1
|
Zhylkibayev A, Mobley J, Athar M, Gorbatyuk M. A multiomic study of retinal tissues in mice with direct ocular exposure to vesicants. Exp Eye Res 2025; 257:110414. [PMID: 40379201 DOI: 10.1016/j.exer.2025.110414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/03/2025] [Accepted: 05/01/2025] [Indexed: 05/19/2025]
Abstract
This study employed a multiomic approach to investigate retinal tissue damage following direct ocular exposure (DOE) to vesicants (VSs)-namely, nitrogen mustard (NM) and lewisite (Lew). We explored both the acute and chronic stages of retinal injury by assessing functional, structural, and molecular changes. C57BL/6 mice were used to measure scotopic and photopic electroretinograms (ERGs) and to analyze TUNEL-positive retinal cells. Global retinal proteomics was conducted to identify common and unique signaling pathways. In addition, we performed targeted metabolomic and lipidomic analyses of retinal tissue to uncover significant metabolic changes. Our results demonstrated remarkable declines in ERG amplitudes at 2 and 4 weeks post-exposure, accompanied by an increase in TUNEL+ retinal cells in response to DOE to both VSs. Our proteomic analysis revealed chronic oxidative stress, mitochondrial dysfunction, elevated RXR signaling, and increased levels of 28 proteins. Moreover, we observed a decline in the KEGG phototransduction pathways, along with the downregulation of photoreceptor-specific proteins, in response to both VSs. Consistent with the proteomic findings, targeted metabolomics identified a decline in phototransduction and steroid hormone biosynthesis, along with increases in D-amino acid and purine metabolism, as well as lysine degradation. These changes were associated with a GSSG/GSH ratio of 2.6, confirming the proteomic data on oxidative stress. Furthermore, lipidomic analysis revealed an increase in oxidative lipid levels, accompanied by a 3.4-fold increase in phosphatidylserine (PS), suggesting apoptotic cell death and a reduction in fatty acids (FAs). In conclusion, exposure to both VSs induced progressive retinal damage, altering major metabolic pathways and dysregulating lipid metabolism. Future studies should focus on identifying the responses of individual neuronal cell types to DOE to VSs to develop cell-specific countermeasures.
Collapse
Affiliation(s)
- Assylbek Zhylkibayev
- Wake Forest University, School of Medicine, Department of Biochemistry, Winston-Salem, NC, USA.
| | - James Mobley
- University of Alabama at Birmingham, School of Medicine, Department of Anesthesiology and Perioperative Medicine, Birmingham, AL, USA.
| | - Mohammad Athar
- University of Alabama at Birmingham, School of Medicine, Department of Dermatology, Birmingham, AL, USA.
| | - Marina Gorbatyuk
- Wake Forest University, School of Medicine, Department of Biochemistry, Winston-Salem, USA.
| |
Collapse
|
2
|
Venkatraman K, Lipp NF, Budin I. Origin and evolution of mitochondrial inner membrane composition. J Cell Sci 2025; 138:jcs263780. [PMID: 40265338 DOI: 10.1242/jcs.263780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025] Open
Abstract
Unique membrane architectures and lipid building blocks underlie the metabolic and non-metabolic functions of mitochondria. During eukaryogenesis, mitochondria likely arose from an alphaproteobacterial symbiont of an Asgard archaea-related host cell. Subsequently, mitochondria evolved inner membrane folds known as cristae alongside a specialized lipid composition supported by metabolic and transport machinery. Advancements in phylogenetic methods and genomic and metagenomic data have suggested potential origins for cristae-shaping protein complexes, such as the mitochondrial contact site and cristae-organizing system (MICOS). MICOS protein homologs function in the formation of cristae-like intracytoplasmic membranes (ICMs) in diverse extant alphaproteobacteria. The machinery responsible for synthesizing key mitochondrial phospholipids - which cooperate with cristae-shaping proteins to establish inner membrane architecture - could have also evolved from a bacterial ancestor, but its origins have been less explored. In this Review, we examine the current understanding of mitochondrial membrane evolution, highlighting distinctions between prokaryotic and eukaryotic mitochondrial-specific proteins and lipids and their differing roles in shaping cristae and ICM architecture, and propose a model explaining the concurrent specialization of the mitochondrial lipidome and inner membrane structure in eukaryogenesis. We discuss how advancements across a range of disciplines are shedding light on how multiple membrane components co-evolved to support the central functions of eukaryotic mitochondria.
Collapse
Affiliation(s)
- Kailash Venkatraman
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - Nicolas-Frédéric Lipp
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - Itay Budin
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
3
|
Jain R, Rajendran R, Rajakumari S. Diet-induced obesity dampens the temporal oscillation of hepatic mitochondrial lipids. J Lipid Res 2025; 66:100790. [PMID: 40180216 DOI: 10.1016/j.jlr.2025.100790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/25/2025] [Accepted: 03/27/2025] [Indexed: 04/05/2025] Open
Abstract
Mitochondria play a pivotal role in energy homeostasis and regulate several metabolic pathways. The inner and outer membrane of mitochondria comprises unique lipid composition and proteins that are essential to form electron transport chain complexes, orchestrate oxidative phosphorylation, β-oxidation, ATP synthesis, etc. As known, diet-induced obesity affects mitochondrial function, dynamics, and mitophagy, which are governed by circadian clock machinery. Though DIO impairs the interplay between circadian oscillation and lipid metabolism, the impact of DIO on mitochondrial membrane lipid composition and their temporal oscillation is unknown. Thus, we investigated the diurnal oscillation of liver mitochondrial lipidome at various Zeitgeber times using quantitative lipidomics. Our data suggested that obesity disrupted lipid accumulation profiles and diminished the oscillating lipid species in the hepatic mitochondria. Strikingly, HFD manifested a more homogenous temporal oscillation pattern in phospholipids regardless of possessing different fatty acyl-chain lengths and degrees of unsaturation. In particular, DIO impaired the circadian rhythmicity of phosphatidyl ethanolamine, phosphatidyl choline, phosphatidyl serine, and ether-linked phosphatidyl ethanolamine. Also, DIO altered the rhythmic profile of PE/PC, ePE/PC, PS/PC ratio, and key proteins related to mitochondrial function, dynamics, and quality control. Since HFD dampened lipid oscillation, we examined whether the diurnal oscillation of mitochondrial lipids synchronized with mitochondrial function. Also, our data emphasized that acrophase of mitochondrial lipids synchronized with increased oxygen consumption rate and Parkin levels at ZT16 in chow-fed mice. Our study revealed that obesity altered the mitochondrial lipid composition and hampered the rhythmicity of mitochondrial lipids, oxygen consumption rate, and Parkin levels in the liver.
Collapse
Affiliation(s)
- Rashi Jain
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Rajprabu Rajendran
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Sona Rajakumari
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, Karnataka, India.
| |
Collapse
|
4
|
Vermeulen I, Li M, van Mourik H, Yadati T, Eijkel G, Balluff B, Godschalk R, Temmerman L, Biessen EAL, Kulkarni A, Theys J, Houben T, Cillero‐Pastor B, Shiri‐Sverdlov R. Inhibition of intracellular versus extracellular cathepsin D differentially alters the liver lipidome of mice with metabolic dysfunction-associated steatohepatitis. FEBS J 2025; 292:1781-1797. [PMID: 39726152 PMCID: PMC11970712 DOI: 10.1111/febs.17358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 08/09/2024] [Accepted: 12/03/2024] [Indexed: 12/28/2024]
Abstract
The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) progressing to metabolic dysfunction-associated steatohepatitis (MASH), characterized by hepatic inflammation, has significantly increased in recent years due to unhealthy dietary practices and sedentary lifestyles. Cathepsin D (CTSD), a lysosomal protease involved in lipid homeostasis, is linked to abnormal lipid metabolism and inflammation in MASH. Although primarily intracellular, CTSD can be secreted extracellularly. Our previous proteomics research has shown that inhibition of extracellular CTSD results in more anti-inflammatory effects and fewer potential side effects compared to intracellular CTSD inhibition. However, the correlation between reduced side effects and alterations in the hepatic lipid composition remains unknown. This study aims to investigate the correlation between intra- and extracellular CTSD inhibition and potential alterations in the hepatic lipid composition in MASH. Low-density lipoprotein receptor knockout (Ldlr-/-) mice were fed a high-fat diet for 10 weeks and received subcutaneous injections every 2 days of vehicle, intracellular CTSD inhibitor (GA-12), or extracellular CTSD inhibitor (CTD-002). Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) was used to visualize and compare the lipid composition in liver tissues. Hepatic phosphatidylcholine remodeling was observed with both inhibitors, suggesting their therapeutic potential in treating MASH. Treatment with an intracellular CTSD inhibitor resulted in elevated levels of cardiolipin, reactive oxygen species, phosphatidylinositol, phosphatidylethanolamine, and lipids that are linked to mitochondrial dysfunction and inflammation, and induced more oxidative stress. The observed modifications in lipid composition demonstrate the clinical advantages of extracellular CTSD inhibition as a potentially beneficial therapeutic approach for MASH.
Collapse
Affiliation(s)
- Isabeau Vermeulen
- Maastricht Multimodal Molecular Imaging Institute (M4i)University of MaastrichtThe Netherlands
| | - Mengying Li
- Department of Genetics and Cell Biology, Institute of Nutrition and Translational Research in Metabolism (NUTRIM)Maastricht UniversityThe Netherlands
| | - Hester van Mourik
- Department of Genetics and Cell Biology, Institute of Nutrition and Translational Research in Metabolism (NUTRIM)Maastricht UniversityThe Netherlands
- Department of Precision Medicine, Institute for Oncology and Reproduction (GROW)Maastricht UniversityThe Netherlands
| | - Tulasi Yadati
- Department of Genetics and Cell Biology, Institute of Nutrition and Translational Research in Metabolism (NUTRIM)Maastricht UniversityThe Netherlands
| | - Gert Eijkel
- Maastricht Multimodal Molecular Imaging Institute (M4i)University of MaastrichtThe Netherlands
| | - Benjamin Balluff
- Maastricht Multimodal Molecular Imaging Institute (M4i)University of MaastrichtThe Netherlands
| | - Roger Godschalk
- Department of Pharmacology and Toxicology, Institute for Nutrition and Translational Research in Metabolism (NUTRIM)Maastricht UniversityThe Netherlands
| | - Lieve Temmerman
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM)Maastricht University Medical Center (UMC)The Netherlands
| | - Erik A. L. Biessen
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM)Maastricht University Medical Center (UMC)The Netherlands
- Institute for Molecular Cardiovascular ResearchRheinisch‐Westfälische Technische Hochschule (RWTH) Aachen UniversityGermany
| | | | - Jan Theys
- Department of Precision Medicine, Institute for Oncology and Reproduction (GROW)Maastricht UniversityThe Netherlands
| | - Tom Houben
- Department of Genetics and Cell Biology, Institute of Nutrition and Translational Research in Metabolism (NUTRIM)Maastricht UniversityThe Netherlands
| | - Berta Cillero‐Pastor
- Maastricht Multimodal Molecular Imaging Institute (M4i)University of MaastrichtThe Netherlands
- Cell Biology‐Inspired Tissue Engineering (cBITE), MERLNMaastricht UniversityThe Netherlands
| | - Ronit Shiri‐Sverdlov
- Department of Genetics and Cell Biology, Institute of Nutrition and Translational Research in Metabolism (NUTRIM)Maastricht UniversityThe Netherlands
| |
Collapse
|
5
|
López-Cabrera A, Piñero-Pérez R, Álvarez-Córdoba M, Cilleros-Holgado P, Gómez-Fernández D, Reche-López D, Romero-González A, Romero-Domínguez JM, de la Mata M, de Pablos RM, González-Granero S, García-Verdugo JM, Sánchez-Alcázar JA. Iron Accumulation and Lipid Peroxidation in Cellular Models of Nemaline Myopathies. Int J Mol Sci 2025; 26:1434. [PMID: 40003902 PMCID: PMC11855326 DOI: 10.3390/ijms26041434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/27/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
One of the most prevalent types of congenital myopathy is nemaline myopathy (NM), which is recognized by histopathological examination of muscle fibers for the presence of "nemaline bodies" (rods). Mutations in the actin alpha 1 (ACTA1) and nebulin (NEB) genes result in the most prevalent types of NM. Muscle weakness and hypotonia are the main clinical characteristics of this disease. Unfortunately, the pathogenetic mechanisms are still unknown, and there is no cure. In previous work, we showed that actin filament polymerization defects in patient-derived fibroblasts were associated with mitochondrial dysfunction. In this manuscript, we examined the pathophysiological consequences of mitochondrial dysfunction in patient-derived fibroblasts. We analyzed iron and lipofuscin accumulation and lipid peroxidation both at the cellular and mitochondrial level. We found that fibroblasts derived from patients harboring ACTA1 and NEB mutations showed intracellular iron and lipofuscin accumulation, increased lipid peroxidation, and altered expression levels of proteins involved in iron metabolism. Furthermore, we showed that actin polymerization inhibition in control cells recapitulates the main pathological alterations of mutant nemaline cells. Our results indicate that mitochondrial dysfunction is associated with iron metabolism dysregulation, leading to iron/lipofuscin accumulation and increased lipid peroxidation.
Collapse
Affiliation(s)
- Alejandra López-Cabrera
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (A.L.-C.); (R.P.-P.); (M.Á.-C.); (P.C.-H.); (D.G.-F.); (D.R.-L.); (A.R.-G.); (J.M.R.-D.)
| | - Rocío Piñero-Pérez
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (A.L.-C.); (R.P.-P.); (M.Á.-C.); (P.C.-H.); (D.G.-F.); (D.R.-L.); (A.R.-G.); (J.M.R.-D.)
| | - Mónica Álvarez-Córdoba
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (A.L.-C.); (R.P.-P.); (M.Á.-C.); (P.C.-H.); (D.G.-F.); (D.R.-L.); (A.R.-G.); (J.M.R.-D.)
| | - Paula Cilleros-Holgado
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (A.L.-C.); (R.P.-P.); (M.Á.-C.); (P.C.-H.); (D.G.-F.); (D.R.-L.); (A.R.-G.); (J.M.R.-D.)
| | - David Gómez-Fernández
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (A.L.-C.); (R.P.-P.); (M.Á.-C.); (P.C.-H.); (D.G.-F.); (D.R.-L.); (A.R.-G.); (J.M.R.-D.)
| | - Diana Reche-López
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (A.L.-C.); (R.P.-P.); (M.Á.-C.); (P.C.-H.); (D.G.-F.); (D.R.-L.); (A.R.-G.); (J.M.R.-D.)
| | - Ana Romero-González
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (A.L.-C.); (R.P.-P.); (M.Á.-C.); (P.C.-H.); (D.G.-F.); (D.R.-L.); (A.R.-G.); (J.M.R.-D.)
| | - José Manuel Romero-Domínguez
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (A.L.-C.); (R.P.-P.); (M.Á.-C.); (P.C.-H.); (D.G.-F.); (D.R.-L.); (A.R.-G.); (J.M.R.-D.)
| | - Mario de la Mata
- Departamento de Fisiología, Facultad de Ciencias de la Salud, Universidad de Granada, 51001 Ceuta, Spain;
| | - Rocío M. de Pablos
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain;
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío (HUVR)-CSIC-Universidad de Sevilla, 41013 Sevilla, Spain
| | - Susana González-Granero
- Laboratory of Comparative Neurobiology, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia and CIBERNED-ISCIII, 46980 Valencia, Spain; (S.G.-G.); (J.M.G.-V.)
| | - José Manuel García-Verdugo
- Laboratory of Comparative Neurobiology, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia and CIBERNED-ISCIII, 46980 Valencia, Spain; (S.G.-G.); (J.M.G.-V.)
| | - José A. Sánchez-Alcázar
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (A.L.-C.); (R.P.-P.); (M.Á.-C.); (P.C.-H.); (D.G.-F.); (D.R.-L.); (A.R.-G.); (J.M.R.-D.)
| |
Collapse
|
6
|
Xu G, Xiao W, Sun P, Sun Y, Yang X, Yin X, Liu Y. Lysophosphatidylethanolamine improves diastolic dysfunction by alleviating mitochondrial injury in the aging heart. J Lipid Res 2025; 66:100713. [PMID: 39579983 PMCID: PMC11719853 DOI: 10.1016/j.jlr.2024.100713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 11/12/2024] [Accepted: 11/20/2024] [Indexed: 11/25/2024] Open
Abstract
Diastolic dysfunction in aging mice is linked to mitochondrial abnormalities, including mitochondrial morphology disorders and decreases in membrane potential. Studies also show that aberrant mitochondrial lipid metabolism impairs mitochondrial function in aging cardiomyocytes. Our lipidomic analysis revealed that phosphatidylethanolamine (PE) levels were significantly decreased in aging myocardial mitochondria. Here, we investigated whether a reduction in PE levels in myocardial mitochondria contributes to mitochondrial injury as well as HFpEF pathogenesis and whether modulation of PE levels could ameliorate aging-induced HFpEF. Echocardiography was used to assess cardiac diastolic function in adult and aging mice treated with lysophosphatidylethanolamine (LPE) or saline. Mitochondrial morphologies from tissue samples were evaluated by transmission electron microscopy (TEM), while mitochondrial membrane potential and reactive oxygen species (ROS) levels were assessed using JC-1, MitoSOX, and DCFH-DA detection assays. We performed GO enrichment analysis between adult and aging mice and discovered significant enrichment in transcriptional programs associated with mitochondria and lipid metabolism. Also, mitochondrial PE levels were significantly decreased in aging cardiomyocytes. Treatment with LPE (200 μg/kg) significantly enhanced PE content in aging mice and improved the structure of mitochondria in cardiac cells. Also, LPE treatment protects against aging-induced deterioration of mitochondrial injury, as evidenced by increased mitochondrial membrane potential and decreased mitochondrial ROS. Furthermore, treatment with LPE alleviated severe diastolic dysfunction in aging mice. Taken together, our results suggest that LPE treatment enhances PE levels in mitochondria and ameliorates aging-induced diastolic dysfunction in mice through a mechanism involving improved mitochondrial structure and function.
