1
|
Danielson SM, Lefferts AR, Norman E, Regner EH, Schulz HM, Sansone-Poe D, Orlicky DJ, Kuhn KA. Myeloid Cells and Sphingosine-1-Phosphate Are Required for TCRαβ Intraepithelial Lymphocyte Recruitment to the Colon Epithelium. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1843-1854. [PMID: 38568091 PMCID: PMC11105980 DOI: 10.4049/jimmunol.2200556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 03/16/2024] [Indexed: 04/07/2024]
Abstract
Intraepithelial lymphocytes (IELs) are T cells important for the maintenance of barrier integrity in the intestine. Colon IELs are significantly reduced in both MyD88-deficient mice and those lacking an intact microbiota, suggesting that MyD88-mediated detection of bacterial products is important for the recruitment and/or retention of these cells. Here, using conditionally deficient MyD88 mice, we show that myeloid cells are the key mediators of TCRαβ+ IEL recruitment to the colon. Upon exposure to luminal bacteria, myeloid cells produce sphingosine-1-phosphate (S1P) in a MyD88-dependent fashion. TCRαβ+ IEL recruitment may be blocked using the S1P receptor antagonist FTY720, confirming the importance of S1P in the recruitment of TCRαβ+ IELs to the colon epithelium. Finally, using the TNFΔARE/+ model of Crohn's-like bowel inflammation, we show that disruption of colon IEL recruitment through myeloid-specific MyD88 deficiency results in reduced pathology. Our results illustrate one mechanism for recruitment of a subset of IELs to the colon.
Collapse
Affiliation(s)
- Sarah Mann Danielson
- Division of Rheumatology, Department of Medicine University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Adam R. Lefferts
- Division of Rheumatology, Department of Medicine University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Eric Norman
- Division of Rheumatology, Department of Medicine University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Emilie H. Regner
- Division of Rheumatology, Department of Medicine University of Colorado Anschutz Medical Campus, Aurora, CO
- Division of Gastroenterology and Hepatology, Department of Medicine University of Colorado Anschutz Medical Campus, Aurora, CO
- Current affiliation: Division of Gastroenterology, Department of Medicine, Oregon Health Sciences University, Portland, OR
| | - Hanna M. Schulz
- Division of Rheumatology, Department of Medicine University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Danielle Sansone-Poe
- Division of Rheumatology, Department of Medicine University of Colorado Anschutz Medical Campus, Aurora, CO
| | - David J. Orlicky
- Department of Pathology, University of Colorado School of Medicine, Aurora, CO
| | - Kristine A. Kuhn
- Division of Rheumatology, Department of Medicine University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
2
|
Nagahashi M, Miyoshi Y. Targeting Sphingosine-1-Phosphate Signaling in Breast Cancer. Int J Mol Sci 2024; 25:3354. [PMID: 38542328 PMCID: PMC10970081 DOI: 10.3390/ijms25063354] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/06/2024] [Accepted: 03/12/2024] [Indexed: 01/04/2025] Open
Abstract
In recent years, newly emerging therapies, such as immune checkpoint inhibitors and antibody-drug conjugates, have further improved outcomes for breast cancer patients. However, recurrent and metastatic breast cancer often eventually develops resistance to these drugs, and cure is still rare. As such, the development of new therapies for refractory breast cancer that differ from conventional mechanisms of action is necessary. Sphingosine-1-phosphate (S1P) is a key molecule with a variety of bioactive activities, including involvement in cancer cell proliferation, invasion, and metastasis. S1P also contributes to the formation of the cancer microenvironment by inducing surrounding vascular- and lymph-angiogenesis and regulating the immune system. In this article, we outline the basic mechanism of action of S1P, summarize previous findings on the function of S1P in cancer cells and the cancer microenvironment, and discuss the clinical significance of S1P in breast cancer and the therapeutic potential of targeting S1P signaling.
Collapse
Affiliation(s)
- Masayuki Nagahashi
- Department of Surgery, Division of Breast and Endocrine Surgery, School of Medicine, Hyogo Medical University, 1-1 Mukogawa-cho, Nishinomiya 663-8501, Hyogo, Japan;
| | | |
Collapse
|
3
|
Skoug C, Erdogan H, Vanherle L, Vieira JPP, Matthes F, Eliasson L, Meissner A, Duarte JMN. Density of Sphingosine-1-Phosphate Receptors Is Altered in Cortical Nerve-Terminals of Insulin-Resistant Goto-Kakizaki Rats and Diet-Induced Obese Mice. Neurochem Res 2024; 49:338-347. [PMID: 37794263 PMCID: PMC10787890 DOI: 10.1007/s11064-023-04033-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/21/2023] [Accepted: 09/15/2023] [Indexed: 10/06/2023]
Abstract
Sphingosine-1-phosphate (S1P) is a phosphosphingolipid with pleiotropic biological functions. S1P acts as an intracellular second messenger, as well as extracellular ligand to five G-protein coupled receptors (S1PR1-5). In the brain, S1P regulates neuronal proliferation, apoptosis, synaptic activity and neuroglia activation. Moreover, S1P metabolism alterations have been reported in neurodegenerative disorders. We have previously reported that S1PRs are present in nerve terminals, exhibiting distinct sub-synaptic localization and neuromodulation actions. Since type 2 diabetes (T2D) causes synaptic dysfunction, we hypothesized that S1P signaling is modified in nerve terminals. In this study, we determined the density of S1PRs in cortical synaptosomes from insulin-resistant Goto-Kakizaki (GK) rats and Wistar controls, and from mice fed a high-fat diet (HFD) and low-fat-fed controls. Relative to their controls, GK rats showed similar cortical S1P concentration despite higher S1P levels in plasma, yet lower density of S1PR1, S1PR2 and S1PR4 in nerve-terminal-enriched membranes. HFD-fed mice exhibited increased plasma and cortical concentrations of S1P, and decreased density of S1PR1 and S1PR4. These findings point towards altered S1P signaling in synapses of insulin resistance and diet-induced obesity models, suggesting a role of S1P signaling in T2D-associated synaptic dysfunction.
Collapse
Affiliation(s)
- Cecilia Skoug
- Department of Experimental Medical Science (EMV), Faculty of Medicine, Lund University, Sölvegatan 19, BMC C11, 221 84, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Hüseyin Erdogan
- Department of Experimental Medical Science (EMV), Faculty of Medicine, Lund University, Sölvegatan 19, BMC C11, 221 84, Lund, Sweden
| | - Lotte Vanherle
- Department of Experimental Medical Science (EMV), Faculty of Medicine, Lund University, Sölvegatan 19, BMC C11, 221 84, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - João P P Vieira
- Department of Experimental Medical Science (EMV), Faculty of Medicine, Lund University, Sölvegatan 19, BMC C11, 221 84, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Frank Matthes
- Department of Experimental Medical Science (EMV), Faculty of Medicine, Lund University, Sölvegatan 19, BMC C11, 221 84, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Lena Eliasson
- Unit of Islet Cell Exocytosis, Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Lund University, Malmö, Sweden
- Clinical Research Center, Skåne University Hospital, Malmö, Sweden
| | - Anja Meissner
- Department of Experimental Medical Science (EMV), Faculty of Medicine, Lund University, Sölvegatan 19, BMC C11, 221 84, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
- Department of Physiology, Institute of Theoretical Medicine, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - João M N Duarte
- Department of Experimental Medical Science (EMV), Faculty of Medicine, Lund University, Sölvegatan 19, BMC C11, 221 84, Lund, Sweden.
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
4
|
Mohammed S, Bindu A, Viswanathan A, Harikumar KB. Sphingosine 1-phosphate signaling during infection and immunity. Prog Lipid Res 2023; 92:101251. [PMID: 37633365 DOI: 10.1016/j.plipres.2023.101251] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
Sphingolipids are essential components of all eukaryotic membranes. The bioactive sphingolipid molecule, Sphingosine 1-Phosphate (S1P), regulates various important biological functions. This review aims to provide a comprehensive overview of the role of S1P signaling pathway in various immune cell functions under different pathophysiological conditions including bacterial and viral infections, autoimmune disorders, inflammation, and cancer. We covered the aspects of S1P pathways in NOD/TLR pathways, bacterial and viral infections, autoimmune disorders, and tumor immunology. This implies that targeting S1P signaling can be used as a strategy to block these pathologies. Our current understanding of targeting various components of S1P signaling for therapeutic purposes and the present status of S1P pathway inhibitors or modulators in disease conditions where the host immune system plays a pivotal role is the primary focus of this review.
Collapse
Affiliation(s)
- Sabira Mohammed
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala State 695014, India
| | - Anu Bindu
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala State 695014, India
| | - Arun Viswanathan
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala State 695014, India; Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| | - Kuzhuvelil B Harikumar
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala State 695014, India.
| |
Collapse
|
5
|
Kim KM, Shin EJ, Yang JH, Ki SH. Integrative roles of sphingosine kinase in liver pathophysiology. Toxicol Res 2023; 39:549-564. [PMID: 37779595 PMCID: PMC10541397 DOI: 10.1007/s43188-023-00193-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/17/2023] [Accepted: 05/24/2023] [Indexed: 10/03/2023] Open
Abstract
Bioactive sphingolipids and enzymes that metabolize sphingolipid-related substances have been considered as critical messengers in various signaling pathways. One such enzyme is the crucial lipid kinase, sphingosine kinase (SphK), which mediates the conversion of sphingosine to the potent signaling substance, sphingosine-1-phosphate. Several studies have demonstrated that SphK metabolism is strictly regulated to maintain the homeostatic balance of cells. Here, we summarize the role of SphK in the course of liver disease and illustrate its effects on both physiological and pathological conditions of the liver. SphK has been implicated in a variety of liver diseases, such as steatosis, liver fibrosis, hepatocellular carcinoma, and hepatic failure. This study may advance the understanding of the cellular and molecular foundations of liver disease and establish therapeutic approaches via SphK modulation.
Collapse
Affiliation(s)
- Kyu Min Kim
- Department of Biomedical Science, College of Natural Science, Chosun University, Gwangju, 61452 Republic of Korea
| | - Eun Jin Shin
- Department of Biomedical Science, College of Natural Science, Chosun University, Gwangju, 61452 Republic of Korea
| | - Ji Hye Yang
- College of Korean Medicine, Dongshin University, Naju, Jeollanam-Do 58245 Republic of Korea
| | - Sung Hwan Ki
- College of Pharmacy, Chosun University, 309 Pilmun-Daero, Dong-Gu, Gwangju, 61452 Republic of Korea
| |
Collapse
|
6
|
Zinatizadeh MR, Zarandi PK, Ghiasi M, Kooshki H, Mohammadi M, Amani J, Rezaei N. Immunosenescence and inflamm-ageing in COVID-19. Ageing Res Rev 2023; 84:101818. [PMID: 36516928 PMCID: PMC9741765 DOI: 10.1016/j.arr.2022.101818] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 11/04/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
The destructive effects of coronavirus disease 2019 (COVID-19) on the elderly and people with cardiovascular disease have been proven. New findings shed light on the role of aging pathways on life span and health age. New therapies that focus on aging-related pathways may positively impact the treatment of this acute respiratory infection. Using new therapies that boost the level of the immune system can support the elderly with co-morbidities against the acute form of COVID-19. This article discusses the effect of the aging immune system against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the pathways affecting this severity of infection.
Collapse
Affiliation(s)
- Mohammad Reza Zinatizadeh
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran,Cancer Biology Signaling Pathway Interest Group (CBSPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Peyman Kheirandish Zarandi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran,Cancer Biology Signaling Pathway Interest Group (CBSPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mohsen Ghiasi
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hamid Kooshki
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mozafar Mohammadi
- Applied Biotechnology Research Centre, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
7
|
Glueck M, Koch A, Brunkhorst R, Ferreiros Bouzas N, Trautmann S, Schaefer L, Pfeilschifter W, Pfeilschifter J, Vutukuri R. The atypical sphingosine 1-phosphate variant, d16:1 S1P, mediates CTGF induction via S1P2 activation in renal cell carcinoma. FEBS J 2022; 289:5670-5681. [PMID: 35320610 DOI: 10.1111/febs.16446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 02/02/2022] [Accepted: 03/22/2022] [Indexed: 12/16/2022]
Abstract
Sphingosine 1-phosphate (S1P) is a lipid mediator with numerous biological functions. The term 'S1P' mainly refers to the sphingolipid molecule with a long-chain sphingoid base of 18 carbon atoms, d18:1 S1P. The enzyme serine palmitoyltransferase catalyses the first step of the sphingolipid de novo synthesis using palmitoyl-CoA as the main substrate. After further reaction steps, d18:1 S1P is generated. However, also stearyl-CoA or myristoyl-CoA can be utilised by the serine palmitoyltransferase, which at the end of the S1P synthesis pathway, results in the production of d20:1 S1P and d16:1 S1P respectively. We measured these S1P homologues in mice and renal tissue of patients suffering from renal cell carcinoma (RCC). Our experiments highlight the relevance of d16:1 S1P for the induction of connective tissue growth factor (CTGF) in the human renal clear cell carcinoma cell line A498 and human RCC tissue. We show that d16:1 S1P versus d18:1 and d20:1 S1P leads to the highest CTGF induction in A498 cells via S1P2 signalling and that both d16:1 S1P and CTGF levels are elevated in RCC compared to adjacent healthy tissue. Our data indicate that d16:1 S1P modulates conventional S1P signalling by acting as a more potent agonist at the S1P2 receptor than d18:1 S1P. We suggest that elevated plasma levels of d16:1 S1P might play a pro-carcinogenic role in the development of RCC via CTGF induction.
