1
|
Lai HH, Jeng KS, Huang CT, Chu AJ, Her GM. Heightened TPD52 linked to metabolic dysfunction and associated abnormalities in zebrafish. Arch Biochem Biophys 2024; 761:110166. [PMID: 39349129 DOI: 10.1016/j.abb.2024.110166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/05/2024] [Accepted: 09/25/2024] [Indexed: 10/02/2024]
Abstract
The tumor protein D52 (TPD52) gene encodes a proto-oncogene protein associated with various medical conditions, including breast and prostate cancers. It plays a role in multiple biological pathways such as cell growth, differentiation, and apoptosis. The function of TPD52 in lipid droplet biosynthesis has been investigated in vitro. However, its precise role in lipid metabolism in animal models is not fully understood. To investigate the functions of TPD52 in vivo, we performed a conditional TPD52 protein expression analysis using a Tet-off transgenic system to establish conditionally expressed Tpd52 transgenic zebrafish. The effect of Tpd52 on lipogenesis was assessed using various methods, including whole-mount Oil Red O staining, histological examination, and measurement of inflammatory markers and potential targets using real-time quantitative polymerase chain reaction and immunoblotting in Tpd52 fish. Zebrafish with increased Tpd52 levels exhibited notable weight gain and the enlargement of fat deposits, which were mainly attributed to an increase in the volume of adipocytes. Moreover, Tpd52 overexpression was correlated with the triggering of the adipocyte differentiation signaling pathway. During adipocytic differentiation in response to nutrient status, our observations revealed adipogenesis, nonalcoholic fatty liver disease, and metabolic cardiomyopathy (MCM) in Tpd52 transgenic zebrafish. To gain a deeper understanding of the contribution of these proteins to the regulation of cellular growth, we investigated the expression of their corresponding genes and proteins in zebrafish. In the present study, the activated protein kinase pathway was identified as the primary target of TPD52. Adult Tpd52 zebrafish showed increased lipid accumulation, resulting in the development of visceral obesity, nonalcoholic fatty liver disease, and MCM. These findings strongly suggest that TPD52 actively contributes to adipose tissue expansion and its subsequent effects. This investigation provides compelling evidence that Tpd52 facilitates adipocyte development and related metabolic comorbidities in zebrafish.
Collapse
Affiliation(s)
- Hsin-Hung Lai
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Kuo-Shyang Jeng
- Division of General Surgery, Far Eastern Memorial Hospital, New Taipei, 220, Taiwan
| | - Chung-Tsui Huang
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Far Eastern Memorial Hospital, New Taipei, 220, Taiwan
| | - An-Ju Chu
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Guor Mour Her
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.
| |
Collapse
|
2
|
Engin A. Lipid Storage, Lipolysis, and Lipotoxicity in Obesity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:97-129. [PMID: 39287850 DOI: 10.1007/978-3-031-63657-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The ratio of free fatty acid (FFA) turnover decreases significantly with the expansion of white adipose tissue. Adipose tissue and dietary saturated fatty acid levels significantly correlate with an increase in fat cell size and number. The G0/G1 switch gene 2 increases lipid content in adipocytes and promotes adipocyte hypertrophy through the restriction of triglyceride (triacylglycerol: TAG) turnover. Hypoxia in obese adipose tissue due to hypertrophic adipocytes results in excess deposition of extracellular matrix (ECM) components. Cluster of differentiation (CD) 44, as the main receptor of the extracellular matrix component regulates cell-cell and cell-matrix interactions including diet-induced insulin resistance. Excess TAGs, sterols, and sterol esters are surrounded by the phospholipid monolayer surface and form lipid droplets (LDs). Once LDs are formed, they grow up because of the excessive amount of intracellular FFA stored and reach a final size. The ratio of FFA turnover/lipolysis decreases significantly with increases in the degree of obesity. Dysfunctional adipose tissue is unable to expand further to store excess dietary lipids, increased fluxes of plasma FFAs lead to ectopic fatty acid deposition and lipotoxicity. Reduced neo-adipogenesis and dysfunctional lipid-overloaded adipocytes are hallmarks of hypertrophic obesity linked to insulin resistance. Obesity-associated adipocyte death exhibits feature of necrosis-like programmed cell death. Adipocyte death is a prerequisite for the transition from hypertrophic to hyperplastic obesity. Increased adipocyte number in obesity has life-long effects on white adipose tissue mass. The positive correlation between the adipose tissue volume and magnetic resonance imaging proton density fat fraction estimation is used for characterization of the obesity phenotype, as well as the risk stratification and selection of appropriate treatment strategies. In obese patients with type 2 diabetes, visceral adipocytes exposed to chronic/intermittent hyperglycemia develop a new microRNAs' (miRNAs') expression pattern. Visceral preadipocytes memorize the effect of hyperglycemia via changes in miRNAs' expression profile and contribute to the progression of diabetic phenotype. Nonsteroidal anti-inflammatory drugs, metformin, and statins can be beneficial in treating the local or systemic consequences of white adipose tissue inflammation. Rapamycin inhibits leptin-induced LD formation. Collectively, in this chapter, the concept of adipose tissue remodeling in response to adipocyte death or adipogenesis, and the complexity of LD interactions with the other cellular organelles are reviewed. Furthermore, clinical perspective of fat cell turnover in obesity is also debated.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
3
|
Yang M, Su W, Li H, Li L, An Z, Xiao F, Liu Y, Zhang X, Liu X, Guo H, Li A. Association of per- and polyfluoroalkyl substances with hepatic steatosis and metabolic dysfunction-associated fatty liver disease among patients with acute coronary syndrome. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115473. [PMID: 37722302 DOI: 10.1016/j.ecoenv.2023.115473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/02/2023] [Accepted: 09/11/2023] [Indexed: 09/20/2023]
Abstract
Etiology of hepatic steatosis and metabolic dysfunction-associated fatty liver disease (MAFLD) among acute coronary syndrome (ACS) remains unclear. Existing studies suggested the potential role of per- and polyfluoroalkyl substances (PFAS) in comorbidity of hepatic steatosis among ACS patients. Therefore, we conducted a cross-sectional study based on the ACS inpatients to assess the associations of plasma PFAS congeners and mixtures with hepatic steatosis and MAFLD. This study included 546 newly diagnosed ACS patients. Twelve PFAS were quantified using ultra-high-performance liquid chromatography-tandem mass spectrometry. Hepatic steatosis was defined by hepatic steatosis index (HSI). MAFLD was defined as the combination of hepatic steatosis based on the risk factor calculation with metabolic abnormalities. Generalized linear model was used to examine the associations of PFAS congeners with HSI and MAFLD. Adaptive elastic net (AENET) was further used for PFAS congeners selection. Mixture effects were also assessed with Bayesian kernel machine regression model (BKMR). Congeners analysis observed significant greater percent change of HSI for each doubling in PFOS (1.82%, 95% CI: 0.87%, 2.77%), PFHxS (1.17%, 95% CI: 0.46%, 1.89%) and total PFAS (1.84%, 95% CI: 0.56%, 3.14%). Moreover, each doubling in PFOS (OR=1.42, 95% CI: 1.13, 1.81), PFHxS (OR=1.31, 95% CI: 1.09, 1.59) and total PFAS (OR=1.43, 95% CI: 1.06, 1.94) was associated with increased risk of MAFLD. In AENET regression, only PFOS presented significant positive associations with HSI. Mixture analysis indicated significant positive associations between PFAS mixtures and HSI. This is the first study to demonstrate associations of PFAS congeners and mixtures with hepatic steatosis and MAFLD among ACS patients, which provides hypothesis into the mechanisms behind comorbidity of hepatic steatosis among ACS patients, as well as tertiary prevention of ACS.
Collapse
Affiliation(s)
- Ming Yang
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, PR China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, PR China
| | - Weitao Su
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, PR China
| | - Haoran Li
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China; Department of Pharmacy, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, PR China
| | - Longfei Li
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Hebei Province, Shijiazhuang 050017, PR China
| | - Ziwen An
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Hebei Province, Shijiazhuang 050017, PR China
| | - Fang Xiao
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Hebei Province, Shijiazhuang 050017, PR China
| | - Yi Liu
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Hebei Province, Shijiazhuang 050017, PR China
| | - Xiaoguang Zhang
- Core Facilities and Centers of Hebei Medical University, Shijiazhuang 050017, PR China
| | - Xuehui Liu
- Hebei Key Laboratory of Environment and Human Health, Hebei Province, Shijiazhuang 050017, PR China
| | - Huicai Guo
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Hebei Province, Shijiazhuang 050017, PR China.
| | - Ang Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, PR China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, PR China.
| |
Collapse
|
4
|
Chen J, Li K, Shao J, Lai Z, Feng Y, Liu B. The Correlation of Apolipoprotein B with Alterations in Specific Fat Depots Content in Adults. Int J Mol Sci 2023; 24:ijms24076310. [PMID: 37047284 PMCID: PMC10094599 DOI: 10.3390/ijms24076310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/19/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
Body mass index (BMI) and blood biomarkers are not enough to predict cardiovascular disease risk. Apolipoprotein B was identified to be associated with cardiovascular disease (CVD) progression. The Dual-energy X-ray Absorption (DXA) results could be considered as a predictor for cardiovascular disease in a more refined way based on fat distribution. The prediction of CVD risk by simple indicators still cannot meet clinical needs. The association of ApoB with specific fat depot features remains to be explored to better co-predict cardiovascular disease risk. An amount of 5997 adults from National Health and Nutrition Examination Survey (NHANES) were enrolled. Their demographic information, baseline clinical condition, blood examination, and DXA physical examination data were collected. Multivariate regression was used to assess the correlation between ApoB and site-specific fat characteristics through different adjusted models. Smooth curve fittings and threshold analysis were used to discover the turning points with 95% confidence intervals. ApoB is positively correlated with arms percent fat, legs percent fat, trunk percent fat, android percent fat, gynoid percent fat, arm circumference and waist circumference after adjustment with covariates for age, gender, race, hypertension, diabetes, hyperlipidemia, coronary heart disease, smoking status and vigorous work activity. The smooth curve fitting and threshold analysis also showed that depot-specific fat had lower turning points of ApoB in both males and females within the normal reference range of ApoB. Meanwhile, females have a lower increase in ApoB per 1% total percent fat and android percent fat than males before the turning points, while females have a higher growth of ApoB per 1% gynoid percent fat than males. The combined specific fat-depot DXA and ApoB analysis could indicate the risk of CVD in advance of lipid biomarkers or DXA alone.
Collapse
|
5
|
Antiobesity and Hepatoprotective Effects of Protein Hydrolysates Derived from Protaetia brevitarsis in an Obese Mouse Model. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4492132. [PMID: 35386305 PMCID: PMC8977302 DOI: 10.1155/2022/4492132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 03/10/2022] [Indexed: 11/19/2022]
Abstract
Background Obesity induced by excessive nutrients can cause fatty liver and metabolic dysfunction, which leads to hepatic dysfunction and local/systemic inflammatory responses. Previously, we analyzed the antioxidant, antilipotoxicity, and anti-inflammatory effects of protein hydrolysates in vitro. The aim of the present study is to investigate the antiobesity and hepatoprotective effects of protein hydrolysates derived from Protaectia brevitas (PHPB) in an obese mouse model. Methods For this in vivo study, 40 mice were included and divided into four groups: (1) normal diet group, (2) high-fat-diet (ctrl(–)) group, (3) high-fat-diet and silymarin-treated (ctrl(+)) group, and (4) high-fat-diet and PHPB-treated group. After 6 weeks of treatment, body weight and the amount of daily food intake were observed. Moreover, the major organs and blood of animals were collected for the analysis of serum chemistry, histopathological examination, and obesity- and inflammation-related gene expressions. Results The body weight and the amount of daily food intake significantly decreased in the PHPB-treated group compared with those in the ctrl(–) group. The levels of serum ALT, AST, ALP, creatinine, blood urea nitrogen, glucose, bilirubin, total cholesterol, TG, low-density lipoprotein, IL-6, TNF-α, and IGF-1 significantly reduced in the PHPB-treated group, whereas the serum free fatty acid, albumin, high-density lipoprotein, and adiponectin concentrations increased. In the analysis of weight of the liver, kidney, lungs, spleen, and fat tissues (from epididymal, perirenal, and mesentery tissues), the PHPB-treated group showed decreased values compared with the ctrl(–) group. In the histopathological analysis, the PHPB-treated group showed significantly reduced macrovesicular fatty change and inflammatory cell infiltration in the liver, and the size of the adipocyte in the epididymis also significantly decreased. The obesity- and inflammation-related gene (IL-6, TNF-α, IGF-1, leptin, AP2/FABP4, AMPK-α2, β3AR, and PPAR-γ) expressions in the liver and epididymal adipose tissue were reduced in the PHPB-treated group. Conclusions Overall, the results of this study suggest that the protein hydrolysates that derived from Protaectia brevitas produce antiobesity and hepatoprotective effects via anti-inflammatory activities.