Collapse
Affiliation(s)
- Guiwen Xu
- Institute of Cardiovascular Diseases, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Wei Xiao
- Institute of Cardiovascular Diseases, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Pengqi Sun
- Institute of Cardiovascular Diseases, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yuanjun Sun
- Department of Cardiology, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xinyu Yang
- Institute of Cardiovascular Diseases, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiaomeng Yin
- Department of Cardiology, the First Affiliated Hospital of Dalian Medical University, Dalian, China.
| | - Yang Liu
- Institute of Cardiovascular Diseases, the First Affiliated Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
7
|
Drzymała-Czyż S, Walkowiak J, Colombo C, Alicandro G, Storrösten OT, Kolsgaard M, Bakkeheim E, Strandvik B. Fatty acid abnormalities in cystic fibrosis-the missing link for a cure? iScience 2024; 27:111153. [PMID: 39620135 PMCID: PMC11607544 DOI: 10.1016/j.isci.2024.111153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
Abstract
The care for cystic fibrosis (CF) has dramatically changed with the development of modulators, correctors, and potentiators of the CFTR molecule, which lead to improved clinical status of most people with CF (pwCF). The modulators influence phospholipids and ceramides, but not linoleic acid (LA) deficiency, associated with more severe phenotypes of CF. The LA deficiency is associated with upregulation of its transfer to arachidonic acid (AA). The AA release from membranes is increased and associated with increase of pro-inflammatory prostanoids and the characteristic inflammation is present before birth and bacterial infections. Docosahexaenoic acid is often decreased, especially in associated liver disease Some endogenously synthesized fatty acids are increased. Cholesterol and ceramide metabolisms are disturbed. The lipid abnormalities are present at birth, and before feeding in transgenic pigs and ferrets. This review focus on the lipid abnormalities and their associations to clinical symptoms in CF, based on clinical studies and experimental research.
Collapse
Affiliation(s)
| | - Jarosław Walkowiak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Institute of Pediatrics, Poznan University of Medical Sciences, Poznan, Poland
| | - Carla Colombo
- Cystic Fibrosis Centre, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, and Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Gianfranco Alicandro
- Cystic Fibrosis Centre, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, and Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Olav Trond Storrösten
- National Resource Centre for Cystic Fibrosis, Oslo University Hospital, Oslo, Norway
| | - Magnhild Kolsgaard
- National Resource Centre for Cystic Fibrosis, Oslo University Hospital, Oslo, Norway
| | - Egil Bakkeheim
- National Resource Centre for Cystic Fibrosis, Oslo University Hospital, Oslo, Norway
| | | |
Collapse
|
8
|
Saettini F, Guerra F, Mauri M, Salter CG, Adam MP, Adams D, Baple EL, Barredo E, Bhatia S, Borkhardt A, Brusco A, Bugarin C, Chinello C, Crosby AH, D'Souza P, Denti V, Fazio G, Giuliani S, Kuehn HS, Amel H, Elmi A, Lo B, Malighetti F, Mandrile G, Martín-Nalda A, Mefford HC, Moratto D, Emam Mousavi F, Nelson Z, Gutiérrez-Solana LG, Macnamara E, Michaud V, O'Leary M, Pagani L, Pavinato L, Santamaria PVV, Planas-Serra L, Quadri M, Raspall-Chaure M, Rebellato S, Rosenzweig SD, Roubertie A, Holzinger D, Deal C, Vockley CW, Savino AM, L Stoddard J, Uhlig HH, Pujol A, Magni F, Paglia G, Cazzaniga G, Piazza R, Barberis M, Biondi A. Biallelic PI4KA Mutations Disrupt B-Cell Metabolism and Cause B-Cell Lymphopenia and Hypogammaglobulinemia. J Clin Immunol 2024; 45:15. [PMID: 39312004 DOI: 10.1007/s10875-024-01793-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/23/2024] [Indexed: 12/06/2024]
Abstract
PURPOSE PI4KA-related disorder is a highly clinically variable condition characterized by neurological (limb spasticity, developmental delay, intellectual disability, seizures, ataxia, nystagmus) and gastrointestinal (inflammatory bowel disease and multiple intestinal atresia) manifestations. Although features consistent with immunodeficiency (autoimmunity/autoinflammation and recurrent infections) have been reported in a subset of patients, the burden of B-cell deficiency and hypogammaglobulinemia has not been extensively investigated. We sought to describe the clinical presentation and manifestations of patients with PI4KA-related disorder and to investigate the metabolic consequences of biallelic PI4KA variants in B cells. METHODS Clinical data from patients with PI4KA variants were obtained. Multi-omics analyses combining transcriptome, proteome, lipidome and metabolome analyses in conjunction with functional assays were performed in EBV-transformed B cells. RESULTS Clinical and laboratory data of 13 patients were collected. Recurrent infections (7/13), autoimmune/autoinflammatory manifestations (5/13), B-cell deficiency (8/13) and hypogammaglobulinemia (8/13) were frequently observed. Patients' B cells frequently showed increased transitional and decreased switched memory B-cell subsets. Pathway analyses based on differentially expressed transcripts and proteins confirmed the central role of PI4KA in B cell differentiation with altered B-cell receptor (BCR) complex and signalling. By altering lipids production and tricarboxylic acid cycle regulation, and causing increased endoplasmic reticulum stress, biallelic PI4KA mutations disrupt B cell metabolism inducing mitochondrial dysfunction. As a result, B cells show hyperactive PI3K/mTOR pathway, increased autophagy and deranged cytoskeleton organization. CONCLUSION By altering lipid metabolism and TCA cycle, impairing mitochondrial activity, hyperactivating mTOR pathway and increasing autophagy, PI4KA-related disorder causes a syndromic inborn error of immunity presenting with B-cell deficiency and hypogammaglobulinemia.
Collapse
Affiliation(s)
- Francesco Saettini
- Centro Tettamanti, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy.
| | - Fabiola Guerra
- Centro Tettamanti, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- Pediatria, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- Dipartimento di Medicina e Chirurgia, Università degli Studi Milano-Bicocca, Monza, Italy
- Molecular Systems Biology, School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - Mario Mauri
- Dipartimento di Medicina e Chirurgia, Università degli Studi Milano-Bicocca, Monza, Italy
| | - Claire G Salter
- RILD Wellcome Wolfson Centre, University of Exeter Medical School, Exeter, UK
- Wessex Clinical Genetics Service, Princess Anne Hospital, Southampton, UK
| | - Margaret P Adam
- Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - David Adams
- NIH Undiagnosed Diseases Program, NIH, Bethesda, MD, USA
| | - Emma L Baple
- RILD Wellcome Wolfson Centre, University of Exeter Medical School, Exeter, UK
- Peninsula Clinical Genetics Service, Royal Devon and Exeter Hospital, Exeter, UK
| | - Estibaliz Barredo
- Neuropediatric Department, Hospital Universitario Gregorio Marañón, Madrid, Spain
| | - Sanil Bhatia
- Department of Paediatric Oncology, Haematology and Clinical Immunology, Medical Faculty, Heinrich-Heine University Dusseldorf, Düsseldorf, Germany
| | - Arndt Borkhardt
- Department of Paediatric Oncology, Haematology and Clinical Immunology, Medical Faculty, Heinrich-Heine University Dusseldorf, Düsseldorf, Germany
| | - Alfredo Brusco
- Department of Neurosciences Rita Levi-Montalcini, University of Turin, Turin, Italy
- Medical Genetics Unit, Città della Salute e della Scienza University Hospital, Turin, Italy
| | - Cristina Bugarin
- Centro Tettamanti, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Clizia Chinello
- Dipartimento di Medicina e Chirurgia, Università degli Studi Milano-Bicocca, Monza, Italy
| | - Andrew H Crosby
- RILD Wellcome Wolfson Centre, University of Exeter Medical School, Exeter, UK
| | | | - Vanna Denti
- Dipartimento di Medicina e Chirurgia, Università degli Studi Milano-Bicocca, Monza, Italy
| | - Grazia Fazio
- Centro Tettamanti, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Silvia Giuliani
- Pediatria, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- Dipartimento di Medicina e Chirurgia, Università degli Studi Milano-Bicocca, Monza, Italy
| | - Hye Sun Kuehn
- Immunology Service, DLM, NIH Clinical Center, Bethesda, MD, USA
| | - Hassan Amel
- Pediatric Allergy and Immunology Department, Sidra Medicine, Doha, Qatar
| | - Asha Elmi
- Research Branch, Sidra Medicine, Doha, Qatar
| | - Bernice Lo
- Research Branch, Sidra Medicine, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Federica Malighetti
- Dipartimento di Medicina e Chirurgia, Università degli Studi Milano-Bicocca, Monza, Italy
| | - Giorgia Mandrile
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Andrea Martín-Nalda
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Hospital Universitari Vall d'Hebron, Institut de Recerca Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Heather C Mefford
- Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Daniele Moratto
- Flow Cytometry Laboratory, Diagnostic Department, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Fatemeh Emam Mousavi
- Molecular Systems Biology, School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, United Kingdom
- Centre for Mathematical and Computational Biology, CMCB, University of Surrey, Guildford, Surrey, United Kingdom
| | - Zoe Nelson
- Vascular Anomalies Program, Seattle Children's Hospital, Seattle, WA, USA
| | | | | | - Vincent Michaud
- Molecular Genetics Laboratory, Bordeaux University Hospital, Bordeaux, Aquitaine, France. INSERM U1211, Rare Diseases Laboratory: Genetics and Metabolism, University of Bordeaux, Aquitaine, Talence, France
| | - Melanie O'Leary
- Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Lisa Pagani
- Dipartimento di Medicina e Chirurgia, Università degli Studi Milano-Bicocca, Monza, Italy
| | - Lisa Pavinato
- Department of Neurosciences Rita Levi-Montalcini, University of Turin, Turin, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Patricia VVelez Santamaria
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908, Barcelona, Catalonia, Spain
| | - Laura Planas-Serra
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908, Barcelona, Catalonia, Spain
- Centre for Biomedical Research in Network on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Manuel Quadri
- Centro Tettamanti, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Miquel Raspall-Chaure
- Department of Paediatric Neurology, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Stefano Rebellato
- Centro Tettamanti, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- Dipartimento di Medicina e Chirurgia, Università degli Studi Milano-Bicocca, Monza, Italy
| | | | - Agathe Roubertie
- Département de Neuropédiatrie, CIC, CHU de Montpellier, INM, Univ Montpellier, INSERM U 1298, Montpellier, France
| | - Dirk Holzinger
- Department of Pediatric Haematology-Oncology, Pediatrics III, University of Duisburg-Essen, Essen, Germany
- Department of Applied Health Sciences, University of Applied Sciences Bochum, Bochum, Germany
| | - Christin Deal
- Division of Pediatric Allergy and Immunology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, USA
| | - Catherine Walsh Vockley
- Division of Genetic and Genomic Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, USA
| | - Angela Maria Savino
- Dipartimento di Medicina e Chirurgia, Università degli Studi Milano-Bicocca, Monza, Italy
| | | | - Holm H Uhlig
- Translational Gastroenterology Unit, NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, University of Oxford, Oxfordshire, UK
- Department of Paediatrics, University of Oxford, Oxfordshire, UK
- Oxford NIHR Biomedical Research Centre, Oxford, UK
| | - Aurora Pujol
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908, Barcelona, Catalonia, Spain
- Centre for Biomedical Research in Network on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, Catalonia, Spain
| | - Fulvio Magni
- Dipartimento di Medicina e Chirurgia, Università degli Studi Milano-Bicocca, Monza, Italy
| | - Giuseppe Paglia
- Dipartimento di Medicina e Chirurgia, Università degli Studi Milano-Bicocca, Monza, Italy
| | - Gianni Cazzaniga
- Dipartimento di Medicina e Chirurgia, Università degli Studi Milano-Bicocca, Monza, Italy
| | - Rocco Piazza
- Dipartimento di Medicina e Chirurgia, Università degli Studi Milano-Bicocca, Monza, Italy
| | - Matteo Barberis
- Molecular Systems Biology, School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, United Kingdom
- Centre for Mathematical and Computational Biology, CMCB, University of Surrey, Guildford, Surrey, United Kingdom
| | - Andrea Biondi
- Centro Tettamanti, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- Pediatria, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- Dipartimento di Medicina e Chirurgia, Università degli Studi Milano-Bicocca, Monza, Italy
| |
Collapse
|
9
|
Godoy Coto J, Pereyra EV, Cavalli FA, Valverde CA, Caldiz CI, Maté SM, Yeves AM, Ennis IL. Exercise-induced cardiac mitochondrial reorganization and enhancement in spontaneously hypertensive rats. Pflugers Arch 2024; 476:1109-1123. [PMID: 38625371 DOI: 10.1007/s00424-024-02956-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/22/2024] [Accepted: 03/28/2024] [Indexed: 04/17/2024]
Abstract
The myocardium is a highly oxidative tissue in which mitochondria are essential to supply the energy required to maintain pump function. When pathological hypertrophy develops, energy consumption augments and jeopardizes mitochondrial capacity. We explored the cardiac consequences of chronic swimming training, focusing on the mitochondrial network, in spontaneously hypertensive rats (SHR). Male adult SHR were randomized to sedentary or trained (T: 8-week swimming protocol). Blood pressure and echocardiograms were recorded, and hearts were removed at the end of the training period to perform molecular, imaging, or isolated mitochondria studies. Swimming improved cardiac midventricular shortening and decreased the pathological hypertrophic marker atrial natriuretic peptide. Oxidative stress was reduced, and even more interesting, mitochondrial spatial distribution, dynamics, function, and ATP were significantly improved in the myocardium of T rats. In the signaling pathway triggered by training, we detected an increase in the phosphorylation level of both AKT and glycogen synthase kinase-3 β, key downstream targets of insulin-like growth factor 1 signaling that are crucially involved in mitochondria biogenesis and integrity. Aerobic exercise training emerges as an effective approach to improve pathological cardiac hypertrophy and bioenergetics in hypertension-induced cardiac hypertrophy.