Collapse
Affiliation(s)
- Melanie Glueck
- Institute of General Pharmacology and Toxicology, University Hospital and Goethe University Frankfurt, Germany
| | - Alexander Koch
- Institute of General Pharmacology and Toxicology, University Hospital and Goethe University Frankfurt, Germany
| | | | - Nerea Ferreiros Bouzas
- Institute of Clinical Pharmacology, University Hospital and Goethe University Frankfurt, Germany
| | - Sandra Trautmann
- Institute of Clinical Pharmacology, University Hospital and Goethe University Frankfurt, Germany
| | - Liliana Schaefer
- Institute of General Pharmacology and Toxicology, University Hospital and Goethe University Frankfurt, Germany
| | - Waltraud Pfeilschifter
- Institute of General Pharmacology and Toxicology, University Hospital and Goethe University Frankfurt, Germany.,Department of Neurology, Klinikum Lueneburg, Germany
| | - Josef Pfeilschifter
- Institute of General Pharmacology and Toxicology, University Hospital and Goethe University Frankfurt, Germany
| | - Rajkumar Vutukuri
- Institute of General Pharmacology and Toxicology, University Hospital and Goethe University Frankfurt, Germany
| |
Collapse
|
8
|
Jiménez-Altayó F, Marzi J, Galan M, Dantas AP, Ortega M, Rojas S, Egea G, Schenke-Layland K, Jiménez-Xarrié E, Planas AM. Arachnoid membrane as a source of sphingosine-1-phosphate that regulates mouse middle cerebral artery tone. J Cereb Blood Flow Metab 2022; 42:162-174. [PMID: 34474613 PMCID: PMC8721773 DOI: 10.1177/0271678x211033362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Growing evidence indicates that perivascular tissue is critical to modulate vessel function. We hypothesized that the arachnoid membrane surrounding middle cerebral artery (MCA) regulates its function via sphingosine-1-phosphate (S1P)-induced vasoconstriction. The MCA from 3- to 9-month-old male and female wild-type (Oncine France 1 and C57BL/6) mice and sphingosine kinase 2 knockout (SphK2-/-) mice in the C57BL/6 background was mounted in pressure myographs with and without arachnoid membrane. Raman microspectroscopy and imaging were used for in situ detection of S1P. The presence of arachnoid tissue was associated with reduced external and lumen MCA diameters, and with an increase in basal tone regardless of sex and strain background. Strong S1P-positive signals were detected in the arachnoid surrounding the MCA wall in both mice models, as well as in a human post-mortem specimen. Selective S1P receptor 3 antagonist TY 52156 markedly reduced both MCA vasoconstriction induced by exogenous S1P and arachnoid-dependent basal tone increase. Compared to 3-month-old mice, the arachnoid-mediated contractile influence persisted in 9-month-old mice despite a decline in arachnoid S1P deposits. Genetic deletion of SphK2 decreased arachnoid S1P content and vasoconstriction. This is the first experimental evidence that arachnoid membrane regulates the MCA tone mediated by S1P.
Collapse
Affiliation(s)
- Francesc Jiménez-Altayó
- Departament de Farmacologia, de Terapèutica i de Toxicologia, Institut de Neurociències, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Julia Marzi
- Department of Biomedical Engineering, Eberhard Karls University Tübingen, Tübingen, Germany.,NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany.,Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University of Tübingen, Tübingen, Germany
| | - María Galan
- Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, 16689Hospital de la Santa Creu i Sant Pau, IIB Sant Pau, Barcelona, Spain
| | - Ana Paula Dantas
- Institut Clínic Del Tòrax, Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Marisa Ortega
- Unit of Human Anatomy and Embriology, Department of Morphological Sciences, Faculty of Medicine, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.,Institute of Legal Medicine and Forensic Sciences of Catalonia, Hospitalet de Llobregat, Catalonia, Spain
| | - Santiago Rojas
- Unit of Human Anatomy and Embriology, Department of Morphological Sciences, Faculty of Medicine, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Gustavo Egea
- Department of Biomedical Sciences, University of Barcelona School of Medicine and Health Sciences, Barcelona, Spain; IDIBAPS-University of Barcelona, Barcelona, Spain
| | - Katja Schenke-Layland
- Department of Biomedical Engineering, Eberhard Karls University Tübingen, Tübingen, Germany.,NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany.,Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University of Tübingen, Tübingen, Germany.,Department of Medicine/Cardiology, Cardiovascular Research Laboratories, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Elena Jiménez-Xarrié
- Stroke Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau (IIB-Sant Pau), Barcelona, Spain
| | - Anna M Planas
- Department of Brain Ischemia and Neurodegeneration, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain; Area of Neurosciences, IDIBAPS, Barcelona, Spain
| |
Collapse
|
9
|
Gray N, Limberg MM, Bräuer AU, Raap U. Novel functions of S1P in chronic itchy and inflammatory skin diseases. J Eur Acad Dermatol Venereol 2021; 36:365-372. [PMID: 34679239 DOI: 10.1111/jdv.17764] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 08/12/2021] [Indexed: 12/18/2022]
Abstract
S1P is a pleotropic sphingolipid signalling molecule that acts through binding to five high-affinity G-protein coupled receptors. S1P-signaling affects cell fate in a multitude of ways, e.g. influencing cell differentiation, proliferation, and apoptosis, as well as playing an important role in immune cell trafficking. Though many effects of S1P-signaling in the human body have been discovered, the full range of functions is yet to be understood. For inflammatory skin diseases such as atopic dermatitis and psoriasis, evidence is emerging that dysfunction and imbalance of the S1P-axis is a contributing factor. Multiple studies investigating the efficacy of S1PR modulators in alleviating the severity and symptoms of skin conditions in various animal models and human clinical trials have shown promising results and validated the interest in the S1P-axis as a potential therapeutic target. Even though the involvement of S1P-signalling in inflammatory skin diseases still requires further clarification, the implications of the recent findings may prompt expansion of research to additional skin conditions and more S1P-axis modulatory pharmaceuticals.
Collapse
Affiliation(s)
- N Gray
- Division of Experimental Allergy and Immunodermatology, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany.,Division of Anatomy, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - M M Limberg
- Division of Experimental Allergy and Immunodermatology, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - A U Bräuer
- Division of Anatomy, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany.,Research Center for Neurosensory Science, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - U Raap
- Division of Experimental Allergy and Immunodermatology, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany.,Research Center for Neurosensory Science, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| |
Collapse
|
10
|
Venkatraman G, Tang X, Du G, Parisentti AM, Hemmings DG, Brindley DN. Lysophosphatidate Promotes Sphingosine 1-Phosphate Metabolism and Signaling: Implications for Breast Cancer and Doxorubicin Resistance. Cell Biochem Biophys 2021; 79:531-545. [PMID: 34415509 PMCID: PMC11948428 DOI: 10.1007/s12013-021-01024-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 07/09/2021] [Indexed: 10/20/2022]
Abstract
Lysophosphatidate (LPA) and sphingosine 1-phosphate (S1P) promote vasculogenesis, angiogenesis, and wound healing by activating a plethora of overlapping signaling pathways that stimulate mitogenesis, cell survival, and migration. As such, maladaptive signaling by LPA and S1P have major effects in increasing tumor progression and producing poor patient outcomes after chemotherapy and radiotherapy. Many signaling actions of S1P and LPA are not redundant; each are vital in normal physiology and their metabolisms differ. In the present work, we studied how LPA signaling impacts S1P metabolism and signaling in MDA-MB-231 and MCF-7 breast cancer cells. LPA increased sphingosine kinase-1 (SphK1) synthesis and rapidly activated cytosolic SphK1 through association with membranes. Blocking phospholipase D activity attenuated the LPA-induced activation of SphK1 and the synthesis of ABCC1 and ABCG2 transporters that secrete S1P from cells. This effect was magnified in doxorubicin-resistant MCF-7 cells. LPA also facilitated S1P signaling by increasing mRNA expression for S1P1 receptors. Doxorubicin-resistant MCF-7 cells had increased S1P2 and S1P3 receptor expression and show increased LPA-induced SphK1 activation, increased expression of ABCC1, ABCG2 and greater S1P secretion. Thus, LPA itself and LPA-induced S1P signaling counteract doxorubicin-induced death of MCF-7 cells. We conclude from the present and previous studies that LPA promotes S1P metabolism and signaling to coordinately increase tumor growth and metastasis and decrease the effectiveness of chemotherapy and radiotherapy for breast cancer treatment.
Collapse
Affiliation(s)
- Ganesh Venkatraman
- Department of Biochemistry, University of Alberta, Edmonton, AB, T6G 2S2, Canada
| | - Xiaoyun Tang
- Department of Biochemistry, University of Alberta, Edmonton, AB, T6G 2S2, Canada
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB, T6G 2S2, Canada
| | - Guangwei Du
- Department of Integrative Biology & Pharmacology, University of Texas Health Science at Houston, Houston, TX, 77030, USA
| | - Amadeo M Parisentti
- Northern Ontario School of Medicine, Health Sciences North Research Institute, Sudbury, ON, P3E 2H2, Canada
| | - Denise G Hemmings
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB, T6G 2S2, Canada.
- Medical Microbiology and Immunology, Obstetrics and Gynecology, Women and Children's Health Research Institute, Li Ka Shing Institute of Virology, Cardiovascular Research Center, University of Alberta, Edmonton, AB, T6G 2S2, Canada.
| | - David N Brindley
- Department of Biochemistry, University of Alberta, Edmonton, AB, T6G 2S2, Canada.
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB, T6G 2S2, Canada.
| |
Collapse
|
11
|
Affiliation(s)
- Andrea Huwiler
- Institute of Pharmacology, Inselspital INO-F, University of Bern, Switzerland (A.H.)
| | - Josef Pfeilschifter
- Institute of General Pharmacology and Toxicology, Pharmazentrum Frankfurt/ZAFES, Goethe University Frankfurt am Main, Germany (J.P.)
| |
Collapse
|
12
|
Lysophospholipids in Lung Inflammatory Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1303:373-391. [PMID: 33788203 DOI: 10.1007/978-3-030-63046-1_20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The lysophospholipids (LPLs) belong to a group of bioactive lipids that play pivotal roles in several physiological and pathological processes. LPLs are derivatives of phospholipids and consist of a single hydrophobic fatty acid chain, a hydrophilic head, and a phosphate group with or without a large molecule attached. Among the LPLs, lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) are the simplest, and have been shown to be involved in lung inflammatory symptoms and diseases such as acute lung injury, asthma, and chronic obstructive pulmonary diseases. G protein-coupled receptors (GPCRs) mediate LPA and S1P signaling. In this chapter, we will discuss on the role of LPA, S1P, their metabolizing enzymes, inhibitors or agonists of their receptors, and their GPCR-mediated signaling in lung inflammatory symptoms and diseases, focusing specially on acute respiratory distress syndrome, asthma, and chronic obstructive pulmonary disease.
Collapse
|
13
|
Qi Y, Wang W, Song Z, Aji G, Liu XT, Xia P. Role of Sphingosine Kinase in Type 2 Diabetes Mellitus. Front Endocrinol (Lausanne) 2021; 11:627076. [PMID: 33633691 PMCID: PMC7899982 DOI: 10.3389/fendo.2020.627076] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 12/21/2020] [Indexed: 12/15/2022] Open
Abstract
Sphingolipids are a class of essential lipids, functioning as both cell membrane constituents and signaling messengers. In the sphingolipid metabolic network, ceramides serve as the central hub that is hydrolyzed to sphingosine, followed by phosphorylation to sphingosine 1-phosphate (S1P) by sphingosine kinase (SphK). SphK is regarded as a "switch" of the sphingolipid rheostat, as it catalyzes the conversion of ceramide/sphingosine to S1P, which often exhibit opposing biological roles in the cell. Besides, SphK is an important signaling enzyme that has been implicated in the regulation of a wide variety of biological functions. In recent years, an increasing body of evidence has suggested a critical role of SphK in type 2 diabetes mellitus (T2D), although a certain level of controversy remains. Herein, we review recent findings related to SphK in the field of T2D research with a focus on peripheral insulin resistance and pancreatic β-cell failure. It is expected that a comprehensive understanding of the role of SphK and the associated sphingolipids in T2D will help to identify druggable targets for future anti-diabetes therapy.
Collapse
Affiliation(s)
- Yanfei Qi
- Lipid Cell Biology Laboratory, Centenary Institute of Cancer Medicine and Cell Biology, University of Sydney, Sydney, NSW, Australia
| | - Wei Wang
- Department of Endocrinology and Metabolism, Fudan Institute for Metabolic Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ziyu Song
- Department of Endocrinology and Metabolism, Fudan Institute for Metabolic Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Gulibositan Aji
- Department of Endocrinology and Metabolism, Fudan Institute for Metabolic Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xin Tracy Liu
- Lipid Cell Biology Laboratory, Centenary Institute of Cancer Medicine and Cell Biology, University of Sydney, Sydney, NSW, Australia
| | - Pu Xia
- Department of Endocrinology and Metabolism, Fudan Institute for Metabolic Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
14
|
Characteristics of apoptosis induction in human breast cancer cells treated with a ceramidase inhibitor. Cytotechnology 2020; 72:907-919. [PMID: 33270814 DOI: 10.1007/s10616-020-00436-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/30/2020] [Indexed: 12/30/2022] Open
Abstract
Cancer is a complex disease with high mortality rates. Breast cancer is one of the most fatal diseases both for men and woman. Despite the positive developments on cancer treatment, a successful treatment agent/method has not been developed, yet. Recently, cancer research has been involved in sphingolipid metabolism. The key molecule here is ceramide. Ceramides mediate growth suppress, apoptosis and aging regulation. Ceramidases metabolize ceramide and decrease its level in cells and cause escape the death. Inhibition of ceramidases as new targets for cancer treatment is shown in the literature. Herein, we found that d-erythro-MAPP and its nanoparticle formulation, reduce the viability of MCF-7 cells in a dose-dependent manner with IC50 value of 4.4 µM, and 15.6 µM, respectively. Confocal and transmission electron microscopy results revealed apoptotic morphological and ultrastructural changes for both agents. Apoptosis and cell cycle arrest were supported by annexin-V, mitochondrial membrane potential changings and cell cycle analysis, respectively.