Collapse
|
6
|
Multi-Omics Analysis to Generate Hypotheses for Mild Health Problems in Monkeys. Metabolites 2021; 11:metabo11100701. [PMID: 34677416 PMCID: PMC8538200 DOI: 10.3390/metabo11100701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 09/28/2021] [Accepted: 10/09/2021] [Indexed: 11/17/2022] Open
Abstract
Certain symptoms associated with mild sickness and lethargy have not been categorized as definitive diseases. Confirming such symptoms in captive monkeys (Macaca fascicularis, known as cynomolgus monkeys) can be difficult; however, it is possible to observe and analyze their feces. In this study, we investigated the relationship between stool state and various omics data by considering objective and quantitative values of stool water content as a phenotype for analysis. By examining the food intake of the monkeys and assessing their stool, urine, and plasma, we attempted to obtain a comprehensive understanding of the health status of individual monkeys and correlate it with the stool condition. Our metabolomics data strongly suggested that many lipid-related metabolites were correlated with the stool water content. The lipidomic analysis revealed the involvement of saturated and oxidized fatty acids, metallomics revealed the contribution of selenium (a bio-essential trace element), and intestinal microbiota analysis revealed the association of several bacterial species with the stool water content. Based on our results, we hypothesize that the redox imbalance causes minor health problems. However, it is not possible to make a definite conclusion using multi-omics alone, and other hypotheses could be proposed.
Collapse
|
7
|
Napolitano M, Covasa M. Microbiota Transplant in the Treatment of Obesity and Diabetes: Current and Future Perspectives. Front Microbiol 2020; 11:590370. [PMID: 33304339 PMCID: PMC7693552 DOI: 10.3389/fmicb.2020.590370] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/23/2020] [Indexed: 12/15/2022] Open
Abstract
A wealth of evidence has revealed the critical role of the gut microbiota in health and disease. Many chronic diseases have been associated with gut microbiota imbalance in its composition, diversity and functional capacity. Several types of interventions have been shown to correct microbiota imbalance and restore the beneficial metabolic outcomes of a normal microbiota. Among them, fecal microbiota transplantation (FMT) is an emergent, promising technology employed to improve clinical outcomes of various pathological conditions through modifications in the gut microbiota composition. FMT has been used successfully as a treatment option in recurrent Clostridium difficile infection, a condition characterized by severe gut microbiota dysbiosis. However, the potential usage of FMT in other microbiota-associated conditions different from C. difficile such as metabolic syndrome or obesity that are also marked by gut dysbiosis is still under investigation. Furthermore, the contribution of the gut microbiota as a cause or consequence in metabolic disease is still largely debated. This review provides critical information on the methodological approaches of FMT and its technological innovation in clinical applications. This review sheds light on the current findings and gaps in our understanding of how FMT can be used as a future biotherapeutic to restore microbial homeostasis in amelioration of obesity and diabetes.
Collapse
Affiliation(s)
- Michael Napolitano
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA, United States
| | - Mihai Covasa
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA, United States.,Department of Health and Human Development, Stefan Cel Mare University of Suceava, Suceava, Romania
| |
Collapse
|
8
|
Stienen S, Ferreira JP, Kobayashi M, Preud'homme G, Dobre D, Machu JL, Duarte K, Bresso E, Devignes MD, Andrés NL, Girerd N, Aakhus S, Ambrosio G, Rocca HPBL, Fontes-Carvalho R, Fraser AG, van Heerebeek L, de Keulenaer G, Marino P, McDonald K, Mebazaa A, Papp Z, Raddino R, Tschöpe C, Paulus WJ, Zannad F, Rossignol P. Sex differences in circulating proteins in heart failure with preserved ejection fraction. Biol Sex Differ 2020; 11:47. [PMID: 32831121 PMCID: PMC7444077 DOI: 10.1186/s13293-020-00322-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/17/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Many patients with heart failure with preserved ejection fraction (HFpEF) are women. Exploring mechanisms underlying the sex differences may improve our understanding of the pathophysiology of HFpEF. Studies focusing on sex differences in circulating proteins in HFpEF patients are scarce. METHODS A total of 415 proteins were analyzed in 392 HFpEF patients included in The Metabolic Road to Diastolic Heart Failure: Diastolic Heart Failure study (MEDIA-DHF). Sex differences in these proteins were assessed using adjusted logistic regression analyses. The associations between candidate proteins and cardiovascular (CV) death or CV hospitalization (with sex interaction) were assessed using Cox regression models. RESULTS We found 9 proteins to be differentially expressed between female and male patients. Women expressed more LPL and PLIN1, which are markers of lipid metabolism; more LHB, IGFBP3, and IL1RL2 as markers of transcriptional regulation; and more Ep-CAM as marker of hemostasis. Women expressed less MMP-3, which is a marker associated with extracellular matrix organization; less NRP1, which is associated with developmental processes; and less ACE2, which is related to metabolism. Sex was not associated with the study outcomes (adj. HR 1.48, 95% CI 0.83-2.63), p = 0.18. CONCLUSION In chronic HFpEF, assessing sex differences in a wide range of circulating proteins led to the identification of 9 proteins that were differentially expressed between female and male patients. These findings may help further investigations into potential pathophysiological processes contributing to HFpEF.
Collapse
Affiliation(s)
- Susan Stienen
- Université de Lorraine, INSERM, Centre d'Investigation Clinique et Plurithématique 1433, INSERM U1116, CHRU de Nancy, F-CRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), Nancy, France.
| | - João Pedro Ferreira
- Université de Lorraine, INSERM, Centre d'Investigation Clinique et Plurithématique 1433, INSERM U1116, CHRU de Nancy, F-CRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), Nancy, France
- Department of Physiology and Cardiothoracic Surgery, Cardiovascular Research and Development Unit, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Masatake Kobayashi
- Université de Lorraine, INSERM, Centre d'Investigation Clinique et Plurithématique 1433, INSERM U1116, CHRU de Nancy, F-CRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), Nancy, France
| | - Gregoire Preud'homme
- Université de Lorraine, INSERM, Centre d'Investigation Clinique et Plurithématique 1433, INSERM U1116, CHRU de Nancy, F-CRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), Nancy, France
| | - Daniela Dobre
- Université de Lorraine, INSERM, Centre d'Investigation Clinique et Plurithématique 1433, INSERM U1116, CHRU de Nancy, F-CRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), Nancy, France
- Clinical Research and Investigation Unit, Psychotherapeutic Center of Nancy, Laxou, France
| | - Jean-Loup Machu
- Université de Lorraine, INSERM, Centre d'Investigation Clinique et Plurithématique 1433, INSERM U1116, CHRU de Nancy, F-CRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), Nancy, France
| | - Kevin Duarte
- Université de Lorraine, INSERM, Centre d'Investigation Clinique et Plurithématique 1433, INSERM U1116, CHRU de Nancy, F-CRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), Nancy, France
| | - Emmanuel Bresso
- LORIA (CNRS, Inria NGE, Université de Lorraine), Campus Scientifique, F-54506, Vandœuvre-lès-Nancy, France
| | - Marie-Dominique Devignes
- LORIA (CNRS, Inria NGE, Université de Lorraine), Campus Scientifique, F-54506, Vandœuvre-lès-Nancy, France
| | - Natalia López Andrés
- Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain
| | - Nicolas Girerd
- Université de Lorraine, INSERM, Centre d'Investigation Clinique et Plurithématique 1433, INSERM U1116, CHRU de Nancy, F-CRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), Nancy, France
| | - Svend Aakhus
- Oslo University Hospital, Oslo, Norway
- ISB, Norwegian University of Science and Technology, Trondheim, Norway
| | - Giuseppe Ambrosio
- Division of Cardiology, University of Perugia School of Medicine, Perugia, Italy
| | | | - Ricardo Fontes-Carvalho
- Department of Surgery and Physiology, Cardiovascular Research Unit (UnIC), Faculty of Medicine, University of Porto, Porto, Portugal
| | - Alan G Fraser
- Wales Heart Research Institute, Cardiff University, Cardiff, UK
| | - Loek van Heerebeek
- Department of Cardiology, Onze Lieve Vrouwe Gasthuis, Amsterdam, the Netherlands
| | - Gilles de Keulenaer
- Laboratory of Physiopharmacology, Antwerp University and ZNA Hartcentrum, Antwerp, Belgium
| | - Paolo Marino
- Clinical Cardiology, Università del Piemonte Orientale, Department of Translational Medicine, Azienda Ospedaliero Universitaria "Maggiore della Carità", Novara, Italy
| | | | - Alexandre Mebazaa
- Department of Anaesthesiology and Critical Care Medicine, Saint Louis and Lariboisière University Hospitals and INSERM UMR-S 942, Paris, France
| | - Zoltàn Papp
- Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Riccardo Raddino
- Department of Cardiology, Spedali Civili di Brescia, Brescia, Italy
| | - Carsten Tschöpe
- Department of Cardiology, Campus Virchow-Klinikum, Charite Universitaetsmedizin Berlin, Berlin Institute of Health - Center for Regenerative Therapies (BIH-BCRT), and the German Center for Cardiovascular Research (DZHK ; Berlin partner site), Berlin, Germany
| | - Walter J Paulus
- Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Faiez Zannad
- Université de Lorraine, INSERM, Centre d'Investigation Clinique et Plurithématique 1433, INSERM U1116, CHRU de Nancy, F-CRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), Nancy, France
| | - Patrick Rossignol
- Université de Lorraine, INSERM, Centre d'Investigation Clinique et Plurithématique 1433, INSERM U1116, CHRU de Nancy, F-CRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), Nancy, France
| |
Collapse
|
9
|
Fuwa K, Nagano N, Kitamura Y, Iwata F, Okada T, Morioka I. Umbilical cord blood stearoyl-CoA desaturase index and lipoprotein lipase mass level in small-for-gestational age newborns. Prostaglandins Leukot Essent Fatty Acids 2020; 156:102028. [PMID: 31744651 DOI: 10.1016/j.plefa.2019.102028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/22/2019] [Accepted: 11/05/2019] [Indexed: 11/23/2022]
Abstract
We previously reported that triglyceride (TG) levels in small-for-gestational age (SGA) newborns were significantly higher than those in appropriate-for-gestational age (AGA) newborns. Stearoyl-CoA desaturase (SCD) activity is required for TG synthesis, while lipoprotein lipase mass (LPLm) facilitates TG clearance. The purpose of this study is to reveal whether SCD activity or LPLm is the cause of high TG levels in SGA newborns. Fifty-five newborns were classified as AGA (n = 42) and SGA (n = 13). Serum LPLm, TG and fatty acids in umbilical cord blood were analyzed. Then, [16:1 (n-7)]/ [16:0] and [18:1 (n-9)]/ [18:0] were calculated as SCD16 and SCD18 activities, respectively. The SGA group showed significantly higher TG levels and significantly lower LPLm levels than the AGA group. However, SCD16 and 18 activities were lower in SGA newborns than in AGA newborns. In conclusion, LPLm, rather than SCD activity may be involved in the increased TG levels in SGA newborns.
Collapse
Affiliation(s)
- Kazumasa Fuwa
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Oyaguchi 30-1 Itabashi, Tokyo 173-8610, Japan
| | - Nobuhiko Nagano
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Oyaguchi 30-1 Itabashi, Tokyo 173-8610, Japan.
| | - Yohei Kitamura
- Wellness and Nutrition Science Institute, R&D Division, Morinaga Milk Industry Co., Ltd., Japan
| | | | - Tomoo Okada
- Department of Nutrition and Life Science, Kanagawa Institute of Technology, Japan
| | - Ichiro Morioka
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Oyaguchi 30-1 Itabashi, Tokyo 173-8610, Japan
| |
Collapse
|
10
|
Li N, Fu X, Xiao M, Wei X, Yang M, Liu Z, Mou H. Enzymatic preparation of a low-molecular-weight polysaccharide rich in uronic acid from the seaweed Laminaria japonica and evaluation of its hypolipidemic effect in mice. Food Funct 2020; 11:2395-2405. [PMID: 32129348 DOI: 10.1039/c9fo02994j] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Here, we describe a method combining thermo-acid pretreatment and alginate lyase hydrolysis to prepare a low-molecular-weight polysaccharide from the seaweed Laminaria japonica (SP). The in vitro results showed that SP displayed obvious absorption of oil (2.95 g g-1) and cholesterol (21.87 g g-1 at pH 2.0). In addition, the in vivo assessment of SP-related anti-obesity effects in C57BL/6J mice fed a high-fat diet and treated with SP for 8 weeks revealed that SP significantly reduced weight gain and lipid accumulation in white adipose and liver tissues, improved serum lipid profiles, and ameliorated intestinal damage. Moreover, SP activated the AMP-activated protein kinase pathway in liver tissues, downregulated sterol regulatory element-binding protein and fatty acid synthase, and suppressed lipid synthesis. These findings indicated that SP extracted from L. japonica might represent a potent functional food exhibiting anti-obesity effects.