Collapse
Affiliation(s)
- Joshua Godoy Coto
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani", Facultad de Ciencias Médicas, Universidad Nacional de La Plata (UNLP) - CONICET, La Plata, Argentina
| | - Erica V Pereyra
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani", Facultad de Ciencias Médicas, Universidad Nacional de La Plata (UNLP) - CONICET, La Plata, Argentina
| | - Fiorella A Cavalli
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani", Facultad de Ciencias Médicas, Universidad Nacional de La Plata (UNLP) - CONICET, La Plata, Argentina
| | - Carlos A Valverde
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani", Facultad de Ciencias Médicas, Universidad Nacional de La Plata (UNLP) - CONICET, La Plata, Argentina
| | - Claudia I Caldiz
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani", Facultad de Ciencias Médicas, Universidad Nacional de La Plata (UNLP) - CONICET, La Plata, Argentina
| | - Sabina M Maté
- Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner" - Facultad de Ciencias Médicas, Universidad Nacional de La Plata (UNLP) - CONICET, La Plata, Argentina
| | - Alejandra M Yeves
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani", Facultad de Ciencias Médicas, Universidad Nacional de La Plata (UNLP) - CONICET, La Plata, Argentina.
| | - Irene L Ennis
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani", Facultad de Ciencias Médicas, Universidad Nacional de La Plata (UNLP) - CONICET, La Plata, Argentina.
| |
Collapse
|
10
|
Fernandes T, Melo T, Conde T, Neves B, Domingues P, Resende R, Pereira CF, Moreira PI, Domingues MR. Mapping the lipidome in mitochondria-associated membranes (MAMs) in an in vitro model of Alzheimer's disease. J Neurochem 2024; 168:1237-1253. [PMID: 38327008 DOI: 10.1111/jnc.16072] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/06/2023] [Accepted: 01/24/2024] [Indexed: 02/09/2024]
Abstract
The disruption of mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs) plays a relevant role in Alzheimer's disease (AD). MAMs have been implicated in neuronal dysfunction and death since it is associated with impairment of functions regulated in this subcellular domain, including lipid synthesis and trafficking, mitochondria dysfunction, ER stress-induced unfolded protein response (UPR), apoptosis, and inflammation. Since MAMs play an important role in lipid metabolism, in this study we characterized and investigated the lipidome alterations at MAMs in comparison with other subcellular fractions, namely microsomes and mitochondria, using an in vitro model of AD, namely the mouse neuroblastoma cell line (N2A) over-expressing the APP familial Swedish mutation (APPswe) and the respective control (WT) cells. Phospholipids (PLs) and fatty acids (FAs) were isolated from the different subcellular fractions and analyzed by HILIC-LC-MS/MS and GC-MS, respectively. In this in vitro AD model, we observed a down-regulation in relative abundance of some phosphatidylcholine (PC), lysophosphatidylcholine (LPC), and lysophosphatidylethanolamine (LPE) species with PUFA and few PC with saturated and long-chain FA. We also found an up-regulation of CL, and antioxidant alkyl acyl PL. Moreover, multivariate analysis indicated that each organelle has a specific lipid profile adaptation in N2A APPswe cells. In the FAs profile, we found an up-regulation of C16:0 in all subcellular fractions, a decrease of C18:0 levels in total fraction (TF) and microsomes fraction, and a down-regulation of 9-C18:1 was also found in mitochondria fraction in the AD model. Together, these results suggest that the over-expression of the familial APP Swedish mutation affects lipid homeostasis in MAMs and other subcellular fractions and supports the important role of lipids in AD physiopathology.
Collapse
Affiliation(s)
- Tânia Fernandes
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- IIIUC-Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
- CACC-Clinical Academic Center of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Tânia Melo
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
- CESAM - Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Tiago Conde
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
- CESAM - Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Bruna Neves
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
- CESAM - Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Pedro Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
- CESAM - Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Rosa Resende
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- IIIUC-Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
- CACC-Clinical Academic Center of Coimbra, Coimbra, Portugal
| | - Cláudia F Pereira
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- CACC-Clinical Academic Center of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Paula I Moreira
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- CACC-Clinical Academic Center of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Maria Rosário Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
- CESAM - Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
11
|
den Brave F, Schulte U, Fakler B, Pfanner N, Becker T. Mitochondrial complexome and import network. Trends Cell Biol 2024; 34:578-594. [PMID: 37914576 DOI: 10.1016/j.tcb.2023.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 11/03/2023]
Abstract
Mitochondria perform crucial functions in cellular metabolism, protein and lipid biogenesis, quality control, and signaling. The systematic analysis of protein complexes and interaction networks provided exciting insights into the structural and functional organization of mitochondria. Most mitochondrial proteins do not act as independent units, but are interconnected by stable or dynamic protein-protein interactions. Protein translocases are responsible for importing precursor proteins into mitochondria and form central elements of several protein interaction networks. These networks include molecular chaperones and quality control factors, metabolite channels and respiratory chain complexes, and membrane and organellar contact sites. Protein translocases link the distinct networks into an overarching network, the mitochondrial import network (MitimNet), to coordinate biogenesis, membrane organization and function of mitochondria.
Collapse
Affiliation(s)
- Fabian den Brave
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, 53115 Bonn, Germany
| | - Uwe Schulte
- Institute of Physiology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Bernd Fakler
- Institute of Physiology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Nikolaus Pfanner
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany; Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany.
| | - Thomas Becker
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, 53115 Bonn, Germany.
| |
Collapse
|
12
|
Tian Q, Greig EE, Walker KA, Fishbein KW, Spencer RG, Resnick SM, Ferrucci L. Plasma metabolomic markers underlying skeletal muscle mitochondrial function relationships with cognition and motor function. Age Ageing 2024; 53:afae079. [PMID: 38615247 PMCID: PMC11484644 DOI: 10.1093/ageing/afae079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Indexed: 04/15/2024] Open
Abstract
BACKGROUND Lower skeletal muscle mitochondrial function is associated with future cognitive impairment and mobility decline, but the biological underpinnings for these associations are unclear. We examined metabolomic markers underlying skeletal muscle mitochondrial function, cognition and motor function. METHODS We analysed data from 560 participants from the Baltimore Longitudinal Study of Aging (mean age: 68.4 years, 56% women, 28% Black) who had data on skeletal muscle oxidative capacity (post-exercise recovery rate of phosphocreatine, kPCr) via 31P magnetic resonance spectroscopy and targeted plasma metabolomics using LASSO model. We then examined which kPCr-related markers were also associated with cognition and motor function in a larger sample (n = 918, mean age: 69.4, 55% women, 27% Black). RESULTS The LASSO model revealed 24 metabolites significantly predicting kPCr, with the top 5 being asymmetric dimethylarginine, lactic acid, lysophosphatidylcholine a C18:1, indoleacetic acid and triacylglyceride (17:1_34:3), also significant in multivariable linear regression. The kPCr metabolite score was associated with cognitive or motor function, with 2.5-minute usual gait speed showing the strongest association (r = 0.182). Five lipids (lysophosphatidylcholine a C18:1, phosphatidylcholine ae C42:3, cholesteryl ester 18:1, sphingomyelin C26:0, octadecenoic acid) and 2 amino acids (leucine, cystine) were associated with both cognitive and motor function measures. CONCLUSION Our findings add evidence to the hypothesis that mitochondrial function is implicated in the pathogenesis of cognitive and physical decline with aging and suggest that targeting specific metabolites may prevent cognitive and mobility decline through their effects on mitochondria. Future omics studies are warranted to confirm these findings and explore mechanisms underlying mitochondrial dysfunction in aging phenotypes.
Collapse
Affiliation(s)
- Qu Tian
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Erin E Greig
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Keenan A Walker
- Laboratory of Behavioral Neuroscience, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Kenneth W Fishbein
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Richard G Spencer
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Susan M Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| |
Collapse
|
13
|
Horten P, Song K, Garlich J, Hardt R, Colina-Tenorio L, Horvath SE, Schulte U, Fakler B, van der Laan M, Becker T, Stuart RA, Pfanner N, Rampelt H. Identification of MIMAS, a multifunctional mega-assembly integrating metabolic and respiratory biogenesis factors of mitochondria. Cell Rep 2024; 43:113772. [PMID: 38393949 PMCID: PMC11010658 DOI: 10.1016/j.celrep.2024.113772] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/03/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
The mitochondrial inner membrane plays central roles in bioenergetics and metabolism and contains several established membrane protein complexes. Here, we report the identification of a mega-complex of the inner membrane, termed mitochondrial multifunctional assembly (MIMAS). Its large size of 3 MDa explains why MIMAS has escaped detection in the analysis of mitochondria so far. MIMAS combines proteins of diverse functions from respiratory chain assembly to metabolite transport, dehydrogenases, and lipid biosynthesis but not the large established supercomplexes of the respiratory chain, ATP synthase, or prohibitin scaffold. MIMAS integrity depends on the non-bilayer phospholipid phosphatidylethanolamine, in contrast to respiratory supercomplexes whose stability depends on cardiolipin. Our findings suggest that MIMAS forms a protein-lipid mega-assembly in the mitochondrial inner membrane that integrates respiratory biogenesis and metabolic processes in a multifunctional platform.
Collapse
Affiliation(s)
- Patrick Horten
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Kuo Song
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Joshua Garlich
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA
| | - Robert Hardt
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, 53115 Bonn, Germany
| | - Lilia Colina-Tenorio
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Susanne E Horvath
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Uwe Schulte
- Institute of Physiology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Bernd Fakler
- Institute of Physiology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Martin van der Laan
- Medical Biochemistry and Molecular Biology, Center for Molecular Signaling, PZMS, Faculty of Medicine, Saarland University, 66421 Homburg, Germany
| | - Thomas Becker
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, 53115 Bonn, Germany
| | - Rosemary A Stuart
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA
| | - Nikolaus Pfanner
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany.
| | - Heike Rampelt
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
14
|
Kopec M, Beton-Mysur K. The role of glucose and fructose on lipid droplet metabolism in human normal bronchial and cancer lung cells by Raman spectroscopy. Chem Phys Lipids 2024; 259:105375. [PMID: 38159659 DOI: 10.1016/j.chemphyslip.2023.105375] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/18/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
Fructose is one of the most important monosaccharides in the human diet that the human body needs for proper metabolism. This paper presents an approach to study biochemical changes caused by sugars in human normal bronchial cells (BEpiC) and human cancer lung cells (A549) by Raman spectroscopy and Raman imaging. Results after supplementation of human bronchial and lung cells with fructose are also discussed and compared with results obtained for pure human bronchial and lung cells. Based on Raman techniques we have proved that peaks at 750 cm-1, 1126 cm-1, 1444 cm-1, 1584 cm-1 and 2845 cm-1 can be treated as biomarkers to monitor fructose changes in cells. Results for fructose have been compared with results for glucose. Raman analysis of the bands at 750 cm-1, 1126 cm-1, 1584 cm-1 and 2845 cm-1 for pure BEpiC and A549 cells and BEpiC and A549 after supplementation with fructose and glucose are higher after supplementation with fructose in comparison to glucose. The obtained results shed light on the uninvestigated influence of glucose and fructose on lipid droplet metabolism by Raman spectroscopy methods.
Collapse
Affiliation(s)
- Monika Kopec
- Lodz University of Technology, Institute of Applied Radiation Chemistry, Laboratory of Laser Molecular Spectroscopy, Wroblewskiego 15, 93-590 Lodz, Poland.
| | - Karolina Beton-Mysur
- Lodz University of Technology, Institute of Applied Radiation Chemistry, Laboratory of Laser Molecular Spectroscopy, Wroblewskiego 15, 93-590 Lodz, Poland
| |
Collapse
|
15
|
Huang Y, Ji W, Zhang J, Huang Z, Ding A, Bai H, Peng B, Huang K, Du W, Zhao T, Li L. The involvement of the mitochondrial membrane in drug delivery. Acta Biomater 2024; 176:28-50. [PMID: 38280553 DOI: 10.1016/j.actbio.2024.01.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/23/2023] [Accepted: 01/18/2024] [Indexed: 01/29/2024]
Abstract
Treatment effectiveness and biosafety are critical for disease therapy. Bio-membrane modification facilitates the homologous targeting of drugs in vivo by exploiting unique antibodies or antigens, thereby enhancing therapeutic efficacy while ensuring biosafety. To further enhance the precision of disease treatment, future research should shift focus from targeted cellular delivery to targeted subcellular delivery. As the cellular powerhouses, mitochondria play an indispensable role in cell growth and regulation and are closely involved in many diseases (e.g., cancer, cardiovascular, and neurodegenerative diseases). The double-layer membrane wrapped on the surface of mitochondria not only maintains the stability of their internal environment but also plays a crucial role in fundamental biological processes, such as energy generation, metabolite transport, and information communication. A growing body of evidence suggests that various diseases are tightly related to mitochondrial imbalance. Moreover, mitochondria-targeted strategies hold great potential to decrease therapeutic threshold dosage, minimize side effects, and promote the development of precision medicine. Herein, we introduce the structure and function of mitochondrial membranes, summarize and discuss the important role of mitochondrial membrane-targeting materials in disease diagnosis/treatment, and expound the advantages of mitochondrial membrane-assisted drug delivery for disease diagnosis, treatment, and biosafety. This review helps readers understand mitochondria-targeted therapies and promotes the application of mitochondrial membranes in drug delivery. STATEMENT OF SIGNIFICANCE: Bio-membrane modification facilitates the homologous targeting of drugs in vivo by exploiting unique antibodies or antigens, thereby enhancing therapeutic efficacy while ensuring biosafety. Compared to cell-targeted treatment, targeting of mitochondria for drug delivery offers higher efficiency and improved biosafety and will promote the development of precision medicine. As a natural material, the mitochondrial membrane exhibits excellent biocompatibility and can serve as a carrier for mitochondria-targeted delivery. This review provides an overview of the structure and function of mitochondrial membranes and explores the potential benefits of utilizing mitochondrial membrane-assisted drug delivery for disease treatment and biosafety. The aim of this review is to enhance readers' comprehension of mitochondrial targeted therapy and to advance the utilization of mitochondrial membrane in drug delivery.
Collapse
Affiliation(s)
- Yinghui Huang
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China
| | - Wenhui Ji
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China
| | - Jiaxin Zhang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Ze Huang
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China; Future Display Institute in Xiamen, Xiamen 361005, China
| | - Aixiang Ding
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China
| | - Hua Bai
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Bo Peng
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Kai Huang
- Future Display Institute in Xiamen, Xiamen 361005, China
| | - Wei Du
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China.
| | - Tingting Zhao
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China.
| | - Lin Li
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China; Future Display Institute in Xiamen, Xiamen 361005, China.
| |
Collapse
|
16
|
Carrasco Del Amor A, Bautista RH, Ussar S, Cristobal S, Urbatzka R. Insights into the mechanism of action of the chlorophyll derivative 13- 2-hydroxypheophytine a on reducing neutral lipid reserves in zebrafish larvae and mice adipocytes. Eur J Pharmacol 2023; 960:176158. [PMID: 37898286 DOI: 10.1016/j.ejphar.2023.176158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 10/30/2023]
Abstract
Obesity is a worldwide epidemic and natural products may hold promise in its treatment. The chlorophyll derivative 13-2-hydroxypheophytine (hpa) was isolated in a screen with zebrafish larvae to identify lipid reducing molecules from cyanobacteria. However, the mechanisms underlying the lipid-reducing effects of hpa in zebrafish larvae remain poorly understood. Thus, investigating the mechanism of action of hpa and validation in other model organisms such as mice represents important initial steps. In this study, we identified 14 protein targets of hpa in zebrafish larvae by thermal proteome profiling, and selected two targets (malate dehydrogenase and pyruvate kinase) involved in cellular metabolism for further validation by enzymatic measurements. Our findings revealed a dose-dependent inhibition of pyruvate kinase by hpa exposure using protein extracts of zebrafish larvae in vitro, and in exposure experiments from 3 to 5 days post fertilization in vivo. Analysis of untargeted metabolomics of zebrafish larvae detected 940 mass peaks (66 increased, 129 decreased) and revealed that hpa induced the formation of various phospholipid species (phosphoinositol, phosphoethanolamine, phosphatidic acid). Inter-species validation showed that brown adipocytes exposed to hpa significantly reduced the size of lipid droplets, increased maximal mitochondrial respiratory capacity, and the expression of PPARy during adipocyte differentiation. In line with our data, previous work described that reduced pyruvate kinase activity lowered hepatic lipid content via reduced pyruvate and citrate, and improved mitochondrial function via phospholipids. Thus, our data provide new insights into the molecular mechanism underlying the lipid reducing activities of hpa in zebrafish larvae, and species overlapping functions in reduction of lipids.