Collapse
|
15
|
Abstract
SARS-CoV2 infection or COVID-19 has created panic around the world since its first origin in December 2019 in Wuhan city, China. The COVID-19 pandemic has infected more than 46.4 million people, with 1,199,727 deaths. The immune system plays a crucial role in the severity of COVID-19 and the development of pneumonia-induced acute lung injury (ALI) or acute respiratory distress syndrome (ARDS). Along with providing protection, both innate and T cell-based adaptive immune response dysregulate during severe SARS-CoV2 infection. This dysregulation is more pronounced in older population and patients with comorbidities (Diabetes, hypertension, obesity, other pulmonary and autoimmune diseases). However, COVID-19 patients develop protective antibodies (Abs) against SARS-CoV2, but they do not long for last. The induction of the immune response against the pathogen also requires metabolic energy that generates through the process of immunometabolism. The change in the metabolic stage of immune cells from homeostasis to an inflammatory or infectious environment is called immunometabolic reprogramming. The article describes the cellular immunology (macrophages, T cells, B cells, dendritic cells, NK cells and pulmonary epithelial cells (PEC) and vascular endothelial cells) and the associated immune response during COVID-19. Immunometabolism may serve as a cell-specific therapeutic approach to target COVID-19.
Collapse
Affiliation(s)
- Vijay Kumar
- Children's Health Queensland Clinical Unit, School of Clinical Medicine, Faculty of Medicine, Mater Research, University of Queensland, Brisbane, Queensland, Australia.,School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
16
|
Chua XY, Chai YL, Chew WS, Chong JR, Ang HL, Xiang P, Camara K, Howell AR, Torta F, Wenk MR, Hilal S, Venketasubramanian N, Chen CP, Herr DR, Lai MKP. Immunomodulatory sphingosine-1-phosphates as plasma biomarkers of Alzheimer's disease and vascular cognitive impairment. Alzheimers Res Ther 2020; 12:122. [PMID: 32998767 PMCID: PMC7528375 DOI: 10.1186/s13195-020-00694-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/16/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND There has been ongoing research impetus to uncover novel blood-based diagnostic and prognostic biomarkers for Alzheimer's disease (AD), vascular dementia (VaD), and related cerebrovascular disease (CEVD)-associated conditions within the spectrum of vascular cognitive impairment (VCI). Sphingosine-1-phosphates (S1Ps) are signaling lipids which act on the S1PR family of cognate G-protein-coupled receptors and have been shown to modulate neuroinflammation, a process known to be involved in both neurodegenerative and cerebrovascular diseases. However, the status of peripheral S1P in AD and VCI is at present unclear. METHODS We obtained baseline bloods from individuals recruited into an ongoing longitudinal cohort study who had normal cognition (N = 80); cognitive impairment, no dementia (N = 160); AD (N = 113); or VaD (N = 31), along with neuroimaging assessments of cerebrovascular diseases. Plasma samples were processed for the measurements of major S1P species: d16:1, d17:1, d18:0, and d18:1, along with pro-inflammatory cytokines interleukin (IL)-6, IL-8, and tumor necrosis factor (TNF). Furthermore, in vitro effects of S1Ps on cytokine expression were also studied in an astrocytoma cell line and in rodent primary astrocytes. RESULTS Of the S1Ps species measured, only d16:1 S1P was significantly reduced in the plasma of VaD, but not AD, patients, while the d18:1 to d16:1 ratios were increased in all cognitive subgroups (CIND, AD, and VaD). Furthermore, d18:1 to d16:1 ratios correlated with levels of IL-6, IL-8, and TNF. In both primary astrocytes and an astroglial cell line, treatment with d16:1 or d18:1 S1P resulted in the upregulation of mRNA transcripts of pro-inflammatory cytokines, with d18:1 showing a stronger effect than d16:1. Interestingly, co-treatment assays showed that the addition of d16:1 reduced the extent of d18:1-mediated gene expression, indicating that d16:1 may function to "fine-tune" the pro-inflammatory effects of d18:1. CONCLUSION Taken together, our data suggest that plasma d16:1 S1P may be useful as a diagnostic marker for VCI, while the d18:1 to d16:1 S1P ratio is an index of dysregulated S1P-mediated immunomodulation leading to chronic inflammation-associated neurodegeneration and cerebrovascular damage.
Collapse
Affiliation(s)
- Xin Ying Chua
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, 117597, Singapore
| | - Yuek Ling Chai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, 117597, Singapore
- Memory, Aging and Cognition Centre, National University Health Systems, Kent Ridge, Singapore
| | - Wee Siong Chew
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, 117597, Singapore
| | - Joyce R Chong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, 117597, Singapore
- Memory, Aging and Cognition Centre, National University Health Systems, Kent Ridge, Singapore
| | - Hui Li Ang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, 117597, Singapore
- Cancer Science Institute, National University of Singapore, Kent Ridge, Singapore
| | - Ping Xiang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, 117597, Singapore
| | - Kaddy Camara
- Department of Chemistry, University of Connecticut, Storrs, CT, USA
| | - Amy R Howell
- Department of Chemistry, University of Connecticut, Storrs, CT, USA
| | - Federico Torta
- Singapore Lipidomics Incubator (SLING), Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore
| | - Markus R Wenk
- Singapore Lipidomics Incubator (SLING), Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore
| | - Saima Hilal
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, 117597, Singapore
- Memory, Aging and Cognition Centre, National University Health Systems, Kent Ridge, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Kent Ridge, Singapore
| | | | - Christopher P Chen
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, 117597, Singapore
- Memory, Aging and Cognition Centre, National University Health Systems, Kent Ridge, Singapore
| | - Deron R Herr
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, 117597, Singapore.
- Department of Biology, San Diego State University, San Diego, CA, USA.
| | - Mitchell K P Lai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, 117597, Singapore.
- Memory, Aging and Cognition Centre, National University Health Systems, Kent Ridge, Singapore.
| |
Collapse
|
17
|
Tsuchida J, Nagahashi M, Nakajima M, Katsuta E, Rashid OM, Qi Q, Yan L, Okuda S, Takabe K, Wakai T. Sphingosine Kinase 1 is Associated With Immune Cell-Related Gene Expressions in Human Breast Cancer. J Surg Res 2020; 256:645-656. [PMID: 32810665 DOI: 10.1016/j.jss.2020.06.057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/08/2020] [Accepted: 06/16/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Although previous experiments have implicated sphingosine-1-phosphate (S1P) as a links between immune reactions and cancer progression, the exact mechanism of this interaction has not comprehensively studied in clinical human samples. This study sought to evaluate the S1P regulation by sphingosine kinase 1 (SPHK1), an S1P-producing enzyme, in the immunity/immuno-reactivity of clinical human breast cancer surgical specimens. METHODS S1P levels were examined in tumor, peritumoral, and normal human breast samples using mass spectrometry. Genomics Data Commons data portal of The Cancer Genome Atlas cohort was used to assess the expression of S1P-related and immune-related genes. RESULTS S1P levels were significantly higher in tumor samples compared to peritumoral (P < 0.05) or normal human breast samples (P < 0.001). SPHK1 gene expression was elevated in tumoral samples compared to normal breast samples (P < 0.01). Furthermore, the elevated expression of SPHK1 in breast cancer tissue was associated with an increased expression of the different kinds of immune-related genes, such as CD68, CD163, CD4, and FOXP3 (forkhead box P3), in HER2-negative breast cancer. Network analysis showed the central role of SPHK1 in the interaction of S1P signaling and expression of immune cell-related proteins. CONCLUSIONS We demonstrated that S1P is mainly produced by tumor tissue, rather than peritumoral tissue, in breast cancer patients. Our data revealed the involvement of S1P signaling in the regulation of immune-related genes, suggesting the links between S1P and complicated immune-cancer interactions in breast cancer patients.
Collapse
Affiliation(s)
- Junko Tsuchida
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Niigata, Japan
| | - Masayuki Nagahashi
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Niigata, Japan.
| | - Masato Nakajima
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Niigata, Japan
| | - Eriko Katsuta
- Breast Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Omar M Rashid
- Division of Surgical Oncology, Holy Cross Hospital Michael and Dianne Bienes Comprehensive Cancer Center, Fort Lauderdale, Florida; Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts; Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida; Department of Surgery, Nova Southeastern University School of Medicine, Fort Lauderdale, Florida
| | - Qianya Qi
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Li Yan
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Shujiro Okuda
- Division of Bioinformatics, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Niigata, Japan
| | - Kazuaki Takabe
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Niigata, Japan; Breast Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, New York; Department of Surgery, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, The State University of New York, Buffalo, New York
| | - Toshifumi Wakai
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Niigata, Japan
| |
Collapse
|
18
|
He Y, Shi B, Zhao X, Sui J. Sphingosine-1-phosphate induces islet β-cell proliferation and decreases cell apoptosis in high-fat diet/streptozotocin diabetic mice. Exp Ther Med 2019; 18:3415-3424. [PMID: 31602216 PMCID: PMC6777293 DOI: 10.3892/etm.2019.7999] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 08/08/2019] [Indexed: 12/17/2022] Open
Abstract
Sphingosine-1-phosphate (S1P) has been reported to enhance the function of islet β-cells, providing a potential therapeutic target for diabetes mellitus. In the present study, the effects of S1P on the proliferation and apoptosis of β-cells in type 2 diabetic mice were investigated. The mice were administered intraperitoneal S1P solution daily at a dose of 20 µg/kg for three weeks. The intraperitoneal glucose tolerance test (IPGTT) and homeostatic model assessment of insulin resistance (HOMA-IR) index determination were carried out. Immunohistochemical staining was used to detect the protein expression of insulin, antigen Ki-67 and S1P receptor isoforms (S1PR1/S1PR2/S1PR3) in pancreatic islets. Compared with the diabetic control (DC) group, the IPGTT results and HOMA-IR index in the S1P treatment group were decreased. The islets in the S1P group exhibited higher insulin immunostaining intensity than the DC group, as well as higher proliferation (P<0.05) and lower apoptosis rates (P<0.05). Positive staining for the S1P receptors S1PR1, S1PR2 and S1PR3 was observed in the cytoplasm and membrane of the islet cells. S1PR1 and S1PR2 proteins showed increased expression in the S1P and DC groups compared with the normal control group (P<0.01 and P<0.05, respectively), whereas no significant difference was observed in the expression of S1PR3 among these groups. In conclusion, extracellular S1P can induce islet β-cell proliferation and decrease cell apoptosis in diabetic mice. S1P function may be mediated via S1PR1 and S1PR2; therefore, targeting S1P/S1PR signalling pathways may be a novel therapeutic strategy for diabetes mellitus.
Collapse
Affiliation(s)
- Yizhi He
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China.,Department of Endocrinology, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, Shaanxi 710018, P.R. China
| | - Bingyin Shi
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xinrui Zhao
- Department of Immunology and Rheumatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Jing Sui
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
19
|
Xiao L, Zhou Y, Friis T, Beagley K, Xiao Y. S1P-S1PR1 Signaling: the "Sphinx" in Osteoimmunology. Front Immunol 2019; 10:1409. [PMID: 31293578 PMCID: PMC6603153 DOI: 10.3389/fimmu.2019.01409] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 06/04/2019] [Indexed: 12/24/2022] Open
Abstract
The fundamental interaction between the immune and skeletal systems, termed as osteoimmunology, has been demonstrated to play indispensable roles in the maintenance of balance between bone resorption and formation. The pleiotropic sphingolipid metabolite, sphingosine 1-phosphate (S1P), together with its cognate receptor, sphingosine-1-phosphate receptor-1 (S1PR1), are known as key players in osteoimmunology due to the regulation on both immune system and bone remodeling. The role of S1P-S1PR1 signaling in bone remodeling can be directly targeting both osteoclastogenesis and osteogenesis. Meanwhile, inflammatory cell function and polarization in both adaptive immune (T cell subsets) and innate immune cells (macrophages) are also regulated by this signaling axis, suggesting that S1P-S1PR1 signaling could aslo indirectly regulate bone remodeling via modulating the immune system. Therefore, it could be likely that S1P-S1PR1 signaling might take part in the maintenance of continuous bone turnover under physiological conditions, while lead to the pathogenesis of bone deformities during inflammation. In this review, we summarized the immunological regulation of S1P-S1PR1 signal axis during bone remodeling with an emphasis on how osteo-immune regulators are affected by inflammation, an issue with relevance to chronical bone disorders such as rheumatoid arthritis, spondyloarthritis and periodontitis.
