, China
| | - Li Meng
- Laboratorical center for Electron Microscopy, Hebei Medical University, 361 Eastern Zhongshan Road, Shijiazhuang 050017, China
| | - Yufeng Sun
- Department of Digestology, the Second Hospital of Hebei Medical University, 215 Western Heping Road, Shijiazhuang 050000, China
| | - Cheng Jin
- Department of Histology and Embryology, Hebei Medical University, 361 Eastern Zhongshan Road, Shijiazhuang 050017, China
| | - Huijun Duan
- Department of Pathology, Hebei Medical University, 361 Eastern Zhongshan Road, Shijiazhuang 050017, China
| | - Hang Li
- Department of Histology and Embryology, Hebei Medical University, 361 Eastern Zhongshan Road, Shijiazhuang 050017, China.,Department of Pathology, Hebei Medical University, 361 Eastern Zhongshan Road, Shijiazhuang 050017, China
| | - Ying Peng
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
37
|
Activation of TGF-β1-CD147 positive feedback loop in hepatic stellate cells promotes liver fibrosis. Sci Rep 2015; 5:16552. [PMID: 26559755 PMCID: PMC4642271 DOI: 10.1038/srep16552] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 10/15/2015] [Indexed: 02/07/2023] Open
Abstract
Activation of hepatic stellate cells (HSCs) by transforming growth factor-β1 (TGF-β1) initiates HBV-associated fibrogenesis. The mechanism of TGF-β1 modulating HSC activation is not fully uncovered. We hypothesized a positive feedback signaling loop of TGF-β1-CD147 promoting liver fibrogenesis by activation of HSCs. Human HSC cell line LX-2 and spontaneous liver fibrosis model derived from HBV transgenic mice were used to evaluate the activation of molecules in the signaling loop. Wound healing and cell contraction assay were performed to detect the CD147-overexpressed HSC migration and contraction. The transcriptional regulation of CD147 by TGF-β1/Smad4 was determined using dual-luciferase reporter assay and chromatin immunoprecipitation. We found that a positive reciprocal regulation between TGF-β1 and CD147 mediated HSC activation. CD147 over-expression promoted HSC migration and accelerated TGF-β1-induced cell contraction. Phosphorylation of Smad2 and Smad3 in cooperation with Smad4 mediated the TGF-β1-regulated CD147 expression. Smad4 activated the transcription by direct interaction with CD147 promoter. Meanwhile, CD147 modulated the activated phenotype of HSCs through the ERK1/2 and Sp1 which up-regulated α-SMA, collagen I, and TGF-β1 synthesis. These findings indicate that TGF-β1-CD147 loop plays a key role in regulating the HSC activation and combination of TGF-β receptor inhibitor and anti-CD147 antibody might be promised to reverse fibrogenesis.
Collapse
|
38
|
Zhou S, Jin J, Bai T, Sachleben LR, Cai L, Zheng Y. Potential drugs which activate nuclear factor E2-related factor 2 signaling to prevent diabetic cardiovascular complications: A focus on fumaric acid esters. Life Sci 2015; 134:56-62. [PMID: 26044512 DOI: 10.1016/j.lfs.2015.05.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 04/01/2015] [Accepted: 05/01/2015] [Indexed: 12/30/2022]
Abstract
Diabetes and its cardiovascular complications have been a major public health issue. These complications are mainly attributable to a severe imbalance between free radical and reactive oxygen species production and the antioxidant defense systems. Nuclear factor E2-related factor 2 (Nrf2) is a transcription factor that controls the basal and inducible expression of a battery of antioxidant enzyme genes and other cyto-protective phase II detoxifying enzymes. As a result, Nrf2 has gained great attention as a promising drug target for preventing diabetic cardiovascular complications. And while animal studies have shown that several Nrf2 activators manifest a potential to efficiently prevent the diabetic complications, their use in humans has not been approved due to the lack of substantial evidence regarding safety and efficacy of the Nrf2 activation. We provide here a brief review of a few clinically-used drugs that can up-regulate Nrf2 with the potential of extending their usage to diabetic patients for the prevention of cardiovascular complications and conclude with a closer inspection of dimethyl fumarate and its mimic members.
Collapse
Affiliation(s)
- Shanshan Zhou
- Department of Cardiovascular Diseases, the First Hospital of Jilin University, Changchun 130021, China
| | - Jingpeng Jin
- Endoscopy Center China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun 130033, China
| | - Tao Bai
- Department of Cardiovascular Diseases, the First Hospital of Jilin University, Changchun 130021, China
| | - Leroy R Sachleben
- Kosair Children's Hospital Research Institute at the Department of Pediatrics of the University of Louisville, Louisville 40202, USA
| | - Lu Cai
- Kosair Children's Hospital Research Institute at the Department of Pediatrics of the University of Louisville, Louisville 40202, USA.
| | - Yang Zheng
- Department of Cardiovascular Diseases, the First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|