Collapse
Affiliation(s)
- Ana Carrasco Del Amor
- Department of Biomedical and Clinical Sciences, Cell Biology, Faculty of Medicine, Linköping University, SE-58185, Linköping, Sweden.
| | - Rene Hernandez Bautista
- RG Adipocyte and Metabolism, Institute for Diabetes and Obesity, Helmholtz Center Munich, 85764, Neuherberg, Germany.
| | - Siegfried Ussar
- RG Adipocyte and Metabolism, Institute for Diabetes and Obesity, Helmholtz Center Munich, 85764, Neuherberg, Germany.
| | - Susana Cristobal
- Department of Biomedical and Clinical Sciences, Cell Biology, Faculty of Medicine, Linköping University, SE-58185, Linköping, Sweden; Ikerbasque, Basque Foundation for Sciences, Department of Physiology, Faculty of Medicine, and Nursing, University of the Basque Country UPV/EHU, Spain.
| | - Ralph Urbatzka
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Avenida General Norton de Matos, s/n, 4450-208, Matosinhos, Portugal.
| |
Collapse
|
17
|
Mendes D, Peixoto F, Oliveira MM, Andrade PB, Videira RA. Mitochondrial Dysfunction in Skeletal Muscle of Rotenone-Induced Rat Model of Parkinson's Disease: SC-Nanophytosomes as Therapeutic Approach. Int J Mol Sci 2023; 24:16787. [PMID: 38069110 PMCID: PMC10706108 DOI: 10.3390/ijms242316787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
The development of new therapeutic options for Parkinson's disease (PD) requires formulations able to mitigate both brain degeneration and motor dysfunctions. SC-Nanophytosomes, an oral mitochondria-targeted formulation developed with Codium tomentosum membrane polar lipids and elderberry anthocyanin-enriched extract, promote significant brain benefits on a rotenone-induced rat model of PD. In the present work, the effects of SC-Nanophytosome treatment on the skeletal muscle tissues are disclosed. It is unveiled that the rotenone-induced PD rat model exhibits motor disabilities and skeletal muscle tissues with deficient activity of mitochondrial complexes I and II along with small changes in antioxidant enzyme activity and skeletal muscle lipidome. SC-Nanophytosome treatment mitigates the impairment of complexes I and II activity, improving the mitochondrial respiratory chain performance at levels that surpass the control. Therefore, SC-Nanophytosome competence to overcome the PD-related motor disabilities should be also associated with its positive outcomes on skeletal muscle mitochondria. Providing a cellular environment with more reduced redox potential, SC-Nanophytosome treatment improves the skeletal muscle tissue's ability to deal with oxidative stress stimuli. The PD-related small changes on skeletal muscle lipidome were also counteracted by SC-Nanophytosome treatment. Thus, the present results reinforces the concept of SC-Nanophytosomes as a mitochondria-targeted therapy to address the neurodegeneration challenge.
Collapse
Affiliation(s)
- Daniela Mendes
- REQUIMTE/LAQV, Laboratory of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal; (D.M.); (P.B.A.)
| | - Francisco Peixoto
- Chemistry Center-Vila Real (CQ-VR), Biological and Environment Department, School of Life and Environmental Sciences, University of Trás-os-Montes e Alto Douro, UTAD, P.O. Box 1013, 5001-801 Vila Real, Portugal;
| | - Maria Manuel Oliveira
- Chemistry Center-Vila Real (CQ-VR), Chemistry Department, School of Life and Environmental Sciences, University of Trás-os-Montes e Alto Douro, UTAD, 5001-801 Vila Real, Portugal;
| | - Paula Branquinho Andrade
- REQUIMTE/LAQV, Laboratory of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal; (D.M.); (P.B.A.)
| | - Romeu António Videira
- REQUIMTE/LAQV, Laboratory of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal; (D.M.); (P.B.A.)
| |
Collapse
|
18
|
Semenov AY, Tikhonov AN. Electrometric and Electron Paramagnetic Resonance Measurements of a Difference in the Transmembrane Electrochemical Potential: Photosynthetic Subcellular Structures and Isolated Pigment-Protein Complexes. MEMBRANES 2023; 13:866. [PMID: 37999352 PMCID: PMC10673362 DOI: 10.3390/membranes13110866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/25/2023]
Abstract
A transmembrane difference in the electrochemical potentials of protons (ΔμH+) serves as a free energy intermediate in energy-transducing organelles of the living cell. The contributions of two components of the ΔμH+ (electrical, Δψ, and concentrational, ΔpH) to the overall ΔμH+ value depend on the nature and lipid composition of the energy-coupling membrane. In this review, we briefly consider several of the most common instrumental (electrometric and EPR) methods for numerical estimations of Δψ and ΔpH. In particular, the kinetics of the flash-induced electrometrical measurements of Δψ in bacterial chromatophores, isolated bacterial reaction centers, and Photosystems I and II of the oxygenic photosynthesis, as well as the use of pH-sensitive molecular indicators and kinetic data regarding pH-dependent electron transport in chloroplasts, have been reviewed. Further perspectives on the application of these methods to solve some fundamental and practical problems of membrane bioenergetics are discussed.
Collapse
Affiliation(s)
- Alexey Yu. Semenov
- A.N. Belozersky Institute of Physical-Chemical Biology, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia;
| | | |
Collapse
|
19
|
Borowiec BG, McDonald AE, Wilkie MP. Upstream migrant sea lamprey (Petromyzon marinus) show signs of increasing oxidative stress but maintain aerobic capacity with age. Comp Biochem Physiol A Mol Integr Physiol 2023; 285:111503. [PMID: 37586606 DOI: 10.1016/j.cbpa.2023.111503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/09/2023] [Accepted: 08/09/2023] [Indexed: 08/18/2023]
Abstract
Following the parasitic juvenile phase of their life cycle, sea lamprey (Petromyzon marinus) mature into a reproductive but rapidly aging and deteriorating adult, and typically die shortly after spawning in May or June. However, pre-spawning upstream migrant sea lamprey can be maintained for several months beyond their natural lifespan when held in cold water (∼4-8 °C) under laboratory conditions. We exploited this feature to investigate the interactions between senescence, oxidative stress, and metabolic function in this phylogenetically ancient fish. We investigated how life history traits and mitochondria condition, as indicated by markers of oxidative stress (catalase activity, lipid peroxidation) and aerobic capacity (citrate synthase activity), changed in adult sea lamprey from June to December after capture during their upstream spawning migration. Body mass but not liver mass declined with age, resulting in an increase in hepatosomatic index. Both effects were most pronounced in males, which also tended to have larger livers than females. Lamprey experienced greater oxidative stress with age, as reflected by increasing activity of the antioxidant enzyme catalase and increasing levels of lipid peroxidation in liver mitochondrial isolates over time. Surprisingly, the activity of citrate synthase also increased with age in both sexes. These observations implicate mitochondrial dysfunction and oxidative stress in the senescence of sea lamprey. Due to their unique evolutionary position and the technical advantage of easily delaying the onset of senescence in lampreys using cold water, these animals could represent an evolutionary unique and tractable model to investigate senescence in vertebrates.
Collapse
Affiliation(s)
| | - Allison E McDonald
- Department of Biology, Wilfrid Laurier University, Waterloo, Canada. https://twitter.com/AEMcDonaldWLU
| | - Michael P Wilkie
- Department of Biology, Wilfrid Laurier University, Waterloo, Canada
| |
Collapse
|
20
|
Burguera S, Frontera A, Bauzá A. Enzymatic reversion of Pt(II) nucleophilicity through charge dumping: the case of Pt(CN) 42. Chem Commun (Camb) 2023; 59:12847-12850. [PMID: 37791416 DOI: 10.1039/d3cc03816e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Combining computations and X-ray structure analysis we have demonstrated that [Pt(CN4)]2- can behave as a Lewis acid inside an enzyme's cavity. The nature of a counterintuitive contact found between a catalytically active GLN residue belonging to a mitochondrial synthase and the Pt(II) center was investigated by combining molecular dynamics and quantum mechanics calculations. Results confirm the electron acceptor role of [Pt(CN4)]2-, serving as an inspiration for the design of biomolecular cages able to tweak the nucleophilic/electrophilic character of an organometallic compound.
Collapse
Affiliation(s)
- Sergi Burguera
- Departament de Química, Universitat de les Illes Balears, Ctra. de Valldemossa Km 7.5, 07122, Palma de Mallorca, Baleares, Spain.
| | - Antonio Frontera
- Departament de Química, Universitat de les Illes Balears, Ctra. de Valldemossa Km 7.5, 07122, Palma de Mallorca, Baleares, Spain.
| | - Antonio Bauzá
- Departament de Química, Universitat de les Illes Balears, Ctra. de Valldemossa Km 7.5, 07122, Palma de Mallorca, Baleares, Spain.
| |
Collapse
|
21
|
Su H, Guo H, Qiu X, Lin TY, Qin C, Celio G, Yong P, Senders M, Han X, Bernlohr DA, Chen X. Lipocalin 2 regulates mitochondrial phospholipidome remodeling, dynamics, and function in brown adipose tissue in male mice. Nat Commun 2023; 14:6729. [PMID: 37872178 PMCID: PMC10593768 DOI: 10.1038/s41467-023-42473-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 10/11/2023] [Indexed: 10/25/2023] Open
Abstract
Mitochondrial function is vital for energy metabolism in thermogenic adipocytes. Impaired mitochondrial bioenergetics in brown adipocytes are linked to disrupted thermogenesis and energy balance in obesity and aging. Phospholipid cardiolipin (CL) and phosphatidic acid (PA) jointly regulate mitochondrial membrane architecture and dynamics, with mitochondria-associated endoplasmic reticulum membranes (MAMs) serving as the platform for phospholipid biosynthesis and metabolism. However, little is known about the regulators of MAM phospholipid metabolism and their connection to mitochondrial function. We discover that LCN2 is a PA binding protein recruited to the MAM during inflammation and metabolic stimulation. Lcn2 deficiency disrupts mitochondrial fusion-fission balance and alters the acyl-chain composition of mitochondrial phospholipids in brown adipose tissue (BAT) of male mice. Lcn2 KO male mice exhibit an increase in the levels of CLs containing long-chain polyunsaturated fatty acids (LC-PUFA), a decrease in CLs containing monounsaturated fatty acids, resulting in mitochondrial dysfunction. This dysfunction triggers compensatory activation of peroxisomal function and the biosynthesis of LC-PUFA-containing plasmalogens in BAT. Additionally, Lcn2 deficiency alters PA production, correlating with changes in PA-regulated phospholipid-metabolizing enzymes and the mTOR signaling pathway. In conclusion, LCN2 plays a critical role in the acyl-chain remodeling of phospholipids and mitochondrial bioenergetics by regulating PA production and its function in activating signaling pathways.
Collapse
Affiliation(s)
- Hongming Su
- Department of Food Science and Nutrition, University of Minnesota-Twin Cities, St. Paul, MN, 55108, USA
| | - Hong Guo
- Department of Food Science and Nutrition, University of Minnesota-Twin Cities, St. Paul, MN, 55108, USA
| | - Xiaoxue Qiu
- Department of Food Science and Nutrition, University of Minnesota-Twin Cities, St. Paul, MN, 55108, USA
| | - Te-Yueh Lin
- Department of Food Science and Nutrition, University of Minnesota-Twin Cities, St. Paul, MN, 55108, USA
| | - Chao Qin
- Barshop Institute for Longevity and Aging Studies, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229-3900, USA
| | - Gail Celio
- University Imaging Centers, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA
| | - Peter Yong
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA
| | - Mark Senders
- University Imaging Centers, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229-3900, USA
| | - David A Bernlohr
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA
| | - Xiaoli Chen
- Department of Food Science and Nutrition, University of Minnesota-Twin Cities, St. Paul, MN, 55108, USA.
| |
Collapse
|
22
|
Abstract
Mitochondria are multifunctional organelles that play a central role in a wide range of life-sustaining tasks in eukaryotic cells, including adenosine triphosphate (ATP) production, calcium storage and coenzyme generation pathways such as iron-sulfur cluster biosynthesis. The wide range of mitochondrial functions is carried out by a diverse array of proteins comprising approximately 1500 proteins or polypeptides. Degradation of these proteins is mainly performed by four AAA+ proteases localized in mitochondria. These AAA+ proteases play a quality control role in degrading damaged or misfolded proteins and perform various other functions. This chapter describes previously identified roles for these AAA+ proteases that are localized in the mitochondria of animal cells.
Collapse
Affiliation(s)
- Yuichi Matsushima
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan.
| |
Collapse
|
23
|
Li X, Yang H, Jin H, Turkez H, Ozturk G, Doganay HL, Zhang C, Nielsen J, Uhlén M, Borén J, Mardinoglu A. The acute effect of different NAD + precursors included in the combined metabolic activators. Free Radic Biol Med 2023; 205:77-89. [PMID: 37271226 DOI: 10.1016/j.freeradbiomed.2023.05.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/11/2023] [Accepted: 05/31/2023] [Indexed: 06/06/2023]
Abstract
NAD+ and glutathione precursors are currently used as metabolic modulators for improving the metabolic conditions associated with various human diseases, including non-alcoholic fatty liver disease, neurodegenerative diseases, mitochondrial myopathy, and age-induced diabetes. Here, we performed a one-day double blinded, placebo-controlled human clinical study to assess the safety and acute effects of six different Combined Metabolic Activators (CMAs) with 1 g of different NAD+ precursors based on global metabolomics analysis. Our integrative analysis showed that the NAD+ salvage pathway is the main source for boosting the NAD+ levels with the administration of CMAs without NAD+ precursors. We observed that incorporation of nicotinamide (Nam) in the CMAs can boost the NAD+ products, followed by niacin (NA), nicotinamide riboside (NR) and nicotinamide mononucleotide (NMN), but not flush free niacin (FFN). In addition, the NA administration led to a flushing reaction, accompanied by decreased phospholipids and increased bilirubin and bilirubin derivatives, which could be potentially risky. In conclusion, this study provided a plasma metabolomic landscape of different CMA formulations, and proposed that CMAs with Nam, NMN as well as NR can be administered for boosting NAD+ levels to improve altered metabolic conditions.
Collapse
Affiliation(s)
- Xiangyu Li
- Bash Biotech Inc, 600 West Broadway, Suite 700, San Diego, CA, 92101, USA; Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden; Guangzhou Laboratory, Guangzhou, 510005, China.
| | - Hong Yang
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden.
| | - Han Jin
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden.
| | - Hasan Turkez
- Department of Medical Biology, Faculty of Medicine, Atatürk University, Erzurum, Turkey.
| | - Gurkan Ozturk
- Research Institute for Health Sciences and Technologies (SABITA), International School of Medicine, Istanbul Medipol University, 34810, Istanbul, Turkey.
| | - Hamdi Levent Doganay
- Gastroenterology and Hepatology Unit, VM Pendik Medicalpark Teaching Hospital, İstanbul, Turkey; Department of Internal Medicine, Bahçeşehir University (BAU), Istanbul, Turkey.
| | - Cheng Zhang
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden.