Collapse
Affiliation(s)
- Lan Xiao
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia.,The Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, QLD, Australia
| | - Yinghong Zhou
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia.,The Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, QLD, Australia.,Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Thor Friis
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Kenneth Beagley
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia.,The Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, QLD, Australia
| | - Yin Xiao
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia.,The Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, QLD, Australia.,Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
20
|
Plöhn S, Edelmann B, Japtok L, He X, Hose M, Hansen W, Schuchman EH, Eckstein A, Berchner-Pfannschmidt U. CD40 Enhances Sphingolipids in Orbital Fibroblasts: Potential Role of Sphingosine-1-Phosphate in Inflammatory T-Cell Migration in Graves' Orbitopathy. Invest Ophthalmol Vis Sci 2019; 59:5391-5397. [PMID: 30452592 DOI: 10.1167/iovs.18-25466] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Graves' orbitopathy (GO) is an autoimmune orbital disorder associated with Graves' disease caused by thyrotropin receptor autoantibodies. Orbital fibroblasts (OFs) and CD40 play a key role in disease pathogenesis. The bioactive lipid sphingosine-1-phosphate (S1P) has been implicated in promoting adipogenesis, fibrosis, and inflammation in OFs. We investigated the role of CD40 signaling in inducing S1P activity in orbital inflammation. Methods OFs and T cells were derived from GO patients and healthy control (Ctl) persons. S1P abundance in orbital tissues was evaluated by immunofluorescence. OFs were stimulated with CD40 ligand and S1P levels were determined by ELISA. Further, activities of acid sphingomyelinase (ASM), acid ceramidase, and sphingosine kinase were measured by ultraperformance liquid chromatography. Sphingosine and ceramide contents were analyzed by mass spectrometry. Finally, the role for S1P in T-cell attraction was investigated by T-cell migration assays. Results GO orbital tissue showed elevated amounts of S1P as compared to control samples. Stimulation of CD40 induced S1P expression in GO-derived OFs, while Ctl-OFs remained unaffected. A significant increase of ASM and sphingosine kinase activities, as well as lipid formation, was observed in GO-derived OFs. Migration assay of T cells in the presence of SphK inhibitor revealed that S1P released by GO-OFs attracted T cells for migration. Conclusions The results demonstrated that CD40 ligand stimulates GO fibroblast to produce S1P, which is a driving force for T-cell migration. The results support the use of S1P receptor signaling modulators in GO management.
Collapse
Affiliation(s)
- Svenja Plöhn
- Molecular Ophthalmology, Department of Ophthalmology, University of Duisburg-Essen, Essen, Germany.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Bärbel Edelmann
- Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany.,Department for Haematology and Oncology, Otto-von-Guericke University, Magdeburg, Germany
| | - Lukasz Japtok
- Department of Toxicology, Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
| | - Xingxuan He
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Matthias Hose
- Institute of Medical Microbiology, University of Duisburg-Essen, Essen, Germany
| | - Wiebke Hansen
- Institute of Medical Microbiology, University of Duisburg-Essen, Essen, Germany
| | - Edward H Schuchman
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Anja Eckstein
- Molecular Ophthalmology, Department of Ophthalmology, University of Duisburg-Essen, Essen, Germany
| | | |
Collapse
|
21
|
Fingolimod Suppresses the Proinflammatory Status of Interferon-γ-Activated Cultured Rat Astrocytes. Mol Neurobiol 2019; 56:5971-5986. [PMID: 30701416 DOI: 10.1007/s12035-019-1481-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/10/2019] [Indexed: 12/14/2022]
Abstract
Astroglia, the primary homeostatic cells of the central nervous system, play an important role in neuroinflammation. They act as facultative immunocompetent antigen-presenting cells (APCs), expressing major histocompatibility complex (MHC) class II antigens upon activation with interferon (IFN)-γ and possibly other proinflammatory cytokines that are upregulated in disease states, including multiple sclerosis (MS). We characterized the anti-inflammatory effects of fingolimod (FTY720), an established drug for MS, and its phosphorylated metabolite (FTY720-P) in IFN-γ-activated cultured rat astrocytes. The expression of MHC class II compartments, β2 adrenergic receptor (ADR-β2), and nuclear factor kappa-light-chain enhancer of activated B cells subunit p65 (NF-κB p65) was quantified in immunofluorescence images acquired by laser scanning confocal microscopy. In addition, MHC class II-enriched endocytotic vesicles were labeled by fluorescent dextran and their mobility analyzed in astrocytes subjected to different treatments. FTY720 and FTY720-P treatment significantly reduced the number of IFN-γ-induced MHC class II compartments and substantially increased ADR-β2 expression, which is otherwise small or absent in astrocytes in MS. These effects could be partially attributed to the observed decrease in NF-κB p65 expression, because the NF-κB signaling cascade is activated in inflammatory processes. We also found attenuated trafficking and secretion from dextran-labeled endo-/lysosomes that may hinder efficient delivery of MHC class II molecules to the plasma membrane. Our data suggest that FTY720 and FTY720-P at submicromolar concentrations mediate anti-inflammatory effects on astrocytes by suppressing their action as APCs, which may further downregulate the inflammatory process in the brain, constituting the therapeutic effect of fingolimod in MS.
Collapse
|
22
|
Qiu L, Chen L, Yang X, Ye A, Jiang W, Sun W. S1P mediates human amniotic cells proliferation induced by a 50-Hz magnetic field exposure via ERK1/2 signaling pathway. J Cell Physiol 2019; 234:7734-7741. [PMID: 30624774 DOI: 10.1002/jcp.28102] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 12/07/2018] [Indexed: 12/16/2022]
Abstract
Extremely low frequency electromagnetic field (ELF-EMF) is a kind of physical stimulus in public and occupational environment. Numerous studies have indicated that exposure of cells to ELF-EMF could promote cell proliferation. But the detailed mechanisms implicated in these proliferative processes remain unclear. In the present experiment, the possible roles of sphingosine-1-phosphate (S1P) in 50-Hz magnetic field (MF)-induced cell proliferation were investigated. Results showed that exposure of human amniotic (FL) cells to a 50-Hz MF with an intensity of 0.4 mT significantly enhanced ceramide metabolism, increased S1P production, activated extracellular signal regulated kinase 1/2 (ERK1/2), and promoted cell proliferation. All of these effects induced by MF exposure could be inhibited by SKI II, an inhibitor of sphingosine kinase (SphK). In addition, both the cell proliferative response and the ERK1/2 activation induced by MF exposure were blocked completely by U0126, a specific inhibitor of MEK (ERK kinases 1 and 2). Taken together, the findings in present study suggested that S1P mediated 50-Hz MF-induced cell proliferation via triggering ERK1/2 signal pathway.
Collapse
Affiliation(s)
- Liping Qiu
- Department of Preventive Health Care, Jinhua Hospital of Zhejiang University, Jinhua, China.,Bioelectromagnetics Key Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Liangjing Chen
- Bioelectromagnetics Key Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaobo Yang
- Bioelectromagnetics Key Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Anfang Ye
- Department of Occupational Disease of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Jiang
- Institute of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenjun Sun
- Bioelectromagnetics Key Laboratory, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Department of Occupational Disease of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
23
|
Wu S, Zhang D, Bai J, Du W, Duan Y, Liu Y, Zou X, Ouyang H, Gao C. Temperature-Gating Titania Nanotubes Regulate Migration of Endothelial Cells. ACS APPLIED MATERIALS & INTERFACES 2019; 11:1254-1266. [PMID: 30525390 DOI: 10.1021/acsami.8b17530] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
External stimuli-responsive biomaterials represent a type of promising candidates for addressing the complexity of biological systems. In this study, a platform based on the combination of temperature-sensitive polymers and a nanotube array was developed for loading sphingosine 1-phosphate (S1P) and regulating the migration of endothelial cells (ECs) at desired conditions. The localized release dosage of effectors could be controlled by the change of environmental temperature. At a culture temperature above the lower critical solution temperature, the polymer "gatekeeper" with a collapsed conformation allowed the release of S1P, which in turn enhanced the migration of ECs. The migration rate of single cells was significantly enhanced up to 58.5%, and the collective migration distance was also promoted to 25.1% at 24 h and 33.2% at 48 h. The cell morphology, focal adhesion, organization of cytoskeleton, and expression of genes and proteins related to migration were studied to unveil the intrinsic mechanisms. The cell mobility was regulated by the released S1P, which would bind with the S1PR1 receptor on the cell membrane and trigger the Rho GTPase pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hongwei Ouyang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine , Zhejiang University , Hangzhou 310058 , China
| | - Changyou Gao
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine , Zhejiang University , Hangzhou 310058 , China
| |
Collapse
|
24
|
Zhong L, Jiang X, Zhu Z, Qin H, Dinkins MB, Kong JN, Leanhart S, Wang R, Elsherbini A, Bieberich E, Zhao Y, Wang G. Lipid transporter Spns2 promotes microglia pro-inflammatory activation in response to amyloid-beta peptide. Glia 2018; 67:498-511. [PMID: 30484906 DOI: 10.1002/glia.23558] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/31/2018] [Accepted: 10/22/2018] [Indexed: 12/29/2022]
Abstract
Accumulating evidence indicates that neuroinflammation contributes to the pathogenesis and exacerbation of neurodegenerative disorders, such as Alzheimer's disease (AD). Sphingosine-1-phosphate (S1P) is a pleiotropic bioactive lipid that regulates many pathophysiological processes including inflammation. We present evidence here that the spinster homolog 2 (Spns2), a S1P transporter, promotes microglia pro-inflammatory activation in vitro and in vivo. Spns2 knockout (Spns2KO) in primary cultured microglia resulted in significantly reduced levels of pro-inflammatory cytokines induced by lipopolysaccharide (LPS) and amyloid-beta peptide 1-42 oligomers (Aβ42) when compared with littermate controls. Fingolimod (FTY720), a S1P receptor 1 (S1PR1) functional antagonist and FDA approved drug for relapsing-remitting multiple sclerosis, partially blunted Aβ42-induced pro-inflammatory cytokine generation, suggesting that Spns2 promotes microglia pro-inflammatory activation through S1P-signaling. Spns2KO significantly reduced Aβ42-induced nuclear factor kappa B (NFκB) activity. S1P increased, while FTY720 dampened, Aβ42-induced NFκB activity, suggesting that Spns2 activates microglia inflammation through, at least partially, NFκB pathway. Spns2KO mouse brains showed significantly reduced Aβ42-induced microglia activation/accumulation and reduced levels of pro-inflammatory cytokines when compared with age-matched controls. More interestingly, Spns2KO ameliorated Aβ42-induced working memory deficit detected by Y-Maze. In summary, these results suggest that Spns2 promotes pro-inflammatory polarization of microglia and may play a crucial role in AD pathogenesis.
Collapse
Affiliation(s)
- Liansheng Zhong
- Department of Physiology, University of Kentucky, Lexington, Kentucky.,Department of Bioinformatics, Key Laboratory of Cell Biology of Ministry of Public Health, College of Life Sciences, China Medical University, Shenyang, China
| | - Xue Jiang
- Department of Physiology, University of Kentucky, Lexington, Kentucky.,Shengjing Hospital, China Medical University, Shenyang, Liaoning, China
| | - Zhihui Zhu
- Department of Physiology, University of Kentucky, Lexington, Kentucky
| | - Haiyan Qin
- Department of Physiology, University of Kentucky, Lexington, Kentucky
| | - Michael B Dinkins
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Ji-Na Kong
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Silvia Leanhart
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Rebecca Wang
- Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, Maryland
| | - Ahmed Elsherbini
- Department of Physiology, University of Kentucky, Lexington, Kentucky
| | - Erhard Bieberich
- Department of Physiology, University of Kentucky, Lexington, Kentucky.,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Yujie Zhao
- Department of Bioinformatics, Key Laboratory of Cell Biology of Ministry of Public Health, College of Life Sciences, China Medical University, Shenyang, China
| | - Guanghu Wang
- Department of Physiology, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
25
|
Pulli I, Asghar MY, Kemppainen K, Törnquist K. Sphingolipid-mediated calcium signaling and its pathological effects. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1668-1677. [DOI: 10.1016/j.bbamcr.2018.04.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/17/2018] [Accepted: 04/23/2018] [Indexed: 12/15/2022]
|
26
|
Elzoheiry M, Da’dara AA, Bhardwaj R, Wang Q, Azab MS, El-Kholy ESI, El-Beshbishi SN, Skelly PJ. Intravascular Schistosoma mansoni Cleave the Host Immune and Hemostatic Signaling Molecule Sphingosine-1-Phosphate via Tegumental Alkaline Phosphatase. Front Immunol 2018; 9:1746. [PMID: 30105025 PMCID: PMC6077193 DOI: 10.3389/fimmu.2018.01746] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 07/16/2018] [Indexed: 12/16/2022] Open
Abstract
Schistosomes are parasitic flatworms that infect the vasculature of >200 million people around the world. These long-lived parasites do not appear to provoke blood clot formation or obvious inflammation around them in vivo. Proteins expressed at the host-parasite interface (such as Schistosoma mansoni alkaline phosphatase, SmAP) are likely key to these abilities. SmAP is a glycoprotein that hydrolyses the artificial substrate p-nitrophenyl phosphate in a reaction that requires Mg2+ and at an optimal pH of 9. SmAP additionally cleaves the nucleoside monophosphates AMP, CMP, GMP, and TMP, all with a similar Km (~600-650 μM). Living adult worms, incubated in murine plasma for 1 h, alter the plasma metabolome; a decrease in sphingosine-1-phosphate (S1P) is accompanied by an increase in the levels of its component parts-sphingosine and phosphate. To test the hypothesis that schistosomes can hydrolyze S1P (and not merely recruit or activate a host plasma enzyme with this function), living intravascular life-stage parasites were incubated with commercially obtained S1P and cleavage of S1P was detected. Parasites whose SmAP gene was suppressed using RNAi were impaired in their ability to cleave S1P compared to controls. In addition, recombinant SmAP hydrolyzed S1P. Since extracellular S1P plays key roles in controlling inflammation and platelet aggregation, we hypothesize that schistosome SmAP, by degrading S1P, can regulate the level of this bioactive lipid in the environment of the parasites to control these processes in the worm's local environment. This is the first report of any parasite being able to cleave S1P.