Collapse
Affiliation(s)
- Nannan Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| | - Xiaodan Fu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| | - Mengshi Xiao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| | - Xinyi Wei
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| | - Min Yang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| | - Zhemin Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| | - Haijin Mou
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
11
|
Pouwer MG, Pieterman EJ, Chang SC, Olsen GW, Caspers MPM, Verschuren L, Jukema JW, Princen HMG. Dose Effects of Ammonium Perfluorooctanoate on Lipoprotein Metabolism in APOE*3-Leiden.CETP Mice. Toxicol Sci 2020; 168:519-534. [PMID: 30657992 PMCID: PMC6432869 DOI: 10.1093/toxsci/kfz015] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Epidemiological studies have reported positive associations between serum perfluorooctanoic acid (PFOA) and total and non-high-density lipoprotein cholesterol (non-HDL-C) although the magnitude of effect of PFOA on cholesterol lacks consistency. The objectives of this study were to evaluate the effect of PFOA on plasma cholesterol and triglyceride metabolism at various plasma PFOA concentrations relevant to humans, and to elucidate the mechanisms using APOE*3-Leiden.CETP mice, a model with a human-like lipoprotein metabolism. APOE*3-Leiden.CETP mice were fed a Western-type diet with PFOA (10, 300, 30 000 ng/g/d) for 4-6 weeks. PFOA exposure did not alter plasma lipids in the 10 and 300 ng/g/d dietary PFOA dose groups. At 30 000 ng/g/d, PFOA decreased plasma triglycerides (TG), total cholesterol (TC), and non-HDL-C, whereas HDL-C was increased. The plasma lipid alterations could be explained by decreased very low-density lipoprotein (VLDL) production and increased VLDL clearance by the liver through increased lipoprotein lipase activity. The concomitant increase in HDL-C was mediated by decreased cholesteryl ester transfer activity and changes in gene expression of proteins involved in HDL metabolism. Hepatic gene expression and pathway analysis confirmed the changes in lipoprotein metabolism that were mediated for a major part through activation of the peroxisome proliferator-activated receptor (PPAR)α. Our data confirmed the findings from a phase 1 clinical trial in humans that demonstrated high serum or plasma PFOA levels resulted in lower cholesterol levels. The study findings do not show an increase in cholesterol at environmental or occupational levels of PFOA exposure, thereby indicating these findings are associative rather than causal.
Collapse
Affiliation(s)
- Marianne G Pouwer
- The Netherlands Organization of Applied Scientific Research (TNO), Metabolic Health Research, Gaubius Laboratory, 2333 CK, Leiden, The Netherlands.,Department of Cardiology, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - Elsbet J Pieterman
- The Netherlands Organization of Applied Scientific Research (TNO), Metabolic Health Research, Gaubius Laboratory, 2333 CK, Leiden, The Netherlands
| | | | - Geary W Olsen
- Medical Department, 3M Company, Saint Paul, Minnesota 55144
| | - Martien P M Caspers
- The Netherlands Organization of Applied Scientific Research (TNO) - Microbiology and Systems Biology, 3704 HE Zeist, The Netherlands
| | - Lars Verschuren
- The Netherlands Organization of Applied Scientific Research (TNO) - Microbiology and Systems Biology, 3704 HE Zeist, The Netherlands
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - Hans M G Princen
- The Netherlands Organization of Applied Scientific Research (TNO), Metabolic Health Research, Gaubius Laboratory, 2333 CK, Leiden, The Netherlands
| |
Collapse
|
12
|
Ruscica M, Zimetti F, Adorni MP, Sirtori CR, Lupo MG, Ferri N. Pharmacological aspects of ANGPTL3 and ANGPTL4 inhibitors: New therapeutic approaches for the treatment of atherogenic dyslipidemia. Pharmacol Res 2020; 153:104653. [PMID: 31931117 DOI: 10.1016/j.phrs.2020.104653] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 12/24/2022]
Abstract
Among the determinants of atherosclerotic cardiovascular disease (ASCVD), genetic and experimental evidence has provided data on a major role of angiopoietin-like proteins 3 and 4 (ANGPTL3 and ANGPTL4) in regulating the activity of lipoprotein lipase (LPL), antagonizing the hydrolysis of triglycerides (TG). Indeed, beyond low-density lipoprotein cholesterol (LDL-C), ASCVD risk is also dependent on a cluster of metabolic abnormalities characterized by elevated fasting and post-prandial levels of TG-rich lipoproteins and their remnants. In a head-to-head comparison between murine models for ANGPTL3 and ANGPTL4, the former was found to be a better pharmacological target for the treatment of hypertriglyceridemia. In humans, loss-of-function mutations of ANGPTL3 are associated with a marked reduction of plasma levels of VLDL, low-density lipoprotein (LDL) and high-density lipoprotein (HDL). Carriers of loss-of-function mutations of ANGPTL4 show instead lower TG-rich lipoproteins and a modest but significant increase of HDL. The relevance of ANGPTL3 and ANGPTL4 as new therapeutic targets is proven by the development of monoclonal antibodies or antisense oligonucleotides. Studies in animal models, including non-human primates, have demonstrated that short-term treatment with monoclonal antibodies against ANGPTL3 and ANGPTL4 induces activation of LPL and a marked reduction of plasma TG-rich-lipoproteins, apparently without any major side effects. Inhibition of both targets also partially reduces LDL-C, independent of the LDL receptor. Similar evidence has been observed with the antisense oligonucleotide ANGPTL3-LRX. The genetic studies have paved the way for the development of new ANGPTL3 and 4 antagonists for the treatment of atherogenic dyslipidemias. Conclusive data of phase 2 and 3 clinical trials are still needed in order to define their safety and efficacy profile.
Collapse
Affiliation(s)
- Massimiliano Ruscica
- Dipartimento di Science Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy.
| | - Francesca Zimetti
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parma, Italy
| | - Maria Pia Adorni
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parma, Italy
| | - Cesare R Sirtori
- Dyslipidemia Center, A.S.S.T. Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Maria Giovanna Lupo
- Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, Padua, Italy
| | - Nicola Ferri
- Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, Padua, Italy
| |
Collapse
|
13
|
De Luca M, Vecchie’ D, Athmanathan B, Gopalkrishna S, Valcin JA, Swain TM, Sertie R, Wekesa K, Rowe GC, Bailey SM, Nagareddy PR. Genetic Deletion of Syndecan-4 Alters Body Composition, Metabolic Phenotypes, and the Function of Metabolic Tissues in Female Mice Fed A High-Fat Diet. Nutrients 2019; 11:nu11112810. [PMID: 31752080 PMCID: PMC6893658 DOI: 10.3390/nu11112810] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 11/08/2019] [Accepted: 11/12/2019] [Indexed: 12/26/2022] Open
Abstract
Syndecans are transmembrane proteoglycans that, like integrins, bind to components of the extracellular matrix. Previously, we showed significant associations of genetic variants in the Syndecan-4 (SDC4) gene with intra-abdominal fat, fasting plasma glucose levels, and insulin sensitivity index in children, and with fasting serum triglyceride levels in healthy elderly subjects. An independent study also reported a correlation between SDC4 and the risk of coronary artery disease in middle-aged patients. Here, we investigated whether deletion of Sdc4 promotes metabolic derangements associated with diet-induced obesity by feeding homozygous male and female Sdc4-deficient (Sdc4-/-) mice and their age-matched wild-type (WT) mice a high-fat diet (HFD). We found that WT and Sdc4-/- mice gained similar weight. However, while no differences were observed in males, HFD-fed female Sdc4-/- mice exhibited a higher percentage of body fat mass than controls and displayed increased levels of plasma total cholesterol, triglyceride, and glucose, as well as reduced whole-body insulin sensitivity. Additionally, they had an increased adipocyte size and macrophage infiltration in the visceral adipose tissue, and higher triglyceride and fatty acid synthase levels in the liver. Together with our previous human genetic findings, these results provide evidence of an evolutionarily conserved role of SDC4 in adiposity and its complications.
Collapse
Affiliation(s)
- Maria De Luca
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (D.V.); (R.S.)
- Correspondence: ; Tel.: +1-205-934-7033
| | - Denise Vecchie’
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (D.V.); (R.S.)
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy
| | - Baskaran Athmanathan
- Department of Surgery, Ohio State University, Columbus, OH 43209, USA; (B.A.); (S.G.); (P.R.N.)
| | - Sreejit Gopalkrishna
- Department of Surgery, Ohio State University, Columbus, OH 43209, USA; (B.A.); (S.G.); (P.R.N.)
| | - Jennifer A. Valcin
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (J.A.V.); (T.M.S.); (S.M.B.)
| | - Telisha M. Swain
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (J.A.V.); (T.M.S.); (S.M.B.)
| | - Rogerio Sertie
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (D.V.); (R.S.)
| | - Kennedy Wekesa
- Department of Biological Sciences, Alabama State University, Montgomery, AL 36104, USA;
| | - Glenn C. Rowe
- Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Shannon M. Bailey
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (J.A.V.); (T.M.S.); (S.M.B.)
| | - Prabhakara R. Nagareddy
- Department of Surgery, Ohio State University, Columbus, OH 43209, USA; (B.A.); (S.G.); (P.R.N.)
| |
Collapse
|
14
|
Janssen LGM, Jauhiainen M, Olkkonen VM, Haridas PAN, Nahon KJ, Rensen PCN, Boon MR. Short-Term Cooling Increases Plasma ANGPTL3 and ANGPTL8 in Young Healthy Lean Men but Not in Middle-Aged Men with Overweight and Prediabetes. J Clin Med 2019; 8:jcm8081214. [PMID: 31416197 PMCID: PMC6723119 DOI: 10.3390/jcm8081214] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/08/2019] [Accepted: 08/12/2019] [Indexed: 01/16/2023] Open
Abstract
Angiopoietin-like proteins (ANGPTLs) regulate triglyceride (TG)-rich lipoprotein distribution via inhibiting TG hydrolysis by lipoprotein lipase in metabolic tissues. Brown adipose tissue combusts TG-derived fatty acids to enhance thermogenesis during cold exposure. It has been shown that cold exposure regulates ANGPTL4, but its effects on ANGPTL3 and ANGPTL8 in humans have not been elucidated. We therefore investigated the effect of short-term cooling on plasma ANGPTL3 and ANGPTL8, besides ANGPTL4. Twenty-four young, healthy, lean men and 20 middle-aged men with overweight and prediabetes were subjected to 2 h of mild cooling just above their individual shivering threshold. Before and after short-term cooling, plasma ANGPTL3, ANGPTL4, and ANGPTL8 were determined by ELISA. In young, healthy, lean men, short-term cooling increased plasma ANGPTL3 (+16%, p < 0.05), ANGPTL4 (+15%, p < 0.05), and ANGPTL8 levels (+28%, p < 0.001). In middle-aged men with overweight and prediabetes, short-term cooling only significantly increased plasma ANGPTL4 levels (+15%, p < 0.05), but not ANGPTL3 (230 ± 9 vs. 251 ± 13 ng/mL, p = 0.051) or ANGPTL8 (2.2 ± 0.5 vs. 2.3 ± 0.5 μg/mL, p = 0.46). We show that short-term cooling increases plasma ANGPTL4 levels in men, regardless of age and metabolic status, but only overtly increases ANGPTL3 and ANGPTL8 levels in young, healthy, lean men.
Collapse
Affiliation(s)
- Laura G M Janssen
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Matti Jauhiainen
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, 00290 Helsinki, Finland
| | - Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, 00290 Helsinki, Finland
| | - P A Nidhina Haridas
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, 00290 Helsinki, Finland
| | - Kimberly J Nahon
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Patrick C N Rensen
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Mariëtte R Boon
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands.
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands.
| |
Collapse
|
15
|
Ali Khan A, Hansson J, Weber P, Foehr S, Krijgsveld J, Herzig S, Scheideler M. Comparative Secretome Analyses of Primary Murine White and Brown Adipocytes Reveal Novel Adipokines. Mol Cell Proteomics 2018; 17:2358-2370. [PMID: 30135203 PMCID: PMC6283297 DOI: 10.1074/mcp.ra118.000704] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 08/06/2018] [Indexed: 12/13/2022] Open
Abstract
The adipose organ, including white and brown adipose tissues, is an important player in systemic energy homeostasis, storing excess energy in form of lipids while releasing energy upon various energy demands. Recent studies have demonstrated that white and brown adipocytes also function as endocrine cells and regulate systemic metabolism by secreting factors that act locally and systemically. However, a comparative proteomic analysis of secreted factors from white and brown adipocytes and their responsiveness to adrenergic stimulation has not been reported yet. Therefore, we studied and compared the secretome of white and brown adipocytes, with and without norepinephrine (NE) stimulation. Our results reveal that carbohydrate-metabolism-regulating proteins are preferably secreted from white adipocytes, while brown adipocytes predominantly secrete a large variety of proteins. Upon NE stimulation, an increased secretion of known adipokines is favored by white adipocytes while brown adipocytes secreted higher amounts of novel adipokines. Furthermore, the secretory response between NE-stimulated and basal state was multifaceted addressing lipid and glucose metabolism, adipogenesis, and antioxidative reactions. Intriguingly, NE stimulation drastically changed the secretome in brown adipocytes. In conclusion, our study provides a comprehensive catalogue of novel adipokine candidates secreted from white and brown adipocytes with many of them responsive to NE. Given the beneficial effects of brown adipose tissue activation on its endocrine function and systemic metabolism, this study provides an archive of novel batokine candidates and biomarkers for activated brown adipose tissue.