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden; BioInnovation Institute, Ole Maaløes Vej 3, DK2200, Copenhagen, Denmark.
| | - Mathias Uhlén
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden.
| | - Jan Borén
- Department of Molecular and Clinical Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden.
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden; Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, United Kingdom.
| |
Collapse
|
24
|
Zhang L, Qiu J, Li Y, He L, Mao M, Wang T, Pan Y, Li Z, Mu X, Qian Y. Maternal transfer of florfenicol impacts development and disrupts metabolic pathways in F1 offspring zebrafish by destroying mitochondria. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 252:114597. [PMID: 36739738 DOI: 10.1016/j.ecoenv.2023.114597] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/17/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Maternal exposure to antibiotics existing in the environment is a predisposing factor for developmental malformation with metabolic disorders in offspring. In this study, female zebrafish (3 months) were exposed to 0.05 mg/L and 0.5 mg/L florfenicol (FF) for 28 days. After pairing and spawning with healthy male fish, F1 embryos were collected and developed to 5 d post-fertilization (dpf) in clear water. And the adverse effects on the F1 generation were examined thoroughly. The fecundity of F0 female fish and the hatchability, mortality, and body length of F1 larvae significantly decreased in the treatment group. Meanwhile, multi-malformation types were found in the exposure group, including delayed yolk sac absorption, lack of swim bladder, and spinal curvature. Metabolomic and transcriptomic results revealed alterations in metabolism with dysregulation in tricarboxylase acid cycle, amino acid metabolism, and disordered lipid metabolism with elevated levels of glycerophospholipid and sphingolipid. Accompanying these metabolic derangements, decreased levels of ATP and disordered oxidative-redox state were observed. These results were consistent with the damaged mitochondrial membrane potential and respiratory chain function, suggesting that the developmental toxicity and perturbed metabolic signaling in the F1 generation were related to the mitochondrial injury after exposing F0 female zebrafish to FF. Our findings highlighted the potential toxicity of FF to offspring generations even though they were not directly exposed to environmental contaminants.
Collapse
Affiliation(s)
- Lin Zhang
- Institute of Quality Standards and Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Jing Qiu
- Institute of Quality Standards and Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Yameng Li
- Institute of Quality Standards and Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Linjuan He
- Institute of Quality Standards and Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Mingcai Mao
- Institute of Quality Standards and Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Tiancai Wang
- Institute of Quality Standards and Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Yecan Pan
- Institute of Quality Standards and Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Zishu Li
- Institute of Quality Standards and Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Xiyan Mu
- Institute of Quality Standards and Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Yongzhong Qian
- Institute of Quality Standards and Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China.
| |
Collapse
|
25
|
Renne MF, Bao X, Hokken MWJ, Bierhuizen AS, Hermansson M, Sprenger RR, Ewing TA, Ma X, Cox RC, Brouwers JF, De Smet CH, Ejsing CS, de Kroon AIPM. Molecular species selectivity of lipid transport creates a mitochondrial sink for di-unsaturated phospholipids. EMBO J 2022; 41:e106837. [PMID: 34873731 PMCID: PMC8762554 DOI: 10.15252/embj.2020106837] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 11/09/2022] Open
Abstract
Mitochondria depend on the import of phospholipid precursors for the biosynthesis of phosphatidylethanolamine (PE) and cardiolipin, yet the mechanism of their transport remains elusive. A dynamic lipidomics approach revealed that mitochondria preferentially import di-unsaturated phosphatidylserine (PS) for subsequent conversion to PE by the mitochondrial PS decarboxylase Psd1p. Several protein complexes tethering mitochondria to the endomembrane system have been implicated in lipid transport in yeast, including the endoplasmic reticulum (ER)-mitochondrial encounter structure (ERMES), ER-membrane complex (EMC), and the vacuole and mitochondria patch (vCLAMP). By limiting the availability of unsaturated phospholipids, we created conditions to investigate the mechanism of lipid transfer and the contributions of the tethering complexes in vivo. Under these conditions, inactivation of ERMES components or of the vCLAMP component Vps39p exacerbated accumulation of saturated lipid acyl chains, indicating that ERMES and Vps39p contribute to the mitochondrial sink for unsaturated acyl chains by mediating transfer of di-unsaturated phospholipids. These results support the concept that intermembrane lipid flow is rate-limited by molecular species-dependent lipid efflux from the donor membrane and driven by the lipid species' concentration gradient between donor and acceptor membrane.
Collapse
Affiliation(s)
- Mike F Renne
- Membrane Biochemistry & BiophysicsDepartment of ChemistryUtrecht UniversityUtrechtThe Netherlands
- Present address:
Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
| | - Xue Bao
- Membrane Biochemistry & BiophysicsDepartment of ChemistryUtrecht UniversityUtrechtThe Netherlands
| | - Margriet WJ Hokken
- Membrane Biochemistry & BiophysicsDepartment of ChemistryUtrecht UniversityUtrechtThe Netherlands
- Present address:
Department of Medical MicrobiologyRadboud University Medical CenterRadboud Institute for Molecular Life SciencesNijmegenThe Netherlands
| | - Adolf S Bierhuizen
- Membrane Biochemistry & BiophysicsDepartment of ChemistryUtrecht UniversityUtrechtThe Netherlands
| | - Martin Hermansson
- Department of Biochemistry and Molecular BiologyVILLUM Center for Bioanalytical SciencesUniversity of Southern DenmarkOdenseDenmark
| | - Richard R Sprenger
- Department of Biochemistry and Molecular BiologyVILLUM Center for Bioanalytical SciencesUniversity of Southern DenmarkOdenseDenmark
| | - Tom A Ewing
- Membrane Biochemistry & BiophysicsDepartment of ChemistryUtrecht UniversityUtrechtThe Netherlands
- Present address:
Wageningen Food & Biobased ResearchWageningen University & ResearchWageningenThe Netherlands
| | - Xiao Ma
- Membrane Biochemistry & BiophysicsDepartment of ChemistryUtrecht UniversityUtrechtThe Netherlands
| | - Ruud C Cox
- Membrane Biochemistry & BiophysicsDepartment of ChemistryUtrecht UniversityUtrechtThe Netherlands
| | - Jos F Brouwers
- Biochemistry and Cell BiologyDepartment of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
- Present address:
Center for Molecular MedicineUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Cedric H De Smet
- Membrane Biochemistry & BiophysicsDepartment of ChemistryUtrecht UniversityUtrechtThe Netherlands
| | - Christer S Ejsing
- Department of Biochemistry and Molecular BiologyVILLUM Center for Bioanalytical SciencesUniversity of Southern DenmarkOdenseDenmark
- Cell Biology and Biophysics UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
| | - Anton IPM de Kroon
- Membrane Biochemistry & BiophysicsDepartment of ChemistryUtrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
26
|
Sharma S, Sharma P, Bailey T, Bhattarai S, Subedi U, Miller C, Ara H, Kidambi S, Sun H, Panchatcharam M, Miriyala S. Electrophilic Aldehyde 4-Hydroxy-2-Nonenal Mediated Signaling and Mitochondrial Dysfunction. Biomolecules 2022; 12:1555. [PMID: 36358905 PMCID: PMC9687674 DOI: 10.3390/biom12111555] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/22/2022] [Accepted: 10/23/2022] [Indexed: 01/21/2023] Open
Abstract
Reactive oxygen species (ROS), a by-product of aerobic life, are highly reactive molecules with unpaired electrons. The excess of ROS leads to oxidative stress, instigating the peroxidation of polyunsaturated fatty acids (PUFA) in the lipid membrane through a free radical chain reaction and the formation of the most bioactive aldehyde, known as 4-hydroxynonenal (4-HNE). 4-HNE functions as a signaling molecule and toxic product and acts mainly by forming covalent adducts with nucleophilic functional groups in proteins, nucleic acids, and lipids. The mitochondria have been implicated as a site for 4-HNE generation and adduction. Several studies clarified how 4-HNE affects the mitochondria's functions, including bioenergetics, calcium homeostasis, and mitochondrial dynamics. Our research group has shown that 4-HNE activates mitochondria apoptosis-inducing factor (AIFM2) translocation and facilitates apoptosis in mice and human heart tissue during anti-cancer treatment. Recently, we demonstrated that a deficiency of SOD2 in the conditional-specific cardiac knockout mouse increases ROS, and subsequent production of 4-HNE inside mitochondria leads to the adduction of several mitochondrial respiratory chain complex proteins. Moreover, we highlighted the physiological functions of HNE and discussed their relevance in human pathophysiology and current discoveries concerning 4-HNE effects on mitochondria.
Collapse
Affiliation(s)
- Sudha Sharma
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA
| | - Papori Sharma
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA
| | - Tara Bailey
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA
| | - Susmita Bhattarai
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA
| | - Utsab Subedi
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA
| | - Chloe Miller
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA
| | - Hosne Ara
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA
| | - Srivatsan Kidambi
- Department of Chemical & Biomolecular Engineering, University of Nebraska, Lincoln, NB 68588, USA
| | - Hong Sun
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA
| | - Manikandan Panchatcharam
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA
| | - Sumitra Miriyala
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA
| |
Collapse
|
27
|
Villalón-García I, Povea-Cabello S, Álvarez-Córdoba M, Talaverón-Rey M, Suárez-Rivero JM, Suárez-Carrillo A, Munuera-Cabeza M, Reche-López D, Cilleros-Holgado P, Piñero-Pérez R, Sánchez-Alcázar JA. Vicious cycle of lipid peroxidation and iron accumulation in neurodegeneration. Neural Regen Res 2022; 18:1196-1202. [PMID: 36453394 PMCID: PMC9838166 DOI: 10.4103/1673-5374.358614] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Lipid peroxidation and iron accumulation are closely associated with neurodegenerative diseases, such as Alzheimer's, Parkinson's, and Huntington's diseases, or neurodegeneration with brain iron accumulation disorders. Mitochondrial dysfunction, lipofuscin accumulation, autophagy disruption, and ferroptosis have been implicated as the critical pathomechanisms of lipid peroxidation and iron accumulation in these disorders. Currently, the connection between lipid peroxidation and iron accumulation and the initial cause or consequence in neurodegeneration processes is unclear. In this review, we have compiled the known mechanisms by which lipid peroxidation triggers iron accumulation and lipofuscin formation, and the effect of iron overload on lipid peroxidation and cellular function. The vicious cycle established between both pathological alterations may lead to the development of neurodegeneration. Therefore, the investigation of these mechanisms is essential for exploring therapeutic strategies to restrict neurodegeneration. In addition, we discuss the interplay between lipid peroxidation and iron accumulation in neurodegeneration, particularly in PLA2G6-associated neurodegeneration, a rare neurodegenerative disease with autosomal recessive inheritance, which belongs to the group of neurodegeneration with brain iron accumulation disorders.
Collapse
Affiliation(s)
- Irene Villalón-García
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide de Sevilla), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla, Spain
| | - Suleva Povea-Cabello
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide de Sevilla), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla, Spain
| | - Mónica Álvarez-Córdoba
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide de Sevilla), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla, Spain
| | - Marta Talaverón-Rey
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide de Sevilla), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla, Spain
| | - Juan M. Suárez-Rivero
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide de Sevilla), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla, Spain
| | - Alejandra Suárez-Carrillo
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide de Sevilla), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla, Spain
| | - Manuel Munuera-Cabeza
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide de Sevilla), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla, Spain
| | - Diana Reche-López
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide de Sevilla), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla, Spain
| | - Paula Cilleros-Holgado
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide de Sevilla), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla, Spain
| | - Rocío Piñero-Pérez
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide de Sevilla), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla, Spain
| | - José A. Sánchez-Alcázar
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide de Sevilla), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla, Spain,Correspondence to: José A. Sánchez-Alcázar, MD, PhD, .
| |
Collapse
|
28
|
Resende R, Fernandes T, Pereira AC, Marques AP, Pereira CF. Endoplasmic Reticulum-Mitochondria Contacts Modulate Reactive Oxygen Species-Mediated Signaling and Oxidative Stress in Brain Disorders: The Key Role of Sigma-1 Receptor. Antioxid Redox Signal 2022; 37:758-780. [PMID: 35369731 DOI: 10.1089/ars.2020.8231] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Significance: Mitochondria-Associated Membranes (MAMs) are highly dynamic endoplasmic reticulum (ER)-mitochondria contact sites that, due to the transfer of lipids and Ca2+ between these organelles, modulate several physiologic processes, such as ER stress response, mitochondrial bioenergetics and fission/fusion events, autophagy, and inflammation. In addition, these contacts are implicated in the modulation of the cellular redox status since several MAMs-resident proteins are involved in the generation of reactive oxygen species (ROS), which can act as both signaling mediators and deleterious molecules, depending on their intracellular levels. Recent Advances: In the past few years, structural and functional alterations of MAMs have been associated with the pathophysiology of several neurodegenerative diseases that are closely associated with the impairment of several MAMs-associated events, including perturbation of the redox state on the accumulation of high ROS levels. Critical Issues: Inter-organelle contacts must be tightly regulated to preserve cellular functioning by maintaining Ca2+ and protein homeostasis, lipid metabolism, mitochondrial dynamics and energy production, as well as ROS signaling. Simultaneously, these contacts should avoid mitochondrial Ca2+ overload, which might lead to energetic deficits and deleterious ROS accumulation, culminating in oxidative stress-induced activation of apoptotic cell death pathways, which are common features of many neurodegenerative diseases. Future Directions: Given that Sig-1R is an ER resident chaperone that is highly enriched at the MAMs and that controls ER to mitochondria Ca2+ flux, as well as oxidative and ER stress responses, its potential as a therapeutic target for neurodegenerative diseases such as Amyotrophic Lateral Sclerosis, Alzheimer, Parkinson, and Huntington diseases should be further explored. Antioxid. Redox Signal. 37, 758-780.
Collapse
Affiliation(s)
- Rosa Resende
- Center for Neuroscience and Cell Biology, Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Tânia Fernandes
- Center for Neuroscience and Cell Biology, Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Ana Catarina Pereira
- Center for Neuroscience and Cell Biology, Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Ana Patrícia Marques
- Center for Neuroscience and Cell Biology, Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Cláudia Fragão Pereira
- Center for Neuroscience and Cell Biology, Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
29
|
Ochoa-Gutiérrez D, Reyes-Torres AM, de la Fuente-Colmenares I, Escobar-Sánchez V, González J, Ortiz-Hernández R, Torres-Ramírez N, Segal-Kischinevzky C. Alternative CUG Codon Usage in the Halotolerant Yeast Debaryomyces hansenii: Gene Expression Profiles Provide New Insights into Ambiguous Translation. J Fungi (Basel) 2022; 8:jof8090970. [PMID: 36135695 PMCID: PMC9502446 DOI: 10.3390/jof8090970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 12/04/2022] Open
Abstract
The halotolerant yeast Debaryomyces hansenii belongs to the CTG-Ser1 clade of fungal species that use the CUG codon to translate as leucine or serine. The ambiguous decoding of the CUG codon is relevant for expanding protein diversity, but little is known about the role of leucine–serine ambiguity in cellular adaptations to extreme environments. Here, we examine sequences and structures of tRNACAG from the CTG-Ser1 clade yeasts, finding that D. hansenii conserves the elements to translate ambiguously. Then, we show that D. hansenii has tolerance to conditions of salinity, acidity, alkalinity, and oxidative stress associated with phenotypic and ultrastructural changes. In these conditions, we found differential expression in both the logarithmic and stationary growth phases of tRNASer, tRNALeu, tRNACAG, LeuRS, and SerRS genes that could be involved in the adaptive process of this yeast. Finally, we compare the proteomic isoelectric points and hydropathy profiles, detecting that the most important variations among the physicochemical characteristics of D. hansenii proteins are in their hydrophobic and hydrophilic interactions with the medium. We propose that the ambiguous translation, i.e., leucylation or serynation, on translation of the CUG-encoded residues, could be linked to adaptation processes in extreme environments.