Collapse
Affiliation(s)
- Manal Elzoheiry
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, United States
- Department of Medical Parasitology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Akram A. Da’dara
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, United States
| | - Rita Bhardwaj
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, United States
| | - Qiang Wang
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, United States
| | - Manar S. Azab
- Department of Medical Parasitology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - El-Saeed I. El-Kholy
- Department of Medical Parasitology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Samar N. El-Beshbishi
- Department of Medical Parasitology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Patrick J. Skelly
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, United States
| |
Collapse
|
27
|
Liu L, Zhai C, Pan Y, Zhu Y, Shi W, Wang J, Yan X, Su X, Song Y, Gao L, Li M. Sphingosine-1-phosphate induces airway smooth muscle cell proliferation, migration, and contraction by modulating Hippo signaling effector YAP. Am J Physiol Lung Cell Mol Physiol 2018; 315:L609-L621. [PMID: 29999407 DOI: 10.1152/ajplung.00554.2017] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sphingosine-1-phosphate (S1P), a bioactive lipid, has been shown to be elevated in the airways of individuals with asthma and modulates the airway smooth muscle cell (ASMC) functions, yet its underlying molecular mechanisms are not completely understood. The aim of the present study is to address this issue. S1P induced yes-associated protein (YAP) dephosphorylation and nuclear localization via the S1PR2/3/Rho-associated protein kinase (ROCK) pathway, and this in turn increased forkhead box M1 (FOXM1) and cyclin D1 expression leading to ASMC proliferation, migration, and contraction. Pretreatment of cells with S1PR2 antagonist JTE013, S1PR3 antagonist CAY10444, or ROCK inhibitor Y27632 blocked S1P-induced alterations of YAP, FOXM1, cyclin D1, and ASMC proliferation, migration, and contraction. In addition, prior silencing of YAP or FOXM1 with siRNA reversed the effect of S1P on ASMC functions. Taken together, our study indicates that S1P stimulates ASMC proliferation, migration, and contraction by binding to S1PR2/3 and modulating ROCK/YAP/FOXM1 axis and suggests that targeting this pathway might have potential value in the management of asthma.
Collapse
Affiliation(s)
- Lu Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi , People's Republic of China
| | - Cui Zhai
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi , People's Republic of China
| | - Yilin Pan
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi , People's Republic of China
| | - Yanting Zhu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi , People's Republic of China
| | - Wenhua Shi
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi , People's Republic of China
| | - Jian Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi , People's Republic of China
| | - Xin Yan
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi , People's Republic of China
| | - Xiaofan Su
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi , People's Republic of China
| | - Yang Song
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi , People's Republic of China
| | - Li Gao
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Manxiang Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi , People's Republic of China
| |
Collapse
|
28
|
Hanyu T, Nagahashi M, Ichikawa H, Ishikawa T, Kobayashi T, Wakai T. Expression of phosphorylated sphingosine kinase 1 is associated with diffuse type and lymphatic invasion in human gastric cancer. Surgery 2018; 163:1301-1306. [DOI: 10.1016/j.surg.2017.11.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 09/26/2017] [Accepted: 11/22/2017] [Indexed: 01/28/2023]
|
29
|
Kleuser B. Divergent Role of Sphingosine 1-Phosphate in Liver Health and Disease. Int J Mol Sci 2018; 19:ijms19030722. [PMID: 29510489 PMCID: PMC5877583 DOI: 10.3390/ijms19030722] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/08/2018] [Accepted: 02/26/2018] [Indexed: 12/11/2022] Open
Abstract
Two decades ago, sphingosine 1-phosphate (S1P) was discovered as a novel bioactive molecule that regulates a variety of cellular functions. The plethora of S1P-mediated effects is due to the fact that the sphingolipid not only modulates intracellular functions but also acts as a ligand of G protein-coupled receptors after secretion into the extracellular environment. In the plasma, S1P is found in high concentrations, modulating immune cell trafficking and vascular endothelial integrity. The liver is engaged in modulating the plasma S1P content, as it produces apolipoprotein M, which is a chaperone for the S1P transport. Moreover, the liver plays a substantial role in glucose and lipid homeostasis. A dysfunction of glucose and lipid metabolism is connected with the development of liver diseases such as hepatic insulin resistance, non-alcoholic fatty liver disease, or liver fibrosis. Recent studies indicate that S1P is involved in liver pathophysiology and contributes to the development of liver diseases. In this review, the current state of knowledge about S1P and its signaling in the liver is summarized with a specific focus on the dysregulation of S1P signaling in obesity-mediated liver diseases. Thus, the modulation of S1P signaling can be considered as a potential therapeutic target for the treatment of hepatic diseases.
Collapse
Affiliation(s)
- Burkhard Kleuser
- Department of Toxicology, Institute of Nutritional Science, Faculty of Mathematics and Natural Science, University of Potsdam, Arthur-Scheunert Allee 114-116, 14558 Nuthetal, Germany.
| |
Collapse
|
30
|
Fang C, Bian G, Ren P, Xiang J, Song J, Yu C, Zhang Q, Liu L, Chen K, Liu F, Zhang K, Wu C, Sun R, Hu D, Ju G, Wang J. S1P transporter SPNS2 regulates proper postnatal retinal morphogenesis. FASEB J 2018; 32:3597-3613. [DOI: 10.1096/fj.201701116r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Chao Fang
- Department of NeurobiologyXijing HospitalFourth Military Medical UniversityXi'anChina
| | - Ganlan Bian
- Department of NeurobiologyXijing HospitalFourth Military Medical UniversityXi'anChina
| | - Pan Ren
- Department of Plastic SurgeryTangdu HospitalXijing HospitalFourth Military Medical UniversityXi'anChina
| | - Jie Xiang
- Department of NeurobiologyXijing HospitalFourth Military Medical UniversityXi'anChina
| | - Jun Song
- Department of NeurobiologyXijing HospitalFourth Military Medical UniversityXi'anChina
| | - Caiyong Yu
- Department of NeurobiologyXijing HospitalFourth Military Medical UniversityXi'anChina
| | - Qian Zhang
- Department of NeurologyHainan Branch of Chinese People's Liberation Army General HospitalSanyaChina
| | - Ling Liu
- Department of NeurobiologyXijing HospitalFourth Military Medical UniversityXi'anChina
| | - Kun Chen
- Department of NeurobiologyXijing HospitalFourth Military Medical UniversityXi'anChina
| | - Fangfang Liu
- Department of NeurobiologyXijing HospitalFourth Military Medical UniversityXi'anChina
| | - Kun Zhang
- Department of NeurobiologyXijing HospitalFourth Military Medical UniversityXi'anChina
| | - Chunfeng Wu
- BIOS LaboratoryBIOS Bioscience and Technology Limited CompanyGuangzhouChina
| | - Ruixia Sun
- BIOS LaboratoryBIOS Bioscience and Technology Limited CompanyGuangzhouChina
| | - Dan Hu
- Department of OphthalmologyXijing HospitalFourth Military Medical UniversityXi'anChina
| | - Gong Ju
- Department of NeurobiologyXijing HospitalFourth Military Medical UniversityXi'anChina
| | - Jian Wang
- BIOS LaboratoryBIOS Bioscience and Technology Limited CompanyGuangzhouChina
- Institutes for Life Sciences and School of MedicineSouth China University of TechnologyGuangzhouChina
| |
Collapse
|
31
|
Guan Z, Wang F, Cui X, Inscho EW. Mechanisms of sphingosine-1-phosphate-mediated vasoconstriction of rat afferent arterioles. Acta Physiol (Oxf) 2018. [PMID: 28640982 DOI: 10.1111/apha.12913] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
AIM Sphingosine-1-phosphate (S1P) influences resistance vessel function and is implicated in renal pathological processes. Previous studies revealed that S1P evoked potent vasoconstriction of the pre-glomerular microvasculature, but the underlying mechanisms remain incompletely defined. We postulated that S1P-mediated pre-glomerular microvascular vasoconstriction involves activation of voltage-dependent L-type calcium channels (L-VDCC) and the rho/rho kinase pathway. METHODS Afferent arteriolar reactivity was assessed in vitro using the blood-perfused rat juxtamedullary nephron preparation, and diameter was measured during exposure to physiological and pharmacological agents. RESULTS Exogenous S1P (10-9 -10-5 mol L-1 ) evoked concentration-dependent vasoconstriction of afferent arterioles. Superfusion with nifedipine, a L-VDCC blocker, increased arteriolar diameter by 39 ± 18% of baseline and significantly attenuated the S1P-induced vasoconstriction. Superfusion with the rho kinase inhibitor, Y-27632, increased diameter by 60 ± 12% of baseline and also significantly blunted vasoconstriction by S1P. Combined nifedipine and Y-27632 treatment significantly inhibited S1P-induced vasoconstriction over the entire concentration range tested. In contrast, depletion of intracellular Ca2+ stores with the Ca2+ -ATPase inhibitors, thapsigargin or cyclopiazonic acid, did not alter the S1P-mediated vasoconstrictor profile. Scavenging reactive oxygen species (ROS) or inhibition of nicotinamide adenine dinucleotide phosphate oxidase activity significantly attenuated S1P-mediated vasoconstriction. CONCLUSION Exogenous S1P elicits potent vasoconstriction of rat afferent arterioles. These data also demonstrate that S1P-mediated pre-glomerular vasoconstriction involves activation of L-VDCC, the rho/rho kinase pathway and ROS. Mobilization of Ca2+ from intracellular stores is not required for S1P-mediated vasoconstriction. These studies reveal a potential role for S1P in the modulation of renal microvascular tone.
Collapse
Affiliation(s)
- Z. Guan
- Division of Nephrology; Department of Medicine; University of Alabama at Birmingham; Birmingham AL USA
| | - F. Wang
- Department of Biostatistics; Ryals School of Public Health; University of Alabama at Birmingham; Birmingham AL USA
| | - X. Cui
- Department of Biostatistics; Ryals School of Public Health; University of Alabama at Birmingham; Birmingham AL USA
| | - E. W. Inscho
- Division of Nephrology; Department of Medicine; University of Alabama at Birmingham; Birmingham AL USA
| |
Collapse
|
32
|
Huwiler A, Pfeilschifter J. Sphingolipid signaling in renal fibrosis. Matrix Biol 2018; 68-69:230-247. [PMID: 29343457 DOI: 10.1016/j.matbio.2018.01.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 01/08/2018] [Accepted: 01/08/2018] [Indexed: 12/28/2022]
Abstract
Over the last decade, various sphingolipid subspecies have gained increasing attention as important signaling molecules that regulate a multitude of physiological and pathophysiological processes including inflammation and tissue remodeling. These mediators include ceramide, sphingosine 1-phosphate (S1P), the cerebroside glucosylceramide, lactosylceramide, and the gangliosides GM3 and Gb3. These lipids have been shown to accumulate in various chronic kidney diseases that typically end in renal fibrosis and ultimately renal failure. This review will summarize the effects and contributions of those enzymes that regulate the generation and interconversion of these lipids, notably the acid sphingomyelinase, the acid sphingomyelinase-like protein SMPDL3B, the sphingosine kinases, the S1P lyase, the glucosylceramide synthase, the GM3 synthase, and the α-galactosidase A, to renal fibrotic diseases. Strategies of manipulating these enzymes for therapeutic purposes and the impact of existing drugs on renal pathologies will be discussed.
Collapse
Affiliation(s)
- Andrea Huwiler
- Institute of Pharmacology, University of Bern, Inselspital INO-F, CH-3010 Bern, Switzerland.
| | - Josef Pfeilschifter
- Institute of General Pharmacology and Toxicology, University Hospital Frankfurt, Goethe- University, Frankfurt am Main, Germany
| |
Collapse
|
33
|
Bernacchioni C, Cencetti F, Ouro A, Bruno M, Gomez-Muñoz A, Donati C, Bruni P. Lysophosphatidic Acid Signaling Axis Mediates Ceramide 1-Phosphate-Induced Proliferation of C2C12 Myoblasts. Int J Mol Sci 2018; 19:ijms19010139. [PMID: 29300303 PMCID: PMC5796088 DOI: 10.3390/ijms19010139] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 12/23/2017] [Accepted: 12/28/2017] [Indexed: 02/07/2023] Open
Abstract
Sphingolipids are not only crucial for membrane architecture but act as critical regulators of cell functions. The bioactive sphingolipid ceramide 1-phosphate (C1P), generated by the action of ceramide kinase, has been reported to stimulate cell proliferation, cell migration and to regulate inflammatory responses via activation of different signaling pathways. We have previously shown that skeletal muscle is a tissue target for C1P since the phosphosphingolipid plays a positive role in myoblast proliferation implying a role in muscle regeneration. Skeletal muscle displays strong capacity of regeneration thanks to the presence of quiescent adult stem cells called satellite cells that upon trauma enter into the cell cycle and start proliferating. However, at present, the exact molecular mechanism by which C1P triggers its mitogenic effect in myoblasts is lacking. Here, we report for the first time that C1P stimulates C2C12 myoblast proliferation via lysophosphatidic acid (LPA) signaling axis. Indeed, C1P subsequently to phospholipase A2 activation leads to LPA1 and LPA3 engagement, which in turn drive Akt (protein kinase B) and ERK1/2 (extracellular signal-regulated kinases 1/2) activation, thus stimulating DNA synthesis. The present findings shed new light on the key role of bioactive sphingolipids in skeletal muscle and provide further support to the notion that these pleiotropic molecules might be useful therapeutic targets for skeletal muscle regeneration.
Collapse
Affiliation(s)
- Caterina Bernacchioni
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale GB Morgagni 50, 50134 Firenze, Italy.
- Istituto Interuniversitario di Miologia (IIM), Italy.
| | - Francesca Cencetti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale GB Morgagni 50, 50134 Firenze, Italy.
- Istituto Interuniversitario di Miologia (IIM), Italy.
| | - Alberto Ouro
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48080 Bilbao, Spain.