Collapse
Affiliation(s)
- Asrar Ali Khan
- Institute for Diabetes and Cancer (IDC); Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University Hospital, Heidelberg, Germany; Molecular Metabolic Control, Medical Faculty, Technical University Munich, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Jenny Hansson
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Peter Weber
- Institute for Diabetes and Cancer (IDC); Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University Hospital, Heidelberg, Germany; Molecular Metabolic Control, Medical Faculty, Technical University Munich, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Radiation Cytogenetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Sophia Foehr
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany; Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jeroen Krijgsveld
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany; Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stephan Herzig
- Institute for Diabetes and Cancer (IDC); Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University Hospital, Heidelberg, Germany; Molecular Metabolic Control, Medical Faculty, Technical University Munich, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Marcel Scheideler
- Institute for Diabetes and Cancer (IDC); Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University Hospital, Heidelberg, Germany; Molecular Metabolic Control, Medical Faculty, Technical University Munich, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany.
| |
Collapse
|
16
|
Yingchun H, Yahong M, Jiangping W, Xiaokui H, Xiaohong Z. Increased inflammation, endoplasmic reticulum stress and oxidative stress in endothelial and macrophage cells exacerbate atherosclerosis in ApoCIII transgenic mice. Lipids Health Dis 2018; 17:220. [PMID: 30223835 PMCID: PMC6142424 DOI: 10.1186/s12944-018-0867-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 09/11/2018] [Indexed: 11/30/2022] Open
Abstract
Background Overexpression of apolipoprotein CIII (ApoCIII) leads to hypertriglyceridemia (HTG) which promotes atherosclerosis development. However, it remains unclear whether ApoCIII affects the atherosclerosis alone by promoting the inflammation and endoplasmic reticulum (ER) stress, or in combination with HTG. Methods Transgenic (ApoCIIItg) mouse models were used to investigate the atherogenic role of ApoCIII. Since endothelial cells and macrophages play crucial roles in atherosclerosis, we examined whether triglyceride-rich lipoproteins (TRLs), the major lipoproteins, in plasma of ApoCIIItg mice affect inflammation and ER stress levels in these cells. To further investigate the role of ApoCIII and triglyceride, we incubated HUVECs cells and peritoneal macrophages with TRLs with or without ApoCIII. Results Increased inflammation and ER stress were found in the aorta of ApoCIIItg mice. TRLs increased ER stress and oxidative stress in HUVECs and macrophages in a dose dependent. Moreover, TRLs together with ApoCIII could induce a higher inflammation level than TRLs alone in these cells. Conclusions Both TRLs and ApoCIII contribute to the progression of atherosclerosis, and the modulation of TRLs and ApoCIII may represent a novel therapeutic approach against HTG induced atherosclerosis.
Collapse
Affiliation(s)
- Han Yingchun
- Beijing Anzhen Hospital of Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Ma Yahong
- Department of Endocrinology, Beijing Puren Hospital, Beijing, 100062, China
| | - Wen Jiangping
- Department of Laboratory Medicine, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - He Xiaokui
- Department of Laboratory Medicine, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Zhang Xiaohong
- Department of Laboratory Medicine, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China.
| |
Collapse
|
17
|
Maternal consumption of green tea extract during pregnancy and lactation alters offspring's metabolism in rats. PLoS One 2018; 13:e0199969. [PMID: 30020947 PMCID: PMC6051583 DOI: 10.1371/journal.pone.0199969] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 05/13/2018] [Indexed: 02/06/2023] Open
Abstract
Introduction Green tea extract has anti-inflammatory and antioxidant effects which improve dyslipidemia and decrease adipose tissue depots associated with hyperlipidic diet consumption. Objective To evaluate the effect of green tea extract consumption by rats during pregnancy and lactation on the metabolism of their offspring that received control or high-fat diet with water during 10 weeks after weaning. Methods Wistar rats received water (W) or green tea extract diluted in water (G) (400 mg/kg body weight/day), and control diet (10 animals in W and G groups) during pregnancy and lactation. After weaning, offspring received water and a control (CW) or a high-fat diet (HW), for 10 weeks. One week before the end of treatment, oral glucose tolerance test was performed. The animals were euthanized and the samples were collected for biochemical, hormonal and antioxidant enzymes activity analyses. In addition, IL-10, TNF-α, IL-6, and IL-1β were quantified by ELISA while p-NF-κBp50 was analyzed by Western Blotting. Repeated Measures ANOVA, followed by Tukey's test were used to find differences between data (p < 0.05). Results The consumption of high-fat diet by rats for 10 weeks after weaning promoted hyperglycemia and hyperinsulinemia, and increased fat depots. The ingestion of a high-fat diet by the offspring of mothers who consumed green tea extract during pregnancy and lactation decreased the inflammatory cytokines in adipose tissue, while the ingestion of a control diet increased the same cytokines. Conclusion Our results demonstrate that prenatal consumption of green tea associated with consumption of high-fat diet by offspring after weaning prevented inflammation. However, maternal consumption of the green tea extract induced a proinflammatory status in the adipose tissue of the adult offspring that received the control diet after weaning.
Collapse
|
18
|
Janssen AWF, Katiraei S, Bartosinska B, Eberhard D, Willems van Dijk K, Kersten S. Loss of angiopoietin-like 4 (ANGPTL4) in mice with diet-induced obesity uncouples visceral obesity from glucose intolerance partly via the gut microbiota. Diabetologia 2018; 61:1447-1458. [PMID: 29502266 PMCID: PMC6449003 DOI: 10.1007/s00125-018-4583-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 01/22/2018] [Indexed: 02/07/2023]
Abstract
AIMS/HYPOTHESIS Angiopoietin-like 4 (ANGPTL4) is an important regulator of triacylglycerol metabolism, carrying out this role by inhibiting the enzymes lipoprotein lipase and pancreatic lipase. ANGPTL4 is a potential target for ameliorating cardiometabolic diseases. Although ANGPTL4 has been implicated in obesity, the study of the direct role of ANGPTL4 in diet-induced obesity and related metabolic dysfunction is hampered by the massive acute-phase response and development of lethal chylous ascites and peritonitis in Angptl4-/- mice fed a standard high-fat diet. The aim of this study was to better characterise the role of ANGPTL4 in glucose homeostasis and metabolic dysfunction during obesity. METHODS We chronically fed wild-type (WT) and Angptl4-/- mice a diet rich in unsaturated fatty acids and cholesterol, combined with fructose in drinking water, and studied metabolic function. The role of the gut microbiota was investigated by orally administering a mixture of antibiotics (ampicillin, neomycin, metronidazole). Glucose homeostasis was assessed via i.p. glucose and insulin tolerance tests. RESULTS Mice lacking ANGPTL4 displayed an increase in body weight gain, visceral adipose tissue mass, visceral adipose tissue lipoprotein lipase activity and visceral adipose tissue inflammation compared with WT mice. However, they also unexpectedly had markedly improved glucose tolerance, which was accompanied by elevated insulin levels. Loss of ANGPTL4 did not affect glucose-stimulated insulin secretion in isolated pancreatic islets. Since the gut microbiota have been suggested to influence insulin secretion, and because ANGPTL4 has been proposed to link the gut microbiota to host metabolism, we hypothesised a potential role of the gut microbiota. Gut microbiota composition was significantly different between Angptl4-/- mice and WT mice. Interestingly, suppression of the gut microbiota using antibiotics largely abolished the differences in glucose tolerance and insulin levels between WT and Angptl4-/- mice. CONCLUSIONS/INTERPRETATION Despite increasing visceral fat mass, inactivation of ANGPTL4 improves glucose tolerance, at least partly via a gut microbiota-dependent mechanism.
Collapse
Affiliation(s)
- Aafke W F Janssen
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, the Netherlands
| | - Saeed Katiraei
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Barbara Bartosinska
- Institute of Metabolic Physiology, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute for Beta Cell Biology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München Neuherberg, Germany
| | - Daniel Eberhard
- Institute of Metabolic Physiology, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute for Beta Cell Biology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München Neuherberg, Germany
| | - Ko Willems van Dijk
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Sander Kersten
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, the Netherlands.
| |
Collapse
|
19
|
Engin A. Fat Cell and Fatty Acid Turnover in Obesity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 960:135-160. [PMID: 28585198 DOI: 10.1007/978-3-319-48382-5_6] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The ratio of free fatty acid (FFA) turnover decreases significantly with the expansion of white adipose tissue. Adipose tissue and dietary saturated fatty acid levels significantly correlate with an increase in fat cell size and number. Inhibition of adipose triglyceride lipase leads to an accumulation of triglyceride, whereas inhibition of hormone-sensitive lipase leads to the accumulation of diacylglycerol. The G0/G1 switch gene 2 increases lipid content in adipocytes and promotes adipocyte hypertrophy through the restriction of triglyceride turnover. Excess triacylglycerols (TAGs), sterols and sterol esters are surrounded by the phospholipid monolayer surface and form lipid droplets. Following the release of lipid droplets from endoplasmic reticulum, cytoplasmic lipid droplets increase their volume either by local TAG synthesis or by homotypic fusion. The number and the size of lipid droplet distribution is correlated with obesity. Obesity-associated adipocyte death exhibits feature of necrosis-like programmed cell death. NOD-like receptors family pyrin domain containing 3 (NLRP3) inflammasome-dependent caspase-1 activation in hypertrophic adipocytes induces obese adipocyte death by pyroptosis. Actually adipocyte death may be a prerequisite for the transition from hypertrophic to hyperplastic obesity. Major transcriptional factors, CCAAT/enhancer-binding proteins beta and delta, play a central role in the subsequent induction of critical regulators, peroxisome-proliferator-activated receptor gamma, CCAAT/enhancer-binding protein alpha and sterol regulatory element-binding protein 1, in the transcriptional control of adipogenesis in obesity.Collectively, in this chapter the concept of adipose tissue remodeling in response to adipocyte death or adipogenesis, and the complexity of lipid droplet interactions with the other cellular organelles are reviewed. Furthermore, in addition to lipid droplet growth, the functional link between the adipocyte-specific lipid droplet-associated protein and fatty acid turn-over is also debated.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey. .,, Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
20
|
Chia (Salvia hispanicaL.) flour promotes beneficial effects on adipose tissue but not on glycaemic profile of diet-induced obesity in mice. EUR J LIPID SCI TECH 2017. [DOI: 10.1002/ejlt.201600384] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
21
|
Abstract
Lipids have the potential to serve as bio-markers, which allow us to analyze and to identify cells under various experimental settings, and to serve as a clinical diagnostic tool. For example, diagnosis according to specific lipids that are associated with diabetes and obesity. The rapid development of mass-spectrometry techniques enables identification and profiling of multiple types of lipid species. Together, lipid profiling and data interpretation forge the new field of lipidomics. Lipidomics can be used to characterize physiologic and pathophysiological processes in adipocytes, since lipid metabolism is at the core of adipocyte physiology and energy homeostasis. A significant bulk of lipids are stored in adipocytes, which can be released and used to produce energy, used to build membranes, or used as signaling molecules that regulate metabolism. In this review, we discuss how exhaust of lipidomes can be used to study adipocyte differentiation, physiology and pathophysiology.
Collapse
Affiliation(s)
- Kfir Lapid
- Division of Endocrinology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jonathan M. Graff
- Division of Endocrinology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
22
|
Woting A, Blaut M. The Intestinal Microbiota in Metabolic Disease. Nutrients 2016; 8:202. [PMID: 27058556 PMCID: PMC4848671 DOI: 10.3390/nu8040202] [Citation(s) in RCA: 199] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 03/17/2016] [Accepted: 03/29/2016] [Indexed: 02/06/2023] Open
Abstract
Gut bacteria exert beneficial and harmful effects in metabolic diseases as deduced from the comparison of germfree and conventional mice and from fecal transplantation studies. Compositional microbial changes in diseased subjects have been linked to adiposity, type 2 diabetes and dyslipidemia. Promotion of an increased expression of intestinal nutrient transporters or a modified lipid and bile acid metabolism by the intestinal microbiota could result in an increased nutrient absorption by the host. The degradation of dietary fiber and the subsequent fermentation of monosaccharides to short-chain fatty acids (SCFA) is one of the most controversially discussed mechanisms of how gut bacteria impact host physiology. Fibers reduce the energy density of the diet, and the resulting SCFA promote intestinal gluconeogenesis, incretin formation and subsequently satiety. However, SCFA also deliver energy to the host and support liponeogenesis. Thus far, there is little knowledge on bacterial species that promote or prevent metabolic disease. Clostridium ramosum and Enterococcus cloacae were demonstrated to promote obesity in gnotobiotic mouse models, whereas bifidobacteria and Akkermansia muciniphila were associated with favorable phenotypes in conventional mice, especially when oligofructose was fed. How diet modulates the gut microbiota towards a beneficial or harmful composition needs further research. Gnotobiotic animals are a valuable tool to elucidate mechanisms underlying diet–host–microbe interactions.