Collapse
Affiliation(s)
- Daniel Ochoa-Gutiérrez
- Laboratorio de Biología Molecular y Genómica, Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Avenida Universidad # 3000, Cd. Universitaria, Coyoacán, Mexico City 04510, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Avenida Universidad # 3000, Cd. Universitaria, Coyoacán, Mexico City 04510, Mexico
| | - Anya M. Reyes-Torres
- Laboratorio de Biología Molecular y Genómica, Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Avenida Universidad # 3000, Cd. Universitaria, Coyoacán, Mexico City 04510, Mexico
| | - Ileana de la Fuente-Colmenares
- Laboratorio de Biología Molecular y Genómica, Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Avenida Universidad # 3000, Cd. Universitaria, Coyoacán, Mexico City 04510, Mexico
| | - Viviana Escobar-Sánchez
- Laboratorio de Biología Molecular y Genómica, Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Avenida Universidad # 3000, Cd. Universitaria, Coyoacán, Mexico City 04510, Mexico
| | - James González
- Laboratorio de Biología Molecular y Genómica, Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Avenida Universidad # 3000, Cd. Universitaria, Coyoacán, Mexico City 04510, Mexico
| | - Rosario Ortiz-Hernández
- Laboratorio de Microscopía Electrónica, Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Avenida Universidad # 3000, Cd. Universitaria, Coyoacán, Mexico City 04510, Mexico
| | - Nayeli Torres-Ramírez
- Laboratorio de Microscopía Electrónica, Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Avenida Universidad # 3000, Cd. Universitaria, Coyoacán, Mexico City 04510, Mexico
| | - Claudia Segal-Kischinevzky
- Laboratorio de Biología Molecular y Genómica, Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Avenida Universidad # 3000, Cd. Universitaria, Coyoacán, Mexico City 04510, Mexico
- Correspondence:
| |
Collapse
|
30
|
Sassano ML, Felipe-Abrio B, Agostinis P. ER-mitochondria contact sites; a multifaceted factory for Ca 2+ signaling and lipid transport. Front Cell Dev Biol 2022; 10:988014. [PMID: 36158205 PMCID: PMC9494157 DOI: 10.3389/fcell.2022.988014] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
Membrane contact sites (MCS) between organelles of eukaryotic cells provide structural integrity and promote organelle homeostasis by facilitating intracellular signaling, exchange of ions, metabolites and lipids and membrane dynamics. Cataloguing MCS revolutionized our understanding of the structural organization of a eukaryotic cell, but the functional role of MSCs and their role in complex diseases, such as cancer, are only gradually emerging. In particular, the endoplasmic reticulum (ER)-mitochondria contacts (EMCS) are key effectors of non-vesicular lipid trafficking, thereby regulating the lipid composition of cellular membranes and organelles, their physiological functions and lipid-mediated signaling pathways both in physiological and diseased conditions. In this short review, we discuss key aspects of the functional complexity of EMCS in mammalian cells, with particular emphasis on their role as central hubs for lipid transport between these organelles and how perturbations of these pathways may favor key traits of cancer cells.
Collapse
Affiliation(s)
- Maria Livia Sassano
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, Leuven, Belgium
- VIB Center for Cancer Biology, Leuven, Belgium
| | - Blanca Felipe-Abrio
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, Leuven, Belgium
- VIB Center for Cancer Biology, Leuven, Belgium
| | - Patrizia Agostinis
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, Leuven, Belgium
- VIB Center for Cancer Biology, Leuven, Belgium
| |
Collapse
|
31
|
Bathish B, Robertson H, Dillon JF, Dinkova-Kostova AT, Hayes JD. Nonalcoholic steatohepatitis and mechanisms by which it is ameliorated by activation of the CNC-bZIP transcription factor Nrf2. Free Radic Biol Med 2022; 188:221-261. [PMID: 35728768 DOI: 10.1016/j.freeradbiomed.2022.06.226] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 06/13/2022] [Indexed: 12/11/2022]
Abstract
Non-alcoholic steatohepatitis (NASH) represents a global health concern. It is characterised by fatty liver, hepatocyte cell death and inflammation, which are associated with lipotoxicity, endoplasmic reticulum (ER) stress, mitochondrial dysfunction, iron overload and oxidative stress. NF-E2 p45-related factor 2 (Nrf2) is a transcription factor that combats oxidative stress. Remarkably, Nrf2 is downregulated during the development of NASH, which probably accelerates disease, whereas in pre-clinical studies the upregulation of Nrf2 inhibits NASH. We now review the scientific literature that proposes Nrf2 downregulation during NASH involves its increased ubiquitylation and proteasomal degradation, mediated by Kelch-like ECH-associated protein 1 (Keap1) and/or β-transducin repeat-containing protein (β-TrCP) and/or HMG-CoA reductase degradation protein 1 (Hrd1, also called synoviolin (SYVN1)). Additionally, downregulation of Nrf2-mediated transcription during NASH may involve diminished recruitment of coactivators by Nrf2, due to increased levels of activating transcription factor 3 (ATF3) and nuclear factor-kappaB (NF-κB) p65, or competition for promoter binding due to upregulation of BTB and CNC homology 1 (Bach1). Many processes that downregulate Nrf2 are triggered by transforming growth factor-beta (TGF-β), with oxidative stress amplifying its signalling. Oxidative stress may also increase suppression of Nrf2 by β-TrCP through facilitating formation of the DSGIS-containing phosphodegron in Nrf2 by glycogen synthase kinase-3. In animal models, knockout of Nrf2 increases susceptibility to NASH, while pharmacological activation of Nrf2 by inducing agents that target Keap1 inhibits development of NASH. These inducing agents probably counter Nrf2 downregulation affected by β-TrCP, Hrd1/SYVN1, ATF3, NF-κB p65 and Bach1, by suppressing oxidative stress. Activation of Nrf2 is also likely to inhibit NASH by ameliorating lipotoxicity, inflammation, ER stress and iron overload. Crucially, pharmacological activation of Nrf2 in mice in which NASH has already been established supresses liver steatosis and inflammation. There is therefore compelling evidence that pharmacological activation of Nrf2 provides a comprehensive multipronged strategy to treat NASH.
Collapse
Affiliation(s)
- Boushra Bathish
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, UK
| | - Holly Robertson
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, UK; Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - John F Dillon
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK
| | - Albena T Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, UK
| | - John D Hayes
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, UK.
| |
Collapse
|
32
|
Bulthuis EP, Einer C, Distelmaier F, Groh L, van Emst-de Vries SE, van de Westerlo E, van de Wal M, Wagenaars J, Rodenburg RJ, Smeitink JAM, Riksen NP, Willems PHGM, Adjobo-Hermans MJW, Zischka H, Koopman WJH. The decylTPP mitochondria-targeting moiety lowers electron transport chain supercomplex levels in primary human skin fibroblasts. Free Radic Biol Med 2022; 188:434-446. [PMID: 35718301 DOI: 10.1016/j.freeradbiomed.2022.06.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/16/2022] [Accepted: 06/09/2022] [Indexed: 12/31/2022]
Abstract
Attachment of cargo molecules to lipophilic triphenylphosphonium (TPP+) cations is a widely applied strategy for mitochondrial targeting. We previously demonstrated that the vitamin E-derived antioxidant Trolox increases the levels of active mitochondrial complex I (CI), the first complex of the electron transport chain (ETC), in primary human skin fibroblasts (PHSFs) of Leigh Syndrome (LS) patients with isolated CI deficiency. Primed by this finding, we here studied the cellular effects of mitochondria-targeted Trolox (MitoE10), mitochondria-targeted ubiquinone (MitoQ10) and their mitochondria-targeting moiety decylTPP (C10-TPP+). Chronic treatment (96 h) with these molecules of PHSFs from a healthy subject and an LS patient with isolated CI deficiency (NDUFS7-V122M mutation) did not greatly affect cell number. Unexpectedly, this treatment reduced CI levels/activity, lowered the amount of ETC supercomplexes, inhibited mitochondrial oxygen consumption, increased extracellular acidification, altered mitochondrial morphology and stimulated hydroethidine oxidation. We conclude that the mitochondria-targeting decylTPP moiety is responsible for the observed effects and advocate that every study employing alkylTPP-mediated mitochondrial targeting should routinely include control experiments with the corresponding alkylTPP moiety.
Collapse
Affiliation(s)
- Elianne P Bulthuis
- Department of Biochemistry (286), Radboud Institute for Molecular Life Sciences (RIMLS), Radboud Center for Mitochondrial Medicine (RCMM), Radboud University Medical Center (Radboudumc), Nijmegen, the Netherlands
| | - Claudia Einer
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Felix Distelmaier
- Department of Biochemistry (286), Radboud Institute for Molecular Life Sciences (RIMLS), Radboud Center for Mitochondrial Medicine (RCMM), Radboud University Medical Center (Radboudumc), Nijmegen, the Netherlands
| | - Laszlo Groh
- Department of Internal Medicine (463), Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center (Radboudumc), Nijmegen, the Netherlands
| | - Sjenet E van Emst-de Vries
- Department of Biochemistry (286), Radboud Institute for Molecular Life Sciences (RIMLS), Radboud Center for Mitochondrial Medicine (RCMM), Radboud University Medical Center (Radboudumc), Nijmegen, the Netherlands
| | - Els van de Westerlo
- Department of Biochemistry (286), Radboud Institute for Molecular Life Sciences (RIMLS), Radboud Center for Mitochondrial Medicine (RCMM), Radboud University Medical Center (Radboudumc), Nijmegen, the Netherlands
| | - Melissa van de Wal
- Department of Pediatrics, Amalia Children's Hospital, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud Center for Mitochondrial Medicine (RCMM), Radboud University Medical Center (Radboudumc), Nijmegen, the Netherlands
| | - Jori Wagenaars
- Department of Biochemistry (286), Radboud Institute for Molecular Life Sciences (RIMLS), Radboud Center for Mitochondrial Medicine (RCMM), Radboud University Medical Center (Radboudumc), Nijmegen, the Netherlands
| | - Richard J Rodenburg
- Department of Pediatrics, Amalia Children's Hospital, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud Center for Mitochondrial Medicine (RCMM), Radboud University Medical Center (Radboudumc), Nijmegen, the Netherlands; Translational Metabolic Laboratory (TML), Radboud Center for Mitochondrial Medicine (RCMM), Radboud University Medical Center (Radboudumc), Nijmegen, the Netherlands
| | - Jan A M Smeitink
- Department of Pediatrics, Amalia Children's Hospital, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud Center for Mitochondrial Medicine (RCMM), Radboud University Medical Center (Radboudumc), Nijmegen, the Netherlands
| | - Niels P Riksen
- Department of Internal Medicine (463), Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center (Radboudumc), Nijmegen, the Netherlands
| | - Peter H G M Willems
- Department of Biochemistry (286), Radboud Institute for Molecular Life Sciences (RIMLS), Radboud Center for Mitochondrial Medicine (RCMM), Radboud University Medical Center (Radboudumc), Nijmegen, the Netherlands
| | - Merel J W Adjobo-Hermans
- Department of Biochemistry (286), Radboud Institute for Molecular Life Sciences (RIMLS), Radboud Center for Mitochondrial Medicine (RCMM), Radboud University Medical Center (Radboudumc), Nijmegen, the Netherlands
| | - Hans Zischka
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany; Institute of Toxicology and Environmental Hygiene, Technical University Munich, School of Medicine, Munich, Germany
| | - Werner J H Koopman
- Department of Pediatrics, Amalia Children's Hospital, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud Center for Mitochondrial Medicine (RCMM), Radboud University Medical Center (Radboudumc), Nijmegen, the Netherlands; Department of Human and Animal Physiology, Wageningen University, Wageningen, the Netherlands.
| |
Collapse
|
33
|
Liu Z, Shao M, Ren J, Qiu Y, Li S, Cao W. Association Between Increased Lipid Profiles and Risk of Diabetic Retinopathy in a Population-Based Case-Control Study. J Inflamm Res 2022; 15:3433-3446. [PMID: 35711238 PMCID: PMC9197172 DOI: 10.2147/jir.s361613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/24/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose We aimed to investigate the association between lipid profiles and diabetic retinopathy (DR). Patients and Methods This case-control study, which was conducted between November 2019 and August 2021, comprised 309 patients with DR, 186 patients with diabetes mellitus, and 172 healthy controls. Serum cholesterol (CHOL), triglyceride (TRIG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), small dense LDL-C (SDLDL-C), apolipoprotein A (APOA), APOB, APOE and lipoprotein (a)(LPA) levels were assessed. Patients were divided into two groups according to median age and glycated hemoglobin (HbA1c) level. Linear and logistic regression analyses were performed to assess the association between lipid levels and DR. Results CHOL, TRIG, HDL-C, APOB, APOE, and SDLDL-C levels were significantly higher in the DR group than in the healthy control group, and TRIG levels were lower in the DR group than in the DM group (P < 0.05), especially in the ≤57-year-old and the HbA1c ≤7.2% subgroups. Linear regression analyses showed that CHOL, TRIG, APOA, APOB, APOE, and SDLDL-C levels were associated with HbA1c levels. Multivariable logistic regression analyses indicated that CHOL (odds ratio [OR] = 1.32, 95% confidence interval [CI] = 1.112–1.566), TRIG (OR = 1.269, 95% CI = 1.030–1.563), HDL-C (OR = 43.744, 95% CI = 17.12–111.769), APOB (OR = 7.037, 95% CI = 3.370–14.695), APOE (OR = 1.057, 95% CI = 1.038–1.077), and SDLDL-C (OR = 14.719, 95% CI = 8.304–26.088) levels were risk factors for DR (P < 0.05). Conclusion Increased lipid levels were risk factors for DR, and lipid level control should be strengthened, especially in younger adults or in patients with HbA1c ≤7.2%.
Collapse
Affiliation(s)
- Zhenzhen Liu
- Department of Clinical Laboratory, Eye and Ear Nose Throat (ENT) Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Mingxi Shao
- Department of Clinical Laboratory, Eye and Ear Nose Throat (ENT) Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Jun Ren
- Department of Clinical Laboratory, Eye and Ear Nose Throat (ENT) Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Yichao Qiu
- Department of Clinical Laboratory, Eye and Ear Nose Throat (ENT) Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Shengjie Li
- Department of Clinical Laboratory, Eye and Ear Nose Throat (ENT) Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Wenjun Cao
- Department of Clinical Laboratory, Eye and Ear Nose Throat (ENT) Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
34
|
Warnsmann V, Marschall LM, Meeßen AC, Wolters M, Schürmanns L, Basoglu M, Eimer S, Osiewacz HD. Disruption of the MICOS complex leads to an aberrant cristae structure and an unexpected, pronounced lifespan extension in Podospora anserina. J Cell Biochem 2022; 123:1306-1326. [PMID: 35616269 DOI: 10.1002/jcb.30278] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/28/2022] [Accepted: 05/14/2022] [Indexed: 11/11/2022]
Abstract
Mitochondria are dynamic eukaryotic organelles involved in a variety of essential cellular processes including the generation of adenosine triphosphate (ATP) and reactive oxygen species as well as in the control of apoptosis and autophagy. Impairments of mitochondrial functions lead to aging and disease. Previous work with the ascomycete Podospora anserina demonstrated that mitochondrial morphotype as well as mitochondrial ultrastructure change during aging. The latter goes along with an age-dependent reorganization of the inner mitochondrial membrane leading to a change from lamellar cristae to vesicular structures. Particularly from studies with yeast, it is known that besides the F1 Fo -ATP-synthase and the phospholipid cardiolipin also the "mitochondrial contact site and cristae organizing system" (MICOS) complex, existing of the Mic60- and Mic10-subcomplex, is essential for proper cristae formation. In the present study, we aimed to understand the mechanistic basis of age-related changes in the mitochondrial ultrastructure. We observed that MICOS subunits are coregulated at the posttranscriptional level. This regulation partially depends on the mitochondrial iAAA-protease PaIAP. Most surprisingly, we made the counterintuitive observation that, despite the loss of lamellar cristae and of mitochondrial impairments, the ablation of MICOS subunits (except for PaMIC12) leads to a pronounced lifespan extension. Moreover, simultaneous ablation of subunits of both MICOS subcomplexes synergistically increases lifespan, providing formal genetic evidence that both subcomplexes affect lifespan by different and at least partially independent pathways. At the molecular level, we found that ablation of Mic10-subcomplex components leads to a mitohormesis-induced lifespan extension, while lifespan extension of Mic60-subcomplex mutants seems to be controlled by pathways involved in the control of phospholipid homeostasis. Overall, our data demonstrate that both MICOS subcomplexes have different functions and play distinct roles in the aging process of P. anserina.