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.
| | - Marina Bruno
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale GB Morgagni 50, 50134 Firenze, Italy.
| | - Antonio Gomez-Muñoz
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48080 Bilbao, Spain.
| | - Chiara Donati
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale GB Morgagni 50, 50134 Firenze, Italy.
- Istituto Interuniversitario di Miologia (IIM), Italy.
| | - Paola Bruni
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale GB Morgagni 50, 50134 Firenze, Italy.
- Istituto Interuniversitario di Miologia (IIM), Italy.
| |
Collapse
|
34
|
Tsuchida J, Nagahashi M, Takabe K, Wakai T. Clinical Impact of Sphingosine-1-Phosphate in Breast Cancer. Mediators Inflamm 2017; 2017:2076239. [PMID: 28912626 PMCID: PMC5585627 DOI: 10.1155/2017/2076239] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 07/24/2017] [Indexed: 02/06/2023] Open
Abstract
Breast cancer metastasizes to lymph nodes or other organs, which determine the prognosis of patients. It is difficult to cure the breast cancer patients with distant metastasis due to resistance to drug therapies. Elucidating the underlying mechanisms of breast cancer metastasis and drug resistance is expected to provide new therapeutic targets. Sphingosine-1-phosphate (S1P) is a pleiotropic, bioactive lipid mediator that regulates many cellular functions, including proliferation, migration, survival, angiogenesis/lymphangiogenesis, and immune responses. S1P is formed in cells by sphingosine kinases and released from them, which acts in an autocrine, paracrine, and/or endocrine manner. S1P in extracellular space, such as interstitial fluid, interacts with components in the tumor microenvironment, which may be important for metastasis. Importantly, recent translational research has demonstrated an association between S1P levels in breast cancer patients and clinical outcomes, highlighting the clinical importance of S1P in breast cancer. We suggest that S1P is one of the key molecules to overcome the resistance to the drug therapies, such as hormonal therapy, anti-HER2 therapy, or chemotherapy, all of which are crucial aspects of a breast cancer treatment.
Collapse
Affiliation(s)
- Junko Tsuchida
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata City, Niigata 951-8510, Japan
| | - Masayuki Nagahashi
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata City, Niigata 951-8510, Japan
| | - Kazuaki Takabe
- Breast Surgery, Roswell Park Cancer Institute, Elm & Carlton Streets, Buffalo, NY 14263, USA
- Department of Surgery, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, The State University of New York, Buffalo, NY 14203, USA
| | - Toshifumi Wakai
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata City, Niigata 951-8510, Japan
| |
Collapse
|
35
|
Nakajima M, Nagahashi M, Rashid OM, Takabe K, Wakai T. The role of sphingosine-1-phosphate in the tumor microenvironment and its clinical implications. Tumour Biol 2017; 39:1010428317699133. [PMID: 28381169 DOI: 10.1177/1010428317699133] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Elucidating the interaction between cancer and non-cancer cells, such as blood vessels, immune cells, and other stromal cells, in the tumor microenvironment is imperative in understanding the mechanisms underlying cancer progression and metastasis, which is expected to lead to the development of new therapeutics. Sphingosine-1-phosphate is a bioactive lipid mediator that promotes cell survival, proliferation, migration, angiogenesis/lymphangiogenesis, and immune responsiveness, which are all factors involved in cancer progression. Sphingosine-1-phosphate is generated inside cancer cells by sphingosine kinases and then exported into the tumor microenvironment. Although sphingosine-1-phosphate is anticipated to play an important role in the tumor microenvironment and cancer progression, determining sphingosine-1-phosphate levels in the tumor microenvironment has been difficult due to a lack of established methods. We have recently developed a method to measure sphingosine-1-phosphate levels in the interstitial fluid that bathes cancer cells in the tumor microenvironment, and reported that high levels of sphingosine-1-phosphate exist in the tumor interstitial fluid. Importantly, sphingosine-1-phosphate can be secreted from cancer cells and non-cancer components such as immune cells and vascular/lymphatic endothelial cells in the tumor microenvironment. Furthermore, sphingosine-1-phosphate affects both cancer and non-cancer cells in the tumor microenvironment promoting cancer progression. Here, we review the roles of sphingosine-1-phosphate in the interaction between cancer and non-cancer cells in tumor microenvironment, and discuss future possibilities for targeted therapies against sphingosine-1-phosphate signaling for cancer patients.
Collapse
Affiliation(s)
- Masato Nakajima
- 1 Division of Digestive and General Surgery, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Masayuki Nagahashi
- 1 Division of Digestive and General Surgery, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Omar M Rashid
- 2 Michael and Dianne Bienes Comprehensive Cancer Center, Holy Cross Hospital, Fort Lauderdale, FL, USA.,3 Massachusetts General Hospital, Boston, MA, USA.,4 Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Kazuaki Takabe
- 5 Division of Breast Surgery, Department of Surgical Oncology, Roswell Park Cancer Institute, Buffalo, NY, USA.,6 Department of Surgery, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, The State University of New York, Buffalo, NY, USA
| | - Toshifumi Wakai
- 1 Division of Digestive and General Surgery, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| |
Collapse
|
36
|
Karunakaran I, van Echten-Deckert G. Sphingosine 1-phosphate - A double edged sword in the brain. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1573-1582. [PMID: 28315304 DOI: 10.1016/j.bbamem.2017.03.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/28/2017] [Accepted: 03/13/2017] [Indexed: 12/31/2022]
Abstract
The physiological functions of sphingosine 1-phosphate (S1P) and its pathological roles in various diseases are increasingly being elucidated. Particularly, a growing body of literature has implicated S1P in the pathogenesis of brain related disorders. With the deciphering of more intricate aspects of S1P signalling, there is also a need to reconsider the notion of S1P only as a determinant of cell survival and proliferation. Further the concept of 'S1P-ceramide' balance as the controlling switch of cellular fate and functions needs to be refined. In this review, we focus on the brain related functions of S1P with special focus on its role in synaptic transmission, neuronal autophagy and neuroinflammation. The review also attempts to bring out the multi-faceted nature of S1P signalling aspects that makes it a 'double edged sword'. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá.
Collapse
Affiliation(s)
- Indulekha Karunakaran
- LIMES Institute, Membrane Biology & Lipid Biochemistry, University of Bonn, Bonn, Germany
| | | |
Collapse
|
37
|
Schnute ME, McReynolds MD, Carroll J, Chrencik J, Highkin MK, Iyanar K, Jerome G, Rains JW, Saabye M, Scholten JA, Yates M, Nagiec MM. Discovery of a Potent and Selective Sphingosine Kinase 1 Inhibitor through the Molecular Combination of Chemotype-Distinct Screening Hits. J Med Chem 2017; 60:2562-2572. [DOI: 10.1021/acs.jmedchem.7b00070] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
| | | | | | - Jill Chrencik
- Medicine
Design, Pfizer, Groton, Connecticut 06340, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Kraft ML. Sphingolipid Organization in the Plasma Membrane and the Mechanisms That Influence It. Front Cell Dev Biol 2017; 4:154. [PMID: 28119913 PMCID: PMC5222807 DOI: 10.3389/fcell.2016.00154] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 12/27/2016] [Indexed: 11/13/2022] Open
Abstract
Sphingolipids are structural components in the plasma membranes of eukaryotic cells. Their metabolism produces bioactive signaling molecules that modulate fundamental cellular processes. The segregation of sphingolipids into distinct membrane domains is likely essential for cellular function. This review presents the early studies of sphingolipid distribution in the plasma membranes of mammalian cells that shaped the most popular current model of plasma membrane organization. The results of traditional imaging studies of sphingolipid distribution in stimulated and resting cells are described. These data are compared with recent results obtained with advanced imaging techniques, including super-resolution fluorescence detection and high-resolution secondary ion mass spectrometry (SIMS). Emphasis is placed on the new insight into the sphingolipid organization within the plasma membrane that has resulted from the direct imaging of stable isotope-labeled lipids in actual cell membranes with high-resolution SIMS. Super-resolution fluorescence techniques have recently revealed the biophysical behaviors of sphingolipids and the unhindered diffusion of cholesterol analogs in the membranes of living cells are ultimately in contrast to the prevailing hypothetical model of plasma membrane organization. High-resolution SIMS studies also conflicted with the prevailing hypothesis, showing sphingolipids are concentrated in micrometer-scale membrane domains, but cholesterol is evenly distributed within the plasma membrane. Reductions in cellular cholesterol decreased the number of sphingolipid domains in the plasma membrane, whereas disruption of the cytoskeleton eliminated them. In addition, hemagglutinin, a transmembrane protein that is thought to be a putative raft marker, did not cluster within sphingolipid-enriched regions in the plasma membrane. Thus, sphingolipid distribution in the plasma membrane is dependent on the cytoskeleton, but not on favorable interactions with cholesterol or hemagglutinin. The alternate views of plasma membrane organization suggested by these findings are discussed.
Collapse
Affiliation(s)
- Mary L Kraft
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana, IL, USA
| |
Collapse
|
39
|
Sphingosine-1-phosphate in the lymphatic fluid determined by novel methods. Heliyon 2016; 2:e00219. [PMID: 28054036 PMCID: PMC5198727 DOI: 10.1016/j.heliyon.2016.e00219] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 12/19/2016] [Indexed: 02/07/2023] Open
Abstract
Background Sphingosine-1-phosphate (S1P) is a pleiotropic bioactive lipid mediator that regulates many physiological and pathological processes. It has been suggested that S1P gradient with high concentrations in the blood and lymphatic fluid and low concentrations in the peripheral tissue plays important roles in immune cell trafficking and potentially cancer progression. However, only a few reports have assessed S1P levels in the lymphatic fluid due to lack of an established easy-to-use method. Here, we report a simple technique for collection of lymphatic fluid to determine S1P. Materials and methods Lymphatic fluid was collected directly with a catheter needle (classical method) or was absorbed onto filter paper after incision of cisterna chyli (new method) in murine models. Blood, lymphatic fluid and mesenteric lymph nodes were corrected from wild type and sphingosine kinase 2 (SphK2) knockout mice to determine S1P levels by mass spectrometry. Results The volume of lymphatic fluid collected by the new method was at least three times greater than those collected by the classical method. S1P concentrations in lymphatic fluid are lower than in blood and higher than in lymph nodes. Interestingly, S1P levels in lymphatic fluid from SphK2 knockout mice were significantly higher than those in wild type, suggesting an important role of SphK2 and/or SphK1 to regulate S1P levels in lymphatic fluid. Conclusions In agreement with the previous theory, our results confirm “S1P gradient” among blood, lymphatic fluid and peripheral lymphatic tissues. Convenient methods for collection and measurement of sphingolipids in lymphatic fluid are expected to provide new insights on functions of sphingolipids.
Collapse
|
40
|
Abstract
Sphingosine-1-phosphate (S1P), a simple, bioactive sphingolipid metabolite, plays a key role, both intracellularly and extracellularly, in various cellular processes such as proliferation, survival, migration, inflammation, angiogenesis, and endothelial barrier integrity. The cellular S1P level is low and is tightly regulated by its synthesis and degradation. Sphingosine Kinases (SphKs) 1 and 2, catalyze the ATP-dependent phosphorylation of sphingosine to S1P, while the degradation is mediated by the reversible dephosphorylation catalyzed by the S1P phosphatases and lipid phosphate phosphatases and the irreversible degradation to hexadecenal and ethanolamine phosphate by sphingosine-1-phosphate lyase (S1PL). As a ligand for specific G-protein-coupled receptors, S1P1-5, which are differentially expressed in different cell types, S1P generates downstream signals that play crucial role in developmental and disease related pathologies. In addition to acting extracellularly on receptors located on the plasma membrane, S1P can also act intracellularly, independently of S1P1-5, affecting calcium homeostasis and cell proliferation. The SphKs /S1P /S1PL metabolic pathway is implicated in numerous human pathologies including respiratory disorders, thereby raising the possibility that manipulating intracellular S1P levels could offer therapeutic potential in ameliorating lung diseases. This review focuses on the prospects of targeting S1P signaling and S1P metabolizing enzymes using small molecule inhibitors, receptor agonists, and antagonists in the treatment of lung diseases.