Collapse
Affiliation(s)
- Anni Woting
- Department of Gastrointestinal Microbiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany.
| | - Michael Blaut
- Department of Gastrointestinal Microbiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany.
| |
Collapse
|
23
|
Chiu APL, Wan A, Rodrigues B. Cardiomyocyte-endothelial cell control of lipoprotein lipase. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1434-41. [PMID: 26995461 DOI: 10.1016/j.bbalip.2016.03.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/14/2016] [Accepted: 03/15/2016] [Indexed: 01/17/2023]
Abstract
In people with diabetes, inadequate pharmaceutical management predisposes the patient to heart failure, which is the leading cause of diabetes related death. One instigator for this cardiac dysfunction is change in fuel utilization by the heart. Thus, following diabetes, when cardiac glucose utilization is impaired, the heart undergoes metabolic transformation wherein it switches to using fats as an exclusive source of energy. Although this switching is geared to help the heart initially, in the long term, this has detrimental effects on cardiac function. These include the generation of noxious byproducts, which damage the cardiomyocytes, and ultimately result in increased morbidity and mortality. A key perpetrator that may be responsible for organizing this metabolic disequilibrium is lipoprotein lipase (LPL), the enzyme responsible for providing fat to the hearts. Either exaggeration or reduction in its activity following diabetes could lead to heart dysfunction. Given the disturbing news that diabetes is rampant across the globe, gaining more insight into the mechanism(s) by which cardiac LPL is regulated may assist other researchers in devising new therapeutic strategies to restore metabolic equilibrium, to help prevent or delay heart disease seen during diabetes. This article is part of a Special Issue entitled: Heart Lipid Metabolism edited by G.D. Lopaschuk.
Collapse
Affiliation(s)
- Amy Pei-Ling Chiu
- Pharmaceutical Sciences, The University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Andrea Wan
- Pharmaceutical Sciences, The University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Brian Rodrigues
- Pharmaceutical Sciences, The University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
24
|
Eo H, Lim Y. Combined Mulberry Leaf and Fruit Extract Improved Early Stage of Cutaneous Wound Healing in High-Fat Diet-Induced Obese Mice. J Med Food 2016; 19:161-9. [DOI: 10.1089/jmf.2015.3510] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Hyeyoon Eo
- Department of Food and Nutrition, Kyung Hee University, Seoul, Korea
| | - Yunsook Lim
- Department of Food and Nutrition, Kyung Hee University, Seoul, Korea
| |
Collapse
|
25
|
Oyama LM, Silva FP, Carnier J, de Miranda DA, Santamarina AB, Ribeiro EB, Oller do Nascimento CM, de Rosso VV. Juçara pulp supplementation improves glucose tolerance in mice. Diabetol Metab Syndr 2016; 8:8. [PMID: 26807159 PMCID: PMC4722765 DOI: 10.1186/s13098-015-0122-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 12/23/2015] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The consumption of hyperlipidic and hypercaloric diet is considered a major factor to promote obesity and the consumption of food with antioxidant properties, like Juçara (Euterpe edulis Mart), could be a tool to prevent the deleterious effect of high white adipose deposition. The aim of the present study was to evaluate the effect of administration of juçara pulp in mice fed a high-fat, high-calorie diet on glucose tolerance and adipose tissue inflammatory status. METHODS Mice were distributed into the following groups: control diet; control diet plus 0.5 % of juçara; control diet plus 2 % of juçara; hypercaloric and hyperlipidic diet; hypercaloric and hyperlipidic diet plus 0.5 % of juçara and hypercaloric and hyperlipidic diet plus 2 % of juçara. Treatments started when mice were 8 weeks old and carried on for a total period of 10 weeks. The serum glucose, triacylglycerol, total cholesterol, insulin, adiponectin, lipopolysaccharides and free fatty acids concentrations were measured. Oral glucose tolerance test was performed. TNF-α, IL-6, and IL-10 protein level were determined by ELISA on mesenteric and epididymal white adipose tissues. Determination of catalase activity was realized in the same tissues. Data were analysed using one-way analysis of variance and post hoc analysis was performed with the Tukey's test. RESULTS The addition of 0.5 % juçara improved glycemic response in animals that consumed normocaloric as well as hypercaloric and hyperlipidic diets (HC). Supplementation with 0.5 and 2 % did not change the body composition of animals that received the HC diet; however, the animals fed the normocaloric diet with 2 % juçara gained body mass. An intake of 2 % juçara in the HC diet promoted a reduction of catalase activity and IL-10 level in epididymal adipose tissue. CONCLUSIONS These results suggest that with the administration of 0.5 % juçara, the beneficial effects of polyphenols overcome the deleterious effects of macronutrient composition of juçara, whereas with the administration of 2 % juçara promotes damage by the composition of the fruit and overshadows the beneficial effects of polyphenols on glucose metabolism. On the other hand, higher juçara supplementation improves the inflammatory status targeted by the HC diet.
Collapse
Affiliation(s)
- L. M. Oyama
- />Departamento de Fisiologia, Escola Paulista de Medicina-Universidade Federal de São Paulo, Rua Botucatu, 862-Vila Clementino, São Paulo, SP Brazil
| | - F. P. Silva
- />Departamento de Fisiologia, Escola Paulista de Medicina-Universidade Federal de São Paulo, Rua Botucatu, 862-Vila Clementino, São Paulo, SP Brazil
| | - J. Carnier
- />Departamento de Fisiologia, Escola Paulista de Medicina-Universidade Federal de São Paulo, Rua Botucatu, 862-Vila Clementino, São Paulo, SP Brazil
| | - D. A. de Miranda
- />Departamento de Fisiologia, Escola Paulista de Medicina-Universidade Federal de São Paulo, Rua Botucatu, 862-Vila Clementino, São Paulo, SP Brazil
| | - A. B. Santamarina
- />Departamento de Fisiologia, Escola Paulista de Medicina-Universidade Federal de São Paulo, Rua Botucatu, 862-Vila Clementino, São Paulo, SP Brazil
| | - E. B. Ribeiro
- />Departamento de Fisiologia, Escola Paulista de Medicina-Universidade Federal de São Paulo, Rua Botucatu, 862-Vila Clementino, São Paulo, SP Brazil
| | - C. M. Oller do Nascimento
- />Departamento de Fisiologia, Escola Paulista de Medicina-Universidade Federal de São Paulo, Rua Botucatu, 862-Vila Clementino, São Paulo, SP Brazil
| | - V. V. de Rosso
- />Departamento de Biociências, Instituto de Saúde e Sociedade, Universidade Federal de São Paulo, Santos, São Paulo Brazil
| |
Collapse
|
26
|
Chiu APL, Wan A, Lal N, Zhang D, Wang F, Vlodavsky I, Hussein B, Rodrigues B. Cardiomyocyte VEGF Regulates Endothelial Cell GPIHBP1 to Relocate Lipoprotein Lipase to the Coronary Lumen During Diabetes Mellitus. Arterioscler Thromb Vasc Biol 2016; 36:145-55. [DOI: 10.1161/atvbaha.115.306774] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 11/04/2015] [Indexed: 02/05/2023]
Abstract
Objective—
Lipoprotein lipase (LPL)–mediated triglyceride hydrolysis is the major source of fatty acid for cardiac energy. LPL, synthesized in cardiomyocytes, is translocated across endothelial cells (EC) by its transporter glycosylphosphatidylinositol-anchored high-density lipoprotein–binding protein 1 (GPIHBP1). Previously, we have reported an augmentation in coronary LPL, which was linked to an increased expression of GPIHBP1 following moderate diabetes mellitus. We examined the potential mechanism by which hyperglycemia amplifies GPIHBP1.
Approach and Results—
Exposure of rat aortic EC to high glucose induced GPIHBP1 expression and amplified LPL shuttling across these cells. This effect coincided with an elevated secretion of heparanase. Incubation of EC with high glucose or latent heparanase resulted in secretion of vascular endothelial growth factor (VEGF). Primary cardiomyocytes, being a rich source of VEGF, when cocultured with EC, restored EC GPIHBP1 that is lost because of cell passaging. Furthermore, recombinant VEGF induced EC GPIHBP1 mRNA and protein expression within 24 hours, an effect that could be prevented by a VEGF neutralizing antibody. This VEGF-induced increase in GPIHBP1 was through Notch signaling that encompassed Delta-like ligand 4 augmentation and nuclear translocation of the Notch intracellular domain. Finally, cardiomyocytes from severely diabetic animals exhibiting attenuation of VEGF were unable to increase EC GPIHBP1 expression and had lower LPL activity at the vascular lumen in perfused hearts.
Conclusion—
EC, as the first responders to hyperglycemia, can release heparanase to liberate myocyte VEGF. This growth factor, by activating EC Notch signaling, is responsible for facilitating GPIHBP1-mediated translocation of LPL across EC and regulating LPL-derived fatty acid delivery to the cardiomyocytes.
Collapse
Affiliation(s)
- Amy Pei-Ling Chiu
- From the Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada (A.P.-L.C., A.W., N.L., D.Z., F.W., B.H., B.R.); and Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel (I.V.)
| | - Andrea Wan
- From the Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada (A.P.-L.C., A.W., N.L., D.Z., F.W., B.H., B.R.); and Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel (I.V.)
| | - Nathaniel Lal
- From the Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada (A.P.-L.C., A.W., N.L., D.Z., F.W., B.H., B.R.); and Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel (I.V.)
| | - Dahai Zhang
- From the Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada (A.P.-L.C., A.W., N.L., D.Z., F.W., B.H., B.R.); and Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel (I.V.)
| | - Fulong Wang
- From the Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada (A.P.-L.C., A.W., N.L., D.Z., F.W., B.H., B.R.); and Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel (I.V.)
| | - Israel Vlodavsky
- From the Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada (A.P.-L.C., A.W., N.L., D.Z., F.W., B.H., B.R.); and Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel (I.V.)
| | - Bahira Hussein
- From the Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada (A.P.-L.C., A.W., N.L., D.Z., F.W., B.H., B.R.); and Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel (I.V.)
| | - Brian Rodrigues
- From the Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada (A.P.-L.C., A.W., N.L., D.Z., F.W., B.H., B.R.); and Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel (I.V.)
| |
Collapse
|
27
|
Raposo HF, Paiva AA, Kato LS, de Oliveira HCF. Apolipoprotein CIII overexpression exacerbates diet-induced obesity due to adipose tissue higher exogenous lipid uptake and retention and lower lipolysis rates. Nutr Metab (Lond) 2015; 12:61. [PMID: 26705406 PMCID: PMC4690294 DOI: 10.1186/s12986-015-0058-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 10/29/2015] [Indexed: 12/15/2022] Open
Abstract
Background Hypertriglyceridemia is a common type of dyslipidemia found in obesity. However, it is not established whether primary hyperlipidemia can predispose to obesity. Evidences have suggested that proteins primarily related to plasma lipoprotein transport, such as apolipoprotein (apo) CIII and E, may significantly affect the process of body fat accumulation. We have previously observed an increased adiposity in response to a high fat diet (HFD) in mice overexpressing apoCIII. Here, we examined the potential mechanisms involved in this exacerbated response of apoCIII mice to the HFD. Methods We measured body energy balance, tissue capacity to store exogenous lipids, lipogenesis and lipolysis rates in non-transgenic and apoCIII overexpressing mice fed a HFD during two months. Results Food intake, fat excretion and whole body CO2 production were similar in both groups. However, the adipose tissue mass (45 %) and leptin plasma levels (2-fold) were significantly greater in apoCIII mice. Lipogenesis rates were similar, while exogenous lipid retention was increased in perigonadal (2-fold) and brown adipose tissues (40 %) of apoCIII mice. In addition, adipocyte basal lipolysis (55 %) and in vivo lipolysis index (30 %) were significantly decreased in apoCIII mice. A fat tolerance test evidenced delayed plasma triglyceride clearance and greater transient availability of non-esterified fatty acids (NEFA) during the post-prandial state in the apoCIII mice plasma. Thus, apoCIII overexpression resulted in increased NEFA availability to adipose uptake and decreased adipocyte lipolysis, favoring lipid enlargement of adipose depots. Conclusion We propose that plasma apoCIII levels represent a new risk factor for diet-induced obesity. Electronic supplementary material The online version of this article (doi:10.1186/s12986-015-0058-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Helena F Raposo
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Campinas, SP Brazil
| | - Adriene A Paiva
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Campinas, SP Brazil
| | - Larissa S Kato
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Campinas, SP Brazil
| | - Helena C F de Oliveira
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Campinas, SP Brazil ; Instituto de Biologia, Universidade Estadual de Campinas, Rua Monteiro Lobato, 255, Campinas, SP CEP 13083-862 Brazil
| |
Collapse
|
28
|
An apolipoprotein B100 mimotope prevents obesity in mice. Clin Sci (Lond) 2015; 130:105-16. [PMID: 26519425 PMCID: PMC4673603 DOI: 10.1042/cs20150423] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 10/30/2015] [Indexed: 01/09/2023]
Abstract
Immunization with an ApoB100 mimotope prevents high-fat-diet-induced obesity in mice. Antibody titres parallel the weight decrements. In vitro data implicate increased lipolysis and reduced lipoprotein uptake by adipocytes, as well as increased uptake and metabolism of native lipoprotein by macrophages. Although apolipoprotein B100 (ApoB100) plays a key role in peripheral fat deposition, it is not considered a suitable therapeutic target in obesity. In the present study we describe a novel ApoB100 mimotope, peptide pB1, and the use of pB1-based vaccine-like formulations (BVFs) against high-fat diet (HFD)-induced obesity. In HFD- compared with chow-fed adolescent mice, BVFs reduced the 3-month body-weight gains attributable to increased dietary fat by 44–65%, and prevented mesenteric fat accumulation and liver steatosis. The body-weight reductions paralleled the titres of pB1-reactive immunoglobulin G (IgG) antibodies, and pB1-reactive antibodies specifically recognized native ApoB100 and a synthetic peptide from the C-terminal half of ApoB100. In cultured 3T3L1 adipocytes, anti-pB1 antibodies increased lipolysis and inhibited low-density lipoprotein (LDL) uptake. In cultured RAW 264.7 macrophages, the same antibodies enhanced LDL uptake (without causing foam cell formation). These findings make ApoB100 a promising target for an immunization strategy against HFD-induced obesity.