Collapse
Affiliation(s)
- Verena Warnsmann
- Institute of Molecular Biosciences, Faculty of Biosciences, Goethe-University, Frankfurt, Germany
| | - Lisa-Marie Marschall
- Institute of Molecular Biosciences, Faculty of Biosciences, Goethe-University, Frankfurt, Germany
| | - Anja C Meeßen
- Institute of Molecular Biosciences, Faculty of Biosciences, Goethe-University, Frankfurt, Germany
| | - Maike Wolters
- Institute of Molecular Biosciences, Faculty of Biosciences, Goethe-University, Frankfurt, Germany
| | - Lea Schürmanns
- Institute of Molecular Biosciences, Faculty of Biosciences, Goethe-University, Frankfurt, Germany
| | - Marion Basoglu
- Institute for Cell Biology and Neuroscience, Faculty of Biosciences, Goethe-University, Frankfurt, Germany
| | - Stefan Eimer
- Institute for Cell Biology and Neuroscience, Faculty of Biosciences, Goethe-University, Frankfurt, Germany
| | - Heinz D Osiewacz
- Institute of Molecular Biosciences, Faculty of Biosciences, Goethe-University, Frankfurt, Germany
| |
Collapse
|
35
|
Hoffmann JJ, Becker T. Crosstalk between Mitochondrial Protein Import and Lipids. Int J Mol Sci 2022; 23:ijms23095274. [PMID: 35563660 PMCID: PMC9101885 DOI: 10.3390/ijms23095274] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/29/2022] [Accepted: 05/05/2022] [Indexed: 12/10/2022] Open
Abstract
Mitochondria import about 1000 precursor proteins from the cytosol. The translocase of the outer membrane (TOM complex) forms the major entry site for precursor proteins. Subsequently, membrane-bound protein translocases sort the precursor proteins into the outer and inner membrane, the intermembrane space, and the matrix. The phospholipid composition of mitochondrial membranes is critical for protein import. Structural and biochemical data revealed that phospholipids affect the stability and activity of mitochondrial protein translocases. Integration of proteins into the target membrane involves rearrangement of phospholipids and distortion of the lipid bilayer. Phospholipids are present in the interface between subunits of protein translocases and affect the dynamic coupling of partner proteins. Phospholipids are required for full activity of the respiratory chain to generate membrane potential, which in turn drives protein import across and into the inner membrane. Finally, outer membrane protein translocases are closely linked to organellar contact sites that mediate lipid trafficking. Altogether, intensive crosstalk between mitochondrial protein import and lipid biogenesis controls mitochondrial biogenesis.
Collapse
|
36
|
Chronic Inflammation—A Link between Nonalcoholic Fatty Liver Disease (NAFLD) and Dysfunctional Adipose Tissue. Medicina (B Aires) 2022; 58:medicina58050641. [PMID: 35630058 PMCID: PMC9147364 DOI: 10.3390/medicina58050641] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a new challenge in modern medicine, due to its high prevalence in the world. The pathogenesis of NAFLD is a complex dysmetabolic process, following the “multiple-hit” hypothesis that involves hepatocytes excessive accumulation of triglycerides, insulin resistance (IR), increased oxidative stress, chronic low-grade inflammatory response and lipotoxicity. In this review, we provide an overview of the interrelation of these processes, the link between systemic and local inflammation and the role of dysfunctional adipose tissue (AT) in the NAFLD development. Multiple extrahepatic triggers of the pathophysiological mechanisms of NAFLD are described: nutritional deficiency or malnutrition, unhealthy food intake, the dysfunction of the liver–gut axis, the involvement of the mesenteric adipose tissue, the role of adipokines such as adiponectin, of food intake hormone, the leptin and leptin resistance (LR) and adipose tissue’s hormone, the resistin. In addition, a wide range of intrahepatic players are involved: oxidative stress, fatty acid oxidation, endoplasmic reticulum stress, mitochondrial dysfunction, resident macrophages (Kupffer cells), neutrophils, dendritic cells (DCs), B and T lymphocytes contributing to the potential evolution of NAFLD to nonalcoholic steatohepatitis (NASH). This interdependent approach to complex dysmetabolic imbalance in NAFLD, integrating relevant studies, could contribute to a better clarification of pathogenesis and consequently the development of new personalized treatments, targeting de novo lipogenesis, chronic inflammation and fibrosis. Further studies are needed to focus not only on treatment, but also on prevention strategy in NAFLD.
Collapse
|
37
|
Du Z, Piguet J, Baryshnikov G, Tornmalm J, Demirbay B, Ågren H, Widengren J. Imaging Fluorescence Blinking of a Mitochondrial Localization Probe: Cellular Localization Probes Turned into Multifunctional Sensors. J Phys Chem B 2022; 126:3048-3058. [PMID: 35417173 PMCID: PMC9059120 DOI: 10.1021/acs.jpcb.2c01271] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/28/2022] [Indexed: 11/29/2022]
Abstract
Mitochondrial membranes and their microenvironments directly influence and reflect cellular metabolic states but are difficult to probe on site in live cells. Here, we demonstrate a strategy, showing how the widely used mitochondrial membrane localization fluorophore 10-nonyl acridine orange (NAO) can be transformed into a multifunctional probe of membrane microenvironments by monitoring its blinking kinetics. By transient state (TRAST) studies of NAO in small unilamellar vesicles (SUVs), together with computational simulations, we found that NAO exhibits prominent reversible singlet-triplet state transitions and can act as a light-induced Lewis acid forming a red-emissive doublet radical. The resulting blinking kinetics are highly environment-sensitive, specifically reflecting local membrane oxygen concentrations, redox conditions, membrane charge, fluidity, and lipid compositions. Here, not only cardiolipin concentration but also the cardiolipin acyl chain composition was found to strongly influence the NAO blinking kinetics. The blinking kinetics also reflect hydroxyl ion-dependent transitions to and from the fluorophore doublet radical, closely coupled to the proton-transfer events in the membranes, local pH, and two- and three-dimensional buffering properties on and above the membranes. Following the SUV studies, we show by TRAST imaging that the fluorescence blinking properties of NAO can be imaged in live cells in a spatially resolved manner. Generally, the demonstrated blinking imaging strategy can transform existing fluorophore markers into multiparametric sensors reflecting conditions of large biological relevance, which are difficult to retrieve by other means. This opens additional possibilities for fundamental membrane studies in lipid vesicles and live cells.
Collapse
Affiliation(s)
- Zhixue Du
- Royal
Institute of Technology (KTH), Experimental Biomolecular Physics,
Department Applied Physics, Albanova Univ
Center, 106 91 Stockholm, Sweden
| | - Joachim Piguet
- Royal
Institute of Technology (KTH), Experimental Biomolecular Physics,
Department Applied Physics, Albanova Univ
Center, 106 91 Stockholm, Sweden
| | - Glib Baryshnikov
- Laboratory
of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden
| | - Johan Tornmalm
- Royal
Institute of Technology (KTH), Experimental Biomolecular Physics,
Department Applied Physics, Albanova Univ
Center, 106 91 Stockholm, Sweden
| | - Baris Demirbay
- Royal
Institute of Technology (KTH), Experimental Biomolecular Physics,
Department Applied Physics, Albanova Univ
Center, 106 91 Stockholm, Sweden
| | - Hans Ågren
- Department
of Physics and Astronomy, Uppsala University, P.O. Box 516, SE-751 20 Uppsala, Sweden
| | - Jerker Widengren
- Royal
Institute of Technology (KTH), Experimental Biomolecular Physics,
Department Applied Physics, Albanova Univ
Center, 106 91 Stockholm, Sweden
| |
Collapse
|
38
|
Lifespan Extension of Podospora anserina Mic60-Subcomplex Mutants Depends on Cardiolipin Remodeling. Int J Mol Sci 2022; 23:ijms23094741. [PMID: 35563132 PMCID: PMC9099538 DOI: 10.3390/ijms23094741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 01/18/2023] Open
Abstract
Function of mitochondria largely depends on a characteristic ultrastructure with typical invaginations, namely the cristae of the inner mitochondrial membrane. The mitochondrial signature phospholipid cardiolipin (CL), the F1Fo-ATP-synthase, and the ‘mitochondrial contact site and cristae organizing system’ (MICOS) complex are involved in this process. Previous studies with Podospora anserina demonstrated that manipulation of MICOS leads to altered cristae structure and prolongs lifespan. While longevity of Mic10-subcomplex mutants is induced by mitohormesis, the underlying mechanism in the Mic60-subcomplex deletion mutants was unclear. Since several studies indicated a connection between MICOS and phospholipid composition, we now analyzed the impact of MICOS on mitochondrial phospholipid metabolism. Data from lipidomic analysis identified alterations in phospholipid profile and acyl composition of CL in Mic60-subcomplex mutants. These changes appear to have beneficial effects on membrane properties and promote longevity. Impairments of CL remodeling in a PaMIC60 ablated mutant lead to a complete abrogation of longevity. This effect is reversed by supplementation of the growth medium with linoleic acid, a fatty acid which allows the formation of tetra-octadecanoyl CL. In the PaMic60 deletion mutant, this CL species appears to lead to longevity. Overall, our data demonstrate a tight connection between MICOS, the regulation of mitochondrial phospholipid homeostasis, and aging of P. anserina.
Collapse
|
39
|
Biallelic variants in TAMM41 are associated with low muscle cardiolipin levels, leading to neonatal mitochondrial disease. HGG ADVANCES 2022; 3:100097. [PMID: 35321494 PMCID: PMC8935507 DOI: 10.1016/j.xhgg.2022.100097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/25/2022] [Indexed: 11/23/2022] Open
Abstract
Mitochondrial disorders are clinically and genetically heterogeneous, with variants in mitochondrial or nuclear genes leading to varied clinical phenotypes. TAMM41 encodes a mitochondrial protein with cytidine diphosphate-diacylglycerol synthase activity: an essential early step in the biosynthesis of phosphatidylglycerol and cardiolipin. Cardiolipin is a mitochondria-specific phospholipid that is important for many mitochondrial processes. We report three unrelated individuals with mitochondrial disease that share clinical features, including lethargy at birth, hypotonia, developmental delay, myopathy, and ptosis. Whole exome and genome sequencing identified compound heterozygous variants in TAMM41 in each proband. Western blot analysis in fibroblasts showed a mild oxidative phosphorylation (OXPHOS) defect in only one of the three affected individuals. In skeletal muscle samples, however, there was severe loss of subunits of complexes I–IV and a decrease in fully assembled OXPHOS complexes I–V in two subjects as well as decreased TAMM41 protein levels. Similar to the tissue-specific observations on OXPHOS, cardiolipin levels were unchanged in subject fibroblasts but significantly decreased in the skeletal muscle of affected individuals. To assess the functional impact of the TAMM41 missense variants, the equivalent mutations were modeled in yeast. All three mutants failed to rescue the growth defect of the Δtam41 strains on non-fermentable (respiratory) medium compared with wild-type TAM41, confirming the pathogenicity of the variants. We establish that TAMM41 is an additional gene involved in mitochondrial phospholipid biosynthesis and modification and that its deficiency results in a mitochondrial disorder, though unlike families with pathogenic AGK (Sengers syndrome) and TAFAZZIN (Barth syndrome) variants, there was no evidence of cardiomyopathy.
Collapse
|
40
|
Xu Y, Erdjument‐Bromage H, Phoon CKL, Neubert TA, Ren M, Schlame M. Cardiolipin remodeling enables protein crowding in the inner mitochondrial membrane. EMBO J 2021; 40:e108428. [PMID: 34661298 PMCID: PMC8634138 DOI: 10.15252/embj.2021108428] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 11/09/2022] Open
Abstract
Mitochondrial cristae are extraordinarily crowded with proteins, which puts stress on the bilayer organization of lipids. We tested the hypothesis that the high concentration of proteins drives the tafazzin-catalyzed remodeling of fatty acids in cardiolipin, thereby reducing bilayer stress in the membrane. Specifically, we tested whether protein crowding induces cardiolipin remodeling and whether the lack of cardiolipin remodeling prevents the membrane from accumulating proteins. In vitro, the incorporation of large amounts of proteins into liposomes altered the outcome of the remodeling reaction. In yeast, the concentration of proteins involved in oxidative phosphorylation (OXPHOS) correlated with the cardiolipin composition. Genetic ablation of either remodeling or biosynthesis of cardiolipin caused a substantial drop in the surface density of OXPHOS proteins in the inner membrane of the mouse heart and Drosophila flight muscle mitochondria. Our data suggest that OXPHOS protein crowding induces cardiolipin remodelling and that remodeled cardiolipin supports the high concentration of these proteins in the inner mitochondrial membrane.
Collapse
Affiliation(s)
- Yang Xu
- Department of AnesthesiologyNew York University Grossman School of MedicineNew YorkNYUSA
| | - Hediye Erdjument‐Bromage
- Kimmel Center for Biology and Medicine at the Skirball InstituteNew York University Grossman School of MedicineNew YorkNYUSA
- Department of Cell BiologyNew York University Grossman School of MedicineNew YorkNYUSA
| | - Colin K L Phoon
- Department of PediatricsNew York University Grossman School of MedicineNew YorkNYUSA
| | - Thomas A Neubert
- Kimmel Center for Biology and Medicine at the Skirball InstituteNew York University Grossman School of MedicineNew YorkNYUSA
- Department of Cell BiologyNew York University Grossman School of MedicineNew YorkNYUSA
| | - Mindong Ren
- Department of AnesthesiologyNew York University Grossman School of MedicineNew YorkNYUSA
- Department of Cell BiologyNew York University Grossman School of MedicineNew YorkNYUSA
| | - Michael Schlame
- Department of AnesthesiologyNew York University Grossman School of MedicineNew YorkNYUSA
- Department of Cell BiologyNew York University Grossman School of MedicineNew YorkNYUSA
| |
Collapse
|
41
|
Lavrova AV, Gretskaya NM, Bezuglov VV. Role of Oxidative Stress in the Etiology of Parkinson’s Disease: Advanced Therapeutic Products. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1068162021050307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
42
|
Rojas ML, Cruz Del Puerto MM, Flores-Martín J, Racca AC, Kourdova LT, Miranda AL, Panzetta-Dutari GM, Genti-Raimondi S. Role of the lipid transport protein StarD7 in mitochondrial dynamics. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:159029. [PMID: 34416390 DOI: 10.1016/j.bbalip.2021.159029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 07/16/2021] [Accepted: 08/13/2021] [Indexed: 10/20/2022]
Abstract
Mitochondria are dynamic organelles crucial for cell function and survival implicated in oxidative energy production whose central functions are tightly controlled by lipids. StarD7 is a lipid transport protein involved in the phosphatidylcholine (PC) delivery to mitochondria. Previous studies have shown that StarD7 knockdown induces alterations in mitochondria and endoplasmic reticulum (ER) with a reduction in PC content, however whether StarD7 modulates mitochondrial dynamics remains unexplored. Here, we generated HTR-8/SVneo stable cells expressing the precursor StarD7.I and the mature processed StarD7.II isoforms. We demonstrated that StarD7.I overexpression altered mitochondrial morphology increasing its fragmentation, whereas no changes were observed in StarD7.II-overexpressing cells compared to the control (Ct) stable cells. StarD7.I (D7.I) stable cells were able to transport higher fluorescent PC analog to mitochondria than Ct cells, yield mitochondrial fusions, maintained the membrane potential, and produced lower levels of reactive oxygen species (ROS). Additionally, the expression of Dynamin Related Protein 1 (Drp1) and Mitofusin (Mfn2) proteins were increased, whereas the amount of Mitofusin 1 (Mfn1) decreased. Moreover, transfections with plasmids encoding Drp1-K38A, Drp1-S637D or Drp1-S637A mutants indicated that mitochondrial fragmentation in D7.I cells occurs in a fission-dependent manner via Drp1. In contrast, StarD7 silencing decreased Mfn1 and Mfn2 fusion proteins without modification of Drp1 protein level. These cells increased ROS levels and presented donut-shape mitochondria, indicative of metabolic stress. Altogether our findings provide novel evidence indicating that alterations in StarD7.I expression produce significant changes in mitochondrial morphology and dynamics.