Collapse
Affiliation(s)
- David L Ebenezer
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, IL, USA
| | - Panfeng Fu
- Department of Pharmacology, University of Illinois at Chicago, IL, USA
| | - Viswanathan Natarajan
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, IL, USA; Department of Pharmacology, University of Illinois at Chicago, IL, USA; Department of Medicine, University of Illinois at Chicago, IL, USA; Department of Bioengineering, University of Illinois at Chicago, IL, USA.
| |
Collapse
|
41
|
Sasset L, Zhang Y, Dunn TM, Di Lorenzo A. Sphingolipid De Novo Biosynthesis: A Rheostat of Cardiovascular Homeostasis. Trends Endocrinol Metab 2016; 27:807-819. [PMID: 27562337 PMCID: PMC5075255 DOI: 10.1016/j.tem.2016.07.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 07/07/2016] [Accepted: 07/20/2016] [Indexed: 01/01/2023]
Abstract
Sphingolipids (SL) are both fundamental structural components of the eukaryotic membranes and signaling molecules that regulate a variety of biological functions. The highly-bioactive lipids, ceramide and sphingosine-1-phosphate, have emerged as important regulators of cardiovascular function in health and disease. In this review we discuss recent insights into the role of SLs, particularly ceramide and sphingosine-1-phosphate, in the pathophysiology of the cardiovascular system. We also highlight advances into the molecular mechanisms regulating serine palmitoyltransferase, the first and rate-limiting enzyme of de novo SL biosynthesis, with an emphasis on the recently discovered inhibitors of serine palmitoyltransferase, ORMDL and NOGO-B proteins. Understanding the molecular mechanisms regulating this biosynthetic pathway may lead to the development of novel therapeutic approaches for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Linda Sasset
- Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Yi Zhang
- Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Teresa M Dunn
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Annarita Di Lorenzo
- Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA.
| |
Collapse
|
42
|
Nagahashi M, Matsuda Y, Moro K, Tsuchida J, Soma D, Hirose Y, Kobayashi T, Kosugi SI, Takabe K, Komatsu M, Wakai T. DNA damage response and sphingolipid signaling in liver diseases. Surg Today 2016; 46:995-1005. [PMID: 26514817 PMCID: PMC5053096 DOI: 10.1007/s00595-015-1270-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 10/04/2015] [Indexed: 02/06/2023]
Abstract
Patients with unresectable hepatocellular carcinoma (HCC) cannot generally be cured by systemic chemotherapy or radiotherapy due to their poor response to conventional therapeutic agents. The development of novel and efficient targeted therapies to increase their treatment options depends on the elucidation of the molecular mechanisms that underlie the pathogenesis of HCC. The DNA damage response (DDR) is a network of cell-signaling events that are triggered by DNA damage. Its dysregulation is thought to be one of the key mechanisms underlying the generation of HCC. Sphingosine-1-phosphate (S1P), a lipid mediator, has emerged as an important signaling molecule that has been found to be involved in many cellular functions. In the liver, the alteration of S1P signaling potentially affects the DDR pathways. In this review, we explore the role of the DDR in hepatocarcinogenesis of various etiologies, including hepatitis B and C infection and non-alcoholic steatohepatitis. Furthermore, we discuss the metabolism and functions of S1P that may affect the hepatic DDR. The elucidation of the pathogenic role of S1P may create new avenues of research into therapeutic strategies for patients with HCC.
Collapse
Affiliation(s)
- Masayuki Nagahashi
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan.
| | - Yasunobu Matsuda
- Department of Medical Technology, Niigata University Graduate School of Health Sciences, 2-746 Asahimachi-dori, Chuo-ku, Niigata, 951-8518, Japan
| | - Kazuki Moro
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Junko Tsuchida
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Daiki Soma
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Yuki Hirose
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Takashi Kobayashi
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Shin-Ichi Kosugi
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Kazuaki Takabe
- Division of Surgical Oncology, Department of Surgery, Virginia Commonwealth University School of Medicine and the Massey Cancer Center, West Hospital 7-402, 1200 East Broad Street, Richmond, VA, 23298-0011, USA
| | - Masaaki Komatsu
- Department of Biochemistry, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Toshifumi Wakai
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| |
Collapse
|
43
|
Vogt D, Stark H. Therapeutic Strategies and Pharmacological Tools Influencing S1P Signaling and Metabolism. Med Res Rev 2016; 37:3-51. [PMID: 27480072 DOI: 10.1002/med.21402] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 06/01/2016] [Accepted: 06/28/2016] [Indexed: 02/06/2023]
Abstract
During the last two decades the study of the sphingolipid anabolic, catabolic, and signaling pathways has attracted enormous interest. Especially the introduction of fingolimod into market as first p.o. therapeutic for the treatment of multiple sclerosis has boosted this effect. Although the complex regulation of sphingosine-1-phosphate (S1P) and other catabolic and anabolic sphingosine-related compounds is not fully understood, the influence on different (patho)physiological states from inflammation to cytotoxicity as well as the availability of versatile pharmacological tools that represent new approaches to study these states are described. Here, we have summarized various aspects concerning the many faces of sphingolipid function modulation by different pharmacological tools up to clinical candidates. Due to the immense heterogeneity of physiological or pharmacological actions and complex cross regulations, it is difficult to predict their role in upcoming therapeutic approaches. Currently, inflammatory, immunological, and/or antitumor aspects are discussed.
Collapse
Affiliation(s)
- Dominik Vogt
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, D-60438, Frankfurt, Germany
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, D-40225, Düsseldorf, Germany
| |
Collapse
|
44
|
Versmissen J, Vongpromek R, Yahya R, van der Net JB, van Vark-van der Zee L, Blommesteijn-Touw J, Wattimena D, Rietveld T, Pullinger CR, Christoffersen C, Dahlbäck B, Kane JP, Mulder M, Sijbrands EJG. Familial hypercholesterolaemia: cholesterol efflux and coronary disease. Eur J Clin Invest 2016; 46:643-50. [PMID: 27208892 PMCID: PMC5113689 DOI: 10.1111/eci.12643] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 05/18/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND Coronary heart disease (CHD) risk inversely associates with levels of high-density lipoprotein cholesterol (HDL-C). The protective effect of HDL is thought to depend on its functionality, such as its ability to induce cholesterol efflux. MATERIALS AND METHODS We compared plasma cholesterol efflux capacity between male familial hypercholesterolaemia (FH) patients with and without CHD relative to their non-FH brothers, and examined HDL constituents including sphingosine-1-phosphate (S1P) and its carrier apolipoprotein M (apoM). RESULTS Seven FH patients were asymptomatic and six had experienced a cardiac event at a mean age of 39 years. Compared to their non-FH brothers, cholesterol efflux from macrophages to plasma from the FH patients without CHD was 16 ± 22% (mean ± SD) higher and to plasma from the FH patients with CHD was 7 ± 8% lower (P = 0·03, CHD vs. non-CHD). Compared to their non-FH brothers, FH patients without CHD displayed significantly higher levels of HDL-cholesterol, HDL-S1P and apoM, while FH patients with CHD displayed lower levels than their non-FH brothers. CONCLUSIONS A higher plasma cholesterol efflux capacity and higher S1P and apoM content of HDL in asymptomatic FH patients may play a role in their apparent protection from premature CHD.
Collapse
Affiliation(s)
- Jorie Versmissen
- Department of Internal Medicine, Section of Pharmacology, Vascular and Metabolic Diseases, Cardiovascular Research School COEUR, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Ranitha Vongpromek
- Department of Internal Medicine, Section of Pharmacology, Vascular and Metabolic Diseases, Cardiovascular Research School COEUR, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Reyhana Yahya
- Department of Internal Medicine, Section of Pharmacology, Vascular and Metabolic Diseases, Cardiovascular Research School COEUR, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Jeroen B van der Net
- Department of Internal Medicine, Section of Pharmacology, Vascular and Metabolic Diseases, Cardiovascular Research School COEUR, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Leonie van Vark-van der Zee
- Department of Internal Medicine, Section of Pharmacology, Vascular and Metabolic Diseases, Cardiovascular Research School COEUR, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Jeannette Blommesteijn-Touw
- Department of Internal Medicine, Section of Pharmacology, Vascular and Metabolic Diseases, Cardiovascular Research School COEUR, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Darcos Wattimena
- Department of Internal Medicine, Section of Pharmacology, Vascular and Metabolic Diseases, Cardiovascular Research School COEUR, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Trinet Rietveld
- Department of Internal Medicine, Section of Pharmacology, Vascular and Metabolic Diseases, Cardiovascular Research School COEUR, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Clive R Pullinger
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA.,Department of Physiological Nursing, University of California, San Francisco, CA, USA
| | | | - Björn Dahlbäck
- Wallenberg Laboratory, Department of Laboratory Medicine, Skån University Hospital, Malmö, Sweden
| | - John P Kane
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA.,Department of Medicine, University of California, San Francisco, CA, USA.,Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| | - Monique Mulder
- Department of Internal Medicine, Section of Pharmacology, Vascular and Metabolic Diseases, Cardiovascular Research School COEUR, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Eric J G Sijbrands
- Department of Internal Medicine, Section of Pharmacology, Vascular and Metabolic Diseases, Cardiovascular Research School COEUR, Erasmus University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
45
|
Tsuchida J, Nagahashi M, Nakajima M, Moro K, Tatsuda K, Ramanathan R, Takabe K, Wakai T. Breast cancer sphingosine-1-phosphate is associated with phospho-sphingosine kinase 1 and lymphatic metastasis. J Surg Res 2016; 205:85-94. [PMID: 27621003 DOI: 10.1016/j.jss.2016.06.022] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 04/14/2016] [Accepted: 06/07/2016] [Indexed: 12/26/2022]
Abstract
BACKGROUND Sphingosine-1-phosphate (S1P), a pleiotropic bioactive lipid mediator, has been implicated as a key regulatory molecule in cancer through its ability to promote cell proliferation, migration, angiogenesis, and lymphangiogenesis. Previous studies suggested that S1P produced by sphingosine kinase 1 (SphK1) in breast cancer plays important roles in progression of disease and metastasis. However, the associations between S1P and clinical parameters in human breast cancer have not been well investigated to date. MATERIALS AND METHODS We determined levels of S1P and other sphingolipids in breast cancer tissue by electrospray ionization-tandem mass spectrometry. Associations between S1P levels and clinicopathologic features of the tumors were analyzed. Expression of phospho-SphK1 (pSphK1) in breast cancer tissues was determined by immunohistochemical scoring. RESULTS Levels of S1P in breast cancer tissues were significantly higher in patients with high white blood cell count in the blood than those patients without. S1P levels were lower in patients with human epidermal growth factor receptor 2 overexpression and/or amplification than those patients without. Furthermore, cancer tissues with high pSphK1 expression showed significantly higher levels of S1P than cancer tissues without. Finally, patients with lymph node metastasis showed significantly higher levels of S1P in tumor tissues than the patients with negative nodes. CONCLUSIONS To our knowledge, this is the first study to demonstrate that high expression of pSphK1 is associated with higher levels of S1P, which in turn is associated with lymphatic metastasis in breast cancer.
Collapse
Affiliation(s)
- Junko Tsuchida
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Japan
| | - Masayuki Nagahashi
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Japan.
| | - Masato Nakajima
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Japan
| | - Kazuki Moro
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Japan
| | - Kumiko Tatsuda
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Japan
| | - Rajesh Ramanathan
- Division of Surgical Oncology, Department of Surgery, Virginia Commonwealth University School of Medicine and the Massey Cancer Center, Richmond, Virginia
| | - Kazuaki Takabe
- Division of Surgical Oncology, Department of Surgery, Virginia Commonwealth University School of Medicine and the Massey Cancer Center, Richmond, Virginia; Breast Surgery, Roswell Park Cancer Institute, Buffalo, New York
| | - Toshifumi Wakai
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Japan
| |
Collapse
|
46
|
Nagahashi M, Yamada A, Miyazaki H, Allegood JC, Tsuchida J, Aoyagi T, Huang WC, Terracina KP, Adams BJ, Rashid OM, Milstien S, Wakai T, Spiegel S, Takabe K. Interstitial Fluid Sphingosine-1-Phosphate in Murine Mammary Gland and Cancer and Human Breast Tissue and Cancer Determined by Novel Methods. J Mammary Gland Biol Neoplasia 2016; 21:9-17. [PMID: 27194029 PMCID: PMC4947521 DOI: 10.1007/s10911-016-9354-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 05/09/2016] [Indexed: 01/15/2023] Open
Abstract
The tumor microenvironment is a determining factor for cancer biology and progression. Sphingosine-1-phosphate (S1P), produced by sphingosine kinases (SphKs), is a bioactive lipid mediator that regulates processes important for cancer progression. Despite its critical roles, the levels of S1P in interstitial fluid (IF), an important component of the tumor microenvironment, have never previously been measured due to a lack of efficient methods for collecting and quantifying IF. The purpose of this study is to clarify the levels of S1P in the IF from murine mammary glands and its tumors utilizing our novel methods. We developed an improved centrifugation method to collect IF. Sphingolipids in IF, blood, and tissue samples were measured by mass spectrometry. In mice with a deletion of SphK1, but not SphK2, levels of S1P in IF from the mammary glands were greatly attenuated. Levels of S1P in IF from mammary tumors were reduced when tumor growth was suppressed by oral administration of FTY720/fingolimod. Importantly, sphingosine, dihydro-sphingosine, and S1P levels, but not dihydro-S1P, were significantly higher in human breast tumor tissue IF than in the normal breast tissue IF. To our knowledge, this is the first reported S1P IF measurement in murine normal mammary glands and mammary tumors, as well as in human patients with breast cancer. S1P tumor IF measurement illuminates new aspects of the role of S1P in the tumor microenvironment.
Collapse
MESH Headings
- Activation, Metabolic
- Animals
- Antineoplastic Agents/pharmacokinetics
- Antineoplastic Agents/therapeutic use
- Breast/metabolism
- Breast/pathology
- Breast/surgery
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Breast Neoplasms/surgery
- Cell Line, Tumor
- Extracellular Fluid/drug effects
- Extracellular Fluid/metabolism
- Female
- Fingolimod Hydrochloride/pharmacokinetics
- Fingolimod Hydrochloride/therapeutic use
- Humans
- Isoenzymes/genetics
- Isoenzymes/metabolism
- Lysophospholipids/blood
- Lysophospholipids/metabolism
- Mammary Glands, Animal/drug effects
- Mammary Glands, Animal/metabolism
- Mammary Glands, Animal/pathology
- Mammary Neoplasms, Experimental/drug therapy
- Mammary Neoplasms, Experimental/metabolism
- Mammary Neoplasms, Experimental/pathology
- Mice, Inbred BALB C
- Mice, Knockout
- Phosphotransferases (Alcohol Group Acceptor)/genetics
- Phosphotransferases (Alcohol Group Acceptor)/metabolism
- Prodrugs/pharmacokinetics
- Prodrugs/therapeutic use
- Random Allocation
- Sphingosine/analogs & derivatives
- Sphingosine/blood
- Sphingosine/metabolism
- Tumor Microenvironment/drug effects
Collapse
Affiliation(s)
- Masayuki Nagahashi
- Division of Surgical Oncology, Department of Surgery, Virginia Commonwealth University School of Medicine, and Massey Cancer Center, PO Box 980011, West Hospital 7-402, 1200 East Broad Street, Richmond, VA, 23298-0011, USA.