Collapse
|
29
|
Xia L, Fan C, Dong H, Wang C, Lu Y, Deckelbaum RJ, Qi K. Particle size determines effects of lipoprotein lipase on the catabolism of n-3 triglyceride-rich particles. Clin Nutr 2015; 34:767-74. [DOI: 10.1016/j.clnu.2014.07.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 06/30/2014] [Accepted: 07/01/2014] [Indexed: 10/25/2022]
|
30
|
Booth A, Magnuson A, Foster M. Detrimental and protective fat: body fat distribution and its relation to metabolic disease. Horm Mol Biol Clin Investig 2015; 17:13-27. [PMID: 25372727 DOI: 10.1515/hmbci-2014-0009] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 02/12/2014] [Indexed: 02/06/2023]
Abstract
Obesity is linked to numerous comorbidities that include, but are not limited to, glucose intolerance, insulin resistance, dyslipidemia, and cardiovascular disease. Current evidence suggests, however, obesity itself is not an exclusive predictor of metabolic dysregulation but rather adipose tissue distribution. Obesity-related adverse health consequences occur predominately in individuals with upper body fat accumulation, the detrimental distribution, commonly associated with visceral obesity. Increased lower body subcutaneous adipose tissue, however, is associated with a reduced risk of obesity-induced metabolic dysregulation and even enhanced insulin sensitivity, thus, storage in this region is considered protective. The proposed mechanisms that causally relate the differential outcomes of adipose tissue distribution are often attributed to location and/or adipocyte regulation. Visceral adipose tissue effluent to the portal vein drains into the liver where hepatocytes are directly exposed to its metabolites and secretory products, whereas the subcutaneous adipose tissue drains systemically. Adipose depots are also inherently different in numerous ways such as adipokine release, immunity response and regulation, lipid turnover, rate of cell growth and death, and response to stress and sex hormones. Proximal extrinsic factors also play a role in the differential drive between adipose tissue depots. This review focuses on the deleterious mechanisms postulated to drive the differential metabolic response between central and lower body adipose tissue distribution.
Collapse
|
31
|
Baboota RK, Sarma SM, Boparai RK, Kondepudi KK, Mantri S, Bishnoi M. Microarray based gene expression analysis of murine brown and subcutaneous adipose tissue: significance with human. PLoS One 2015; 10:e0127701. [PMID: 26010905 PMCID: PMC4444008 DOI: 10.1371/journal.pone.0127701] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 04/17/2015] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Two types of adipose tissues, white (WAT) and brown (BAT) are found in mammals. Increasingly novel strategies are being proposed for the treatment of obesity and its associated complications by altering amount and/or activity of BAT using mouse models. METHODOLOGY/PRINCIPLE FINDINGS The present study was designed to: (a) investigate the differential expression of genes in LACA mice subcutaneous WAT (sWAT) and BAT using mouse DNA microarray, (b) to compare mouse differential gene expression with previously published human data; to understand any inter- species differences between the two and (c) to make a comparative assessment with C57BL/6 mouse strain. In mouse microarray studies, over 7003, 1176 and 401 probe sets showed more than two-fold, five-fold and ten-fold change respectively in differential expression between murine BAT and WAT. Microarray data was validated using quantitative RT-PCR of key genes showing high expression in BAT (Fabp3, Ucp1, Slc27a1) and sWAT (Ms4a1, H2-Ob, Bank1) or showing relatively low expression in BAT (Pgk1, Cox6b1) and sWAT (Slc20a1, Cd74). Multi-omic pathway analysis was employed to understand possible links between the organisms. When murine two fold data was compared with published human BAT and sWAT data, 90 genes showed parallel differential expression in both mouse and human. Out of these 90 genes, 46 showed same pattern of differential expression whereas the pattern was opposite for the remaining 44 genes. Based on our microarray results and its comparison with human data, we were able to identify genes (targets) (a) which can be studied in mouse model systems to extrapolate results to human (b) where caution should be exercised before extrapolation of murine data to human. CONCLUSION Our study provides evidence for inter species (mouse vs human) differences in differential gene expression between sWAT and BAT. Critical understanding of this data may help in development of novel ways to engineer one form of adipose tissue to another using murine model with focus on human.
Collapse
Affiliation(s)
- Ritesh K. Baboota
- National Agri-Food Biotechnology Institute (NABI), SAS Nagar, Punjab, India
| | | | | | | | - Shrikant Mantri
- National Agri-Food Biotechnology Institute (NABI), SAS Nagar, Punjab, India
- * E-mail: (MB); (SM)
| | - Mahendra Bishnoi
- National Agri-Food Biotechnology Institute (NABI), SAS Nagar, Punjab, India
- * E-mail: (MB); (SM)
| |
Collapse
|
32
|
Eo H, Jeon YJ, Lee M, Lim Y. Brown Alga Ecklonia cava polyphenol extract ameliorates hepatic lipogenesis, oxidative stress, and inflammation by activation of AMPK and SIRT1 in high-fat diet-induced obese mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:349-59. [PMID: 25479240 DOI: 10.1021/jf502830b] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Obesity is considered to be a metaflammatory condition. Ecklonia cava, brown algae rich in polyphenols, has shown strong antioxidant activity in vitro. This study investigated the effect of E. cava polyphenol extract (ECPE) on the regulation of fat metabolism, inflammation, and the antioxidant defense system in high fat diet-induced obese mice. After obesity was induced by a high-fat diet (HFD), the mice were administered ECPE by gavage for 5 days/12 weeks. ECPE supplementation reduced body weight gain, adipose tissue mass, plasma lipid profiles, hepatic fat deposition, insulin resistance, and the plasma leptin/adiponectin ratio derived from HFD-induced obesity. Moreover, ECPE supplementation selectively ameliorated hepatic protein levels associated with lipogenesis, inflammation, and the antioxidant defense system as well as activation of AMPK and SIRT1. Collectively, ECPE supplement might have potential antiobesity effects via regulation of AMPK and SIRT1 in HFD-induced obesity.
Collapse
|
33
|
Insulin-independent regulation of hepatic triglyceride synthesis by fatty acids. Proc Natl Acad Sci U S A 2015; 112:1143-8. [PMID: 25564660 DOI: 10.1073/pnas.1423952112] [Citation(s) in RCA: 163] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
A central paradox in type 2 diabetes is the apparent selective nature of hepatic insulin resistance--wherein insulin fails to suppress hepatic glucose production yet continues to stimulate lipogenesis, resulting in hyperglycemia, hyperlipidemia, and hepatic steatosis. Although efforts to explain this have focused on finding a branch point in insulin signaling where hepatic glucose and lipid metabolism diverge, we hypothesized that hepatic triglyceride synthesis could be driven by substrate, independent of changes in hepatic insulin signaling. We tested this hypothesis in rats by infusing [U-(13)C] palmitate to measure rates of fatty acid esterification into hepatic triglyceride while varying plasma fatty acid and insulin concentrations independently. These experiments were performed in normal rats, high fat-fed insulin-resistant rats, and insulin receptor 2'-O-methoxyethyl chimeric antisense oligonucleotide-treated rats. Rates of fatty acid esterification into hepatic triglyceride were found to be dependent on plasma fatty acid infusion rates, independent of changes in plasma insulin concentrations and independent of hepatocellular insulin signaling. Taken together, these results obviate a paradox of selective insulin resistance, because the major source of hepatic lipid synthesis, esterification of preformed fatty acids, is primarily dependent on substrate delivery and largely independent of hepatic insulin action.
Collapse
|
34
|
Okada T, Takahashi S, Nagano N, Yoshikawa K, Usukura Y, Hosono S. Early postnatal alteration of body composition in preterm and small-for-gestational-age infants: implications of catch-up fat. Pediatr Res 2015; 77:136-42. [PMID: 25310764 DOI: 10.1038/pr.2014.164] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 09/09/2014] [Indexed: 12/12/2022]
Abstract
The concept of the developmental origins of health and disease is based on studies by Barker et al. They proposed a hypothesis that undernutrition in utero permanently changes the body's structure, function, and metabolism in ways that lead to atherosclerosis and insulin resistance in later life. In addition, profound effects on the extent of body fatness and insulin sensitivity are demonstrated, if there is a "mismatch" between prenatal and postnatal environments. In previous studies, undernutrition in utero has been evaluated simply by birth weight itself or birth weight for gestational age, and the degree of mismatch has been estimated by postnatal rapid weight gain. Recently, we investigated subcutaneous fat accumulation in small-for-gestational-age infants and found that a rapid catch-up in skinfold thickness developed prior to the body weight catch-up. Furthermore, insulin-like growth factor-I and lipoprotein lipase mass concentrations also demonstrate rapid increase during the neonatal period with fat accumulation. Investigating the precise mechanisms of developmental origins of health and disease including mediating metabolic and hormonal factors may provide a new approach to prevent atherosclerosis and insulin resistance. Better management of undernutrition during gestation and neonatal growth during the early postnatal period is an important theme for future health.
Collapse
Affiliation(s)
- Tomoo Okada
- 1] Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan [2] Department of Nutrition and Life Science, Kanagawa Institute of Technology, Kanagawa, Japan
| | - Shigeru Takahashi
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan
| | - Nobuhiko Nagano
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan
| | - Kayo Yoshikawa
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan
| | - Yukihiro Usukura
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan
| | - Shigeharu Hosono
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
35
|
Intrinsic and extrinsic regulation of cardiac lipoprotein lipase following diabetes. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1851:163-71. [PMID: 25463481 DOI: 10.1016/j.bbalip.2014.11.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 11/10/2014] [Accepted: 11/12/2014] [Indexed: 02/07/2023]
Abstract
Cardiac lipoprotein lipase (LPL) is a pivotal enzyme controlling heart metabolism by providing the majority of fatty acids required by this organ. From activation in cardiomyocytes to secretion to the vascular lumen, cardiac LPL is regulated by multiple pathways, which are altered during diabetes. Hence, dimerization/activation of LPL is modified following diabetes, a process controlled by lipase maturation factor 1. The role of AMP-activated protein kinase, protein kinase D, and heparan sulfate proteoglycans, intrinsic factors that regulate the intracellular transport of LPL is also shifted, and is discussed. More recent studies have identified several exogenous factors released from endothelial cells (EC) and adipose tissue that are required for proper functioning of LPL. In response to hyperglycemia, both active and latent heparanase are released from EC to facilitate LPL secretion. Diabetes also increased the expression of glycosylphosphatidylinositol-anchored high density lipoprotein-binding protein 1 (GPIHBP1) in EC, which mediates the transport of LPL across EC. Angiopoietin-like protein 4 secreted from the adipose tissue has the potential to reduce coronary LPL activity. Knowledge of these intrinsic and extrinsic factors could be used develop therapeutic targets to normalize LPL function, and maintain cardiac energy homeostasis after diabetes.
Collapse
|
36
|
Khedoe PPSJ, Hoeke G, Kooijman S, Dijk W, Buijs JT, Kersten S, Havekes LM, Hiemstra PS, Berbée JFP, Boon MR, Rensen PCN. Brown adipose tissue takes up plasma triglycerides mostly after lipolysis. J Lipid Res 2014; 56:51-9. [PMID: 25351615 DOI: 10.1194/jlr.m052746] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Brown adipose tissue (BAT) produces heat by burning TGs that are stored within intracellular lipid droplets and need to be replenished by the uptake of TG-derived FA from plasma. It is currently unclear whether BAT takes up FA via uptake of TG-rich lipoproteins (TRLs), after lipolysis-mediated liberation of FA, or via a combination of both. Therefore, we generated glycerol tri[(3)H]oleate and [(14)C]cholesteryl oleate double-labeled TRL-mimicking particles with an average diameter of 45, 80, and 150 nm (representing small VLDL to chylomicrons) and injected these intravenously into male C57Bl/6J mice. At room temperature (21°C), the uptake of (3)H-activity by BAT, expressed per gram of tissue, was much higher than the uptake of (14)C-activity, irrespective of particle size, indicating lipolysis-mediated uptake of TG-derived FA rather than whole particle uptake. Cold exposure (7°C) increased the uptake of FA derived from the differently sized particles by BAT, while retaining the selectivity for uptake of FA over cholesteryl ester (CE). At thermoneutrality (28°C), total FA uptake by BAT was attenuated, but the specificity of uptake of FA over CE was again largely retained. Altogether, we conclude that, in our model, BAT takes up plasma TG preferentially by means of lipolysis-mediated uptake of FA.