Collapse
Affiliation(s)
- María L Rojas
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Ciudad Universitaria, X5000HUA Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - Mariano M Cruz Del Puerto
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Ciudad Universitaria, X5000HUA Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - Jésica Flores-Martín
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Ciudad Universitaria, X5000HUA Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - Ana C Racca
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Ciudad Universitaria, X5000HUA Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - Lucille T Kourdova
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Ciudad Universitaria, X5000HUA Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - Andrea L Miranda
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Ciudad Universitaria, X5000HUA Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - Graciela M Panzetta-Dutari
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Ciudad Universitaria, X5000HUA Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - Susana Genti-Raimondi
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Ciudad Universitaria, X5000HUA Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Ciudad Universitaria, X5000HUA Córdoba, Argentina.
| |
Collapse
|
43
|
Poveda-Huertes D, Taskin AA, Dhaouadi I, Myketin L, Marada A, Habernig L, Büttner S, Vögtle FN. Increased mitochondrial protein import and cardiolipin remodelling upon early mtUPR. PLoS Genet 2021; 17:e1009664. [PMID: 34214073 PMCID: PMC8282050 DOI: 10.1371/journal.pgen.1009664] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 07/15/2021] [Accepted: 06/11/2021] [Indexed: 12/11/2022] Open
Abstract
Mitochondrial defects can cause a variety of human diseases and protective mechanisms exist to maintain mitochondrial functionality. Imbalances in mitochondrial proteostasis trigger a transcriptional program, termed mitochondrial unfolded protein response (mtUPR). However, the temporal sequence of events in mtUPR is unclear and the consequences on mitochondrial protein import are controversial. Here, we have quantitatively analyzed all main import pathways into mitochondria after different time spans of mtUPR induction. Kinetic analyses reveal that protein import into all mitochondrial subcompartments strongly increases early upon mtUPR and that this is accompanied by rapid remodelling of the mitochondrial signature lipid cardiolipin. Genetic inactivation of cardiolipin synthesis precluded stimulation of protein import and compromised cellular fitness. At late stages of mtUPR upon sustained stress, mitochondrial protein import efficiency declined. Our work clarifies the enigma of protein import upon mtUPR and identifies sequential mtUPR stages, in which an early increase in protein biogenesis to restore mitochondrial proteostasis is followed by late stages characterized by a decrease in import capacity upon prolonged stress induction.
Collapse
Affiliation(s)
- Daniel Poveda-Huertes
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Asli Aras Taskin
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- CIBSS—Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Ines Dhaouadi
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lisa Myketin
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Adinarayana Marada
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lukas Habernig
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Sabrina Büttner
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - F.-Nora Vögtle
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- CIBSS—Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
44
|
Changes in Key Mitochondrial Lipids Accompany Mitochondrial Dysfunction and Oxidative Stress in NAFLD. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9986299. [PMID: 34257827 PMCID: PMC8257344 DOI: 10.1155/2021/9986299] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 05/06/2021] [Indexed: 12/30/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a dysmetabolic hepatic damage of increasing severity: simple fat accumulation (steatosis), nonalcoholic steatohepatitis (NASH), and hepatic fibrosis. Oxidative stress is considered an important factor in producing hepatocyte injury associated with NAFLD progression. Studies also suggest a link between the accumulation of specific hepatic lipid species, mitochondrial dysfunction, and the progression of NAFLD. However, it is unclear whether mitochondrial lipid modifications are involved in NAFLD progression. To gain insight into the relationship between mitochondrial lipids and disease progression through different stages of NAFLD, we performed lipidomic analyses on mouse livers at different stages of western diet-induced NAFLD, with or without hepatic fibrosis. After organelle separation, we studied separately the mitochondrial and the “nonmitochondrial” hepatic lipidomes. We identified 719 lipid species from 16 lipid families. Remarkably, the western diet triggered time-dependent changes in the mitochondrial lipidome, whereas the “nonmitochondrial” lipidome showed little difference with levels of hepatic steatosis or the presence of fibrosis. In mitochondria, the changes in the lipidome preceded hepatic fibrosis. In particular, two critical phospholipids, phosphatidic acid (PA) and cardiolipin (CL), displayed opposite responses in mitochondria. Decrease in CL and increase in PA were concurrent with an increase of coenzyme Q. Electron paramagnetic resonance spectroscopy superoxide spin trapping and Cu2+ measurement showed the progressive increase in oxidative stress in the liver. Overall, these results suggest mitochondrial lipid modifications could act as an early event in mitochondrial dysfunction and NAFLD progression.
Collapse
|
45
|
Taylor A, Grapentine S, Ichhpuniani J, Bakovic M. Choline transporter-like proteins 1 and 2 are newly identified plasma membrane and mitochondrial ethanolamine transporters. J Biol Chem 2021; 296:100604. [PMID: 33789160 PMCID: PMC8081925 DOI: 10.1016/j.jbc.2021.100604] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 12/31/2022] Open
Abstract
The membrane phospholipids phosphatidylcholine and phosphatidylethanolamine (PE) are synthesized de novo by the CDP-choline and CDP-ethanolamine (Kennedy) pathway, in which the extracellular substrates choline and ethanolamine are transported into the cell, phosphorylated, and coupled with diacylglycerol to form the final phospholipid product. Although multiple transport systems have been established for choline, ethanolamine transport is poorly characterized and there is no single protein assigned a transport function for ethanolamine. The solute carriers 44A (SLC44A) known as choline transporter-like proteins-1 and -2 (CTL1 and CTL2) are choline transporter at the plasma membrane and mitochondria. We report a novel function of CTL1 and CTL2 in ethanolamine transport. Using the lack or the gain of gene function in combination with specific antibodies and transport inhibitors we established two distinct ethanolamine transport systems of a high affinity, mediated by CTL1, and of a low affinity, mediated by CTL2. Both transporters are Na+-independent ethanolamine/H+ antiporters. Primary human fibroblasts with separate frameshift mutations in the CTL1 gene (M1= SLC44A1ΔAsp517 and M2= SLC44A1ΔSer126) are devoid of CTL1 ethanolamine transport but maintain unaffected CTL2 transport. The lack of CTL1 in M2 cells reduced the ethanolamine transport, the flux through the CDP-ethanolamine Kennedy pathway, and PE synthesis. In contrast, overexpression of CTL1 in M2 cells improved ethanolamine transport and PE synthesis. These data firmly establish that CTL1 and CTL2 are the first identified ethanolamine transporters in whole cells and mitochondria, with intrinsic roles in de novo PE synthesis by the Kennedy pathway and intracellular redistribution of ethanolamine.
Collapse
Affiliation(s)
- Adrian Taylor
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Canada
| | - Sophie Grapentine
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Canada
| | - Jasmine Ichhpuniani
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Canada
| | - Marica Bakovic
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Canada.
| |
Collapse
|
46
|
Wang B, Huang M, Shang D, Yan X, Zhao B, Zhang X. Mitochondrial Behavior in Axon Degeneration and Regeneration. Front Aging Neurosci 2021; 13:650038. [PMID: 33762926 PMCID: PMC7982458 DOI: 10.3389/fnagi.2021.650038] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 02/18/2021] [Indexed: 12/19/2022] Open
Abstract
Mitochondria are organelles responsible for bioenergetic metabolism, calcium homeostasis, and signal transmission essential for neurons due to their high energy consumption. Accumulating evidence has demonstrated that mitochondria play a key role in axon degeneration and regeneration under physiological and pathological conditions. Mitochondrial dysfunction occurs at an early stage of axon degeneration and involves oxidative stress, energy deficiency, imbalance of mitochondrial dynamics, defects in mitochondrial transport, and mitophagy dysregulation. The restoration of these defective mitochondria by enhancing mitochondrial transport, clearance of reactive oxidative species (ROS), and improving bioenergetic can greatly contribute to axon regeneration. In this paper, we focus on the biological behavior of axonal mitochondria in aging, injury (e.g., traumatic brain and spinal cord injury), and neurodegenerative diseases (Alzheimer's disease, AD; Parkinson's disease, PD; Amyotrophic lateral sclerosis, ALS) and consider the role of mitochondria in axon regeneration. We also compare the behavior of mitochondria in different diseases and outline novel therapeutic strategies for addressing abnormal mitochondrial biological behavior to promote axonal regeneration in neurological diseases and injuries.
Collapse
Affiliation(s)
- Biyao Wang
- The VIP Department, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Minghao Huang
- Center of Implant Dentistry, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Dehao Shang
- Center of Implant Dentistry, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Xu Yan
- The VIP Department, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Baohong Zhao
- Center of Implant Dentistry, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Xinwen Zhang
- Center of Implant Dentistry, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| |
Collapse
|
47
|
Ramírez-Camacho I, García-Niño W, Flores-García M, Pedraza-Chaverri J, Zazueta C. Alteration of mitochondrial supercomplexes assembly in metabolic diseases. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165935. [DOI: 10.1016/j.bbadis.2020.165935] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 01/05/2023]
|
48
|
Li Y, Lou W, Grevel A, Böttinger L, Liang Z, Ji J, Patil VA, Liu J, Ye C, Hüttemann M, Becker T, Greenberg ML. Cardiolipin-deficient cells have decreased levels of the iron-sulfur biogenesis protein frataxin. J Biol Chem 2020; 295:11928-11937. [PMID: 32636300 PMCID: PMC7450130 DOI: 10.1074/jbc.ra120.013960] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 07/02/2020] [Indexed: 12/12/2022] Open
Abstract
Cardiolipin (CL) is the signature phospholipid of mitochondrial membranes, where it is synthesized locally and plays an important role in mitochondrial bioenergetics. Previous studies in the yeast model have indicated that CL is required for optimal iron homeostasis, which is disrupted by a mechanism not yet determined in the yeast CL mutant, crd1Δ. This finding has implications for the severe genetic disorder, Barth syndrome (BTHS), in which CL metabolism is perturbed because of mutations in the CL-remodeling enzyme, tafazzin. Here, we investigate the effects of tafazzin deficiency on iron homeostasis in the mouse myoblast model of BTHS tafazzin knockout (TAZ-KO) cells. Similarly to CL-deficient yeast cells, TAZ-KO cells exhibited elevated sensitivity to iron, as well as to H2O2, which was alleviated by the iron chelator deferoxamine. TAZ-KO cells exhibited increased expression of the iron exporter ferroportin and decreased expression of the iron importer transferrin receptor, likely reflecting a regulatory response to elevated mitochondrial iron. Reduced activities of mitochondrial iron-sulfur cluster enzymes suggested that the mechanism underlying perturbation of iron homeostasis was defective iron-sulfur biogenesis. We observed decreased levels of Yfh1/frataxin, an essential component of the iron-sulfur biogenesis machinery, in mitochondria from TAZ-KO mouse cells and in CL-deleted yeast crd1Δ cells, indicating that the role of CL in iron-sulfur biogenesis is highly conserved. Yeast crd1Δ cells exhibited decreased processing of the Yfh1 precursor upon import, which likely contributes to the iron homeostasis defects. Implications for understanding the pathogenesis of BTHS are discussed.
Collapse
Affiliation(s)
- Yiran Li
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| | - Wenjia Lou
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| | - Alexander Grevel
- Institute for Biochemistry and Molecular Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Lena Böttinger
- Institute for Biochemistry and Molecular Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Zhuqing Liang
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| | - Jiajia Ji
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| | - Vinay A Patil
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| | - Jenney Liu
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Cunqi Ye
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Thomas Becker
- Institute for Biochemistry and Molecular Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- CIBSS Centre for Integrative Biological Signaling Studies, University of Freiburg, Freiburg, Germany
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Miriam L Greenberg
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
49
|
Franco J, Rajwa B, Ferreira CR, Sundberg JP, HogenEsch H. Lipidomic Profiling of the Epidermis in a Mouse Model of Dermatitis Reveals Sexual Dimorphism and Changes in Lipid Composition before the Onset of Clinical Disease. Metabolites 2020; 10:metabo10070299. [PMID: 32708296 PMCID: PMC7408197 DOI: 10.3390/metabo10070299] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/17/2020] [Accepted: 07/18/2020] [Indexed: 02/07/2023] Open
Abstract
Atopic dermatitis (AD) is a multifactorial disease associated with alterations in lipid composition and organization in the epidermis. Multiple variants of AD exist with different outcomes in response to therapies. The evaluation of disease progression and response to treatment are observational assessments with poor inter-observer agreement highlighting the need for molecular markers. SHARPIN-deficient mice (Sharpincpdm) spontaneously develop chronic proliferative dermatitis with features similar to AD in humans. To study the changes in the epidermal lipid-content during disease progression, we tested 72 epidermis samples from three groups (5-, 7-, and 10-weeks old) of cpdm mice and their WT littermates. An agnostic mass-spectrometry strategy for biomarker discovery termed multiple-reaction monitoring (MRM)-profiling was used to detect and monitor 1,030 lipid ions present in the epidermis samples. In order to select the most relevant ions, we utilized a two-tiered filter/wrapper feature-selection strategy. Lipid categories were compressed, and an elastic-net classifier was used to rank and identify the most predictive lipid categories for sex, phenotype, and disease stages of cpdm mice. The model accurately classified the samples based on phospholipids, cholesteryl esters, acylcarnitines, and sphingolipids, demonstrating that disease progression cannot be defined by one single lipid or lipid category.
Collapse
Affiliation(s)
- Jackeline Franco
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA;
| | - Bartek Rajwa
- Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA
- Correspondence: (B.R.); (H.H.)
| | - Christina R. Ferreira
- Metabolite Profiling Facility, Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA;
| | | | - Harm HogenEsch
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA;
- Purdue Institute of Inflammation, Immunology and Infectious Diseases, Purdue University, West Lafayette, IN 47907, USA
- Correspondence: (B.R.); (H.H.)
| |
Collapse
|
50
|
Mohammad K, Baratang Junio JA, Tafakori T, Orfanos E, Titorenko VI. Mechanisms that Link Chronological Aging to Cellular Quiescence in Budding Yeast. Int J Mol Sci 2020; 21:ijms21134717. [PMID: 32630624 PMCID: PMC7369985 DOI: 10.3390/ijms21134717] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/27/2020] [Accepted: 06/30/2020] [Indexed: 12/28/2022] Open
Abstract
After Saccharomyces cerevisiae cells cultured in a medium with glucose consume glucose, the sub-populations of quiescent and non-quiescent cells develop in the budding yeast culture. An age-related chronology of quiescent and non-quiescent yeast cells within this culture is discussed here. We also describe various hallmarks of quiescent and non-quiescent yeast cells. A complex aging-associated program underlies cellular quiescence in budding yeast. This quiescence program includes a cascade of consecutive cellular events orchestrated by an intricate signaling network. We examine here how caloric restriction, a low-calorie diet that extends lifespan and healthspan in yeast and other eukaryotes, influences the cellular quiescence program in S. cerevisiae. One of the main objectives of this review is to stimulate an exploration of the mechanisms that link cellular quiescence to chronological aging of budding yeast. Yeast chronological aging is defined by the length of time during which a yeast cell remains viable after its growth and division are arrested, and it becomes quiescent. We propose a hypothesis on how caloric restriction can slow chronological aging of S. cerevisiae by altering the chronology and properties of quiescent cells. Our hypothesis posits that caloric restriction delays yeast chronological aging by targeting four different processes within quiescent cells.
Collapse
|