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, and the Massey Cancer Center, PO Box 980011, West Hospital 7-402, 1200 East Marshall Street, Richmond, VA, 23298, USA.
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata City, Niigata, 951-8510, Japan.
| | - Akimitsu Yamada
- Division of Surgical Oncology, Department of Surgery, Virginia Commonwealth University School of Medicine, and Massey Cancer Center, PO Box 980011, West Hospital 7-402, 1200 East Broad Street, Richmond, VA, 23298-0011, USA
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, and the Massey Cancer Center, PO Box 980011, West Hospital 7-402, 1200 East Marshall Street, Richmond, VA, 23298, USA
| | - Hiroshi Miyazaki
- Section of General Internal Medicine, Kojin Hospital, 1-710 Shikenya, Moriyama, Nagoya, 463-8530, Japan
| | - Jeremy C Allegood
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, and the Massey Cancer Center, PO Box 980011, West Hospital 7-402, 1200 East Marshall Street, Richmond, VA, 23298, USA
| | - Junko Tsuchida
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata City, Niigata, 951-8510, Japan
| | - Tomoyoshi Aoyagi
- Division of Surgical Oncology, Department of Surgery, Virginia Commonwealth University School of Medicine, and Massey Cancer Center, PO Box 980011, West Hospital 7-402, 1200 East Broad Street, Richmond, VA, 23298-0011, USA
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, and the Massey Cancer Center, PO Box 980011, West Hospital 7-402, 1200 East Marshall Street, Richmond, VA, 23298, USA
| | - Wei-Ching Huang
- Division of Surgical Oncology, Department of Surgery, Virginia Commonwealth University School of Medicine, and Massey Cancer Center, PO Box 980011, West Hospital 7-402, 1200 East Broad Street, Richmond, VA, 23298-0011, USA
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, and the Massey Cancer Center, PO Box 980011, West Hospital 7-402, 1200 East Marshall Street, Richmond, VA, 23298, USA
| | - Krista P Terracina
- Division of Surgical Oncology, Department of Surgery, Virginia Commonwealth University School of Medicine, and Massey Cancer Center, PO Box 980011, West Hospital 7-402, 1200 East Broad Street, Richmond, VA, 23298-0011, USA
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, and the Massey Cancer Center, PO Box 980011, West Hospital 7-402, 1200 East Marshall Street, Richmond, VA, 23298, USA
| | - Barbara J Adams
- Division of Surgical Oncology, Department of Surgery, Virginia Commonwealth University School of Medicine, and Massey Cancer Center, PO Box 980011, West Hospital 7-402, 1200 East Broad Street, Richmond, VA, 23298-0011, USA
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, and the Massey Cancer Center, PO Box 980011, West Hospital 7-402, 1200 East Marshall Street, Richmond, VA, 23298, USA
| | - Omar M Rashid
- Holy Cross Hospital Michael and Dianne Bienes Comprehensive Cancer Center, 4725 North Federal Highway, Fort Lauderdale, FL, 33308, USA
- Massachusetts General Hospital, 55 Fruit St, Boston, MA, 02114, USA
- University of Miami Miller School of Medicine, 1600 NW 10th Ave, Miami, FL, 33136, USA
| | - Sheldon Milstien
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, and the Massey Cancer Center, PO Box 980011, West Hospital 7-402, 1200 East Marshall Street, Richmond, VA, 23298, USA
| | - Toshifumi Wakai
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata City, Niigata, 951-8510, Japan
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, and the Massey Cancer Center, PO Box 980011, West Hospital 7-402, 1200 East Marshall Street, Richmond, VA, 23298, USA
| | - Kazuaki Takabe
- Division of Surgical Oncology, Department of Surgery, Virginia Commonwealth University School of Medicine, and Massey Cancer Center, PO Box 980011, West Hospital 7-402, 1200 East Broad Street, Richmond, VA, 23298-0011, USA.
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, and the Massey Cancer Center, PO Box 980011, West Hospital 7-402, 1200 East Marshall Street, Richmond, VA, 23298, USA.
- Breast Surgery, Roswell Park Cancer Institute, Elm & Carlton Streets, Buffalo, NY, 14263, USA.
| |
Collapse
|
47
|
Jiang L, Wang Y, Pan F, Zhao X, Zhang H, Lei M, Liu T, Lu JR. Synergistic effect of bioactive lipid and condition medium on cardiac differentiation of human mesenchymal stem cells from different tissues. Cell Biochem Funct 2016; 34:163-72. [PMID: 26990081 PMCID: PMC5031220 DOI: 10.1002/cbf.3175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 01/22/2016] [Accepted: 02/08/2016] [Indexed: 12/12/2022]
Abstract
Human umbilical cord mesenchymal stem cells (hUCMSCs) and human adipose tissue mesenchymal stem cells (hATMSCs) have the potential to differentiate into cardiomyocytes, making them promising therapeutic candidates for treating damaged cardiac tissues. Currently, however, the differentiated cells induced from hUCMSCs or hATMSCs can hardly display functional characteristics similar to cardiomyocytes. In this study, we have investigated the effects of bioactive lipid sphingosine-1-phosphate (S1P) on cardiac differentiations of hUCMSCs and hATMSCs in condition medium composed of cardiac myocytes culture medium or 5-azacytidine. Cardiac differentiations were identified through immunofluorescence staining, and the results were observed with fluorescence microscopy and confocal microscopy. Synergistic effects of S1P and condition medium on cell viability were evaluated by MTT assays. Functional characteristics similar to cardiomyocytes were evaluated through detecting calcium transient. The differentiated hUCMSCs or hATMSCs in each group into cardiomyocytes showed positive expressions of cardiac specific proteins, including α-actin, connexin-43 and myosin heavy chain-6 (MYH-6). MTT assays showed that suitable differentiation time was 14 days and that the optimal concentration of S1P was 0.5 μM. Moreover, incorporation of S1P and cardiac myocytes culture medium gave rise to calcium transients, an important marker for displaying in vivo electrophysiological properties. This feature was not observed in the S1P-5-azacytidine group, indicating the possible lack of cellular stimuli such as transforming growth factor-beta, TGF-β.
Collapse
Affiliation(s)
- Lili Jiang
- Dalian R&D Center for Stem Cell and Tissue Engineering, Faculty of Chemical Environmental and Biological Science and TechnologyDalian University of TechnologyDalianChina
| | - Yanwen Wang
- Cardiovascular and Genetic Medicine Research Groups, School of BiomedicineUniversity of ManchesterManchesterUK
| | - Fang Pan
- Biological Physics Group, School of Physics and AstronomyUniversity of ManchesterManchesterUK
| | - Xiubo Zhao
- Department of Chemical & Biological EngineeringUniversity of SheffieldMappin Street, Sheffield, S1 3JDUK
| | - Henggui Zhang
- Biological Physics Group, School of Physics and AstronomyUniversity of ManchesterManchesterUK
| | - Ming Lei
- Cardiovascular and Genetic Medicine Research Groups, School of BiomedicineUniversity of ManchesterManchesterUK
| | - Tianqing Liu
- Dalian R&D Center for Stem Cell and Tissue Engineering, Faculty of Chemical Environmental and Biological Science and TechnologyDalian University of TechnologyDalianChina
| | - Jian R. Lu
- Biological Physics Group, School of Physics and AstronomyUniversity of ManchesterManchesterUK
| |
Collapse
|
48
|
Vito CD, Hadi LA, Navone SE, Marfia G, Campanella R, Mancuso ME, Riboni L. Platelet-derived sphingosine-1-phosphate and inflammation: from basic mechanisms to clinical implications. Platelets 2016; 27:393-401. [PMID: 26950429 DOI: 10.3109/09537104.2016.1144179] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Beyond key functions in hemostasis and thrombosis, platelets are recognized as key players of inflammation, an underlying feature of a variety of diseases. In this regard, platelets act as a circulating source of several pro- and anti-inflammatory molecules, which are secreted from their intracellular stores upon activation. Among them, mounting evidence highlights a crucial role of sphingosine-1-phosphate (S1P), a multifunctional sphingoid mediator. S1P-induced pleiotropic effects include those crucial in inflammatory processes, such as the maintenance of the endothelial barrier integrity, and leukocyte activation and recruitment at the injured site. This review outlines the peculiar features and molecular mechanisms that allow platelets for acting as a unique factory that produces and stores S1P in large quantities. A particular emphasis is placed on the autocrine and paracrine roles of S1P derived from the "inflamed" platelets, highlighting the role of its cross-talk with endothelial and blood cells involved in inflammation, and the mechanisms of its contribution to the development and progression of inflammatory diseases. Finally, potential clinical implications of platelet-derived S1P as diagnostic tool of inflammatory severity, and as therapeutic target in inflammation are discussed.
Collapse
Affiliation(s)
- Clara Di Vito
- a Department of Medical Biotechnology and Translational Medicine, LITA-Segrate , University of Milan , Milan , Italy
| | - Loubna Abdel Hadi
- a Department of Medical Biotechnology and Translational Medicine, LITA-Segrate , University of Milan , Milan , Italy
| | - Stefania Elena Navone
- b Neurosurgery Unit, Laboratory of Experimental Neurosurgery and Cell Therapy, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico , University of Milan , Milan , Italy
| | - Giovanni Marfia
- b Neurosurgery Unit, Laboratory of Experimental Neurosurgery and Cell Therapy, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico , University of Milan , Milan , Italy
| | - Rolando Campanella
- c Division of Neurosurgery, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico , University of Milan , Milan , Italy
| | - Maria Elisa Mancuso
- d Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico , Milan , Italy
| | - Laura Riboni
- a Department of Medical Biotechnology and Translational Medicine, LITA-Segrate , University of Milan , Milan , Italy
| |
Collapse
|
49
|
Błachnio-Zabielska A, Baranowski M, Wójcik B, Górski J. Reduction of ceramide de novo synthesis in solid tissues changes sphingolipid levels in rat plasma, erythrocytes and platelets. Adv Med Sci 2016; 61:72-7. [PMID: 26521206 DOI: 10.1016/j.advms.2015.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 07/03/2015] [Accepted: 09/17/2015] [Indexed: 10/23/2022]
Abstract
PURPOSE De novo sphingolipid synthesis does not occur in plasma, erythrocytes and platelets. The purpose of the study was to examine the effect of inhibition of sphingolipid synthesis in solid tissues on the level of the following bioactive sphingolipids: sphinganine, ceramide, sphingosine and sphingosine 1-phosphate in plasma, erythrocytes and platelets. MATERIAL/METHODS The experiments were carried out on male Wistar rats. Myriocin was used to inhibit serine palmitoyltransferase activity (the enzyme catalyzes the first step of ceramide de novo synthesis) and nicotinic acid was used to reduce the concentration of plasma free fatty acids (a substrate for the de novo ceramide synthesis). The sphingolipids were quantified by means of liquid chromatography/mass spectrometry. RESULTS Myriocin reduced the level of each compound in plasma. It reduced the level of sphinganine, sphingosine-1-phosphate and total ceramide and elevated the level of sphingosine in erythrocytes. In platelets, myriocin reduced the total level of ceramide. Nicotinic acid reduced the plasma level of sphinganine, sphingosine and total ceramide. It increased the level of sphingosine-1-phosphate in erythrocytes. In platelets, nicotinioc acid increased the level of sphinganine and sphingosine and reduced the level of sphingosine-1-phosphate and total ceramide. CONCLUSIONS Inhibition of serine palmitoyltransferase activity in solid tissues and reduction in plasma free fatty acids concentration affects sphingolipid level in plasma, erythrocytes and platelets. The changes in erythrocytes and platelets depend both on the cell type and the sphingolipid studied and only partially follow the changes in the plasma.
Collapse
|
50
|
Ko P, Kim D, You E, Jung J, Oh S, Kim J, Lee KH, Rhee S. Extracellular Matrix Rigidity-dependent Sphingosine-1-phosphate Secretion Regulates Metastatic Cancer Cell Invasion and Adhesion. Sci Rep 2016; 6:21564. [PMID: 26877098 PMCID: PMC4753492 DOI: 10.1038/srep21564] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 01/27/2016] [Indexed: 12/14/2022] Open
Abstract
Dynamic interaction between cancer cells and the surrounding microenvironment is critical for cancer progression via changes in cellular behavior including alteration of secreted molecules. However, the molecular mechanisms underlying the influence exerted by the cancer microenvironment on secretion of molecules during cancer progression remain largely unknown. In this study, we report that secretion of spingsine-1-phosphate (S1P) and its regulator, SphK1 expression is dependent of the substrate rigidity, which is critical for the balance between cancer cell invasion and adhesion. Conditioned media (CM) of MDA-MB-231, an aggressive breast cancer cell obtained from soft substrate (~0.5 kPa) induced chemo-attractive invasion, while CM obtained from stiff substrate (~2.5 kPa) increased cell adhesion instead. We found that the expression of SphK1 is upregulated in the stiff substrate, resulting in an increase in S1P levels in the CM. We also found that upregulation of SphK1 expression in the stiff substrate is dominant in metastatic cancer cells but not in primary cancer cells. These results suggest that alterations in the mechanical environment of the ECM surrounding the tumor cells actively regulate cellular properties such as secretion, which in turn, may contribute to cancer progression.
Collapse
Affiliation(s)
- Panseon Ko
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Daehwan Kim
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Eunae You
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Jangho Jung
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Somi Oh
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Jaehyun Kim
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Kwang-Ho Lee
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Sangmyung Rhee
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| |
Collapse
|