Collapse
Affiliation(s)
- P Padmini S J Khedoe
- Department of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - Geerte Hoeke
- Department of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Sander Kooijman
- Department of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Wieneke Dijk
- Wageningen University, Wageningen, The Netherlands
| | - Jeroen T Buijs
- Department of Urology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Louis M Havekes
- Department of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jimmy F P Berbée
- Department of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Mariëtte R Boon
- Department of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Patrick C N Rensen
- Department of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
37
|
Fatty acid binding proteins and the nervous system: Their impact on mental conditions. Neurosci Res 2014; 102:47-55. [PMID: 25205626 DOI: 10.1016/j.neures.2014.08.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 08/26/2014] [Accepted: 08/28/2014] [Indexed: 12/30/2022]
Abstract
The brain is rich in lipid and fatty molecules. In this review article, we focus on fatty acid binding proteins (Fabps) that bind to fatty acids such as arachidonic acid and docosahexianoic acid and transfer these lipid ligands within the cytoplasm. Among Fabp family molecules, Fabp3, Fabp5, and Fabp7 are specifically localized in neural stem/progenitor cells, neurons and glia in a cell-type specific manner. Quantitative trait locus analysis has revealed that Fabp7 is related with performance of prepulse inhibition (PPI) that is used as an endophenotype of psychiatric diseases such as schizophrenia. Fabp5 and Fabp7 play important roles on neurogenesis and differentially regulate acoustic startle response and PPI. However, other behavior performances including spatial memory, anxiety-like behavior, and diurnal changes in general activity were not different in mice deficient for Fabp7 or Fabp5. Considering the importance of fatty acids in neurogenesis, we would like to emphasize that lipid nutrition and its dynamism via Fabps play significant roles in mental conditions. This might provide a good example of how nutritional environment can affect psychiatric conditions at the molecular level.
Collapse
|
38
|
Anti-obesity effects of gut microbiota are associated with lactic acid bacteria. Appl Microbiol Biotechnol 2014; 98:1-10. [PMID: 24232731 DOI: 10.1007/s00253-013-5346-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 10/16/2013] [Accepted: 10/17/2013] [Indexed: 12/16/2022]
Abstract
The prevalence of obesity is rapidly becoming endemic in industrialized countries and continues to increase in developing countries worldwide. Obesity predisposes people to an increased risk of developing metabolic syndrome. Recent studies have described an association between obesity and certain gut microbiota, suggesting that gut microbiota might play a critical role in the development of obesity. Although probiotics have many beneficial health effects in humans and animals, attention has only recently been drawn to manipulating the gut microbiota, such as lactic acid bacteria (LAB), to influence the development of obesity. In this review, we first describe the causes of obesity, including the genetic and environmental factors. We then describe the relationship between the gut microbiota and obesity, and the mechanisms by which the gut microbiota influence energy metabolism and inflammation in obesity. Lastly, we focus on the potential role of LAB in mediating the effects of the gut microbiota in the development of obesity.
Collapse
|
39
|
Moreno MF, de Souza GIDMH, Hachul ACL, Dos Santos B, Okuda MH, Neto NIP, Boldarine VT, Esposito E, Ribeiro EB, do Nascimento CMDPO, Ganen ADP, Oyama LM. Coacervate whey protein improves inflammatory milieu in mice fed with high-fat diet. Nutr Metab (Lond) 2014; 11:15. [PMID: 24673809 PMCID: PMC3996175 DOI: 10.1186/1743-7075-11-15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 03/22/2014] [Indexed: 02/06/2023] Open
Abstract
Background Functional foods with bioactive properties may help in treat obesity, as they can lead to a decreased risks of inflammatory diseases. The aim of this study was to investigate the effects of chitosan coacervate whey protein on the proinflammatory processes in mice fed with high-fat diet. Methods Mice were divided into two groups receiving either a normolipidic or high-fat diet; the animals in each of the two diet groups were given a diet supplement of either coacervate (gavage, 36 mg protein/kg of body weight) or tap water for four weeks [groups: normolipidic diet plus water (C); normolipidic diet and coacervate (CC); high-fat diet and water (H); and high-fat diet and coacervate (HC)]. Results The high-fat diet promoted inflammation, possibly by decreased adiponectin/sum of adipose tissues ratio and increased phosphorylation of NF-κB p50. In HC we observed a positive correlation between IL-10 and TNF-α in mesenteric adipose tissue, retroperitoneal adipose tissue and liver tissue. We also observed a positive correlation between lipopolisaccharide with IL-10 in the liver tissue. Conclusions High-fat diet treatment promoted metabolic alterations and inflammation, and chitosan coacervate whey protein modulated inflammatory milieu.
Collapse
Affiliation(s)
- Mayara Franzoi Moreno
- Departamento de Fisiologia, Disciplina de Fisiologia da Nutrição, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | | | - Ana Claudia Losinskas Hachul
- Departamento de Fisiologia, Disciplina de Fisiologia da Nutrição, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Bruno Dos Santos
- Departamento de Fisiologia, Disciplina de Fisiologia da Nutrição, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Marcos Hiromu Okuda
- Departamento de Fisiologia, Disciplina de Fisiologia da Nutrição, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Nelson Inácio Pinto Neto
- Departamento de Fisiologia, Disciplina de Fisiologia da Nutrição, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Valter Tadeu Boldarine
- Departamento de Fisiologia, Disciplina de Fisiologia da Nutrição, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Elisa Esposito
- Instituto de Ciências e Tecnologia da Universidade Federal de São Paulo, São José dos Campos, SP, Brazil
| | - Eliane Beraldi Ribeiro
- Departamento de Fisiologia, Disciplina de Fisiologia da Nutrição, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | | | - Aline de Piano Ganen
- Departamento de Fisiologia, Disciplina de Fisiologia da Nutrição, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Lila Missae Oyama
- Departamento de Fisiologia, Disciplina de Fisiologia da Nutrição, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
40
|
Association of liver enzymes and computed tomography markers of liver steatosis with familial longevity. PLoS One 2014; 9:e91085. [PMID: 24632889 PMCID: PMC3954617 DOI: 10.1371/journal.pone.0091085] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 02/07/2014] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVE Familial longevity is marked by enhanced peripheral but not hepatic insulin sensitivity. The liver has a critical role in the pathogenesis of hepatic insulin resistance. Therefore we hypothesized that the extent of liver steatosis would be similar between offspring of long-lived siblings and control subjects. To test our hypothesis, we investigated the extent of liver steatosis in non-diabetic offspring of long-lived siblings and age-matched controls by measuring liver enzymes in plasma and liver fat by computed tomography (CT). RESEARCH DESIGN AND METHODS We measured nonfasting alanine transaminase (ALT), aspartate aminotransferase (AST), and Υ-glutamyl transferase (GGT) in 1625 subjects (736 men, mean age 59.1 years) from the Leiden Longevity Study, comprising offspring of long-lived siblings and partners thereof. In a random subgroup, fasting serum samples (n = 230) were evaluated and CT was performed (n = 268) for assessment of liver-spleen (L/S) ratio and the prevalence of moderate-to-severe non-alcoholic fatty liver disease (NAFLD). Linear mixed model analysis was performed adjusting for age, gender, body mass index, smoking, use of alcohol and hepatotoxic medication, and correlation of sibling relationship. RESULTS Offspring of long-lived siblings had higher nonfasting ALT levels as compared to control subjects (24.3 mmol/L versus 23.2 mmol/L, p = 0.03), while AST and GGT levels were similar between the two groups. All fasting liver enzyme levels were similar between the two groups. CT L/S ratio and prevalence of moderate-to-severe NAFLD was similar between groups (1.12 vs 1.14, p = 0.25 and 8% versus 8%, p = 0.91, respectively). CONCLUSIONS Except for nonfasting levels of ALT, which were slightly higher in the offspring of long-lived siblings compared to controls, no differences were found between groups in the extent of liver steatosis, as assessed with liver biochemical tests and CT. Thus, our data indicate that the extent of liver steatosis is similar between offspring of long-lived siblings and control subjects.
Collapse
|
41
|
HO JN, KIM OK, NAM DE, JUN W, LEE J. Pycnogenol Supplementation Promotes Lipolysis via Activation of cAMP-Dependent PKA in ob/ob Mice and Primary-Cultured Adipocytes. J Nutr Sci Vitaminol (Tokyo) 2014; 60:429-35. [DOI: 10.3177/jnsv.60.429] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Jin-Nyoung HO
- Department of Medical Nutrition, Kyung Hee University
| | - Ok-Kyung KIM
- Department of Medical Nutrition, Kyung Hee University
| | - Da-Eun NAM
- Department of Medical Nutrition, Kyung Hee University
| | - Woojin JUN
- Department of Food and Nutrition, Chonnam National University
| | - Jeongmin LEE
- Research Institute of Medical Nutrition, Kyung Hee University
- Department of Medical Nutrition, Kyung Hee University
| |
Collapse
|
42
|
Increased oxidative stress impairs adipose tissue function in sphingomyelin synthase 1 null mice. PLoS One 2013; 8:e61380. [PMID: 23593476 PMCID: PMC3625169 DOI: 10.1371/journal.pone.0061380] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 03/08/2013] [Indexed: 01/01/2023] Open
Abstract
Sphingomyelin synthase 1 (SMS1) catalyzes the conversion of ceramide to sphingomyelin. Here, we found that SMS1 null mice showed lipodystrophic phenotype. Mutant mice showed up-regulation of plasma triglyceride concentrations accompanied by reduction of white adipose tissue (WAT) as they aged. Lipoprotein lipase (LPL) activity was severely reduced in mutant mice. In vivo analysis indicated that fatty acid uptake in WAT but not in liver decreased in SMS1 null compared to wild-type mice. In vitro analysis using cultured cell revealed that SMS1 depletion reduced fatty acid uptake. Proteins extracted from WAT of mutant mice were severely modified by oxidative stress, and up-regulation of mRNAs related to apoptosis, redox adjustment, mitochondrial stress response and mitochondrial biogenesis was observed. ATP content of WAT was reduced in SMS1 null mice. Blue native gel analysis indicated that accumulation of mitochondrial respiratory chain complexes was reduced. These results suggest that WAT of SMS1 null mice is severely damaged by oxidative stress and barely functional. Indeed, mutant mice treated with the anti-oxidant N-acetyl cysteine (NAC) showed partial recovery of lipodystrophic phenotypes together with normalized plasma triglyceride concentrations. Altogether, our data suggest that SMS1 is crucial to control oxidative stress in order to maintain WAT function.
Collapse
|
43
|
Wang Y, Zhang D, Chiu APL, Wan A, Neumaier K, Vlodavsky I, Rodrigues B. Endothelial heparanase regulates heart metabolism by stimulating lipoprotein lipase secretion from cardiomyocytes. Arterioscler Thromb Vasc Biol 2013; 33:894-902. [PMID: 23471235 DOI: 10.1161/atvbaha.113.301309] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE After diabetes mellitus, transfer of lipoprotein lipase (LPL) from cardiomyocytes to the coronary lumen increases, and this requires liberation of LPL from the myocyte surface heparan sulfate proteoglycans with subsequent replenishment of this reservoir. At the lumen, LPL breaks down triglyceride to meet the increased demand of the heart for fatty acid. Here, we examined the contribution of coronary endothelial cells (ECs) toward regulation of cardiomyocyte LPL secretion. APPROACH AND RESULTS Bovine coronary artery ECs were exposed to high glucose, and the conditioned medium was used to treat cardiomyocytes. EC-conditioned medium liberated LPL from the myocyte surface, in addition to facilitating its replenishment. This effect was attributed to the increased heparanase content in EC-conditioned medium. Of the 2 forms of heparanase secreted from EC in response to high glucose, active heparanase released LPL from the myocyte surface, whereas latent heparanase stimulated reloading of LPL from an intracellular pool via heparan sulfate proteoglycan-mediated RhoA activation. CONCLUSIONS Endothelial heparanase is a participant in facilitating LPL increase at the coronary lumen. These observations provide an insight into the cross-talk between ECs and cardiomyocytes to regulate cardiac metabolism after diabetes mellitus.
Collapse
Affiliation(s)
- Ying Wang
- Faculty of Pharmaceutical Sciences, The University of British Columbia, 2405 Wesbrook Mall, Vancouver, British Columbia, Canada V6T 1Z3
| | | | | | | | | | | | | |
Collapse
|
44
|
Sugimoto-Kawabata K, Shimada H, Sakai K, Suzuki K, Kelder T, Pieterman EJ, Cohen LH, Havekes LM, Princen HM, van den Hoek AM. Colestilan decreases weight gain by enhanced NEFA incorporation in biliary lipids and fecal lipid excretion. J Lipid Res 2013; 54:1255-64. [PMID: 23434610 DOI: 10.1194/jlr.m032839] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Bile acid sequestrants (BASs) are cholesterol-lowering drugs that also affect hyperglycemia. The mechanism by which BASs exert these and other metabolic effects beyond cholesterol lowering remains poorly understood. The present study aimed to investigate the effects of a BAS, colestilan, on body weight, energy expenditure, and glucose and lipid metabolism and its mechanisms of action in high-fat-fed hyperlipidemic APOE*3 Leiden (E3L) transgenic mice. Mildly insulin-resistant E3L mice were fed a high-fat diet with or without 1.5% colestilan for 8 weeks. Colestilan treatment decreased body weight, visceral and subcutaneous fat, and plasma cholesterol and triglyceride levels but increased food intake. Blood glucose and plasma insulin levels were decreased, and hyperinsulinemic-euglycemic clamp analysis demonstrated improved insulin sensitivity, particularly in peripheral tissues. In addition, colestilan decreased energy expenditure and physical activity, whereas it increased the respiratory exchange ratio, indicating that colestilan induced carbohydrate catabolism. Moreover, kinetic analysis revealed that colestilan increased [(3)H]NEFA incorporation in biliary cholesterol and phospholipids and increased fecal lipid excretion. Gene expression analysis in liver, fat, and muscle supported the above findings. In summary, colestilan decreases weight gain and improves peripheral insulin sensitivity in high-fat-fed E3L mice by enhanced NEFA incorporation in biliary lipids and increased fecal lipid excretion.
Collapse
Affiliation(s)
- Kanami Sugimoto-Kawabata
- Metabolic Diseases, Department I, Pharmacology Research Laboratories 2, Mitsubishi Tanabe Pharma Corporation, Toda-shi, Saitama 335-8505, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Bartelt A, Weigelt C, Cherradi ML, Niemeier A, Tödter K, Heeren J, Scheja L. Effects of adipocyte lipoprotein lipase on de novo lipogenesis and white adipose tissue browning. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1831:934-42. [PMID: 23228690 DOI: 10.1016/j.bbalip.2012.11.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 11/27/2012] [Accepted: 11/28/2012] [Indexed: 01/24/2023]
Abstract
Efficient storage of dietary and endogenous fatty acids is a prerequisite for a healthy adipose tissue function. Lipoprotein lipase (LPL) is the master regulator of fatty acid uptake from triglyceride-rich lipoproteins. In addition to LPL-mediated fatty acid uptake, adipocytes are able to synthesize fatty acids from non-lipid precursor, a process called de novo lipogenesis (DNL). As the physiological relevance of fatty acid uptake versus DNL for brown and white adipocyte function remains unclear, we studied the role of adipocyte LPL using adipocyte-specific LPL knockout animals (aLKO). ALKO mice displayed a profound increase in DNL-fatty acids, especially palmitoleate and myristoleate in brown adipose tissue (BAT) and white adipose tissue (WAT) depots while essential dietary fatty acids were markedly decreased. Consequently, we found increased expression in adipose tissues of genes encoding DNL enzymes (Fasn, Scd1, and Elovl6) as well as the lipogenic transcription factor carbohydrate response element binding protein-β. In a high-fat diet (HFD) study aLKO mice were characterized by reduced adiposity and improved plasma insulin and adipokines. However, neither glucose tolerance nor inflammatory markers were ameliorated in aLKO mice compared to controls. No signs of increased BAT activation or WAT browning were detected in aLKO mice either on HFD or after 1 week of β3-adrenergic stimulation using CL316,243. We conclude that despite a profound increase in DNL-derived fatty acids, proposed to be metabolically favorable, aLKO mice are not protected from metabolic disease per se. In addition, induction of DNL alone is not sufficient to promote browning of WAT. This article is part of a Special Issue entitled Brown and White Fat: From Signaling to Disease.
Collapse
Affiliation(s)
- Alexander Bartelt
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Germany.
| | | | | | | | | | | | | |
Collapse
|
46
|
Ho JN, Park SJ, Choue R, Lee J. Standardized Ethanol Extract of Curcuma longa
L. Fermented by Aspergillus oryzae
Promotes Lipolysis via Activation of cAMP-Dependent PKA in 3T3-L1 Adipocytes. J Food Biochem 2012. [DOI: 10.1111/jfbc.12011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Jin-Nyoung Ho
- Department of Medical Nutrition; Kyung Hee University; Yongin 446-701 Korea
| | - Soo-Jeung Park
- Department of Medical Nutrition; Kyung Hee University; Yongin 446-701 Korea
| | - Ryowon Choue
- Department of Medical Nutrition; Kyung Hee University; Yongin 446-701 Korea
- Research Institute of Medical Nutrition; Kyung Hee University; Seoul Korea
| | - Jeongmin Lee
- Department of Medical Nutrition; Kyung Hee University; Yongin 446-701 Korea
- Research Institute of Medical Nutrition; Kyung Hee University; Seoul Korea
| |
Collapse
|
47
|
Foster MT, Pagliassotti MJ. Metabolic alterations following visceral fat removal and expansion: Beyond anatomic location. Adipocyte 2012; 1:192-199. [PMID: 23700533 PMCID: PMC3609102 DOI: 10.4161/adip.21756] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Increased visceral adiposity is a risk factor for metabolic disorders such as dyslipidemia, hypertension, insulin resistance and type 2 diabetes, whereas peripheral (subcutaneous) obesity is not. Though the specific mechanisms which contribute to these adipose depot differences are unknown, visceral fat accumulation is proposed to result in metabolic dysregulation because of increased effluent, e.g., fatty acids and/or adipokines/cytokines, to the liver via the hepatic portal vein. Pathological significance of visceral fat accumulation is also attributed to adipose depot/adipocyte-specific characteristics, specifically differences in structural, physiologic and metabolic characteristics compared with subcutaneous fat. Fat manipulations, such as removal or transplantation, have been utilized to identify location dependent or independent factors that play a role in metabolic dysregulation. Obesity-induced alterations in adipose tissue function/intrinsic characteristics, but not mass, appear to be responsible for obesity-induced metabolic dysregulation, thus “quality” is more important than “quantity.” This review summarizes the implications of obesity-induced metabolic dysfunction as it relates to anatomic site and inherent adipocyte characteristics.
Collapse
|
48
|
Tsuchida T, Shiraishi M, Ohta T, Sakai K, Ishii S. Ursodeoxycholic acid improves insulin sensitivity and hepatic steatosis by inducing the excretion of hepatic lipids in high-fat diet-fed KK-Ay mice. Metabolism 2012; 61:944-53. [PMID: 22154323 DOI: 10.1016/j.metabol.2011.10.023] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 10/28/2011] [Accepted: 10/29/2011] [Indexed: 12/26/2022]
Abstract
Type 2 diabetes mellitus is frequently accompanied by fatty liver/nonalcoholic fatty liver disease. Hence, accumulation of lipids in the liver is considered to be one of the risk factors for insulin resistance and metabolic syndrome. Ursodeoxycholic acid (UDCA) is widely used for the treatment of liver dysfunction. We investigated the therapeutic effects of UDCA on type 2 diabetes mellitus exacerbating hepatic steatosis and the underlying mechanisms of its action using KK-A(y) mice fed a high-fat diet. KK-A(y) mice were prefed a high-fat diet; and 50, 150, and 450 mg/kg of UDCA was orally administered for 2 or 3 weeks. Administration of UDCA decreased fasting hyperglycemia and hyperinsulinemia. Hyperinsulinemic-euglycemic clamp analyses showed that UDCA improved hepatic (but not peripheral) insulin resistance. Hepatic triglyceride and cholesterol contents were significantly reduced by treatment with UDCA, although the genes involved in the synthesis of fatty acids and cholesterol, including fatty acid synthase and 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase, were upregulated. Fecal levels of bile acids, neutral sterols, fatty acids, and phospholipids were significantly increased by UDCA treatment. The gene expression levels and protein phosphorylation levels of endoplasmic reticulum stress markers were not changed by UDCA treatment. These results indicate that UDCA ameliorates hyperglycemia and hyperinsulinemia by improving hepatic insulin resistance and steatosis in high-fat diet-fed KK-A(y) mice. Reduction of hepatic lipids might be due to their excretion in feces, followed by enhanced utilization of glucose for the synthesis of fatty acids and cholesterol. Ursodeoxycholic acid should be effective for the treatment of type 2 diabetes mellitus accompanying hepatic steatosis.
Collapse
Affiliation(s)
- Takuma Tsuchida
- Department I, Pharmacology Research Laboratories II, Research Division, Mitsubishi Tanabe Pharma Corporation, Saitama 335-8505, Japan.
| | | | | | | | | |
Collapse
|
49
|
Soronen J, Laurila PP, Naukkarinen J, Surakka I, Ripatti S, Jauhiainen M, Olkkonen VM, Yki-Järvinen H. Adipose tissue gene expression analysis reveals changes in inflammatory, mitochondrial respiratory and lipid metabolic pathways in obese insulin-resistant subjects. BMC Med Genomics 2012; 5:9. [PMID: 22471940 PMCID: PMC3384471 DOI: 10.1186/1755-8794-5-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 04/03/2012] [Indexed: 02/06/2023] Open
Abstract
Background To get insight into molecular mechanisms underlying insulin resistance, we compared acute in vivo effects of insulin on adipose tissue transcriptional profiles between obese insulin-resistant and lean insulin-sensitive women. Methods Subcutaneous adipose tissue biopsies were obtained before and after 3 and 6 hours of intravenously maintained euglycemic hyperinsulinemia from 9 insulin-resistant and 11 insulin-sensitive females. Gene expression was measured using Affymetrix HG U133 Plus 2 microarrays and qRT-PCR. Microarray data and pathway analyses were performed with Chipster v1.4.2 and by using in-house developed nonparametric pathway analysis software. Results The most prominent difference in gene expression of the insulin-resistant group during hyperinsulinemia was reduced transcription of nuclear genes involved in mitochondrial respiration (mitochondrial respiratory chain, GO:0001934). Inflammatory pathways with complement components (inflammatory response, GO:0006954) and cytokines (chemotaxis, GO:0042330) were strongly up-regulated in insulin-resistant as compared to insulin-sensitive subjects both before and during hyperinsulinemia. Furthermore, differences were observed in genes contributing to fatty acid, cholesterol and triglyceride metabolism (FATP2, ELOVL6, PNPLA3, SREBF1) and in genes involved in regulating lipolysis (ANGPTL4) between the insulin-resistant and -sensitive subjects especially during hyperinsulinemia. Conclusions The major finding of this study was lower expression of mitochondrial respiratory pathway and defective induction of lipid metabolism pathways by insulin in insulin-resistant subjects. Moreover, the study reveals several novel genes whose aberrant regulation is associated with the obese insulin-resistant phenotype.
Collapse
Affiliation(s)
- Jarkko Soronen
- FIMM, Institute for Molecular Medicine Finland, University of Helsinki, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Barson JR, Karatayev O, Gaysinskaya V, Chang GQ, Leibowitz SF. Effect of dietary fatty acid composition on food intake, triglycerides, and hypothalamic peptides. REGULATORY PEPTIDES 2012; 173:13-20. [PMID: 21903140 PMCID: PMC3237858 DOI: 10.1016/j.regpep.2011.08.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 08/01/2011] [Accepted: 08/23/2011] [Indexed: 11/29/2022]
Abstract
While a high-fat diet when compared to low-fat diet is known to produce overeating and health complications, less is known about the effects produced by fat-rich diets differing in their specific composition of fat. This study examined the effects of a high-fat diet containing relatively high levels of saturated compared to unsaturated fatty acids (HiSat) to a high-fat diet with higher levels of unsaturated fatty acids (USat). A HiSat compared to USat meal caused rats to consume more calories in a subsequent chow test meal. The HiSat meal also increased circulating levels of triglycerides (TG) and expression of the orexigenic peptides, galanin (GAL) in the hypothalamic paraventricular nucleus (PVN) and orexin (OX) in the perifornical lateral hypothalamus (PFLH). A similar increase in TG levels and PVN GAL and PFLH OX was also seen in rats given chronic access to the HiSat compared to USat diet, while neuropeptide Y (NPY) and agouti-related protein (AgRP) in the arcuate nucleus showed decreased expression. The importance of TG in producing these changes was supported by the finding that the TG-lowering medication gemfibrozil as compared to vehicle, when peripherally administered before consumption of a HiSat meal, significantly decreased the expression of OX, while increasing the expression of NPY and AgRP. These findings substantiate the importance of the fat composition in a diet, indicating that those rich in saturated compared to unsaturated fatty acids may promote overeating by increasing circulating lipids and specific hypothalamic peptides, GAL and OX, known to preferentially stimulate the consumption of a fat-rich diet.
Collapse
Affiliation(s)
- Jessica R. Barson
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, New York 10065, USA
| | - Olga Karatayev
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, New York 10065, USA
| | - Valeriya Gaysinskaya
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, New York 10065, USA
| | - Guo-Qing Chang
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, New York 10065, USA
| | - Sarah F. Leibowitz
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, New York 10065, USA
| |
Collapse
|